
Journal of Computer and System Sciences 127 (2022) 122–145
Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

Complexity of the multilevel critical node problem

Adel Nabli a, Margarida Carvalho a,∗, Pierre Hosteins b

a CIRRELT and Département d’Informatique et de Recherche Opérationnelle, Université de Montréal, Montréal, QC, Canada
b COSYS-ESTAS, Université Gustave Eiffel, Villeneuve d’Ascq, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 23 November 2020
Received in revised form 21 January 2022
Accepted 9 February 2022
Available online 23 February 2022

Keywords:
Trilevel programming
Defender-attacker-defender
Critical node problem
Polynomial hierarchy

In this work, we analyze a sequential game played in a graph called the Multilevel
Critical Node problem (MCN). A defender and an attacker are the players of this game.
The defender starts by preventively interdicting vertices (vaccination) from being attacked.
Then, the attacker infects a subset of non-vaccinated vertices and, finally, the defender
reacts with a protection strategy. We provide the first computational complexity results
associated with MCN and its subgames. Moreover, by considering unitary, weighted,
undirected, and directed graphs, we clarify how the theoretical tractability of those
problems vary. Our findings contribute with new NP-complete, �

p
2 -complete and �

p
3 -

complete problems. Furthermore, for the last level of the game, the protection stage, we
build polynomial time algorithms for certain graph classes.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Multilevel Critical Node. Graphs are powerful mathematical structures that enable us to model real-world networks. The
problem of breaking the connectivity of a graph has been extensively studied in combinatorial optimization since it can
serve to measure the robustness of a network to disruptions. In this work, we will focus on the Multilevel Critical Node
problem (MCN) [1]. Let G = (V , A) be graph with a set V of vertices and a set A of arcs. In MCN there are two players,
designated by defender and attacker, whose individual strategies are given by a selection of subsets of V . The game goes
as follows: first, the defender selects a subset of vertices D ⊆ V to vaccinate subject to a budget limit � and a cost{ĉv }v∈V ;
second, the attacker observes the vaccination strategy, and selects a subset of vertices I ⊆ V \ D to (directly) infect subject to
a budget limit � and a cost{hv }v∈V ; and third, the defender observes the infection strategy, and selects a subset of vertices
P ⊆ V \ I to protect subject to a budget limit � and a cost{cv }v∈V . A directly or indirectly infected vertex v propagates
the infection to a vertex u, if (v, u) ∈ A and u is neither a vaccinated or a protected vertex. The goal of the defender is to
maximize the benefit bv of saved vertices (i.e., not infected), while the attacker aims to minimize it.1 We assume that all
parameters of the problem are non-negative integers. The game description can be succinctly given by the following mixed
integer trilevel program:

* Corresponding author.
E-mail addresses: adel.nabli@umontreal.ca (A. Nabli), carvalho@iro.umontreal.ca (M. Carvalho), pierre.hosteins@ifsttar.fr (P. Hosteins).

1 We note that the terms vaccination, infection and protection in MCN are used in a broad sense and are not intended to accurately reflect epidemio-
logical concepts.
https://doi.org/10.1016/j.jcss.2022.02.004
0022-0000/© 2022 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcss.2022.02.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcss.2022.02.004&domain=pdf
mailto:adel.nabli@umontreal.ca
mailto:carvalho@iro.umontreal.ca
mailto:pierre.hosteins@ifsttar.fr
https://doi.org/10.1016/j.jcss.2022.02.004

A. Nabli, M. Carvalho and P. Hosteins Journal of Computer and System Sciences 127 (2022) 122–145
Instance Vaccinate 3 Infect 2 Protect 1

1

3

2

4 5

6

1

3

2

4 5

6

1

3

2

4 5

6

1

3

2

4 5

6

Fig. 1. Example of an MCN game with unitary costs and benefits, and budgets � = � = � = 1. We removed the vaccinated and protected vertices as an
infection cannot pass through them (see Property 3.1). Vertices {1, 3, 4} are saved and {2, 6, 5} are infected.

(MC N) max
z∈{0,1}|V |∑

v∈V

ĉv zv ≤ �

min
y∈{0,1}|V |∑

v∈V

hv yv ≤ �

max
x∈{0,1}|V |
α∈[0,1]|V |

∑
v∈V

bvαv

subject to
∑
v∈V

cv xv ≤ �

αv ≤ 1 + zv − yv , ∀v ∈ V (1a)

αv ≤ αu + xv + zv , ∀ (u, v) ∈ A, (1b)

where z, y, x and α are decision vectors which coordinates are zv , yv , xv and αv for each v ∈ V . The first maximization
is controlled by the defender whose selection of vertices to be vaccinated is encoded by the binary vector z and it must
respect the budget constraint; we denote the set of vaccinated vertices by D = {v ∈ V : zv = 1}. The minimization that
follows is managed by the attacker with the directly infected vertices represented by the binary vector y and subject to
the budget constraint; we denote the set of directly infected vertices by I = {v ∈ V : yv = 1}. Finally, the last maximization
is decided by the defender who controls the protected vertices, given by the binary vector x, and respects the associated
budget constraint; we denote the set of protected vertices by P = {v ∈ V : xv = 1}. Remark that in the last optimization,
auxiliary variables α are included. They allow to mimic the propagation of the infection with αv = 1 if vertex v is saved;
otherwise, 0. The right-hand-side of each Constraint (1a) is inferior to 1 (i.e., zero) if and only if vertex v is not vaccinated
and it is attacked. For each Constraint (1b), its right-hand-side is inferior to 1 (i.e., zero) if and only if vertex v is not
vaccinated neither protected and it has an adjacent vertex u that is infected (i.e., αu = 0). The effect of these constraints
plus the fact that the last optimization maximizes a non-negative weighted sum of the variables α, guarantees the existence
of an optimal solution with α binary and corresponding to the correct set of saved vertices. In multilevel optimization, the
first stage (in MCN, the vaccination stage) is called the upper level or first level, the second stage is called the second level,
and so on, with the last stage being also designated by lower level. Note that in each stage of a multilevel program, the
subsequent stages are assumed to be solved to optimality. See [1] for further details on this mathematical programming
formulation and Fig. 1 for an illustration of the game.

The description above makes it more clear that MCN is an example of a disruption problem. Its applicability to minimize
the damage of fake news spreading on social networks and contagious malware in cybersecurity is reported in [1]. It should
be remarked that MCN simplifies these real-world problems, e.g., the attacker is assumed to have full information about
the network. Hence, MCN can be interpreted as a robust solution model, where the worst-case attacking scenario is always
assumed to occur.

Contributions. To the best of our knowledge, this work is the first providing a computational complexity classification of the
decision version of MCN, as well as, of its subgames. Namely, we investigate the subgames (i) Protect, where given D and
I , the defender seeks the optimal protection strategy, (ii) Attack, where given D and no protection budget, the attacker
determines the optimal infection strategy, (iii) Attack-Protect, where given D , the attacker computes the optimal infection
strategy, and (iv) Vaccination-Attack, where given no budget for protection, the defender finds the optimal vaccination
strategy. This fundamental contribution sheds light on the practical difficulties dealt in [1]. Furthermore, it contributes
to the understanding of sequential combinatorial games within the polynomial hierarchy and it motivates the focus on
potentially �(222|V |

) algorithms, heuristic methods or novel solution definitions. Table 1 summarizes our results for general
graphs; unitary cases assume that all costs and benefits are 1, and undirected graphs assume that infection can traverse an
edge in both directions. We stress the incorrectness of the following intuitive claim for multilevel optimization problems:
if a subgame is C-hard for some complexity class C , then the associated game is at least C-hard. Note that in a multilevel
optimization problem, like the MCN, the ultimate goal is to find the optimal first level decision. Hence, if for example in
123

A. Nabli, M. Carvalho and P. Hosteins Journal of Computer and System Sciences 127 (2022) 122–145
Table 1
Computational complexity of the decision versions of the subproblems in MCN. Entries in gray correspond to
results that follow as corollaries. In increasing order, we have: [4] =⇒ [5], [1] =⇒ [6], [12] =⇒ [13], [14] =⇒
[15], and [6-10] =⇒ [16-20].

Decision
versions

Undirected graphs Directed graphs

Unitary Case Weighted Case Unitary Case Weighted Case

Section 3 Section 4 Sections 5 and 6
Protect [1] NP-complete [6] NP-complete [11] NP-complete [16] NP-complete

Attack [2] Polynomial [7] NP-complete [12] NP-complete [17] NP-complete

Attack-Protect [3] NP-hard [8] �
p
2 -complete [13] NP-hard [18] �

p
2 -complete

Vaccination-Attack [4] NP-complete [9] �
p
2 -complete [14] �

p
2 -complete [19] �

p
2 -complete

MCN [5] NP-hard [10] �
p
3 -complete [15] �

p
2 -hard [20] �

p
3 -complete

the MCN, we had always � = |V |, then we would know directly that all vertices are saved, even if the attack problem is
theoretically intractable. This supports the interest of understanding the individual complexity of each subgame of MCN.

We also contribute with an algorithmic analyzes of Protect by exploring graph classes where it becomes polynomially
solvable.

Paper organization. In Section 2, we revise the literature associated with MCN, allowing to position our contribution in the
context of critical node problems, interdiction games and defender-attacker-defender problems. In Section 3, we focus on
the case where graphs are undirected and each vertex benefit and cost is unitary. Section 4 adds the possibility of having
non-unitary parameters, while Section 5 generalizes the game to directed graphs. Finally, Section 6 investigates structural
properties of special graph classes that can be explored to make at least Protection polynomially solvable, both on directed
and undirected graphs.

2. Related literature

Assessing the vulnerability of complex infrastructures such as networks is of the utmost importance in practice. One
way to measure the robustness of a given network is to study its connectivity properties, for which many metrics exist.
With respect to a fixed metric, vertices often play different roles in the graph, with varying levels of importance. The most
important vertices are qualified as critical. Thus, the problem of detecting subsets of critical vertices with respect to some
connectivity measure is of great interest, either for defensive or for offensive purposes, and with applications in domains
ranging from network immunization [2,3] to computational biology [4,5].

Critical Node Detection Problems (CNDP). The CNDPs have been extensively studied, with names varying with the connectivity
metric to optimize and the constraints of the problem. Many of its studied versions have been shown to be NP-complete
on general graphs; see Lalou et al. [6] for a recent survey. Indeed, many of these belong to the class of problems called
Node-Deletion Problems. They consist in deleting the smallest subset of vertices from a graph so that the induced subgraph
satisfies a certain property π . Lewis and Yannakakis [7] showed that if π is nontrivial and hereditary, then the subsequent
vertex deletion problem is NP-hard. In particular, MinMaxC, the problem of finding a set of vertices D from a graph G
with a budget constraint |D| ≤ � such that the removal of D minimizes the size of the largest connected component in
the remaining graph, was shown to be NP-hard in the strong sense thanks to this argument [8]. Moreover, some CNDP
problems remain NP-hard even on particular graph classes [9,6]. For example, the original Critical Node Problem (CNP) [2]
which seeks to minimize the pairwise connectivity of the graph by removing a limited number of vertices remains NP-hard
on split or bipartite graphs [9]. Several works tried to clarify the frontier between polynomial and NP-hard instances for
different variants of the CNDP. The version based on pairwise connectivity over trees is studied in [10] where it is found to
be polynomial with unit connection costs and strongly NP-hard otherwise. Many other versions of the CNDP were studied
in details over trees, such as the versions based on the cardinality of the largest component (MinMaxC) and the number
of connected components (MaxNum) [8], the largest pairwise connectivity among all components [11] or an extension of
pairwise connectivity based on the length of shortest paths in the remaining graph [12]. A stochastic version of the pairwise
CNDP with node attack failure was studied over trees in [13] and found to be NP-hard, even with unit connection costs.
The CNDP was also studied on other specially structured graphs, such as series-parallel graphs [12,8], graphs with bounded
treewidth [9], proper interval graphs [11] or bipartite permutation graphs [14].

On the algorithmic side, many approaches have been proposed to solve the CNDP. The state of the art in terms of
formulations with Mixed Integer Linear Programs (MILPs) is represented by the works in [15,16], which build on the model
of Veremyev et al. [17]. Specifically, the compact MILP in [15] obtains the same linear relaxation strength as the one of Di
Summa et al. [18] which has an exponential number of constraints. Karakose and McGarvey [16] use a reformulation based
on the uncapacitated multi-commodity flow interdiction model to obtain a strong linear relaxation. These models allow to
speed up the convergence sometimes by more than one order of magnitude with respect to [17] and to solve optimally
instances with up to approximately a thousand vertices. However, this is true only for certain types of graphs, mainly
those which are very sparse. Graphs of the small-world type with no articulation point are usually much harder to solve,
124

A. Nabli, M. Carvalho and P. Hosteins Journal of Computer and System Sciences 127 (2022) 122–145
including through the use of metaheuristics. Several heuristics have been devised to tackle different versions of the CNDP:
the algorithms which have proven to be competitive on (some part of) a benchmark of real and synthetic instances are
based on evolutionary frameworks [19–21], local-search based metaheuristics [22], randomized greedy approaches [23,24]
or a GRASP with exterior path relinking [25]. These algorithms have been tested on instances with up to 23,000 vertices
and almost 100,000 edges. A couple of works have proposed algorithms for the CNDP based on known approximation
techniques such as the randomized rounding of the linear relaxation solution or the region growing algorithm [26,27]. In a
similar spirit, an approximation algorithm to the cardinality-constrained critical node detection problem is proposed in [28].
It should be mentioned that in the case of the CNDP, no approximation algorithm can provide a hard theoretical guarantee
since it has been proved to be inapproximable within any approximation factor [9]. We refer the interested reader to the
recent literature surveys of [6,29] on exact and heuristic algorithms for solving various versions of the CNDP.

Interdiction games. In several CNDP, although the optimization problem is formulated with a natural single objective, the
task is inherently constituted of several ones. In the CNP, minimizing the pairwise connectivity maximizes the number of
connected components in the residual graph, while simultaneously minimizing the variance in the component sizes [2].
Even though in this particular case, it has been shown that the multi-objective formulation is not equivalent to the original
one [30], splitting the objective in two is sometimes possible. For example, Furini et al. [31] exhibited the hidden bilevel
structure of the Capacitated Vertex Separator problem by formulating it as a two player Stackelberg game in which a leader in-
terdicts the network by removing some of its vertices and a follower determines the maximum connected component in the
remaining graph, highlighting the link between CNDP problems and Interdiction Games. Interdiction games on networks are
a special family of two-player zero-sum Stackelberg games in which a leader interdicts parts of the network (arcs or vertices)
subject to a budget limitation in order to maximize the disruption of the follower’s objective who solves an optimization
problem on the remaining graph (e.g., the maximum flow or the maximum clique). The most studied interdiction games where
the follower’s problem is a linear program, such as the Network Flow Interdiction [32], the Shortest Path Interdiction [33] and
their extensions, are NP-complete. Some of the interdiction games with an integer program describing the follower were
shown to be �p

2 -complete, e.g., the Binary Knapsack Interdiction problem [34,35] and the Maximum Clique Interdiction game
[36,37], shading light on the intrinsic relationship between this class of problems and the second level of the polynomial
hierarchy.

