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Abstract
The rapid increase in urban populations and the growing availability of detailed,
geo-referenced, large-scale data have led to the emergence of a new field known
as the science of cities. This multidisciplinary field explores the complex phenom-
ena arising from the structure and dynamics of urban environments to uncover the
driving forces behind their evolution, growth, and broader dynamics. While current
research typically offers a normative perspective, focusing on understanding these
urban dynamics, the inclusion of cities and human settlements as key components
of the 2015 Sustainable Development Goals (SDG 11) emphasises the need to inte-
grate normative analyses with policy-oriented research. This integration is crucial
for providing actionable insights and tools to enhance policymaking. In line with
this approach, this dissertation focuses on developing tools to promote sustainable
and healthy individual behaviours and provides insights for designing urban inter-
ventions that encourage these behaviours. The dissertation presents three distinct
research contributions.

The first contribution investigates factors contributing to gender-specific barriers to
cycling in Western cities using large-scale data from the sport-tracking application
Strava. Previous academic research on gender differences in cycling has primarily
consisted in stated-preferences studies relying on direct data collection, such as sur-
veys. While these methods provide detailed insights into cycling preferences, their
generalisability is limited by small sample sizes and geographical scope. By leverag-
ing automatically collected data from a widely adopted sport-tracking application,
this study aims to validate and expand upon the findings of earlier studies with
an unprecedentedly large dataset. Through both macroscopic (cross-city) and mi-
croscopic (within-city) analyses, this research identifies a significant correlation be-
tween female cycling rates and the availability of safe cycling environments. These
findings shed light on potential strategies to improve urban cycling conditions for
women, thereby promoting more sustainable urban transport for all.

Aligning with the recommendations of the UN SDG 11.7, which calls for cities to
provide access to safe, inclusive, and accessible greenspaces for all their residents,
the second contribution is a computational framework to measure the accessibility
of public greenspaces in urban areas. Due to computational constraints, evaluations
of green exposure and accessibility are typically limited to a single metric. By con-
trast, our framework evaluates three families of green accessibility indicators encom-
passing metrics proposed in the academic literature as well as in the public policy
domain. Through an analysis of population and area rankings generated by differ-
ent indicators across more than 1,000 cities worldwide, I question the reliability of
single-metric assessments in capturing the complexity of green accessibility within
urban systems. The findings suggest that a single indicator may inadequately differ-
entiate across areas or subgroups of the population, even when focusing on one form
of green accessibility at a time. From a policy viewpoint, this indicates the need to
switch to a multidimensional framework capable of organically evaluating a range
of indicators at once. To enhance the usability of the computational framework, the
associated interactive web interface, ATGreen, provides a range of functionalities
designed for both the general public and policymakers specifically.

The third contribution continues the broader discussion on enhancing green acces-
sibility but introduces a shift in focus from the structural aspects of green accessi-
bility to strategies aimed at influencing individual behaviour to enhance exposure
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to nature. To this scope, I introduce a novel routing system called ATGreenGO, de-
signed to recommend nature-enriching walking routes with minimal detours com-
pared to the shortest path, thus compatible with integration within daily routines.
The validation of the system demonstrates that it balances the two dimensions —in-
creased exposure to natural environments and overall duration of the suggested
route—providing a significant increase in exposure while minimising the additional
duration of the route.

Overall, the contributions presented in this dissertation combine advanced statistical
and data analysis with digital tool development to enable a more comprehensive
approach to the understanding and managing of urban phenomena and to inform
the design of urban interventions to achieve the objectives outlined in the SDG 11.
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Chapter 1

Introduction

1.1 Motivations and background

The 21st century is witnessing an unprecedented wave of urbanisation. Currently,
over half of the global population resides in urban areas, and projections of the
United Nations (UN) indicate that this figure could rise to 70% within the next
25 years [7]. This rapid urban expansion has given rise to a new field of study
known as the science of cities. This field encompasses a multidisciplinary approach
to understanding the complex systems that define urban environments [8]. It inte-
grates insights from urban planning, sociology, economics, environmental science,
and data analytics to explore how cities grow, evolve, and function. The science of
cities not only aims to understand historical transformations that have contributed
to the definition of current cities but also seeks to employ advanced data analyt-
ics and modelling tools to optimise policy interventions to address the challenges
associated with increasing urbanisation.

Contrary to the traditional view that urbanisation is inherently detrimental, there is
growing recognition of its potential benefits [9]. Urban areas, when designed and
managed effectively, can induce more sustainable models of living. Dense urban
environments can reduce the per capita use of resources, lower energy consump-
tion, and minimise the overall environmental footprint. For example, urbanisation
can help limit soil erosion and preserve natural habitats by concentrating human
activity within defined areas, thus sparing more land for nature [10]. Dense urban
environments are also essential for the economic feasibility of public transportation
systems [11]. Moreover, serving as hubs for innovation and efficiency, cities can
drive the development and adoption of sustainable technologies and practices [12].

Despite the potential advantages of urbanisation, many cities struggle to combine
economic productivity, social inclusion, and environmental sustainability. Research
associated with the UN Sustainable Development Goals (SDGs) [13] indicates that
while cities host just over half of the global population, they account for 60% to
80% of energy consumption and at least 70% of carbon emissions [14]. Addition-
ally, cities often fail to provide social equality and sufficient living standards, with
approximately 828 million urban residents (almost 21% of the 4.2 billion urban resi-
dents) estimated to live in slums, as of 2018 [7]. The acceleration of urbanisation in
recent years has also been accompanied by a change in its form. While only 10 cities
worldwide had more than 10 million inhabitants (defining a mega-city) in 1990, the
number increased to 28 in 2014 and peaked at 34 in 2023. As most future urban ex-
pansion is projected to take place in developing countries, estimates indicate that 9
out of 10 future mega-cities will be in these regions [7].
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Recognising the importance of shaping urbanisation to better address global chal-
lenges, the UN dedicated SDG 11 to the definition of objectives for the sustainable
development of cities and urban communities, emphasising the need for cities to
be inclusive, safe, resilient, and sustainable. SDG 11 outlines specific objectives in
several key areas: housing provision, provision of basic services, access to trans-
portation systems, environmental quality (including air quality and access to green
spaces), and improving the resilience of cities to natural disasters. The integration of
advanced data analytics and multidisciplinary approaches is crucial for monitoring
progress towards the objectives set by SDG 11 and to inform future policy design.
By leveraging the insights and tools provided by the science of cities, urban plan-
ners and policymakers can develop strategies that promote sustainable and liveable
urban environments.

1.2 Aims and contributions

This dissertation presents three distinct research contributions within the domain of
sustainable and liveable cities. The unifying element among these contributions is
their alignment with the objectives and goals of the UN SDG 11, which focuses on
making cities inclusive, safe, resilient, and sustainable. Collectively, this research
aims to enhance our understanding of urban phenomena linked to this SDG while
providing practical tools to advance progress towards its objectives.

The first contribution, presented in Chapter 2, is an analytical study that deepens
our understanding of the determinants of gender inequalities in cycling. Cycling
is widely recognised as a crucial component of sustainable urban mobility systems.
However, cycling uptake globally remains below desired levels, with women ex-
hibiting particularly low cycling rates, despite comprising approximately half of the
urban population (see Section 2.2). Despite a growing body of research on gender
differences in urban mobility [15, 16], the determinants of the so-called gender cy-
cling gap remain insufficiently understood. Most of the existing research consists of
stated preferences studies, relying on direct data collection, which are often limited
in sample size and geographical scope (see Section 2.3). This study addresses this
gap by leveraging large-scale data from the sport-tracking application Strava. By
studying the behaviour emerging by aggregated online logs of activities by millions
of cyclists, this research aims to complement, expand, and validate existing studies
on the determinants of the gender cycling gap, thereby contributing to the design
of more inclusive transportation systems. The chapter is based on the research arti-
cle Revealing the determinants of gender inequality in urban cycling with large-scale data,
published in EPJ Data Science [17].

In line with the goals of UN SDG 11.7, which recommends the provision of universal
access to safe, inclusive, and accessible green and public spaces, particularly for women, chil-
dren, older persons, and persons with disabilities [13], the second and third contributions
focus on the development of tools to enhance green accessibility and exposure to na-
ture in urban environments. Both contributions consist of a theoretical component
and the development of a web-based interactive resource, and are discussed in more
details in what follows.

The second contribution, presented in Chapter 3, directly engages with the ongoing
debate on approaches and methods to measure green accessibility in urban envi-
ronments. Recent research has concentrated on developing high-resolution spatial
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indicators of green accessibility (see Section 3.3). Due to the established links be-
tween exposure to green spaces and public health, these indicators are typically em-
ployed for health impact assessments but more recently they have also been used to
inform and optimise policy interventions aimed at enhancing green space accessi-
bility. More broadly, this research effort is part of a larger shift in the urban planning
paradigm towards data-driven policy design processes. In this context, develop-
ing spatially resolved indicators, supported by advancements in high-resolution ge-
ographical data and software, is seen as crucial for defining benchmarks to track
progress towards specific targets and informing the design of new structural inter-
ventions, in line with the principle what gets measured, gets done [18]. Despite grow-
ing interest from both academic and policy communities, there is still no established
standard for measuring green accessibility from a structural perspective, that is by
evaluating the spatial relationship between the distribution of urban residents and
the availability of urban green infrastructure. The classes of spatial indicators used,
as well as the data sources employed, vary significantly based on the application
(see again Section 3.3). Here, I contribute to this debate by proposing a computa-
tional approach that accommodates the measurement of several classes of spatial
indicators of green accessibility within a unified framework. This framework is then
utilised to examine the degree of interchangeability among these indicators and as-
sess the impact of using one indicator over another within a policy design process.
The proposed computational approach is made available to policymakers and the
public through the development of a novel web-based interactive resource, currently
deployed for over 1,000 cities worldwide. This tool illustrates the necessity of a mul-
tidimensional approach to green accessibility and includes functionalities designed
to facilitate its adoption in policy design processes. The chapter is based on the re-
search article On the need for a multi-dimensional framework to measure accessibility to
urban green, published in NPJ Urban Sustainability [19]. The associated web-based
interactive tool is available at ATGreen.

The third contribution, presented in Chapter 4, shifts the focus from the structural
element of green accessibility to the development of tools that enhance the exposure
of urban residents to nature by influencing their behaviour. To this end, I propose a
novel routing engine (ATGreenGO) that recommends nature-enriching routes with
minimal detours compared to the shortest path, thus compatible with the daily rou-
tines of potential users. The use of routing engines has increased dramatically in
recent decades, driven by the widespread availability of internet access on mobile
devices. While routing engines can offer a variety of functionalities (see Section 4.3),
their primary purpose is to compute the optimal routes between two points. This
computation can be customised based on several parameters, including the mode
of transport (walking, cycling, driving, public transport, or multimodal options), ar-
rival and departure times, and more. While the most common engine defines the
optimality of the route based on the time required to complete the transit, there
has been growing interest in designing algorithms that recommend urban routes
based on alternative definitions of optimality. Recent examples include the per-
ceived pleasantness of the route [20], its popularity [21], or the air quality [22]. The
theoretical contributions of ATGreenGO are twofold: first, the design of a nature-
enriching algorithm capable of characterising the street network of a city with fea-
tures related to the presence of nearby natural elements; second, the definition of a
routing optimisation problem, whose solution maximises green exposure while bal-
ancing the detour from the shortest route. This tool is integrated into an interactive
application currently deployed for a specific set of cities, offering a practical tool for

http://atgreen.hpc4ai.unito.it/
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planning nature-rich routes to users in these areas. The chapter is based on research
conducted as part of the European Horizon 2020 project GoGreenRoutes (Grant ID:
869764). The associated web interface is available at ATGreenGO.

1.3 Research strategy and tools

The research strategy of this dissertation is grounded in a systematic approach aimed
at investigating urban phenomena related to the concept of liveable and sustain-
able cities. This approach leverages large-scale datasets, software development, and
quantitative analytical techniques to enhance our understanding of various aspects
of urban dynamics, particularly those linked to the objectives of the SDG 11. Addi-
tionally, it introduces new tools to optimise urban planning processes. While each
chapter constitutes an independent research study, collectively, the three contribu-
tions provide a cohesive quantitative examination of urban dynamics in line with
SDG 11, advancing knowledge on how urban planning and policy can improve the
sustainability and liveability of cities.

Systematic literature review For each contribution, the research activity commenced
with a systematic literature review, which was essential for the identification, the
evaluation, and the synthesising of relevant knowledge gaps. The initial phase of
the literature review involved key-word searches in two major academic databases,
Google Scholar and JSTOR, to gather a broad spectrum of relevant literature. This
initial search was further expanded by exploring cross-references from the selected
research articles to ensure a comprehensive coverage of the topic.

In Chapter 2, which examines the gender cycling gap, evidence was gathered not
only from academic sources but also from reports by national and local authorities,
technical reports on transportation survey data released by statistical agencies, and
reports from other relevant stakeholders, such as private or public companies man-
aging bike-sharing services. This multi-source approach provided a robust founda-
tion for understanding the gender disparities in cycling adoption.

For Chapter 3, due to the policy relevance of the research topic on urban green space
accessibility, the literature review was extended to include non-academic resources.
These included policy briefs from UN and European Union (EU) agencies, as well
as reports from national and local authorities, particularly from European countries.
This broader scope ensured that the research was informed by both academic in-
sights and practical policy considerations.

Quantitative analysis and software development The quantitative analyses pre-
sented in Chapters 2 through 4 employ a combination of advanced geospatial meth-
ods for data processing and advanced statistical and econometric techniques for data
analysis.

All data processing and analysis were conducted using Python. The use of Python
allowed for the integration of various libraries and tools, such as Pandas [23] for
data manipulation, GeoPandas [24] for geospatial data processing, Osmium and
OSMnx [25] for processing of georeferenced data from OpenStreetMaps (OSM) [3],
and Statsmodels [26] and Scikit-Learn [27] for econometric and statistical analy-
sis. Details on the exact data processing and analysis is provided in the Materials
and Methods of each contribution. To ensure transparency and reproducibility, the

https://gogreenroutes.eu/
https://atgreengo.hpc4ai.unito.it/
https://scholar.google.com/
https://www.jstor.org/
https://pandas.pydata.org/
https://geopandas.org/en/stable/
https://pypi.org/project/osmium/
https://osmnx.readthedocs.io/en/stable/
https://www.statsmodels.org/stable/index.html
https://scikit-learn.org/stable/
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code developed for each contribution has been made publicly available in associ-
ated GitHub repositories. In Chapter 4, which introduces a novel routing engine
designed to enhance exposure to nature, the system architecture is built using Java.
The use of a Java-based architecture is common for routing engine due to its robust-
ness and scalability.

Web interface development Two web interfaces were developed as part of this
research, each designed to facilitate user interaction with the analytical tools and
data. The front-end of these interfaces was developed using the ReactJS framework,
a popular JavaScript library known for its efficiency and flexibility in building user
interfaces. The back-end was managed using a PostGIS database, an extension of the
PostgreSQL database system that supports geographic objects, enabling the efficient
handling of spatial data.

1.4 Thesis outline

The dissertation is organised into five chapters. The first and last chapters serve as
the Introduction and Conclusions, respectively, while Chapters 2 through 4 present
the three analytical chapters detailing the research conducted during the doctoral
programme.

The Introduction (this chapter) outlines the motivations and broader context of the
research, along with the detailed aims and contributions of each study included in
the dissertation. It also discusses the overall research strategy and tools and presents
the structure of the dissertation.

The three analytical chapters follow a similar structure, beginning with an overview
of the study in layman’s terms, followed by the scope of the research, a discussion
of the related literature, an overview of the main results, and a discussion of these
findings. A detailed outline of each analytical chapter is presented below.

Chapter 2 focuses on the determinants of the so-called gender cycling gap. The chap-
ter begins by outlining the scope of the research and discussing the existing evidence
on the positive societal and individual impacts of cycling, as well as the presence of a
persistent gender cycling gap. It continues with an overview of related work, specif-
ically addressing the results and limitations of studies evaluating the determinants
of gender differences in cycling behaviours, and highlighting the recent shift in re-
search towards the use of automatically collected data for studies on active urban
mobility. The chapter then presents the materials and methods of the study, along
with a comprehensive overview of the characteristics of the data from the sport-
tracking application Strava. The results of the study are presented in two separate
sections, each addressing distinct research questions with data organised at different
geographical levels. The chapter concludes with a discussion of the overall findings
from these investigations.

Chapter 3 presents the research activity focused on structural measures of green accessi-
bility in urban environments. The first section introduces the motivations behind the
study by summarising previous theoretical and empirical contributions on the role
of nature in improving the health outcomes of urban residents. The second section
discusses related work, detailing in particular the existing approaches to the mea-
surement of green accessibility and their adoption in the context of health impact
assessments and urban planning. After presenting the materials and methods of the



6 Chapter 1. Introduction

study, the chapter provides a description of the proposed computational framework.
The results of a statistical evaluation of the interchangeability of different indicators
for policy design conducted using the framework are then provided, along with a
description of the developed web interface. The chapter concludes with a discussion
of the implications of the study and its limitations.

Chapter 4 introduces the routing engine ATGreenGO. The chapter begins with a dis-
cussion of the scope of the tool, as well as an overview of related research on the
development of routing engines. A comprehensive description of the materials and
methods of the study follows, including the approach for characterising the street
networks of each city in terms of exposure to natural environments that can be ex-
perienced by walking on each street. The routing system is then introduced, and its
performance is evaluated. The chapter concludes with a discussion of the character-
istics of the suggested routes, the impact of the tool on residents of cities currently
available in the system, and future research directions to test the system with exper-
imental data on user preferences.

The concluding chapter (Chapter 5) summarises the main findings of the research
conducted during the doctoral programme, their implications for theoretical anal-
yses and policy design, and provides broader perspectives on the impact of these
research activities. The limitations and the future outlook of research aimed at inte-
grating large-scale data analytics in urban planning are the discussed. The disser-
tation concludes with some final thoughts on the importance of a multidisciplinary
perspective to tackle urban challenges.
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Chapter 2

Investigating the determinants of
the gender cycling gap using
large-scale automatically-collected
data

2.1 Overview of the chapter

This chapter is based on the research article titled Revealing the determinants of gender
inequality in urban cycling with large-scale data, published in EPJ Data Science by A.
Battiston, L. Napoli, P. Bajardi, A. Panisson, A. Perotti, M. Szell, and R. Schifanella
[17].

The study delves into gender disparities in urban cycling and explores how these
inequalities relate to urban features, particularly focusing on safety-enhancing el-
ements such as the presence of cycleways and low-speed-limit zones. Drawing
on data from the sport-tracking application Strava, the analysis encompasses over
60 cities across four geographical regions: Italy, Benelux (Belgium, Luxembourg,
and the Netherlands), the United Kingdom, and the United States. This approach,
leveraging automatically collected data, represents a significant departure from pre-
vious studies that have typically relied on direct collection methods, like national
transportation surveys or ad-hoc direct questionnaires. By utilising this novel data
source, the study aims to complement, expand, and validate existing research, thus
contributing to a deeper understanding of strategies for promoting non-motorised
sustainable transportation, in line with the recommendations of the UN SDG 11.

The remainder of the chapter is structured into seven sections. Section 2.2 outlines
the scope of the study, its motivations and its contributions to both academic re-
search and policy-making. Section 2.3 reviews the related academic literature on
both gender preferences in cycling and the use of large-scale automatically collected
data for urban cycling research. Section 2.4 describes the materials and methods of
the study, providing an overview of both the data sources employed for the analysis
and the analytical and statistical techniques. Section 2.5 provide a thorough descrip-
tion of the data from the sport-tracking application Strava on cycling. The results
of the study are then presented in Sections 2.6 and 2.7, each addressing one of the
two primary research questions. Finally, Section 2.8 discusses the implications and
limitations of the study.
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2.2 Scope

Cycling offers a wide range of individual and societal benefits. On an individual
level, it has been associated with improved physical and mental health outcomes, in-
cluding enhanced cardio-respiratory fitness, reduced cardiovascular mortality risk,
and decreased stress levels [28, 29, 30]. Furthermore, cycling serves as a cost-effective
mobility option, contributing to the financial well-being of individuals while provid-
ing health benefits [31]. From a wider societal perspective, the promotion of cycling
within integrated urban mobility systems is recommended as a solution to decou-
pling urban population growth from increased emissions levels and traffic conges-
tion, bad air quality, and reduced road safety. Overall, increases in cycling uptake
within an urban environment have been suggested to have a direct positive impact
on 11 of the 17 UN SDGs [13, 32].

Despite the wide-ranging benefits associated with cycling, there is evidence of a
large participatory gap between men and women. Cycling remains a male-dominated
activity, particularly in cities where the overall level of cycling uptake is low. In ma-
jor US cities such as New York, Boston, and Chicago, only one in four bicycle trips
between 2014 and 2018 were made by women [33]. A similar disparity was observed
in San Francisco, where only 29% of cyclists were women in 2018 [34]. Moreover, re-
cent data from England reveals that not only do men take more bicycle trips per
week, but they also cover longer distances compared to women [35].

However, some European countries, such as Denmark, Germany, and the Nether-
lands, where cycling uptake is in general higher, have managed to narrow this gen-
der gap significantly, with women representing over 45% of all cyclists as early as
2005 [36]. This suggests that the gender gap in cycling is not intrinsic but rather
arises from place- and culture-specific barriers. In this context, focusing only on im-
proving mobility for the existing dominant (male) group, the cycling research and
policy-making risks ignoring half of the population and hindering the development
of sustainable mobility solutions for everyone [37, 38].

The analysis presented in this chapter adds to the debate on the gender gap in cy-
cling by offering a novel large-scale investigation of its determinants. Unlike most
previous analyses, which rely on small sample survey-based data collection (see Sec-
tion 2.3), this study aligns with recent cycling research endeavours by using large-
scale automatically collected data. Here, we used data from the sport-tracking ap-
plication Strava to characterise the cycling behaviour of men and women. Despite
the limitations discussed in section 2.8, with approximately 36 million users across
195 countries in 2018 [39], Strava provides an unparalleled source of information
on cycling behaviour, both in terms of the number of cyclists involved and its geo-
graphical coverage.

For this study, we collected and analysed data from over 60 cities across the United
States and Europe, organised into four geographical regions (Benelux, Italy, United
Kingdom, and United States). The study seeks to address two research questions:

RQ1 What city-level characteristics are associated with a higher uptake of cycling
by women?

RQ2 What is the association between the presence of dedicated cycling infrastruc-
ture and the volume of female cyclists on a street (relative to males)?
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To answer the first question, we analyse how the gender gap in cycling varies across
different cities in our dataset. We investigate the connection between this gender
gap, which we measure at the city level, and various urban indicators. These indica-
tors encompass different characteristics of cities, ranging from their physical features
to road-safety indicators, such as the availability of cycleways and streets with low-
speed limits. As these indicators were included to mirror the hypotheses from the
psychological literature concerning the gender cycling gap, this analysis shed light
on the extent to which macro-differences in actual cycling behaviour across cities
align with micro-level findings on individual preferences from survey-based stud-
ies.

For the second question, we shift our focus from a macro comparison across cities to
a micro-level analysis. We analyse the gender gap in cycling at the level of individ-
ual streets and investigate how specific street-level urban features influence this gap.
Using logistic regression analysis, we examine specifically the role that the presence
of dedicated cycling infrastructure and show how this type of infrastructure is cru-
cial in supporting cycling uptake by women.

2.3 Related work

2.3.1 Research on the determinants of the gender cycling gap

Previous research on the determinants of the gender cycling gap has been mostly car-
ried out within the context of cycling for commuting purposes and predominantly
consists of stated preference studies, which are grounded in direct data collection.
These studies have explored a range of determinants that can be broadly categorised
into four key areas: built-environment and road safety determinants, physical, en-
vironmental, and morphological determinants, economic determinants, and wider
cultural determinants.

Built-Environment and Road Safety Determinants Several stated preference stud-
ies have focused on the role of the built environment in shaping cycling behaviours,
particularly among women. Key built-environment elements that have been evalu-
ated include urban density and road network characteristics1, the presence of cycling-
supportive infrastructure (such as specialised traffic signals, secure bike parking,
etc.), and safety-.enhancing, cycling-dedicated street-level infrastructure (hereafter
referred to as cycling-dedicated infrastructure), such as protected or unprotected cy-
cleways.

Features that reduce travel distances, such as high-density urban areas and well-
integrated road networks, have been found to promote cycling participation across
the general population [40, 41, 42]. This include women, despite this latter group
typically displaying different travel patterns and cycling preferences compared to
men [43]. In terms of cycling-supportive infrastructure, a positive association be-
tween the presence of secure bike parking, specialised traffic signals for cyclists,
and public bicycle-sharing systems and women’s cycling uptake has been identified
through both stated and revealed preference approaches [44, 45].

Despite the recognised importance of the aforementioned classes of built-environment
elements, much of the stated preference academic literature has concentrated on the

1Depending on interpretation, these elements may also be classified as Physical, environmental, and
morphological determinants.
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role of safety-enhancing cycling-dedicated infrastructure, such as dedicated cycle-
ways. This focus stems from the traditional attribution of the gender cycling gap to
psychological and risk perception factors, leading women to have a stronger pref-
erence for physically separated cycling infrastructure due to heightened perceived
risks when cycling in mixed traffic. Several stated preference studies have confirmed
this hypothesis, finding that dedicated cycling infrastructure positively influences
women’s cycling engagement [46, 47, 48]. The presence of such infrastructure not
only increases overall cycling rates but also significantly impacts women’s cycling
choices. For instance, evidence from the United States indicates that women are
more likely than men to choose longer routes if they are perceived to be safer [49].
Similarly, in Australia, women show a preference for safer off-road paths [50], with
comparable findings observed in China [44]. However, evidence from a few stud-
ies investigating revealed preferences, which observe actual behaviour rather than
stated intentions, is less consistent, with some showing weaker or mixed associa-
tions between dedicated cycling infrastructure and cycling uptake among women
[51, 52].

