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A B S T R A C T   

The recognition of phases and microstructures in TRIP-assisted bainitic-ferritic steels is challenging and requires 
sophisticated techniques to gain insights and reveal mechanical features with nanoscale precision. EBSD and 
nanoindentation have been employed to assess the surface composition and their properties within a reporting 
depth of 30 nm. Correlative mechanical microscopy and data science were used to overcome the shortcomings 
associated with the lack of an inclusive solution that combines the metadata from both techniques. A modular 
methodology is presented, which involves routines for exploiting structural and mechanical data via reproduc-
ible Machine Learning models (code and data are shared). The approach is structured to facilitate reuse by 
research community for correlating characterization mapping data, not limited to nanoindentation and EBSD. 
Gaussian mixture models are adopted to extract mechanical phases utilizing the nanomechanical properties. The 
K-means++ method is used for the first time to mine information from Inverse Polar Figure (IPF) mapping about 
anisotropy and to extract the knowledge from images for each grain, including grain coordinates and size. 
Moreover, k-nearest-neighbours regression was used to perform data imputation to fill in the values of de-
scriptors related to missing coordinates relative to those of nanoindentation, grain boundary, EBSD phase, and 
EBSD anisotropy maps.   

1. Introduction 

Correlative microscopy is becoming increasingly important in ma-
terials science. This approach combines different microscopy and me-
chanical characterization techniques to study material properties, 
thereby exploiting the potential of each method [1]. 

In this study, the concept was applied to study the mechanical fea-
tures at the grain level of TRIP-assisted bainitic-ferritic (TBF) steel. This 
material belongs to the TRIP (Transformation induced plasticity) steel 
family, and it has a bainitic-ferritic matrix obtained through the aus-
tempering process. In the automotive industry, these steels are valued in 
a lightweight design and commonly used in Body In White (BIW) 

components [2]. Characterization of phases/microstructures (P/M) in 
TRIP steels can meet the steelmaker’s and users’ requirements to 
correlate mechanical properties with P/M, which is of great significance 
in component performance and can provide helpful feedback in engi-
neering process design [3]. In this respect, nanoindentation can be an 
essential technique for rapidly mining statistically significant informa-
tion about steels. This method had the benefit of measuring the hardness 
and elastic modulus of materials at the nanoscale with a minimal surface 
alteration, because contact area and depth are fairly smaller than 
traditional micromechanical testing, such as micro-hardness and 
bending tests. 

In particular, the structure/–property relationship can be studied 
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upon subsequent thermal treatments by overcoming three bottlenecks. 
The first consists of knowing the correct position (coordinates) and size 
of grains and martensite laths. The second challenge is to indent a spe-
cific grain in a precise crystallographic plain. The last one is to overcome 
the knowledge gaps that arise from missing data in the characterization 
datasets. 

Regarding the first problem, the interpretation of EBSD data alone is 
not sufficient to distinguish BCC structures of ferrite, martensite, and 
bainite. Conversely, austenite, which has an FCC lattice, is easy to 
recognize. EBSD images are usually processed in commercial software 
using the Hough transform to annotate the characterization data and 
perform phase mapping. Commonly, a down-sampling process is per-
formed by the software, while the user selects up to three elements for 
phase recognition to narrow down the number of possible phases. Both 
steps contribute to the reduction of the information collected by EBSD 
[4]. Lately, commercial versions of EBSD software have been able to 
differentiate ferrite and martensite through a supervised machine 
learning approach [5], although there are many other approaches with 
notable advantages over the traditional Hough method. These, however, 
require assumptions about the structure and the phases [6]. Nonethe-
less, this approach cannot always be used when P/M are too fine in size. 
Moreover, it is impossible to differentiate bainite with these tools 
because it is composed of alternating ferrite and cementite lamellae 
(upper bainite) or cementite lamellae dispersed within ferrite needles 
(lower bainite). To address these challenges, different ways to exploit 
EBSD data, such as Band Contrast (BC), Band Slope (BS), and Kernel 
Average Misorientation (KAM), have been proposed [7–11]. 

As for the second problem, hardness and elastic modulus are affected 
by P/M intercepted by the nanoindenter tip. Many nanoindentation 
studies are complemented by EBSD analyses [7,12–15] to study 
anisotropy [16–18], martensitic transformation [19,20], and tip-sample 
contact zone. It is essential to ensure that the indent size is smaller than 
the average grain size, thereby minimizing the influence of other P/M on 
the measured mechanical properties. Another possible issue is the 
indentation being made on top of a grain boundary, and in this case, 
mechanical features will depend even more on the P/M mixture in the 
indentation volume of the interaction site [14,21]. Thus, these factors 
have increased the necessity for the development of nanoindentation 
protocols with depth sensing capability and high precision. Such pro-
tocols enable ultra-shallow indentations, reducing the inter-indent 
spacing required to improve the lateral resolution of the test [22]. 
Finally, advancements in high-speed (up to 1 indent per second) nano-
indentation in Continuous Stiffness Measurement (CSM) mode have 
enabled the acquisition of large amounts of data [23]. This fact can 
allow the establishment of unbiased structure–property relationships for 
complex materials [24]. 

