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A R T I C L E  I N F O   

Handling Editor: Prof. F. Toldra  

Keywords: 
Chemometrics 
Coffee 
Cocoa 
Tea 
Artificial intelligence 
Quality 
Sensory notes 

A B S T R A C T   

Background: Food quality is a multifaceted, evolving concept encompassing various aspects throughout the 
production chain. The shift from traditional analytics to comprehensive strategies is driven by the need to meet 
this extended quality definition. 
Scope and approach: Foodomics, specifically focusing on connecting chemical composition to sensory properties, 
is vital for comfort foods like coffee, cocoa, and tea, chosen for enjoyment rather than nutrition. In foodomics, 
larger and more complex datasets demand Artificial intelligence-based tools for decoding encrypted information. 
Key findings and conclusions: Global coffee, cocoa, and tea supply involve numerous small farms affected by socio- 
political instability and climate change. Financial motives drive fraudulent practices, leading to unfair compe-
tition, loss of consumer confidence, and safety issues. AI-based tools enhance data understanding for knowledge 
gain, but challenges include the misalignment between academia and industry, limited industrial samples for AI 
application, academic training gaps, algorithm complexity, and decision-making misinterpretation.   

1. Introduction 

Foodomics, an interdisciplinary field, uses various techniques to 
study food at a molecular level, analyzing composition, safety, quality, 
flavour, and their impact on human health (Cifuentes, 2017). Global 
food markets, increased demand for safe, minimally processed, and 
healthy food require new approaches to identify quality markers. Food 
fraud poses a major problem due to costs, public health implications, 
intentional or unintentional acts, affecting regulators and industry. Food 
quality is crucial for the food industry’s success, influenced by contex-
tual and situational factors, evolving over time, covering the entire 
production chain (total quality) (Fig. 1) (Bhatia & Ahanger, 2021). The 
concept of Food Quality, introduced in 2004 by the FAO and updated to 
ISO 9001:2015, ensures expected properties. ISO 22000:2018 extends 
the concept, integrating food quality and safety management systems 
(ISO 9001:2015; ISO 22000:2018). Food quality dimensions depend on 
consumer expectations and industry standards. Industry seeks an 
objective, precisely defined standard, while consumer quality is sub-
jective, influenced by expectations, perception, and acceptance based on 
the moment or situation. 

1.1. Food quality and its impact on industry production 

Ensuring high-quality products helps food companies build a strong 
reputation, attract new customers, and stand out from competitors 
(Chen, Zhang, & Luo, 2021). 

Food quality is crucial for safety and compliance; failure to meet 
standards can lead to recalls, fines, legal issues, and reputation damage 
(Bhatia & Ahanger, 2021). Optimizing supply chains and maintaining 
food quality reduces waste, minimizes losses, and enhances operational 
efficiency. Premium pricing is achievable for high-quality, organic, 
natural, or specialty products. To ensure the quality and safety of 
products, food companies have implemented a set of practices, pro-
cedures and guidelines called Food. To ensure product quality and 
safety, food companies implement Food Quality Management Systems 
(QMS) (ISO 22000:2018). A robust Food QMS builds trust, lowers recall 
risks, and ensures safety and quality for manufacturers, processors, 
distributors, and retailers. 
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1.2. Food quality from the consumer view 

Consumer-perceived food quality is vital, directly impacting satis-
faction and the overall dining experience. Evaluation factors include 
taste, appearance, freshness, nutritional value, safety, and dining 
ambience (Fig. 2). Preferences lean towards balanced options with 
essential nutrients, avoiding excessive unhealthy ingredients like trans 
fats, added sugars, and high sodium levels. Authentic flavours, culinary 
traditions, and ingredient origin contribute to perceived quality, 
particularly in niche or specialty dishes. Ethical considerations such as 
sustainability, fair trade, and animal welfare are increasingly influ-
encing consumer choices (Mascarello, Pinto, Parise, Crovato, & Ravar-
otto, 2015). Consumer satisfaction aligns when expected and 

experienced quality match. Brands serve as quality indicators, yet eco-
nomic crises affect brand choice. A recent IFIC survey highlights flavour 
as the top determinant of food quality, followed by price, healthiness, 
convenience, and sustainability (IFIC, 2017). Positive word-of-mouth 
enhances reputation and attracts new customers, while poor food 
quality leads to dissatisfaction, negative reviews, and sales decline. 

1.3. Comfort food and flavour 

Coffee, cocoa, and tea serve as comfort and “social” foods, contrib-
uting to human well-being (Lemarcq, 2020; Preedy, 2013, 2015). 
Comfort food, offering psychological comfort, adds complexity to eating 
behaviour, involving all sensory systems and gut-brain interactions 
(Spence, 2017). In recent years, a strong scientific effort has been made 
to better understand how all the different perceptions interact in the 
“building up” of a food flavour (Fig. 3). Food flavour is therefore defined 
as a multisensory phenomenon that results from the integration of taste, 
smell and other sensory (e.g. somatosensory) information into a 
perceived characteristic of the food (Prescott, 2015; Spence, 2016a, 
2016b). It is therefore clear that the interactions between flavour com-
ponents determine what we perceive in food and what we like, and that 
they influence consumer choices. 

The quality of these foods depends on factors like botanical variety, 
weather, agricultural practices, storage, and processing. Higher quality 
products command higher prices, determined by sensory profile and 
nutritional properties linked to chemical composition. 

This means that the production chain must be supplied with products 
of uniform quality standards, i.e. uniform raw materials with specific 
quality parameters from the country of origin. This is a serious problem 
for industries that process coffee, chocolate and tea manufacturers, as 
they need masses of raw or semi-finished products of consistent quality 
to meet ever-increasing demand. Standardizing quality is challenging 
due to crops being produced in non-EU countries by independent 
farmers, leading to batch heterogeneity impacted by socio-political 
instability and climate change (Boeckx, Bauters, & Dewettinck, 2020; 
Nowogrodzki, 2019). Objective and robust tools are key for industries to 
develop methods for recognizing and assessing food quality markers and 

Fig. 1. The different aspects of the food total quality concept.  

Fig. 2. Factors affecting the consumer’s choice.  
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their development is driven by the globalization of the food market, food 
safety, and rising consumer demand for safe, less-processed, and 
healthful food (Gao, Tello, & Peterson, 2023; Jiménez-Carvelo, 
González-Casado, Bagur-González, & Cuadros-Rodríguez, 2019; Zeng 
et al., 2023). 

1.4. AI-based tools play a pivotal role in ensuring coffee, cocoa and tea 
flavour quality 

Artificial intelligence comes from the Greek, where some things were 
able to move on their own. The modern concept aims to solve problems 
with the help of computers executing code that mimics the cognitive 
processes of the human brain. Depending on the field (i.e. information 
technology, business, social, chemistry) there are different terms and 
approaches used in data science and very similar multiple definitions of 
the same terms exist and are often used interchangeably, e.g. data 
mining, pattern recognition, machine learning, artificial intelligence. 
However, there is not full agreement in the scientific community on 
these definitions that support an open interpretation. All terms are 
commonly used in chemical data analysis (Ayres, 2021; 
Jiménez-Carvelo, 2019; Szymańska, 2018). In each case, it is the 
application of a mathematical process that is used to solve the problem 
under investigation, assuming it is needed, and in analytical chemistry it 
could be summarised as chemometrics (Amigo, 2021). 

Chemometrics is a discipline that deals with the application of 
mathematical and statistical methods to chemical data. The main aim of 

chemometrics is to extract meaningful information from complex data 
sets, enabling new insights into food systems by exploring chemical 
data, researching trends and building predictive functional models, and 
drawing meaningful conclusions from experiments to make informed 
decisions (Fig. 4) (Andre & Soukoulis, 2020; Jiménez-Carvelo et al., 
2019. 

Chemometrics can be applied: a) to plan factors to optimize food 
processing and analysis by the design of experiments (DOE); b) to extract 
useful information from the experimental data (Data mining) (Fig. 4). 