Physical, Environmental, and Morphological Determinants Beyond road safety
and built-environment factors, other physical, environmental, and morphological
determinants can significantly influence the suitability of a cycling environment and
have thus been investigated as potential contributors to the gender cycling gap.
Among the morphological characteristics of the urban landscape, street inclination
has been identified as a substantial determinant of this gap [53, 54]. A study on cy-
cling adoption for commuting in San Francisco found that women are more likely to
avoid steep slopes due to concerns related to physical exertion and safety [53]. Steep
inclines not only require greater physical effort but also increase the perceived risk
of accidents, particularly in adverse weather conditions.

Women are also less inclined to cycle in extreme weather conditions, such as high
temperatures and adverse weather, and are generally less likely to cycle in environ-
ments considered unsuitable—defined by a combination of these factors—especially
in contexts where cycling culture is limited [55, 54]. These physical, environmental,
and morphological barriers further reduce the opportunities for women to cycle un-
der optimal conditions, thereby contributing to lower cycling participation among
women.

Economic Determinants Economic factors, though less extensively studied in the
academic literature, may also play a role in the gender cycling gap. While cycling
is often promoted as a cost-effective mode of transport, the initial costs associated
with purchasing a bicycle, maintenance, and acquiring appropriate gear can be pro-
hibitive, particularly for women in low-income settings. UK data from the 2019
analysed by the British charity Sustrans showed that 19% of individuals from low-
income households found buying a cycle unaffordable and reported it as a barrier to
cycling2. Moreover, economic constraints might intersect with other barriers, such
as safety and cultural factors. For instance, women who cannot afford a high-quality
bicycle or safety gear may feel less confident cycling in traffic, further deterring them
from choosing this mode of transport.

2Resource available here.

https://www.sustrans.org.uk/
https://www.sustrans.org.uk/media/5942/bikelife19_aggregatedreport.pdf
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Wider Cultural Determinants Finally, academic research has also focused on the
role that wider cultural factors play in the gender cycling gap. In regions where cy-
cling is deeply ingrained in the local travel culture, women are more likely to partic-
ipate in cycling. This is particularly evident in areas with high overall cycling levels,
where the number of female cyclists and the distances cycled by women are notably
greater [56, 57]. The cultural acceptance of cycling as a legitimate mode of transport
influences women’s comfort and confidence in choosing cycling, thereby reducing
the gender gap. Conversely, in regions where cycling is less common, women re-
port additional barriers to cycling, including discomfort with long distances, ad-
verse weather conditions, and lower confidence in their cycling abilities [58, 59].

2.3.2 Research on cycling behaviour using automatically collected data

The advent of new GPS-enabled technologies, such as sport-tracking applications
and bike-sharing platforms, has significantly enhanced the availability and quality
of automatically collected data on cycling behaviour. This increase in data availabil-
ity has paved the way for a new line of research that uses automatically collected
data to explore not only cycling-related questions but also broader patterns and pref-
erences in so-called human mobility research [60] and in the smart and digital twins
cities research [61]. These data have greatly facilitated the adoption of revealed pref-
erence approaches in urban mobility research, where users’ preferences are inferred
from observed behaviours at a fine-grained geographical level, rather than being
directly stated. Additionally, they expand our ability to monitor urban mobility pat-
terns and improve both individual and collective planning processes, through the
development of routing engines or data-driven policy design.

In cycling-related studies, data from bike-sharing services have been utilised for var-
ious purposes, including monitoring service demand and analysing adoption and
preferences across different demographic groups [62, 63]. For instance, in Oslo, Nor-
way, gender-specific analyses of bike-sharing data have revealed a gap in the spatial
distribution of facilities, which disadvantages women in accessing these services
[64].

Automatically collected data on cycling behaviour are also available through part-
nerships with sport-tracking applications3. A commonly used source for such stud-
ies is Strava Metro, which aggregates logs from the sport-tracking application Strava
and is accessible through partnerships between city councils and Strava itself4. Re-
cently, these data have been employed to study the exposure of cyclists to air pollu-
tion in Glasgow [65] and to map cycling patterns in Johannesburg [66]. GPS-based
data have also been utilised to investigate route choices among different demo-
graphic groups in cities such as San Francisco and Atlanta [47, 53].

These emerging research avenues highlight the significant potential of large-scale
data to offer detailed insights into the spatial and temporal aspects of cycling, which
are vital for effective urban planning and infrastructure development. However,
while these extensive datasets provide valuable information, they predominantly
reflect the behaviour of current cyclists, potentially overlooking the differences be-
tween cyclists and non-cyclists. If such differences are substantial, the conclusions

3Although the use of these tracking systems has increased for commuting purposes, the data are
generally more suitable for studying recreational cycling, especially when the trip purpose cannot be
inferred from the aggregated data.

4Strava Metro data differ from those used in this study, as they are aggregated from individual
users’ routes rather than being based on the statistics of Strava segments (see Section 2.5).
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drawn from these data may lack broader applicability. Additionally, concerns have
been raised about the representativeness of these datasets and the specific conditions
required for their use in research contexts [67].

Therefore, revealed preferences studies based on large-scale data should be viewed
as complementary to stated preference investigations, with the limitations of both
approaches carefully considered within the context of the research question at hand.
In this spirit, this study presents the first large-scale investigation into the deter-
minants of the gender cycling gap, aiming to support, validate, and expand upon
existing research based on stated preferences evidence.

2.4 Materials and Methods

This section outlines the materials and methods used in the study, with separate
descriptions provided for the two components (RQ1 and RQ2) for clarity. Detailed
information on the Strava data, including its description, processing, and validation,
is excluded here and is comprehensively addressed in the following section of this
chapter.

RQ1: definitions, data sources and processing and statistical analysis

Definition of city To address RQ1, we used data aggregated at the level of city5,
following the definition provided in the Urban Centre Database of the Global Hu-
man Settlement (GHS-UCDB), version R2019A [2]. The GHS-UCDB is a comprehen-
sive collection of data on urban areas worldwide developed by the Joint Research
Centre (JRC) of the European Commission. It provides detailed information on the
location and characteristics of urban centres, including population size, density, in-
frastructure, and socioeconomic factors. The definition of an urban centre does not
follow an administrative definition. Instead, these are defined by specific cut-off
values on the resident population and built-up surface share in a 1x1 km uniform
global grid. The final sample of cites for this strand of the study consisted of 61
cities. The city of New York was excluded due to the large discrepancy between the
administrative area of this city and the bounding box of the GHS-UCDB.

Data sources To address RQ1, we compiled a dataset of city-level indicators cov-
ering four domains: Environment, Built-Environment and Industrialization, Socio-
Economics and Demographics, Street-Network Morphology and Road Safety. A
comprehensive list of the indicators included in the study, their definition and their
sources is provided in Table 2.1. While some of the indicators were already available
at the required geographical level, others were constructed from street-level metrics
and then aggregated to define city-wide indicators. These latter cases are marked
with a "*" next to the source in the table.

Construction of urban road safety indicators City-level indicators on urban road
safety were constructed aggregating data collected at the level of the street network
into city-wide metrics. For both indicators, street-network information was obtained
from OSM [3] accessed via the Python library OSMnx [25]. The indicator on the pro-
portion of streets with a max-speed limit of 20mph or 30km/h or below (referred to
as speed limit throughout the manuscript) was constructed following this pipeline:

5Throughout the dissertation, the terms city, urban area, and urban centre are used interchangeably.
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TABLE 2.1: City-level indicators: description and source.

Category Variable name Description Data
source

σc Proportion of kilometers rode by female cyclists to
the overall kilometers rode by any cyclist within
the urban area

Strava*

E share green Share of population living in the high green area
in 2015 in the Urban Centre of 2015. Ranging be-
tween 0-1

[2]

open space Percentage of open-spaces within the spatial do-
main of the Urban Centre. Ranging between 0-100

[2]

Global Gender Gap
index

Global Gender Gap index (measured at country
level), from the World Economic Forum. Used for
the sensitivity analysis only.

[68]

BEI built area Amount of the built-up area per person in 2015
calculated within the spatial domain of the Urban
Centre. Expressed in square meters per person

[2]

light emissions Average night time night-light emission calcu-
lated within the Urban Centre spatial domain. Ex-
pressed in nano-watt per steradian per square cen-
timetre

[2]

pm2.5 Total concentration of PM2.5 for reference epoch
2014, calculated over the Urban Centre. Expressed
in µg/m3

[2]

SED area Area of the spatial domain of the Urban Centre.
Expressed in square meters

[2]

population Population density within the spatial domain of
the Urban Centre

[2] *

GDP GDP per capita for year 2015 within the Urban
Centre. Expressed in US dollars

[2] *

M degree Average node degree of street network within the
spatial domain of the Urban Centre

[69]

grade Average absolute inclination of streets within the
spatial domain of the Urban Centre. Expressed in
percentage

[69]

orientation Orientation order of street network bearings
within the spatial domain of the Urban Centre.

[69]

3-way crosses Proportion of nodes that represent a 3-ways street
intersection in the street network within the spa-
tial domain of the Urban Area. Ranging between
0-1

[69]

straightness Ratio of straightline distances to street lengths for
streets in the street network within the spatial do-
main of the Urban Area

[69]

RS bike lanes Proportion of streets with cycleways (either pro-
tected or unprotected) computed on streets within
the spatial domain of Urban Centre

OSM*

speed limit Proportion of streets with a speed-limit equal
or lower than 20 mi/h or 30km/h computed on
streets within the spatial domain of Urban Centre

OSM*

Categories: E: Environment, BEI: Built-Environment and Industrialization, SED: Socio-Economics
and Demographics, M: Street Network Morphology, RS: Road Safety.
*Indicates that the data from the original data sources required specific preprocessing described in
the Methods.
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TABLE 2.2: Definition of bike lanes for construction of city-level in-
dicators of urban road safety. The table provides the OpenStreetMap
(key, value) pairs used for the identification of streets with some form
of cycling dedicated infrastructure, simply indicated as bike lane in
the main text. This information was then used to measure the size of
the cycling-dedicated-infrastructure in the city and construct the cor-

responding city-level indicator.

OSM key OSM value

highway [cycleway]
cycleway [track, oppositetrack, lane, oppositel ane, opposite, sharebusway, sharedl ane, designated,

yes]
cycleway : le f t [track, oppositetrack, lane, oppositel ane, opposite, sharebusway, sharedl ane, designated,

yes]
cycleway : right [track, oppositetrack, lane, oppositel ane, opposite, sharebusway, sharedl ane, designated,

yes]
cycleway : both [track, oppositetrack, lane, oppositel ane, opposite, sharebusway, sharedl ane, designated,

yes]

1. For each city c, extract the bounding box of city c from the GHS-UCDB [2].

2. Extract the street network from the polygon defined in the bounding box via
the OSMnx library [25]. Set: network_type = ‘drive′, retain_all = True.

3. Compute the proportion of streets satisfying the condition on the speed limit.
Weight each street with its length.

The indicator on the proportion of streets with cycling-dedicating infrastructure (re-
ferred to as bike lanes throughout the manuscript) was constructed following this
pipeline:

1. For each city c, extract the bounding box of city c from the GHS-UCDB [2].

2. Extract the street network from the polygon defined in the bounding box using
the OSMnx library [25]. Set: network_type = ‘bike′, retain_all = True. Call this
graph G0.

3. From OSM [3], extract the street network from the polygon defined in the
bounding box using the OSMnx library. Set: network_type = ‘drive′, retain_all =
True. Call this graph G1.

4. Define as cycleways all streets in G0 with the pairs of OSM attribute described
in Table 2.2.

5. Sum over the length of all cycleways in G0.

6. Sum over the length of all streets in G1.

7. Define the index as the ratio between the metric computed at point 5 and the
metric computed at point 6.

Regression analysis We estimated a linear regression model of the form:

σc =
N

∑
j=1

β jzj,c + ϵc c = 1, .., 61 (2.1)
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via Ordinary Least Squares (OLS), where the list of regressors zj in the preferred
model includes: speed limit, orientation, GDP, 3-way crosses, night-light emissions, grade,
pm2.5 plus three dummy variables for the macro area to which the city belong (US,
UK, Benelux, baseline: Italy). All continuous regressors were normalised using a z-
score transformation. Out of the initial 15 city-level indicators collected (provided
in Table 2.1), the final subset of seven indicators (plus three country-level dummies)
included in the regression was selected via an exhaustive search to minimise the
Akaike Information Criterion (AIC) of the model. The model was estimated using
the OLS function of the Python library statsmodel [26].

RQ2: data sources and statistical analysis

Data sources To address RQ2, a dataset with street-level data was compiled for
each city in our sample. Street-level information consisted of data on the gender ratio
of cyclists on each street and on the presence of protected or unprotected cycleways.
In detail:

• the street-level gender ratio of cyclists was defined following the approach
described in Section 2.5.

• the level of protection of streets was extracted using the mapping between
OSM tags and protection-level outlined in Table 2.5.

For the city of New York only, for which additional street-level information can be
obtained from administrative data sources, the dataset was expanded to include in-
formation on (Table 2.3):

• the location of all (any-vehicle) accidents and bike accidents only from the
OpenData Portal of the city of New York [70]. These data were processed to
compute the number of accidents per 10 meters for each street.

• the presence of public lighting, proximity to a park or the coastline, and whether
the surface is paved.

• for streets in the largest component of the street network, we computed the
edge-betweenness [71] via the Python library graph-tool [72]. Streets outside
the largest component of the network (i.e., streets in the borough of Staten
Island) were excluded from the sample.

• the borough in which the street is located. Shapefiles were downloaded from
the OpenData Portal of the city of New York [70].

Multivariate logistic regression To assess the degree of association between σs and
the presence of cycling-dedicated infrastructure, we estimated a multivariate logistic
regression model for streets in the city of New York. We restricted the sample to
streets belonging to the bottom and top 33% of the distribution of σs and classified
streets in Low and High σs respectively. As a robustness check, the analysis was
repeated for alternative values of this threshold (0.25 and 0.40, instead of 0.33). We
used features described in Table 2.3 as predictors and the binarized σs as the target
variable. Moreover, continuous predictors (Any-vehicle crashes, Bike crashes and Edge-
betweenness) were scaled using a z-score-transformation to normalize the magnitude
of the estimated coefficients. The model was estimated using the Logit function of
the Python library statsmodel [26].
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2.5 Strava data on recreational cycling

The sport-tracking application Strava Strava is a popular sport-tracking applica-
tion and social network for athletes or individuals practicing outdoor activities. It
allows users to track activities such as running, cycling, and swimming, using GPS-
enabled devices, like smartphones, smartwatches or dedicated GPS devices. Users
can record their routes, distance, speed, and other metrics during their workouts.
The service supports up to 33 different activities, but it is mostly used for cycling and
running. At the time of the data collection in 2018, Strava counted around 36 million
users worldwide, corresponding to 0.6 billion recorded activities [39]. Of these, 284
million were cycling-activities (47%), and approximately one in five cycling-uploads
were by women (50 million). Tracking of commuting is growing in popularity on
Strava, however, the majority of uploads by 2018 referred to recreational and ath-
letic cycling. One of the key features of Strava is the aggregation of data at the level
of segments, i.e. specific sections of roads or trails where users can compare their
performance with others. Users can compete for the fastest time in these segments,
earning achievements and recognition for their efforts. Each user training on a seg-
ment automatically enters the associated leaderboard.

Data collection For this study, information on cycling behaviour was obtained
from the segments of the sport-tracking application Strava. We collected Strava seg-
ments from cycling activities recorded in 62 cities across four geographical regions:
the United States, the United Kingdom, Benelux (Belgium, Netherlands, and Lux-
embourg), and Italy. For sensitivity analysis, the dataset was expanded to include
eight additional cities across other European countries. A Strava segment is a spe-
cific portion of a road or trail where Strava users compete by recording their times.
The performance of each user training on a segment is automatically recorded in its
leaderboard, which provides insights into the characteristics of users cycling on that
particular trail.

The data collection process involved two phases, both conducted in November 2018.
In the first phase, we obtained the entire set of segments (approximately 16.4 mil-
lion) available at the time through the Strava API. Each data point consisted of the
geographical information related to each segment (a line string) and the ID of the
segment. In the second phase, we collected summary statistics from the female and
male leaderboards (using separate queries for each) associated with each segment
ID. As segments need not to be within the boundary of one city only, for each city
in our sample, we made queries for the leaderboards of all segments whose ge-
ometry was contained for at least 75% of its length within the city boundary. The
outcome of this data collection phase is a set of datasets (one for each city) where
each data record corresponds to a Strava segment and includes: 1. geographic in-
formation about the segment in the form of a line string of latitude-longitude coor-
dinates; 2. statistics extracted from the associated leaderboards on the total number
of unique male and female cyclists training on the segment, calculated as the sum
of the lengths of the female and male leaderboards. It should be noted that each
cyclist is included only once in the corresponding leaderboard, based on their best
performance on the segment. This characteristic is important, as it could introduce
a measurement error in metric adopted to measure the gender cycling gap in the
study if the tendency to train on "previously visited" segments differs between men
and women differs across cities or within different areas of the same city. However,
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FIGURE 2.1: Visualisation of the raw Strava segments of nine cities
across the four geographical areas Graphical visualisation of the raw
Strava segments of nine cities for the four main geographical areas
covered by the study (United Kingdom: Nottingham, Bristol and
Manchester; Benelux: Amsterdam and Liege, Italy: Rome and Turin,
United States of America: Boston and Memphis). All segments are

plotted with the same colour intensity.

since data on the exact number of activities by gender was not directly available, it
was not possible to evaluate the impact of this limitation.

Characteristics of raw Strava segments Strava segments are not predefined by the
app developers. Instead, they are directly created by Strava users, reflecting their
training preferences and needs. The result of this user-driven generating process
is a set of segments highly heterogeneous in length, both across cities and within
the same city. Indeed, some segments may correspond to portions of a street, while
others define long trails spanning multiple streets. Furthermore, segments can par-
tially or completely overlap each other. A graphical illustration of the raw Strava
segments for nine cities is provided in Figure 2.1. For this visualisation, all segments
were plotted with the same colour intensity and darker areas on the map indicate a
series of overlapping segments. For each city, Table 2.4 reports the total number of
Strava segments, the length of the shortest and longest segment in the data collection
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in kilometres (Min (km), Max (km)), the mean and standard deviation of the distri-
bution of the lengths of segments in kilometres (Mean (km), Std (km)). In terms of
length of segments, the information presented in Table 2.4 well depicts the discussed
heterogeneity both across cities and within the same city. As an illustration, let’s con-
sider the city of London, for which the length of segments spanned from 0.00 km to
104.97 km, with a mean of 2.61 km. A smaller range of less than 7 km is observed for
the cities of Apeldoorn and Luxembourg, both located in the macro area of Benelux.
Raw information on the two cities of Rotterdam and The Hague is here presented
separately, however, in the remainder of the study, these urban centres are analysed
together6.

Remapping of data from Strava segments to the street network In the first step
of the data processing, the Strava segments were projected to the street network of
the corresponding city. This step was designed to enrich each edge of the street
network with data on the gender split of cyclists training on it. Hereafter, we use
the term street to refer to each edge of the street network7, rather than the toponymic
definition of the street.

Street-network information of each city was extracted from OpenStreetMap (OSM)
[3] via the open-source software OSMnx [25]. The data processing followed a 6-step
pipeline, performed on each city in our sample separately:

1. Load the full set of Strava segments for the city.

2. Extract the bounding box of the city from the Global Human Settlement - Ur-
ban Centre Database 2015, version 2019A (GHS-UCDB) [2].

3. From OSM, extract the street network within the polygon defined in the bound-
ing box using the OSMnx library [25]. Set: network_type = ‘bike′, retain_all =
True, simpli f y = True.

4. Classify streets in the street network based on OSM attributes in: street with
protected cycleway, unprotected cycleway and no cycleway. The (key, value)
pairs for the classification are provided in the Table 2.4. All other bikeable
streets are classified as no cycleway.

5. Proceed with the preferential assignment of Strava segments as follows. Buffer
with a 10-meter radius the geometries of the street network. Select all streets
categorised as protected cycleway and intersect each Strava segment with
the network. Re-project each segment (or portion(s) of a segment) on all streets
with an intersection of at least 30 meters. Finally, compute the geometries of
Strava segments left unassigned - that could be either a full segment or por-
tion(s) of a segment- and repeat the procedure selecting unprotected cycleway
first and finally streets with no cycleway.

6This is done to match the definition of urban centre adopted in the Global Human Settlement -
Urban Centre Database [2].

7This is a topological representation of a street, which does not necessarily adhere to the toponymic
definition. Multiple edges typically fall under the same street name. The use of the term street to refer
to the edge of the stret network only applies to this Chapter of the dissertation.
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TABLE 2.4: Geographic characteristics of raw Strava segments by city

City name Area N seg. Min (km) Max (km) Mean (km) Std (km)

0 Albuquerque USA 1997 0.25 126.51 6.88 8.97
1 Almere Benelux 818 0.08 24.03 2.31 3.13
2 Amsterdam Benelux 2091 0.00 23.39 1.64 2.13
3 Antwerp Benelux 1014 0.04 23.96 1.67 2.68
4 Apeldoorn Benelux 357 0.03 7.12 1.14 1.04
5 Arnhem Benelux 1608 0.00 19.75 1.24 1.79
6 Austin USA 5310 0.07 143.23 7.16 12.00
7 Bari Italy 129 0.03 14.50 2.25 2.63
8 Bologna Italy 653 0.10 44.52 2.85 4.68
9 Boston USA 1400 0.19 53.87 4.45 5.96
10 Breda Benelux 457 0.07 18.42 1.64 2.24
11 Brescia Italy 665 0.03 21.19 2.20 2.76
12 Bristol Uk 3221 0.00 40.34 1.61 2.87
13 Catania Italy 271 0.14 49.78 3.95 6.40
14 Charleroi Benelux 355 0.07 13.51 1.12 1.53
15 Charlotte USA 1664 0.05 136.31 7.50 13.18
16 Derby UK 1381 0.04 18.27 1.34 2.04
17 Eindhoven Benelux 779 0.03 18.11 1.27 1.57
18 Exeter UK 1674 0.00 24.83 1.70 2.94
19 Florence Italy 689 0.00 24.50 1.53 1.82
20 Genoa Italy 2107 0.00 35.92 2.35 2.88
21 Ghent Benelux 1170 0.04 20.71 1.26 1.97
22 Groningen Benelux 1279 0.00 11.34 1.45 1.51
23 Haarlem Benelux 220 0.01 10.78 1.11 1.29
24 Jacksonville USA 1032 0.36 160.42 10.54 16.88
25 Las Vegas USA 1948 0.01 102.45 7.63 9.40
26 Leeds UK 9991 0.00 82.89 2.90 5.87
27 Liege Benelux 770 0.08 14.62 1.19 1.20
28 London UK 18232 0.00 104.97 2.61 4.69
29 Louisville USA 1833 0.19 208.30 9.15 14.50
30 Luxembourg Benelux 606 0.06 7.36 1.14 0.93
31 Manchester UK 2812 0.02 23.17 1.65 2.47
32 Memphis USA 709 0.06 102.86 9.68 14.41
33 Modena Italy 191 0.13 17.24 3.27 3.52
34 Nashville USA 2186 0.13 168.36 7.78 12.32
35 Newcastle upon Tyne UK 2085 0.03 17.23 1.51 2.21
36 New York USA 7122 0.00 256.20 11.13 19.44
37 Nijmegen Benelux 551 0.10 5.75 0.93 0.86
38 Norwich UK 1065 0.00 20.73 1.14 1.82
39 Nottingham UK 2168 0.02 22.73 1.43 2.30
40 Oklahomacity USA 1502 0.23 277.57 16.75 28.65
41 Padua Italy 130 0.20 10.47 1.58 1.40
42 Palermo Italy 929 0.10 57.93 3.15 4.23
43 Parma Italy 155 0.18 17.93 3.77 3.23
44 Phoenix USA 6564 0.05 219.64 11.22 17.39
45 Plymouth UK 3503 0.03 47.29 1.63 2.70
46 Prato Italy 288 0.17 15.19 1.94 2.02
47 Reading UK 830 0.08 16.75 1.09 1.51
48 Reggio Emilia Italy 178 0.06 28.69 3.55 3.91
49 Rome Italy 3257 0.00 52.60 3.00 5.11
50 Rotterdam Benelux 1871 0.00 20.35 1.76 2.42
51 San Antonio USA 3277 0.11 167.88 8.68 14.84
52 Sheffield UK 7733 0.00 88.06 2.50 5.11
53 Southampton UK 1495 0.07 17.03 1.34 1.68
54 Taranto Italy 152 0.07 11.87 1.95 2.25
55 The Hague Benelux 1018 0.02 23.95 1.27 1.90
56 Tilburg Benelux 525 0.05 24.37 1.62 2.41
57 Trieste Italy 1092 0.00 19.19 1.92 2.22
58 Turin Italy 1418 0.00 19.27 2.06 2.10
59 Utrecht Benelux 1221 0.06 50.08 2.05 4.15
60 Venice Italy 341 0.15 75.69 3.31 7.39
61 Verona Italy 1154 0.07 29.3 2.19 2.43
62 York UK 1711 0.03 52.88 2.12 3.45
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TABLE 2.5: OpenStreetMap key-value pairs for the classification of
cycleways in protected and unprotected.

Type OSM key OSM value

Protected cycleway highway [cycleway, path, f ootway, bridleway, track]
cycleway [track, oppositetrack]
cycleway : le f t [track, oppositetrack]
cycleway : right [track, oppositetrack]
cycleway : both [track, oppositetrack]
bicycle [designated]

Unprotected cycle-
way

cycleway [lane, oppositel ane, sharebusway, sharedl ane, designated, yes]

cycleway : le f t [lane, oppositel ane, sharebusway, sharedl ane, designated, yes]
cycleway : right [lane, oppositel ane, sharebusway, sharedl ane, designated, yes]
cycleway : both [lane, oppositel ane, sharebusway, sharedl ane, designated, yes]
bicycle [yes, permissive, destination, private]

6. Compute the gender ratio of each street in the street network using statistics
from the re-projected Strava segments. In particular, letting I be the set of seg-
ments re-projected to street s, Fi (Mi) the number of unique female (male) cy-
clists on segment i, the total number of female cyclists on streets s (and corre-
spondingly for male cyclists) is defined as:

Fs = ∑
i∈I

Fi (2.2)

The gender ratio (σs) of cyclists on street s is then computed as:

σs =
Fs

Ms + Fs
=

∑i∈I Fi

∑i∈I(Fi + Mi)
(2.3)

The rationale for the preferential assignment is that if a cycleway runs parallel to a
street with no cycleway and the line string geometry for the Strava segment is com-
patible with both streets (i.e. it falls within the buffered geometry of both streets),
we assume that the cyclists rode on the cycleway rather than on the street with no
cycling-dedicated infrastructure. This approach prevents us from remapping the
same portion of a Strava segment to multiple parallel streets with different charac-
teristics.