The structure of the games described above has been explored to design exact algorithms. For example, in [38] an
exact method for the Binary Knapsack Interdiction problem was shown to efficiently solve instances with up to 500 items.
In [37], efficient bounding techniques for the follower’s problem together with a branch-and-cut approach, allow to tackle
instances of the Maximum Clique Interdiction with up to 100,000 vertices within few seconds. There are some general
exact methodologies. Fischetti et al. [39] devised a general branch-and-cut for the case where the follower solves an MILP.
Experimental results reveal that their methodology is effective for medium-size Multidimensional Binary Knapsack Interdiction
problems. In [40], the authors focused on interdiction games with submodular and monotone objectives. Again, a branch-
and-cut algorithm is proposed and tested on instances of the Weighted Maximal Covering Interdiction game and of the Bipartite
Inference Interdiction game. Finally, a heuristic approach for general interdiction games is presented in [41] with experiments
revealing that it works well for different types of those games.

The unitary undirected version of MCN, as originally introduced by Baggio et al. [1], is not an interdiction problem per
se but contains one. Indeed, the vaccination stage of the game focuses on identifying critical infrastructures in the network
to interdict them preventively to counter an intentional attack, which falls into the framework of Network Interdiction
problems. Nevertheless, the game does not finish with the attack: there is a third stage where the defender tries to isolate
the propagation of the infection to maximize the unharmed fraction of the network. Finding a blocking strategy to limit the
diffusion of an infection is related to the Firefighter problem, which has been shown to be NP-complete, even for trees of
maximum degree three [42] and was studied more recently in [43] where the problem was shown to be NP-complete on
split graphs and bipartite graphs but polynomial on graphs with bounded treewidth. Thus, the MCN problem combines two
different paradigms in network protection, prevention and blocking, each being related to provably hard problems. The overall
contraction leads to a trilevel optimization formulation for the MCN, making it fall under the Defender-Attacker-Defender
(DAD) framework introduced by Brown et al. [44] to study the defense of critical infrastructure against malicious attacks.
Such frameworks are the first step towards more complex situations where both players respectively interdict and protect
network elements sequentially over time. An example of such works can be found in [45], where the attacker removes graph
vertices one at a time while the defender randomly adds k edges between attack rounds. Another more recent example is
[46] where the authorities imprison drug dealers to move up in the criminal hierarchy, committing investigation resources,
over several time periods.

Defender-Attacker-Defender. Although the general DAD was claimed to be NP-hard in [47], complexity results for trilevel
combinatorial optimization problems are scarce. In [48], a new proof that Trilevel Linear Programming is �p

2 -hard is provided,
building upon the results in [49–51] showing that the Multilevel Linear Programming problem with L + 1 levels is �p

L -hard.
In fact, the decision version of MCN problem can be formulated as “given 3 integer budgets �, �, �, a graph G and an integer
K , is there a vaccination D such that for all attacks I there exists a protection P saving at least K vertices?” Thus, there seems to be
a link between the MCN and the 3-alternating quantified satisfiability problem which has been shown to be �p

3 -complete by
Meyer, Stockmeyer and Wrathall [52,53], making one expect the MCN to be complete for this class.
125

A. Nabli, M. Carvalho and P. Hosteins Journal of Computer and System Sciences 127 (2022) 122–145
We stress that very few problems have been shown to be naturally �
p
3 -complete in the literature up to now, in addition

to infinite families of problems which have been shown to be �p
L -complete for any level L of the polynomial hierarchy

(as, e.g., Satisfiability Problems, or Multilevel Linear Programming). The compendium of [54], whose last update dates back
to 2008, describes eight �p

3 -complete problems including graph theory problems, problems over sets as well as number
theory problems. Since this compendium was last updated, a handful of other problems have been demonstrated to be
�

p
3 -complete, in the domains of logic, knowledge representation and artificial intelligence. We can cite, e.g., the problem

of Binding Forms in First-Order Logic [55], deciding whether a propositional program has epistemic FLP (Faber, Leone and
Pfeifer) answer sets [56], or checking the existence of max optimal outcomes over mCP-nets to study the aggregation of
preferences over combinatorial domains in artificial intelligence [57]. To the best of our knowledge, there is approximately
a dozen proven natural �p

3 -complete problems in the literature, which makes it all the harder to derive �p
3 -hardness for a

given trilevel problem. In this work, we add two more problems to the list of �p
3 -complete problems, the Trilevel Knapsack

Interdiction Problem and the Multilevel Critical Node Problem. Even though the set of proven �p
2 -complete problems is larger

by one order of magnitude, i.e., a little more than roughly a hundred such problems are known, we also add several new
�

p
2 -complete problems to this list.

There are methodological works tackling DADs that do not prove the associated theoretical computational complexity
(not even for its subgames), e.g., [44,58,1,59–61]. In [58], a backward sampling mechanism is proposed for general DADs.
Their algorithm is tested on problems where the lower level is polynomially solvable; e.g., for the graph problems in their
testbed, grid graphs with up to a few thousand vertices can be solved within an hour of computational time. The typical
technique used to solve a DAD is usually a tailored cutting plane algorithm; e.g. [1,59,60] address DADs in graphs whose
lower level contains binary variables. The size of the instances that can be tackled by such approaches is of the order of a
hundred vertices with a restrictive attacker’s budget (usually, less than 5). Similarly, the recent paper by Barbosa et al. [61]
proposes a cutting plane algorithm. Such an approach hints that their problem is a DAD although the paper does not
explicitly frame it as one: the authors formulate a bilevel model where the defender adds edges while anticipating that the
attacker solves a CNDP; once an attack occurs, the computation of the graph connectivity can be modeled as an optimization
problem. Concerning heuristics for DADs, Nabli and Carvalho [62] designed and tested a reinforcement learning approach to
automatically build a greedy solution to MCN. Their heuristic is shown to provide solutions close to the optimum for those
instances solved in [1].

3. Undirected graphs: the unitary case

In this section, we focus on undirected graphs G = (V , E), i.e., for each couple of vertices (u, v) ∈ V × V , if the arc (u, v)

is in G , then (v, u) is also in the graph. We thus call E the set of edges. Here, we also consider unit benefits and costs, i.e.,
∀v ∈ V , ĉv = hv = cv = bv = 1. We introduce s, the function that, given a graph G , the vaccination strategy D , the attack
strategy I and the protection strategy P , returns s(G, D, I, P), the number of saved vertices in the end of the game. Thus,
in this setting, the trilevel formulation of the problem is simply:

max
D⊆V

|D|≤�

min
I⊆V \D
|I|≤�

max
P⊆V \(I∪D)

|P |≤�

s(G, D, I, P). (2)

To ease our analysis, guided by the relationship between Critical Node Detection Problems and Node-Deletion Problems, we first
write the immediate Property 3.12 stating that vaccinating or protecting vertices has the same effect as removing them from
the graph with respect to s. Starting from G = (V , E) and a subset W ⊆ V , we denote by G[V \W] the graph induced by
the deletion of the vertices in W and its incident edges.

Property 3.1. Given G, D, I, P , we have that

s(G, D, I, P) = s(G[V \(D ∪ P)],∅, I,∅) + |D| + |P |.

What Property 3.1 actually says is that the infected vertices in G are the ones in the connected components of G[V \(D ∪
P)] where there is at least one attacked vertex in I .

We will start by classifying the computational complexity of Protect, followed by the one of Attack-Protect, and, finally,
Vaccination-Attack. From the latter, we obtain the complexity of Attack, and the minimum complexity of MCN.

3.1. The Protection problem

In Protect, the defender is given D and I and seeks to find an optimal P . Thus, thanks to Property 3.1, we can assume
that the game takes place in Ga = G[V \D] for this last move: the defender wants to find at most � vertices P ⊆ Va\I that

2 It is easy to see that Property 3.1 holds for general directed weighted versions with s(G, D, I, P) = s(G[V \(D ∪ P)], ∅, I, ∅) + ∑
v∈D bv + ∑

v∈P bv and
s(G, D, I, P) equal to the benefit associated with the saved vertices in the end of the game.
126

A. Nabli, M. Carvalho and P. Hosteins Journal of Computer and System Sciences 127 (2022) 122–145
will maximize s(Ga, ∅, I, P). For a given choice of P , we introduce C1(P), ..., CN(P)(P), the N(P) connected components in
the graph Ga[Va\P]. Hence, the objective of the defender being to find P minimizing the number of infected vertices f (P),
we can define it as:

f (P) =
N(P)∑
i=1

|Ci(P)| × 1Ci(P)∩I �=∅. (3)

We will show that finding such a P is NP-complete. We argue that it is a direct consequence of the results of [9] showing
that the Critical Node Problem is NP-hard on split graphs.

3.1.1. The Critical Node Problem on split graphs
The Critical Node Problem (CNP) [2] is a related problem to ours. The setting is very similar to Protection: we have an

undirected graph Ḡ = (V̄ , Ē), an integer budget B , and we want to find a subset P̄ of vertices to remove that minimizes the
pairwise connectivity of the residual subgraph Ḡ[V̄ \ P̄] under the constraint of having | P̄ | ≤ B . If we denote by C̄1(P̄), . . .,
C̄N(P̄)(P̄) the N(P̄) connected components of Ḡ[V̄ \ P̄], the measure we want to minimize is:

g(P̄) =
N(P̄)∑
i=1

(|C̄i(P̄)|
2

)
(4)

where each term in the sum is the pairwise connectivity of C̄i(P̄). Here, we will focus more particularly on split graphs. A
split graph is a graph Ḡ = (V̄ , Ē) whose vertices V̄ can be split in two sets V̄ 1 and V̄ 2, V̄ 1 forming a clique and V̄ 2 an
independent set. Thus, the decision problem for this particular case of the CNP is:

CNPsplit :
instance: A split graph Ḡ = (V̄ 1, V̄ 2; Ē), a non-negative integer budget B ≤ |V̄ | and a non-negative integer K̄ .
question: Is there a subset P̄ ⊆ V̄ , | P̄ | ≤ B such that g(P̄) ≤ K̄ ?

As [9] noted, in this setting there is at most one connected component of the residual subgraph Ḡ[V̄ \ P̄] that contains
more than one vertex. Moreover, it is easy to see that if this nontrivial connected component exists, it necessarily contains a
subclique of Ḡ[V̄ 1]. More than that, it is the only connected component of Ḡ[V̄ \ P̄] containing vertices from V̄ 1. Thus, we
can name C̄1 the connected component containing vertices of V̄ 1 (in the case of P̄ ⊇ V̄ 1 , then C̄1 is either a singleton from V̄ 2 or
is empty and our reasoning still holds). Then, minimizing (4) is equivalent to minimize |C̄1|. But finding the subset of vertices
P̄ to remove to do that has been shown to be NP-hard:

Lemma 3.2 ([9]). CNPsplit is NP-hard.

3.1.2. Complexity result
Next, we show that the decision version of Protect is NP-complete using a reduction from CNPsplit . The decision problem

is the following:

PROTECT:
instance: A graph Ga = (Va, Ea), a set of attacked vertices I ⊆ Va , a non-negative integer budget � ≤ |Va| − |I| and a
non-negative integer K .
question: Is there a subset P ⊆ Va\I , |P | ≤ � such that the number of infected vertices f (P) ≤ K ?

Note that the question can be equivalently re-written with the inequality s(Ga, ∅, I, P) ≥ |Va| − K .

Theorem 3.3. Protect is NP-complete.

Proof. It is easy to see that Protect is NP as determining the objective value only requires finding the connected compo-
nents of Ga[Va\P] which can be done in linear time using a depth-first search (DFS).

To complete the proof, we exhibit an immediate reduction from CNPsplit . Let us take an instance of this problem, i.e. a
split graph Ḡ = (V̄ 1, V̄ 2; Ē), a non-negative integer budget B and a non-negative integer K̄ . Given that, we build a graph Ga

by growing by one the size of the clique Ḡ[V̄ 1] with the addition of a vertex u. Thus, Va = V̄ 1 ∪ {u} ∪ V̄ 2 and Ea is obtained
by taking Ē and adding an edge (u, ̄v1) ∀v̄1 ∈ V̄ 1. In fact, the new graph is still a split graph Ga = (V̄ 1 ∪ {u}, V̄ 2; Ea). Finally,

the corresponding instance of Protect is given by Ga , I = {u}, � = B and K = ⌊ 1 (3 +
√

8K̄ + 1)
⌋

(obtained by solving
2

127

A. Nabli, M. Carvalho and P. Hosteins Journal of Computer and System Sciences 127 (2022) 122–145
V̄ 1 V̄ 2 V̄ 1 ∪ {u} V̄ 2

u

Fig. 2. Example of construction of Ga from Ḡ .

K̄ = (K−1
2

)
). An example of such construction can be found in Fig. 2. Then, as there is only one attacked vertex, minimizing

(3) on this instance of Protect corresponds to choosing a P that minimizes the size of the unique connected component
to which u belongs in Ga[Va\P]. Let’s name C1 this connected component. But as u belongs to the clique part of the
split graph Ga , C1 is also the unique connected component of Ga[Va\P] containing vertices from V 1 = V̄ 1 ∪ {u}. Thus, we

have that C1 = C̄1 ∪ {u} and g(P) =
(

f (P) − 1
2

)
. Hence, finding P that minimizes f on Ga is equivalent to finding P that

minimizes g on Ḡ . This finishes the proof that Protect is NP-hard. �
Remark 3.4. In [43], it shown that the Firebreak problem is NP-complete. This problem is equivalent to Protect when
|I| = 1. Hence, their result can be used to establish Theorem 3.3. Nevertheless, given that our reductions differ significantly
and were obtain independently, we decided to present our alternative reduction.

3.2. The Attack-Protect problem

We showed that solving the last level of MCN is NP-complete, now we will prove that Attack-Protect is also NP-hard.
In this bilevel problem, we are taking the side of the attacker: the aim is to find the attack that will maximize the number
of infected vertices after protection. The decision version of the problem is:

ATTACK-PROTECT:
instance: A graph Ga = (Va, Ea), two non-negative integer budgets �, � such that � + � ≤ |Va| and a non-negative
integer K ≤ |Va|
question: Is there a subset I ⊆ Va , |I| = � such that ∀P ⊆ Va\I , |P | ≤ �, the number of infected vertices f (P) ≥ K ?

We will use a reduction from the Dominating Set problem, a known NP-complete problem [63], whose decision version
is:

DOMINATING SET:
instance: A graph Ḡ = (V̄ , Ē), a positive integer B ≤ |V̄ |
question: Is there a subset U ⊆ V̄ , |U | ≤ B , such that ∀v ∈ V̄ \U , ∃ u ∈ U such that (u, v) ∈ Ē?