The industrial revolution, characterized by the integration of digital 
technologies, automation and data exchange, plays a crucial role in 
quality management and AI-based tools are an important enabler for 
achieving and maintaining quality standards, creating new business 
models, increasing plant productivity and improving product quality. 
This review will delve into the potential and constraints of AI to address 
real industrial challenges in ensuring the flavour quality of coffee, cocoa 
and tea. Details about the algorithms used are covered elsewhere (Ayres, 
Gomez, Linton, Silva, & Garcia, 2021; Casale et al., 2020; Granato et al., 
2018; Jimenez-Carvelo, 2021). 

2. DOE in cocoa, coffee and tea flavour research 

Design of Experiments (DOE) is crucial for efficient experimentation, 
providing maximum relevant information at minimal cost (Casale et al., 
2020). This approach considers parameter interactions, offers global 
knowledge, minimizes experiments for optimal information, and 

Fig. 3. Visual vision of flavour’s perception multisensory phenomena.  

Fig. 4. The goals of chemometrics from the planning experiments to extraction of relevant information for a deep knowledge and proper decision maker at in-
dustrial level. 
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facilitates mathematical model construction. In flavour and sensory 
analysis, DOE efficiently designs experiments, establishing relationships 
between inputs (ingredients, properties) and output variables (sensory 
properties, preferences). Consequently, the optimisation of the product 
based on one or more product properties, such as sensory attributes or 
consumer preference, may be performed based on the desirability 
function and methods that enable the formulator (industry) to develop a 
food product that is optimised with respect to given properties 
(Andruszkiewicz, Corno, & Kuhnert, 2021; McClure, Spinka, & Grün, 
2021). For example, in coffee, DOE explored brewing conditions’ in-
fluences physicochemical and sensory characteristics (Frost, Ristenpart, 
& Guinard, 2020; Zakaria et al., 2023). McClure et al. evaluated cocoa 
processing using a randomized optimal experimental design, observing 
significant changes in important bitter compounds during roasting (i.e., 
theobromine, caffeine, epicatechin, catechin, procyanidin B2) from 
cocoa beans with eight roast profiles across three origins (McClure et al., 
2021). Fermentation and treatment of raw cocoa, coffee and tea material 
can benefit from DOE application. Artificial systems of controlled 
fermentation to model the responses of bean components have recently 
been studied by the application of DOE (Gutiérrez-Ríos et al., 2022). 
John et al. applied DOE to study controlled fermentation effects on 
cocoa biochemistry. Response surface model was drawn up with a 
D-optimal design concluding that temperature, acetic acid and incuba-
tion time had the greatest effects of the factors considered observing 
significant interactions between factors for each response, highlighting 
their collective action in modulating cocoa biochemistry (John et al., 
2020). Wei et al. used experimental design to reveal the mechanism 
responsible for the improvement of taste and colour of yellow tea (YT) 
optimizing yellowing. The tea leaves after picking are dried at a lower 
temperature for a short time, while the leaves are still warm and moist, 
they are then ‘yellowed’ by wrapping the tea. They adopted a response 
surface methodology (RSM) using Box-Behnken design (BBD) based on a 
composite central design that revealed that an increased temperature 
and relative humidity, a reduced time, enhanced yellowness and 
sweetness by over 40.5%, and improved consumer acceptability (Wei 
et al., 2023). Despite DOE advantages, its industrial-level application 
remains limited (Casale et al., 2020). 

3. Data mining in coffee, cocoa and tea quality definition 

Data mining is the process of discovering patterns, trends, correla-
tions, or useful information from large datasets. It involves various 
techniques and methods to analyse and extract knowledge from data, 
often with the goal of making informed decisions, improving processes, 
or gaining insights into complex systems (Ji et al., 2023; Jime-
nez-Carvelo, 2021; Zeng et al., 2023). 

Analytically, data processing is divided into profiling and finger-
printing based depending on investigative objectives. Profiling charac-
terizes a sample’s chemical composition through detailed analysis, often 
coupling chromatography with mass spectrometry for unique identifi-
cation. Fingerprinting treats the entire signal output as a sample’s 
unique fingerprint for rapid comparative analysis, without isolating 
information from the bulk data matrix. If signal outputs are from 
multidimensional platforms like GC-MS, GC × GC-MS, LC-MS, LCxLC, e- 
Nose, or PTR-MS, information is latent and can be targeted in successive 
steps. (Cuadros-Rodríguez, Ortega-Gavilán, Martín-Torres, 
Arroyo-Cerezo, & Jiménez-Carvelo, 2021; Cuadros-Rodríguez, 
Ortega-Gavilán, Martín-Torres, Medina-Rodríguez, et al., 2021; Cua-
dros-Rodríguez, Ruiz-Samblás, Valverde-Som, Pérez-Castaño, & 
González Casado, 2016). Despite increasing fingerprinting use, analyt-
ical challenges may compromise data quality. Insufficient chromato-
graphic resolution may arise from complex samples or the preference for 
quicker runs. Issues like baseline drift, peak shape changes, retention 
time shifts, and co-elution of compounds with similar mass spectra are 
common in complex food analysis. These problems can irreversibly 
affect data quality, and not all software can address them 

comprehensively. Pre-processing techniques correct analytical issues, 
like baseline/background contributions or retention time shifts, before 
chemometric treatment and model building (Jiménez-Carvelo et al., 
2019). Tools such as Multi Curve Resolution-Alternative Least Square 
(MCR-ALS) were adopted to resolve co-elution (overlapped peaks). 
MCR-ALS, like parallel factor analysis (PARAFAC) and other multi-way 
approaches (Tucker 3 or N-PLS, N-SIMCA, etc.), affords a computational 
gain in chemical information relating to specific analytes, for both tar-
geted and untargeted approaches (Casale et al., 2020). 

Profiling and fingerprinting are widely used in sensomics and fla-
vouromics, “omics” disciplines (or sub-disciplines) that refer to the sci-
entific study of flavour at a molecular level (Charve, Chen, Hegeman, & 
Reineccius, 2011; Dunkel et al., 2014). They combine principles from 
various fields, including chemistry, biology and sensory science, to 
explore and quantify the compounds that contribute to the taste and 
smell of foods and beverages and require an integrationist’s mindset that 
adopts more comprehensive strategies capable of comprehensively 
mapping the Chemical Flavour Code (Bressanello et al., 2021; Cordero, 
Kiefl, Reichenbach, & Bicchi, 2019; Peterson, 2008). In addition, ma-
chine learning applied to fingerprinting and/or profiling technologies 
has revealed strong relationships and correlations between aroma and 
taste. Several research papers have demonstrated the potential of using 
fingerprint workflows and concepts to identify features with high cor-
relation to a biological outcome. Flavouromic workflows based on fin-
gerprints have been applied to discover new components responsible to 
enhance or suppress taste/smell attributes of foods (Gao, Tello, & 
Peterson, 2021; Lin, Tello, Simons, & Peterson, 2022; Ronningen, Miller, 
Xia, & Peterson, 2018; Sittipod, Schwartz, Paravisini, & Peterson, 2019; 
Sittipod, Schwartz, Paravisini, Tello, & Peterson, 2020). 

Different authors confirmed that odourants and non-odourants 
interact in the expression of a perceived sensory attribute (Dunkel 
et al., 2014; Guichard, Barba, Thomas-Danguin, & Tromelin, 2019; 
Wang, Chambers, & Kan, 2018). Guichard et al. also showed that 
odourants that promote targeted taste perception could be used to 
modulate the overall taste profile in foods and beverages. The investi-
gation on odour and taste networks using cheminformatics in commer-
cial multi-fruit juices showed strong associations of the network 
visualization between odour (green, grassy and herbal) and taste 
(bitterness) descriptors (Barba, Beno, Guichard, & Thomas-Danguin, 
2018; Guichard et al., 2019). Very recently, Nicolotti et al. introduced 
the concept of an “artificial intelligence olfactory machine” through 
SEBES (Sensomics-Based Expert System) an analytical approach that 
attempts to simulate the human sense of smell by defining the patterns of 
key odourants responsible for food aroma (Nicolotti, Mall, & Schieberle, 
2019; Squara et al., 2023). 