Data filtering on street with a low number of cyclists The vast majority of Strava
users are men. Because of this, the probability of observing σs = 0 is a decreasing
function of the number of cyclists on the street. This means that observing no women
on a street may be due to two factors. First, the street might not be sufficiently pop-
ular (among both genders): being women underrepresented among Strava users,
the likelihood of observing a female cyclist is low. On the other hand, the segment
might be overall sufficiently popular, but its attractiveness being low among women
compared to men. These effects are hard to disentangle in the aggregated data, lim-
iting our ability to interpret an extreme values of σs, on segments with low overall
popularity. To mitigate this issue, we filter the data for the analysis of RQ2 to ex-
clude those segments with a small number of cyclists. In particular, for a city c, the
probability of observing σs = 0 on a segment s conditional to observing Ns cyclists
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FIGURE 2.2: Impact of streets filtering for the city of New York. a)
The distribution of σs for streets in the City of New York, before fil-
tering. b) The black line depicts the probability of observing σs = 0
conditional on the number of cyclists. The light blue line depicts the
proportion of streets in the street network as a function of the number
of cyclists. The vertical dashed line depicts the selected threshold for
the data filtering. c) The distribution of σs for streets in the City of
New York, after filtering of segments with a number of cyclists below

the selected threshold.

on s is given by (assuming replacement):

PN = P(σs = 0|Ns) =

(
Mc

Mc + Fc

)Ns

(2.4)

where Fc (Mc) is the total number of female (male) cyclists in the city. PN is a decreas-
ing function of Ns. To limit the dependence of the observed gender ratio from the
overall level of popularity of the segment, streets with an overall number of cyclists
below a critical threshold were excluded from the sample. For each city, the filtering
threshold N∗

s was set as:

N∗
s = min{Ns|PNs − PNs−1 < 0.015} (2.5)

The impact of the filtering on the distribution of gender ratio for the city of New York
is depicted in Figure 2.2, where the filtering leads to the removal of streets with less
than 17 cyclists. As expected, the observed zero inflation of the distribution appears
to be less marked after the filtering, confirming the effectiveness of the adopted mit-
igation strategy. In addition, the new distribution is significantly less right-skewed.

Construction of the city-level index of the gender-cycling-gap For RQ1, we mea-
sure the gender cycling gap of city c through σc, defined as the ratio between the
total kilometers travelled by female cyclists and the overall kilometers travelled by
cyclists of both gender within the urban area. The rationale for the use of this metric
is its ability to capture two forms of gender gaps described in the literature on cy-
cling and gender: the propensity of women to make fewer trips than men and the
propensity to cycle shorter distances. This measure is equivalent to the weighted
sum of the gender ratio on streets (σs in the previous paragraph) within the urban
area, with weights equal to the product of the length and the total popularity (total
number of cyclists) of the street. I.e., letting S be the set of streets in the street net-
work of the city c, Fs (Ms) the number of female (male) cyclists on s and ls the length
of street s expressed in kilometres, σc is defined as:

σc =
∑s∈S Fs · ls

∑s∈S(Fs + Ms) · ls
=

∑s∈S σs · ls · (Fs + Ms)

∑s∈S(Fs + Ms) · ls
(2.6)
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TABLE 2.6: Ranking of cities by σc, by geographical area.

Ranking City name Geographical area Country σc

1 Groningen Benelux Netherlands 0.21
2 Utrecht Benelux Netherlands 0.17
3 Amsterdam Benelux Netherlands 0.16
4 Apeldoorn Benelux Netherlands 0.15
5 Nijmegen Benelux Netherlands 0.15
6 Haarlem Benelux Netherlands 0.14
7 Almere Benelux Netherlands 0.13
8 Eindhoven Benelux Netherlands 0.13
9 Arnhem Benelux Netherlands 0.13
10 Breda Benelux Netherlands 0.13
11 Tilburg Benelux Netherlands 0.12
12 Rotterdam/The Hague Benelux Netherlands 0.12
13 Ghent Benelux Belgium 0.10
14 Luxembourg city Benelux Luxembourg 0.09
15 Antwerp Benelux Belgium 0.09
16 Liege Benelux Belgium 0.06
17 Charleroi Benelux Belgium 0.06

1 Venice Italy Italy 0.09
2 Padua Italy Italy 0.07
3 Verona Italy Italy 0.07
4 Trieste Italy Italy 0.06
5 Florence Italy Italy 0.06
6 Parma Italy Italy 0.06
7 Turin Italy Italy 0.05
8 Palermo Italy Italy 0.05
9 Modena Italy Italy 0.05
10 Bologna Italy Italy 0.04
11 Bari Italy Italy 0.04
12 Brescia Italy Italy 0.04
13 Genoa Italy Italy 0.04
14 Reggio Emilia Italy Italy 0.04
15 Prato Italy Italy 0.04
16 Catania Italy Italy 0.03
17 Rome Italy Italy 0.03
18 Taranto Italy Italy 0.02

1 Exeter UK UK 0.17
2 York UK UK 0.15
3 London UK UK 0.14
4 Bristol UK UK 0.14
5 Nottingham UK UK 0.14
6 Norwich UK UK 0.14
7 Newcastle upon Tyne UK UK 0.13
8 Manchester UK UK 0.13
9 Derby UK UK 0.12
10 Leeds UK UK 0.12
11 Southampton UK UK 0.12
12 Plymouth UK UK 0.11
13 Reading UK UK 0.11
14 Sheffield UK UK 0.10

1 Albuquerque US US 0.19
2 Oklahomacity US US 0.19
3 Boston US US 0.18
4 Jacksonville US US 0.17
5 Las Vegas US US 0.17
6 San Antonio US US 0.16
7 Nashville US US 0.15
8 Austin US US 0.15
9 Memphis US US 0.14
10 Louisville US US 0.14
11 Charlotte US US 0.13
12 Phoenix US US 0.11
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Table 2.6 provides the full ranking of cities in our sample (by geographical area)
based on the gender ratio of cyclists in the urban area.
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FIGURE 2.3: Gender gap in recreational cycling in Strava: overview
of cities included in the study For each of the four geographical areas
covered by the study, the figure depicts: the location of cities included
in the analysis, the value of the female cycling rate σc for the five cities
displaying the highest σc and the distribution of σc in the geographical

area.

2.6 RQ1: What city-level characteristics are associated with a
higher uptake of cycling by women?

2.6.1 Using Strava data to measure the gender gap in recreational cycling

In the first instance, we use Strava data to measure the gender gap in recreational
cycling in 61 urban centres across four geographical areas: the United States, the
United Kingdom, Italy, and Benelux. For each city c, we define the gender-cycling-
gap as the ratio σc between the total kilometres travelled by female cyclists and the
overall kilometres travelled by cyclists of both genders. This measure accounts both
for gaps in trip shares among men and women and for differences in travelled dis-
tances. By construction, σc varies between 0 (no female cyclists) and 1 (no male
cyclists): a value below 0.5 indicates the presence of a positive gender-cycling-gap
(i.e. men cycling more than women). The closer the value to 0 the stronger the gap.
For each geographical area covered by the study, Fig. 2.3 provides an overview of the
cities included in the study, showing the five urban centres associated with the high-
est σc for each area (i.e. the lowest gender-cycling-gap), as well as the location and
the distribution of σc of all covered cities (the full ranking is provided in Table 2.6). In
our sample, the largest value for σc is 0.21 in the municipality of Groningen, Nether-
lands, indicating the presence of a substantial gender gap in recreational cycling for
all cities under consideration.

Even within the same geographical area, we observe substantial heterogeneity in σc
across cities. In the area of Benelux, in particular, σc ranges between 0.06 (Charleroi,
Belgium) and 0.21 (Groningen, Netherlands). Dutch cities (particularly those in the
northern regions) generally outperform cities in Belgium and Luxembourg. Among
Italian cities, we observe a characteristic geographical pattern, with urban centres
in the northeast displaying a lower gender-cycling-gap than cities in the south and
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northwest. This north-south dichotomy is likely to be linked to the morphologi-
cal characteristics of the country and the presence of a large flat land with a well-
established cycling tradition. Differences in economic development might partially
explain this structure as well. No geographical patterns are instead observable for
cities in the United States and in the United Kingdom included in our sample. In-
terestingly, the is no evident link between the gender ratio and the size of a city.
For instance, large cities such as Boston, Amsterdam and London perform high in
the corresponding ranking, while top-ranking positions in Italy are dominated by
relatively smaller urban areas.

It is important to note that the gender-cycling-gap measured using data from Strava
may differ from official metrics on urban cycling provided by local and national
administrations. For instance, in the Netherlands, national data indicate a similar
cycling uptake among men and women [73]. This discrepancy likely arises because
Strava is predominantly used for recreational purposes, while overall statistics do
not distinguish between commuting and recreational purposes. Moreover, the level
of adoption of Strava may vary across different geographic areas. For example,
Strava usage data indicates varying usage patterns and adoption rates in the United
States compared to other countries [74].

To limit the bias introduced by these elements, comparisons across cities are consis-
tently performed within the same geographical area in this study. The fundamen-
tal assumption throughout the analysis is that the degree of penetration of Strava
among men and women is similar across cities within the same geographical area
[homogeneity assumption]. While we do not anticipate that the cycling behaviour
recorded on Strava will be representative of the overall population’s cycling be-
haviour, under the homogeneity assumption the observed variation in σc across
cities within the same geographical area is not attributable to gender-specific pat-
terns in the usage of the application.

2.6.2 Regression analysis

According to survey-based research on the gender gap in cycling, women tend to be
more risk-averse than men resulting in a lower cycling rate by women (compared
to men) in environments perceived as risky [46]. Based on this hypothesis, we ex-
amine the relationship between the gender ratio σc and two indicators of urban road
safety. The first indicator (hereafter: bike lanes) measures the proportion of streets
with cycleways (either protected or unprotected) in the street network. The second
metric (hereafter: speed limit) provides the proportion of streets with a speed-limit
of 20mph or 30 km/h or below. Both metrics are weighted using the length of each
street. Figure 2.4 reports the scatter plots between the gender cycling gap σc and the
two urban road safety metrics, for the four main geographical areas separately. Each
marker corresponds to a city, the black line is the linear fit. Both measures of road
safety display a positive correlation with the observed gender ratio for the area of
Benelux. For cities in the United Kingdom, a positive (but weaker) correlation is only
observable for the speed limit indicator. In contrast, for cities in Italy and the United
States, both correlations are not statistically different from 0 (at neither a significance
level of 0.05 nor 0.1). This lack of significant correlations could be attributed to the
lower development of dedicated cycling infrastructure in these regions compared
to cities in Benelux. For example, it is possible that a certain proportion of streets
needs to be equipped with a cycleway for a city to be perceived as a safe cycling
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FIGURE 2.4: Correlations between gender ratio and urban road
safety indicators The scatter plots show the correlations between two
urban road safety indicators and the gender ratio σc, for cities in the
four geographical areas separately. For each area, outliers to the three
distributions of σc, bike lanes and speed limit were identified using
the IQR Score method [75] and excluded. Each data point represents
a city. The black line is the linear fit. The two urban road safety in-
dicators capture the density of streets with a cycle lane in the street
network (indicator: bike lanes) and the density of streets with a speed
limit of up to 20 mi/h or 30 km/h in the street network (indicator:
speed limit). A formal definition of the two indicators is provided in

the Materials and Methods.

environment by women. In cities with limited dedicated cycling infrastructure de-
velopment, the observed level of σc might be influenced by other factors related to
the urban structure or the economic development of the area.

Although these findings are limited to specific geographic areas, the positive corre-
lations suggest an association between road safety and σc, supporting the hypothesis
that women’s lower engagement with cycling (compared to men) may be due to a
greater safety concern. To untangle the effect of confounding factors, we explore
the relationship between σc and the two indicators of urban road safety controlling
for a range of city-level indicators. To provide a thorough characterisation of each
city, the indicators are chosen from four domains: 1) E: Environment, such as share
of population in green areas, 2) BEI: Built-Environment & Industrialization, such as
concentration of PM 2.5, 3) SED: Socio-Economics & Demographics, such as GDP per
person, and 4) M: Street Morphology, such as average street grade. A full list of indi-
cators is provided in Table 2.1 and the correlation matrix of the indicators across the
entire sample is provided in Figure A.1 in Appendix A.

Coefficients (and 95% confidence intervals) of a linear regression model estimated
via Ordinary Least Squares (OLS) are shown in Figure 2.5, with statistically signif-
icant coefficients at 0.05 level (two-tailed test) pictured in purple. Details on the
model selection are provided in the Materials and Methods and the selected model
presents an adjusted R2 of 0.80. Overall, the regression analysis confirms the pos-
itive association between the gender ratio of cyclists and the speed limit indicator.
This association indicates that urban centres with a relatively wider low-speed zone
typically present a more balanced cycling uptake between men and women, after
controlling for other confounding factors. Under the assumption that a wider low-
speed zone indicates a less risky environment, this result also confirms that women
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FIGURE 2.5: Results of the regression analysis for RQ1 The main
plot shows the estimated coefficients (square markers) with 95% con-
fidence intervals (black lines) for the final set of regressors included
in the model. Model estimated via Ordinary Least Square, selection
performed via exhaustive search. Selection criterion: Akaike Infor-
mation Criterion (AIC). Statistically significant coefficients at a 0.05
significance level are pictured in purple. The scatter plot displays the

observed σc vs the fitted σc.

are more susceptible than men to the perceived level of risk of the cycling envi-
ronment. Other insights emerge from the analysis of the control variables. First,
we observe a negative association between σc and the proportion of 3-way crosses.
From a topological viewpoint, cities with a high proportion of 3-way intersections
deviate from grid-like street networks, that, by contrast, present a large prevalence
of (mostly orthogonal) 4-way intersections [69]. This result can be interpreted again
under the lens of the degree of safety of the urban environment for cycling. Indeed,
the literature has shown that not only are crashes involving cyclists more likely to
happen at non-orthogonal crosses than at right intersections, but the former are more
likely to lead to severe injuries [76]. Another key urban feature relates to the mor-
phology of the street network. The negative association between σc and the grade
indicator shows that hillier cities display a larger gender gap in recreational cycling,
controlling for all other factors. This result aligns with previous findings that women
would have a preference for flatter routes [53] which may indicate a structural limit
in the potential for cycling uptake by women in particular urban environments. In-
terestingly, the analysis also indicates a lower gender ratio in cities with worse air
quality (higher concentration of PM 2.5). In the absence of a quasi-experimental set-
ting, however, we are unable to determine whether the air quality is a relevant fea-
ture per se or if it acts as a proxy for other city-level characteristics such as motorized
traffic. Finally, the results indicate a more balanced cycling uptake between men and
women in relatively wealthier cities (with a larger GDP per person) and cities with a
lower degree of night-light emissions (which can be a proxy for the size of the city).
To test the robustness of this analysis, three additional models were estimated, us-
ing different mitigation strategies to account for the different levels of penetration of
Strava worldwide. These strategies are described in Appendix A and differ in terms
of: geographical coverage, specification of the geographical dummies and standard-
isation of the input and target variables (FigureA.2 in Appendix A). The results are
largely consistent with the preferred specification presented here.
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2.7 RQ2: What is the association between the presence of
dedicated cycling infrastructure and the volume of fe-
male cyclists on a street (relative to males)

2.7.1 A case study: the city of New York

The findings for RQ1 show that aggregated urban features model well the hetero-
geneity of the gender gap in cycling observed across different cities. They also pro-
vide quantitative support for traditional hypotheses from the literature, which are
often based on small-sample survey-based analyses. Although informative and affir-
mative, the previous analysis leaves two questions unanswered: Where do women
prefer to cycle exactly? And what specific interventions could policymakers imple-
ment to enhance cycling for women?

To address these questions, we shift our focus from a macro-level comparison across
cities to a micro-level setting, analysing streets within a city rather than the entire
city itself. This change in perspective allows us to examine women’s preferences
for street-level characteristics in greater detail, identifying potential targets for in-
terventions by policymakers. Among the available cities, we start by choosing New
York City as a case study. Its extensive collection of administrative datasets provides
an opportunity to enrich the analysis with data not otherwise available from OSM
alone. A summary of all street-level features measured for this analysis is provided
in Table 2.3.

Similar to the city-level analysis, we use Strava data on cycling to quantify female
preferences for a street s. We measure the proportion of female cyclists out of all
cyclists travelling via street s, denoted as σs. This indicator σs is a direct street-level
extension of σc—indeed, σc can be constructed by averaging over σs with weights
equal to the product of the length of each street and the total number of cyclists on
it. The larger σs, the greater are women’s preferences to cycle on street s.

Compared to a simple count of female cyclists, this relative measure has the advan-
tage of quantifying female-specific preferences towards a street s, irrespective of the
total level of "popularity" of the street. Therefore, the metrics will not be distorted
towards streets that are very popular for cyclists in general (for instance, due to their
position in the street network), but that may not present features that are particularly
appreciated by our target group.

In addition, we adopt a data-driven approach to filter streets with a low number of
cyclists (see Section 2.5). This filtering ensures that the observed σs is computed on
a sufficiently large cyclist base. The distribution of σs is bell-shaped with a mean
around 0.12 and a range between 0.00 and 0.41 (Figure 2.6). Stratifying the distri-
bution by the protection level of the street (No cycleway, Unprotected cycleway,
Protected cycleway), the analysis indicates that streets with no dedicated infras-
tructure typically have lower σs than streets with either protected or unprotected cy-
cleways. The median value of σs for streets with no cycleway roughly corresponds
to the 25th percentile of both the distributions of streets with a protected cycleway
or an unprotected cycleway.

To further explore women’s preferences for dedicated cycling infrastructure, we ex-
amine the degree of association between the presence of protected and unprotected
cycleways and σs using multivariate logistic regression analysis. We classify streets
into two classes, Low and High, corresponding to the bottom and top 33% of the
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FIGURE 2.6: The case of New York City: level of protection and σs
a) The map displays streets in the borough of Manhattan included
in the final sample. A 10-quantile colour scheme has been used for
the value of σs. The inset is the distribution of σs for streets included
in the final sample (computed over the entire city of New York). b)
The map displays the protection level of streets in the borough of
Manhattan included in our sample. Yellow: no cycleway, light blue:
unprotected cycleway, dark blue: protected cycleway. The inset dis-
plays the box plots of σs for streets with different levels of protection
(computed over the entire city of New York). ‘ns’,‘*’, ‘**’, ‘***’, ‘****’
indicate the significance level of a Mann-Whitney-Wilcoxon test two-
sided with Bonferroni correction, with the following p-values thresh-

olds: 1e-4:‘****‘, 1e-3: ‘***‘, 1e-2: ‘**‘, 0.05: ‘*‘, 1: ‘ns‘.

distribution of σs, and estimate the Odds Ratios (OR) via multivariate logistic re-
gression. To check the robustness of the results, the analysis is repeated with dif-
ferent thresholds α (0.25 and 0.40, instead of 0.33) for the classification. The results
(presented in Figure 2.7) are consistent across sample specifications, with generally
slightly larger estimates on more extreme samples (lower values of the threshold α).

The main result of the regression analysis concerns the role of dedicated cycling in-
frastructure. With an estimated odds ratio (OR) of around 4.08 (95% confidence in-
terval: [3.67, 4.54]), the analysis indicates that the odds of being classified as "High"
are more than four times greater for protected cycleways than for streets with no
cycleway (used as the baseline). This finding aligns well with the survey-based
literature on the gender cycling gap, which suggests that women prefer physical
separation more than men [46, 51, 47].

Although smaller in magnitude, we estimate a similarly positive association be-
tween the presence of an unprotected cycleway and σs. This analysis suggests that
whenever protected cycleways are not feasible due to budget or physical constraints,
the use of shared unprotected cycleways could still make the urban environment
more accessible for female cyclists. In light of recent findings [77, 78], which sug-
gest that unprotected cycleways do not necessarily enhance the safety of the road
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FIGURE 2.7: Odds Ratios of multivariate logistic regressions, for
several levels of the threshold α for the city of New York a) the chart
presents estimated ORs for a multivariate logistic regression where
the target variable is the binarized σs and the predictors are listed in
Table 2.3. The squared dots are the point estimates. The straight lines
are the estimated 95% confidence interval for the corresponding OR.
The model was estimated on three different sample selections, with
the threshold α corresponding to 0.25 (yellow), 0.33 (light blue) and
0.40 (dark blue). The ORs are computed exponentiating the corre-
sponding estimated coefficients. For each estimated model, the leg-
end reports the value of the threshold α, the number of observations
and the in-sample accuracy. b) The histograms show the mapping be-
tween the σs and the binarized σs for the three values of the threshold

α: 0.2 5 (yellow), 0.33 (light blue) and 0.40 (dark blue).

network for cyclists, our results suggest that subjective safety may matter more than
objective safety.

Regarding other control variables, consistent with the assumption that women pre-
fer quieter streets, we estimate an OR below 1 for our proxy for traffic flow (edge-
betweenness) and for the volume of accidents (by any type of vehicle). The positive
association with the volume of bicycle crashes, on the other hand, is likely due to
reverse causality: a more balanced gender ratio is typically associated with a larger
volume of cyclists, increasing the likelihood of bicycle crashes.

The two dummies on coast and park proximity, inserted as proxies for the natural
environment within which the street is located, appear to have opposite effects, with
an estimated OR above 1 for coast proximity and below 1 for park proximity (with
the latter statistically significant only at the 0.05 level for α = 0.25). The high coast
proximity value is due to the morphology of New York City and the presence of
a long protected cycleway along the coastline of Manhattan, acting as an attractive
infrastructure and impacting nearby streets too. The negative association with the
park proximity dummy can be traced back to the location of the green areas under
consideration, often in non-central locations (note that streets within Central Park
largely fall into the excluded part of the distribution around the median value).
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Information on the presence of public lighting is generally sparse in OSM, particu-
larly for New York City (we assume public lighting to be absent only when explicitly
stated, with less than 100 streets classified as without public lighting). Therefore, the
negative estimated OR requires further analysis with more complete data.

Finally, although challenging to generalise to other urban contexts, we observe strong
negative neighbourhood effects, particularly for the boroughs of Brooklyn and Queens
(compared to the baseline borough of Manhattan).

2.7.2 Generalising the results to the other cities

In the previous section, we selected the city of New York as a case study due to the
availability of additional street-level data from administrative sources. Furthermore,
with its well-known city structure, New York serves as an ideal testing environment
for urban studies.

In this section, we aim to assess the generalisability of the previous results on the
role of protected and unprotected cycleways in other urban environments. For all
cities in our sample, we conduct a similar analysis as the one undertaken for New
York. We compute the odds ratios (ORs) of a minimal logistic regression, where the
binarized street-level gender ratio is regressed against a categorical variable for the
protection level of the street (three classes: No protection (baseline), Protected cycle-
way, and Unprotected cycleway). The processing and filtering of the data follow the
same steps undertaken for New York. Results are reported in Fig. 2.8, where only
ORs statistically different from 1 (at a significance level of 0.05) are depicted.

With the exception of eight cities (four cities in Italy, three in the US, and one in
Benelux), the minimal models confirm a positive association between the presence
of a protected cycleway and the probability that the street belongs to the high gender
ratio class, as indicated by ORs above 1 for most cities in our sample. In contrast,
no clear pattern is observed for unprotected cycleways across cities. This could be
due to the fact that while protected cycleways ensure a certain degree of safety, the
level of danger associated with unprotected ones likely depends on many additional
features of the street, which are not necessarily encoded in this minimal model.

2.8 Discussion

Implications of the study

This chapter investigated the determinants of the gender cycling gap by examining
patterns in cycling behaviours in over 60 cities in Europe and the United States.
Unlike most previous analyses, which relied on survey-based data, we used large-
scale data automatically collected from the online sport-tracking application Strava.

Initially, we examined the relationship between female cycling rates in various Eu-
ropean and American cities and city-level characteristics [RQ1]. We found evidence
supporting traditional hypotheses linking the observed gender gap in cycling to
gender-specific preferences regarding road safety. Additionally, we observed higher
female cycling rates in flatter cities compared to hillier ones, which aligns with find-
ings in the literature [53]. This result suggests there may be structural, morpho-
logical, or cultural constraints in certain areas where increasing cycling uptake for
women is more challenging [79]. For urban planning, this result implies that ad-hoc
infrastructural interventions, such as providing cycleways or expanding low-speed
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FIGURE 2.8: Odd Ratios of minimal logistic models, all cities The
charts present estimated ORs of minimal logistic regressions, where
the target variable is the binarized σs regressed against a categorical
variable for the protection level of the street (three classes: No protec-
tion (baseline), Protected cycleway and Unprotected cycleway). The mod-
els are run for each city separately. The squared markers are the point
estimates for Protected cycleway and the circular markers are the point
estimates for Unprotected cycleway. The straight lines represent the
estimated 95% confidence interval for the corresponding OR. Only
statistically significant ORs (significance level 0.95) are pictured. For
each city, the minimal model is estimated on three different sample
selections, with the threshold α corresponding to 0.25 (yellow), 0.33
(light blue) and 0.40 (dark blue). The ORs are computed exponentiat-
ing the corresponding estimated coefficients. Only cities with at least

one statistically significant ORs are pictured.

limit zones, may have limited efficacy in these contexts. Instead, they may require
concurrent behavioural incentives, such as promoting the adoption of e-bikes.