Theorem 3.5. Attack-Protect is NP-hard.

Proof. Let us take a graph Ḡ = (V̄ , Ē) and a positive integer B ≤ |V̄ |. The instance of Attack-Protect is simply created
by taking Ga = Ḡ , � = B , � = |Va| − � − 1 and K = � + 1. In this configuration, we have a protection budget � which
is exactly one less than the number of vertices that are not attacked. Thus, if all the protection budget is spent, there is
only one vertex u in the graph that is neither attacked nor protected. Therefore, if u becomes infected after protection (i.e.
f (P) = K = � + 1), that means that the protection strategy did not manage to save one unit of budget while saving all the
other vertices, meaning that the other vertices were all in direct contact with at least one attacked one (if it was not the case,
one unit of budget could have been saved by protecting all the neighbors of the vertex that is not in direct contact with I). As u also
becomes infected, it also means that it is adjacent to one vertex in I . Thus, finding I such that ∀P , f (P) ≥ K means that I
is a dominating set of size B , which concludes the proof. �
3.3. The Vaccination-Attack problem

In this part, we will ignore the fact that there is a protection stage at the end. This is a particular case of MCN since
it is equivalent to studying it with protection budget � = 0. We will show that the bilevel problem Vaccination-Attack is
NP-complete. The decision problem is the following:
128

A. Nabli, M. Carvalho and P. Hosteins Journal of Computer and System Sciences 127 (2022) 122–145
VACCINATION-ATTACK:
instance: A graph G = (V , E), two non-negative integer budgets � and � such that � + � ≤ |V | and a non-negative
integer K .
question: Is there a subset D ⊆ V , |D| ≤ � such that ∀I ⊆ V \D with |I| ≤ �, the number of infected vertices
|V | − s(G, D, I, ∅) ≤ K ?

First, we argue that in this configuration, finding the optimal attack following a given vaccination can be done in poly-
nomial time.

Lemma 3.6. Vaccination-Attack ∈ NP. Moreover, Attack can be solved in polynomial time.

Proof. Given a vaccinated set D , we want to verify that all the possible subsequent attacks cannot infect more than K
vertices. To do that, it suffices to find the best attack, i.e., solve the Attacker optimization problem, and check whether or
not it complies with the inequality. But, as we highlighted it with Property 3.1, the graph on which the attack phase takes
place is Ga = G[V \D] and the saved vertices in the end are exactly the ones in the connected components of Ga that do
not contain any attacked vertex. Thus, the best attack possible given Ga and budget � is to infect one vertex in each of the
� largest connected components of Ga . This can be done in linear time using a DFS. Hence, Vaccination-Attack ∈ NP. �

In fact, this proof showed that Vaccination-Attack is actually equivalent to another problem: finding a subset of vertices
D to remove from G that minimizes the sum of the sizes of the � largest connected components in the induced subgraph.
Let’s call this problem MinMax�C:

MINMAX�C:
instance: A graph G = (V , E), two non-negative integer budgets � and � such that � + � ≤ |V | and a non-negative
integer K .
question: Is there a subset D ⊆ V , |D| ≤ � such that the sum of the sizes of the � largest connected component in
G[V \D] is less than K ?

Lemma 3.7. Vaccination-Attack and MinMax�C are equivalent problems.

As Shen et al. [8] argued that MinMaxC, the problem that only seeks to minimize the size of the largest connected
component in the residual graph, is NP-hard, we have as a direct consequence that MinMax�C is also NP-hard, which leads
to the following corollaries:

Corollary 3.8. Vaccination-Attack is NP-complete.

Corollary 3.9. MCN is NP-hard.

Proof. Given an instance of Vaccination-Attack, there is a corresponding instance of MCN by taking the same G, �, �, K
and by setting � = 0. �
4. Undirected graphs: the weighted case

In this section, we study the version of MCN presented in problem (1) restricted to undirected graphs. We will use the
subscript w to denote the weighted version, MCNw , as well as for its subgames. In this problem, given a graph G = (V , E),
each vertex v ∈ V is associated with a benefit bv and cost parameters ĉv , hv and cv , respectively the cost of vaccinating, at-
tacking and protecting vertex v . While in the unitary case all these parameters, bv , ̂cv , hv and cv , take value 1, in a weighted
instance, they can take any non-negative integer value. First, note that the NP-completeness of Protectw is immediate from
the previous section.

Having introduced costs and benefits, our game and its subgames are intimately related to Knapsack problems, which
we will use to demonstrate all of our complexity results in this part. We will start by highlighting the direct relationship
between Attackw and Knapsack, which will get us the NP-completeness of this problem. Then, we will focus on the two
bilevel sub-problems Vaccination-Attackw and Attack-Protectw and prove they are �p

2 -complete thanks to a Knapsack
Interdiction problem. To conclude, we show that MCNw is �

p
3 -complete. We will observe that the introduction of non-

unitary parameters offers sufficient flexibility to go a level up in the polynomial hierarchy in comparison with the unitary
undirected cases.

4.1. The Attackw problem

In the attack phase, the vaccination already took place so we effectively work on Ga , which is the result of the deletion of
the vaccinated vertices from the original graph. We are given a non-negative attack budget �, and as there is no protection
129

A. Nabli, M. Carvalho and P. Hosteins Journal of Computer and System Sciences 127 (2022) 122–145
ATTACKw :
instance: An undirected graph Ga = (Va, Ea), a non-negative integer cost hv and value bv for each vertex v ∈ V , a
non-negative integer budget �, and a non-negative integer number K .
question: Is there a subset of vertices I ⊆ Va to attack, with cost

∑
v∈I hv ≤ � such that the sum of the benefits of

the resulting infected vertices in Ga is greater or equal to K ?

phase afterwards, we set � = 0. The goal is thus to harvest the most benefit possible by infecting vertices subject to a
budget limit. The decision version of the problem is then:

To make evident the NP-completeness of the problem, we simply state the decision version of the Knapsack problem, one
of the Karp’s 21 NP-complete problems [64]:

KNAPSACK:
instance: Finite set U , for each u ∈ U , a positive integer size au ∈ N and a positive integer profit pu ∈ N , and two
positive integers B and K̄ .
question: Is there a subset U ′ ⊆ U such that

∑
u∈U ′ au ≤ B verifying

∑
u∈U ′ pu ≥ K̄ ?

Theorem 4.1. Attackw is equivalent to Knapsack.

Proof. First, we prove that each instance of Attackw reduces to an instance of Knapsack. Given an instance of Attackw ,
it is straightforward to see that it is sufficient to infect the vertex v with lowest infection cost hv of a given connected
component to infect the whole component and collect the benefit b of each vertex included in that component. If N(Ga)

represents the set of connected components of Ga , to each connected component C ∈ N(Ga) we can assign a total profit
bC = ∑

v∈C bv and infection cost hC = minv∈C hv . We can then straightforwardly build a Knapsack instance where the set
N(Ga) is mapped to U , au = hC and pu = bC for C ∈ N(Ga), and B = � and K̄ = K .

Conversely, if we start from an instance of Knapsack, we construct an instance of Attackw by setting Va = U , Ea = ∅,
K = K̄ , � = B , and ∀v ∈ Va , hv = av , bv = pv . In this configuration, Ga having no edges, the attacked vertices are exactly
the infected ones in the end, and the goal of the attacker is equivalent to filling up a knapsack with limited capacity by
choosing which vertices to attack.

Given that both Attackw and Knapsack can be reduced to each other, both problems are equivalent. �
Remark that given an attack I , finding the subsequent infected vertices can be done in linear time thanks to a DFS. Then,

it suffices to sum the cost of the vertices in I to verify the budget constraints and to sum the benefits associated with the
infected vertices to verify that it is greater or equal to K . Hence, Attackw ∈ NP and thus:

Corollary 4.2. Attackw on undirected graphs in weakly NP-complete, even on trivial graphs.

Proof. Since it well known that Knapsack is weakly NP-complete, the result follows from the above theorem. Moreover,
since any instance of Knapsack reduces to an instance of Attackw which has no edges, Attackw is NP-complete on trivial
graphs. �
4.2. The Attack-Protectw problem

In the proof of Theorem 4.1, we highlighted how a Knapsack instance can be directly transformed into a weighted
graph with no edges. In this section, as well as in the next one, we will use a similar transformation, but add one ad-
ditional root vertex to our construction in order to build a star graph: one root vertex connected with an edge to each
of the other vertices, each one representing an item u ∈ U of the knapsack. That way, the complexity results we devise
hold for trees, a very particular class of graphs where frequently theoretically intractable problems become polynomially
solvable.

As before, the vaccination having already been done, we start from Ga , the graph where the vaccinated vertices have
been removed.

ATTACK-PROTECTw :
instance: A graph Ga = (Va, Ea), a non-negative integer K , two non-negative integer budgets � and �, ∀v ∈ Va two
non-negative integer costs hv , cv and a non-negative integer benefit bv .
question: Is there a subset I ⊆ Va , with cost

∑
v∈I hv ≤ � such that ∀P ⊆ Va\I with cost

∑
v∈P cv ≤ �, the sum of

the benefit of the saved vertices is strictly less than K ?
130

A. Nabli, M. Carvalho and P. Hosteins Journal of Computer and System Sciences 127 (2022) 122–145
In order to show that Attack-Protectw is �p
2 -complete, we use the Bilevel Interdiction Knapsack Problem introduced by

DeNegre [34] and proven to be �p
2 -complete in [35]. In this problem, two players, a leader and a follower, can select items

in the same set of objects O . First, the leader packs some items into her knapsack, then the follower chooses among the
remaining ones. The aim of the leader is to interdict a subset of items, subject to a capacity constraint, in order to minimize
the total profit of the follower. The objective of the follower is to maximize her profit, subject to a constraint capping the
maximum profit obtainable by her. The decision problem is then:

BILEVEL INTERDICTION KNAPSACK (BIK):
instance: A set of items O such that each o ∈ O has a positive integer weight ao and a positive integer profit po ,
a positive integer maximum weight capacity A for the leader, a positive integer maximum profit B for the follower,
and a positive integer K̄ ≤ B .
question: Is there a subset O l ⊆ O of items for the leader to select, with

∑
o∈Ol

ao ≤ A, such that every subset
O f ⊆ O \ O l with

∑
o∈O f

po ≤ B that the follower can create has a total profit
∑

o∈O f
po < K̄ ?

Theorem 4.3. Attack-Protectw is strongly �p
2 -complete, even if the graph is a tree.

Proof. First, Attack-Protectw is in �p
2 since this decision problem is exactly of the form ∃I ∀P Q (I, P), where Q (I, P) is

a proposition that can be evaluated in polynomial time (i.e., it verifies the attack and protection budget constraints, as well
as, the benefit of the saved vertices).

Next, we prove the problem �p
2 -hardness. Let us begin by noting that we can restrict the instances of BIK to the ones

where K̄ and B are strictly inferior to
∑

o∈O po , otherwise, BIK reduces to Knapsack. This remark is used in the second part
of this proof.

Starting from an instance of BIK, we construct an instance of Attack-Protectw as follows. We first build a star graph
Ga = (Va, Ea) with a root vertex r and a vertex vo for each o ∈ O linked to r through an edge (r, vo). We set br = ∑

o∈O po +
1 and hr = cr = 1. We also set bvo = cvo = po and hvo = ao for each o ∈ O . See Fig. 3. Finally, we set � = A + 1, � = B and
K = K̄ .

Suppose first that BIK is a Yes instance. Then, there is a set of items O l ⊆ O of total weight
∑

o∈Ol
ao ≤ A such that for

all O f ⊆ O \ O l feasible for the follower, it holds
∑

o∈O f
po ≤ K̄ − 1. Consequently, in the Attack-Protectw , the attacker can

select the subset of vertices I = {r} ∪ {vo : o ∈ O l} with a feasible attacking cost
∑

v∈I hv = 1 + ∑
o∈Ol

ao ≤ A + 1 = �. Now,
the defender can only protect vertices in {vo : o /∈ O l} and since the central vertex of the star graph is infected, the saved
vertices will be the protected ones. The aim of the defender is therefore to select the subset of vertices of maximum total
benefit with respect to the protection budget �. This is exactly the follower’s problem in BIK. Hence, since BIK is an Yes
instance, the defender (follower in BIK) cannot attain a benefit (profit in BIK) equal or greater to K = K̄ through a feasible
action. Therefore, the Attack-Protectw is a Yes instance.

Now suppose that Attack-Protectionw is a Yes instance. Thus, there exists an attack strategy I ⊆ Va such that there
is no feasible subset P ⊆ Va \ I of protected vertices leading to a total benefit greater or equal to K for the defender. As
� ≥ 1, it is obvious that the attacker will attack at least the central vertex r, otherwise, the defender would pick it and
achieve a benefit superior to K (recall that K = K̄ <

∑
o∈O po), contradicting Attack-Protectionw Yes instance. Hence, the

attacker is left with budget � − hr = A. Once the central vertex is attacked, only the other vertices subsequently protected
will not be infected. Therefore, the rest of the attack budget A is spent on a subset of vertices of {vo ∈ Va : o ∈ O } and
it ensures that for any P = {vo ∈ Va : o ∈ O \ I} with

∑
v∈P cv = ∑

o:vo∈P pv ≤ � = B , the total benefit for the defender is ∑
v∈P bv = ∑

o:vo∈P pv ≤ K̄ − 1. Consequently, BIK is also a Yes instance.

This completes the proof that Attack-Protectw is �p
2 -complete. Moreover, since the BIK was shown to be NP-complete

even for unary encoding, we can conclude that no pseudopolynomial-time algorithm exists to solve the Attack-Protect

subgame. Since a star graph is a tree, the result stated in the theorem holds. �

r

v1

br = ∑n
o=1 po + 1, hr = cr = 1

bv1 = cv1 = p1, hv1 = a1

v2 bv2 = cv2 = p2, hv2 = a2

. . .

vn bvn = cvn = pn, hvn = an

Fig. 3. Graph reduction from BIK to Attack-Protectw when O = {1,2 . . . ,n}.
131

A. Nabli, M. Carvalho and P. Hosteins Journal of Computer and System Sciences 127 (2022) 122–145
r

v1

br = K̄ , ĉr = hr = 1

bv1 = hv1 = p1, ĉv1 = a1

v2 bv2 = hv2 = p2, ĉv2 = a2

. . .

vn bvn = hvn = pn, ĉvn = an

Fig. 4. Graph reduction from BIK to Vaccination-Attackw when O = {1,2 . . . ,n}.