AI algorithms used are unsupervised or supervised learning. Unsu-
pervised learnings are devoted to exploring data to find trends and 
patterns, most typically using principal component analysis (PCA) or 
clustering algorithms which can perform dimensionality reduction and 
clustering. Supervised Learning belongs to a category of classifier and 
predictive algorithms where the system learns to make predictions from 
a labelled dataset (Ayres et al., 2021; Casale et al., 2020). Among su-
pervised pattern recognition methods, Partial Least Square Discriminant 
Analysis and Regression (PLS-DA, PLSR) are the most popular, even if 
Support Vector Machine (SVM), Random Forest (RF) and Artificial 
Neural Networking (ANN) are also used in cocoa, coffee and tea field 
with the target listed below (Fig. 5), while Fig. 6 summarizes some ad-
vantages and disadvantages of the AI tools (Bressanello et al., 2018, 
2021; Gao et al., 2021; Perotti et al., 2020; Strocchi, Bagnulo, et al., 
2022; Yu, Low, & Zhou, 2018).  

✓ Authentication & traceability;  
✓ Adulteration;  
✓ Compositional properties and quality;  
✓ Processing and quality control;  
✓ Prediction of food properties. 
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Hence, the decision between profiling or fingerprinting approaches, 
along with the choice of particular AI tools, depends on the research 
objectives. Profiling methods offer accuracy and specificity, whereas 
fingerprinting approaches offer flexibility and the potential to identify 
new target markers. 

3.1. Authentication & traceability: origins and species 

Cocoa, coffee, and tea authenticity is crucial due to the growing 
market for high-quality products. Different geographical origins result in 
significant variations in quality, taste, and commercial value. Ensuring 
traceability is essential for authenticity, benefiting import-export trade 
and global consumers (Li et al., 2021). The marketing of these comfort 
foods relies on distinct flavours from various origins, highlighted on 
packaging to attract customers. Increasingly, consumers, especially with 
mono-origin products, prioritize sustainability and the fair trade market 
(Bilfield, 2022). In food authentication, fingerprinting and profiling 
strategies are increasingly used and accepted to monitor the integrity of 
food products (Cuadros-Rodríguez, et al., 2021). Indeed, an adequate 
number of pure and authentic samples are required to create a repre-
sentative database of the “real” food population to determine the degree 
of similarity of the fingerprints of diagnostic chemical characteristics of 

an unknown sample compared to a representative reference sample 
(Cuadros-Rodríguez, Ruiz-Samblás, Valverde-Som, Pérez-Castaño, & 
Casado, 2016). Furthermore, the identification of flavour quality re-
quires analytical methods capable of providing detailed diagnostic 
profiles that correlate with the sensory characteristics that can be 
monitored and quantified for objective evaluation in quality control 
(QC) (Bressanello et al., 2021). Hyphenated chromatographic platforms, 
coupled with artificial intelligence, are essential for decoding complex 
datasets, uncovering trends, and assessing associations in food chemical 
composition (Badmos, Fu, Granato, & Kuhnert, 2020; Bressanello et al., 
2018; Jimenez-Carvelo, 2021; Quelal-Vásconez, Lerma-García, 
Pérez-Esteve, Talens, & Barat, 2020). 

The interpretation of the data obtained can be carried out through 
the use of AI tools to identify patterns and determine key chemical 
fingerprints or chemical identity cards of the product’s origins. When 
applying different sampling methods to describe in-cup sensory prop-
erties related to the origins and species, PCA was used by Bressanello 
et al. to explore the chemical information on coffee aroma and flavour 
derived from HS-SPME of ground coffee and SBSE/SPME sampling in 
solution in combination with GC–MS to assess their compatibility with 
cupping evaluation for quality control. In this application, they were 
able to distinguish the species and, within them, the origin. Data pro-
cessing showed that, despite their differences, the three methods pro-
vide the same type of chemical information to distinguish the samples 
and that they can be used interchangeably to recognize the chemical- 
sensory identity card of origin (Bressanello et al., 2017). 

Volatilome analysis on cocoa, coupled with PCA, reveals that 
geographical origin (Africa, America, and Southeast Asia) has a more 
significant impact on product differentiation than industrial processes. 
This is particularly important for the chocolate industry, where beans 
and liquors can enter different processing steps (Marseglia, Musci, 
Rinaldi, Palla, & Caligiani, 2020). This concept is also described in 
studies by Acierno and Bagnulo (Acierno, Alewijn, Zomer, & van Ruth, 
2018; Bagnulo et al., 2023). Bagnulo et al. applied HS-SPME-GC-MS in 
combination with PCA and PLS-DA in the origin identitation of 160 
cocoa bean and liqueur samples by using fingerprinting and profiling 
strategies that enabled origin differentiation with efficient classification 
models (Bagnulo et al., 2023). In the study of Acierno et al. Flow 
Infusion-Electrospray Ionization- Mass Spectrometry (FI-ESI-MS) was 
tested to assess the geographical origin of fifty-seven dark chocolates, 
categorized by bean origin (Africa-15, Asia-11, South America-31) 
(Acierno et al., 2018). PCA discriminated between African and Asian 
bean-to-bar chocolates but did not show a clear trend for South Amer-
ican chocolates. kNN results enabled to classify African and Asian 

Fig. 5. Overview of the data analysis tools most used in coffee, cocoa and tea 
flavour studies from 2013 to 2023. 

Fig. 6. Advantages and disadvantages of the most used data mining tools.  
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chocolates versus South America. Authors attributed the inability to 
simultaneously separate the three continents and the weak differentia-
tion of South American samples to brand-related factors like recipe and 
industrial processing. However, factors like season, experimental con-
ditions, batch, and instrument effects in a large dataset over several 
years pose challenges, hampering origin classification. Kumar et al. used 
a four-year dataset with 297 L C-MS fingerprints of cocoa from 10 
countries to investigate these challenges using PCA and LDA. PCA pro-
vided limited origin separation, while LDA showed a strong non-linear 
dependence on compound quantity. However, they achieved origin 
identitation and avoid overfitting by optimizing multivariate analysis. 
LDA classification was non-linearly influenced by the components 
number. A compound selection criterion based on the Gaussian distri-
bution of intensities across samples was employed to reach an 
enhancement of the origin clustering of samples (Kumar et al., 2021). 

Food authentication and food fraud detection are two sides of the 
same coin. Fraudulent modification of food quality entails marketing 
products with a composition different from label indications or adding 
substances to alter specific features for financial gain. Food origin 
falsification is often employed to enhance market demand (Momtaz, 
Bubli, & Khan, 2023). In this context, supervised classification algo-
rithms are extensively used. Class modelling, exemplified by techniques 
like Soft Independent Modelling of Class Analogies (SIMCA), focuses on 
a single category, often the main category of interest, employing a 
“one-class classification” approach. This method assesses if a sample 
matches specific characteristics of the target class; if not, it’s excluded 
and not classified. This approach yields reliable results, crucial for 
meeting quality and regulatory standards for sample authentication 
(Jimenez-Carvelo et al., 2021; Rodionova, Titova, & Pomerantsev, 
2016). In contrast, classification techniques, such as PLS-DA, KNN, and 
LDA, determine the likely class affiliation of a sample from predefined 
classes, assigning each sample to its most probable category, even for 
objects not associated with the analysed classes (Fig. 6) (Casale et al., 
2020, Jimenez-Carvelo et al., 2021). The performance of the model 
hinges primarily on several factors, including the output type (whether 
it is classification or regression), sample size, the pre-processing tech-
nique used, and the specific algorithms employed. Another group of 
supervised classification models adopts experience-driven methodolo-
gies. These models utilize iterative classification techniques aimed at 
reducing errors through specific training sets utilized in constructing 
SVM, RF, and ANN models (Fig. 6). There is not a universally ‘best’ 
classification method; each task requires the most relevant and suitable 
AI tools to address the specific question posed. Protected Designation of 
Origin (PDO) and protected geographical indication (PGI) products are 
of higher quality compared to non-PDO ones and, thereby, they have 
higher prices (Bilfield, 2022; Nowogrodzki, 2019). There are various 
techniques for authentication and traceability, with methods based on 
elemental composition and isotope ratio analysis being the most 
commonly used. However, these analytical methods cannot reflect the 
changes in flavour quality from different regions (Shuai et al., 2022; 
Silva Fernandes, de Sousa Fernandes, Pistonesi, & Gonçalves Dias Diniz, 
2023). For this reason, ever more studies have investigated metabolites 
based on LC-MS/GC-MS fingerprints as indicators to identify the 
geographical origin. Gu and co-workers have traced the origins of Chi-
nese green tea using a two-dimensional (2D) LC-DAD fingerprints 
coupled with chemometrics (Gu et al., 2022). A total number of 62 
chemical components were extracted from raw fingerprints of 78 tea 
samples from two Chinese regions (Zhejiang (ZJ) and Shandong (SD)) by 
multivariate curve resolution-alternating least squares (MCR-ALS) al-
gorithm previously pre-processed by baseline corrections. Orthogonal 
partial least squares-discriminant analysis (OPLS-DA) performed on the 
areas from MCR-ALS profiles of a training set of 80% of total samples 
and cross-validated using two types of scaled data showed a predictive 
ability Q2

cum > 0.75. The application on a test set of 20 % of samples 
afforded a total recognition rate of 92%. A comparative analysis of 
different machine learning tools including convolutional neural network 