In the second part of the study, we shifted the focus from a macro comparison across
cities to a micro-level analysis, where edges of the street network are used as unit of
analysis. Compared to the first research question, which provided evidence for and
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expanded existing hypotheses (further validating our data as a reliable source on cy-
cling behaviour), the second analysis aimed at capturing the role of urban features
modelled at a higher resolution and delving deeper into the association between
the gender-cycling-gap and the presence of dedicated cycling infrastructure. We se-
lected the city of New York as a case study for this component of the study. Using
multivariate logistic regression analysis, we have shown the existence of a positive
association between the volume of female cyclists (relative to men) and the pres-
ence of dedicated cycling infrastructure. The positive association between σs and
the presence of a protected cycleway was expected and well-documented in the lit-
erature, which highlights the strong preference of women for physical separation
from motorized traffic [46, 51, 47]. More novel and interesting is the observed as-
sociation with the presence of an unprotected cycleway. In light of recent studies
showing that unprotected cycleways may not enhance the degree of objective road
safety [78, 77], our result suggests that perceived safety may influence women to cy-
cle more than actual safety in specific environments. However, this finding does not
apply to all cities in our study, indicating that interventions in this regard may not
be equally effective everywhere.

In contexts where physical separation is not possible (due to space or budget con-
straints), providing shared cycleways may still improve the perceived accessibility
of urban environments for women in certain contexts. However, since the perceived
increase in safety induced by this type of infrastructure may not always correspond
to a decrease in actual risk, city planners should carefully evaluate the planning of
such infrastructure. For example, they could prioritise specific solutions associated
with higher safety levels.

Overall, our study quantitatively validated survey-based results using unprecedent-
edly large-scale automatically collected data. With approximately 36 million users
worldwide in 2018, Strava was one of the major applications for sport tracking, pro-
viding reliable information on cycling behaviour for regular cyclists.

Limitations of the study and future research

The analysis is subject to three main limitations. The first limitation pertains to the
representativeness of Strava users and the purposes of Strava trips. For example,
having a considerable gender gap in the Netherlands (Figure 2.3), contrary to ex-
pectations [36], the Strava data are clearly not representative, and neither users nor
purposes of use can be inferred. Nevertheless, we did our best to account for the
representativeness challenge of this data, first by comparing only cities in the same
geographical area, and second by comparing streets only in the same city, aiming to
minimise user and trip purpose variation. Despite these mitigation strategies, it re-
mains unclear to which extent our results can be generalised to cycling for purposes
other than recreational, such as transport, and to less-skilled cyclists (occasional cy-
clists and not cyclists). Future analyses will require finding data sources that are able
to reliably distinguish between such purposes and users since gender-based con-
straints can differ between these categories [80]. However, since the survey-based
academic literature on gender-cycling-gap indicates that cycling preferences differ
less among regular cyclists than among occasional ones [46, 81], the results of our
analysis could be interpreted as a lower-bound and it is likely that the identified
factors play an even larger role in explaining the gender-cycling-gap in the general
population.
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A second limitation of the Strava data set is the inability to extract exactly the poten-
tially useful information of cyclist volumes [82], as the raw data are not individual
cycling traces but Strava segments with only aggregated statistics. This aggregation
also implies that the same cyclists may cycle on many segments in one or multiple
sessions and we would not be able to identify them. The third limitation pertains to
the cross-sectional nature of the available cycling data. The absence of a longitudinal
dimension restricted the analysis of temporal variations in the data, thus hindering
the use of statistical tools for policy evaluation to assess causal effects along with
correlations.

Finally, there is a variety of gender-specific constraints apart from street safety that
future studies should take into account, from cultural and psychological reasons
[82, 79], to other environmental factors and harassment by motorists [80, 83]. Gen-
der inequality and gendered transport habits may also play a large role, such as
more frequent trip chaining by women due to childcare and other errands [84, 55].
Therefore, while street safety and urban design are undoubtedly important ingre-
dients, there is no universal, simple fix for getting rid of the gender gap in cycling
towards more sustainable mobility. It remains a complex societal issue that needs to
be tackled from multiple angles [38].





37

Chapter 3

ATGreen: a multi-dimensional
computational framework to
evaluate accessibility to urban
green

3.1 Overview of the chapter

This chapter is based on the publication titled On the need for a multi-dimensional
framework to measure accessibility to urban green, published in NPJ Urban Sustainability
by A. Battiston, and R. Schifanella [19].

This chapter focuses on understanding the degree of interchangeability of several
structural metrics of green accessibility commonly adopted in the public health and
urban planning communities. It proposes a computational approach to measure
these frequently adopted spatial indicators of green accessibility within a unified
framework. The framework is then used to evaluate the impact of using one metric
compared to another in a policy design approach, highlighting the need to move to-
wards multi-dimensional assessments. Along with the theoretical contribution, the
chapter also introduces a novel web-based interactive resource (ATGreen) facilitat-
ing the use of the proposed framework and the shift towards the multi-dimensional
perspective, for both policymakers and the general audience.

The remainder of the chapter is structured into seven sections. Section 3.2 out-
lines the motivations of the study, summarising the key findings on the relation-
ship between green accessibility and public health. Section 3.3 summarises the main
methodological approaches to the measurement of green accessibility. Section 3.4
details the materials and methods employed, providing an overview of data sources
and analytical techniques. Sections 3.5 and 3.6 provide an overview of the compu-
tational framework and the statistical analysis evaluating the interchangeability of
the several green accessibility metrics, respectively. The functionalities of the asso-
ciated web interface are then presented in Section 3.7. Finally, Section 3.8 discusses
the implications and limitations of the study.

https://atgreen.hpc4ai.unito.it/
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3.2 Scope

As urban populations continue to expand, there is increasing interest among aca-
demics and policymakers in devising strategies to enhance the liveability and sus-
tainability of cities. Among these strategies, urban greening interventions and nature-
based solutions (NBSs) have emerged as critical approaches due to their capacity to
mitigate the environmental impacts of urbanisation. A well-developed green infras-
tructure plays a vital role in biodiversity conservation, carbon sequestration, soil
protection, and temperature regulation, providing multiple ecosystem services that
contribute to the overall resilience and sustainability of urban areas [85, 86, 87, 88].

Simultaneously, several theories (including the biophilia hypothesis [89], attention
restoration theory [90], and prospect-refuge theory [91]) have postulated a link be-
tween exposure to natural environments and improved health outcomes. These the-
ories suggest that humans possess an intrinsic need for nature-rich environments,
which can significantly enhance mental health, cognitive function, and overall well-
being. Empirical research has substantiated these hypotheses, demonstrating that
proximity to greenspaces is associated with a wide range of physical and mental
health benefits, including lower mortality rates, reduced risk of cardiovascular dis-
ease, and positive effects on happiness and cognitive abilities [92, 93, 94, 95, 96, 97,
98, 99, 100, 101].

Building on this growing body of evidence, Milvoy et al. [102] introduced a com-
prehensive model in 2015 that links greenspace availability to the health and well-
being of urban populations. This model identifies key health pathways—both direct
and indirect mechanisms—through which the presence of nature leads to improved
health outcomes. Direct pathways include enhanced physical activity, promotion
of social interaction, reduction of stress levels, and exposure to improved air quality
and cooler, shaded areas. Indirect pathways, on the other hand, relate to biodiversity
support, which, according to the authors, offers ancillary benefits for human health.
The insights provided by this model, along with empirical studies linking health
outcomes to nature exposure, have contributed to the development of SDG 11.71

[13], which imposes a responsibility on local authorities to ensure equitable access
to public green spaces for all, with particular attention to protected demographic
groups, by 2030.

In alignment with the objectives outlined in SDG 11.7, various health organisations,
local authorities, and institutional bodies have set a range of green-related targets
for cities2, which are utilised both for monitoring and evaluation, as well as for the
purposes of optimising the design of greening interventions. The World Health Or-
ganization (WHO), for example, recommends that urban residents have access to
at least 0.5–1 hectare of public green space within 300 metres of their residences
[103]. The broad spectrum of benefits associated with exposure to nature has in some
cases been incorporated into multi-level targets, setting different green space re-
quirements for increasing distances from residential locations (e.g., [104, 105]). Sim-
ilarly, the recently proposed 3-30-300 paradigm addresses the need for urban green-
ery to permeate the everyday lives of urban residents. According to this paradigm,
three trees should be visible from every home, each neighbourhood should achieve

1SDG 11.7 states: By 2030, provide universal access to safe, inclusive, and accessible green and public spaces,
particularly for women and children, older persons, and persons with disabilities.

2Although these targets align with the aims of SDG 11.7, some were established prior to the SDG
and should not be regarded as directly derived from it.
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a 30% tree canopy cover, and every residence should have a greenspace within 300
metres [106].

This chapter seeks to deepen our understanding of the potential to incorporate green
accessibility indicators into urban planning policy decisions related to greenspace
provision. Despite the growing interest in this area indeed, there is still no stan-
dard methodology for evaluating green accessibility, and the implications of using
various metrics within a policy design context are not yet fully understood (see Sec-
tion 3.3). To address this critical gap, this chapter introduces a novel computational
framework for high-resolution greenspace accessibility measurement, currently im-
plemented through a web interface (ATGreen) covering over 1,000 cities globally.
This framework enables the comparison of multiple accessibility indicators and as-
sesses the impact of introducing new greenspaces. Furthermore, I investigate the
variability in accessibility patterns across different indicators, highlighting the neces-
sity of adopting a multidimensional approach rather than relying on a single metric.
This comprehensive analysis aims to inform and guide urban planning decisions,
ensuring that greenspace provision is optimised to support both environmental sus-
tainability and public health outcomes.

3.3 Related work

Over the past decade, advancements in high-resolution geographical data and com-
putational capabilities have driven a shift in urban planning towards more data-
driven policy design processes. An integral part of this transition is the creation
of spatially resolved indicators. These indicators act as benchmarks for tracking
progress towards specific goals and assist in the design of new urban interventions,
aligning with the principle "what gets measured, gets done" [18, 107].

Despite significant interest from the research and policy communities in urban green-
ing interventions, there remains no established, universally adopted framework to
measure accessibility to urban greenspaces. Moreover, the various proposed ap-
proaches have not been evaluated within a unified framework. These approaches
differ based on: (1) the type of data used to identify green urban features and/or
(2) the family of indicators considered.

In terms of data on urban green features, three main types of sources can be dis-
tinguished: (1) Land cover and land use data from (processed) satellite imaging,
administrative data sources, or crowd-sourced initiatives. Land cover data cate-
gorises the Earth’s surface into different types, such as forests, urban areas, crop-
lands, water bodies, and barren lands. Land use data reflects human activities
and their impact on the landscape, including settlement patterns, agriculture, trans-
portation, and infrastructure development. These data are frequently used for the
evaluation of accessibility to greenspaces in single-city studies and often employ
distance-based accessibility metrics [108, 109, 110, 111, 112, 113, 114]. Their main
advantage, particularly for land use data, is the ability to recognise the functional
use of greenspaces, for instance distinguishing between public and private areas.
(2) NDVI-based metrics from (processed) satellite imaging data. Derived from the
visible and near-infrared light reflected by vegetation, the Normalized Difference
Vegetation Index (NDVI) assesses and quantifies the density of green vegetation in
a specific area. NDVI quantifies each image pixel with values ranging from -1 to +1,
with higher values indicating more greenness. Greenery can be calculated as a sim-
ple average of NDVI values in each pixel or by determining a suitable threshold on

http://atgreen.hpc4ai.unito.it/


40
Chapter 3. ATGreen: a multi-dimensional computational framework to evaluate

accessibility to urban green

the index to define green area pixels [115, 116]. NDVI-derived measures of green-
ery are prevalent in public health research [116, 117, 118, 119]. Unlike land cover
data, NDVI-based metrics do not allow segmentation of green information based
on function. (3) View-based greenery. Initially proposed by Yang et al. [120], this
approach uses street view imagery to measure eye-level street greenery. Unlike pre-
vious approaches, street view imagery captures the landscape at eye level and has
gained popularity due to its compatibility with human perception. However, due to
its computational intensity, this approach is still limited to small-scale evaluations
for single cities [121, 122, 123, 124, 125] or a limited number of urban areas [126].

Unlike metrics that look at the average characteristics of a city, the definition of spa-
tial indicators poses specific computational and methodological challenges. Indeed,
it requires considering the interplay between the spatial distribution of the popu-
lation and greenspaces within a city, as well as the proximity and/or the walkable
catchment of each sub-area resulting from the topology of its street network. As
mentioned later, this latter element has been neglected in some specific applications
due to its computational complexity. Among the several spatially-resolved green ac-
cessibility indicators proposed in the academic literature, it is possible to distinguish
two broad categories [98, 115]: (1) Cumulative opportunity (or exposure) measures.
These metrics measure the percentage or sum of green areas within a spatial unit or
a circular buffer around the residential location. While the spatial unit could theo-
retically be based on the walkable catchment around a specific area, most large-s-
cale studies use circular buffers for computational convenience. This type of met-
ric is popular among public health studies aiming to compare the performance of
many cities in terms of green exposure of their residents [127] (e.g. the proportion
of residents that satisfies specific targets). However, fixed circular buffers do not
account for discontinuities in measurement due to the thresholding approach. Re-
cent studies, such as [128], acknowledge the importance of measuring short-range
and long-range metrics by computing green exposure for buffered regions with pro-
gressively increasing radii around residential locations in both Global South and
Global North cities. (2) Distance-based green accessibility metrics. Primarily used
in urban planning, these metrics measure the distance (walking, cycling, or driving)
to the closest area with specific characteristics and are typically instantiated with
a threshold for the minimum size of a green area (e.g., 0.5, 1, 2 hectares) [115]. A
binarised version of these metrics (e.g., whether an area with specified characteris-
tics is available within a specific temporal or spatial threshold) forms the basis of
institutional targets set by local authorities or other public bodies. These include the
previously mentioned the World Health Organization (WHO) target, recommend-
ing access to at least 0.5-1 ha of public green within 300m of residential locations
[103] and the multi-level targets proposed by specific local authorities and national
agencies [104, 105]. Despite their wide adoption for urban planning, distance-based
metrics have generally only been applied in single-city studies [109, 110, 111, 112]
and have been disregarded for larger evaluations. In addition, studies based on this
type of metric often lack a full discussion on the impact of selecting specific thresh-
olds compared to alternative specifications. A first attempt towards the adoption of
these metrics for large-scale evaluations is provided by [113], although the study is
restricted to the evaluation of greenspaces within 500 meters of residential locations.

While the studies mentioned above examined green accessibility through the lens
of the structural and topological features of urban areas, a different and more re-
cent research line integrates behavioural information into evaluations of green ex-
posure and accessibility. This behavioural information is derived from survey data
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and, more recently, from automated user-generated geographical data, including
social media, sports tracking apps, mobile phone traces, and public participation
geographic information systems (PPGIS) [129, 130, 131, 132]. By using behavioural
information, these studies quantify actual greenspaces’ usage and green exposure
levels (or green demand) in contrast to the potential green accessibility inferred solely
from structural considerations. Although these metrics represent substantial progress
in the characterisation of green accessibility and shed light on factors like the per-
ceived quality or safety level of greenspaces, their large-scale implementation is of-
ten hindered by restricted data accessibility. Furthermore, concerns have been raised
about the representativeness of some of these data sources, particularly regarding
specific demographic groups [133, 134]. Due to these challenges, structural indica-
tors are still predominantly adopted in evaluating green accessibility.

Despite the proliferation of green accessibility indicators, no research has yet eval-
uated how interchangeable these metrics are or the implications of using one over
another for policy design. By defining a computational framework designed to op-
erationalise the measurement of three families of green accessibility indicators and
evaluating their stability under several parameterizations, this research aims to fill
this gap. At the same time, it provides a tool for policymakers to evaluate multiple
indicators, thus adopting a multidimensional perspective on green accessibility.

3.4 Materials and Methods

Definition of urban centre

For this study, urban centres3 (UC) were defined according to the boundaries in
the Urban Centre Database of the Global Human Settlement 2015, revised version
R2019A (GHS-UCDB) [2]. Information on this dataset has already been provided in
Section 2.4. Out of 13,000 urban centres recorded in the database, we retained the
most populated 50 UCs per country (the internationally recognized three-letter ISO
code identifies a country), provided that they had at least 100,000 inhabitants (corre-
sponding to roughly 2,600 UCs). To ensure only cities with sufficient quality of the
OpenStreetMap (OSM) data [3] –used extensively throughout this analysis– were in-
cluded in the study, two additional filters were applied to the sample: 1. Exclusion
of all UCs with less than 20 distinct public green areas recorded in OSM (about 600
cities were excluded, and 1,963 cities remained in the sample). To this scope, public
green areas were defined according to the key : value pairs in Table 3.1. 2. Exclu-
sion of 923 urban centres, with low data quality. The data validation was performed
by comparing the green intensity appearing from OSM data (based on an extended
definition of green) to the green intensity from the World Cover data 2020 from the
European Space Agency (WC-ESA) [6] and defining ad-hoc acceptance intervals for
urban centres with different size and average green intensity, based on the level of
similarity observed for a set of reference cities. A detailed description of the valida-
tion approach is provided in section 3.4. The final sample for the study comprised
1,040 urban centres across 145 countries.

3As in the previous chapter, the terms urban centre, urban area, and city are here used interchange-
ably to indicate the units described in this paragraph.
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Geographical units of analysis

The geographical space of each UC was divided into a regular grid with a spatial
resolution of 9 arc-seconds (geographic projection: WGS-84), mimicking the grid of
the population layer of the Global Human Settlement 2015 (revised version 2019A)
(GHS-POP) [1]. Cells in the grid are the smallest geographical unit of analysis for
this study, meaning that all metrics were measured at this geographical level and,
whenever appropriate or needed, aggregated into higher geographical units.

Population data

Population data were extracted from the 9-arcsecond resolution grid of the GHS-
POP [1]. The raw data consisted of residential population estimates for the year 2015,
disaggregated from census or administrative units to grid cells and informed by the
distribution and density of built-up as mapped in the corresponding Global Human
Settlement Layer global layer. For each urban centre, the data were processed using
the rioxarray package in Python, masking the global .tiff file with the boundary of
the city enlarged with a three-km buffer. The clipped raster was then loaded into a
PostGIS database.

Definition of PGAs and other green features

In this section, the terms Public Green Areas (PGAs) and greenspaces are used inter-
changeably to indicate accessible green areas of public use. The terms urban green,
green infrastructure, and green coverage instead are used to refer to all green features in
an urban centre, regardless of their use or their degree of accessibility. For each city,
PGAs were extracted from OSM data following the pipeline described in the follow-
ing three paragraphs and reclassified into three classes: parks, grass, and forests. For
each city, the green infrastructure was extracted from the WC-ESA (codes: 10, 20, and
30) following the pipeline described in the subsequent paragraph.

Extraction of local osm.pbf dumps The OSM data dump for each continent was
downloaded from the GeoFabrik Download Service in May 2022. From these, we
generated the geographical extract of the OSM data for each UC. To ensure that lo-
cations at the boundary of the study area are not biased, the perimeter of the urban
area defined in the GHS-UCDB was buffered with a three-km radius. The extraction
was performed using the smart strategy of the method extract of the Osmium Library.
The smart strategy runs in three passes and extracts: 1. all nodes inside the region and
all ways referencing those nodes as well as all nodes referenced by those ways; 2. all
relations referenced by nodes inside the region or ways already included and, recur-
sively, their parent relations; 3. all nodes and ways (and the nodes they reference)
referenced by relations tagged type=multipolygon directly referencing any nodes in
the region or ways referencing nodes in the region. The default configuration was
used for all other options of the method.

Extraction of public green areas from OSM For each UC, the second step con-
sisted of the identification and extraction of public green areas from the local osm.pbf
file. In this study, we defined as public green areas all those OSM spatial elements
defining closed areas (i.e. closed ways and relations) with the key : value pairs in
Table 3.1. The extraction was performed using the Python bindings of the osmium-
tool. The geometries of relations were reconstructed from their members using the

https://corteva.github.io/rioxarray/stable/
http://www.geofabrik.de/
https://osmcode.org/osmium-tool/
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Category Key Value

Parks

leisure park
leisure garden
landuse recreation_ground
landuse village_green

Forests
landuse forest
natural wood

Grass

landuse grass
landuse meadow
natural grassland
natural shrubbery

TABLE 3.1: OSM key : value pairs used for the identification of public
green areas

approach described in the official OSM guidelines. Elements with key : value pairs
equal to access:no or access:private were excluded from the retrieved database. In the
final step, we classified green OSM elements into three categories (Parks, Forests,
Grass) according to the mapping in Table 3.1. The obtained green features were
then loaded into the PostGIS database.

Remapping of public green area to the base grid The third step involved the
remapping of geographical elements extracted from OSM to the base grid of each
UC. For each cell in the grid – and for each combination of green elements (Park,
Forests, Grass, Parks & Forests, etc.) intersecting the cell– we generated the fol-
lowing information on: 1. size of the intersection between the green element and the
cell; 2. the overall size of the green element intersecting the cell. All values were ex-
pressed in hectares and rounded to the second decimal point so that the minimum
resolution is a continuous green space of at least 100 square meters. It should be
noted that green OSM elements might partially overlap (for instance, the same area
could be mapped as leisure : parks and landuse : grass). To ensure the same area
is not computed multiple times and continuous green (for instance, adjacent forests
and grasslands) was appropriately identified, overlapping areas were dissolved to-
gether before undertaking the remapping exercise.

Green coverage from the World Cover data 2020 of the European Space Agency:
extraction and processing The World Cover data 2020 [6] from the European Space
Agency (WC-ESA) was used in this study for the computation of one class of green
accessibility indicators (exposure indicator) as well as reference data for the sample
validation, as described in the 3.4. The data provides global land cover maps for
2020 at 10 m resolution based on Copernicus Sentinel-1 and Sentinel-2 data. Out of
all cover classes, classes 10 - Tree cover, 20 - Shrubland, and 30 - Grassland were defined
as green coverage. For each city, the data were extracted by clipping the worldwide
file with the boundary of the UC buffered with a 3-km radius following the proce-
dure described in the official guidelines and subsequently loaded into the PostGIS
database. The data were then remapped to the base grid of each city following the
approach described in Section 3.4 for the remapping of the OSM polygons to the
base grid.

https://wiki.openstreetmap.org/wiki/Relation:multipolygon/Algorithm.
https://esa-worldcover.org/en/data-access
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FIGURE 3.1: Computation of walking distance matrices. The exam-
ple of the city of Turin, Italy A and B provide a schematic represen-
tation of the pipeline for the computation of the walking distances for
the city of Turin, Italy. A depicts the street network for the buffered
region (GHS-UCDB boundary buffered with a 3 km radius), extracted
from the local OSM dump and the city boundary (solid black line). B
depicts the base grid of the city of Turin. For each cell (depicted in
red in the example), the walking distance between the cell’s centroid
and the centroids of all cells within a 3 km buffered region (red circle)
was computed using the local routing engine Open Source Routing
Machine. C provides an example of the walking distances computed
using the described approach. The origin cell was depicted in red.
Solid/Dashed/Dotted lines indicate several isochrones for the cell of

interest.

Computation of walking distance matrices

In the proposed framework, the problem of computing the walking distances be-
tween residential areas and green spaces was simplified to the computation of walk-
ing distances between the centroids of cells composing the base grid. To this scope,
we used the routing engine Open Source Routing Machine (OSRM) [4] and the
street-network data from the local OSM dumps (see Section 3.4). A schematic repre-
sentation of the adopted strategy for Turin, Italy, is provided in Figure 3.1.

In particular, for each UC, we adopted the following four-step pipeline.

1. From all cells in the extended grid of the city M, define the set Z (with mem-
bers: z) to be the subset of M with non-null population.

2. Characterise each cell z in Z and each cell m in M with the lat-long coordinates
of their centroids.

3. For each z in Z: (a) Identify the subset of cells in M within a geodesic buffer
of 3 km. Call this set M′

z. For computational reasons, we did not compute the
full distance matrix. Instead, for each starting cell, we restricted the computa-
tion of walking distances to cells within a radius of 3 km (geodesic distance).
Given that this work focuses on walking accessibility, this simplification has
little impact on our results, as cells outside the boundaries are unlikely to be
within walking distance. (b) Use the matrix routing engine OSRM (with de-
fault configuration parameters for the foot profile) to compute the walking dis-
tance in minutes between the centroid of z and the centroids of all m′ in M′

z.

As the matrix computation of OSRM provides incorrect results if the starting/ending
point is not sufficiently close to a walkable street, we used a heuristic approach to
identify potentially problematic starting and ending cells by intersecting ex-ante the
base grid with the walkable street network (defined mimicking the parameters of
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the foot profile in OSRM). If a cell presents no intersecting street, it is assumed to be
inaccessible, and all distances are set to NA.

Validation of the sample of cities

The quality of OSM data is constantly under scrutiny by researchers who rely on this
data source for their studies [135]. On one side, this has led to the development of
specific web services for visually comparing OSM data with other mapping systems,
such as the OSM Map Compare tool provided by provided by BBBike and Geofabrik.
On the other side, the scientific community has developed several methods to quan-
tify the quality of OSM data. These range from intrinsic evaluation methods (among
the first contributions: [136, 137, 138]), where metrics are defined using OSM data
itself, to approaches based on comparing these with external data sources (reference
data) (some of the first contributions include [139, 140, 141]).

As the suitability of OSM data for a particular application depends mainly on the
specific problem being tackled, researchers cannot rely on a predefined list of areas.
Instead, they should evaluate data quality in the context of their particular problem.
Here, we propose an approach to validate the sample of cities to include in our study
based on the comparison with the WC-ESA [6], here used as a reference dataset. The
pipeline for the data validation comprised two phases:

1. Definition of a Quality Score of green elements for each city in the sample;

2. Identification of a set of cities with similarly high data quality using k-means
clustering.

Each step is defined in detail below.

https://mc.bbbike.org/mc/
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Definition of a Quality Score of green elements, for each city in the sample For
each city in our sample, we computed the OSM green data Quality Score (QS) based
on the comparison of green features extracted from OSM and green features observ-
able in the WC-ESA, here used as an external reference dataset. To this scope, we
extended the list of green features in OSM to include features that -while not classifi-
able as public green areas- might appear as green cover in the satellite dataset. A list
of additional OSM tags retained to this scope is provided in Table B.1 in Appendix B.
Only OSM elements of the classes closed ways and relations were extracted, and
the choice of tags was based on a manual assessment of randomly selected cities.
The data were processed and remapped to the base grid following the approach
described for the main OSM greenspaces, in Section 3.4.