Considering the third problem of missing data, it can significantly 
impact scientific outcomes, given the importance of the resolution on 
the studied materials [25]. To address the impact of missing data on the 
size of the datasets and, consequently, on the prediction accuracy of 
machine learning models, the production of synthetic data based on 
real-world data has been proposed. The SMOTE (Synthetic Minority 
Oversampling Techniques) method is one recognized approach for this 
purpose [26]. Suppose the missing data is not a result of misalignment 
but rather due to actual gaps in measurements, then imputation tech-
niques can be used to estimate the missing values using the available 
data. Common imputation methods include mean imputation, median 
imputation, multiple imputation, and knn imputation. Mean imputation 
assumes that the value of an intermediate point, positioned between two 
other points, is the mean value of those two data points. In contrast, k- 
NN imputation can demonstrate a strategic benefit, especially for 
example when applied on predicting missing image data. This method 
uses ’k’ nearest neighbors, based on a metric such as Euclidean distance, 
to calculate the expected pixel color RGB value. This approach can be an 
efficient solution when combining multiple phase maps corresponding 
to the same region of interest. It is essential to precisely retain and 

compare only the exact matches of the coordinates to obtain a validated 
and unbiased outcome. 

Of quite importance is assuring that the nanoindentation protocol 
tuning enables to obtain a representative of bainitic steels response, 
since the individual phase responses are dimensionally related to grain 
size and thickness. In addition, for nanoindentation measurements, it is 
required to ensure that the requirements for a clean, flat, and well- 
polished surface are met to satisfy the standards for high-quality data 
generation [27,28]. In this study, the surface quality standards were met 
using the protocol required to prepare the surface for EBSD character-
ization (as reported in section 2.1). Also, a shallow depth of 30 nm was 
used, which enables the isolation of individual responses, while even not 
exhaustively studied in the literature, this depth range resulted in loads 
varying from 0.1 to 0.4 mN, thus mitigating pop-in effects which have a 
cumulative probability to occur upon the application of loads of 0.4 mN 
or higher depending on the surface preparation method [29]. However, 
it has been widely reported that pop-in phenomena might affect the 
recorded mechanical behavior and are essential to consider in materials 
science fields, ranging from conventional applications to more sophis-
ticated such as in the study of materials used in nuclear fusion [30]. 
Specifically, pop-in phenomena might occur due to the phase trans-
formation, the dislocations and ground boundaries present, and the 
relative size of the indenter to the size of the grain. On the other hand, 
the homogeneity of phases indented (single phase indentation), the high 
purity of the high strength bainitic trip steels studied can be essential 
factors to prevent the frequency of such responses since the evidenced 
cementite was less than 0.9 % and the indentation depth was 30 nm to 
satisfy that in most occasions a single phase is penetrated, whereas in 
case of grain boundaries indentation, this has been indicated through 
the algorithmic implementation. Moreover, the indent spacing can be 
another factor affecting the occurrence of pop-in phenomena. The 
employed nanoindentation protocol involved an interindent spacing 
which was 8.6 times larger than the maximum indentation depth, which 
is close to the 10-times rule conventionally employed in nano-
indentation. However, considering that at shallow depth the mechanical 
response is not dominated plastically as in an indentation at hundred 
nanometer or micrometer scale, this mitigated the probability of 
occurrence of pop-in or pile-up. Finally, in the region of interest no pop- 
in phenomena related to the phase transformation of austenite are re-
ported since austenite was not detected by EBSD characterization. 

In this paper, nanoindentation and EBSD techniques were used to 
distinguish the phases and microstructures in a sample by overlaying the 
surface characterization on the same ROI (Region of Interest). The aim 
of correlating structural and mechanical data was to enhance the ac-
curacy of nanoindentation mechanical phase analysis. The correlation is 
essential for accurately linking the mechanical properties with the P/M, 
where factors like phase anisotropy, grain boundaries, and grain size 
significantly influence the mechanical response and the detection of the 
unique phase characteristics. The core idea consists of correlating a 
structural phase map by EBSD and a mechanical phase map by nano-
indentation measurements. The approach is designed to overcome the 
problems as mentioned earlier. For this purpose, an innovative nano-
indentation protocol was tailored for phases and microstructures 
recognition and their nanomechanical properties determination of TBF 
steel (Bainitic – Ferritic TRIP steel). This protocol enables fast mapping 
(3 s per CSM indent) with a maximum depth of 30 nm and a dataset size 
of about 25,000 CSM nanoindents. To calibrate the post-processing of 
nanoindentation measurements, an EBSD analysis was previously car-
ried out on the sample, combining information about anisotropy and 
phases/microstructures. Based on the image analysis subsequently per-
formed by clustering, the knowledge from the extracted IPF map was 
mined, and the EBSD parameters/descriptors were used to identify the 
BCC phases (bainite, ferrite, martensite). This characterization data was 
further processed using Python and R language code to refine EBSD 
maps and identify the phases and their contours by pixel-wise classifi-
cation. A consensus algorithm was then applied to classify each phase at 
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the grain level. d. To the best of the authors’ knowledge, this is the first 
time that phase mapping has been performed at grain level and with 
such a massive amount of nanoindentation data. In contrast, existing 
literature studies combining EBSD with nanoindentation typically 
conduct analysis on the spot (x,y) coordinate pairs or pixel-wise 
[31–34]. 

2. Materials and methods 

2.1. Materials 

A TBF-1000 steel was analysed, having the elemental composition 
described in Table 1 and provided by Centro Ricerche Fiat. A 3x3 cm 
plate was cut to perform chemical composition analysis by means of a 
Quantometer (ThermoScientific ARL 3460 OES) following normative 
ASTM E415-21 [35]. 