(CNN), LDA, and SVM was used to choose the best model using data 
from fast and non-destructive terahertz (THz) spectroscopy for coffee 
bean origin classification (Yang et al., 2021). Due to the data dimen-
sionality, PCA and genetic algorithm (GA) were applied to reduce fea-
tures for LDA and SVM improving prediction accuracy respectively: SVM 
50%, PCA-SVM:65% and GA-SVM:75%, the best classification was 
achieved by CNN with a 90% accuracy in the prediction set. 

Many studies were focused on developing methods to detect, identify 
and quantify coffee substitutes, including grains, nuts and legumes, 
using metabolomics methods. For instance, Fourier-transform mid 
infrared (FT-MIR), combined with machine learning, was used to iden-
tify and quantify adulterants in coffee (Flores-valdez, Gabriela, 
Osorio-revilla, & Gallardo-vel, 2020). SIMCA modelling was applied to 
classify different types of adulteration (coffee-: coffee husks, corn, 
barley, soy, oat, rice). The model optimisation involved spectral 
pre-treatments: normalization (multiplicative scatter correction, MSC), 
Savitzky–Golay filter (5 points for smoothing) and baseline correction 
(offset). To quantify the adulterant percentage, quantitative models 
were developed using algorithms such as One-variable (PLS1), Multiple 
variable Partial Least Squares (PLS2) algorithms and Principal Compo-
nent Regression (PCR). PLS1 exhibited a superior predictive model, 
although the standard error in prediction varied across adulterant types 
(SEP: barley > soy > oat > coffee-husks > corn > rice). However, the 
authors incorrectly claim SIMCA modelling as an AI-discriminant tool. 

Products derived from cocoa are also exposed to different adultera-
tions related to insufficient production and increasing market demand. 
The sensory quality of cocoa products may be impacted by shell content 
in cocoa powders because of economically motivated adulteration, po-
tential cross-contamination or machinery failures during the peeling 
process. FTIR (Fourier transform infrared) or NIR (near-infrared spec-
trometry) fingerprints were widely used to reveal adulteration. Oliveira 
et al. predicted the content of cocoa shells in cocoa powder by AI 
methods using NIR. They employed PLSR and different spectrum pre- 
processing techniques, finding reflectance smoothing with standard 
normal variate as the most effective. The Ensemble Monte Carlo Vari-
able Selection (EMCVS) was used to select the most informative wave-
lengths, making NIR spectroscopy reliable for cocoa fraud detection 
(Oliveira, Badaró, Esquerre, Kamruzzaman, & Barbin, 2023). In any 
case, these methods are only classificative because they do not enable to 
a chemical speciation linked to the origins. 

Despite the large number of modern analytical tools available to 
detect food authenticity and fraudulent behaviour (i.e. adulteration of 
raw materials or finished products, fraudulent declaration of 
geographical origin), the industry and official controls need fast, more 
meaningful and economical methods to quantify quality characteristics/ 
attributes, the application of which leads to very complex and large data 
sets that are not easy to interpret. However, the algorithms used need to 
be validated on representative samples in terms of number and di-
agnostics to have robust mathematical models that can be useful as AI 
decision tools. Scientific papers do not always report the correct 
approach or concept, very often the exploratory analysis (e.g. PCA) is 
considered as a classification method and/or there is an unclear 
distinction between discriminative and modelling tools, and very often 
supervised learning ends up with internal cross-validation without 
testing the model on an external sample set (Amigo, 2021; Casale et al., 
2020; Jimenez-Carvelo et al., 2021; Rodionova et al., 2016). Further-
more, academic research and industry are not always aligned because, 
on the one hand, industry has difficulties implementing new methods in 
processing and, on the other hand, researchers often develop methods 
that do not always meet the requirements of user-friendliness and cost 
management. 

3.2. Post-harvest processing: fermentation, drying and roasting 

Post-harvest treatments have a decisive influence on the final prod-
uct’s quality. Several diverse metabolic processes occur during post- 
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harvest processing, altering the chemical composition. Fermentation, 
drying and roasting are the most important processing steps for the 
quality of these hedonic foods. The first two steps are usually carried out 
in the country of origin and play a decisive role in the flavour profile of 
the leaves and beans, while roasting generally takes place directly in the 
industrial plants in the exported countries (Elhalis, Cox, & Zhao, 2023; 
Febrianto & Zhu, 2023; Herrera-Rocha, Fernández-Niño, Cala, Duitama, 
& Barrios, 2023). 

3.2.1. Fermentation 
Fermentation remains a spontaneous and non-standardized process 

impacting on cocoa, tea and coffee flavour, which is mainly linked to the 
activity of environmental microorganisms. Heterogeneous and dynamic 
bacterial and yeast communities are responsible for the biochemistry 
associated with precursors of flavour (Fu et al., 2024; Herrera-Rocha 
et al., 2023). During fermentation, endogenous proteases break down 
the proteins into amino acids and short-chain oligopeptides, while 
invertase breaks down the polysaccharides into glucose and fructose, 
thus forming important precursors that are required for the subsequent 
chemical reactions in the following steps of the process. In addition, 
polyphenol oxidase reduces the content of polyphenols through oxida-
tion, which affects the flavour of the products by reducing astringency 
and bitterness (Herrera-Rocha et al., 2023; John et al., 2020; Megias--
Perez, Moreno-Zambrano, Behrends, Corno, & Kuhnert, 2020). 

Traditional Chinese tea is classified into six categories based on the 
processing and fermentation degree (ISO 20715:2023). Fused analytical 
data of the total amount of catechins, total polyphenols, theanine, free 
amino acids and caffeine in tea leaves treated by PCA have shown how 
these components distinguished the different processing, with the total 
amount of polyphenols, catechins and theanine decreasing as the degree 
of fermentation increased (Fu et al., 2024). The aroma quality of 
pile-fermented variety Yinghong No. 9 dark tea was studied by 
combining GC × GC-QTOFMS, electronic nose (E-nose) and 
GC-olfactometry (GC-O) and compared to the sun dried tea. Pile 
fermentation, a common method for dark tea, alters organic compounds 
through heat, microorganisms, and enzymes. PCA and Venn diagram 
analysis identified volatile metabolite differences between processing 
methods. OPLS-DA and Vulcano plot were then used to analyse aroma 
component differences, revealing 32 differential volatile compounds 
with odour activity values (OAVs) > 1. Pile fermentation reduced pun-
gency and enhanced woody, stale, and sweet aromas (Wen et al., 2023). 
Automated machine learning and computer vision-based applications 
have been proposed to grade tea fermentation, using an image database 
(n = 6000) with recorded temperatures, humidity and time. Features 
were selected by PCA and used in kNN, SRC (Sparse Representation 
Classifier), and SVM models whose performances have been validated 
by the k (10) fold cross-validation. Accuracy in tea fermentation level 
detection of the proposed algorithm achieved 87.39% (k-NN), 89.72% 
(SRC), and 98.75% (SVM) (Bhargava, Bansal, Goyal, & Shukla, 2023). 