Borrowing techniques from the digital image processing domain, the QS was de-
fined to be proportional to the mean squared error between a green intensity image
generated using OSM data and an equivalent picture generated using land cover
data from the WC-ESA. In particular, for both data sources and each city, we first
projected the green information on a 9-arcsec resolution grid and characterised each
cell with a green intensity value corresponding to the proportion of the cell covered
by a green feature (the values range between 0 and 1). By treating each cell in the
grid as a pixel, we then generated two images of green intensity, one using data
from OSM and the other using data from the reference dataset. For each city in the
sample, the mean squared error among the two images was then computed as:

MSEc =
1
N ∑

i∈I
(GIOSM,i − GIESA,i)

2 (3.1)

where GIdata,i is the green intensity value of pixel i from the image generated us-
ing data from data, I is the set of pixels (cells) composing the image, and N is the
cardinality of I. By construction, the MSE is bounded between 0 (identical green
intensity) and 1 (complementary green intensity). For each city c, the QS was then
defined as

QSc = 1 − MSEc (3.2)

Figure 3.2 provides a visual example for eight cities.

Identification of a set of cities with similarly high data quality using k-means clus-
tering The second step involved the identification of a set of cities with sufficiently
high and homogeneous quality. To this scope, we proceeded as outlined below:

1. First, we selected a sample of cities (reference list) from countries where OSM
data are generally used for academic research. While we do not specifically
evaluate the mapping quality for these cities, our scope was to identify all
those cities in our dataset for which the data quality is comparable to cities
in the reference list. We included in the reference list all those cities in our initial
sample located in Italy, France, Netherlands, Germany, Austria, United King-
dom, Luxembourg, Belgium, the United States, and Canada.

2. For cities in the reference list, we then studied the association between the QS
and two city-level metrics: the size (captured by the natural logarithm of the
number of pixels in the image, or log(N)) and the average green intensity
(measured taking the average of the green intensity of the image generated us-

ing the WC-ESA across all pixels, or Mean GI =
1
N ∑i∈I GIESA,i). As depicted
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FIGURE 3.3: Validation of the sample of cities a) displays the Av-
erage (solid line) and IQR (shaded area) Quality Scores of cities in
the reference list as a function of the logarithm of the number of
pixels/cells (log(N)). b) displays the average (solid line) and IQR
(shaded area) Quality Scores of cities in the reference list as a function
of the Mean GI, i.e., the average value of green intensity for pixels
within the boundary of the city. c) is a scatter plot of the log(N) and
Mean GI. Each point represents a city in the reference list. The color rep-
resents the Quality Score. d represents. d) represents the k-means in-
ertia for different numbers of clusters, obtained when clustering cities
in the reference list based on their tuple of values (log(N), Mean GI). A
z-scores transformation was performed before clustering the data. e)
is a scatter plot of obtained clusters and corresponding regions iden-
tified by the corresponding decision boundaries. The insects on the
right depict the distribution of the QS of cities in the reference list (his-
togram) and the admittable region (shaded area) for each cluster (C=:

purple, C1: blue, C2: green, C3: yellow).

in panels a, b, and c of Figure 3.3, the QS decreases with the size and average
greenness of the city – i.e., larger and/or greener cities have a lower QS than
smaller and less green ones. It should be noted that this negative association
depends on the definition of the QS rather than implying a difference in the
quality of the mapping. Indeed:

• The QS of cities with low green coverage is artificially inflated by the ab-
sence of features to be mapped. This is the case because the lower the
number of features to be mapped, the lower the information that the QS
provides. A powerful example is the extreme case of cities with no green
coverage. By construction, the QS would be equal to 1 in these cases.
However, a QS equal to 1 does not guarantee a generally good quality of
OSM data.

• For geometrical reasons, larger cities have more peripheral pixels with
lower population densities. The positive association between the popula-
tion density and the QS (see top row of Figure3.2) determines the lower
QS observed for these large urban centres.

3. Due to the negative association between the size of the city and its average
greenness and the QS, the use of a single cut-off value to identify cities to be
included in our study might result in the inclusion of some urban centres with
insufficient data quality (for instance if the city has poor green coverage) or the
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exclusion of others with sufficient data quality (for example large cities). By k-
means clustering cities in the reference list based on the size and the average
greenness, we identified four regions of tuples of values (log(N), Mean GI)
(Panel e in Figure 3.3) and defined an admittable range of QS values as values
between the 10th and the 90th percentile of the QS of cities in the reference
list belonging to the specific cluster (shaded areas in the insects of panel e of
Figure 3.3). Standard preprocessing was performed for the k-means clustering.

4. The final sample of cities was then defined as the union of cities in the refer-
ence list and cities outside the reference list whose QS fell within the admittable
interval for their tuple of (log(N), Mean GI) values.

The final sample for the study comprised 1,040 urban centres. Figure B.1 in Ap-
pendix B for information on the characteristics of cities included and excluded from
the sample.

Stability metrics

In Section 3.5, we will introduce three families of green accessibility metrics, each
defined by a set of underlying parameters. As an example, let’s consider the family
of minimum-distance indicators. For this family, a parameter is the minimum size of
greenspaces, meaning that areas below this size are disregarded in the computation
of the indicator. In section 3.6, we will then present an evaluation of the stability of
each family of green accessibility indicators with respect to its underlying parame-
terization. Three metrics are used to evaluate the stability of the ranking induced by
changes in the parameterization of each family of indicators. These metrics are dis-
cussed in greater detail when presenting the results, while here we provide a formal
definition.

Throughout this section, the following notation is adopted: Nc is an ordered set of
N elements representing the cells within the city boundary in the population grid
of city c, Mc is an ordered set of M elements representing the cells in the extended
(3km-buffered) grid for city c, Dc (D+

c ) is an (N×M)-matrix ((M×M)-matrix) where
each element di,j (d+i,j) represents the walking distance (as per street-network) in min-
utes between the i-th element of Nc (Mc) and the j-th element of Mc.

Kendall rank correlation coefficient Let RInd(x)[N] be the ranking induced by the
accessibility indicator Ind with parametrization (x) on the set of cell Nc of the urban
centre c. The Kendall rank correlation coefficient [142] between two parametriza-
tions (1) and (2) of indicator Ind is given by:

τ = 1 − number o f discordant pairs
(N

2 )
(3.3)

where two pairs n1 and n2 in Nc are said to be concordant if either RInd(1)[n1] <
RInd(1)[n2] and RInd(2)[n1] < RInd(2)[n2] or RInd(1)[n1] > RInd(1)[n2] and RInd(2)[n1] >
RInd(2)[n2], otherwise they are discordant.

Naive targeting approach Let Ind(x)[N] be the accessibility indicator Ind with
parametrization (x) on the set of cell Nc of the urban centre c. For the minimum
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distance indicator, let t⋆x(y) be

t⋆x(y) = min

{
t :

[
∑n∈Nc

Pn(1 − 1[0,t)(Indx[n]))

∑n∈Nc
Pn

]
· 100 ≥ y

}
(3.4)

i.e. t⋆x(y) is the minimum value of the indicator associated with the performance of
the bottom y% of the population (i.e. it is the minimum distance to a greenspace
with determined characteristics of the individual performing better than y% of the
total population of the urban centre). We call t⋆x(y) the cutoff value of the indicator
associated with the y% targeting strategy.

Noticing that, unlike the minimum distance indicator, higher values of the exposure
and per-person indicators are desirable, the cutoff value t⋆x(y) for these two families
is defined as:

t⋆x(y) = min

{
t :

[
∑n∈Nc

Pn1[0,t](Indx[n])

∑n∈Nc
Pn

]
· 100 ≥ y

}
(3.5)

Then, for any two parametrizations (1) and (2) of Ind, for the minimum distance
indicator, we defined the proportion of the stable targeted population under the y%
naive targeting approach as the following weighted Jaccard indicator:

Snaive(y)md =
∑n∈Nc

Pn(1 − 11,t⋆,y,n)(1 − 12,t⋆,y,n)

∑n∈Nc
Pn(1 − min[11,t⋆,y,n,12,t⋆,y,n])

(3.6)

where 1x,t⋆,y,n = 1[0,t⋆x(y))(Ind(x)[n]). For the exposure and per-person indicators:

Snaive(y)exp,pp =
∑n∈Nc

Pn11,t⋆,y,n12,t⋆,y,n

∑n∈Nc
Pn max[11,t⋆,y,n,12,t⋆,y,n]

(3.7)

where 1x,t⋆,y,n = 1[0,t⋆x(y)](Ind(x)[n]). It is noteworthy that given the presence of
potential ties (some cells may have the same accessibility value) induced by Ind(x),
the number of people belonging to the bottom y% of the induced ranking population
might differ under Ind(1) and Ind(2).

Most-disadvantaged targeting approach The approach to targeting the most dis-
advantaged is akin to the naive targeting method, with a key distinction. Rather
than relying solely on a cutoff value determined by the ranking of the population,
which remains agnostic to the actual value of the indicator, this approach determines
the cutoff by incorporating information on the value of the indicator.

For the exposure and per-person indicators, we defined the target group as those
with no exposure/per-person access under the parameterization (x). Thus, the pro-
portion of the stable population in the target group under any two parameterizations
(1) and (2) is defined as the resulting weighted Jaccard indicator:

Sexp,pp
most−dis =

∑n∈Nc
Pn1[0](Ind(1)[n])1[0](Ind(2)[n])

∑n∈Nc
Pn max[1[0](Ind(1)[n]),1[0](Ind(2)[n])]

(3.8)

For the minimum distance indicator, we define the most-disadvantaged target pop-
ulation as that subgroup that performs y-times worse than the Thus, letting tm

x be
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FIGURE 3.4: Geographical coverage of the study a) The density plot
reports the size (measured as log-population) distribution of cities in-
cluded in the sample for each macro-area. Cities in the Russian Fed-
eration have all been attributed to Europe. b) The map displays the
number of cities included in the study for each country. Black indi-

cates that no city was included for the corresponding country.

the average value of the indicator under the parametrization (x), then:

Smd
most−dis(y) =

∑n∈Nc
Pn(1 − 11,tm

1 ,y,n)(1 − 12,tm
2 ,y,n)

∑n∈Nc
Pn(1 − min[11,tm

1 ,y,n,12,tm
2 ,y,n])

(3.9)

where 1x,tm
x ,y,n = 1[0,ytm

x )
(Ind(x)[n]).

3.5 A computational framework to evaluate several families
of green accessibility metrics

Building upon policy debate and recommendations of public-health authorities [103,
104, 105] on green accessibility and exposure, we defined a computational frame-
work to measure three families of spatial indicators of green accessibility. The abil-
ity to measure multiple families of metrics simultaneously allows for a multidimen-
sional characterisation of access and exposure to urban greenery. The three fami-
lies are: Minimum distance, exposure (or cumulative opportunities), and per-person
green availability. The framework enables a flexible parameterization of each family
of indicators according to the minimum size of the PGAs/green features of inter-
est, the type of greenery, and (when applicable) the time budget and is currently
deployed in an interactive web interface for 1,040 cities worldwide – whose geo-
graphical distribution is depicted in Figure 3.4. Figure 3.5 provides a schematic rep-
resentation of each family of indicators, while a formal definition is provided in what
follows.

The following notation is used throughout the section: Nc is an ordered set of N el-
ements representing the cells within the city boundary in the population grid of city
c, Mc is an ordered set of M elements representing the cells in the extended (3km-
buffered) grid for city c, Dc (D+

c ) is an (N×M)-matrix ((M×M)-matrix) where each
element di,j (d+i,j) represents the walking distance (as per street-network) in minutes
between the i-th element of Nc (Mc) and the j-th element of Mc.

http://atgreen.hpc4ai.unito.it/
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Minimum distance This family of indicators measures the walking distance (in
minutes) from a residential location to the nearest public green area. The indicator
can be parameterized according to the minimum size of the green area and the type
of green (combinations of parks, forests, and grass).

For each cell i in the population grid Nc, the indicator is defined as:

mdi,c = min(Di,c ⊙ gdc) (3.10)

i.e., the minimum of the Hadamard product between the i-th row of Dc and the
M-dimensional vector gdc taking value 0 or 1 to indicate the absence/presence of a
green feature (with given characteristics in terms of size/type of green) in the corre-
sponding cell of the extended grid Mc.

Exposure (or cumulative opportunities) This family of indicators measures the
amount of urban green space available from a residential location within a walking
time budget (t minutes), in hectares. In contrast to the minimum distance indicator,
which focuses solely on green areas that are both accessible and public, the exposure
indicator assesses the overall presence of green features in the vicinity of a residential
area, regardless of their accessibility or intended use. This approach expands our
definition of green elements to encompass additional urban greenery features like
roadside tree lines. To implement this broader perspective, we use the WC-ESA [6]
as our primary data source to identify green elements rather than relying on OSM.
As for the previous class, the indicator can be parameterized according to the value
of t and the minimum size of the green area.

For each cell i in the population grid Nc, the indicator is defined as the sum of the
green intensities measured on cells no more than t-minutes away from the cell of
origin. I.e.:

expi,t,c = 1(0,t](Di,c)× gic (3.11)

where 1(0,t](Di,c) is an indicator function mapping each element of the M-dimensional
vector Di,c equals to 0 if di,j is greater than t and equals to 1 otherwise. gic is an M-
dimensional vector representing the size of the green features (with given character-
istics in terms of size) in the corresponding cell of the extended grid Mc.

Per-person This family of indicators measures the per-person availability of pub-
lic green areas within a time budget (t minutes) from a residential location in square
meters. Unlike the previous two indicators, agnostic to population density, it in-
corporates the notion of competitiveness in using PGAs for specific activities. As a
result, the level of public green available to a resident depends on the total green
provision and the cumulative number of people living within the service area of
each PGA. As for the previous classes, the indicator can be parameterized according
to the value of t, the minimum size of the green area, and the type of green.

For each cell i in the population grid Nc, the indicator is computed as:

ppi,t,c = 1(0,t](Di,c)× gppt,c (3.12)

where gppt,c is an M-dimensional vector representing the squared meters of green
available per-person in the corresponding cell of Mc. More specifically, gppt,c is



3.5. A computational framework to evaluate several families of green accessibility
metrics

53

Minumim distance

Exposure

Per-person

D
ir

ec
t

In
d

ir
ec

t

Apportioning Competitors per area

w
ith

in
 tim

e b
u

d
g

et

Parameterization of each family of indicators:

Minumim distance (MD):

{

type of green features

minimum size of the green features

data source

}

Exposure (EXP):

{

type of green features

minimum size of the green features

time budget

data source

}

Per-person (PP):

{

type of green features

minimum size of the green features

time budget

data source

}

a

b

c

d

FIGURE 3.5: Graphical representation of the three families of ac-
cessibility indicators a) Minimum distance: The indicator measures
the walking distance in minutes to the closest cell with a PGA with
selected characteristics in terms of size and type of green for each resi-
dential cell. In the top-left panel, the red cell is the cell of interest. The
remaining cells are nearby cells with a PGA, whose colour is propor-
tional to the distance to the cell of interest. b) Exposure: The indicator
measures the cumulative size of green features (in hectares) available
within a walking time budget from a residential cell. In the top-right
panel, the red cell is the cell of interest. The area within the walking
time budget from the cell of interest is depicted with a dotted line. c)
Per-person: This indicator is computed in two steps. In the first step,
all residents in the urban centre are apportioned to PGAs – within the
corresponding walking time budget – proportionally to the size of the
PGA. In the second step, for each residential cell, the per-person in-
dicator is computed as the ratio between the size of PGAs within the
walking time budget from the cell of interest, and the total number of
residents apportioned to these areas –irrespective of their residential
location. In the bottom panel, the cell of interest, its residents, and the
area within the corresponding walking time budget are depicted in
black. The same information for competitor users from other residen-
tial cells is depicted in pink and blue. d) Summary of the parameteri-

zation of each family of indicators.

computed by dividing the green available in each cell by the total confluent popula-
tion. I.e.:

gppt,c = gic ⊘ AP(t,c) (3.13)

where ⊘ refers to element-wise division, AP is the M-dimensional vector whose el-
ement apj,t,c equals the confluent population (for the time-threshold t) of the j-th
element of Mc. The affluent population of cell j is computed by assigning – for each
residential cell i – shares of the population to cells in M within the time-budget t
proportionally to the size of the available green in j. Formally, the confluent popula-
tion of cell j in M for time-budget t is defined as:

apj,t,c = ∑
i∈M

Pi
1(0,t](d

+
i,j,c) · gij,c

∑m∈M 1(0,t](d
+
i,m,c) · gim,c

(3.14)
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FIGURE 3.6: Stability of minimum distance indicator to the mini-
mum size of greenspaces a) The maps depict in red target areas in
London (UK) according to the 2% naive targeting approach for the min-
imum distance indicator with increasing minimum greenspaces’ size
(from left to right: 0.5 ha, 1 ha, 2 ha, and 5 ha). The intensity of the
red is proportional to the number of residents in the cell. b) The charts
depict the level of stability of the minimum distance indicator to dif-
ferent parameterizations and according to different stability metrics
for six cities across all continents. The Most-disadvantaged targeting
targets residents performing worse than three times the mean citizen.
For the Rank correlation, 2% naive targeting and the Most-disadvantaged
targeting, the comparison is provided with respect to the parametriza-
tion with minimum size equal to 0.5ha for minimum sizes up to 5ha
and to 7.5ha for larger minimum sizes. For the Gini indicator, the chart
reports the indicator’s value under several parametrizations. c) The
charts report the median value (solid line) and the IQR (shaded area)
of the stability metrics for all cities in our sample (black) and for cities

with more than 1 million inhabitants (blue).

3.6 Assessing the need for a multidimensional perspective
in the evaluation of green accessibility in urban areas

Having defined a framework for the computation of several families of green ac-
cessibility indicators under a range of parameterizations, we then examined the im-
portance of adopting a multidimensional perspective when using green accessibility
metrics for policy design, as opposed to relying on a single indicator. In the next two
sections, we present the results of two evaluations aimed at assessing the stability
of the ranking of performance among different areas and the relative populations in
each city induced by 1. different parametrizations of the same family of indicators,
2. green accessibility targets proposed by institutional bodies. A formal definition of
the stability metrics was provided in section 3.4.

Stability of the green accessibility families under different parameteriza-
tions

Institutional targets and guiding principles frequently lack precision regarding the
specific parametrization of an indicator, as illustrated, for instance, in [103, 104]. In
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other cases, they recognise the importance of a multidimensional perspective, di-
rectly suggesting the use of multi-level green targets. Despite this, the vast majority
of single-city or large-scale evaluations neglect this multidimensional perspective.
Furthermore, there is still limited knowledge on how changes to the parametriza-
tion of green accessibility metrics affect the relative performance of different areas
and sub-groups of the population within a city. To address this gap, we analysed
the impact of minor changes in the parameterization of each family of indicators
along three dimensions, introducing —where applicable— an appropriate stability
metric. (i) The first dimension is the ranking, in terms of green accessibility, of the
geographical units composing the city. We measured the stability of the rankings
induced by two alternative parameterizations using the Kendall rank correlation co-
efficient [142]. This metric quantifies the degree of agreement between two ordered
sets based on the ranking of their elements. In this first dimension, every geograph-
ical unit is equally important for assessing the ranking stability, and information on
the number of residents in each cell is not factored in. (ii) To account for this, the
second dimension extends the first one by additionally considering the population
distribution in the city. Furthermore, rather than evaluating the entire ranking, for
this dimension, we adopted a policy perspective by examining the stability of the
population located at the lower end of the ranking, which is expected to be the fo-
cus of policy interventions. To this scope, we proposed two targeting strategies,
i.e. strategies to identify under-served subgroups of the population of a city. With
the first strategy, labelled naive targeting, we targeted the y% worst performing pop-
ulation, irrespective of the actual performance; with the second strategy, labelled
most-disadvantaged targeting, we targeted subgroups of the population with low per-
formance in either absolute term or relative to the rest of the population (see Sec-
tion 3.4). We then defined the stability of an indicator to any two parametrizations
(baseline vs. alternative) under a targeting strategy as the share of the overlapping
targeted population. For a stability level s, the average proportion of the target pop-
ulation under one parameterization who would not be targeted under the alternative
one (hereafter: conflicting target population) is given by (1−s)

(1+s) . (iii) As a third
dimension, we computed the observed inequality level under the indicator’s spe-
cific parameterization, measured through a weighted Gini indicator [143]. The two
initial dimensions are grounded in the considerations of policy design. Although
there is no universally agreed-upon planning strategy, there is a consensus that in-
terventions should focus on left-out subgroups of the population to mitigate urban
inequities [144]. The inclusion of the third dimension stemmed, instead, from the
growing use of the Gini indicator in measuring urban inequalities in green accessi-
bility studies [145, 146, 147, 148].

Figure 3.6 illustrates the stability of the minimum distance indicator in response to
variations in the minimum size of the greenspaces across our entire sample of cities
(mean and inter-quartile range (IQR)), cities exceeding 1 million inhabitants (mean
and IQR), and selected major urban centres worldwide. For the evaluation, the rank-
ing induced by parametrizations up to 5 hectares (ha) is compared to a baseline of
0.5 ha. Larger parametrizations are evaluated against a baseline of 7.5 ha. The use
of two different baselines ensures that the comparison is provided across indicators
measuring accessibility to greenspaces with a similar size, here used as a proxy for
the potential uses of the area.

We observe a consistent decline in the median stability level as the minimum size
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FIGURE 3.7: Population density of conflicting and stable targeted
areas a) The panel depicts the ratio of the average population density
(PD) of the areas associated with the conflicting targeted population
to the average PD of areas linked to the stable targeted population
under two targeting strategies and a range of alternative minimum
PGA sizes for the minimum distance indicator. The line is the median
across all cities (in black) and cities with more than 1 million inhabi-

tants (blue); the IQR for both cases is depicted as a shaded area.

of greenspaces increases, for both the targeting approaches. This trend is consis-
tent among all cities regardless of population size. Notably, the generally higher
stability values at the area level (the Rank correlation displayed in Figure 3.6) mask
significant reshuffling at the bottom of the population ranking. Under the 2% naive
targeting strategy, the median stability level across all cities shifts from 0.77 [IQR:
0.48-1] for a parameter change from 0.5 ha to 1 ha to 0.53 [IQR: 0.28-0.94] for a shift
to 2 ha. This corresponds to a conflicting target population of 12% [IQR: 35%-0%] and
30% [IQR: 56%-3%], respectively. These results underscore substantial variability
in stability depending on the specific green configuration of the urban centre, along
with concerning levels of instability, particularly in selected large cities. For instance,
using the same parameterizations (minimum PGA size of 0.5 ha and 1 ha), the sta-
bility levels for Sydney (AUS), Rio de Janeiro (BRA), and London (UK) are 0.32, 0.36,
and 0.47, respectively, corresponding to conflicting target population levels of 51%,
47%, and 36%. Similar trends emerge with the more restrictive most-disadvantaged
targeting strategy, which tightly focuses on populations with low accessibility lev-
els as well as adopting different targeting levels from the naive targeting approach
(presented in Figure B.4 in Appendix B). A visual assessment of the changes in the
targeted population for the city of London (UK) is provided in the maps in the top
row of Figure 3.6, which display – in a scale of reds –targeted areas using the 2%
naive targeting strategy under five parameterizations, with the intensity of the palette
being proportional to the number of people living in the area. From the graphical
comparison, we observe that:

1. For small changes in the parameter (e.g., from 0.5 ha to 1 ha), most of the stable
population (i.e., populations targeted under both parameterizations) is concen-
trated in low-density areas. While some (but fewer) higher-density areas are
targeted in both scenarios, they tend not to overlap. It is worth noticing that
this is not only a peculiarity of London but holds for most cities. Indeed Fig-
ure 3.7 shows that the ratio between the population density of areas associated
with a conflicting target population and areas with a stable target population
is consistently above 1.

2. The degree of clustering of targeted areas increases along with the minimum
size of the greenspaces. This is due to the physical and geographical con-
straints of larger greenspaces, which are typically fewer and less scattered
around the city than smaller ones.
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Name Type Size Distance Target Data Source
WHO MD 0.5 ha 5 mins 5 mins OSM [103]
B1 MD 0.5 ha 10 mins 10 mins OSM [105]
N1 MD 2 ha 5 mins 5 mins OSM [104]
B2 MD 10 ha 15 mins 15 mins OSM [105]
N2 MD 20 ha 25 mins 25 mins OSM [104]
B3 PP 0.5 ha 15 mins 6 mq2 OSM [105]
ESA EXP 100 mq2 5 mins 0.5 ha ESA [103]

TABLE 3.2: Operational definition of indicators and targets pro-
posed by institutional bodies. The proposed indicators are inspired
by targets set by local authorities and public health bodies world-
wide. An indicator is an underlying metric measuring whether an
area satisfies the corresponding target. For instance, the WHO indi-
cator measures the walking distance in minutes from the closest PGA
of at least 0.5 hectares, and an area satisfies the WHO target if the
walking distance to the closest PGA of at least 0.5 hectares is no more
than 5 minutes. Column Type identifies the family of the indicator:
MD - Minimum distance, PP - Per-person, and EXP- Exposure. Col-
umn Size refers to the minimum size of greenspaces extracted for the
computation of the indicator. Column Data refers to the data source
used to extract greenspaces. It should be noted that the ESA indicator

is the only indicator using green data from the WC-ESA.

Finally, we explore the impact of parametrizations on the level of inequality within
a city as measured through a weighted Gini indicator. Interestingly, we do not
observe any typical pattern across cities. While some cities experience decreasing
levels of inequality (e.g., Singapore (SGP)) as we increase the minimum size of the
greenspaces, others show increasing levels (New York (USA)) or U-shaped patterns
(Sydney (AUS) and London (UK)). While this is likely to result from the interplay be-
tween the size composition of greenspaces within a city and its spatial distribution,
we do not assess the existence of specific regularities. Similar figures for the stability
of the exposure and per-person indicators against the time budget (for both) and the
minimum size of the greenspaces (for the latter only) are provided in Appendix B
(Figures B.2-B.3 ), the sensitivity analysis to the y parameter of the targeting strate-
gies for all indicators (Figures B.6-B.7). For the exposure indicator, we observe a
median Rank correlation for cities in our sample of 0.69 [IQR: 0.63-0.74] for a shift in
the time budget from 5 to 10 minutes and median stability levels of the 2% targeting
strategy of 0.38 [IQR: 0.23-0.63] for a similar change in the time budget. See Data
availability statement for the release of detailed stability metrics across our entire
sample.