The sample was cold-mounted in conductive resin and then me-
chanically polished using standard sandpapers with colloidal silica 40 
nm for final polishing [36]. 

Prior to the EBSD analysis, carbon tape was placed around the 
sample’s surface and the mounting resin. This step was taken to improve 
further the conductibility of mounted sample, hence EBSD (electron 
backscatter diffraction pattern) resolution. Finally, before performing 
the nanoindentation, the carbon tape was carefully removed. 

Table 1 
TBF-1000 elemental composition.  

C (at. 
%) 

Mn 
(at. 
%) 

P (at. 
%) 

S (at. 
%) 

Si (at. 
%) 

Al (at. 
%) 

Ti + Nb 
+ V (at. 
%) 

Cr +
Mo (at. 
%) 

0.190 2.36 0.010 0.001 0.606 0.234 0.060 0.03  

Fig. 1. (a) SEM-FSD Image of EBSD ROI area, (b) Martensite – ferrite/bainite mixture distinction using Band-Contrast values. Separation value: 113, (c) Ferrite- 
bainite distinction using KAM values. Separation value: 1.35◦, (d) Phases and microstructure distribution. In this case austenite grains were not detected and carbides 
amount was negligible. Step size was equal to 0.1745 μm. 
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2.2. Methods 

For SEM-EBSD analysis (SEM Tescan FESEM 9000: 20 kV; 1nA; EBSD 
Symmetry S2 Oxford Instruments; Data are provided by AztecCrystal). 
ROI area: 66.55 μm x 68.75 μm. Kernel average misorientation (KAM) 
was calculated using a kernel 9x9 set as maximum KAM 3◦ [7,9]. 

The CSM nanomechanical testing of the samples was performed 
using an FT-I04 (FemtoTools AG, Zurich, Switzerland), with noise floors 
down to 500 pN in force and 50 pm in displacement. A Berkovich tip 
with a 50 nm radius was used, which is attached to a MEMS force sensor 
with range from 0 to 20 mN. The Femto-Indenter enables the compre-
hensive study of mechanical behavior of materials with a high resolution 
and accuracy across depth. In both quasistatic and CSM testing, the 
calibration was performed on a standard fused quartz sample within the 
depth ranges of testing to establish a precise tip-area-function to mea-
sure the contact area during nanoindentation with high precision. 

A CSM nanoindentation displacement-controlled protocol was 
tailored to the multiphase TBF steels studied, to provide a large-scale 
map of 25,000 nanoindents which high accuracy, achieving a speed of 
3 sec per indent. The selected CSM frequency after tuning was 150 Hz, 
and the amplitude started from 0.4 nm with a 5 % amplitude ratio, 
respectively, and the maximum penetration depth was 35 nm. The 
interindent spacing was 0.3 μm and the dimensions of nanoindentation 
pattern were 60 μm x 45 μm. The reporting depth was selected at 30 nm 
in close relation with the resolution depth of EBSD, and to obtain the 
main contribution of each individual phase and grain boundaries. 
Nanomechanical properties were extracted in accordance with the 
Oliver-Pharr method [37]. 

Data analysis was carried out with Python (EBSD phases classifica-
tion, thresholding to isolate grain boundaries map) and R language 
(refine the phase maps of EBSD and nanoindentation at grain level and 
perform the correlation of maps by matching each individual coordinate 
of the phase maps, and perform data imputation). R Studio is an open- 
source software and provides a coherent, flexible system for data anal-
ysis. R language was used to implement every algorithm involved in 
clustering and classification tasks. All computations were performed 
using 64-bit Windows 10 Home (Intel ® Core™ i5-8250U CPU @ 1.60 
GHz, 1801Mhz 4 Cores, 8 Logical Processors and 24.00 GB RAM). The 
complete R code and part of data used/generated in this study are 
available in the GitHub. The EBSD-nanoindentation method allows to 
assign for each phase/microstructure the relative features. This method 
can be used (partially as a module, or as a whole) for all metals and 
alloys. This type of study has a considerable importance on an industrial 
level. Indeed, nanoindentation is a fast (sample preparation and mea-
surement), cheap and precise tool for nanostructure characterization. 
The creation of an artificial intelligence model that can accept as input 

the nanoindentation raw data and provide as an output the phases and 
microstructures assignments provides an enormous advantage in engi-
neering studies. The creation of an artificial intelligence model which 
can accept as input the nanoindentation raw data and provide as an 
output the phases and microstructures assignments represents an enor-
mous advantage in engineering studies, due to the fact that it can be used 
to reconstruct and mine information from images in literature and other 
sources. 

3. Results and discussion 

3.1. EBSD analysis - phases and microstructures recognition 

EBSD analysis was performed to study the samples’ anisotropy and 
phases/microstructures. The outcomes of this analysis were then used to 
inform the nanoindentation experiments. Before the EBSD analysis, 
some milling marks were made using a Focused Ion Beam (FIB) micro-
scope equipped with a Gallium source. These marks were used to 
delimitate the ROI area to facilitate sample orientation for both nano-
indentation and EBSD maps (Fig. 1a). 

To recognize phases and microstructures, a method reproduced by 
literature is proposed [10]. This approach utilizes Band Contrast (BC) 
and Kernel Average Misorientation (KAM) as descriptors to identify the 
threshold values for recognizing P/M and obtain pixel-level P/M label-
ling. The protocol is broken down into eight sequential steps:  

1. Map clean up: Before data processing, it is necessary to eliminate the 
points close to FIB marks and correct any electronic drifts (if any). 
This step improves the precision of the P/M recognition process.  

