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Abstract
We have developed a financial market model that incorporates the Disposition Effect,
which refers to traders’ tendency to avoid realizing losses. Specifically, our model
replicates several stylized facts commonly observed in financial markets, such as fat
tails and volatility clustering. These market characteristics can be attributed to the
Disposition Effect, especially when the trading behavior of agents aligns with the
findings of Ben-David and Hirshleifer (Rev Financ Stud 25(8):2485–2532, 2012).
To demonstrate this, we examine two versions of the model: one where a class of
agents exhibits a high degree of Disposition Effect and another where traders are not
influenced by it. By comparing the simulated time series generated by both versions,
we find that the one with agents affected by the Disposition Effect better replicates the
features observed in real financial markets. This holds true for both the deterministic
and stochastic versions of the model.
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1 Introduction

In recent years, behavioral finance has been focused on studying the systematic biases
displayed by financial actors and their impact on trading performance. For a compre-
hensive review of this field, refer to Shleifer (2000), Barberis and Thaler (2003), and
Campbell (2006). Various trading patterns, such as the January effect (Ritter 1988), the
weekend effect (Osborne 1962; Lakonishok and Maberly 1990), and the alternative
"day-of-the-week effect" (Dubois and Louvet 1996; Romero-Meza et al. 2010), have
drawn significant attention. However, one of the most prevalent biases is the tendency
of traders to favor selling winning stocks over losing ones. This widely observed
behavior is known as the Disposition Effect (DE), first introduced by Shefrin and
Statman (1985).

In this paper we present a financial market model that incorporates the DE. It
consists of an heterogeneous asset pricingmodel à la Day andHuang (1990). Similarly
to other contributions on heterogeneous, boundedly rational, and interacting traders
(Tramontana et al. 2013), we assume the existence of two populations of traders,
fundamentalists and chartists (for an extensive survey on this stream of literature, see
Hommes (2013) and Dieci and He (2018)). The second groups of traders exhibits
a behavior consistent with the findings of Ben-David and Hirshleifer (2012), which
include the DE. We then account for the presence of a market maker that adjusts the
stock price with respect to traders’ excess demand. As a result, the dybamic of the
asset is determined by a two-dimensional piece-wise nonlinear map. We are able to
analytically demonstrate that the presence of non-professional traders has an important
relevance on the stability of the system.

Our model also contributes to a recent stream of literature that focuses on esti-
mating the model via matching the characteristics of simulated and real data, such as
moments of the return distribution, autocorrelation functions andmeasures of volatility
clustering, as in Franke and Westerhoff (2012, 2016). As this article aims to identify
other stylized facts of financial markets that can be better explained by considering
investors affected by DE, it aligns with existing literature on this subject. Further-
more, we demonstrate how the presence of this bias may facilitate price fluctuations
and boom-bust dynamics, even starting from a stable scenario.

To this aim, taking into account the empirical evidence that highlights the pres-
ence of stylized empirical facts arising from statistical analysis of price variations in
various types of assets in financial markets (Cont and Bouchaud 2000; Cont 2001),
we demonstrate that our agent-based model is capable of reproducing some of these
regularities, such as the absence of autocorrelation of returns, heavy tails, inferred
volatility, and volatility clustering. Particularly, we test how the presence of different
degrees of DE in our simulated time series allows us to simulate financial time series
that closely resemble observed properties of real-financial market data. For a complete
review of the literature on agent-based modeling of financial markets, see Chen et al.
(2012). Moreover, we show that if the asset is subjected to purely Gaussian uncorre-
lated shocks, fat-tail distributed time series arise through the endogenous transmission
mechanisms within the system.

The remainder of the paper is organized as follows: In the next section, we discuss
some related literature. In Sect. 3, we present our simple discrete-time agent-based
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model. Section4, by focusing on the stochastic version of the model, discusses the
statistical properties of our simulated time series and the replicability of stylised facts
and Sect. 5 estimates the model by using the method of moments. Sect. 6 is devoted to
provide final considerations.

2 Literature review

The cause of the Disposition Effect has often been linked to the prospect theory
preferences of investors (Camerer 2000; Henderson 2012; Li and Yang 2013, among
others). According to Kahneman and Tversky’s (1979) findings, individuals tend to
be more risk-averse in the domain of gains and more risk-seeking in the domain of
losses. However, alternative explanations and criticisms have emerged. Coen-Pirani
(2004) investigated the role of differences in risk aversion in affecting the long-run
distribution of wealth across agents in an endowment economy and found that the
long-run distribution of wealth is dominated by more risk-averse agents, contrary to
results obtained from standard expected utility preferences. Kaustia (2010) analyzed
data from the Finnish Central Securities Depository and showed that the propensity
to sell an asset remains basically constant on losses and increases or remains constant
on gains, questioning the universality of DE. Meng and Weng (2018) raised doubts
about the existence of DE when the initial wealth is used as a reference point. Barberis
and Xiong (2009) compared preferences defined over annual gains and losses with
preferences defined over realized gains and losses, and they found that the realized
gain/lossmodel better predictsDE.Hens andVleck (2011) demonstrated that investors
who sell winning stocks and hold losing assets might not have invested in stocks in
the first place, challenging the prospect theory argument. Lehenkari (2012), using
data from the Finnish stock market, suggested that the escalation of commitment
explanation for DE seems to be more consistent with the data than the explanation
based on prospect theory preferences. Regarding the consequences of this trading
regularity, Grinblatt and Han (2005) demonstrated how DE can be the origin of both
the persisting spread between a stock’s fundamental value and its market price and the
tendency for rising asset prices to further increase, known as the Momentum Effect.
Using individual trading data, Chang et al. (2016) found out that the disposition effect
applies only to nondelegated assets like individual stocks, while delegated assets, like
mutual funds, exhibit a robust reverse-disposition effect. Trejos et al. (2019) analyzed
the overconfidence and its relationship with the disposition effect, confirming that
investors exhibiting disposition effect are more prone to be overconfident. Dorn and
Strobl (2023) showed that trading strategies as predicted by the disposition effect
can arise as an optimal response to dynamic changes in the information structure if
investors are asymmetrically informed.