4.3. The Vaccination-Attackw problem

Using a similar reduction to the one in the proof of Theorem 4.3, we show that the Vaccination-Attackw on weighted
graphs is �p

2 -complete. As in the unitary case, this is equivalent to studying MCNw problems where we set � = 0. The
decision version of the problem is:

VACCINATION-ATTACKw :
instance: A graph G = (V , E), a non-negative integer K , two non-negative integer budgets � and �, ∀v ∈ V two
non-negative integer costs ĉv , hv and a non-negative integer benefit bv .
question: Is there a subset D ⊆ V , with cost

∑
v∈D ĉv ≤ � such that ∀I ⊆ V \D with cost

∑
v∈I hv ≤ �, the sum of

the benefit of the infected vertices is strictly less than K ?

Theorem 4.4. Vaccination-Attackw is strongly �p
2 -complete, even if the graph is a tree.

Proof. As before, Vaccination-Attackw is in �p
2 since this decision problem is exactly of the form ∃D ∀I Q (D, I) is a

proposition that can be evaluated in polynomial time.
Now, we establish the problem �p

2 -hardness. We start from an instance of BIK, defined in the previous section, and we
then construct an instance of Vaccination-Attackw as follows. First, we build a star graph G = (V , E) with a central vertex
r and |O | leaf vertices vo with o ∈ O . See Fig. 4. We add an edge (r, vo) for each such leaf vertex. The central vertex has
benefit br = K̄ and costs ĉr = hr = 1. Each leaf vertex vo with o ∈ O has a benefit bvo = po , cost for the defender ĉvo = ao

and cost for the attacker hvo = po . Finally, we fix � = A + 1, � = B and K = K̄ .
This is exactly the setting of BIK and one can easily complete the proof of equivalence of the two decision instances

following a path very similar to the proof of Theorem 4.3.
Finally, the reduction used a star graph which is a particular case of a tree. Hence, the problem is �p

2 -complete even on
trees. �
4.4. The MCNw problem

In this section we show that the decision problem MCNw is �p
3 -complete.

MCNw :
instance: A graph G = (V , E), a non-negative integer K , three non-negative integer budgets �, � and �, ∀v ∈ V
three non-negative integer costs ĉv , hv and cv , and a non-negative integer benefit bv .
question: Is there a subset D ⊆ V , with cost

∑
v∈D ĉv ≤ � such that ∀I ⊆ V \D with cost

∑
v∈I hv ≤ �, there is

P ⊆ V \I with cost
∑

v∈D cv ≤ � such that the sum of the benefit of the saved vertices is greater or equal to K ?

In order to achieve our ultimate goal, we take the 3-Alternating Quantified Satisfiability problem (B3 ∩3C N F), known to be
�

p
3 -complete problem [65,53], in order to prove that the generalization of BIK to a trilevel, the Trilevel Interdiction Knapsack

(TIK), is �p
3 -complete. Then, TIK is used to demonstrate that MCNw is �p

3 -complete.

3-ALTERNATING QUANTIFIED SATISFIABILITY (B3 ∩ 3C N F):
instance: Disjoint non-empty sets of variables X , Y and Z , and a Boolean expression E over U = X ∪ Y ∪ Z in
conjunctive normal form with at most 3 literals in each clause c ∈ C .
question: Is there a 0-1 assignment for X so that for all 0-1 assignments of Y there is a 0-1 assignment of Z such
that E is satisfied?
132

A. Nabli, M. Carvalho and P. Hosteins Journal of Computer and System Sciences 127 (2022) 122–145
TRILEVEL INTERDICTION KNAPSACK (TIK):
instance: A set of items O such that each o ∈ O has two positive integer weights a′

o and ao and a positive integer
profit po , two positive integer maximum weight capacities A′ and A, a positive integer maximum profit B and a
positive integer goal K̄ ≤ B .
question: Is there a subset O 1 ⊆ O of items, with

∑
o∈O 1

a′
o ≤ A′ , such that every subset O 2 ⊆ O \ O 1, with ∑

o∈O 2
ao ≤ A, there is a subset O 3 ⊆ O \ O 2, with

∑
o∈O 3

po ≤ B , such that
∑

o∈O 3
po ≥ K̄ holds?

Theorem 4.5. TIK is �p
3 -complete.

Proof. The statement of TIK is of the form ∃O 1 ∀O 2 ∃O 3 Q (O 1, O 2, O 3), directly implying that it is in �p
3 .

Next, we use a reduction from the B3 ∩ 3C N F which is very much in line with the reduction from 3-SAT to Subset Sum
presented in [66, Theorem 34.15]:

• For each variable u ∈ U , we create two items ou and oū , one for each possible 0-1 assignment of u. We designate by
O U = {ou : u ∈ U } and O Ū = {oū : u ∈ U } the two sets of items of size |U |.

• For each clause c ∈ C , (i) if c has 1 literal, we create one item o1
c , (ii) if c has 2 literals, we create two items o1

c and o2
c ,

and (iii) if c has 3 literals, we create three items o1
c , o2

c and o3
c . We designate by O C the set of items associated with C .

• Weights, profits, maximum capacities, maximum profit and goal will be given by digits of size |X | +|Y | +|Z | +|C | +1 in
base 10. Hence, each digit position is labeled by a variable or a clause: the first |C | positions (least significant numbers)
are labeled by the clauses, then the next |X | positions are labeled by the variables X , then the next |Y | positions are
labeled by the variables Y , then the next |Z | positions are labeled by the variables Z , and, finally, the last position is
labeled as forbidden.
– For each u ∈ U , the two corresponding items ou and oū have weights and profits as described next. The weights and

profits a′
ou

, aou , pou , a′
oū

, aoū and poū have digit 1 in the position labeled by the variable U and 0 in the positions
labeled by other variables; the remaining digits are zero for a′

ou
, aou , a′

oū
and aoū . In particular, for all o ∈ O U ∪ O Ū , it

holds a′
ou

= aou and a′
oū

= aoū .
If the literal u appears in clause c ∈ C , then pou has digit 1 in the position labeled as c, and 0 otherwise. Similarly,
if the literal ¬u appears in clause c ∈ C , poū has digit 1 in the position labeled by c, and 0 otherwise. Finally, for all
o ∈ O U ∪ O Ū , pou and poū have digit 0 in the position labeled as forbidden.

– For each c ∈ C , the associated items have weights and profits as follows. If c has one literal, a′
o1

c
and ao1

c
have 1 in the

position labeled as forbidden and 0 elsewhere; po1
c

has digit 3 in the position labeled as c and 0 elsewhere. If c has
two literals, a′

o1
c
, a′

o2
c
, ao1

c
and ao2

c
have 1 in the position labeled as forbidden and 0 elsewhere; po1

c
and po2

c
have digit

3 and 2, respectively, in the position labeled as c and 0 elsewhere. If c has three literals, a′
o1

c
, a′

o2
c
, a′

o3
c
, ao1

c
, ao2

c
and ao3

c

have 1 in the position labeled as forbidden and 0 elsewhere; po1
c
, po2

c
and po3

c
have digit 3, 2 and 1, respectively, in

the position labeled as c and 0 elsewhere.
– The weight capacity A′ has 1s for all digits with labels in X and 0s elsewhere. Hence, O 1 cannot contain items from

{ou, oū : u ∈ Z ∪ Y } ∪ O C .
– The weight capacity A has 1s for all digits with labels in Y , 2s for all digits with labels in X and 0s elsewhere. Hence,

O 2 cannot contain items from {ou, oū : u ∈ Z} ∪ O C .
– The maximum profit B has 1s for all digits with labels in X ∪ Z , 2s for all digits with labels in Y , 4s for all digits

with labels in C , and 0s elsewhere. Hence, O 3 can take any item (as long as not interdicted by O 2).
– We make K̄ is equal to B , except for the digits with labels Y , where it is 1.

See Fig. 5 for an illustration of our reduction.
Let B3 ∩ 3C N F be a Yes instance. Then, take in O 1 the items ou such that u ∈ X is 1 and the items oū , otherwise. Clearly,

this choice of O 1 respects the maximum weight A′ . By construction, given this O 1, the best O 2 will take all items associated
with X and not taken by O 1, as it does not interfere with the budget left for the items associated with Y . Furthermore, the
optimal O 2 will also take exactly one of the items ou or oū for u ∈ Y :

• The two items associated with the most significant digit whose label is in Y cannot be taken simultaneously in O 2 as
it would violate the weight capacity A. In fact, exactly one of these items must be taken, as otherwise O 3 would select
them both, making the achievement of the profit K̄ only dependent on the items associated with the Z ; consequently,
the goal would be achieved.

• The two items associated with the second most significant digit whose label is in Y cannot be taken simultaneously,
since we already know that one of the items associated with the most significant digit in Y is taken which would result
in a violation of the weight capacity A. Hence, reasoning as before, O 2 will take exactly of the items associated with
the second most significant digit in Y .

• The reasoning above propagates until the least significant digit labeled in Y . We conclude that the best O 2 will have
exactly one of the items ou or oū for u ∈ Y .
133

A. Nabli, M. Carvalho and P. Hosteins Journal of Computer and System Sciences 127 (2022) 122–145
O Z Y X C
forbidden d c b a c1 c2 c3

oa a′
oa

= aoa 0 0 0 0 1 0 0 0
poa 0 0 0 0 1 1 0 1

oā a′
oā

= aoā 0 0 0 0 1 0 0 0
poā 0 0 0 0 1 0 1 1

ob a′
ob

= aob 0 0 0 1 0 0 0 0
pob 0 0 0 1 0 1 0 1

ob̄ a′
ob̄

= aob̄
0 0 0 1 0 0 0 0

pob̄
0 0 0 1 0 0 1 0

oc aoc = a′
oc

0 0 1 0 0 0 0 0
poc 0 0 1 0 0 0 0 1

oc̄ aoc̄ = a′
oc̄

0 0 1 0 0 0 0 0
poc̄ 0 0 1 0 0 1 0 1

od a′
od

= aod 0 1 0 0 0 0 0 0
pod 0 1 0 0 0 0 1 0

od̄ a′
od̄

= aod̄
0 1 0 0 0 0 0 0

pod̄
0 1 0 0 0 0 0 0

o1
c1

a′
o1

c1
1 0 0 0 0 0 0 0

ao1
c1

1 0 0 0 0 0 0 0

po1
c1

0 0 0 0 0 3 0 0

o2
c1

a′
o2

c1

1 0 0 0 0 0 0 0

ao2
c1

1 0 0 0 0 0 0 0

po2
c1

0 0 0 0 0 2 0 0

o3
c1

a′
o3

c1

1 0 0 0 0 0 0 0

ao3
c1

1 0 0 0 0 0 0 0

po3
c1

0 0 0 0 0 1 0 0

o1
c2

a′
o1

c2

1 0 0 0 0 0 0 0

ao1
c2

1 0 0 0 0 0 0 0

po1
c2

0 0 0 0 0 0 3 0

o2
c2

a′
o2

c2

1 0 0 0 0 0 0 0

ao2
c2

1 0 0 0 0 0 0 0

po2
c2

0 0 0 0 0 0 2 0

o3
c2

a′
o3

c2

1 0 0 0 0 0 0 0

ao3
c2

1 0 0 0 0 0 0 0

po3
c2

0 0 0 0 0 0 1 0

o1
c3

a′
o1

c3

1 0 0 0 0 0 0 0

ao1
c3

1 0 0 0 0 0 0 0

po1
c3

0 0 0 0 0 0 0 3

o2
c3

a′
o2

c3

1 0 0 0 0 0 0 0

ao2
c3

1 0 0 0 0 0 0 0

po2
c3

0 0 0 0 0 0 0 2

o3
c3

a′
o3

c3

1 0 0 0 0 0 0 0

ao3
c3

1 0 0 0 0 0 0 0

p
o3

c3

0 0 0 0 0 0 0 1

A′ 0 0 0 1 1 0 0 0
A 0 0 1 2 2 0 0 0
B 0 1 2 1 1 4 4 4
K̄ 0 1 1 1 1 4 4 4

Fig. 5. Example of construction of TIK from an instance B3 ∩ 3C N F with E = (a ∨ b ∨ ¬c) ∧ (¬a ∨ ¬b ∨ d) ∧ (a ∨ c ∨ b), where X = {a, b}, Y = {c}, Z = {d}
and the clauses are labeled from left to right.

Finally, O 3 will contain O 1 and all the items associated with Y not in O 2. This makes the rest of the items selection for
O 3 completely equivalent to variable assignment in Z for B3 ∩ C N F (precisely, the standard reduction from 3-SAT to Subset
Sum). Therefore, T I K is a Yes instance.

Next, suppose that TIK is a Yes instance. Certainly, an optimal O 1 must have exactly one of the items ou and oū for
u ∈ X , otherwise, O 2 could interdict some ou and oū , making the goal K̄ impossible to be achieved. As argued before, an
optimal reaction O 2 to O 1 will select the items associated with X not in O 1.

Assign 1 to u ∈ X such that ou ∈ O 1, and 0 otherwise. For any valid assignment of the variables in Y , the correspondence
in TIK is the following: if u ∈ Y is 1, add oū to O 2, otherwise add ou . This forces O 3 to select for each u ∈ Y , ou if u is 1 and
oū if u is 0; otherwise, the goal K̄ is not attained. Since, by hypothesis, TIK is a Yes instance, for those O 1 and O 2, there is
O 3 such that the profit K̄ is exactly achieved which implies that there is an assignment of Z such that E is satisfied. �
134

A. Nabli, M. Carvalho and P. Hosteins Journal of Computer and System Sciences 127 (2022) 122–145
r

v1
2v1

1
.
.
.

v2
1

v3
1

v2
2

v3
2

v1
n

v2
n

v3
n

ĉr = � + 1, hr = cr = 1, br = K

ĉv1
1
= � + 1, hv1

1
= � + 1, cv1

1
= p1, bv1

1
= 0

ĉv2
1
= � + 1, hv2

1
= � + 1, cv2

1
= � + 1, bv2

1
= p1

ĉv3
1
= a′

1, hv3
1
= a1, cv3

1
= � + 1, bv3

1
= 0

ĉv1
n

= � + 1, hv1
n

= � + 1, cv1
n

= pn, bv1
n

= 0

ĉv2
n

= � + 1, hv2
n

= � + 1, cv2
n

= � + 1, bv2
n

= pn

ĉv3
n

= a′
n, hv3

n
= an, cv3

n
= � + 1, bv3

n
= 0

Fig. 6. Graph reduction from TIK to MCNw when O = {1, 2 . . . , n}. The only vertices resulting in positive benefit are the ones in white. The vertices in gray
can be vaccinated and directly attacked. The vertices in green can be protected. The vertex in black can be attacked (and protected). (For interpretation of
the colors in the figure(s), the reader is referred to the web version of this article.)

Theorem 4.6. MCNw is �p
3 -complete, even on trees.

Proof. MCNw is clearly in �p
3 .