2. All pixels labeled as austenite and cementite are locked as EBSD can 
reliably recognize these structures. Only BCC phases are selected for 
further classification. In this study, no austenite was detected, and 
the amount of carbides was negligible.  

3. Select all BCC labeled pixels.  
4. Count the number of pixels for each value of BC and calculate the 

area fraction.  
5. Use Gaussian curves to find the distribution of martensite and ferrite- 

bainite (F-B) mixture, by identifying the intercept point at the x co-
ordinate where the Gaussian curves intersect (Fig. 1b) [10].  

6. Count the amount of F-B pixel for each value of KAM and calculate 
area fraction.  

7. Calculate the cumulative distribution of KAM values within the 
measurement area, using a step of 0.0075◦ to achieve good curve 
resolution (Fig. 1c) [9].  

8. Plot the phases/microstructures map (Fig. 1d). 

Fig. 2. IPF grain anisotropy maps across the X-axis direction; (left) original image, (middle) k-means++ clustered image with 50 color shades. The scale is reported 
in μm scale. (right) Memo of the IPF maps. 
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The statistical fitting approach used Gaussian mixture models. This 
process was optimized by the Expectation-Maximization algorithm to 
classify the data corresponding to martensite. Following this, the rest of 
data were subsequently treated with the described statistical fitting 
procedure and optimiser. This enabled the separation of bainite data 
from the ferrite data using the KAM parameter. 

3.2. EBSD analysis and Inverse Polar Figure maps – Grain properties 
detection (anisotropy, size, location) 

Inverse Polar Figures (IPF) were used to study the orientation of 
crystallographic planes in the samples (See Fig. 2 left). In the IPF image, 
each individual grain is characterized by two distinct features: a unique 
color and its boundaries, which are indicated by the x and y coordinates. 
This information is essential for researchers conducting EBSD analysis, 
especially for subsequent phase extraction based on EBSD mapping 
parameters. This step is often overlooked in a significant number of 
investigations [38,39], where it’s expected that each grain should 
correspond to only one phase. IPF maps are handy to study anisotropy 
within a sample. 

Thus, the first step in the analysis was to perform image clustering on 
the IPF image. The number of clusters needed was chosen to ensure that 
the same level of detail in the map is retained. This clustering was 
performed using the k-means algorithm. This is an efficient strategy to 
treat colors since the original image contained several thousands of color 
shades. By applying the k-means algorithm, the color shades were 
reduced to 50, yet retaining the same level of information (See Fig. 2 
right). 

EBSD commercial software does not enable exporting a data frame 
containing information about crystallographic planes from IPF raw data; 
labels of the planes are missing, while only data referring to the step of 
the measurement for each 250 nm by x- and y-axis is reported rather 

than providing the information for each pixel. More specifically, the 
software generates a dataset with the colors in RGB values (Red, Green, 
Blue) indicating the anisotropy. To interpret this data, an algorithm was 
developed which takes the color shades from the k-means clustered 
image as input. The colors Euclidean distance was used to compare the 
50 color shades with the 6 main colors of a memo in order to annotate 
the crystallographic planes. The selection of only 6 colors in the memo 
was based on the available crystallographic planes, (001), (101), and 
(111), as well as their combinations, which is meaningful. Additionally, 
the white color was included to represent the mixture of all colors (and 
planes), and the black color was used to indicate the lack of signal in the 
specific location rather than to denote the grain boundaries. 

The results illustrated in Fig. 3 were used as a basis for the subse-
quent steps of the methodology, which aims to identify the coordinates 
of each grain. After clustering the color values, the k-means++ method 
was applied to cluster the x and y coordinates. This approach was chosen 
because, in addition to color, the coordinates are the second feature 
distinguishing grains in IPF maps. The process led to creating over 3000 
clusters, corresponding to the six crystallographic planes. The goal was 
to allocate as many clusters as possible, following a data-driven 
grouping of values. This approach helped determine the necessary 
number of clusters in an organic manner. On the contrary, k-means++

would not allocate any data to clusters that were not necessary or 
naturally occurring. In addition, a filter was added to automatically 
remove any clusters with fewer than five datapoint observations. In 
Fig. 4 some indicative grains are presented, showcasing the efficiency of 
grain detection with the proposed methodology. 

3.3. Grain boundaries segmentation 

The following step involved leveraging the IPF crystallographic 
plane map, its band contrast, and the transition between the individual 

Fig. 3. Crystallographic plane clustering using Euclidean distance method. Each relevant anisotropic orientation has been isolated and corresponds to: (a) (001) 
plane, (b) (111) plane, (c) (101) plane, (d) (001)U(111) plane, (e) (101)U(111) plane, (f) (001)U(101) plane. 
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Fig. 4. Representative grains detected by k-means++.  

Fig. 5. Segmented grain boundaries; (left) Original image, (right) k-means++ clustered image.  
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grains to detect the image edges. Thus, the initial IPF image was con-
verted to the greyscale image shown below (Fig. 5, left) to recognize the 
grain boundaries by band contrast overlapping, the adopted method for 
this analysis. It is evident that the two-colored images properly show the 
position of the grains’ edges. However, further processing with k-means 
color clustering (Fig. 5, right) was required to facilitate interpreting the 
image information. This was due to the original image containing 
thousands of color shades within the white, grey, and black spectrum. 