Several theoretical models have been developed to consider investors biased with
DE, including works by Barberis and Xiong (2009), Hens and Vleck (2011), Ingersoll
and Jin (2013), and Polach and Kukacka (2019). Additionally, Rau (2014) analyzed
gender differences in DE and loss aversion in an experimental framework, finding that
female investors tend to sell a higher amount of stocks, indicating a significant degree
of DE. This bias has been extensively studied in the behavioral literature using exper-
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imental approaches (e.g., Weber and Camerer 1998; Da Costa et al. 2013; Frydman
and Rangel 2014; Talpsepp et al. 2014) as well as empirical frameworks (e.g., Odean
1998; Dhar and Zhu 2006; Brown and Kagel 2009; Jin and Scherbina 2011, which
explored the relationship between DE and taxes; Firth 2015, among others).

Parallel to theDE,models with heterogeneous interacting agents in financial market
have gained of importance in the last 30 years. The presence of different populations
of investors, most commonly chartists and fundamentalists, allow to explain the com-
plex dynamics of stockmarkets. The pioneering contribution of this strand of literature
is the paper by Day and Huang (1990). A relevant breakthrough in these models is
represented by Brock and Hommes (1998), where an asset pricing model with hetero-
geneous expectations is enriched with adaptive rationality. A further improvement of
these models is represented by the introduction of jumps in price dynamics, given by
the need to mimic regulations (Anufriev and Tuinstra 2013; Dercole and Radi 2020)
or by non-smooth trading rules (see Anufriev et al. 2020; Campisi et al. 2021; Gardini
et al. 2022, 2023a, b; Jungeilges et al. 2021). Our contribution enriches this stream
of literature, by introducing, analyzing and calibrating a non-smooth 2D-system in a
discrete-time framework. For an overview on this kind of models in economics and
finance, see Anufriev et al. (2018). In the next section we present our stock market
model setup.

3 The basemodel

In this asset market model, a market maker is responsible for adjusting the stock
log-price Pt according to the rule:

Pt+1 = Pt + αDt , (1)

where α ≥ 0 represents the reactivity of the market maker to the total excess demand
Dt , which is the sum of the excess demands of all traders.1

There are two groups of traders in this market: fundamentalists and chartists, and
they interact with each other.

Fundamentalists buy the asset when its current price is lower than the exogenously
given log-fundamental value F , and they sell it when the price is higher than F . Their
excess demand DF is described by the following formula:

DF = f (F − Pt )
3, (2)

where f > 0 represents their speed of adjustment. The cubic function in this equation
captures the idea from Day and Huang (1990) that fundamentalists trade more aggres-
sively as the market’s mispricing increases. This is due to their increasing conviction
that a fundamental price correction is imminent as the misalignment grows, along with
the increasing potential for gains through fundamental analysis. More recently, this
nonlinear behavior for chartists has been also introduced in other frameworks. Tra-
montana et al. (2009), for instance, adopted this trading rule in a nonlinear dynamic

1 The log-price follows an adjustment rule as in Day and Huang (1990) and Schmitt andWesterhoff (2021).
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Fig. 1 V-shapedprobability of selling, panela, andof buying, panelb, an assetwith respect to the comparison
between current and reference price. On the horizontal axis, there are profits measured as the return since
purchase, or the difference between current and purchase price, used as reference price

model in which the stock markets of two countries are linked through the foreign
exchange market.

Chartists, on the other hand, behave in the opposite manner. They buy the asset
when it is overvalued (Pt > F) and sell it when it is undervalued (Pt < F), based on
their belief in the persistence of the current scenario, at least in the short run. Typically,
their excess demand DC is determined as follows:

DC = ct (Pt − F), (3)

where ct is a time-varying variable that measures the reactivity of chartists. Here, we
incorporate the findings of Ben-David and Hirshleifer (2012), which suggest that the
probability of buying or selling an asset for any amount of profit follows an asymmet-
ric V-shaped function. Specifically, the function is steeper in the gain domain (right
branch) than in the loss domain (left branch), resulting in an asymmetry related to the
Disposition Effect (DE). In particular, as it is clear from Fig. 1, when traders deal with
buying decisions, the lowest probability of buying corresponds to the scenario where
the return is null. The more returns are positive or negative the higher is the probability
of buying the asset. But the probability of buying increases faster when returns are
negative (panel b). At the opposite, when a trader faces a selling decision, the proba-
bility of selling is still at the minimumwhen the return is null and it increases the more
returns are positive or negative. In this case the probability of selling increases faster
with positive returns (panel a). In our work, we link the DE only to the behavior of
chartists, as they are typically assumed to bemore prone to cognitive biases, heuristics,
and rules of thumb (see, for instance, Kaizoji et al. 2015).