Stability of institutional targets

In the previous section, we examined the stability of the green accessibility indicators
across various parameterizations. This section focuses on the accessibility pictures
emerging from institutional targets proposed by global public health organizations
and local authorities. Each target can be traced back to a specific family of indica-
tors, once a specific parametriation is set. The investigation consisted of two steps.
First, we evaluated the performance of a city against the targets. As discussing the
results for over 1,000 cities would not be feasible, here we present information on the
median level of cities by continent. Detailed information for each city is available in
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the web interface. Then, similar to the previous section, we analysed how the differ-
ent institutional targets differ in terms of identifying under-served sub-populations.
Once again, the web interface can be used to explore the results of each city. A
comprehensive operational definition of each institutional target and the underlying
indicator is provided in Table 3.2. While the indicator provides a detailed accessi-
bility metric (such as the walking distance in minutes to the closest greenspace with
specific characteristics), a target binarizes the indicator by distinguishing between
values that meet a specified criterion and those that do not. For instance, to meet the
WHO green accessibility target, an area must have access to a greenspace of at least
0.5 hectares within 300 meters, or a 5-minute walk.

The existence of well-defined green targets naturally induces a metric to measure the
performance of cities in terms of green accessibility, i.e., measuring the proportion of
the inhabitants of a city that satisfies the prescribed target. By coupling information
on the green indicators and the population density, we estimated the proportion of
the population meeting each target in each city. Figure 3.8a provides an overview of
the performance of cities in our sample for each target, categorized by geographical
area. Consistent with findings in other studies [128, 149], we observe a distinct ge-
ographical pattern across most indicators. Cities in Europe and Australia-Oceania
generally outperform cities in the Global South and North America, particularly con-
cerning minimum distance indexes and the per-person metric. While this pattern is
less pronounced for the exposure metric, cities in Asia and Africa still exhibit more
significant variation around the median than other geographical areas. Regardless
of geographical location, a larger proportion of the urban population typically meets
the exposure target than other targets. This disparity is more pronounced for cities
in the Global South, where available green spaces are less likely to be organized in
structured public areas, and for North American cities, which are often character-
ized by extensive suburbs with predominantly single-family homes featuring pri-
vate gardens but fewer public spaces. The proliferation of green indicators reflects a
recent surge in interest from local authorities and public health bodies in promoting
greener urban environments. It also acknowledges the diverse array of benefits as-
sociated with exposure to nature. However, this proliferation reveals the existence of
concurrent authorities, often operating at the same level, each establishing indepen-
dent goals. In Figure 3.8b, we evaluated the interchangeability of the accessibility
perspectives derived from these indicators. Similarly to the previous section, we
quantified the degree of disagreement between any pair of two indicators for each
city through the stability of the population not satisfying the target (henceforth: tar-
geted population) proposed by the institutional body. We observe greater stability for
indicators within the same class than across indicators belonging to different classes.
The lowest stability is observed between the WHO indicator and the ESA, reflecting
differences in the types of green features incorporated in these indicators, particu-
larly the inclusion of elements beyond parks, grasslands, and forests in the latter.
When comparing the three short-distance minimum-distance (MD) indicators, we
note a smaller overlap in the targeted population between WHO and B1 compared
to the overlap between WHO and N1. The distinction arises from variations in the
time threshold for the former and the minimum size for the latter, suggesting that
the time dimension has a more significant impact than the size of the greenspace
in short-MD evaluation on the definition of the city performance and the targeted
population.
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FIGURE 3.8: Institutional green accessibility targets: performance
and stability a) For each institutional target (see Table 3.2), the ra-
dial plot depicts the median (solid line) and IQR (shaded area) across
cities in each geographical macro-area of the proportion of the pop-
ulation satisfying the target. The colour of the plot reflects the class
of the target. Cities in the Russian Federation have been attributed
to Europe. b-c) The box plots depict the cross-indicators’ level of sta-
bility in the population non-satisfying with the corresponding insti-
tutional targets for all cities in the sample (black) and for cities with

more than 1 million inhabitants (red).

3.7 The interactive web interface

To facilitate the use of our multi-indicator framework by policymakers, we built
an interactive web platform with five functionalities: EXPLORE, MEASURE, COM-
PARE, CREATE and DRAW. The back-end of the interface was developed using Post-
GIS, the front-end is developed using the ReactJS framework.

After selecting the urban centre of interest, the platform allows the user to:

1. EXPLORE public green areas identifiable in OSM. The user can filter the greenspaces
based on detailed OSM tags, the size of the area (in hectares), and the name (as
reported in OSM). This functionality is mostly meant to provide an overview
of the green features included in the minimum-distance and per-person indi-
cators. The interface does not provide the same functionality for the data from
the WC-ESA since a similar tool is already available on the ESA website.

2. MEASURE several pre-computed green accessibility indicators at 9-arc sec ge-
ographical granularity. Policy recommendations by public health authorities
and local governments inspire the indicators proposed. The map depicts the
spatial variation of each indicator and the corresponding target. Summary
metrics on the overall performance of the city in absolute terms and relative to
the other cities are also provided.

3. COMPARE the performance of each cell across any two indicators, selected
among the pre-computed metrics at the point before. The comparison is pro-
vided by splitting the distribution of each indicator into four groups based on

http://atgreen.hpc4ai.unito.it/
https://viewer.esa-worldcover.org/worldcover
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the distribution of the metric weighted by the population distribution and as-
signing each cell to the corresponding group. An example of this functionality
for the city of Rome, Italy, is provided in Figure 3.9.

4. CREATE their indicators by setting each parameter to the desired level. The
user can select the family of the indicator, the type of green (only green fea-
tures from OSM can be selected for performance reasons), the minimum size
of the green feature (in hectares), and, whenever applicable, the time budget
(in minutes). By setting the desired level of the green accessibility (target), the
user can then visualise areas satisfying the target and areas that are missing
out.; and

5. DRAW a new green space and evaluate the impact on nearby areas in terms of
enhanced green accessibility. After generating an initial indicator by selecting
all the required parameters, the user can click on a specific location to simu-
late the impact of adding a greenspace in that area on the indicator itself. A
black line in the resulting map identifies the area of the city affected by the in-
tervention (i.e., areas where the metric value has improved), and information
regarding the magnitude of the change in the indicator for the affected loca-
tions is displayed. It should be noted that the current version of the function-
ality assumes the additional greenspace does not extend beyond the selected
cell; thus, the reported metrics are accurate only for relatively small interven-
tions. An example of this functionality for the city of Rome, Italy, is provided
in Figure 3.9
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FIGURE 3.9: ATGreen Front End: The web interface. An example.
The picture displays the front end of ATGreen. The top figure is a
screenshot for the tab COMPARE (for the city of Rome, Italy). The
bottom figure is a screenshot for the tab DRAW (for the city of Rome,

Italy).
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3.8 Discussion

Implications of the study

While recent studies on accessibility to urban green often compare cities or specific
areas using a single indicator, our study emphasises the importance of recogniz-
ing the inherently multi-dimensional nature of green accessibility in urban envi-
ronments. After introducing a framework to organically evaluate three families of
structural green accessibility indicators, the framework was used to examine the
similarity of accessibility outcomes arising from indicators within the same family
but under different parameterizations and from institutional targets.

The findings in the first part of our study indicate significant instability in the rank-
ing of both areas and populations, following perturbations in the parameterization
of selected indicators. From a policy perspective, this suggests that relying on a
single set of parameters may provide insufficient discrimination across areas and
population subgroups with little green accessibility. This emphasizes the need to
evaluate the impact of the adopted parametrization (or thresholding) when assess-
ing the relative performance of areas/population subgroups in a city with respect
to a specific structural green accessibility metric. In addition, the analysis showed
that consistently under-performing areas are typically less densely populated than
so-called conflicting areas, entailing an additional challenge from a policy design
perspective, as these stable areas may not be sufficiently populated to be mean-
ingful targets for intervention. It is important to stress that the simplistic ranking-
based prioritization strategies assessed in the initial phase of this study do not seek
to reproduce a realistic policy-design process. Numerous real-world factors, such
as environmental or financial constraints, could impede the feasibility of green-
ing interventions in severely under-performing areas. Additionally, there might
be valid reasons to prioritise specific demographic groups, such as older adults or
children, who may face more restricted mobility within the city. Moreover, real-
istic policy design processes in urban environments must consider other complex
factors, including green gentrification phenomena, financial and built-environment
constraints but also the implementation of co-creation processes to foster citizens’
engagement [150, 151, 152, 153, 154, 155]. Given the broad geographical scope of the
study, these elements could be factored in. Instead, we focused on the identification
of subgroups of the population that are consistently (e.g., across several indicators or
perturbation of the same indicator) under-performing. While this approach alone is
insufficient to describe a realistic policy design approach, it is considered here instru-
mental for the design of interventions aimed at effectively promoting the reduction
of urban inequalities [144].

The second part of the study focused on specific institutional targets, aiming to eval-
uate the interchangeability of the induced accessibility pictures. Similar to the pre-
ceding analysis, the interchangeability between any two targets was assessed by ex-
amining the size of the overlap in populations that do not satisfy these targets, e.g.,
the degree of overlap between populations that might be targeted for intervention
using one or the alternative target. Unsurprisingly, the findings suggest a limited de-
gree of interchangeability for indicators from different families (e.g., minimum dis-
tance vs. exposure) or those aiming to capture different forms of green accessibility
(e.g., short distance to a small greenspace vs. longer distance to a larger greenspace).
This confirms the need to evaluate each form of green accessibility independently
to provide a comprehensive picture, in line with the multi-target recommendations
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of specific institutional bodies [104, 105]. More interestingly, substantial discrep-
ancies also emerge among targets seeking to capture similar forms of accessibility
(e.g., targets WHO, B1, and N1, all short-distance indicators). This latter observation
reinforces the results from the first part of the study on the impact of a fixed param-
eterization, here adopting more realistic targeting approaches designed by specific
institutional bodies.

While single-indicator approaches have been shown to perform well in studying
the impact of green accessibility and exposure on outcomes such as human health
and wellbeing (as in [119]), this study suggests that transitioning toward a multi-
indicator framework would provide a more nuanced picture of green accessibility.
A multi-dimensional framework serves a dual purpose: 1. assessing the impact of
a fixed-threshold approach induced by a specific parameterization of an indicator,
2. organically evaluating multiple forms of green accessibility.

Limitations of the study and future research

Despite the effort devoted to the cleaning and processing of the data to ensure the
best possible standards, the main limitation of this analysis concerns the complete-
ness of the mapping of green features in OSM. To limit the impact of this potential
data bias, we undertook a series of filtering and checks to assess the quality of the
OSM data in each urban centre, resulting in more than halving the initial sample of
cities (from around 2,500 to 1,040). However, the accessibility metrics that we mea-
sured intrinsically depend on the quality of these data, so low green feature quality
would necessarily result in biased indicators. To promote transparency and facili-
tate the identification of these biases, we made all our data (including the raw data)
easily navigable to the public with our interactive platform. However, we deem the
impact of this issue on the stability metrics performed in this study to be low as the
analysis is designed to compare across areas within the same city (where the quality
of the mapping is expected to be consistent) rather than across cities.

Another limitation of the study concerns the definition of greenspaces for the min-
imum distance and the per-person indicators. Our definition of urban green relies
entirely on the tag of areas in OSM. In the presence of heterogeneous standards for
the mapping of greenspaces among OSM mappers, the characteristics of areas clas-
sified as greenspaces (in terms of the level of green, type of services, and character-
istics of the vegetation) might vary largely across countries or the climate zone of
the urban centre. Once again, the interactive platform provides an initial attempt to
control for this variability by allowing the user to customise the selection of green to
incorporate in the indicator. To futher address this limitation, one potential avenue
for future research involves expanding the framework by incorporating new data
layers. These additional layers could automatically enrich the characterization of
urban green areas with policy-relevant features, such as the availability of services
and facilities, biodiversity levels, and other environmental quality or safety metrics.
While collaboration with local authorities can inform this feature-augmentation pro-
cess, extending it to large-scale evaluation poses notable challenges. An associated
research direction evaluates the various data sources available for extracting green
features, considering their completeness and suitability for constructing green ac-
cessibility indicators. Although our initial attempt in this direction is outlined in the
Materials and Methods of this study, our evaluation is currently limited to two data
sources. Future research efforts are necessary to assess the diverse sources available
systematically.
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Chapter 4

ATGreenGO: a routing engine
recommending nature-enriching
routes

4.1 Overview of the chapter

This chapter is based on on the outputs and technical report produced for the EU
Horizon 2020 GoGreenRoutes project (Grant ID: 869764).

Continuing the broader discussion on enhancing green accessibility initiated in Chap-
ter 3, this chapter introduces a shift in focus from the structural aspects of spatial
relationships between urban residents’ home locations and nearby greenspaces to
strategies aimed at influencing individual behaviour to increase exposure to na-
ture. To this end, I propose a novel routing engine for walking transits, named
ATGreenGO, designed to maximise exposure to natural environments while min-
imising the level of detour compared to the shortest route, thereby providing routes
that can be easily integrated into a daily routine. Although the routing engine is cur-
rently deployed for a small set of cities, its design relies solely on publicly available
resources, making it replicable for any other urban area.

The remainder of the chapter is structured into seven sections. Section 4.2 outlines
the motivations behind the development of the routing engine. Section 4.3 discusses
academic research on the development of routing engines that adopt non-time or
distance-based definitions of optimality. Section 4.4 provides an overall discussion
of the materials and methods for the routing engine, including the characterisation
of the street network in terms of the exposure to nature that each street guarantees.
Section 4.5 and Section 4.6 describes the system in greater detail and provides an
overview of the associated web interface. The performance of ATGreenGO is then
evaluated in Section 4.7. Finally, Section 4.8 discusses the implications and potential
impact of the developed routing engine.

4.2 Scope

In the previous chapter, I discussed the health implications of exposure and access to
nature (see Section 3.2), which underpin many greening interventions implemented
by local authorities. I also reviewed the methodologies used to evaluate green ac-
cessibility, with a specific focus on the widely used structural metrics. These metrics
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assess the relationship between the green infrastructure of a city and the distribution
of its residents, concentrating predominantly on their residential locations.

However, this home-centric approach has notable limitations, as it overlooks the
potential for and actual nature exposure during various daily activities. People en-
gage with green infrastructure not only around their residential areas but also in
other locations throughout their day. Moreover, some exposure to nature may oc-
cur incidentally during activities such as commuting, running errands, social visits,
or recreational outings. Recognising these limitations, recent research has shifted
towards employing behavioural-informed indicators. These methodologies make
use of surveys, automated user-generated geographic data, and public participation
geographic information systems (PPGIS) to provide a more nuanced and accurate
assessment of actual exposure levels to nature [129, 130, 131, 132].

This chapter builds upon the discussion of green accessibility introduced in Chapter
3 by shifting both the focus and the nature of the contribution. While the previous
chapter was limited by its structural perspective, which predominantly centred on
residential locations, this chapter acknowledges that interactions that people experi-
ence with nature extend far beyond their home environments, focusing specifically
on the potential for incidental exposure to nature that might happen during daily
routines.

In terms of nature of the contribution, this chapter departs from the analytical type
of contribution proposed in Chapter 2 – that consistend in a purely analytical study–
and Chapter 3 – where the development of a computational framework was instru-
mental to the analytical study. Instead, it focuses on the algorithmic and program-
ming development of a tool designed to enhance exposure to nature: a routing en-
gine named ATGreenGO. This tool aims to increase the exposure of users to green
spaces during everyday activities, such as commuting or leisure walks, by recom-
mending routes that offer richer nature experiences. By suggesting alternatives to
the conventional shortest route, ATGreenGO helps users discover more enjoyable
and nature-enriching paths that they might otherwise overlook.

The routing algorithm embedded in ATGreenGO is designed to balance the maximi-
sation of nature exposure with the minimisation of detours compared to the shortest
route. This balance ensures that the suggested routes are practical alternatives that
can be seamlessly integrated into daily routines without significantly altering the
time required for each activity. The validation process confirms that ATGreenGO
effectively achieves this balance, offering substantial improvements in nature expo-
sure while only slightly increasing travel time. Moreover, the results indicate that the
system performs consistently well across various cities and natural environments,
demonstrating the robustness and reliability of the recommendations provided by
ATGreenGO. This development represents a shift from purely analytical work to
a practical tool capable of positively influencing daily walking behaviours and en-
hancing overall well-being through increased interaction with nature.

4.3 Related work

Leveraging geodata, a routing engine is software that provides tools for calculating
various types of information related to possible routes within a geographical area.
The most common functionality involves calculating one route between a starting
location and a destination based on specific optimisation rules. Additional features

http://atgreengo.hpc4ai.unito.it/


4.3. Related work 67

typically include the computation of isochrones, i.e. a line of equal travel time from a
starting location, and the ability to compute matrices of distances between multiple
origins and destinations within the same query.

In terms of underlying optimisation rules, traditional routing engines primarily pri-
oritise efficiency metrics such as shortest distance or fastest time. Early research on
route recommendation has focused on developing algorithms to optimise efficiency
in static complex contexts, such as the presence of multiple users and associated
congestion issues or multi-modality transportation modes. For instance, Chang et
al. [156] developed a backtracking algorithm to recommend car routes that devi-
ate from popular paths, providing variety among different users and reducing the
likelihood of congestion without relying on real-time data. In the context of multi-
modality, Ludwig et al. [157] used an adaptive A∗-like algorithm to suggest public
transport routes that minimise walking and waiting times. More recently, routing
engines that focus on efficiency metrics have been extended to incorporate dynamic
factors such as real-time information on congestion [158] and delays in public trans-
portation [159]. In this respect, one of the most widely used services is Google Maps
[160].

Optimisation based on time or distance metrics may, however, be inadequate in spe-
cific contexts, particularly for non-motorized trips. A number of studies have found
that street-specific features can promote active mobility behaviours, such as cycling
and walking. Along this line, in Chapter 2, we discussed the preference of women
for safe routes for cycling, including those with dedicated cycling infrastructure.
Regarding walking preferences, numerous studies have found that the quality of
the pedestrian infrastructure (e.g., the availability and width of sidewalks) is crucial
in promoting walking [161, 162, 163, 164]. Other factors that effectively encourage
walking include measures to reduce noise and air pollution from road vehicles [165],
as well as the aesthetic and liveability features of streets [164]. These findings sug-
gest that time- or distance-optimising routing systems might fail to identify the pre-
ferred route, especially in contexts where an array of alternative routes with similar
transit times but significantly different features exist.

Acknowledging this, there has been growing interest in designing algorithms that
recommend optimal urban routes based on alternative definitions of optimality, by
enriching the street-network information with data on specific qualitative features.
Along this line, early attempts to quantify the pleasantness of streets used indirect
information based on real or online activity observed in a specific location. For exam-
ple, Flickr data have been used to identify popular locations based on spatiotempo-
ral sequences of photo uploads [166, 167]. GPS traces from mobile phones have also
been used to identify interesting locations in both urban and suburban areas [21].
Quercia et al. [20] adopted a different approach, using data from online experiments
to compare the pleasantness of streets in London and design a routing system that
recommends emotionally pleasant routes. More recent studies have proposed rout-
ing systems that prioritise a diversity of scenarios based on Google Street View im-
ages and FourSquare data [168] or environmental quality scores, such as air quality
or temperature [22]. As data from mobile social networking become more available,
routing systems that are able to recommend routes based on observed user-specific
preferences have also been proposed [169, 170].

This research contributes to the existing literature by introducing a novel routing



68Chapter 4. ATGreenGO: a routing engine recommending nature-enriching routes

system for pedestrians that prioritises nature-rich routes while maintaining a mini-
mal detour from the shortest path. The objective of this system is to offer users alter-
native routes that, with only a minor deviation from the shortest path, can be seam-
lessly integrated into their daily routines. This approach effectively enhances users’
exposure to natural environments, promoting well-being without significantly im-
pacting travel time.

4.4 Materials and Methods

Data extraction, processing and cleansing

To ensure its scalability to any geographical area of interest, the proposed routing
system relies exclusively on publicly available data sources. Based on their role,
these data sources can be classified into three main categories:

• data on the boundary of cities. The system was initially developed in the
context of the Horizon 2020 project GoGreen Routes. As such, the initial de-
ployment of the system has been performed for the six cultivating cities covered
by the project, namely: Burgas (Bulgaria), Lahti (Finland), Limerick (Ireland),
Tallinn (Estonia), Umea (Sweden), and Versailles (France). For testing pur-
poses, Turin (Italy) was added due to the familiarity of the research team with
the city. Subsequently, the system has been extended to the city of Barcelona
(Spain) and selected boroughs of London (UK). For these latter inclusions, the
system can be queried through the public API, while the integration in the web
interface is currently in progress.

• data on the street network of each urban area. For each urban area, the street
network information is extracted from the OSM [3] dump of Europe, down-
loaded from the GeoFabrik Download Service in May 2022.

• data on natural environments available in each urban area. Information on
natural features available in each urban centre is derived by combining data
from OSM and from the WC-ESA [6].

Boundaries of the urban centres For each urban centre, Table 4.1 reports the source
of information on its boundary. Following the approach used for other research
studies conducted in the context of the 2020 Horizon project GoGreenRoutes, the
boundary of the six cultivating cities was extracted from the Urban Atlas of the ini-
tiative Copernicus of the European Environmental Agency [171]. For the other three
cities, administrative boundaries have been used. To mitigate potential routing bias
in areas near the boundary of a city, a geographical buffer of a 1500-meter radius
was added to each boundary.

OpenStreetMap data ATGreenGO relies on the use of data from OSM for the ex-
traction of street-network data and for its enrichment with green and blue attributes.
Data from OSM were processed in three steps:

1. Extraction of the local osm.pbf file. For each city, the first step consisted of the
extraction of a local osm.pbf dumps from the OSM dump of Europe, downloaded
from the GeoFabrik Download Service on May 2022. The process followed the step
described in Section 3.4.

https://gogreenroutes.eu/
https://download.geofabrik.de/
https://download.geofabrik.de/
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City Country Definition Source
Burgas Bulgaria Urban Atlas Link
Lahti Finland Urban Atlas Link
Limerick Ireland Urban Atlas Link
Tallinn Estonia Urban Atlas Link
Umea Sweden Urban Atlas Link
Versailles France Urban Atlas Link
Barcelona Spain Administrative boundary Link
London United Kingdom Selection of boroughs Link
Turin Italy Administrative boundary Link

TABLE 4.1: Sources of information for the geographical data on city
boundaries.

Type Category OSM key OSM value

Green

Parks

leisure park
leisure garden
landuse recreation_ground
landuse village_green

Other green

landuse forest
natural wood
landuse grass
landuse meadows
natural grassland
natural shrubbery

TABLE 4.2: OSM key : value pairs used for the identification of green
features

2. Extraction of the street network. The second step consisted of the extraction of all
streets for the local dump. To this scope, the Python bindings of the osmium tools
were modified to query the osm.pbf file based on a customised list of OSM tags. The
following OSM tags were queried: highway, cycleway, footway, sidewalk, busway.

3. Extraction of green features. The third step consisted of the extraction of green
natural environments from the local osm.pbf file. The process followed the steps
describe in 3.4 and the list of key-value pairs extracted is provided in Table 4.2

European Space Agency - World Coverage 2020 Green features from OSM have
been integrated with information on land cover from the WC-ESA 2020 [6]. For each
urban centre, the data were extracted following the approach described in Section
3.4. Classes 10 - Tree cover, and 30 - Grassland were defined as green features.
Class 80 - water body was used for the identification of blue features.

4.5 Enrichment of the street network with green and blue
qualities

A key step in defining the routing engine involved enriching the street network with
attributes that describe the exposure to green and blue natural environments attain-
able by walking on each street. We call these attributes the green and blue qualities of
the street network of a city. The implemented system includes five green and blue

https://land.copernicus.eu/en/products/urban-atlas
https://land.copernicus.eu/en/products/urban-atlas
https://land.copernicus.eu/en/products/urban-atlas
https://land.copernicus.eu/en/products/urban-atlas
https://land.copernicus.eu/en/products/urban-atlas
https://land.copernicus.eu/en/products/urban-atlas
https://opendata-ajuntament.barcelona.cat/data/en/dataset/20170706-districtes-barris/resource/11851135-6919-4dcb-91ed-821e5e87a428
https://data.london.gov.uk/dataset/statistical-gis-boundary-files-london
http://aperto.comune.torino.it/
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qualities and users can specify their preferred quality when querying it through the
public API, thus obtaining a route that maximises exposure to the selected attribute.

To achieve an accurate characterisation of the green and blue qualities of the street
network of each city, a two-step pipeline was adopted, described in detail below.

From OSM streets to micro-segments To provide a high-resolution geographical
characterisation of the green and blue qualities of the street network, each street was
split into segments of 20 meters in length, starting from the first node in the line
string defining the street. Here, a street is defined as a unique combination of its
osm_id and one of the extracted tags (see Section 4.4). Depending on the mapping of
the raw OSM data, this means that a street in our dataset can correspond to either a
toponymically-defined street or a single lane of a multi-lane toponymically-defined
street. Generally, it does not correspond to a link in the street network. Since the
length of a street needs not to be a perfect multiple of 20, the last segment in each
street may be shorter than 20 meters. These resulting segments were then assigned
the same osm_id and tags of the parent street, as well as a distinctive pseudo_id.

Characterization of micro-segments in terms of green and blue qualities For each
segment, we then generated a set of attributes to define its green and blue qualities.
To this scope, we used an iterative approach, testing various specifications of these
attributes. These ranged from complex attributes detailing the exact geometrical re-
lationship between the segment and nearby natural elements to simpler attributes
that better align with users’ preferences. Table 4.3 offers an overview of all the fea-
tures tested, highlighting those ultimately implemented in the final version of the
routing system.

In the first instance, we tested a set of detailed spatially aware features designed
to capture the complex geometrical relationship between each micro-segment and
the nearby green environments, while also distinguishing high-level characteristics
of these green elements (public park vs other forms of aerial green, excluding tree
coverage, vs tree coverage). For each segment, this initial set included nine features:

• tree_coverage: the proportion of the segment with tree coverage. The metric
was constructed in two steps. First, we overlaid the tree cover polygons ex-
tracted from the WC-ESA upon the segment (buffered with a 1-meter radius).
We then computed the size of the overlapping area and divided it by the over-
all area of the buffered segment.