3.4. Image clustering with k-means++ for grain merging 

Fig. 6 (left) shows the phase distribution pixel-wise. Light blue rep-
resents the ferrite phase, deep blue indicates the bainite phase, and red 
corresponds to martensite. While similar methodologies for allocating 
pixels/scatters to specific phases are widely reported in literature, a 
common oversight is the assumption that each grain in the IPF map 
correlates to a single, distinct phase, which has not always been the case 
[38,39]. To address this, the next step involves using precise grain 

coordinates to establish a consensus algorithm. The algorithm will 
compare the distinct pixels within the grain boundaries against the 
population of colors (and, consequently, phase annotations). This pro-
cess allows for determining the correct phase of each grain through 
consensus. 

For this procedure, the phase map image from the EBSD analysis was 
clustered to reduce the number of color shades to only three. This 
reduction facilitates data interpretation and allows for a more accurate 
revision of the phases/microstructures (P/M) annotations within each 
grain, as indicated by IPF maps. 

The next step in the analysis involved correlating the phase map 
image with the grain boundaries image. This was achieved by merging 
the two datasets and aligning the exact (x,y) coordinate pairs within 
each. However, this approach revealed that a significant amount of in-
formation was discarded due to mismatches in coordinates. This 
discrepancy often arises since it is not always possible to have the same 
coordinates when reading different image datasets (the IPF map and the 
generated EBSD phase map may have different coordinates in principle). 

Fig. 6. EBSD generated phase map (left), and after reconstruction using image correlation with grain locations and the consensus algorithm P/M classifica-
tion (right). 

Fig. 7. Phases/microstructures and grain boundaries combined maps; (left) keeping the exact coordinates (x,y) in common between ebsd phase map and ipf map, 
(right) keeping the coordinates (x,y) in common within the ebsd phase map and ipf map and merging the rest of the x,y coordinates of ebsd phase map that were left 
out of the dataset during matching of the coordinates. 
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For instance, a notable factor that can contribute to this issue is the 
electron image drift during EBSD measurement. 

From the optical inspection of the combined maps in Fig. 7, it is 
evident that the problem of missing data could be addressed by merging 
the coordinates of EBSD phase map that do not match with the edges 
detected in the IPF map (right image). However, this approach contains 
inaccuracies, as boundaries might be just 100 nm away from matching 
the exact coordinates that would classify a datapoint as a grain boundary 
instead of a P/M. Another option is to incorporate a reduced dataset with 
exact coordinate matches across all techniques, specifically referring to 
nanoindentation data, which is the next step of the methodology. 
However, this step carries the risk of information loss. 

3.5. Nanoindentation 

Nanoindentation was performed in the same ROI (indicated by FIB 

marks) as the EBSD mapping, immediately following the diffraction 
scanning. The nanoindentation maps, which illustrate the CSM of the 
TRIP within the range of 0–35 nm, report the nanomechanical properties 
at the 30 nm depth (Fig. 8). In total, over 25,000 data points were 
produced, providing statistical significance to the mechanical perfor-
mance analysis of the investigated phases detected by nanoindentation. 
Below are the maps of indentation hardness, indentation modulus, and 
the distribution of applied load are presented. 

To create the phase map, individual parameters were utilized to 
perform data clustering. This was achieved by applying the Gaussian 
Mixture Model (GMM) clustering to the displacement-controlled mea-
surement data using the indentation modulus, hardness, and applied 
load as input parameters. This approach, illustrated in Fig. 8c helps to 
minize the bias due to the varying magnitudes of these descriptors. 
Three descriptors were adopted for cluster formation since it provides a 
more objective basis for classifying the formed phases than relying on a 

Fig. 8. Nanoindentation mapping: a) Hardness plot at 30 nm reporting depth; b) Indentation modulus at 30 nm reporting depth; c) Phase map using P, H, Er data and 
Gaussian Mixture Models with Expectation Maximization algorithm to optimize the fitting, where phase 3 corresponds to martensite, 2 corresponds to bainite, and 1 
corresponds to ferrite; d) Load distribution map. 
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single parameter. 

3.6. P/M validation through EBSD-calibrated nanoindentation 

The nanomechanical phase map underwent preliminary treatment 
before correlation, being transformed in a contour plot to enhance the 
mapping with the knowledge of the grains coordinates. This plot was 
color clustered to reduce the color shades to three colors (Fig. 9a). The 
data treatment followed a similar consensus-based mechanism as used 
for the EBSD phase map, ensuring a more representative and realistic 
outcome. 

Then, like the proposed methodology applied to EBSD image, the 
exact locations of the grain boundaries were correlated with the nano-
indentation data. The nanoindentation data points that were left out in 
Fig. 9b were subsequently reintegrated in the dataframe, as shown in 
Fig. 9c. These data points were then cross-referenced with the structural 
phases of the EBSD map in Fig. 9d. 

However, it should be emphasized that even though this methodol-
ogy exploits the real data that are merged through ex-situ character-
ization at the exact same ROI, it introduces a significant level of 
information loss. To retain the added value of such correlations, it would 
be more favorable to devise a strategy that allows the utilization of this 
knowledge without losing approximately 90 % of the data during the 
subsequent merging procedures of the proposed methodology steps 
shown in Fig. 9e and Fig. 9f. This approach would also help in avoiding 
fuzzy processing of data. 