Figure1 illustrates the V-shaped function representing the probability of buy-
ing/selling decisions based on the amount of profit, highlighting the asymmetry in
the gain and loss domains.

In our work, we utilize reactivity c as a proxy for the probability of selling/buying
the asset. Instead of considering c as an exogenous parameter, we treat it as a time-
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varying variable that changes its value at each time step based on the findings of
Ben-David and Hirshleifer (2012). Moreover, following Grinblatt and Han (2005), we
define the traders’ profit at the aggregate level as the difference between the current
asset price Pt and a weighted average of past prices ˜Pt , forming the reference price.

To model the reactivity of chartists at time t (ct ), we use the following piecewise-
defined function:

ct = c(Pt , ˜Pt ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ĉ + sg(Pt − ˜Pt ) if Pt < F ∪ Pt ≥ ˜Pt
ĉ − sl(Pt − ˜Pt ) if Pt < F ∪ Pt < ˜Pt
ĉ + bg(Pt − ˜Pt ) if Pt ≥ F ∪ Pt ≥ ˜Pt
ĉ − bl(Pt − ˜Pt ) if Pt ≥ F ∪ Pt < ˜Pt

, (4)

where sg, sl , bg , and bl are positive parameters regulating the slope of the branches
of the V-shaped function. To be consistent with empirical evidence mentioned above,
we assume that sg ≥ sl and bl ≥ bg . Parameters ĉ and f measure the relevance of
the two groups of traders in the market. From a financial point of view, the behavior
of ct in (4) can be interpreted in the following way: In all cases the primary level of
ct is provided by the relevance of the chartists (ĉ) while, the secondary components
(depending on parameters sg, sl , bg and bl ) direct the strategy of the chartists based
on the return (Pt − ˜Pt ). Specifically, when non-fundamentalist traders want to buy
(i.e., when Pt > F), the more returns are different from zero, the more they buy, with
more sensitivity to negative returns (bl ≥ bg). Instead, when chartists decide to sell the
asset (i.e., when Pt < F), the more returns are different from zero, the more they sell,
with more sensitivity to positive returns (sg ≥ sl ). This is coherent with the results
of Ben-David and Hirshleifer (2012), in fact the four equations in (4) correspond the
four linear branches of Fig. 1.

The importance that professional and non-professional traders attribute to ˜Pt also
plays a crucial role in this adjustment dynamic. The reference price is thus updated
using the following equation:

˜Pt+1 = λ˜Pt + (1 − λ)Pt , (5)

where λ ∈ [0, 1] regulates the gradual fading importance of past prices.
By inserting the endogenous reactivity (4) in the chartists’ trading rule (3) and

combining it with the fundamentalists’ trading rule (2) in the market maker equation
(1), we derive the two-dimensional piecewise-defined nonlinear map that origins our
2-D dynamical system that governs the dynamics of the asset price and reference
price:

T :
{

Pt+1 = Pt + α
[

f (F − Pt )3 + ct (Pt − F)
]

˜Pt+1 = λ˜Pt + (1 − λ)Pt
(6)

where ct is the piecewise-defined function defined in Eq. (4). This map captures the
interactions between fundamentalists and chartists and how their trading behaviors
influence the asset price and the reference price over time.
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3.1 Analytical results

We denote with an asterisk (∗) the equilibrium values of the model’s variables. A first
result concerning the equilibria and stability properties is the following:

Proposition 1 The equilibria of the dynamical system (6) are such that P∗ = ˜P∗,
meaning that at the equilibrium, the asset price is equal to its reference price.

Proof By using the equilibrium conditions Pt+1 = Pt = P∗ and ˜Pt+1 = ˜Pt = ˜P∗ on
the dynamic equation of the reference price we immediately get P∗ = ˜P∗. ��

An immediate consequence is that the parameter λ plays no role in the equilibrium
values. At the equilibria the stock price and the reference price are equal. Moreover,
given the different regimes of ct in (4), we can say that equilibria are always located
in a border, that is in a point of not differentiability for the map (6).

Concerning the number of the equilibria, we have the following result:

Proposition 2 The dynamical system (6) admits up to three equilibrium points. The
first one is the fundamental equilibrium (E0) where the asset price is equal to its
fundamental value (P∗

0 = F). The other two are non-fundamental equilibria (E1,2),

where the asset price is different from the fundamental value (P∗
1,2 = F ±

√

ĉ
f ). The

existence of these non-fundamental equilibria depends on the relative importance of
chartists and fundamentalists.

Proof Using the equilibrium conditions Pt+1 = Pt = P∗ and ˜Pt+1 = ˜Pt = ˜P∗ on
the first equation of the dynamical system (6), we first get that at the equilibrium the
reactivity of chartists (c∗) must be equal to ĉ. In fact, as we know from Proposition 1,
at the equilibrium the asset price is equal to the reference price, so all the four possible
dynamic equations of the reactivity (4) reduce to ct = ĉ. Then, we get that at the
equilibrium:

f (F − P∗)3 + ĉ(P∗ − F) = 0

from which we obtain the three equilibrium values of the asset price (and of the
reference price) for any positive value of parameters ĉ and f , as in Tramontana et al.
(2009):

E0 → P∗
0 = ˜P∗

0 = F

E1,2 → P∗
1,2 = ˜P∗

1,2 = F ±
√

ĉ
f

In the E0 equilibrium there are no transactions at all because the asset price is equal
to its fundamental value and both kinds of traders do not trade. Instead, at the two
non-fundamental equilibria E1,2 the asset price is constantly above (resp. below) the
fundamental value and the action of one kind of trader is perfectly compensated by
the counter-action of the other kind of trader, leaving the asset price at the same value.
The mispricing of the two non-fundamental fixed points thus depends on the relation
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of parameters f and ĉ. In particular, the distance between the two non-fundamental
equilibria increases in line with the relevance of chartists and decreases with respect
to the weight of fundamentalists. If we consider strictly positive values of ĉ and f
then the three equilibria always exist. ��

The next result concerns the local stability of the equilibria.