Next, from an instance of TIK, we construct the following instance of MCNw :

• Let � = A′ , � = A + 1, � = B and K = K̄ .
• For each item o ∈ O create three vertices v1

o , v2
o and v3

o with
– ĉv1

o
= � + 1, hv1

o
= � + 1, cv1

o
= po and bv1

o
= 0; this vertex is only available for the protection set P ;

– ĉv2
o
= � + 1, hv2

o
= � + 1, cv2

o
= � + 1 and bv2

o
= po; this vertex cannot be vaccinated, directly infected or protected;

– ĉv3
o
= a′

o , hv3
o
= ao , cv3

o
= � + 1 and bv3

o
= 0; this vertex is only available for the vaccination set D and for the direct

infection set I;
• Create a vertex r with ĉr = � + 1, hr = 1, cr = 1 and br = K .
• For each item o ∈ O , add the edges (r, v1

o), (v1
o, v2

o) and (v2
o , v3

o).

See Fig. 6 for an illustration of our reduction.
The key ingredients of this reduction are the following: (i) independently of the vaccination strategy, an optimal attack

will always include the vertex r, (ii) hence, the only way to collect a positive benefit po is by ensuring that vertex v2
o is

saved, (iii) the latter is only possible if v3
o is vaccinated and v1

o is protected or if v3
o is not attacked and v1

o is protected.
These observations allow to show that TIK is a Yes instance if and only if MCNw is a Yes instance. The remainder of the
proof follows a similar reasoning to the previous proofs for the weighted games. �
5. Directed graphs

In this section, we consider directed graphs G = (V , A) and restrict costs and benefits to be unitary. We use the subscript
dir for these problem versions. Clearly, these problems inherit the complexity of their unitary undirected versions, as they
are more general. In fact, we were able to go a level up in the polynomial hierarchy for some of its subgames in comparison
with the unitary undirected cases. In this section, we first prove that the Attackdir is NP-complete, and then demonstrate
that Vaccination-Attackdir is �p

2 -complete. Later, in Section 6, we present special properties of Protectdir that allow us to
easily prove NP-completeness for directed acyclic graphs and polynomiality for arborescences.

It should be remarked that we do not address Attack-Protectdir and thus, it remains open whether it is �p
2 -complete.

The difficulty on dealing with this subgame is related to the lack of �p
2 -hard problems involving unitary parameters or a

division on the two players decision variables: in Attack-Protectdir all parameters are 1 and all vertices can be subject to
infection or protection. On the other hand, as an example, non-trivial instances of BIK (presented in Section 4.2) should
have weights not all 1, otherwise it becomes polynomially solvable as it can be reduced to its continuous version and,
consequently, efficiently solved [67]. Another example, 2-CNF-Alternating Quantified Satisfiability, to be introduced in
Section 5.2, and which is �p

2 -complete, demands each player to control distinct sets of variables. For Vaccination-Attackdir ,
we were able to bypass this challenge but an analogous trick does not seem easily adaptable for Attack-Protectdir .

5.1. The Attackdir problem

First, we study the Attack problem on directed graphs, Attackdir . We are given a directed graph Ga resulting from the
deletion of the vaccinated vertices from the original graph, and an integer budget �. In this setting, there is no protection
phase, i.e. � = 0. The decision version of the problem is:
135

A. Nabli, M. Carvalho and P. Hosteins Journal of Computer and System Sciences 127 (2022) 122–145
ATTACKdir :
instance: A directed graph Ga = (Va, Aa), a non-negative integer budget � ≤ |Va|, and a non-negative integer K .
question: Is there a subset of vertices I ⊆ Va , |I| ≤ � such that the number of infected vertices in Ga is greater or
equal to K ?

We saw that in the undirected case, this problem is solvable in linear time, the best strategy being to infect the �
largest connected components of Ga . But in the directed case, the infection is only allowed to propagate itself according to
the direction of the arcs, which makes the problem of choosing the right set of vertices to attack NP-complete. We will use
a reduction from the 3-Satisfiability problem, which is one of the Karp’s 21 NP-complete problems [64].

3-SATISFIABILITY (3-SAT):
instance: Set U of variables, Boolean expression E over U in conjunctive normal form with exactly 3 literals in each
clause c ∈ C .
question: Is there a 0-1 assignment for the variables in U that satisfies E?

Theorem 5.1. Attackdir is NP-complete, even on directed acyclic graphs.

Proof. Attackdir ∈ NP as, given a set of attacked vertices I , checking whether the set of infected vertices is greater than K
is easily done using a DFS.

To prove that Attackdir is NP-hard, we take an instance of 3-SAT. We build a directed acyclic graph Ga as follows:

• For each variable u ∈ U , we create two vertices vu and vū , one for each possible 0-1 assignment of u. We call V U =
{vu; u ∈ U } and V Ū = {vū; u ∈ U } the two sets of vertices of size |U |. For each variable u, we also create a directed path
pu of length |C | + |U | − 1, with an in-going arc from both vu and vū at the beginning of the path.

• For each clause c ∈ C , we create a vertex vc ∈ V C .
• From each vertex vu ∈ V U , we draw an arc (vu, vc) to every clause in which the positive literal u appears. Similarly, we

draw an arc (vū, vc) from each vū ∈ V Ū to every clause in which the negative literal ¬u appears.

An example of this construction can be found in Fig. 7. We set � = |U |, K = |U | × (|U | +|C |) +|C | and argue that answering
Attackdir on this instance is the same as answering 3-SAT.

Indeed, suppose that 3-SAT is a Yes instance, i.e. there is a 0-1 assignment to the variables in U such that every clause
in E is true. Taking this assignment, by attacking vu if u is set to be 1 and vū otherwise, we attack exactly � vertices in
Ga . Moreover, each path pu is infected, and for each pair (vu, vū), there is exactly one vertex infected due to the direction
of the arcs. Finally, as E is true, each clause c is true, which translates into the fact that each vc in the graph Ga is infected.
Overall, there are exactly |U | + |U | × |pu | + |C | = |U | × (|U | + |C |) + |C | vertices infected in the graph.

Conversely, we prove that if Attackdir is a Yes instance, i.e., there is a feasible attack I∗ on Ga leading to at least
K = |U | × (|U | + |C |) + |C | vertices infected, then E is satisfiable and the corresponding 0-1 assignment can be read in I .
Let I∗ be such an attack strategy. First, we remark that the largest possible set of infected vertices should contain all the
vertices V pu of each path pu : it is possible to infect them all as � = |U | and due to their size equal to |C | + |U | − 1, we can
prove that not infecting all of them results in a sub-optimal solution. Indeed, suppose that for one u′ we do not infect any
of the vertices V pu′ of the path pu′ . Let α∗ be the maximum number of vertices we can infect without infecting pu′ . As pu′
is not infected, vu′ and vū′ cannot be either. Thus, an easy upper bound αup on α∗ is obtained by saying that every vertex
of the graph is infected, except for the ones in {vu′ , vū′ } ∪ V pu′ . Then,

α∗ ≤ αup = (|U | − 1) × |pu| + 2(|U | − 1) + |C |
= (|U | − 1) × (|U | + |C | − 1) + 2|U | − 2 + |C |
= |U |2 + |U | × |C | − 2|U | − |C | + 1 + 2|U | − 2 + |C |
= |U | × (|U | + |C |) − 1.

As we assumed that the optimal attack I∗ infected at least K = |U | × (|U | + |C |) + |C | vertices, which is strictly greater than
αup , we proved that no strategy not infecting all the paths can infect K vertices.

Thus, as there is exactly � different paths, we should attack exactly one element in each set of vertices {vu , vū} ∪ V pu : if
we attacked more than one, then the remaining budget would not allow to attack all the paths. As attacking vu or vū leads
to a strictly greater number of infected vertices than infecting a vertex in pu , there is no harm in assuming that no vertex
inside the pu is in I∗ . This implies that I∗ ⊂ V U ∪ V Ū . At this point, there are at least |pu| × |U | + |U | = |U | × (|U | + |C |)
vertices infected. Since we supposed that we had a Yes instance to Attackdir , there must be K = |U | × (|U | + |C |) + |C |
infected vertices, which implies that all vertices in V C are infected. Thus, 3-SAT is a Yes instance and I∗ is a 0-1 assignment
of U that makes E true, concluding the proof. �
136

A. Nabli, M. Carvalho and P. Hosteins Journal of Computer and System Sciences 127 (2022) 122–145
va v¬a

vc1

vb v¬b

vc2

vc v¬c

vc3

Fig. 7. Example of construction of Ga from the boolean expression in CNF with 3 literals in each clause E = (a ∨ b ∨ ¬c) ∧ (¬a ∨ b ∨ c) ∧ (a ∨ ¬b ∨ c). We
have U = {a, b, c} and |C | = 3. Taking I = {va, vb, vc} is optimal.

Remark 5.2. Note that the proof of Theorem 5.1 holds if pu is replaced by a complete graph with |C | + |U | − 1 vertices (the
length of the path). This observation will be useful for the reduction used in Vaccination-Attackdir

5.2. The Vaccination-Attackdir problem

Our demonstration of NP-completeness for Attackdir inspires our proof for the �
p
2 -completeness of Vaccination-

Attackdir . The formulation of this decision problem is

VACCINATION-ATTACKdir :
instance: A graph G = (V , A), two non-negative integer budgets � and � such that � + � ≤ |V | and a non-negative
integer K .
question: Is there a subset D ⊆ V , |D| ≤ � such that ∀I ⊆ V \D with |I| ≤ �, the number of infected vertices
|V | − s(G, D, I, ∅) ≤ K ?

We will use a reduction from a variant of the 2-Alternating Quantified Satisfiability problem (B2). Historically, B2 was the
first problem shown to be �p

2 -complete [52]. If the Boolean formula studied in B2 is in DNF with 3 literals per clause, then
the problem is still �p

2 -complete [53]. Thus, if we consider expressions in CNF with 3 literals per clause, instead of seeking
to satisfy the Boolean formula, we should state the question as formulated in [48]:

2-CNF-ALTERNATING QUANTIFIED SATISFIABILITY (BC N F
2):

instance: Disjoint non-empty sets of variables X and Y , Boolean expression E over U = X ∪ Y in conjunctive normal
form with exactly 3 literals in each clause.
question: Is there a 0-1 assignment for X so that there is no 0-1 assignment for Y such that E is satisfied?

Theorem 5.3. Vaccination-Attackdir is �p
2 -complete.

Proof. From the formulation in the form of ∃D ∀I Q (D, I), we deduce that Vaccination-Attackdir ∈ �
p
2 .

To show that it is �p
2 -hard, we take an instance of BC N F

2 . We build G in a similar fashion to how Ga was built in
the proof of the Theorem 5.1, the main difference being the use of cliques instead of paths. However, to differentiate the
variables in X from the ones in Y , we slightly change the construction:

• For each variable x ∈ X , we create two vertices vx and vx̄ , one for each possible 0-1 assignment of x. We call V X and
V X̄ the sets of vx and vx̄ . We also create two cliques kx and kx̄ of |C | + |Y | − 1 vertices Vkx and Vkx̄ .

• For each variable y ∈ Y , we create two vertices v y and v ȳ , one for each possible 0-1 assignment of y. Let V Y and V Ȳ
be these two sets of vertices, and V U = V X ∪ V Y , V Ū = V X̄ ∪ V Ȳ . We also create a clique ky of size |C | + |Y | − 1.

• For each clause c ∈ C , we create a vertex vc ∈ V C .
• From each vertex vu ∈ V U , we draw an arc (vu, vc) to every clause in which the positive literal u appears. Similarly, we

draw an arc (vū, vc) from each vū ∈ V Ū to every clause in which the negative literal ¬u appears.
• From every vx, we draw an arc to one node in kx , and do the same thing with vx̄ and kx̄ . We also draw an undirected

edge between each vx and vx̄ .
• Finally, from each v y and each v ȳ , we draw an arc to one node in ky .
137

A. Nabli, M. Carvalho and P. Hosteins Journal of Computer and System Sciences 127 (2022) 122–145
va v¬a vb v¬b vc v¬c vd v¬d

vc1 vc2 vc3

Fig. 8. Example of construction of G from the boolean expression in CNF with 3 literals in each clause E = (a ∨ b ∨ ¬c) ∧ (¬a ∨ ¬b ∨ d) ∧ (a ∨ c ∨ b). Here,
X = {a, b} and Y = {c, d}. Taking D = {va, vb}, i.e., obliging both a and b to be False makes it impossible to satisfy E .

An example of this construction can be found in Fig. 8. We set � = |X |, � = |X | + |Y |, K = (|X | + |Y |) × (|Y | + |C |) + |C | − 1
and argue that answering Vaccination-Attackdir on this instance is the same as answering BC N F

2 .
Indeed, if we are a given a solution to a Yes instance of BC N F

2 , then by vaccinating the vertices corresponding to the
opposite of the 0-1 assignment of X , we oblige the attacker to infect the vertices corresponding to the truth values for X .
From there, by following the same reasoning as before, it is easy to see that the Yes instance of BC N F

2 leads to a Yes instance
of Vaccination-Attackdir , i.e. the attacker cannot infect more than K vertices.

Conversely, we show that a set D∗ corresponding to a solution of a Yes instance of Vaccination-Attackdir is a solution
to a Yes instance of BC N F

2 . The first thing to notice is that given that the vaccination budget is � = |X |, that the size of
the cliques kx and kx̄ is equal to |C | + |Y | − 1 and that each clique can be disconnected from the graph by spending only
one unit of vaccination budget, we necessarily have that the best vaccination strategy D∗ ⊂ ∪

x∈X
{vx, vx̄}. Next, we show

that the defender would be worse off is she decides to vaccinate both vx′ and vx̄′ for some x′ ∈ X instead of vaccinating
exactly one of each member of {vx, vx̄}. In the best case scenario, in addition to the vertices already vaccinated, deciding
to vaccinate the two members of a pair will allow her to protect |C | − 1 nodes in V C (it is not possible to remove all the arcs
between the V U ∪ V Ū and the V C as we suppose that Y �= ∅, thus at least one clause contains a variable from Y). But by doing so,
as � = |X |, the defender will also not protect at all a group of vertices {vx′′ , vx̄′′ } ∪ Vkx′′ ∪ Vkx̄′′ . Thus, the attacker can then
spend only one unit of her own budget to attack all of this group, a quantity of infected vertices that otherwise would have
been obtained by spending two units of his budget �. Thus, defending the two members of {vx′ , vx̄′ } spared one unit of
budget for the attacker, which she can then use to attack one of the disconnected cliques of size |C | + |Y | − 1 > |C | − 1.
Thus, making such a move for the defender is strictly worse than not doing it and D∗ contains exactly one vertex from each
{vx, vx̄}.

After this stage, it is easy to see that the best move for the attacker is to attack all of the D∗\(V x ∪ V x̄), and for the
variables in Y , the situation reduces to the one we already discussed with Attackdir (note that it is always more interesting
for the attacker to spend her budget on attacking the v y and v ȳ than the disconnected cliques as it will always infect more vertices).
Hence, in the end, if the attacker did not manage to infect strictly more than (|Y | + |X |) × (|Y | + |C |) + |C | − 1 vertices, it
means that at least one clause is false, which concludes the proof. �
Corollary 5.4. MCNdir is �p

2 -hard.