Several research groups studied the effects of fermentation on cocoa 
in detail (Balcázar-Zumaeta, Castro-Alayo, Cayo-Colca, Idrogo-Vásquez, 
& Muñoz-Astecker, 2023; Megias-Perez et al., 2020). This spontaneous 
and natural process, which involves the succession of yeasts, LAB and 
acetic acid bacteria (AAB), is responsible for the metabolic “meta-
morphosis” in the beans, which is essential for the formation of the basic 
flavour and aroma precursors (such as alcohols, aldehydes, organic acids 
and esters) for high-quality chocolate (De Vuyst & Leroy, 2020). Despite 
the studies, the process is complex and little is known in particular about 
how external factors and their interactions (i.e. temperature, fermen-
tation time, pH, microbial influence) affect the formation of metabolites 
in the beans, as most studies are based on spontaneous fermentations, 
over which they have almost no control. Temperature, acetic acid, and 
incubation time don’t always exhibit linear effects on pH, peptide di-
versity, and flavanol content during controlled fermentation, as well as 
on the volatile profiles (Cevallos-Cevallos, Gysel, Maridueña-Zavala, & 
Molina-Miranda, 2018; John et al., 2020). AI approaches showed a 

change in total polyphenol content and an increase of epicatechin in 
fermented beans, an improvement of low molecular weight carbohy-
drates, and a degradation of proteins to oligopeptides after 72 h of 
spontaneous fermentation (Kumari et al., 2018; Megias-Perezet al., 
2020). The low astringency and bitterness due to the reduction of phe-
nols and flavan-3-ols, and the epicatechin/catechin, and fructose/glu-
cose ratios contribute to the classification of beans according to cocoa 
processing; moreover, the level of fermentation of peptides determine if 
a bean is under-fermented, adequately fermented, or over-fermented 
(Balcázar-Zumaeta et al., 2023). Time-related changes in volatile pro-
files of bulk and fine-flavour cocoa during fermentation were studied by 
Cevallos-Cevallos et al. Employing cluster analysis and PCA, they 
examined volatiles from Criollo, Forastero, and Nacional cocoa vari-
eties. PCA illustrated improved clustering of the three cultivars after 
fermentation completion (5 days), displaying distinct volatile patterns. 
Criollo cocoa exhibited floral, fruity, and woody aromas, with charac-
teristic volatiles like linalool, epoxylinalool, and benzene-ethanol. 
Nacional cocoa displayed fruity, green, and woody aromas, featuring 
volatiles such as 2-nonanone and valencene. Forastero cocoa, repre-
senting bulk cacao, released floral and sweet aroma volatiles such as 
epoxylinalool and pentanoic acid (Cevallos-Cevallos, 2018). After har-
vesting, coffee beans undergo a post-harvest process to make them more 
stable, versatile and roastable. The green coffee beans are processed 
using one of three techniques: dry, wet or semi-dry, with the aim of 
removing the pulp of the cherry. The quality of coffee brewing is deci-
sively influenced by the microbiota during fermentation and various 
studies are dedicated to improving the quality or exploring new flavours 
in the cup (Elhalis et al., 2023; Siridevi, Havare, Basavaraj, & Murthy, 
2019). In particular, this process is applied to Robusta or to other coffee 
species/hybrids, that are less sensitive and/or high yielding, to obtain a 
flavour quality closer to Arabica (Afriliana et al., 2019; Febrianto & Zhu, 
2023; Ribeiro et al., 2017; Saunshia, Sandhya, Lingamallu, Padela, & 
Murthy, 2018). In natural fermentation, yeasts are ubiquitous micro-
biota essential to initiate coffee fermentation preventing oxygenic fila-
mentous fungal growth, degrading mucilage through the secretion of 
pectinolytic enzymes which release flavour precursors. Aswathi et al. 
investigated microbial metabolites and the quality of greenery and roast 
resulting from the fermentation of pulped natural/honey coffee blend 
(HC) and washed coffee (WC) of Coffea canephora (Robusta), using 1H 
NMR, GC-MS and sensory investigations. PCA revealed the impact of 
fermentation on carbohydrates, organic acids, and secondar-
y/specialized metabolites, despite similarities in chemical-physical 
traits between HC and WC beans. HC processing yielded increased vol-
atile levels, enriching flavours with sweetness, tea rose, and chocolate 
notes (Aswathi, Shirke, Praveen, Chaudhari, & Murthy, 2023). 

In recent decades, a great deal of research has been carried out to 
investigate the microbial ecology of cocoa, coffee and tea fermentation 
and its effects on flavour formation. However, climate change affects the 
dynamism of the yeast and microbial community, which can play a 
positive/negative role in the flavour complexity of these foods. On the 
one hand, yeast and microorganisms can improve the flavour or be 
responsible for new sensory characteristics that can be industrially 
exploited to create new products/blends, but, on the other hand, the 
changes in microbial ecology can favour the formation of off-flavours. In 
any case, this makes increasingly difficult to obtain standardized prod-
ucts from batch to batch over time. Fermentation must be properly 
controlled to improve the overall process efficiency, consistency and 
product quality. Bioreactors, which are widely used in the food industry, 
e.g. for alcoholic beverages, yoghurt and vinegar, can be a promising 
alternative. Recently, bioreactors have been used in coffee fermentation, 
but, in concrete, their implementation in the production chain in the 
countries of origin is not easy to apply. The use of starter cultures could 
be a friendly and less costly way to standardise the schedule of the 
fermentation process and reduce the negative effects of uncontrolled 
processes (Elhalis et al., 2023; Febrianto & Zhu, 2023). AI tools are, and 
will increasingly be, useful to optimize and control the fermentation 
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process and for benchmarking between processes and/or flavour quality 
in food flavour analysis 4.0 (Bhargava et al., 2023; Zeng et al., 2023). 

3.2.2. Drying & roasting 
Drying is the next step after fermentation in the processing of coffee, 

cocoa and tea. Reducing humidity is essential to prevent mould and 
spoilage of leaves and beans. However, the process requires care to 
avoid the loss of bioactive components, overcooked leaves for tea and to 
preserve quality during storage (Herrera-Rocha et al., 2023; Now-
ogrodzki, 2019). The drying can be carried out either directly in open air 
or mechanically by driers, however in general the mode and progression 
of drying in the plantation differs because of practical and economic 
considerations including drying capacities, energy costs, and crop 
quality (Velásquez & Banchón, 2022). Despite its impact, drying is little 
studied. The dynamic changes of volatile profiles of green tea under 
different temperatures and times were investigated by Yang and 
co-workers using gas phase electronic nose (GC-E-Nose) and gas 
chromatography-ion mobility spectrometry (GC-IMS) combined with 
multivariate statistical analysis (Yanqin Yang et al., 2022). The authors 
discriminated by GC-E-Nose three drying stages despite the volatile 
profiles changed dynamically with the increase of the drying tempera-
ture. By applying PLS-DA to GC-IMS data they were able to select 
chemical components (3-methylbutanal, isopropyl alcohol, methyl 
benzoate, and heptanal) affecting the discrimination. 

At the same time, inappropriate artificial drying of the cocoa beans to 
speed up the post-harvest process can impair quality, for example by 
producing a smoky off-flavour that cannot be removed in the subsequent 
steps of chocolate production. A top down analytical procedure was 
applied by Perotti et al. and Scavarda et al. where advanced finger-
printing obtained by the HS-SPME-GCxGC-MS from a set of represen-
tative smoky and non-smoky samples revealed the chemicals responsible 
for the off-flavour (Perotti et al., 2020; Scavarda et al., 2021). Perotti 
et al. applied an augmented visualization by a computer vision on 
untargeted fingerprints to define digital images differences between 
cocoas at molecular level (Caratti et al., 2023). Ten volatiles in the 
chromatographic pattern differed significantly between smoky and 
non-smoky samples, and they were independent of the origin or pro-
cessing step considered (raw cocoa beans or liquors) (Perotti et al., 
2020). The results served to develop a 1D-GC method for routine 
application in analysing cocoa beans and liquors. The reduction of 
dimensionality was obtained by PCA and the classification of samples 
reached by building up a PLS-DA model then cross-validated (5 C V); the 
resulting total classification rate was 97%. Achieving these results in 
liquors was not obvious since the target volatiles are also formed during 
roasting. Scavarda et al. then developed a quicker analytical decision 
maker for routine controls based on HS-SPME-MS-enose combined with 
machine learning tools to obtain diagnostic mass-spectral patterns to 
detect smoked samples. They tested two different model classifications 
PLS-DA and SIMCA, the latter models provided the best results, with 
sensitivities exceeding 90% and a high class specificity range of 
89–100% depending on the matrix investigated (beans or liquors). The 
discrimination ability of the decision maker was then cross-validated by 
quantitative analysis through HS-SPME-GC–MS (Scavarda et al., 2021). 