Proposition 3 The fundamental equilibrium E0 is unstable. In particular, it is a saddle
point.

Proof The local stability of the equilibria must be studied by using the Jacobianmatrix
of (6) (see Gandolfo 2009; Puu 2013, among other contributions) calculated at the
equilibria. Considering the fundamental equilibrium, we have:

J (E0) :
[

1 + αĉ 0
1 − λ λ

]

, (7)

where in the main diagonal there are the two eigenvalues (ξ1 = 1 + αĉ and ξ2 = λ).
Given the positivity of the parameters α and ĉ we have that ξ1 > 1 so the equilibrium
is unstable. Considering that λ is by definition positive and lower than one, we can
conclude that E0 is a saddle ��

Concerning the local stability of the two non-fundamental equilibria we can state
what follows:

Proposition 4 The non-fundamental equilibria E1,2 are both locally stable provided
that ĉ < 1

α
. At ĉ = 1

α
a flip bifurcation of the two non-fundamental equilibria occur.

Proof The Jacobian matrix of (6) calculated at the two non-fundamental equilibria is
the same, that is:

J (E1,2) :
[

1 − 2αĉ 0
1 − λ λ

]

, (8)

where in the main diagonal there are the two eigenvalues (ξ1 = 1− 2αĉ and ξ2 = λ).
Given the positivity of the parameters α and ĉ we have that ξ1 is always lower than
one. So the equilibria are locally stable provided that ξ1 > −1, which leads to the
local stability condition ĉ < 1

α
. At ĉ = 1

α
the eigenvalue ξ1 is equal to −1, which is a

flip bifurcation value. ��
The absence of a role for the parameters related to the Disposition Effect in the

equilibrium values and stability of the fundamental equilibrium is an intriguing obser-
vation. This suggests that the presence of non-professional traders, represented by
chartists in the model, has a more significant impact on the stock market’s stability
than the Disposition Effect itself.

The study byGardini et al. (2022) showing that the stockmarket’s fundamental fixed
point is always unstable in the presence of sentiment traders highlights the fragility of
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the market’s stability. The inclusion of non-professional traders, such as chartists, can
lead to a decrease in stock market stability, making it more susceptible to instability.
Moreover, very similar stability properties of the fundamental equilibrium has been
observed in Tramontana et al. (2009), in whose framework the fundamental steady
state is always unstable.

The presence of the two non-fundamental equilibria (i.e., E1, E2) introduces com-
plexities in the analytical study of their local stability. These equilibria are located on
the boundary separating regions of the phase space with different dynamic equations.
In these cases, the reactivity of chartists changes depending on whether the asset price
is higher or lower than the reference price, leading to different dynamics.

For instance, in equilibrium E1 where both asset price and reference price are
higher than the fundamental value, the reactivity of chartists can be expressed as
ĉ + bg(Pt − ˜Pt ), or ĉ − bl(Pt − ˜Pt ), based on the location in the phase plane. This
implies that chartists may receive buying signals that dominate the selling signals
received based on the past reference price, applying different weights.

Overall, the model provides valuable insights into the interactions between funda-
mentalists and chartists and their effects on stock market stability. It highlights the role
of sentiment traders and their potential influence on the dynamics of the stock market,
especially in the presence of non-fundamental equilibria and occasional shocks.

3.2 Numerical results

To study the role of the more relevant parameters, we fix the others at α = 1, f =
0.6, λ = 0.9. Moreover, in line with the experimental evidence of Ben-David and
Hirshleifer (2012), we consider this relation among the DE parameters: sg = bl =
2sl = 2bg . So by moving sg we also move the other three DE parameters. The
numerical simulations provide valuable insights into the local stability of the non-
fundamental equilibria in the model. By varying the parameter ĉ, which represents the
exogenous component of chartists’ reactivity, the simulations reveal the emergence
and stability of these equilibria.

Panel (a) of the one-dimensional bifurcation diagram in Fig. 2 illustrates the dynam-
ics of the model as the relevance of chartists increases (by varying ĉ from 0 to 1.5).
As the relevance of chartists grows, the two non-fundamental equilibria emerge and
become unstable through flip bifurcation at ĉ = 1. All the parameters related to DE
are set equal to 0. A dynamic transition from stable equilibria to period-two cycles
occurs and eventually lead to unbounded and chaotic behavior for higher values of the
reactivity parameter. This suggests that the trend-extrapolating behavior of chartists
is a significant driver of instability and unpredictability in the asset price dynamics.