6. PROTECTION: tractability limits

In this section, we will concentrate on optimal protection strategies given I (directly infected vertices). Without loss of
generality, in what follows, we restrict our attention to the induced graph obtained by considering only non-saved vertices
when there is no protection (the remaining are already saved, even without no protected vertices).

The motivation to provide a closer look to the protection problem in the unitary cases (undirected and directed graphs)
is based on the fact that their NP-hardness was established for split graphs, while for the weighted case it was proven
even for trivial graphs. Such results do not clarify the problem complexity for trees, or even graphs of bounded treewidth,
neither for directed acyclic graphs (DAGs), polytrees and arborescences. Frequently, NP-complete problems on graphs become
polynomially solvable on such graph classes. In section 6.1, we describe a dynamic programming approach for trees to
determine the optimal protection solution in polynomial time. We also connect our problem complexity with the results in
monadic second-order logic for tree-decomposable graphs [68,43]. In section 6.2, we describe the problem properties for
DAGs, making it simple to show that Protectiondir is NP-complete. We conclude this section by showing that the optimal
protection strategy can be determined in polynomial time for arborescences.
138

A. Nabli, M. Carvalho and P. Hosteins Journal of Computer and System Sciences 127 (2022) 122–145
6.1. Protect over trees

We next focus on Protect; recall that it is the case of undirected graphs with unitary costs and benefits. Results for
a special version of this problem where only one vertex is infected, aka the Firefighter Problem, already exist in the
literature. The recent work of [43] establishes that for this special version of Protect, the decision version of the problem
can be solved in linear time over graphs of bounded treewidth, through the use of a reformulation in Extended Monadic
Second Order (EMSO) logic. We first extend this result to the case of an arbitrary number of infected vertices to show that
Protect is solvable in polynomial time over graphs of bounded treewidth.

Lemma 6.1. Protect can be solved in polynomial time over graphs with constant bounded treewidth.

Proof. The key factor is to reformulate our problem in terms of an MSO-formula ϕ based on set variables, which captures
the graph structure of the problem, and an evaluation relation ψ over a set of integer variables, which captures the “num-
ber” aspect of the problem. In order to do so, we will define as in [43] two sets P and X where P is the set of protected
vertices that separate the infected vertices of set I from the saved vertices which are not protected X . Apart from the classic
universal quantifier and logical connectives, we need to make use of a binary relation adj(x, y) to assess the adjacency of
two vertices x and y ∈ V : adj(x, y) true if (x, y) ∈ E , and false otherwise. The definitions of ϕ and ψ for Protect are the
following:

ϕ = (∀v(v ∈ I ⇒ (v /∈ P) ∧ (v /∈ X))) ∧ (∀x(x ∈ P) ⇒ (x /∈ X)) ∧
(∀x∀y((x ∈ X) ∧ (adj(x, y)) ∧ (y /∈ P)) ⇒ (y ∈ X)).

ψ = (|P | ≤ �) ∧ (|X | + |P | ≥ K),

where the aim is to save at least K vertices. Through the above expression for ϕ , it is established that the sets P and
X have an empty intersection and that any neighbor of a vertex in X must be either in P or X itself, i.e., the set P is a
separator for the sets I and X . Since the above definitions respect the limitations of MSO logic formulations, a theorem due
to [69] implies that the problem can be solved in O (f (w) · |V |) where f is a function of the treewidth w of the graph.
Consequently, we can conclude that Protect can be solved in polynomial time for graphs whose treewidth is bounded by a
constant. �

Even though the above theorem is powerful from a theoretical perspective, it is of little practical use, as underlined
in [68]. Indeed, the function f (w) in the worst case complexity formula grows extremely fast with w and the algorithm
suffers from space problems in practical implementations. Therefore, Dynamic Programming (DP) is often used to provide
more efficient algorithms. In this section we propose a DP algorithm to solve the optimization problem associated with
Protect on trees. We consider a recursion scheme that works with growing subtrees, starting from the leaves and climbing
up to the root vertex, solving the optimization problem on each subtree recursively and merging them as needed at each
step of the recursion. This recursion scheme bears similarities with the scheme proposed in [10] for the pairwise CNDP
over trees. In the following, we label a vertex as attacked when it has been directly infected by the attacker while the term
infected is used both for directly attacked vertices and indirectly infected ones, and secondary infected vertices is used only
for vertices indirectly infected after the initial attack.

For further analysis, we denote by Ta the subtree of tree T rooted at vertex a ∈ V , and by ai with i ∈ {1, ..., s} the
children of a. We define as Tai→s the subtree constituted by {a} ∪ j=i,...,s Ta j . An example of a tree T rooted at vertex a
is depicted in Fig. 9 where subtree Ta2 is represented by diamond shaped vertices while subtree Ta3→4 is represented by
round shaped vertices. All recursions in our dynamic programming approaches are based on traversing the tree in postorder
(i.e. from the leaves to the root) and from the right part of each tree level to the left one. For example in Fig. 9, once the
recursive functions are computed and saved for subtrees Ta3 and Ta4 , we will compute the recursion functions associated
to Ta3→4 by merging the results for both subtrees in both situations when a is vaccinated, infected, protected or neither of
these possibilities. We consider that tree T is rooted at vertex r.

We introduce the following recursion functions:

Fa(c,m, σ) := maximum number of saved vertices in subtree Ta when c vertices have been protected, m unprotected
vertices in Ta are linked to a by an unprotected but non-infected path (including a itself) and σ = 1 if an
attacked vertex in Ta is linked to a by an unprotected path (including a) and σ = 0 otherwise.

Gai (c,m, σ) := maximum number of saved vertices in subtree Tai→s when c vertices have been protected, m unprotected
vertices in Tai→s are linked to a by an unprotected but non-infected path (including a itself) and σ = 1 if an
attacked vertex in Tai→s is linked to a by an unprotected path (including a) and σ = 0 otherwise.

Using the previously described functions, we can define the following recursions. The initial conditions for each leaf vertex
a and rightmost subtree Tas are as follows:
139

A. Nabli, M. Carvalho and P. Hosteins Journal of Computer and System Sciences 127 (2022) 122–145
a

a1 a2 a3 a4

Fig. 9. Example of a tree with subtree Ta2 represented by diamond shaped vertices and subtree Ta3→4 represented by round shaped vertices.

Fa(c,m,σ) =

⎧⎪⎨
⎪⎩

0 if (c = 0 ∧ m = 0 ∧ σ = 1)

1 if (c = 1 ∧ m = 0 ∧ σ = 0) ∨ (c = 0 ∧ m = 1 ∧ σ = 0)

−∞ otherwise (i.e., infeasible configurations)

; (5)

Gas (c,m,σ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
{

Fas (c − 1,m′,σ ′) + m′(1 − σ ′) : m′ = 0, . . . , |Tas |; σ ′ = 0,1
}

if a is protected (m = σ = 0)

max
{

Fas (c,m′,σ ′) + m′(1 − σ ′)(1 − σ) : m′ = 0, . . . , |Tas |; σ ′ = 0,1
}

if a is vaccinated (m = σ = 0) or attacked (m = 0, σ = 1)

Fas (c,m − 1,σ)

if a is neither vaccinated, protected or attacked.

(6)

In Eq. (6), the first case deals with a protected a vertex and all m′ unprotected vertices below as are saved if as is not linked
to an attacked vertex inside Tas (σ ′ = 0). The second case deals with either a vaccinated or attacked a vertex so that the
budget c needs not be updated going from Tas to Tas ∪ {a}. The last case deals with an unattacked and unprotected a vertex
and parameter m is incremented as the subtree is enlarged by vertex a.

The following equations handle the general case, for vertices which are neither leaf vertices or the root of rightmost
subtrees:

Fa(c,m,σ) = Ga1(c,m,σ) for a non-leaf vertex a ∈ V . (7)

For each non-leaf vertex a ∈ V and i < s: if a is attacked

Gai (c,0,1) = max
{

Fai (c′,m′,σ ′) + Gai+1(c − c′,0,1) :
c′ = 0, . . . , |Tai |; m′ = 0, . . . , |Tai |; σ ′ = 0,1

}
,

(8a)

if a is protected (either from vaccination or protection)

Gai (c,0,0) = max
{

Fai (c′,m′,σ ′) + Gai+1(c − c′,0,0) + m′(1 − σ ′):
c′ = 0, . . . , |Tai |;m′ = 0, . . . , |Tai |; σ ′ = 0,1

}
,

(8b)

otherwise, if a is neither protected nor infected

Gai (c,m,σ) = max
{

Fai (c′,m′,σ ′) + Gai+1(c − c′,m − m′,σ ′′) + m′(1 − σ)δar :
c′ = 0, . . . , |Tai |;m′ = 0, . . . , |Tai |;
σ ′,σ ′′ = 0,1:σ = max{σ ′,σ ′′}} .

(8c)

Equation (8a) focuses on the case where vertex a is infected. In this case, no additional vertex is saved as all vertices
below a which were not infected in Ta and with an unprotected path to a will be infected themselves, therefore the total
number of saved vertices is the sum of already saved vertices from the two merged subtrees. Equation (8b) regards the
case of a protected a vertex, either through earlier vaccination or through protection. In this case, the vertices under ai
who were unprotected, linked to ai by an unprotected path and who are not in contact with an infected vertex through an
unprotected path are confirmed saved and added to the cost function, additionally to the already saved vertices from both
subtrees. Finally, Equation (8c) deals with the last case where a is neither infected nor protected in any way. In this case,
140

A. Nabli, M. Carvalho and P. Hosteins Journal of Computer and System Sciences 127 (2022) 122–145
the cost of the objective function is updated by the number of unprotected vertices linked to ai by an unprotected path,
but only in the case that a is the root vertex r (δar = 1 if a = r and 0 otherwise) and a is not linked to an infected vertex
through an unprotected path (σ = 0). Otherwise, we cannot ensure that the unprotected vertices below a will be saved in
the optimal solution.

The optimal value for the problem is given by the quantity

max {Fr(c,m,σ) : c = 0, . . . ,�; m = 0, . . . ,n; σ = 0,1}
where r is the root vertex of the tree, since it represents the maximum number of saved vertices for each protection budget
and the solution can be recovered by backtracking. Considering the proposed dynamic program, we can state the following
proposition.

Theorem 6.2. Protect over trees admits a polynomial time algorithm with time complexity O (n5).

Proof. The number of functions Fa(·) and Ga(·) to compute for each value of c, m and σ is bounded by 2n2. The recursion
steps involved in Equation (8c) are bounded by 2n2 operations at most. Considering all vertices n, the running time of the
dynamic programming algorithm is thus bounded by O (n5). �

Since the lower level of the problem over trees is polynomial, the MCN over trees cannot be �p
3 -hard. Following a

classic trick for DP algorithm, see e.g. [10], a similar algorithm can be devised when vertices have protection costs and unit
benefits, which remains polynomial. When both types of weights are integer, the algorithms become pseudo-polynomial
and the problem becomes weakly NP-hard.

6.2. Protectiondir over directed acyclic graphs

We will show that an optimal protection strategy can be restricted to candidate vertices.

Definition 6.1. In a directed graph G = (V , A), a vertex v ∈ V \ I that can be reached from a vertex of I by a directed
path and whose isolated protection results in a maximal set of saved vertices, is called candidate. Denote by C the set of
candidate vertices.

In other words, a candidate vertex v has no predecessor whose protection implies saving v . See Fig. 10 for an illustration
on popular graph sub-classes of DAGs. In the case of Fig. 10a, C = {1, 2, 3, 9}; e.g., vertex 5 is not a candidate, since its
protection saves vertices {6, 7, 8}, but this is also guaranteed by saving vertex 2 instead, resulting in the maximal set of
saved vertices {2, 3, 4, 5, 6, 7, 8}. In Fig. 10b, protecting vertex 1 suffices to save all the remaining non attacked vertices.
Finally, in Fig. 10c, the successors of the attacked vertices are exactly the set of candidates.

Lemma 6.3. Let G = (V , A) be a directed graph. Given I and �, there is an optimal protection strategy P ⊆ C .

Proof. Let P ⊆ V \ I be an optimal protection strategy such that exists v ∈ P \ C . Then, by the definition of candidate, there
is a vertex u ∈ C whose isolated protection implies saving v , as well as, all the vertices that v alone was saving. Hence, a
feasible protection strategy can be obtained by removing v from P and adding u to P : note that either the used budget is
maintained, if u /∈ P , or decreased, if u ∈ P . Let this strategy be denoted by P̃ = (P − {v}) ∪ {u}.

By contradiction, suppose that P̃ is not optimal: there is some vertex r that was saved in P but not in P̃ . In fact,
we can conclude that under P , r was saved due to v being saved (protected) and possibly due to some other vertices in
P \ {v} ⊆ P̃ . However, under P̃ , v is also saved, as well, as the vertices in P \ {v}. Consequently, r is saved in P̃ , resulting in
a contradiction. �

Furthermore, we can compute the value of candidate vertices.

Definition 6.2. For each v ∈ C , the value of v is denoted by pv and it corresponds to the number of saved vertices if v is
the only protected vertex.

In the example of Fig. 10a, p1 = 1, p2 = 6, p3 = 1 and p9 = 1. However, note that this analysis does not make the
problem trivial: in Fig. 10a, if � = 2, the optimal protection cannot be computed in a greedy way, i.e., protecting vertices 1
and 2 is not optimal; the only optimal solution is to protect vertices 1 and 3.

Theorem 6.4. Protectdir is NP-complete, even for directed acyclic graphs.
141

A. Nabli, M. Carvalho and P. Hosteins Journal of Computer and System Sciences 127 (2022) 122–145
12

1

10

3

2

4

5

6

7 8

911

(a) Graph induced by V \ I is a polytree.

0

1

2 4

3

5

(b) Graph induced by
V \ I is a DAG.

0

1

2

3 4

5

6 7

89

(c) Graph induced by V \ I is an arborescence.

Fig. 10. The set I is represented by black vertices and candidate vertices are dashed.

V̄ 1 V̄ 2
⋃

v∈V̄ 1
T v ∪ {u} V̄ 2

u

Fig. 11. Example of construction of G from Ḡ .

Proof. The statement of Protectdir is exactly the one of Protect in Section 3, except that the graph is directed. For sake of
simplicity, we drop the subscript a from Ga .

The problem is clearly in NP as given the protection P , the number of infected can be determined in polynomial time
through a DFS.