• inside_parks and inside_other_green: an indicator for whether the segment
falls within a park/another type of green. The segment was considered to fall
within a park/another type of green if it intersects a green polygon for no less
than 40% of its length.

• inbetween_parks and inbetween_other_green: an indicator for whether the
segment falls within a park/another type of green (for less than 40% of its
length). The segment was inbetween green areas if 1. it had a positive inter-
section with a green polygon; 2. the intersection was less than 40% of the total
length of the segment.

• surrounded_parks and surrounded_other_green: an indicator for whether
the segment runs parallel to a park/another type of green on both sides but
without being within the green area. The segment was surrounded by green
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areas if 1. it was not inside or inbetween a park/another type of green; 2. there
was a park/another type of green within 15 meters of the streets on both sides
of it. The latter condition was checked by constructing the right and left buffers
of the geometry of the segment and intersecting it with the set of green poly-
gons.

• alongside_parks and alongside_other_green: an indicator for whether the
segment runs parallel to a park/another type of green on one side only. The
segment was alongside green areas if 1. it was not inside or inbetween a
park/another type of green; 2. there was a park/another type of green within
15 meters of the streets on one side only. As for the previous attributes, the
latter condition was checked by constructing the right and left buffers of the
geometry of the segment and intersecting it with the set of green polygons.
For these two attributes, only one of the two buffers was required to intersect
a green area.

The previous characterisation enabled us to inspect the complex geometrical rela-
tionship of each segment with nearby natural elements. However, it was then recog-
nised that this level of complexity was unnecessary from the perspective of a poten-
tial user. The previous features were therefore consolidated into five new attributes.
Instead of providing a comprehensive taxonomy of the geometric relationship be-
tween the micro-segment and the natural environment, these new attributes were
designed to encode user-specific preferences for walking in green and blue environ-
ments. For instance, recognising that streets within a park may offer higher exposure
to greenery but might be perceived as less safe (especially at night), we retained the
distinction between on-street and off-street green attributes, while dropping others.
The resulting five green and blue qualities available in the system are:

• green (off): it measures the proportion of the segment that falls within a park
or other green feature. The feature is measured by computing the proportion
of the segment intersecting OSM green polygons.

• green (on): it measures the proportion of the segment that –not falling di-
rectly within a park of another type of green – is adjacent to some green envi-
ronments. It is measured by: 1) applying a 15 meters buffer around the portion
of the segment not falling directly within a green environment; 2) measuring
the size of the intersection between the area of this polygon and any green
polygon in the city (hereafter: intersecting green area), 3) computing the ra-
tio between the intersecting green area and the size of the buffered polygon.
To attribute the value to the overall segment, the computed measure is then
normalized by multiplying it by (1-green (off)). For this metric, the green
information used is not limited to green features from OSM but includes the
tree coverage and grassland areas from the WC-ESA.

• blue: the proportion of the segment that is within 50 meters of large water
bodies (more than 500m2) or 15 meters of small (less than 500m2) water bod-
ies. Practically, this is constructed by generating a buffer of the desired radius
around the blue feature and measuring, for each segment, the proportion of its
geometry that intersects the buffered blue area.

• any green: obtained as the sum of green (off) and green (on). By construc-
tion, any green is bounded between 0 and 1.
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Category Name Data type Data range Data source Status
green tree_coverage Continuous [0,1] [6] Tested
green inside_parks Binary {0, 1} [3] Tested
green inside_other_green Binary {0, 1} [3] Tested
green inbetween_parks Binary {0, 1} [3] Tested
green inbetween_other_green Binary {0, 1} [3] Tested
green surrounded_parks Binary {0, 1} [3] Tested
green surrounded_other_green Binary {0, 1} [3] Tested
green alongside_parks Binary {0, 1} [3] Tested
green alongside_other_green Binary {0, 1} [3] Tested
green green (off) Continuous [0,1] [3] Implemented
green green (on) Continuous [0,1] [3, 6] Implemented
green any green Continuous [0,1] [3, 6] Implemented
blue blue Continuous [0,1] [6] Implemented
green & blue any nature Continuous [0,1] [3, 6] Implemented

TABLE 4.3: ATGreenGO: List of green and blue qualities

• any nature: obtained as the sum of green (off), green (on) and blue, nor-
malized to the unit interval. By construction, any nature is less or equal to
each of its components. This feature was included to allow the user to select
routes that are rich in both blue and green elements simultaneously. However,
unlike each of its sub-components, the value of this feature cannot be inter-
preted as the proportion of the street length with exposure to a natural envi-
ronment and should not be used to evaluate the overall exposure to nature
attainable walking along a specific route (which instead should be measured
for each natural environment separately).

4.6 The system

Overview of OpenTripPlanner (OTP)

OpenTripPlanner (OTP) [5] is an open-source, multimodal trip planning system de-
signed to facilitate efficient and customizable route planning for various modes of
transportation, including walking, cycling, and public transit. Based on Java, the
flexibility and adaptability of OTP made it an optimal starting framework for the
development of ATGreenGO. The key characteristics of OTP are:

1. Graph Representation of the street network - The transportation network
is represented as a graph, where nodes represent geographical intersections
among streets, and edges represent the possible connections between these in-
tersections (typically portions of roads, paths, or transit routes). Each edge in
the graph is associated with attributes such as distance, travel time, and trans-
portation mode-specific information.

2. Data Import and Processing - OTP typically imports data from OpenStreetMap,
a community-driven mapping platform. This data includes detailed informa-
tion about road networks, pedestrian paths, transit stops, and other relevant
geographic features. For transit routing1, OTP incorporates schedule data, in-
cluding information about routes, stops, and timetables.

3. Routing Algorithm - The routing problem can be thought of as a cost func-
tion problem, where the user is interested in identifying the route between

1This feature is not implemented in ATGreenGO. The prototype is indeed currently implemented
for walking routes only.
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two points that is associated with the lower cost. In a standard definition, the
cost represents the transit time associated with the selected route, namely the
shortest path. Depending on the exact configuration, the OTP can use two al-
ternative shortest-path algorithms: Dijkstra’s algorithm [172] or A∗ algorithm
[173], the latter incorporating heuristic information to guide the search effi-
ciently. For the extension to ATGreenGO, the A∗ algorithm was adopted with
a modified cost function to incorporate the green and blue features of the street
network (see Section 4.6).

From OTP to ATGreenGO

Aggregation of micro-segments to OpenTripPlanner (OPT) graph arcs To enable
the routing, OTP arcs are constructed based on road intersections, so that each arc
is the proportion of a street falling within two intersections. The inclusion of green
and blue qualities within the routing requires projecting the green and blue qualities
of the segments (see Section 4.5) to the arcs of the graph generated by OTP. This
was performed by remapping the segments to the arcs based on the street identifier
(osm_id) and the geographical overlap between the two, according to the following
pipeline:

I For each arc in the graph, select all the micro-segments with the same osm_id.

II Among these arcs, select the ones that have a total or partial overlap in the
geometry.

III For each arc:

• For each continuous feature, perform the weighted average of the values
of the feature in the intersected micro-segments. The weighting is given
by the dimension, in percentage, of the intersection to the total length of
the arc.

• For each binary feature, the associated feature is the maximum value of
the feature measured on all the intersecting micro-segments.

The remapping of the features from the micro-segments to the OTP arcs was per-
formed in JAVA. The spatial overlaps were computed with the intersectionmethod
of the class Geometry of Java Topology Suite (JTS).

Tables 4.4-4.12 provide an overview of the green and blue qualities and the length of
the OTP arcs for each city. The statistics for arc lengths are given in meters.

With approximately 30,000 arcs, Limerick has the smallest street network among the
cities, though its average arc length (about 63 meters) is greater than that of larger
cities like Barcelona (36 meters), Tallinn (51 meters), selected boroughs of London
(32 meters), and a similarly sized city like Versailles (54 meters).

Regarding green attributes, northern cities show the highest overall green quality.
The average value of the any green feature is 0.63 for Lahti and 0.57 for Umeå, in-
dicating that arcs in these cities’ street networks provide exposure to green elements
for 63% and 57% of their lengths, respectively. At the other end of the spectrum,
Barcelona’s street network has the lowest average any green attribute, with a value
of 0.19. Despite being a coastal city, Barcelona also shows limited blue exposure,
with an average blue feature value of 0.1, compared to 0.2 or 0.4 for the other cities.

https://mvnrepository.com/artifact/org.locationtech.jts/jts
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This seemingly surprising result can be understood by considering that blue envi-
ronments include both natural water bodies and large artificial bodies (e.g., large
fountains in Versailles). Moreover, the presented values are computed on arcs of
varying lengths and are influenced by the configuration of each street network. Since
these values are not weighted by the length of the arc, they should not be interpreted
as the overall average exposure for the entire street network.

N. arcs mean std min median max

length 31696 104.78 231.03 0.01 54.68 7785.87
any nature 31696 0.18 0.19 0.00 0.09 1.00
any green 31696 0.33 0.37 0.00 0.16 1.00
green (on) 31696 0.22 0.30 0.00 0.07 1.00
green (off) 31696 0.11 0.30 0.00 0.00 1.00
blue 31696 0.02 0.13 0.00 0.00 1.00

TABLE 4.4: Descriptive statistics of the ATGreenGO arcs of the city of
Burgas

N. arcs mean std min median max

length 127989 82.53 157.95 0.02 38.22 9441.11
any nature 127989 0.32 0.21 0.00 0.39 1.00
any green 127989 0.63 0.39 0.00 0.77 1.00
green (on) 127989 0.40 0.38 0.00 0.30 1.00
green (off) 127989 0.23 0.40 0.00 0.00 1.00
blue 127989 0.02 0.12 0.00 0.00 1.00

TABLE 4.5: Descriptive statistics of the ATGreenGO arcs of the city of
Lahti

N. arcs mean std min median max

length 30106 62.79 128.16 0.64 35.34 5199.16
any nature 30106 0.28 0.21 0.00 0.30 1.00
any green 30106 0.53 0.39 0.00 0.56 1.00
green (on) 30106 0.48 0.38 0.00 0.45 1.00
green (off) 30106 0.05 0.21 0.00 0.00 1.00
blue 30106 0.04 0.18 0.00 0.00 1.00

TABLE 4.6: Descriptive statistics of the ATGreenGO arcs of the city of
Limerick
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N. arcs mean std min median max

length 197465 50.79 81.60 0.01 26.70 4453.18
any nature 197465 0.25 0.20 0.00 0.23 1.00
any green 197465 0.48 0.38 0.00 0.44 1.00
green (on) 197465 0.38 0.36 0.00 0.29 1.00
green (off) 197465 0.10 0.28 0.00 0.00 1.00
blue 197465 0.02 0.12 0.00 0.00 1.00

TABLE 4.7: Descriptive statistics of the ATGreenGO arcs of the city of
Tallinn

N. arcs mean std min median max

length 87675 158.21 364.82 0.04 52.97 14522.75
any nature 87675 0.31 0.23 0.00 0.35 1.00
any green 87675 0.57 0.41 0.00 0.65 1.00
green (on) 87675 0.35 0.38 0.00 0.17 1.00
green (off) 87675 0.22 0.40 0.00 0.00 1.00
blue 87675 0.04 0.18 0.00 0.00 1.00

TABLE 4.8: Descriptive statistics of the ATGreenGO arcs of the city of
Umea

N. arcs mean std min median max

length 200003 54.31 88.38 0.08 26.87 5861.08
any nature 200003 0.26 0.21 0.00 0.25 1.00
any green 200003 0.51 0.40 0.00 0.49 1.00
green (on) 200003 0.33 0.35 0.00 0.19 1.00
green (off) 200003 0.18 0.37 0.00 0.00 1.00
blue 200003 0.02 0.12 0.00 0.00 1.00

TABLE 4.9: Descriptive statistics of the ATGreenGO arcs of the city of
Versailles

N. arcs mean std min median max

length 412484 36.20 62.52 0.03 14.48 4478.61
any nature 412484 0.10 0.17 0.00 0.00 1.00
any green 412484 0.19 0.32 0.00 0.00 1.00
green (on) 412484 0.12 0.23 0.00 0.00 1.00
green (off) 412484 0.07 0.25 0.00 0.00 1.00
blue 412484 0.01 0.09 0.00 0.00 1.00

TABLE 4.10: Descriptive statistics of the ATGreenGO arcs of the city
of Barcelona
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N. arcs mean std min median max

length 772068 32.46 47.25 0.02 16.92 3752.15
any nature 772068 0.19 0.22 0.00 0.09 1.00
any green 772068 0.33 0.38 0.00 0.14 1.00
green (on) 772068 0.22 0.31 0.00 0.04 1.00
green (off) 772068 0.11 0.31 0.00 0.00 1.00
blue 772068 0.04 0.20 0.00 0.00 1.00

TABLE 4.11: Descriptive statistics of the ATGreenGO arcs of the city
of London

N. arcs mean std min median max

length 111667 46.21 63.73 0.07 22.28 1496.41
any nature 111667 0.16 0.21 0.00 0.04 1.00
any green 111667 0.28 0.36 0.00 0.07 1.00
green (on) 111667 0.16 0.26 0.00 0.01 1.00
green (off) 111667 0.11 0.30 0.00 0.00 1.00
blue 111667 0.04 0.18 0.00 0.00 1.00

TABLE 4.12: Descriptive statistics of the ATGreenGO arcs of the city
of Turin
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Definition of ATGreenGO cost function OTP uses the well-known weighted A*
algorithm [173] to find the optimal path in the street network. In the pedestrian
walking mode, OTP also accounts for the walkability of streets and obstacles such
as stairs. For the development of ATGreenGO, we extended the cost function of the
optimisation problem of OTP to incorporate the green and blue qualities of the street
network, considering one quality at a time. The intuition behind our solution is that
segments that are exposed to nature receive a reward, i.e., the cost of traversing
them decreases relative to segments with a lower exposure to nature. This reward is
proportional to the level of the exposure. The cost function is our main contribution
on the routing side of the system.

More formally, let’s start by recalling that the cost function of the stable OTP engine
is defined as:

COTP(P) = ∑
a∈P

La

Sa
Ra (4.1)

where P is a path between two distinct points, a indicates the OTP arcs composing
the path P, La is the length (in meters) of the arc a, Sa is the assumed speed (in meters
per seconds) on the arc a, and Ra is a reluctance parameter used to penalize specific
urban features that the user might find less appealing (e.g. stairs).

To integrate information about the presence of nature into the optimisation problem
of our routing algorithm, we expanded the definition of the cost function to include
these features. Before evaluating any modification to the cost function, it should be
noted that, for the optimisation problem to be well defined, any suitable alternative
cost function (Cnew(P)) must satisfy the following three properties (PR):

Letting Ga be the value of the green or blue feature on the arc a and Ac the full set of
arcs composing the street network of the urban center c,

PR1 If Ga ≥ 0 and Ga = G ∀a ∈ A, then Cnew(P)=K(G) × COTP(P) for any P,
where K(G) > 0. That is, if all arcs grant exposure to an identical amount
of green/blue (or even no exposure at all, setting G = 0), then the new cost
function should behave as the original OTP cost function (up to a positive pro-
portional factor, potentially dependent on the amount of green available)

PR2 Cnew(∪Na) > Cnew(∪N+1a) ∀N. That is, adding an arc to a set of arcs should
always result in a positive increase in the total cost.

PR3 Cnew(P) > 0 for any P. That is, all paths must have a strictly positive cost.

Among the set of cost functions satisfying the above properties, the implemented
cost function for ATGreenGO is defined as:

CATGreenGO(P) = ∑
a∈P

La

Sa
[Ra · max(1 − Ga, 0.001)] (4.2)

Intuitively, this formula discounts the additional cost associated with an arc based
on its green and blue quality –measured through one of the five green and blue
attributes–, with a factor equal to 1 − Ga. To ensure PR2 and PR3 are satisfied, the
discounted factor was set not to fall below 0.001. Alternative specifications of the
cost function have been evaluated and a full discussion on the comparative per-
formance of the implemented formula compared to the alternative specifications is
provided in 4.7.
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Middleware Service

As the query and response formats of OTP can be complex, we implemented a
lightweight middleware for ATGreenGO. The middleware was developed in Python
using the Flask web framework. This middleware provides an easy-to-use API to
query several routes with different optimisation goals (based on one of the five green
and blue qualities). For example, one can specify which green qualities should be
optimised, resulting in multiple calls to the OTP Backend. Furthermore, it provides
aggregated statistics of the exposure to nature for each route, which is not available
from the standard response of OTP. The middleware service is available for all cities
covered by the project (including Barcelona and the selected boroughs of London)
and can be queried at the following URL http://atgreengo.hpc4ai.unito.it:5005. The
API parameters are available at the following link.

ATGreenGO Front-End: The web interface

FIGURE 4.1: ATGreenGO Front End: The web interface. An ex-
ample. The picture displays the front end of the routing system AT-
GreenGO. For the same OD pair in the city of Turin, the system pro-
vides the route maximising exposure to blue (main figure), any green

(green insert) and the OTP shortest path (red insert).

To provide a tangible experience of the exposure to green routing, we addition-
ally developed a web-based frontend, available at http://atgreengo.hpc4ai.unito.it/
(Figure 4.1). This allows residents of cities covered by the system to experiment by
generating routes from arbitrary starting locations to destinations. To limit the in-
formation overload of a layman user and to align with the feedback received by
the GoGreenRoutes’ research team, the web app does not allow users to choose the
underlying green and blue quality for optimisation. Instead, once an origin and des-
tination pair is provided, the system directly generates the shortest path as well as
the routes resulting from the optimisation of any green and blue qualities. The web

http://atgreengo.hpc4ai.unito.it:5005
https://github.com/LinusDietz/GGR-green-routing/blob/main/middleware-routing-service/README.md
http://atgreengo.hpc4ai.unito.it/
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app then displays the routes on the map, provides detailed navigation information,
and generates aggregate statistics on the (additional) green and blue exposure of the
different routes in comparison to the shortest path.

4.7 Performance of ATGreenGO

ATGreenGO: performance and validation

The performance of the routing system ATGreenGO was evaluated by measuring
the increase in exposure to green and blue natural environments that the recom-
mended routes provide compared to the exposure experienced on the shortest path.
Since the system aims to suggest alternative routes with only a limited level of de-
tour, our assessment also considered the percentage increase in duration incurred by
routes recommended by ATGreenGO compared to the standard distance-optimised
OTP.

Definition of test set of Origin-Destination pairs For this assessment, we built a
test set of Origin-Destination pairs (OD pairs) by overlaying a regular grid on the
area of each city2 and collecting all those pairs of nodes of the grid whose geodesic
distance is no more than 2.5 km. The test set consisted of approximately 3,500 OD
pairs across all cities. Summary information by city on the characteristics of the
shortest path in terms of walking duration (top row) and green and blue qualities
(bottom row) for the test set of OD pairs is provided in Figure 4.2.

2The boroughs of the city of London were integrated into the prototype at a later stage and are
consequently excluded from this evaluation.
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FIGURE 4.2: Characteristics of the shortest path, for the test set of
OD pairs, by city. For each city, the panel displays summary infor-
mation on the characteristics of the shortest path in terms of walking
duration (top row - dotted line represents the 25th, 50th, and 75th per-
centiles of the distribution of walking distance) and green and blue

qualities (bottom row) for the test set of OD pairs.

Evaluation of the performance of ATGreenGO on the test set To assess the per-
formance of ATGreenGO, we analysed the absolute increment in exposure to green
and blue natural features resulting from the ATGreenGO-recommended routes for
the OD test set, relative to the conventional shortest path determined through the
standard OTP. Figure 4.3 shows the distribution in the absolute change of exposure
to each feature for the entire test sample of OD pairs. Information broken down
by each city is provided in Figures C.1-C.5 in Appendix B. Considering the three
green-related qualities, we observe a common behaviour:

1. The top one-fourth of routes experience a relevant increase of more than 0.21
for any green and green (off) and 0.16 for green (on)

2. By contrast, for approximately one-fourth of the routes, we observe almost no
or very little increase in exposure.
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3. By investigating the corresponding scatterplot, we notice that shortest paths
with low exposures are on average associated with larger increases than short-
est paths for which the exposure is already substantial.

For the feature any nature, it is worth noticing that the observed increase is typically
much smaller than that for any green. This result is artificially low due to the nor-
malisation of the attributes to the unit interval. Despite this, there is still an increase
of approximately 0.08 for the top 25% of the origin-destination pairs. Considering
the blue feature, we observe a skewed distribution with approximately zero impact
for three-fourths of the OD pairs, a behaviour that is fully explained by the sparsity
of blue natural environments within cities.

Finally, assessing the performance of ATGreenGO in terms of the total walking dura-
tion (bottom row of Figure 4.3) revealed generally stable behaviours, with increases
mostly below 10% in the majority of cases.
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Validation of the cost function: ATGreenGO vs alternative specifications

To determine the optimal cost function to be implemented in the system, several al-
ternative specifications have been tested. Along with the implemented function (see
Eq. 4.2), the main alternative functional form tested is rooted in standard approaches
adopted in transportation modelling. Instead of discounting the cost associated with
an arc based on its green and blue qualities, this alternative cost function penalises
arcs with little or no green/blue feature, by extending them by a stretch factor σ.
More specifically, keeping the notation introduced in Section 4.6, this alternative
specification was defined as:

Ctest(P)alt = ∑
a∈P

La

Sa
(Ra(1 + (1 − Ga)σ)) (4.3)

The performance of the implemented function and the alternative specification (for
several levels of σ), was then tested by evaluating the impact on the test sample of
origin and destination pairs (see Section 4.7) along two dimensions:

D1 the absolute increase in exposure to the blue/green natural elements, com-
pared to the shortest path.

D2 the percentage increase in the duration of the path (in minutes), compared to
the shortest path.

Figures 4.5-4.7 offer an overview of the results of this validation process for the two
dimensions, suggesting that:

D1 the increase in exposure associated with the implemented formula (named
ATGreenGO in the labelling of the figures) is comparable to the increase observ-
able for the alternative specifications with σ = 2. Further increasing σ for the
alternative specification has a limited impact on the overall increase in expo-
sure. This result holds for all cities and all features, except for the blue feature.
The peculiar behaviour for the blue feature is a consequence of the sparsity of
this natural element.

D2 the percentage increase in duration for the implemented formula is typically
equal or lower to the increase obtained with the alternative specification for
σ = 2. A further increase in σ above 2 leads to a substantial increase in the
median value of the distribution of the percentage change of the duration of
the route. Furthermore, the impact tends to become less stable across features
and cities.

Overall, the validation showed that the implemented cost function is able to balance
the impact on the two dimensions (high increase in exposure, limited increase in
duration), also granting stability in the results across cities and features.
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4.8 Discussion

Previous research has identified the positive effects of urban greenery on health.
However, these benefits can only be realised if individuals have sufficient oppor-
tunities to be exposed to nature during their day. To enhance daily exposure op-
portunities for residents in the cultivating cities participating in the Horizon 2020
GoGreenRoutes project, we developed an innovative routing system recommend-
ing nature-rich pedestrian routes. To maximise its usability and due to the familiar-
ity of the research team with these urban centre, the system was then extended to
three larger European cities (Turin, Barcelona and selected boroughs of the city of
London). The tool was designed to help citizens plan routes that maximise their ex-
posure to natural elements while limiting the level of detour compared to the short-
est path, thus ensuring that the suggested routes are practical alternatives for daily
commutes.

Our approach involved using publicly available data from OSM and satellite im-
agery to identify the locations of various types of natural environments. We then
mapped these features onto the street networks of the cities included in the sys-
tem to generate green and blue attributes. By leveraging a modified version of the
open-source routing software OpenTripPlanner, we defined an optimisation algo-
rithm that prioritises exposure to specific natural features when walking through a
city.

The system has been validated by comparing the suggested routes with the short-
est paths for a set of randomly selected origin-destination pairs. This comparison
was performed along two dimensions: the increase in exposure to specific natural
elements (green or blue) and the increase in the duration of the trip. Overall, the
validation suggested that the system is able to recommend nature-rich alternatives
to the shortest path while limiting the extent of the detour. The performance of
the system, measured in terms of the increase in exposure to nature along the rec-
ommended routes compared to the shortest path, is in general dependent on the
overall availability of the natural spaces in a specific city. For example, in nature-
rich cities such as Umea, Versailles and Lahti exposure to nature is already high on
the shortest path and further increases are hard to achieve. Likewise, due to the fact
that the River Shannon is so central to Limerick, we can see a greater potential to
walk along the river compared to e.g., Burgas and Tallinn, where the seaside does
not lie on the common paths. This explains why on average, we only see modest
increases of exposure to blue in this analysis, as there is often either no reasonable
possibility to walk besides water bodies or the shortest path is already passing by
a river. Concretely, about three in four shortest-paths routes for the blue feature
cannot be improved either due to the absence of reasonable alternatives or already
perfect exposure to this feature along the way.

To facilitate further development and usage as well as to make this tool accessible
to the public, we built a straightforward software architecture that includes a mid-
dleware service and a web-based user interface. To further highlight the benefits of
following the recommended route and incentivise the choice of nature-rich paths,
this interface informs the users about the increase in exposure to nature that they
might be able to achieve by selecting the suggested route.

While the validation confirmed the ability of the system to provide nature-rich routes,
there may be other reasons for people not to be willing to choose specific routes.

https://gogreenroutes.eu/
https://gogreenroutes.eu/
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Some of these concerns may stem directly from the characteristics of nature-rich ar-
eas: for instance, there may be safety reasons not to be willing to walk in a park
when it is dark. Other reasons may be dependent on features not currently captured
by the algorithm but whose presence may undermine the benefits of exposure to
nature. For example, a qualitative investigation of the recommended routes for the
city of Turin showed that nature-rich streets are often multi-lane streets where the
lanes are separated by tree lines. However, these streets are also more likely to be
traffic-congested and present worse air quality. To better assess the impact of these
issues on the quality of the recommendations, future research requires human-based
validation of ATGreenGO.
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Chapter 5

Conclusions

The dissertation presented the research undertaken throughout the doctoral pro-
gramme, primarily focusing on enhancing our understanding of phenomena related
to urban sustainability and liveability, as well as developing tools to inform policy
making and support the design of interventions to meet these objectives. The unify-
ing theme across the three research contributions is their alignment with the objec-
tives and principles outlined in the United Nations Sustainable Development Goal
11 [13], which sets out key objectives for cities and urban communities to be met
by 2030 to ensure sustainable development. Specifically, the research contributions
encompassed two major areas: 1. the investigation of gender differences in cycling
preferences within Western cities (Chapter 2). 2. the development of online tools to
enhance exposure to and accessibility of nature in urban environments (Chapters 3
and 4).