Panel (b) explores the role of the Disposition Effect by varying the parameters
related to this bias (sg , sl , bg , bl ) and considering ĉ = 0.63.. Increasing the values
of these parameters leads to the loss of stability of the two fixed points, resulting
in period-doubling bifurcations and chaotic motion. The deeper the DE, the more
unstable and unpredictable the asset price dynamics become, and the larger the price
fluctuations. The behavioral bias of the DE amplifies the actions of traders, especially
when the price differs from the reference one. Panic selling and frequent transactions
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induced by this bias contribute to market instability, higher volatility, and decreased
predictability.

Panel (c) further demonstrates the impact of the behavioral bias on the market.
The parameter setting ĉ = 1.23 and sg = 0.63 results in regions of instability and
chaos. Themarket experiences chaotic price fluctuations driven by the trend-following
behavior of non-professional traders.

In summary, numerical simulations highlight the importance of chartists’ reactivity
and the influence of the Disposition Effect in the emergence of instability, chaotic
dynamics, and increased price fluctuations in the stock market. The model provides
valuable insights into the complex interactions between fundamentalists and chartists,
and how the behavior of sentiment traders can significantly impact the overall stability
and dynamics of the market.

This result seems to be robust to changes in the combinations of parameters con-
sidered.

4 The stochastic version of themodel

The bifurcation diagrams in Fig. 2 illustrate how our deterministic model can already
capture some qualitative features of financial markets, such as bubbles, crashes, and
some level of excess volatility, particularly in the chaotic region of the parameter space.
This represents an initial contribution of the Disposition Effect (DE) in enabling the
model to better replicate the dynamic evolution of financial markets. However, to gain
deeper insights into the role of DE in asset price dynamics, a more comprehensive

Fig. 2 In the left top panel bifurcation diagram when the exogenous component ĉ of the chartists’ reactivity
varies. In the right top panel bifurcation diagram with respect to the DE effect parameter sg with ĉ = 1.23.
In the bottom panel a typical chaotic timeplot obtained with ĉ = 1.23 and sg = 0.63
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analysis is required, which involves incorporating stochastic components. In other
words, we are interested in investigating whether the introduction of stochastic ele-
ments allows the DE to account for additional stylized facts observed in financial
markets.

In this next step of our study, we aim to demonstrate that DE can lead to simulated
returns that better reproduce important quantitative features observed in financial mar-
kets. To achieve this, we need a more sophisticated examination of the time series’
characteristics and its descriptive power. Firstly, assuming a constant, exogenously
given fundamental value may not be realistic. Therefore, we now consider the funda-
mental value to follow a random walk, capturing unexpected or unpredictable events
that may impact a financial asset. The fundamental value is modeled as a geometric
Brownian motion, with its log-value described by equation:

Ft+1 = Ft + ξF,t , with ξF,t ∼ N (μF , σ 2
F ),

where ξF,t is independently and identically distributed, representing the stochastic
component.

Additionally, we assume that the amount of chartists (measured by the proxy ĉ)
varies with time. Therefore, we consider:

ĉt+1 = ĉt + ξ̂c,t , with ξ̂c,t ∼ N (μĉ, σ
2
ĉ)

where ξ̂c,t is also independently and identically distributed, accounting for the stochas-
tic behavior of ĉ.

To test the model, we use the same fixed parameter values as shown in Fig. 3c:
α = 1, f = 0.6, λ = 0.9, and τ = 0.7. We set the initial values of P0 = 0.97 and
P̃0 = 1.02. It is worth noting that the initial values of the dynamic variables have a
negligible effect on the results of the stochastic model.

To calibrate the variance of the noise, we adopt a trial and error approach, aiming
to find a value that preserves the stability of the model. Specifically, we have chosen
the following initial values, averages, and variances:

F −→ F0 = 1; μF = 0; σ 2
F = 0.1

ĉ −→ ĉ0 = 1.3; μĉ = 0; σ 2
ĉ = 0.05

Then we have considered three different scenarios, which differ for different values
of sg:

1. sg = 0 (no DE)
2. sg = 0.2 (weak DE)
3. sg = 0.35 (strong DE)

For each scenario, we conducted 1000 runs of Monte Carlo simulations, with each
run consisting of 500 iterations of the dynamical system (6) with stochastic funda-
mental value. The Monte Carlo method involves randomly selecting sequences of F
and ĉ for each simulation, and building samples based on these values. This process
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Table 1 Average values of kurtosis, volatility and normality tests for different degrees of sg

sg Kurtosis Volatility Jarque–Bera∗ Shapiro–Wilk∗

0.00 2.94 0.047 0.129 0.082

0.20 3.22 0.053 0.005 0.030

0.35 4.51 0.300 0.000 0.000

∗ p-value

was repeated a thousand times to obtain the distribution of our simulated time series
as the output.

Various stylized facts, which are qualitative features commonly observed in finan-
cial markets, have been extensively studied by Mantegna and Stanley (2000), Cont
(2001), and Lux and Ausloos (2002).

The volatility of returns, as discussed in Shiller (2015), is measured by using the
variance of simulated time series of returns. Thismeasure indicates the average volatil-
ity.

Additionally, excess kurtosis, a measure of the peakiness of a distribution, indicates
a slow decay of the probability density function, known as heavy tails (LeBaron
and Samanta 2005). The presence of heavy tails suggests a non-normal decay, but
determining the precise form of the tails can be challenging. To assess the presence of
heavy tails, we calculate the kurtosis of the distribution using the formula:

κ =
〈

(r(t, T ) − 〈

r(t, T )
〉

)4
〉

σ(T )4
− 3

where σ(T )2 represents the variance of log-returns. A positive value of κ indicates
the presence of fat tails.