Next, we reduce CNPsplit to Protectdir , showing its NP-hardness. Given an instance of CNPsplit , we build the following
graph G = (V , A):

• For each v ∈ V̄ 1, we create the set of vertices T v = {t1
v , t2

v} in G , and the arc (t1
v , t2

v).
• For each v ∈ V̄ 2, we replicate it in G , and for each edge (r, v) ∈ Ē with v ∈ V̄ 2, the arc (t1

r , v) is added in G .
• Finally, we add the only attacked vertex u to G and connect it with each t1

v for v ∈ V̄ 1, through the arc (u, t1
v).

To complete the reduction it remains to set � = B and K = �2 +
√

8K̄ + 1� (obtained by solving K̄ = (K−1
2
2

)
). See Fig. 11 for

an illustration of the reduction.
First, note that C of G is {t1

v : v ∈ V̄ 1} ∪ V̄ 2, where the vertices in the first set have value at least 2, and the ones in the
second have value 1. Hence, it is clear that the best protection strategy will prioritize the vertices t1

v . In fact, we can argue
than only those vertices can be in an optimal protection strategy. If � = B ≥ V̄ 1, then the instance of CNPsplit is trivial.
Therefore, we can assume � = B < V̄ 1 and thus, it holds P∗ ⊂ {t1

v : v ∈ V̄ 1}. Consequently, choosing the optimal P∗ means
142

A. Nabli, M. Carvalho and P. Hosteins Journal of Computer and System Sciences 127 (2022) 122–145
to minimize the vertices in T v , for v ∈ V̄ 1, and in V̄ 2 that are connected to u. By construction, those vertices connected
with u correspond to a connected component C̄1 in Ḡ . Thus, P∗ minimizes the size of

⋃
v∈C̄1

{t2
v} ∪ {u} ∪ C̄1. The remaining of

the proof follows an analogous reasoning to the proof of Theorem 3.3. �
6.2.1. Arborescence

In this section we restrict the protection problem to the case where the graph induced by V \ I is an arborescence.

Definition 6.3. A directed acyclic graph G = (V , A) is an arborescence if its underlying undirected graph is a tree and there
is a single vertex (root) that has a unique directed path from it to all other vertices.

In arborescence, the determination of C is straightforward. Since all vertices in V \ I have in-degree 1, either they are
protected by their predecessor, and thus are not a candidate, or they are direct successors of vertices in I . Therefore, C is
the set of all successors of vertices in I . For an illustration see Fig. 10c, where the vertices in C = {1, 4} have in-degree 1.
We can prove that in this case a greedy approach leads to optimality.

Lemma 6.5. Given G = (V , A), I and �, if the graph induced by V \ I is an arborescence, then an optimal protection can be determined
in polynomial time, specifically, O (|V | log(|V |)). Moreover, if the induced graph is a set of arborescences, the result also holds.

Proof. We start by showing that a greedy procedure runs in time O (|V | log(|V |)).
As previously observed, for arborescences, the set of candidate vertices is easy to compute: it is the set of all successors

of I .
Next, the calculation of pv for each v ∈ C can be performed through a depth-first-search that records the saved vertices

by candidates. This requires O (|V |) since the graph is an arborescence.
Finally, the � candidate vertices of largest values are protected. This requires to order the vertices accordingly with

{pv}v∈C . Thus, the greedy method runs in O (|V | log(|V |)).
Next, we show that the described method provides an optimal protection. Let P be the obtained protection through the

greedy method. The key idea to prove the optimality of P is essentially due to the fact that in an arborescence, C is simply
the set of all successors of I , otherwise, if we have a vertex of in-degree at least 2, we do not have an arborescence. Thus,
the protection strategy P cannot imply the protection of some candidate not in P . This shows the optimality of P . �

Note that in trees (undirected graphs), it does not hold that C is the set of successors of the vertices in I . Hence,
Lemma 6.5 does not extend to the undirected case.

Remark 6.6. Note that in Lemmata 6.3 and 6.5, we did not use the fact that bv = 1 ∀v ∈ V . Thus, it also holds when
vertices’ benefits are not unitary.

CRediT authorship contribution statement

Adel Nabli: Conceptualization, Methodology, Writing.
Margarida Carvalho: Conceptualization, Methodology, Writing, Supervision, Funding acquisition.
Pierre Hosteins: Conceptualization, Methodology, Writing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgments

This work was funded by the Institut de Valorisation des Données and Fonds de recherche du Québec through the FRQ–
IVADO Research Chair in Data Science for Combinatorial Game Theory, and the Natural Sciences and Engineering Research
Council of Canada through the discovery grant 2019-04557.

References

[1] A. Baggio, M. Carvalho, A. Lodi, A. Tramontani, Multilevel approaches for the critical node problem, Oper. Res. 69 (2021) 486–508.
[2] A. Arulselvan, C.W. Commander, L. Elefteriadou, P.M. Pardalos, Detecting critical nodes in sparse graphs, Comput. Oper. Res. 36 (7) (2009) 2193–2200,

https://doi .org /10 .1016 /j .cor.2008 .08 .016.
[3] J. He, H. Liang, H. Yuan, Controlling infection by blocking nodes and links simultaneously, in: N. Chen, E. Elkind, E. Koutsoupias (Eds.), Internet and

Network Economics, Springer, Berlin, Heidelberg, 2011, pp. 206–217.
143

http://refhub.elsevier.com/S0022-0000(22)00018-6/bibC8EB5ED312AEC51A9EC785CB7E888F5Cs1
https://doi.org/10.1016/j.cor.2008.08.016
http://refhub.elsevier.com/S0022-0000(22)00018-6/bib02A71C0ED81F1AB7200B9268D941D586s1
http://refhub.elsevier.com/S0022-0000(22)00018-6/bib02A71C0ED81F1AB7200B9268D941D586s1

A. Nabli, M. Carvalho and P. Hosteins Journal of Computer and System Sciences 127 (2022) 122–145
[4] V. Boginski, C.W. Commander, Identifying Critical Nodes in Protein-Protein Interaction Networks, Clustering Challenges in Biological Networks, World
Scientific, 2009, pp. 153–167.

[5] V. Tomaino, A. Arulselvan, P. Veltri, P.M. Pardalos, Studying Connectivity Properties in Human Protein–Protein Interaction Network in Cancer Pathway,
Springer US, Boston, MA, 2012, pp. 187–197.

[6] M. Lalou, M.A. Tahraoui, H. Kheddouci, The critical node detection problem in networks: a survey, Comput. Sci. Rev. 28 (2018) 92–117.
[7] J.M. Lewis, M. Yannakakis, The node-deletion problem for hereditary properties is NP-complete, J. Comput. Syst. Sci. 20 (2) (1980) 219–230.
[8] S. Shen, J.C. Smith, R. Goli, Exact interdiction models and algorithms for disconnecting networks via node deletions, Discrete Optim. 9 (3) (2012)

172–188.
[9] B. Addis, M. Di Summa, A. Grosso, Identifying critical nodes in undirected graphs: complexity results and polynomial algorithms for the case of

bounded treewidth, Discrete Appl. Math. 161 (16) (2013) 2349–2360.
[10] M. Di Summa, A. Grosso, M. Locatelli, Complexity of the critical node problem over trees, Comput. Oper. Res. 38 (2011) 1766–1774.
[11] M. Lalou, M.A. Tahraoui, H. Kheddouci, Component-cardinality-constrained critical node problem in graphs, Discrete Appl. Math. 210 (2016) 150–163,

https://doi .org /10 .1016 /j .dam .2015 .01.043.
[12] R. Aringhieri, A. Grosso, P. Hosteins, R. Scatamacchia, Polynomial and pseudo-polynomial time algorithms for different classes of the Distance Critical

Node Problem, Discrete Appl. Math. 253 (2019) 103–121.
[13] P. Hosteins, R. Scatamacchia, The Stochastic Critical Node Problem over trees, Networks 76 (3) (2020) 381–401.
[14] M. Lalou, H. Kheddouci, A polynomial-time algorithm for finding critical nodes in bipartite permutation graphs, Optim. Lett. 13 (2019) 1345–1364.
[15] K. Pavlikov, Improved formulations for minimum connectivity network interdiction problems, Comput. Oper. Res. 97 (2018) 48–57.
[16] G. Karakose, R. McGarvey, Optimal detection of critical nodes: improvements to model structure and performance, Netw. Spat. Econ. 19 (2019) 1–26.
[17] A. Veremyev, O.A. Prokopyev, E.L. Pasiliao, An integer programming framework for critical elements detection in graphs, J. Comb. Optim. 28 (2014)

233–273.
[18] M. Di Summa, A. Grosso, M. Locatelli, Branch and cut algorithms for detecting critical nodes in undirected graphs, Comput. Optim. Appl. 53 (2012)

649–680.
[19] R. Aringhieri, A. Grosso, P. Hosteins, R. Scatamacchia, A general evolutionary framework for different classes of Critical Node Problems, Eng. Appl. Artif.

Intell. 55 (2016) 128–145, https://doi .org /10 .1016 /j .engappai .2016 .06 .010.
[20] Y. Zhou, J. Hao, F. Glover, Memetic search for identifying critical nodes in sparse graphs, IEEE Trans. Cybern. 49 (10) (2019) 3699–3712.
[21] Y. Zhou, J.-K. Hao, Z.-H. Fu, Z. Wang, X. Lai, Variable population memetic search: a case study on the critical node problem, IEEE Trans. Evol. Comput.

25 (1) (2021) 187–200.
[22] R. Aringhieri, A. Grosso, P. Hosteins, R. Scatamacchia, Local search metaheuristics for the critical node problem, Networks 67 (3) (2016) 209–221,

https://doi .org /10 .1002 /net .21671.
[23] B. Addis, R. Aringhieri, A. Grosso, P. Hosteins, Hybrid constructive heuristics for the critical node problem, Ann. Oper. Res. 238 (1) (2016) 637–649,

https://doi .org /10 .1007 /s10479 -016 -2110 -y.
[24] W. Pullan, Heuristic identification of critical nodes in sparse real-world graphs, J. Heuristics 21 (5) (2015) 577–598.
[25] D. Purevsuren, G. Cui, M. Chu, N.N.H. Win, Hybridization of grasp with exterior path relinking for identifying critical nodes in graphs, IAENG Int. J.

Comput. Sci. 44 (2017).
[26] M. Ventresca, D. Aleman, A derandomized approximation algorithm for the critical node detection problem, Comput. Oper. Res. 43 (2014) 261–270.
[27] M. Ventresca, D. Aleman, A region growing algorithm for detecting critical nodes, in: COCOA’14, 2014, pp. 593–602.
[28] M. Ventresca, D. Aleman, A randomized algorithm with local search for containment of pandemic disease spread, Comput. Oper. Res. 48 (2014) 11–19,

https://doi .org /10 .1016 /j .cor.2014 .02 .003.
[29] J. Rezaei, F. Zare-Mirakabad, S.A. MirHassani, S.-A. Marashi, EIA-CNDP: an exact iterative algorithm for critical node detection problem, Comput. Oper.

Res. 127 (2021) 105138, https://doi .org /10 .1016 /j .cor.2020 .105138.
[30] M. Ventresca, K.R. Harrison, B.M. Ombuki-Berman, The bi-objective critical node detection problem, Eur. J. Oper. Res. 265 (3) (2018) 895–908.
[31] F. Furini, I. Ljubic, E. Malaguti, P. Paronuzzi, Casting light on the hidden bilevel combinatorial structure of the k-vertex separator problem, in: OR-19-6,

DEI, 2019, University of Bologna.
[32] R. Wood, Deterministic network interdiction, Math. Comput. Model. 17 (2) (1993) 1–18.
[33] E. Israeli, R.K. Wood, Shortest-path network interdiction, Networks 40 (2) (2002) 97–111, https://doi .org /10 .1002 /net .10039.
[34] S. DeNegre, Interdiction and discrete bilevel linear programming, Ph.D. thesis, Lehigh University, 2011.
[35] A. Caprara, M. Carvalho, A. Lodi, G.J. Woeginger, A study on the computational complexity of the bilevel knapsack problem, SIAM J. Optim. 24 (2014)

823–838.
[36] V. Rutenburg, Propositional truth maintenance systems: classification and complexity analysis, Ann. Math. Artif. Intell. 10 (1994) 207–231, https://

doi .org /10 .1016 /j .ejor.2019 .02 .028.
[37] F. Furini, I. Ljubic, S. Martin, P. San Segundo, The maximum clique interdiction problem, Eur. J. Oper. Res. 277 (2019) 112–127, https://doi .org /10 .1016 /

j .ejor.2019 .02 .028.
[38] F. Della Croce, R. Scatamacchia, An exact approach for the bilevel knapsack problem with interdiction constraints and extensions, Math. Program.

(2020) 1–33.
[39] M. Fischetti, I. Ljubić, M. Monaci, M. Sinnl, Interdiction games and monotonicity, with application to knapsack problems, INFORMS J. Comput. 31 (2)

(2019) 390–410, https://doi .org /10 .1287 /ijoc .2018 .0831.
[40] K. Tanınmış, M. Sinnl, A branch-and-cut algorithm for submodular interdiction games, arXiv:2103 .15788, 2021.
[41] M. Fischetti, M. Monaci, M. Sinnl, A dynamic reformulation heuristic for generalized interdiction problems, Eur. J. Oper. Res. 267 (1) (2018) 40–51,

https://doi .org /10 .1016 /j .ejor.2017.11.043.
[42] S. Finbow, A. King, G. MacGillivray, R. Rizzi, The firefighter problem for graphs of maximum degree three, Discrete Math. 307 (16) (2007) 2094–2105.
[43] K.D. Barnetson, A.C. Burgess, J. Enright, J. Howell, D.A. Pike, B. Ryan, The firebreak problem, Networks 77 (2021) 372–382.
[44] G. Brown, M. Carlyle, J. Salmerón, R. Wood, Defending critical infrastructure, Interfaces 36 (2006) 530–544, https://doi .org /10 .1287 /inte .1060 .0252.
[45] M. Ventresca, Network robustness versus multi-strategy sequential attack, J. Complex Netw. 3 (1) (2015) 126–146.
[46] F. Enayaty-Ahangar, C.E. Rainwater, T.C. Sharkey, A logic-based decomposition approach for multi-period network interdiction models, Omega 87 (2019)

71–85.
[47] P. Martin, Tri-level optimization models to defend critical infrastructure, Master’s thesis, Naval Postgraduate School, Monterey, 2007.
[48] B. Johannes, New classes of complete problems for the second level of the polynomial hierarchy, Ph.D. thesis, Technischen Universitat, Berlin, 2011.
[49] C. Blair, The computational complexity of multi-level linear programs, Ann. Oper. Res. 34 (1) (1992) 13–19, https://doi .org /10 .1007 /BF02098170.
[50] T. Dudás, B. Klinz, G.J. Woeginger, The computational complexity of multi-level bottleneck programming problems, in: A. Migdalas, P.M. Pardalos, P.