The significance of this research is highlighted by current global urbanisation trends.
With over 50% of the world’s population now living in cities and projections indi-
cating that this figure could rise to 70% by 2050 [7], urban areas will not only ac-
commodate more people but also become larger and more densely populated. This
risks exacerbating the already disproportionate environmental impact of cities and
lowering living standards for their residents [14, 7]. The expected increase in the
number of mega-cities [7], defined as those with more than 10 million inhabitants,
underscores the urgency of developing strategies to enhance both the sustainability
and liveability of urban environments. Addressing these challenges requires a com-
prehensive understanding of urban phenomena but also the development of new
tools to support policy making, which can inform and guide effective data-driven
policy design processes [18].

Given the complexity of urban challenges, addressing these issues effectively neces-
sitates interdisciplinary research. Combining analytical studies with tool develop-
ment enables a more comprehensive approach to understanding and managing ur-
ban phenomena. Interdisciplinary research is essential for creating solutions that are
both theoretically informed and practically applicable, bridging the gap between re-
search insights and real-world applications. Recognising this, the nature of the con-
tributions presented in this dissertation was twofold. Firstly, the analytical studies
presented in Chapter 2 and Chapter 3 advance our understanding of specific urban
issues, such as the gender cycling gap and urban green accessibility. These stud-
ies reveal key determinants and patterns, offering valuable insights into the factors
influencing these phenomena. Secondly, the development of online tools, detailed
in Chapter 3 and Chapter 4, provides practical instruments for monitoring urban
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phenomena, informing policy-making, and encouraging healthy behaviours among
residents.

The following sections offer a detailed summary of the key findings, contributions,
and implications of these research activities. I then outline some limitations aris-
ing from the use of large-scale data to understand and model urban phenomena
and suggesting future outlook of research in this area to tackle these limitations.
The chapter concludes with some final reflections on the importance of a multidisci-
plinary approach for research in the urban science domain.

5.1 Summary of contributions

This section summarises the main results from the research activity conducted dur-
ing the doctoral programme. It is organised into three sub-sections, each corre-
sponding to one of the analytical chapters of the dissertation.

5.1.1 Chapter 2 - Investigating the determinants of the gender cycling gap
using large-scale automatically-collected data

Aim of the research This study was motivated by the observation that while most
research on the factors underlying the gender cycling gap relies on stated prefer-
ence analyses (see Section 2.3.1), the growing availability of large-scale, automati-
cally collected data presents a unique opportunity to deepen our understanding of
this phenomenon. By leveraging such data, it is possible to expand the sample size
and geographical scope of the analysis, providing more comprehensive insights into
the determinants of the gender cycling gap and its large-scale characterisation.

Main findings This research consisted of a purely analytical study, with the main
contributions being the empirical insights into the gender cycling gap and the iden-
tification of safety-enhancing measures as key factors in explaining its variability
across and within different urban environments. The study is unique in the field of
cycling behaviour and gender disparities due to its extensive geographical scale.

Firstly, the analysis confirmed the presence of a persistent gender cycling gap in
recreational cycling across all cities in the sample. However, there was substantial
variation in the magnitude of this gap, both across cities in different geographical
areas and within the same geographical area. This suggests that factors beyond cul-
tural influences and Strava penetration play a role in this phenomenon.

To investigate these determinants, the study introduced a set of city-level indicators
inspired by the stated-preferences literature on gender differences in cycling percep-
tions and behaviours. A multivariate regression analysis was conducted to examine
the association between these indicators and the observed gender cycling gap, with
a particular focus on the role of safety-enhancing measures. The results indicated
that safer urban environments, measured by the proportion of streets with a max-
imum speed limit of less than 20 mph (or 30 km/h), are typically associated with
smaller gender cycling gaps. This finding supports existing evidence from survey-
based studies that women perceive cycling as a riskier activity than men and are less
likely to cycle in environments perceived as unsafe.
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In the second phase of the study, the focus shifted from a city-wide analysis to ex-
amining differences in street-level characteristics within the same city. The analy-
sis revealed that streets with dedicated cycling infrastructure are more likely to ex-
hibit a balanced gender distribution among cyclists. For instance, in New York City,
streets with protected cycleways were found to be four times more likely to have a
low gender cycling gap compared to streets without such infrastructure. A smaller,
but still positive, association was observed for streets with unprotected cycleways.
Extending this analysis to other cities in the dataset and applying a minimal logis-
tic regression model, similar associations were found to hold across the majority
of cities. Overall, this study represented the first large-scale validation of the im-
pact of safety-enhancing measures on sustaining cycling adoption among women,
thereby corroborating findings from earlier, smaller-scale stated-preference studies
[46, 47, 48].

5.1.2 Chapter 3 - ATGreen: a multi-dimensional computational frame-
work to evaluate accessibility to urban green

Aim of the research This research was motivated by the observed lack of univer-
sally accepted standards for measuring green accessibility, despite the growing re-
liance on these spatial metrics for evaluation, monitoring, and informing policy de-
sign (see Section 3.3). In this context, the study aimed to assess the impact of using
different metrics to inform the policy design process by comparing the accessibility
outcomes produced by various indicators, whether they belong to the same class of
accessibility indicators or different ones. Instrumental to this objective was the de-
velopment of a computational framework capable of measuring multiple classes of
indicators within a unified system, thereby enabling the proposed comparison.

Main findings and contributions The main findings and contributions of this study
are twofold: first, the analytical insights gained from the empirical investigation into
the interchangeability of various green accessibility indicators; and second, the algo-
rithmic and programming advancements achieved through the development of the
computational framework and its associated web interface.

Regarding the empirical investigation, I assessed the interchangeability of green ac-
cessibility outcomes generated by different green indicators. Adopting a policy per-
spective, the study utilised hypothetical policy interventions and established insti-
tutional targeting strategies to identify severely under-served population subgroups
within each city. The investigation focused on how the identification of these groups
varies depending on the chosen indicator or its parameterisation (i.e., the selection
of underlying parameters in defining an indicator). The results revealed significant
variability in the stability of these targeted populations depending on the specific
urban context and the parametrisation or institutional targets considered. These
findings suggest the necessity of adopting a multi-dimensional perspective in eval-
uating green accessibility.

In terms of algorithmic advancements, the study introduced a computational frame-
work capable of efficiently measuring multiple classes of spatial green accessibil-
ity indicators at a high geographical resolution within a unified system. By util-
ising only open-source tools and open data, with all resources publicly released,
this framework is designed to be replicable and extendable for future monitoring
requirements.
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The final contribution of the study is the development of the associated web inter-
face. Going beyond a mere tool for exploring results, the tool was specifically de-
signed for policymakers, offering customised functionalities that allow for the defi-
nition of new indicators and the simulation of specified greening interventions.

5.1.3 Chapter 4 - ATGreenGO: a routing engine recommending nature-
enriching routes

Aim of the research This research stemmed from the observation that exposure
to nature often occurs incidentally during daily activities. Specifically, it examined
the potential for increasing such exposure during routine walking trips. Expanding
and building upon recent advancements in routing engines that prioritise qualita-
tive criteria of optimality (see Section 4.3), this study aimed to develop a routing
engine that recommends nature-enriched routes with minimal detours relative to
the shortest paths. The goal was to offer a tool to identify practical alternatives that
can be seamlessly integrated into daily routines, thereby enhancing opportunities
for regular exposure to nature.

Main contributions The main contributions of this study are both theoretical and
practical through the development of an API and an interactive tool for other re-
searchers, policymakers and the general public.

Theoretically, the contributions are twofold. First, I proposed and implemented a
novel algorithm to characterise the geometrical relationship between the street net-
work of a city and its existing green and blue infrastructure. Second, I formulated a
new routing optimisation problem that balances exposure to nature with the detour
required relative to the shortest routes. The performance of this proposed formu-
lation was compared to alternative approaches commonly used in transportation
literature, demonstrating greater robustness across different urban settings.

In terms of contributions to the academic and policy communities, the development
of a fully open-source, data-based solution ensures that the system can be easily
extended to urban settings beyond the currently deployed nine cities, thereby facil-
itating further research and informing policymaking. Moreover, the creation of an
associated web interface accessible to the general public enables individuals in these
cities to easily use the routing engine, thus enhancing opportunities for exposure to
nature.

5.2 Implications

In recent decades, the shift in urban planning towards a more data-driven policy
design process has led to the integration of data and computational modeling across
various stages of the design process [18, 174]. This ranges from understanding phe-
nomena to monitoring them and, ultimately, developing tools that optimise policy
design processes based on desired optimal outcomes. This integration highlights
the crucial importance of a multidisciplinary approach to research into sustainable
and liveable cities, requiring expertise that spans urban design, data and computer
science, environmental studies, as well as economics and social science.

The research presented in this dissertation exemplifies the potential contributions
at various stages of the policy design process that can arise from the adoption of
a multidisciplinary approach and the integration of large-scale data. In line with
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this, the research offers implications across three four domains: knowledge advance-
ments for researchers and policymakers, theoretical and algorithmic advancements,
data advancements, and broader (actionable) impact of the online tools. Due to the
thematic difference between the study presented in Chapter 2 and the studies pre-
sented in Chapters 3 and 4, the implications are discussed for the two macro-area of
research separately. As such, in what follows, the term macro research area 1 refers
to the analysis of the gender cycling gap (Chapter 2) whilst the term macro research
area 2 refers to the contributions on enhancing exposure and accessibility to urban
green (Chapters 3 and 4).

Knowledge advancements for researchers and policymakers In terms of macro
research area 1, this study represents a significant advancement in understanding
how safety-enhancing measures can promote cycling among women. While the
findings align with existing research on stated preferences, the study’s innovation
lies in its broader geographical scope and the extensive user base contributing to
the data. By examining a diverse set of cities across multiple continents, the re-
search offers a more comprehensive and robust view of how safety-related factors
impact women’s cycling habits. This expanded scope enhances the generalisability
of the results, demonstrating that safety measures consistently affect women’s cy-
cling behaviour across various urban environments. Moreover, this study makes a
critical contribution to the research community by developing a methodology that
integrates large-scale data analysis with gender-specific urban mobility concerns.
This approach can be applied to other studies within the fields of transport plan-
ning, urban design, and gender studies, offering researchers a model for examining
similar issues on a global scale. Additionally, the research strengthens the theo-
retical foundation for policymaking activities aimed at increasing cycling uptake,
particularly among underrepresented groups like women. By providing empirical
evidence across different contexts, the study equips policymakers with actionable
insights that can be adapted to various cities and local conditions, thus bridging the
gap between theory and practice.

Regarding the macro research area 2, the primary contribution is from the green ac-
cessibility study presented in Chapter 3. Unlike previous research, which typically
relied on a single indicator to evaluate green accessibility, this study reveals that us-
ing a single metric may not provide a sufficiently nuanced understanding of acces-
sibility. The findings underscore the importance of conducting sensitivity analyses
to assess the potential limitations and biases introduced by the choice of indicator
parameters. This approach is particularly crucial when evaluating the differential
performance of green accessibility measures across various areas of a city, as it en-
sures a more accurate and comprehensive assessment. The study’s emphasis on the
necessity of multiple metrics highlights a critical gap in existing research, providing
a more robust methodology for future studies. This contribution not only advances
the theoretical framework for evaluating green accessibility but also offers practical
guidance for urban planners and policymakers due to the design of the study and
its use of fictional policy strategies.

Theoretical and algorithmic advancements The research conducted during the
PhD programme in macro research area 2 has also led to notable theoretical and
algorithmic advancements. A key theoretical and algorithmic contribution is the
development of a computational framework for measuring various classes of green
accessibility indicators. Previously, the computational complexity associated with
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designing spatial indicators limited the ability to create a unified framework that
could simultaneously measure multiple classes of indicators. This research con-
tributed to the literature in two ways. Firstly, it introduced a functional form for
each class of green accessibility indicators and defined a clear set of underlying pa-
rameters. These parameters can be adjusted to align the metrics with those com-
monly adopted in academic and policy literature. Secondly, the research presented
a feasible and efficient algorithm that enables the computation of these classes of
indicators, overcoming previous limitations in computational feasibility.

A further theoretical contribution is found in the formulation of the optimisation
problem for the routing engine ATGreenGO, as discussed in Chapter 4. This new for-
mulation represents a significant departure from traditional transportation models.
Unlike conventional approaches in the transportation literature, it yields robust re-
sults across diverse urban settings without the need for calibration. Additionally, the
research introduces an innovative algorithm for characterising the street network of
a city based on its geometrical relationship with nearby natural elements. Although
the final approach adopted a simplified geometrical characterisation to better align
with a walker’s experience, the detailed geometrical considerations are presented
here for future reference. This detailed characterisation could prove valuable for
research on structural street-level greening interventions, where such precision is
expected to be more relevant.

Data advancements Contributions to data advancements are significant across both
macro research areas addressed in this dissertation.

In macro research area 1, the study stands out as the first large-scale characterisation
of gender disparities in cycling behavior. This work exemplifies the potential of
utilising large-scale data for revealed preference studies within urban mobility and
cycling. Methodologically, the study required extensive data processing and the
development of specialised pipelines and algorithms tailored to handle Strava data.
Despite concerns about the representativeness of Strava data, which may necessitate
the exploration of alternative data sources, the proposed data pipeline is robust and
replicable for future research in this field.

In macro research area 2, contributions to data advancements are also noteworthy.
Although the research utilised publicly available data that are well-established in
academic literature, the methods of processing and validating this data represent
a significant improvement over previous approaches. This is particularly evident
in the thorough validation of OpenStreetMap (OSM) data discussed in Chapter 3.
While there is growing academic interest in enhancing the quality of OSM data and
techniques for addressing data gaps, thorough validation of these data is often over-
looked in applied research, with gaps and biases dismissed as study limitations.
Alternatively, researchers tend to focus on a subset of geographical areas (typically
large cities in the Global North) where data quality is known to be higher. Building
on existing research, I developed a validation process that significantly enhanced
data reliability, allowing for the inclusion of areas previously excluded due to data
quality concerns. This approach not only strengthens the validity of the findings but
also sets a precedent for more rigorous data handling in future studies.

Broader impact of the online tools for researchers, policymakers and urban resi-
dents Chapters 3 and 4 presented the research activities focused on the provision
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of tools to enhance exposure to nature in urban environments. These tools are de-
signed to extend the impact of the research beyond the academic community, effec-
tively reaching policymakers and urban residents.

Recognising the computational complexity of measuring high-resolution spatial in-
dicators and the necessity of adopting a multidimensional perspective, we constructed
an online tool that can compute multiple indicators simultaneously and assess the
impact of selected interventions. This tool can be used by policymakers and aca-
demic researchers alike to embrace this multidimensional approach. Moreover, all
our code is made publicly available, enabling researchers or policymakers with pro-
gramming expertise to easily adapt the framework to specific geographical areas not
currently covered by the study.

The contributions and policy implications of the second tool—the routing engine
ATGreenGO—are multifaceted. For the academic community, the tool offers a flex-
ible architecture that can be easily expanded to include additional cities and data
layers. Furthermore, the public API makes the routing data accessible to academic
researchers for future studies in evaluating green exposure and walkability. The
broader impact of the tool lies in its potential use by residents and policymakers
in the cities currently covered by the system. One of the primary motivations for
developing ATGreenGO was its ability to encourage active mobility. Research con-
sistently shows that natural environments increase the willingness to walk, encour-
aging more people to choose walking over other modes of transportation. By sug-
gesting nature-rich routes, ATGreenGO not only promotes walking but also fosters
a cultural shift towards active mobility. By facilitating regular contact with natural
environments, ATGreenGO effectively supports public health objectives, providing
a practical tool for policymakers aiming to enhance urban health. Indirectly, AT-
GreenGO could also serve as a valuable resource for identifying areas deficient in
green routes. Policymakers can use this information to target investments in street-
level green infrastructure where it is most needed, promoting more equitable and
sustainable urban spaces.

5.3 Limitations and future outlook

Despite our best attempts, the research activities presented in this dissertation have
certain limitations, which also present opportunities for future research. Study-
specific limitations and future research avenues have been highlighted in detail in
the discussion of each contribution. However, we can here outline broader limi-
tations related to the integration of large-scale data into urban policy design and
suggest priorities for future academic research in this area.

Broadly speaking, the main limitations of the use of large-scale data pertain to the
following domains: their completeness, their representativeness, and their availabil-
ity.

Completeness Concerns about the completeness of large-scale data, particularly
for those data collected through voluntary participation and crowd-sourced initia-
tives like OpenStreetMap (OSM), are well-recognised in academic research [135].
Despite its widespread use, OSM has been scrutinised for its completeness, prompt-
ing increasing efforts to develop strategies for internal [136, 137, 138] and external
validation [139, 140, 141], as discussed in Section 3.4. However, despite these efforts,
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the limitations of OSM data are often addressed either by dismissing them as poten-
tial study limitations or by restricting the analysis to areas with traditionally better
coverage, such as those in Western countries or the Global North.

This common approach to handling completeness issues presents several challenges
and risks. First, findings based predominantly on data from the Global North may
not accurately reflect conditions in other parts of the world, potentially skewing
our understanding of urban phenomena. Additionally, focusing on well-covered
regions can lead to an over-allocation of research resources to areas that are already
relatively well-equipped, while neglecting regions that may have greater needs but
less available data.

In this research, we encountered similar challenges. The study of gender differences
in cycling was confined to Western countries due to data availability from Strava,
which offered a sufficiently large dataset only within these regions. Nonetheless,
we made preliminary strides to mitigate this limitation in the development of the
ATGreen tool, whose coverage is not limited to the Global North. Instead of select-
ing a pre-defined set of cities, we implemented extensive cleaning and processing a
global dataset to address the heterogeneous quality of OSM data. This ensure that
only cities with adequate data quality were included. This approach helped to im-
prove the reliability of the findings without restricting its geographical scope .

More generally, while future research should continue to explore the integration of
large data analytics in urban planning to address the complexities of rapidly grow-
ing cities, expanding the geographical scope of studies to include cities in the Global
South should be a priority. This requires ongoing efforts to develop and maintain
datasets with comprehensive geographical coverage, as well as to establish robust
tools for assessing the quality of this coverage.

Representativeness The representativeness of large-scale automatically-collected
geographic data, such as those derived from mobile phone or GPS traces, presents
a substantial challenge in urban studies. While these datasets offer extensive and
detailed insights, they are inherently biased due to their dependence on voluntary
user participation and specific technology adoption patterns. For example, GPS
data gathered through mobile applications often overrepresents individuals who
are younger, urban, and higher-income—groups with higher access to smart devices
and greater engagement with technology—while underrepresenting older adults,
rural residents, and lower-income populations. This bias can result in a skewed
spatial distribution of data points, with higher density in regions with more user
activity or better infrastructure, which may distort analyses and conclusions [67]. In
the context of the research presented here, concerns about the representativeness of
the data were raised in relation to the behavioural data on cycling obtained from
the sport-tracking application Strava. Strava data may exhibit selection bias due
to differences between users who contribute data and those who do not, and the
predominant use of the platform for recreational rather than commuting activities
further complicates the representativeness of commuting behavior analyses. These
are discussed in detail in the Section 2.8.

Addressing these representativeness concerns requires a multidisciplinary approach.
Given that biases are often intrinsic to the nature of the data, supplementing quanti-
tative analyses with qualitative methods or direct data collection can provide a more
comprehensive and balanced perspective. Integrating qualitative approaches, such
as interviews or focus groups, and direct data collection methods, such as targeted



5.4. Final thoughts 99

surveys or observational studies, can help capture nuances and perspectives that au-
tomated data may miss. This mixed-methods approach allows for the validation and
triangulation of findings, offering a richer understanding of urban phenomena and
enhancing the robustness of research outcomes. By combining diverse data sources
and methodologies, researchers can better address representativeness issues and en-
sure that their findings are more reflective of the broader population and context.

Availability In designing the research presented in this dissertation, a deliberate
choice was made to use only publicly available data to ensure transparency and
reproducibility. However, a growing concern in urban studies should be the propri-
etary nature of many large-scale datasets critical for informing urban policy devel-
opment. These proprietary datasets, often controlled by private companies, present
significant challenges due to restricted access and limited transparency. Such control
impacts on the ability of researchers to validate, replicate, or fully comprehend the
data, which can lead to potential biases or incomplete analyses. Furthermore, the re-
stricted availability of these datasets can exacerbate inequalities in research opportu-
nities, privileging well-resourced institutions or individuals with special access. Ad-
dressing this issue requires advocating for greater data openness and transparency,
allowing the full social value of these data to be realised, but also supporting existing
initiatives to develop openly accessible or collaborative datasets, thereby ensuring a
more equitable and comprehensive foundation for urban policy-making.

5.4 Final thoughts

In reflecting upon the research conducted throughout my doctoral studies, it be-
comes increasingly evident that a multidisciplinary approach is essential for ad-
dressing the complex challenges within urban data science. The integration of di-
verse expertise —from data and computer science, urban planning, and social sci-
ences to public policy— enriches the analysis and ensures a more comprehensive
understanding of urban phenomena. Moreover, extending collaboration beyond the
academic community to encompass local authorities, regulators, and public bodies
is crucial. Such partnerships facilitate the practical application of research findings
and ensure that policies are informed by a broad range of perspectives. Engaging
with these stakeholders not only enhances the relevance and impact of research but
also fosters the development of more nuanced and effective solutions to urban is-
sues. A pivotal aspect of my research experience has been the collaboration within
the GoGreenRoutes consortium and at the Barcelona Supercomputing Centre. These
experiences provided valuable insights into the application of the research findings,
helped me to familiarise with actual policy processes, and highlighted the poten-
tial impact of such collaborations in ensuring that research contributes effectively to
real-world urban challenges.
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tistically different from 0 at a significance level of α = 0.05.
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displaying the estimated coefficient for each model. Cells outlined in
black correspond to coefficients statistically significant at 0.05 signifi-

cance level.
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Key Value
amenity grave_yard landuse
landuse orchard
landuse farmyard
natural heath
landuse cemetery
landuse flowerbed
landuse construction
natural tree_row
amenity school
landuse greenfield
leisure pitch
natural fell
amenity kindergarten
landuse farmland
leisure horse_riding
natural wetland
amenity education
landuse vineyard
natural scrub
landuse allotments
landuse farm
natural moor

TABLE B.1: OSM key : value pairs used for the identification of the
additional sources of green coverage
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FIGURE B.2: Stability of the exposure indicator to the time-budget
The top row depicts the exposure indicator’s stability level to differ-
ent time-budgets and according to different stability metrics for six
cities across all continents. For the Rank correlation, 2% naive targeting,
and the Most-disadvantaged targeting, the comparison is provided with
respect to the parametrization with time-budget equal to 5 mins. For
the Gini indicator, the chart reports the indicator’s value under several
parametrizations. The bottom row reports the median value (solid
line) and the IQR (shaded area) of the stability metrics for all cities in
our sample (black) and for cities with more than 1 million inhabitants

(blue).
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FIGURE B.3: Stability of the per-person indicator to the minimum
size of greenspaces and the time budget. The panel depicts the
level of stability of the per-person indicator to several minimum
greenspaces’ sizes (top sub-panel) and time budgets (bottom sub-
panel). For both sub-panels, the top row displays the level of stability
of the per-person indicator to the parameter and according to four sta-
bility metrics for six cities across all continents. For the Rank correla-
tion, 2% naive targeting and the Most-disadvantaged targeting, the com-
parison is provided with respect to the parametrization with time-
budget equal to 5 mins and minimum greenspaces’ size equal to 0.5
ha. For the Gini indicator, the chart reports the value of the indicator
under several parametrizations; the bottom row reports the median
value (solid line) and the IQR (shaded area) of the stability metrics for
all cities in our sample (black) and for cities with more than 1 million

inhabitants (blue).
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FIGURE B.4: Stability of the minimum distance indicator to the
minimum size of greenspaces: sensitivity analysis for the y% naive
targeting strategy The panel depicts the stability of the minimum dis-
tance indicator to the minimum PGA size under several naive target-
ing strategies [1%, 2%, 3%, 5%,10%], for six cities, the median (solid
line) and IQR (shaded area) across all cities (black) and the median
(solid line) and IQR (shaded area) for cities with more than 1 million

inhabitants (blue)
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FIGURE B.5: Stability of the minimum distance indicator to the
minimum size of greenspaces: sensitivity analysis for the y-times
most-disadvantaged targeting strategy The panel depicts the stabil-
ity of the minimum distance indicator to the minimum PGA size un-
der several most-disadvantaged targeting strategies [3-times worse
than the mean citizen, 4-times worse than mean citizen and 5 -times
worse than mean citizen], for six cities, the median (solid line) and
IQR (shaded area) across all cities (black) and the median (solid line)
and IQR (shaded area) for cities with more than 1 million inhabitants

(blue)
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FIGURE B.6: Stability of the exposure indicator to the time budget:
sensitivity analysis for the y% naive targeting strategy The panel
depicts the stability of the exposure indicator to the time budget un-
der several naive targeting strategies [1%, 2%, 3%, 5%,10%], for six
cities, the median (solid line) and IQR (shaded area) across all cities
(black) and the median (solid line) and IQR (shaded area) for cities

with more than 1 million inhabitants (blue)
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FIGURE B.7: Stability of the per-person indicator to the minimum
size of greenspaces and time budget: sensitivity analysis for the y%
naive targeting strategy The panel depicts the level of stability of the
per-person indicator to several minimum PGA sizes (top sub-panel)
and time-budgets (bottom sub-panel) under several naive targeting
strategies [1%, 2%, 3%, 5%,10%], for six cities, the median (solid line)
and IQR (shaded area) across all cities (black) and the median (solid
line) and IQR (shaded area) for cities with more than 1 million inhab-

itants (blue).
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