However, a high level of kurtosis alone is not sufficient to identify the distribution
of returns. Additional tests are needed to explore the normality of the returns distri-
bution. We perform the Jarque–Bera test and the Shapiro–Wilk test (as suggested in
the comprehensive guide of Yap and Sim, 2011), and also use Q-Q plots and compare
the theoretical kernel estimator with the simulated distribution.

Table 1 presents various values of kurtosis, volatility, and p-values for different
degrees of sg . The Jarque–Bera test is used as a moment test, while the Shapiro–Wilk
test is based on regression.

The results clearly indicate that scenarios with high DE are characterized by higher
kurtosis and also exhibit the highest volatility. The null hypothesis of normality for the
distribution of returns is consistently rejected by both the Jarque–Bera and Shapiro–
Wilk tests, except in the case when DE is not present (sg = 0). As emphasized before,
neglecting the role of the bias leads to a less accurate description of real financial
indexes or time-series.

Figures 3, 4, 5 display the simulated time-series of prices and returns for all sce-
narios, along with the previously discussed patterns observed in financial markets.
Panels a and b of these figures show individual sequences of the evolution of price and
returns for different combinations of sg . Panels c present the distribution of our simu-
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Fig. 3 Scenario 1 (sg = 0). Panels a and b show the pattern of the simulated price (in red), fundamental
value (in blue) and returns. They are single, representative, simulations obtained with a sequence of random
realizations of the fundamental value. Panel c illustrates the theoretical kernel estimator (in blue) compared
with the simulated distribution (in red). In panel d figures the relative probability plot. Average measures
and statistics of 1000 Monte Carlo simulations (length 500 iterations each) (Color figure online)

lated time series (in red) compared with the theoretical kernel normal distribution (in
blue). Finally, panels d show the probability plot (QQ-Plot), which helps in assessing
the deviation from normality.

An additional analysis is provided in Table 2, where the average values of negative
and positive returns are compared. This table highlights the presence (or absence) of
the gain/loss asymmetry, a stylized fact stating that financial markets generally expe-
rience "large drawdowns in stock prices and stock index values but not equally large
upward movements" (Cont 2001). Notably, Scenario 3 exhibits the most pronounced
difference.

In conclusion, our results suggest that considering the presence of DE in a portion
of traders may contribute to a more accurate replication of the dynamics of financial
markets. It is important to bear in mind that traders are influenced by various biases,
and we have only considered one of them. Nevertheless, our findings indicate that the
scenarios that better capture the dynamics of returns in real financial time-series are
those characterized by a presence of the bias. In the following section, we will present
a comprehensive empirical analysis to ascertain whether these qualitative results are
corroborated by real data.
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Fig. 4 Scenario 2 (sg = 0.2). Panels a and b show the pattern of the simulated price (in red), fundamental
value (in blue) and returns. They are single, representative, simulations obtained with a sequence of random
realizations of the fundamental value. Panel c illustrates the theoretical kernel estimator (in blue) compared
with the simulated distribution (in red). In panel d figures the relative probability plot. Average measures
and statistics of 1000 Monte Carlo simulations (length 500 iterations each) (Color figure online)

5 Empirical results

In this section, we employ the method of simulated moments as in Franke andWester-
hoff (2011, 2012, 2016) to assess whether introducing the disposition effect enhances
the model’s ability to replicate key stylized facts observed in financial time series. The
fundamental idea behindMSM is to identify the best model specification that, through
simulation, closely reproduces selected moments, aligning them with their empirical
counterparts.

To this end, we analyze the Standard and Poor (S&P 500) stock market index from
January 1980 to the end of May 2023, encompassing 10,944 daily observations. This
benchmark time series serves as a basis for comparing the model’s performance with
four essential stylized facts observed in empirical financial data: the absence of auto-
correlation in raw returns, heavy tails, volatility clustering, and long memory. We
quantify these characteristics through nine moments, including the mean of absolute
returns (Mean abs ret), the autocorrelation function of returns (ACF ret), the autocor-
relation function of absolute returns with multiple lags (ACF abs ret lag n), and the
Hill tail index of absolute returns (Hill abs ret) at the top 5% level. We consider the
model in (6) and we choose the following range for parameters α and f :

• α ∈ [−1.5, 1.5], with step of 0.1 and α 
= 0;
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Fig. 5 Scenario 3 (sg = 0.35). Panels a and b show the pattern of the simulated price (in red), fundamental
value (in blue) and returns. They are single, representative, simulations obtained with a sequence of random
realizations of the fundamental value. Panel c illustrates the theoretical kernel estimator (in blue) compared
with the simulated distribution (in red). In panel d figures the relative probability plot. Average measures
and statistics of 1000 Monte Carlo simulations (length 500 iterations each) (Color figure online)

Table 2 Gain/loss asymmetry for our generated time-series of returns

Scenario Negative returns (mean) Positive returns (mean)

Scenario 1 −0.193 0.207

Scenario 2 −0.236 0.270

Scenario 3 −0.718 0.559

• f ∈ [0.1, 0.9];
As a starting point we set ĉ0 = 1 − f and F0 = P0 = 4.66; these parameter ranges
allow for a comprehensive investigation of their impact on the model’s ability to
capture the disposition effect and its influence on stylized facts.