Värbrand (Eds.), Multilevel Optimization: Algorithms and Application, Springer US, Boston, MA, 1998, pp. 165–179.
[51] R.G. Jeroslow, The polynomial hierarchy and a simple model for competitive analysis, Math. Program. 32 (2) (1985) 146–164, https://doi .org /10 .1007 /

BF01586088.
[52] A.R. Meyer, L.J. Stockmeyer, The equivalence problem for regular expressions with squaring requires exponential space, in: 13th Annual Symposium on

Switching and Automata Theory, SWAT 1972, 1972, pp. 125–129.
144

http://refhub.elsevier.com/S0022-0000(22)00018-6/bibCEF167EC0A040D92BEE5303BB4CE15CEs1
http://refhub.elsevier.com/S0022-0000(22)00018-6/bibCEF167EC0A040D92BEE5303BB4CE15CEs1
http://refhub.elsevier.com/S0022-0000(22)00018-6/bib11EEA802FCEE944D3E871A4F73028D7As1
http://refhub.elsevier.com/S0022-0000(22)00018-6/bib11EEA802FCEE944D3E871A4F73028D7As1
http://refhub.elsevier.com/S0022-0000(22)00018-6/bib7EC081BA8DE04012EDD2F1B1AA822234s1
http://refhub.elsevier.com/S0022-0000(22)00018-6/bib19D692E09D466A1CEC07E698B9FE37DDs1
http://refhub.elsevier.com/S0022-0000(22)00018-6/bib6A723A776F168CCEF2C9116CBD8EBA84s1
http://refhub.elsevier.com/S0022-0000(22)00018-6/bib6A723A776F168CCEF2C9116CBD8EBA84s1
http://refhub.elsevier.com/S0022-0000(22)00018-6/bib54B825AFD099119AC85EA3B09358240As1
http://refhub.elsevier.com/S0022-0000(22)00018-6/bib54B825AFD099119AC85EA3B09358240As1
http://refhub.elsevier.com/S0022-0000(22)00018-6/bib555354C86B37497C924AB37BD4CA0FCDs1
https://doi.org/10.1016/j.dam.2015.01.043
http://refhub.elsevier.com/S0022-0000(22)00018-6/bib4529A1D76ED3B61483B1C4EC8392B83As1
http://refhub.elsevier.com/S0022-0000(22)00018-6/bib4529A1D76ED3B61483B1C4EC8392B83As1
http://refhub.elsevier.com/S0022-0000(22)00018-6/bibA1BF2E10AF8827A01AB4661A17FB4C50s1
http://refhub.elsevier.com/S0022-0000(22)00018-6/bib5067EB8FE92B4D5FC3238FFA31392BBFs1
http://refhub.elsevier.com/S0022-0000(22)00018-6/bibD651D2FC41148A4017AAE5CCB26A1F31s1
http://refhub.elsevier.com/S0022-0000(22)00018-6/bib82082E6FF5227EA12D13E62BE2491CFDs1
http://refhub.elsevier.com/S0022-0000(22)00018-6/bibAC97CCC59821F60714BC04B2639033F7s1
http://refhub.elsevier.com/S0022-0000(22)00018-6/bibAC97CCC59821F60714BC04B2639033F7s1
http://refhub.elsevier.com/S0022-0000(22)00018-6/bibC7C571AC2BA57085A26CB474E1E551D5s1
http://refhub.elsevier.com/S0022-0000(22)00018-6/bibC7C571AC2BA57085A26CB474E1E551D5s1
https://doi.org/10.1016/j.engappai.2016.06.010
http://refhub.elsevier.com/S0022-0000(22)00018-6/bib9807793B65DA7F1BDFEB7C997EA1A128s1
http://refhub.elsevier.com/S0022-0000(22)00018-6/bib6FB63C9A6227D9B9955A60B9DE6B8A63s1
http://refhub.elsevier.com/S0022-0000(22)00018-6/bib6FB63C9A6227D9B9955A60B9DE6B8A63s1
https://doi.org/10.1002/net.21671
https://doi.org/10.1007/s10479-016-2110-y
http://refhub.elsevier.com/S0022-0000(22)00018-6/bib2A3819A066A53B1B00571A1C461D2DFDs1
http://refhub.elsevier.com/S0022-0000(22)00018-6/bib40CF5AD54703BB81AA0C373C742EB857s1
http://refhub.elsevier.com/S0022-0000(22)00018-6/bib40CF5AD54703BB81AA0C373C742EB857s1
http://refhub.elsevier.com/S0022-0000(22)00018-6/bib48929DB2A4324DC89F10CE1B26542EC2s1
http://refhub.elsevier.com/S0022-0000(22)00018-6/bib569379237955988027E5D82D075A4472s1
https://doi.org/10.1016/j.cor.2014.02.003
https://doi.org/10.1016/j.cor.2020.105138
http://refhub.elsevier.com/S0022-0000(22)00018-6/bibB794638042220F4082CF590E83DC3361s1
http://refhub.elsevier.com/S0022-0000(22)00018-6/bib578331DC3572AC1F5FB6B47EB2C8EC29s1
http://refhub.elsevier.com/S0022-0000(22)00018-6/bib578331DC3572AC1F5FB6B47EB2C8EC29s1
http://refhub.elsevier.com/S0022-0000(22)00018-6/bibB22FAA911EA7A4AF48106D6B37398F5As1
https://doi.org/10.1002/net.10039
http://refhub.elsevier.com/S0022-0000(22)00018-6/bibB00C76CB19F4CF11DB8AF98881AF474Cs1
http://refhub.elsevier.com/S0022-0000(22)00018-6/bib207995C031C03BADC54121D9A62F8E36s1
http://refhub.elsevier.com/S0022-0000(22)00018-6/bib207995C031C03BADC54121D9A62F8E36s1
https://doi.org/10.1016/j.ejor.2019.02.028
https://doi.org/10.1016/j.ejor.2019.02.028
https://doi.org/10.1016/j.ejor.2019.02.028
https://doi.org/10.1016/j.ejor.2019.02.028
http://refhub.elsevier.com/S0022-0000(22)00018-6/bibED6BE2F23164D6742CBB72ECE5D06B50s1
http://refhub.elsevier.com/S0022-0000(22)00018-6/bibED6BE2F23164D6742CBB72ECE5D06B50s1
https://doi.org/10.1287/ijoc.2018.0831
http://refhub.elsevier.com/S0022-0000(22)00018-6/bib9EE382DF7D9FDB9916287F716889B071s1
https://doi.org/10.1016/j.ejor.2017.11.043
http://refhub.elsevier.com/S0022-0000(22)00018-6/bib52545E92109423CDFE8DA30336EFF2A5s1
http://refhub.elsevier.com/S0022-0000(22)00018-6/bibF13728533013856C61309BD81A750747s1
https://doi.org/10.1287/inte.1060.0252
http://refhub.elsevier.com/S0022-0000(22)00018-6/bib9D13343B728134750704C81412DAA3E3s1
http://refhub.elsevier.com/S0022-0000(22)00018-6/bib2A405F34E23F9BE341A4583C81C5C5E2s1
http://refhub.elsevier.com/S0022-0000(22)00018-6/bib2A405F34E23F9BE341A4583C81C5C5E2s1
http://refhub.elsevier.com/S0022-0000(22)00018-6/bib65A490CD74675CFF3F7FC3A0695D1E35s1
http://refhub.elsevier.com/S0022-0000(22)00018-6/bib1620C5B941908B8B3B7BD9EB5D1E683Ds1
https://doi.org/10.1007/BF02098170
http://refhub.elsevier.com/S0022-0000(22)00018-6/bib7B0E12D21B7437E758178BFC34C6478Fs1
http://refhub.elsevier.com/S0022-0000(22)00018-6/bib7B0E12D21B7437E758178BFC34C6478Fs1
https://doi.org/10.1007/BF01586088
https://doi.org/10.1007/BF01586088
http://refhub.elsevier.com/S0022-0000(22)00018-6/bib73AE52A7D8B30EC90394933F04D007A5s1
http://refhub.elsevier.com/S0022-0000(22)00018-6/bib73AE52A7D8B30EC90394933F04D007A5s1

A. Nabli, M. Carvalho and P. Hosteins Journal of Computer and System Sciences 127 (2022) 122–145
[53] C. Wrathall, Complete sets and the polynomial-time hierarchy, Theor. Comput. Sci. 3 (1) (1976) 23–33.
[54] M. Schaefer, C. Umans, Completeness in the polynomial-time hierarchy a compendium, SIGACT News 33 (01 2002).
[55] F. Mogavero, G. Perelli, Binding forms in first-order logic, in: S. Kreutzer (Ed.), 24th EACSL Annual Conference on Computer Science Logic, CSL 2015,

in: Leibniz International Proceedings in Informatics (LIPIcs), vol. 41, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2015,
pp. 648–665.

[56] Y.-D. Shen, T. Eiter, Evaluating epistemic negation in answer set programming, Artif. Intell. 237 (2016) 115–135.
[57] E. Malizia, More complexity results about reasoning over (m)cp-nets, in: Proc. of the 17th International Conference on Autonomous Agents and Multi-

agent Systems, AAMAS 2018, 2018.
[58] L. Lozano, J.C. Smith, A backward sampling framework for interdiction problems with fortification, INFORMS J. Comput. 29 (2017) 123–139.
[59] M. Carvalho, X. Klimentova, K. Glorie, A. Viana, M. Constantino, Robust models for the kidney exchange problem, INFORMS J. Comput. 33 (3) (2021)

861–881, https://doi .org /10 .1287 /ijoc .2020 .0986.
[60] D. Blom, C. Hojny, B. Smeulders, A benders-type approach for robust optimization of kidney exchanges under full recourse, arXiv:2105 .08565, 2021.
[61] F. Barbosa, A. Agra, A. de Sousa, The minimum cost network upgrade problem with maximum robustness to multiple node failures, Comput. Oper. Res.

136 (2021) 105453, https://doi .org /10 .1016 /j .cor.2021.105453.
[62] A. Nabli, M. Carvalho, Curriculum learning for multilevel budgeted combinatorial problems, in: H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, H. Lin

(Eds.), Advances in Neural Information Processing Systems, vol. 33, Curran Associates, Inc., 2020, pp. 7044–7056.
[63] M.R. Garey, D.S. Johnson, Computers and Intractability, a Guide to the Theory of NP-Completeness, W. H. Freeman & Co., USA, 1990.
[64] R.M. Karp, Reducibility Among Combinatorial Problems, Springer US, Boston, MA, 1972, pp. 85–103.
[65] L.J. Stockmeyer, A.R. Meyer, Word problems requiring exponential time (preliminary report), in: Proceedings of the Fifth Annual ACM Symposium on

Theory of Computing, STOC ’73, Association for Computing Machinery, New York, NY, USA, 1973, pp. 1–9.
[66] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, 3rd edition, The MIT Press, 2009.
[67] M. Carvalho, A. Lodi, P. Marcotte, A polynomial algorithm for a continuous bilevel knapsack problem, Oper. Res. Lett. 46 (2) (2018) 185–188, https://

doi .org /10 .1016 /j .orl .2017.12 .009.
[68] A. Langer, F. Reidl, P. Rossmanith, S. Sikdar, Practical algorithms for mso model-checking on tree-decomposable graphs, Comput. Sci. Rev. 13 (C) (2014)

39–74, https://doi .org /10 .1016 /j .cosrev.2014 .08 .001.
[69] S. Arnborg, J. Lagergren, D. Seese, Easy problems for tree-decomposable graphs, J. Algorithms 12 (2) (1991) 308–340.
145

http://refhub.elsevier.com/S0022-0000(22)00018-6/bib7065F5A66929F627842AC3C7C7EDD999s1
http://refhub.elsevier.com/S0022-0000(22)00018-6/bibFC1C382C62B93B88F7F0E9F46E697871s1
http://refhub.elsevier.com/S0022-0000(22)00018-6/bibF054B4409E5DE3F49203848915B39AABs1
http://refhub.elsevier.com/S0022-0000(22)00018-6/bibF054B4409E5DE3F49203848915B39AABs1
http://refhub.elsevier.com/S0022-0000(22)00018-6/bibF054B4409E5DE3F49203848915B39AABs1
http://refhub.elsevier.com/S0022-0000(22)00018-6/bib4E9BB60366C6518D403CDDC8B64A4198s1
http://refhub.elsevier.com/S0022-0000(22)00018-6/bib7020FC8F744A0737DFE11542FDE67F54s1
http://refhub.elsevier.com/S0022-0000(22)00018-6/bib7020FC8F744A0737DFE11542FDE67F54s1
http://refhub.elsevier.com/S0022-0000(22)00018-6/bibABBA5AB068A1F811FA6748006FFDAE2Cs1
https://doi.org/10.1287/ijoc.2020.0986
http://refhub.elsevier.com/S0022-0000(22)00018-6/bibC969C5B911FD5FD2917C778AA8FB2427s1
https://doi.org/10.1016/j.cor.2021.105453
http://refhub.elsevier.com/S0022-0000(22)00018-6/bibB83F83E8BFCD6DAD0723946F4B1ACC62s1
http://refhub.elsevier.com/S0022-0000(22)00018-6/bibB83F83E8BFCD6DAD0723946F4B1ACC62s1
http://refhub.elsevier.com/S0022-0000(22)00018-6/bib47E3033C0BC79A3FF63734681F2E9474s1
http://refhub.elsevier.com/S0022-0000(22)00018-6/bibC0AB4AEA93BD90475B73AB6AF15CF57Cs1
http://refhub.elsevier.com/S0022-0000(22)00018-6/bib311541FC784B66B47091D30EFFD0A775s1
http://refhub.elsevier.com/S0022-0000(22)00018-6/bib311541FC784B66B47091D30EFFD0A775s1
http://refhub.elsevier.com/S0022-0000(22)00018-6/bib952B567A9BA150211A99507F4B5F27B2s1
https://doi.org/10.1016/j.orl.2017.12.009
https://doi.org/10.1016/j.orl.2017.12.009
https://doi.org/10.1016/j.cosrev.2014.08.001
http://refhub.elsevier.com/S0022-0000(22)00018-6/bibFC4C44B7EB71A18F78B6A7FB48583C20s1

	Complexity of the multilevel critical node problem
	1 Introduction
	2 Related literature
	3 Undirected graphs: the unitary case
	3.1 The Protection problem
	3.1.1 The Critical Node Problem on split graphs
	3.1.2 Complexity result

	3.2 The Attack-Protect problem
	3.3 The Vaccination-Attack problem

	4 Undirected graphs: the weighted case
	4.1 The Attackw problem
	4.2 The Attack-Protectw problem
	4.3 The Vaccination-Attackw problem
	4.4 The MCNw problem

	5 Directed graphs
	5.1 The Attackdir problem
	5.2 The Vaccination-Attackdir problem

	6 PROTECTION: tractability limits
	6.1 Protect over trees
	6.2 Protectiondir over directed acyclic graphs
	6.2.1 Arborescence

	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