By incorporating the phase map shown in Fig. 9e into the mapping 
data of grain boundaries, it becomes evident, as illustrated below, that a 
significant amount of data is missing. This issue becomes even more 
pronounced when performing phase correlation between nano-
mechanical phases and structural phases of EBSD. In the final dataset, 
only about 10% of the total amount of the initial nanoindentation 
dataset population remains, corresponding to the 25,000 coordinates 
that indicate the location of nanoindentation. A similar pattern is 

Fig. 9.. Correlation of nanoindentation and EBSD; (a) Clustered nanoindentation phase map utilizing the contour plot of GMM clustering with three parameters, (b) 
Merged map using nanoindentation map by overlapping EBSD data, (c) merging of refined nanoindentation map by consensus and EBSD IPF map; nanoindentation 
map with common coordinates with GBs, (d) merging of refined nanoindentation map and EBSD IPF map; nanoindentation scatter map with common coordinates 
with GBs and after revising the data of nanoindentation by EBSD phase annotation and grain consensus, (e) combined Nanoindentation and IPF scatter map refined 
by the actual nanoindentation measurement coordinates, and (f) revised nanoindentation scatter map by IPF and EBSD phase maps. 

F. Bruno et al.                                                                                                                                                                                                                                   



Materials & Design 239 (2024) 112774

10

observed when treating nanoindentation data alone and correlating it 
only with the grain boundaries. It should be noted, however, that higher 
image quality of EBSD maps could lead to larger datasets, thus reducing 
the number of missing points when correlating the exact (x,y) coordinate 
pairs. 

3.7. Data imputation strategy to enhance characterization mapping 
correlation 

An alternative pathway is presented below, which involves data 
imputation techniques to address the issue of missing data during 
characterization mapping correlations. Since the EBSD step size in the 
measurement was 0.1745 µm and the nanoindentation inter-indent 
spacing was 0.3 µm, data imputation was performed to provide inter-
polated data for every 0.1 µm in both x and y directions. The chosen 
“Artificial” data imputation method was applied to the EBSD phase map 
image, the IPF grain boundary image, and the nanoindentation phase 
map image datasets. This enabled training a k-NN (k-nearest neighbors) 
regression model for each case. Consequently, it became possible to 
predict the required values of the R, G, and B columns (i.e., their color) 
for the new dataset based on the corresponding eight nearest neighbors 
coordinates (x,y). In the end, the resulting colors were correlated with 
the structural phases, the grain boundaries, and the mechanical phases, 
respectively. 

Below, the outcomes obtained by methodology above, enhanced by 
data imputations, are presented for both the IPF grain boundary map 
and the EBSD phase map. Firstly, Fig. 10b presents the EBSD phase map 

which appears slightly smoother compared to the original map in 
Fig. 10a. This original map also includes information on the matching (x, 
y) pairs of the grain boundaries. Finally, Fig. 10c shows the enhanced 
grain boundaries map after clustering, used for data correlation with the 
EBSD phase map (Fig. 10d). 

The same procedure was applied to the nanoindentation map image 
to extract (x, y) coordinates and color R, G, B values and to enhance the 
(x,y) information of the dataset by varying within the minimum and 
maximum coordinate values by 0.1 µm. It is noticeable that there are 
only a few differences between the original and the imputed image, 
indicating that data imputation also yielded reliable results in the case of 
the mechanical phase mapping (Fig. 10, Fig. 11). A similar observation is 
made after the subsequent clustering to reduce the number of color 
shades appearing to the image. Following this, the consensus algorithm 
was applied to annotate the phase map at grain specific level and make 
the mechanical map more representative of the actual surficial topology 
of the TRIP sample. 

The following steps involved annotating the grain boundaries in the 
nanoindentation mechanical map to correctly identify the data points 
and properties related to the classified phases and grain boundaries. This 
process was essential for removing any bias affecting the statistical 
analysis. A similar analysis was carried out for phase analysis, but based 
on the EBSD structural phase annotation for comparison. All image 
datasets were used to obtain a subset with over 25,000 nanoindentation 
data points. This number was reduced to about 16,000 datapoints when 
focusing on the exact same boundary coordinates as those in the EBSD 
phase map. This reduction occurred because the final EBSD map 

Fig. 10. A) original ebsd phase map with grain annotation, b) enhanced ebsd map by k-nn data imputation method, c) gbs data imputed map, d) enhanced combined 
dataset utilising the imputed data to generate the combined ebsd phase map with gbs. 
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corresponded to a smaller Region of Interest (ROI) than the nano-
indentation data. 

3.8. Extraction of nanomechanical properties statistics for each P/M and 
crystallographic planes 

Upon examining the subsequent treatment steps of the nano-
mechanical phase map, it is evident that the clusters were initially 
formed based on the contrast/difference in nanomechanical properties. 
This methodology, using the Gaussian mixture model (GMM), was 
employed to associate groups of data with structural phases. However, 
the initial phase annotation, based on the nanomechanical properties 
and the GMM model, did not align with the scientific understanding (See 
Table 2-1). This can be explained by considering that each grain is 
characterized by one microstructure, and the response should be eval-
uated at this level. Notably, the martensite properties were initially 

associated with the lowest modulus and highest hardness, which pre-
sents a contradiction. 