Roasting is a very important step of the whole production chain in 
particular for coffee and cocoa. The roasting profile is indeed crucial for 
the industry of the field because it affects chemical and physical prop-
erties of the final product, e.g. the external colour of the beans, weight 
loss, chemical composition, and the developed sensory characteristics of 
final products. During the roasting process, drying is the first effect of 
thermal energy, followed by non-enzymatic browning chemical re-
actions, such as Maillard reaction, Strecker degradation, and oxidation 
of lipids and polyphenols, which result in volatile and non-volatile 
chemical compounds that contribute to the flavour and aroma of the 
roasted beans (Velásquez & Banchón, 2022). 

In general, in industry, the most adopted indicator to control the 
degree of roasting is colour or dry matter weight (for coffee) although 

these indicators are not related to the final flavour of beans. Several 
chemical markers including free amino acids, alkylpyrazines, chloro-
genic acids, and their ratios were indicated as indirect markers of the 
degree of roasting. PCA and Fisher weight ratio algorithm on aroma 
components enabled to identify 16 volatiles better associated with 
colour degree that were used to build up a multiple linear regression 
(MLR) model with high goodness of fit and ±2 error in colour prediction 
(Ruosi et al., 2012). Liberto et al. used direct mass spectral fingerprints 
both as a marker and as an analytical decision maker (ADM) in combi-
nation with OLPS regression to predict the colour degree of roasting with 
a high fitting (rpred 0.9472) and a satisfactory standard error of pre-
diction (SEP 2.53) (Liberto et al., 2013). However, the limitation of this 
study was the sampling time by HS-SPME that was not well aligned for 
online monitoring of roasting, which was between 8 and 15 min 
depending on the required degree (light, medium, dark). Other direct 
mass spectroscopic approaches diagnostic at the molecular level, such as 
PTR-TOF-MS or Single-Photon Ionization Mass Spectrometry, are more 
consistent with the real-time monitoring of the roasting process. (Heide, 
Czech, Ehlert, Koziorowski, & Zimmermann, 2020). 

Temperature and time settings of roasting are also fundamental in 
the developing cocoa flavour although companies define them as part of 
the production chain and, differently from coffee, often are standardized 
ranging from 120 to 160 ◦C for 20–40 min. Roasting produces aroma 
components and modulates the cocoa flavour because, besides Maillard 
reactions, the evaporation of acetic acid contributes to reduce acidity 
(Aprotosoaie, Vlad Luca, & Miron, 2016; Herrera-Rocha et al., 2023). 
Lemarcq et al. compared HS-SPME-GC-MS aroma and LC-MS profiles of 
dark chocolate derived from convectionally-roasted beans to chocolate 
produced from microwave-roasted cocoa beans revealing that chocolate 
made from microwave-roasted cocoa beans had a distinct scent profile 
compared to those submitted to convectional-roasting. Although more 
prone to oxidation, microwave roasting of cocoa beans was still within 
acceptable limits, making it a feasible alternative roasting method 
(Lemarcq, Monterde, et al., 2022). The same authors also studied a 
roasting profile preserving as much as possible the components that may 
contribute to psychopharmacological activities without compromising 
flavour, i.e. the mood pyramid of cocoa, a new concept consisting of four 
levels (flavan-3-ols, methylxanthines, minor compounds and orosensory 
properties) (Lemarcq et al., 2020). Using UPLC-HRMS, HS-SPME-GC-MS 
and sensory analysis, they found that roasting at 130 ◦C for 30 min had 
no significant effect on the content of epicatechin, procyanidin B2 and 
theobromine, while salsolinol increased significantly. In addition, 
bitterness and astringency were reduced while developing the desired 
cocoa flavour. Thus, interesting phytochemicals can be obtained 
without compromising the flavour by selecting suitable roasting time 
and temperature conditions. 

AI-based tools offer remarkable advantages in monitoring thermal 
treatments or detecting errors in uncorrected processing along the pro-
duction chain. AI-driven roasting processes provide significant potential 
benefits in terms of optimisation and efficiency. However, they also 
bring challenges related to the complexity requiring expertise in both 
roasting processes and AI algorithms, including data dependency related 
to the need for large amounts of data, potential errors due to not proper 
calibration, and the initial investment in equipment and training that 
can be a limit for companies. New technologies have been tested and 
others are under development within the industry in the effort to reduce 
the carbon footprint, in particular during the roasting process and to 
control the formation of process toxicants (e.g. furans, acrylamide). DoE 
applications can help to accelerate technological optimisation to meet 
R&D requirements. At the same time, data mining is useful to explore 
the flavour resulting from the new technology (ies), that, for example in 
coffee studies, is the bottleneck in the industrial strategies investigated 
to mitigate acrylamide (Strocchi, Rubiolo, et al., 2022). 
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3.3. Compositional and prediction of food properties 

The most typical and widespread method used by the industry to 
assess the quality of cocoa, coffee and tea is sensory evaluation by 
trained panel test. Because of the high economic impact on the world 
market of these comfort foods, it is necessary to search for alternative 
tools, such as statistical methods, numerical measurements and stan-
dardized analyses to confirm their quality, complementing the conven-
tional methods of interpreting the flavour. To address these issues, 
sensomics and flavouromics approaches adopt instrumental chemical 
analysis to judge flavour objectively and attempt to correlate aroma and 
taste molecules to sensory perception (Bressanello et al., 2018; Charve 
et al., 2011; Dunkel et al., 2014; Lindinger et al., 2008; Ribeiro, Augusto, 
Salva, & Ferreira, 2012; Sittipod et al., 2020). Extraction of chemical 
components from the matrix as well as analytical techniques have an 
impact on the information caught from the foods. Solvent extraction, 
extraction with supercritical CO2, distillation, headspace analysis by 
applying different high concentration capacity techniques are, in some 
cases, a bottleneck of the analytical strategies in terms of the informative 
dimension extracted. Mass spectrometry (MS), flame ionization detector 
(FID) sometimes in conjunction with an olfactory port, are used to detect 
aromatic chemicals separated by GC. The main tastes that determine the 
final flavour profile are bitterness, acidity, astringency, and sweetness 
which are analysed by high-/ultra-performance liquid chromatography 
(HPLC/UPLC), thin-layer chromatography (TLC) or capillary electro-
phoresis (CE). Additionally, non-destructive methods like nuclear 
magnetic resonance spectroscopy (NMR) and near-infrared spectroscopy 
(NIRS) are very popular since they enable the identification of different 
group(s) of molecules (Lemarcq, Van de Walle, Monterde, Sioriki, & 
Dewettinck, 2022). These analytical strategies have been used to char-
acterize compositional data of complex cocoa, coffee and tea flavour in 
relation to different factors affecting it, and AI approaches have been 
extensively applied to connect instrumental data to human perception. 