We run aMonte Carlo simulation withM = 1000 trajectories of length N = 10944
for each parameters setting α, f , ĉ for a total of 270 combinations. We set other
parameters to �t = 1/252 (daily time step), bl = sg , bg = sg/2, sl = bg and sg = 0,
sg = 0.2 and sg = 0.35 for the no disposition effect, weak disposition effect and strong
disposition effect scenarios, respectively. This choice allows us to isolate the effects of
the disposition effect from other model features, providing a clearer understanding of
its specific contribution. We compute the moments of the simulated paths (m̂omi ) and
we compare themwith empirical S&P 500moments (momemp

i ) in terms of root-mean-
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Table 3 Parameter estimates of best model in terms of global RMSE

Real data No DE Weak DE Strong DE

Mean abs ret 0.0076 0.0028 0.0070 0.0123

ACF ret −0.0530 0.9018 0.4640 0.1151

ACF abs ret lag 1 0.2590 0.8683 0.5462 0.5095

ACF abs ret lag 5 0.3037 0.6411 0.3940 0.1991

ACF abs ret lag 10 0.2428 0.5153 0.2000 0.0771

ACF abs ret lag 25 0.1699 0.2070 0.0180 0.0337

ACF abs ret lag 50 0.1190 0.0039 0.0097 0.0250

ACF abs ret lag 100 0.0783 −0.0011 0.0054 0.0198

Hill abs ret 2.9973 3.4684 3.3130 3.5179

RMSE global – 0.4364 0.2357 0.2189

Bold value indicates the best model in terms of RMSE

squared error(RMSE):

RMSE =
√

√

√

√

1

h

h
∑

i=1

(

m̂omi − momemp
i

)2
. (9)

First, we consider all moments (h = 9 in (9)) to get an overview of the global
RMSE, the results are shown in Table 3. It is evident that the best performance is
obtained using the strong disposition effect specification.

To gain a deeper understanding of the stylized details of the financial time series,
we further analyze the results by splitting them into four blocks. Specifically, we
examine the mean of absolute returns, the autocorrelation function of returns, the
autocorrelation function of absolute returns with multiple lags, and the Hill tail index
of absolute returns individually.

The corresponding results are presented in Tables 4, 5, 6, 7. Generally, we notice
that incorporating the disposition effect specification consistently enhances the results
concerning RMSE across all moments, with one exception-the Hill tail index. Surpris-
ingly, when it comes to the Hill tail indexmoment, themodel excluding the disposition
effect shows slightly better performance. This deviation could potentially be attributed
to the greater impact of the disposition effect within the central part of the distribu-
tion rather than at the tails. Consequently, we witness a minor decline in the RMSE
when evaluating the superior model based on the Hill tail index. However, in the other
cases, incorporating the disposition effect in the model leads to better performance in
replicating the empirical moments.

These findings provide further support for the relevance of the disposition effect in
enhancing the model’s ability to capture important features of financial time series.
The consistent improvement in performance across various moments indicates that
the disposition effect plays a significant role in shaping market dynamics and price
fluctuations. It reinforces the notion that behavioral biases canhave a substantial impact
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Table 4 Parameter estimates of best model in terms of mean abs ret RMSE

Real Data no DE Weak DE Strong DE

Mean abs ret 0.0076 0.0076 0.0076 0.0076

ACF ret −0.0530 0.4252 0.1718 0.2316

ACF abs ret lag 1 0.2590 0.5127 0.0383 0.4086

ACF abs ret lag 5 0.3037 0.1898 0.0076 0.1961

ACF abs ret lag 10 0.2428 0.0202 0.0083 0.0638

ACF abs ret lag 25 0.1699 0.0001 0.0080 0.0210

ACF abs ret lag 50 0.1190 −0.0002 0.0073 0.0180

ACFcf abs ret lag 100 0.0783 0.0002 0.0070 0.0146

Hill abs ret 2.9973 4.8870 5.8153 4.2516

RMSE Mean abs ret – 1.71E-05 7.24E-06 4.83E-05

Bold value indicates the best model in terms of RMSE

Table 5 Parameter estimates of best model in terms of acf ret RMSE

Real Data no DE Weak DE Strong DE

Mean abs ret 0.0076 0.0096 0.0095 0.0130

ACF ret −0.0530 −0.0499 −0.0543 −0.0695

ACF abs ret lag 1 0.2590 0.0017 0.2628 0.4431

ACF abs ret lag 5 0.3037 −0.0005 0.1464 0.3003

ACF abs ret lag 10 0.2428 0.0002 0.1243 0.2826

ACF abs ret lag 25 0.1699 0.0001 0.1172 0.2650

ACF abs ret lag 50 0.1190 −0.0006 0.1122 0.2533

ACF abs ret lag 100 0.0783 0.0000 0.1055 0.2354

Hill abs ret 2.9973 6.0116 4.6019 4.5172

RMSE acf ret – 0.0031 0.0013 0.0165

Bold value indicates the best model in terms of RMSE

on financial markets and may contribute to the observed stylized facts in empirical
data.

To account for the variability of the moments, which could be relevant for selecting
the appropriate model specification, we also consider an analysis using the following
quadratic function (Pruna et al., 2020):

J = J (m̂om,momemp;W ) = (m̂om − momemp)T W (m̂om − momemp), (10)

whereW represents the inverse of an estimated variance-covariancematrix 	̂ of the fit-
ted moments. The results based on this analysis are presented in Table 8. Remarkably,
incorporating the disposition effect into the model significantly reduces the discrep-
ancy between empirical and simulated data.