As can be pointed out, with the application of the Gaussian Mixture 
Model, the cluster with higher hardness was attributed to martensite. In 
contrast, the softest cluster was associated with ferrite, as referenced in 
various studies [14,15,40,41]. However, it should be noted that this 
cluster also demonstrated the minimum mean value for elastic modulus, 
which contradicts expectations based on existing literature [14]. 

Comparing experimental data with findings in the literature, the 
following observations were made:  

• Bainite: elastic modulus [42] and hardness [7,40,41] values are 
comparable to literature values. In fact, for hardness, literature 
values are close to 6.2–9 GPa[7,40,41]. However, some studies 
report lower values [15,33,43]. 

Fig. 11. Merging of P/M map and nanoindentation raster; a) original nanoindentation map, b) imputed nanoindentation map, c) refined original nanoindentation 
map considering the exact grain locations, d) refined imputed nanoindentation map considering the exact grain locations, e) original nanoindentation map with the 
introduction of grain boundaries, refined by EBSD phase map, f) imputed nanoindentation map with the introduction of grain boundaries, refined by EBSD 
phase map. 
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Table 2 
Phase statistics of nanomechanical properties and grain size.  

1) Nanoindentation map (contour) with annotation of phases by GMM clustering method.  
Phase Mean Er (GPa) Standard deviation H (GPa) Standard deviation Er (GPa) Mean H (GPa) 
Bainite 214 0.91 20.0 8.03 
Ferrite 213 0.88 23.1 6.61 
Martensite 195 3.40 58.3 9.51  

2) Nanoindentation map (contour) with grain correction and nanoindentation phase and coordinate refinement 
by consensus of the observations within the boundaries of each individual grain.  

Phase Mean Er (GPa) Standard deviation Er (GPa) Mean H (GPa) Standard deviation H (GPa) 
Bainite 218 21.7 7.85 1.32 
Ferrite 217 24.9 7.29 1.32 
Martensite 179 66.7 6.90 3.23  

3) Nanoindentation map (contour) with grain correction and nanoindentation phase refinement by consensus of 
the observations within the boundaries of each individual grain and the annotation of the data belonging to 
GBs.  

Phase Mean Er (GPa) Standard deviation Er (GPa) Mean H (GPa) Standard deviation H (GPa) 
Bainite 218 21.7 7.84 1.87 
Ferrite 217 25.0 7.29 1.88 
GBs 218 24.5 7.55 2.01 
Martensite 175 65.6 6.83 3.26  

4) Nanoindentation refined map (scatter plot) with annotation of phases by EBSD and GBs.  
Phase Mean Er (GPa) Standard deviation Er 

(GPa) 
Mean H (GPa) Standard deviation H 

(GPa)  

(continued on next page) 
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• Ferrite: elastic modulus values are close to those which can be found 
in the literature [13,14,40]. In addition, hardness values are similar 
to those reported by Bassini E. et al. [7], although lower values be-
tween 4.7–2 GPa [13–15,33,40,43] are also reported.  

• Martensite: elastic modulus [14,33,44] and hardness [17,45,45] 
values are comparable with those reported in the literature 
[14,29,38 17,41,41]. Other reported lower values are inside the 
error bars [14,15]. 

The wide range of hardness and elastic modulus values in each grain 
can be attributed to multiple factors, such as carbon amount inside the 
grains, dislocations [40] and grain junctions within the same indent area 
[33]. Nevertheless, the fuzzy approaches and lack of validation for 
mechanical testing data used in phase annotation indicate the need for 
an object-oriented approach that minimizes subjective decisions. The 
present study may catalyze further developments in technology, pro-
moting a more conscious integration of artificial intelligence. A deeper 
understanding of both materials science and data science principles is 
essential for this integration. Artificial Intelligence can pave the way for 
accelerating validation schemes and maximize the use of the vast 
amounts of data available, thus enhancing the construction of a 
comprehensive knowledge base for material relationships. 

Upon revising the phases at grain-level, the results showed a negative 
correlation with martensite (See Table 2-2). This outcome might be 
connected to the effect of grain boundary indentations and composite 
mechanical responses observed when indentations are performed close 
to grain edges. A further step involved revising the nanomechanical 
properties by introducing a new class of grain boundary indentation 
regions. Despite these revisions, martensite still exhibited lower 

modulus and hardness values (See Table 2-3). However, when the 
nanomechanical properties were annotated with structural information 
obtained from diffraction, the nanomechanical properties of martensite 
aligned more closely with those of Bainite, Ferrite, and the nano-
mechanical properties recorded at grain boundaries (See Table 2-4). 
These values were similar and fell within the standard deviation of the 
other phases. This result, validated by structural characterization, was 
the gold standard for assessing nanomechanical phase annotations. 

Despite these efforts, the properties of martensite still do not show a 
clear distinction from other P/Ms properties in a data-driven way. 
Consequently, the EBSD phase annotation approach is considered more 
credible (See Table 2-5). This is because the structural phases and their 
properties are closer to the expected theoretical outcomes, with 
Martensite, Bainite and Ferrite having very similar properties. This 
similarity in properties can be attributed to the heat treatment, which 
affects the grain size and, consequently, their relative equivalent circular 
diameter. These values exhibit very close proximity among all phases. 
The table above presents the extracted properties at each stage of data 
exploitation. 

Regarding grain statistics corresponding to the nanomechanical 
properties per crystallographic plane, it appears that the anisotropy of 
crystallographic planes does not significantly affect the nanomechanical 
response profile. 