Compounds that influence the flavour of coffee brew by improving or 
suppressing bitterness or by positive modulating coffee quality have been 
revealed from Peterson’s group works by applying untargeted flavouromic 
by LC/MS. These studies employed PCA to recognize outliers and then PLS- 
DA or OPLS-DA algorithms to identify, through VIP selection, features 
related to the cup score that are then isolated. The chemical structures are 
defined by MS and NMR and the relationship with sensory was made by 
recombinant models that are tested again from a sensory panel to define 
the coherence with specific attributes (Gao et al., 2021, 2023; Sittipod 
et al., 2019, 2020). Bressanello et al. and Liberto et al. used a similar 
approach for the coffee aroma prediction by applying HS-SPME-GC-MS 
and an HS-SPME-MS-Enose to the chemical definition of several coffee 
notes. The strategy applied, based on PCA and PLS-DA, was found to be 
discriminative and informative, identifying aroma compounds charac-
teristic of the selected sensory notes. The predictive ability of PLS regres-
sion in defining the sensory scores of each aroma note was used as a 
validation tool for the chemical signatures of characterized notes with a 
standard error ±2 in prediction of the sensory scores when using MS-enose 
as screening method (Bressanello et al., 2018; Liberto et al., 2019). The 
limitations of the method lie in the compromises that must be adopted 
when using a screening method as complementary to human evaluation in 
the sensory assessment of incoming raw materials. Gonzalez Viejo esti-
mated coffee intensity and aroma using a low-cost, portable electronic 
nose (e-nose) in conjunction with two machine learning models built on 
artificial neural networks. The results demonstrated that it is possible to 
predict individual aromas as well as to evaluate the intensity of coffees 
with excellent accuracy (98%). The suggested non-contact, non-destruc-
tive, quick, dependable, and affordable technology has been successful in 
evaluating volatile chemicals in coffee at all stages of production, enabling 
early detection of any negative features and the constant assurance of 
high-quality products (Gonzalez Viejo, Tongson, & Fuentes, 2021). 
However, sensor technology exclusively produces response values for 
compounds featuring specific functional groups, such as alcohols, and 

exhibits heightened sensitivity to environmental fluctuations, including 
temperature and humidity. Spectroscopic techniques, mainly in the 
Near-Infrared (NIR) and Mid-Infrared (FTIR-Fourier Transform Infrared), 
have been widely used for coffee quality classification, followed by the 
application of statistical methods to the chemical data obtained, to develop 
classification models PLS, SVM, RF, DCNN (Deep convolutional neural 
networks) based on specific quality criteria. Neither SVM nor RF can solve 
multi-level classification problems. Therefore, ensemble learning was 
used for the multiple flavour prediction model achieving accuracy and 
recall >70% (Belchior et al., 2022; Ribeiro et al., 2012). The cost-benefit 
ratio of this and other instrumental screening approaches needs to be 
considered and weighed against the benefits of the potency of human 
response, which could be better utilized to modulate blends for sensory 
experiences outside the routine. 

To characterize the composition of coffee, cocoa and tea flavour and 
assess the quality of these foods, several analytical approaches have been 
hyphenated and often analytical outputs are fused to find more objective 
tools that relate the chemical components to the sensory quality (Bian-
colillo et al., 2021; Bressanello et al., 2021; Lemarcq, Van de Walle, et al., 
2022; Li et al., 2023). Data fusion refers to the process of combining or 
merging multiple sources of data to create a more comprehensive and 
accurate understanding of a particular phenomenon or situation. By 
fusing data from different sources, we can discover hidden relationships, 
detect anomalies, and make more informed and accurate conclusions. 
Generally, 3 levels of data fusion have been described in the literature: 
low-, mid-, and high-level. In low data fusion data from all analytical 
sources are directly fused in a single matrix, in mid-level classification 
algorithms are applied to each data separately to extract characteristics 
from the data relevant for prediction of the response before fusing them. 
These characteristics can consist of groups of data such as, for example, a 
subset of variables, a set of latent variables, or others such as shape or 
position in an image. In high-level fusion, first some supervised model is 
fit to each data matrix then results are fused for further treatments 
(Smolinska, Szymanska, Buydens, & Blanchet, 2019). 

A comprehensive evaluation method to discriminate qualitatively 
between different grades of black tea was developed by combining 
Micro-NIR, computer vision, and colorimetric sensor array to collect 
data to apply multiple data fusion to create models by SVM, LS-SVM, 
EML and PLS-DA algorithms. Results indicated that the LS-SVM model 
with mid-level data fusion attained an accuracy of 98.57% in the testing 
set. Support vector regression was applied to determine flavour sub-
stances in black tea quantitatively with correlation coefficients for the 
predicted sets of gallic acid, caffeine, epigallocatechin, catechin, epi-
gallocatechin gallate, epicatechin, gallocatechin gallate and total cate-
chins ranging between 0.811 and 0.942 (Li et al., 2023). A mid-level 
data fusion on chromatographic fingerprinting strategy was also inves-
tigated by Bressanello et al. to delineate chemical patterns correlated to 
coffee odour and taste attributes and searching networks between fea-
tures. The study was based on 155 commercial coffees where chemical 
data were obtained by analyzing volatile (HS-SPME-GC-MS) and 
non-volatile (LC-UV/DAD) fractions, and sensory data to simulate the 
main phases of the cupping protocol were measured according to the 
Specialty Coffee Association (SCA) that evaluates both smell and taste 
and were here used to describe sample sensory notes. Analytical plat-
forms for fingerprinting were selected in light of routine control labo-
ratory requirements for high batch-to-batch reproducibility, separation 
efficiency, and informative potentials. AI tools (MFA, PCA, ANOVA) 
were employed to explore datasets, select relevant features (PLS-DA), 
predict sensory scores (PLS regression), and investigate feature networks 
(HCA, correlation). PLS regression models utilized features from PLS-DA 
analysis for each sensory attribute. Comparison of Q model parameter 
and RMSEP revealed non-volatile fraction’s greater influence on acid, 
bitter, and woody notes compared to flowery and fruity. Data fusion 
highlighted aroma’s role in sensory perception, yet correlative networks 
between volatile and non-volatile data warrant further investigation for 
odour-taste integration potential. (Bressanello et al., 2021). 
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An example of high-level data fusion was used on cocoa to develop 
an analytical methodology affording to correlate the sensory poles of 
chocolate to their chemical characteristics (Biancolillo et al., 2021). 
Thirty-six different descriptors attributable to chocolate flavour were 
divided into 4 sensory poles samples and analysed by six different 
techniques: PTR-ToF-MS, SPME-GC-MS, LC-DAD (to quantify organic 
acids), UHPLC-QqQ-MS (to quantify polyphenols), 3D front face fluo-
rescence spectroscopy and NIR. A multi-block classification approach 
(Sequential and Orthogonalized-Partial Least Squares – SO-PLS and 
SO-PLS-LDA) has been used to exploit the chemical information to 
predict the sensorial poles of samples. Information is sequentially 
extracted from various predictor blocks, comprising multiple matrices 
from different analytical platforms measured on the same samples. Data 
require pre-processing both within and across blocks. The SO-PLS 
approach involves a series of standard PLS regression and matrix 
orthogonalization operations to extract sequentially the complementary 
information from different data blocks, meaning that the aim is to 
incorporate blocks of data one at a time and to assess their incremental 
contribution (Biancolillo et al., 2021; Mishra et al., 2021). This strategy 
indicated that for chocolate samples, among the diverse analytical 
techniques applied, the combination of PTR-ToF-MS, Fluorescence and 
NIR spectroscopy led to the best results (classification rate of 93.6% on 
test samples). The models on the beans are less satisfactory and the 
analytical techniques able to predict bean samples resulted in different 
(UHPLC, HPLC blocks and NIR spectroscopy) meaning that the predic-
tion of sensory poles is not based on the same constituents. 

The flavour quality of coffee and cocoa emerges during roasting 
because of the chemical reactions, although stable compared to other 
perishable food, during storage, can change and the loss of volatile 
characteristic compounds and/or the appearance of oxidation products 
can cause off-flavours. This is particularly important in coffee where fresh 
notes can be quickly lost over time leading to staling phenomena. Aroma 
is also one of the important factors that determine the quality of green tea; 
a harmonious and pleasant aroma is an important standard for evaluating 
green tea and a vital consumer attribute that influences purchasing de-
cisions. Since green tea is not fermented, it has a relatively low storage 
stability, especially during distribution and shelf-storage in retail outlets. 
Temperature, humidity, the presence of oxygen, light and the barrier 
capacity of the packaging are the key factors contributing to maintain the 
freshness of the flavour (Lin et al., 2022; Manzocco, Calligaris, Anese, & 
Nicoli, 2016; Strocchi, Bagnulo, et al., 2022; Strocchi, Bagnulo, Pelle-
grino, Bicchi, & Liberto, 2023; Strocchi, Müller, et al., 2023). 