Considering the variability of themoments through the use of the quadratic function
provides amore comprehensive evaluation of model performance. It demonstrates that
the disposition effect plays a crucial role in better aligning the simulated moments
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Table 6 Parameter estimates of best model in terms of acf abs ret RMSE

Real Data no DE Weak DE Strong DE

Mean abs ret 0.0076 0.0061 0.0139 0.0084

ACF ret −0.0530 0.4893 −0.2419 0.0473

ACF abs ret lag 1 0.2590 0.3988 0.3271 0.3248

ACF abs ret lag 5 0.3037 0.1630 0.2023 0.1769

ACF abs ret lag 10 0.2428 0.0336 0.1736 0.1545

ACF abs ret lag 25 0.1699 −0.0006 0.1622 0.1394

ACF abs ret lag 50 0.1190 −0.0003 0.1519 0.1347

ACF abs ret lag 100 0.0783 0.0002 0.1417 0.1263

Hill abs ret 2.9973 4.9624 4.6923 4.4410

RMSE acf abs ret – 0.1486 0.0644 0.0727

Bold value indicates the best model in terms of RMSE

Table 7 Parameter estimates of best model in terms of Hill est. RMSE

Real Data no DE Weak DE Strong DE

Mean abs ret 0.0076 0.0031 0.0050 0.0039

ACF ret −0.0530 0.9249 0.5618 0.6327

ACF abs ret lag 1 0.2590 0.9189 0.5884 0.6390

ACF abs ret lag 5 0.3037 0.7674 0.5028 0.4987

ACF abs ret lag 10 0.2428 0.6320 0.4047 0.4012

ACF abs ret lag 25 0.1699 0.2263 0.1277 0.1381

ACF abs ret lag 50 0.1190 0.0027 0.0122 0.0143

ACF abs ret lag 100 0.0783 −0.0007 0.0065 0.0094

Hill abs ret 2.9973 3.1370 2.8559 3.1495

RMSE Hill – 0.1397 0.1414 0.1522

Bold value indicates the best model in terms of RMSE

with their empirical counterparts. The reduction in the distance between the two sets
of data further supports the relevance of the disposition effect in enhancing themodel’s
accuracy and its ability to capture the key characteristics of financial time series.

Finally, in Fig. 6, we present an illustration of simulated log-price paths for the three
model specifications (no DE, weak DE, and strong DE) in comparison with the empir-
ical S&P 500 log-price series. It is evident that the paths incorporating the disposition
effect (DE) appear to closely resemble the real data, showcasing a significant improve-
ment over the no DE specification. On the other hand, the discrepancy between the
weak and strong DE specifications is not as substantial, validating the RMSE findings
where the optimal model varies depending on the specific moment being considered.

6 Conclusions

In this paper, we explore the implications of the trading irregularity known as the
Disposition Effect (DE). Our study develops a simple financial market model where
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Table 8 Parameter estimates of best model in terms of quadratic function J

Real data no DE Weak DE Strong DE

Mean abs ret 0.0076 0.0083 0.0139 0.0148

acf ret −0.0530 0.1743 −0.2419 −0.1756

acf abs ret 1 0.2590 0.1830 0.3271 0.3881

acf abs ret 5 0.3037 0.0486 0.2023 0.2429

acf abs ret 10 0.2428 −0.0024 0.1736 0.1992

acf abs ret 25 0.1699 0.0002 0.1622 0.1840

acf abs ret 50 0.1190 −0.0005 0.1519 0.1728

acf abs ret 100 0.0783 0.0000 0.1417 0.1585

Hill 2.9973 5.3070 4.6923 4.5685

J – 3096.09 2.0113 1.3103

Bold value indicates the best model in terms of RMSE

Fig. 6 Example of paths with different model specifications: S&P 500 log-price series (blue line), example
of simulated log-price series without DE (red-line), example of simulated log-price series with weak DE
(yellow-line) and example of simulated log-price series with strong DE (purple-line) (Color figure online)

heterogeneous agents coexist, and a group of traders exhibit behavior consistent with
the empirical findings of Ben-David and Hirshleifer (2012), leading to the emergence
of DE.

We discover that when DE is pronounced, the stock market becomes more sus-
ceptible to instability, and this bias can contribute to the appearance of bubbles and
crashes. The psychological inclination of investors to strongly react to price changes
collectively shapes the dynamics of stock markets. The resulting panic selling triggers
sudden and frequent transactions, making the market more volatile, unstable, and less
predictable.

The version of our model that most accurately replicates essential characteristics
of financial time series, such as heavy tails, skewness, high volatility, and gain/loss
asymmetry, is the one where traders are significant and highly affected by this bias.
Notably, the impact of the behavioral parameter was observed both in the deterministic
and stochastic version of the model. Furthermore, empirical analysis confirms the
relevance of DE.
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To the best of our knowledge, our approach is the first to explore the problem
by focusing on the study of piecewise-nonlinear maps and empirically validating the
model. We believe that this approach offers valuable insights into the consequences of
investors’ behavioral traits on asset price dynamics and hope that our research inspires
further work in this direction. In our future studies, we will continue to analyze this
class of models.
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