Regarding martensite, it has a body-centered tetragonal (BCT) lat-
tice, which is produced by the Bain transformation of FCC lattices 
(austenite) [46]. To address this complexity, it was assumed, as a first 
approximation, that the crystallographic orientation of the BCT lattice is 
similar to that of BCC ones. This strategy is supported by literature [47]. 
In the case of bainite, it was assumed to be BCC, considering its ferritic 

Table 2 (continued ) 

Bainite 220 20.7 7.69 1.32 
Ferrite 218 23.8 7.59 1.38 
GBs 220 19.6 7.67 1.30 
Martensite 219 21.5 7.64 1.31 
Phase Mean diameter 

(μm) 
Standard deviation 
diameter (μm) 

Mean length 
(μm) 

Standard deviation 
length (μm) 

Bainite 1.90 0.485 3.36 1.87 
Ferrite 1.86 0.495 3.24 1.90 
Martensite 1.86 0.470 3.17 1.76  

5) Anisotropic plane statistics of nanoindentation map with annotation of phases by EBSD and addition of GBs.  
Crystallographic 

plane 
Mean Er 

(GPa) 
Standard deviation Er 

(GPa) 
Mean H 
(GPa) 

Standard deviation H 
(GPa) 

(001) 220 19.5 7.64 1.17 
(001)U(101) 219 22.8 7.55 1.32 
(001)U(111) 219 21.9 7.66 1.38 
(101) 218 22.6 7.64 1.31 
(101)U(111) 218 18.8 7.60 1.25 
(111) 220 22.7 7.73 1.46 
No plane 220 19.6 7.67 1.30  
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Fig. 12. (a) Plot of mean hardness (in blue), mean modulus (in orange), and the corresponding mean diameter (in green) for each phase and anisotropic plane for the 
final revised dataset by nanoindentation, grains, and EBSD phases. Hardness (in GPa/10) and modulus (in GPa/100) have been scaled for enhanced visualization. The 
diameter is presented in μm units. Plot of (b) hardness, and (c) indentation modulus vs the corresponding diameter of each grain for each phase detected. The 
colorscale corresponds to the anisotropic planes. The data presented correspond to the final revised dataset by nanoindentation, grains, and EBSD phases. Obser-
vations correspond to each identified grain. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

F. Bruno et al.                                                                                                                                                                                                                                   



Materials & Design 239 (2024) 112774

15

matrix. 
Moreover, the mean indentation modulus and hardness were found 

to be independent of the crystals’ orientation. Overall, it has been 
observed that the grain boundaries are associated with similar or higher 
hardness compared to the grain phases or planes [48]. The statistics 
derived from grain anisotropy indicate that anisotropy can affect the 
overall mechanical response. This observation implies that the initial 
mechanical phase mapping by nanoindentation may lead to contradic-
tory conclusions when the microstructural, mechanical response is 
governed by anisotropy. 

However, this does not seem to be the case in the specific class of 
steels being studied. The countertrend observed in elastic modulus 
values can be explained by a high percentage of “purely” ferritic grains 
(i.e., of polygonal origin). Therefore, the indented ferrite is often found 
within granular bainite, which comprises blocky retained austenite/ 
martensite among irregular ferrite [40]. These features also affect the 
anisotropic properties, explaining the similar values of elastic modulus 
observed. 

Finally, in Fig. 12b and Fig. 12c it can be observed that there is no 
correlation between grain size and mechanical properties, which could 
be since the indent area is smaller than the grain size. This behavior 
contrasts with micro- and macro-indentation, wherein multiple grains 
are intercepted in the indent area and the mechanical properties follow 
the Hall-Petch equation [49,50]. 

4. Conclusions 

Our approach ensures each pixel group represents one phase and one 
grain with consistent boundaries, effectively avoiding contradictory 
classifications of data coordinates, such as a pixel classified as bainite 
adjacent to one classified as martensite, while both belong to the same 
grain. According to the consensus, each grain is represented by a single, 
specific phase. 

Furthermore, this methodology allows for the resolution of some 
ambiguous procedures that have previously been used to correlate 
nanoindentation hardness or modulus maps with EBSD data. This pro-
posed methodology is expected to significantly impact and apply to 
other multiphase steels with similar microstructures, specifically noting 
that the mechanical properties alone may not be sufficient to distinguish 
appropriately the structural phases. Also, in this study, the presented 
properties are isolated from the grain boundary responses (data are 
excluded when presenting individual phases’ average properties). In 
contrast, the occurrence of the Hall-Petch phenomenon was studied, but 
not evidenced, which indicated that the presented properties were free 
of the effects of grain boundaries indentation in such large statistical 
sample corresponding to the investigated ROI. Furthermore, when the 
same characterization techniques are applied to dual phase steels, other 
classes of TRIP steels, or any other type of steel, the versatility of this 
approach becomes evident. 

The modular approach reported in this study enables various data 
elaboration processes, such as classifying an EBSD map, correlating 
different characterization maps, augmenting the datasets to ensure one- 
to-one correlations without information loss with the synthetic data 
method, performing optimized clustering of color images/maps, and 
extracting patterns for materials P/M structure, properties, and size. 
Additionally, validating nanoindentation phase analysis data against 
EBSD phase maps, combined with data science techniques, can provide 
the capacity to establish and reuse a curated dataset. This approach can 
be extended by employing transfer learning with a trained machine 
learning to facilitate the analysis of TRIP with similar composition. 
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