Teas not properly stored present a stale odour that has been related 
to the decreased content of aldehydes, and at the same time to the in-
crease of ketones and heterocycles (furans, pyrroles, etc.). Key odour-
ants indicated from a PLS-DA as (E,E)-2,4-heptadienal, α-terpineol, (E, 
E)-2,4-nonadienal and (E,E)-2,4-decadienal, appeared to be the main 
responsible for the stale odour. Baking treatment can remove the stale 
off-flavour typical of stored green tea improving the volatile profiles. 
Twenty-three compounds were identified following a sensomic work- 
flow by applying HS-SPME-GC-O with OAVs >1, eight of them were 
further identified as the key volatiles by OPLS-DA (nonanal, (Z)-3-hex-
enyl hexanoate, benzaldehyde, β-ionone, linalool, β-cyclocitral, (E)- 
geranylacetone and α-terpineol) contributing to the green, fruity and 
roasted aromas of green tea (Liu et al., 2023). 

Strocchi et al. defined the fingerprint describing oxidation notes in 
commercial coffee stored in different packaging (i.e., standard with 
aluminium barrier and Eco-caps). The study was carried out using HS- 
SPME-GC-MS/FPD in conjunction with machine learning data process-
ing extrapolating 25 volatiles (out of 147) indicative of oxidised coffees 
regardless of packaging and blending. They noted that of the 25 volatiles 
that synergistically are responsible for the aging of coffee, some com-
ponents are consistent with previous studies, and resulted in lower levels 
in oxidised coffees, while others appear to be specific to the packaging 
and/or blend, including 2-methylfuran, 2-methylbutanal, 2-acetylfuran, 
2,5-dimethylfuran (meaty) and 2-methyl-2-cyclopenten-1-one (Strocchi, 

Bagnulo, et al., 2022). 
The reported correlative studies suggest that the integrated approach 

can successfully be used to complement sensory analysis offering valu-
able insights into the relationship between objective measurements and 
subjective perceptions. In general, success in developing these methods 
requires a high level of consistency and alignment of the sensory panel in 
product evaluation, as subjectivity in data collection can influence the 
development of the mathematical model used to predict the score. 
However, the natural variability of these food matrices and their 
complexity make it difficult to achieve good representativeness for all 
commercial products handled at an industrial level. Furthermore, 
correlative studies often involve complex data analysis techniques and 
interpretation, requiring expertise in both sensory evaluation and 
analytical instrumentation. The need to combine different analytical 
techniques for coverage of multiple sensory attributes results in cost and 
resource intensiveness in terms of time, equipment, and personnel. 

4. Perspectives and critical vision: the good, the bad and the 
ugly 

AI-based tools play a crucial role in addressing real-world challenges 
in the coffee, cocoa, and tea industries, offering a multifactorial 
approach. It aids in authenticity detection, adulteration prevention, 
process control, and maintaining consistent product quality. This en-
hances data comprehension, particularly regarding the involved chem-
istry, crucial for product development and brand consistency. Various 
studies explore the chemistry of sensory notes and their relation to in-
dustrial issues using traditional AI algorithms. AI contributes to effi-
ciency, cost-effectiveness, and overall industrial success. 

The good. The AI tools enable researchers to analyse information 
from large amounts of data by breaking down complex issues into 
manageable components and understanding the relationships between 
them and the initial hypothesis in order to confirm it or propose a new 
hypothesis. Indeed, research studies are based on hypothesis-driven 
approaches that guide the design of experiments to obtain informa-
tion. However, when there is not enough data or the hypothesis does not 
work, individuals can look for the causes, explore alternative solutions, 
observe with a keen eye, and make informed decisions based on careful 
analysis that generates new hypotheses (hypothesis-generating ap-
proaches) for an effective problem solving. In this regard, the extraction 
of hidden and helpful information from large data set by chemometrics 
does not fall into the hands of software in which “by clicking a button 
gives the solution” but needs researchers able to learn the use of 
different data mining methods depending on the problem to solve 
contributing to innovation by challenging existing ideas and exploring 
new possibilities (Jimenez-Carvelo, 2021). 

The bad. The approximation in complex problems. Reducing data 
while preserving vital variation often involves PCA as a diagnostic tool 
and PLS/PLS-DA as common supervised algorithms. Converging 
instrumental approaches with sensory evaluation is essential for man-
aging the complexity and multidimensionality of data. Although PCA 
and PLSR typically require linearity, previous studies rarely found a 
linear link between flavour perception and chemical composition 
(Lemarcq et al., 2020). While linear models like PCA and PLSR offer 
acceptable approximations, their performance can suffer from signifi-
cant inter-variable nonlinearity. Nonlinear algorithms such as SVM, RF, 
ANN, deep learning, and hybrids have successfully addressed this issue 
in food flavour analysis. However, their limited use in coffee, cocoa, and 
tea research, where high sample numbers are often required, poses 
challenges from analytical and industrial perspectives, particularly 
when referencing sensory analysis. Overfitting remains a common 
challenge. Insufficient critical thinking during model development can 
contribute to inaccuracies, and overlooking data scaling, normalization, 
or transformation issues may lead to biased results. Analytical tech-
niques providing numerous measures may not offer detailed molecular 
profiles correlating with sensory features (i.e., e-nose, NIR etc.). The use 
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of fused data can benefit these algorithms, given an adequate number of 
representative samples. However, a gap exists in academic training for 
advanced AI tools, hindering alignment with industry modernization 
needs (Ayres et al., 2021; Zeng et al., 2023). The disparity between 
academia and industry hinders the implementation of methods used by 
academic researchers in companies. Nevertheless, the growing number 
of publications exploring the relationship between chemical data and 
sensory properties through instrumental analysis using machine 
learning reflects industry interests in this context. 

The ugly. Misinterpreting chemometric results can lead to flawed 
conclusions and decisions based on inaccurate data analysis. Users, without 
a critical approach, might overlook non-linearity in the data, resulting in 
unreliable predictions. Complex AI algorithms can lack transparency, 
making it challenging to comprehend underlying data relationships. As 
noted by other authors, this becomes problematic without critical evalua-
tion, impacting model reliability (Jiménez-Carvelo et al., 2019; Lemarcq 
et al., 2022; Yu et al., 2018). Ensuring the robustness and reliability of 
chemometric applications requires awareness of potential pitfalls, 
including overfitting, assumption violations, and result misinterpretation. 
Finally, there is misalignment in the literature as to what is covered by the 
term “artificial intelligence” due to its wide applications in different do-
mains that need a clearer definition in function of the field of application. 
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AAB: Acetic acid batecria 
ADM: Analytical decision maker 
AI: Artificial inteligence 
ANN: Artificial neuronal networks 
BBD: Box-behnken design 
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CQA: Chlogenic acids 
CV: Cross-validation 
DCNN: Deep convolutional neural networks 
DOE: Design of experiments 
EMCVS: Ensemble monte carlo variable selection 
e-Nose: Electronic nose 
FID: Flame ionization detection 
FTIR: Fourier transform infrared 
FT-MIR: Fourier-transform mid infrared 
GA: Genetic algorithm 
GC-MS: Gas chromatograph-mass spectrometry 
GC-O: Gas chromatography-olfactometry 
GCxGC-MS: Comprehensive gas chromatograph-mass spectrometry 
HCA: Hierarchical cluster analysis 
HS-SPME: Headspace solid phase microextraction 
IMS: Ion mobility mass spectrometry 
LAB: Lactic acid bacteria 
LCxLC: Comprehensive liquid chromatograph 
LDA: Linear discriminant analysis 
LS-SVM: Least square support vector machine 
MCR-ALS: Multi curve resolution-alternative least square 
MFA: Multiple factor analysis 
MLR: Multiple linear regression 
MSC: Multiplicative scatter correction 
NIR: Near-infrared spectrometry 
NMR: Nuclear magnetic resonance 
N-PLS: Multiway partial least square 
OAV: Odour activity value 
OPLS: Orthogonal projection to latent structures 
PARAFAC: Parallel factor analysis 
PCA: Principal component analysis 
pCoQA: p-coumaroylquinic acid 
PCR: Principal component regression 
PDO: Protected designation of origin 
PGI: Protected geographical indication 
PLS or PLSR: Partial least squares regression 
PLS-DA: Partial least squares discriminant analysis 
PTR-MS: Proton transfer reaction mass spectrometry 
QMS: Quality management systems 
RF: Random forest 
RMSEP: Root-mean-squared error prediction 
RSM: Response surface methodology 
SEBES: Sensomics-based expert system 
SEP: Standard error in preditction 
SIMCA: Soft independent modelling of class analogy 
SRC: Sparse representation classifier 
SVM: Support vector machine 
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