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Abstract. The charge radius of the proton can be determined using two differ-
ent kinds of experiments: the spectroscopy technique, measuring the hyperfine
structure of hydrogen atoms, and the scattering technique, deducing the radius
from elastic lepton scattering off a proton target. These two methods lead to
quite different results, a discrepancy known as the ”proton radius puzzle ”. To
shed light on this problem, we have proposed a novel method for the determina-
tion of spatial moments from densities expressed in the momentum space. This
method provides a direct access not only to the second order moment, directly
related to the proton radius, but to all moments of any real order larger than
-3. The method is applied to the global analysis of proton electric form factor
experimental data from Rosenbluth separation and low-Q2 experiments, paying
specific attention to the evaluation of the systematic errors. Within this analy-
sis, the integer order moments of the proton charge density are evaluated, the
moment of second order leading to a new determination of the proton charge
radius.

1 Introduction

The determination of the proton radius has been the object of intense scien-
tific activity in the last decade on both theoretical and experimental sides (see
Refs. [1–4] for comprehensive reviews). The proton charge radius, defined as [5]

Rp ≡

√
−6

dGE(k2)

dk2

∣∣∣∣
k2=0

, (1)

is related to the slope of the proton electric form factor GE at vanishing squared
four-momentum k2. Two experimental techniques have been proposed and de-
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veloped to measure Rp: the spectroscopy technique, which provides a measure-
ment of the proton radius from the hyperfine structure of ordinary or muonic
hydrogen atoms, and the scattering technique, where the value of Rp is deduced
from the cross section of elastic lepton scattering off a proton target.

The so-called ”proton radius puzzle” [6] originated from the substantial dis-
crepancy between the electron scattering measurement [7] and the muonic spec-
troscopy one [8], providing the values 0.879(8) fm and 0.84184(67) fm, respec-
tively. This discrepancy has raised criticisms on the scattering method, suggest-
ing that the extrapolation procedure of experimental data to zero-momentum
transfer suffers from limited accuracy: since lepton scattering cannot reach the
zero four-momentum transfer limit, this technique relies on the zero-momentum
extrapolation of GE(k

2) and then strongly depends on the functional form as
well as on the data analysis method used for the extrapolation [9, 10]. Con-
sequently, the scattering technique is intrinsically less accurate than the spec-
troscopy one. This appears to be a blatant limitation of the scattering technique,
particularly difficult to overcome, as also indicated by the discrepancies between
the latest scattering measurements of the proton radius [7, 11, 12]. It also ham-
pers any attempt to determine higher-order moments of the proton charge density
through this approach - here-after referred to as the derivative method. Addition-
ally, moments of the charge density beyond the second order are also of interest
as they carry complementary information on the charge distribution inside the
proton. However, beyond the limited precision of the experimental determina-
tion of higher derivatives of the form factor, the derivative method accesses only
even moments of the density. The recent PRad result [11] and the recommended
CODATA [13] and PDG [14] values of Rp have reduced the tension with muonic
atom measurements; nevertheless, improving the precision of scattering exper-
iments remains a high priority in light of the numerous discussions about the
sensitivity of the derivative method (see Ref. [15] for new developments).

With the aim of overcoming the limitations inherent to the derivative method
in the scattering technique as well as of improving the predictive power of the
technique, we have proposed a novel approach [16], referred to in the following
as the integral method, that enables the determination of spatial moments of
densities for any real-valued order λ>-3. In Sec.2 this method will be described
and its validation illustrated in a specific case. In Sec.3 its application to real
experimental data for the proton electric form factor, as performed in Ref. [5],
will be presented. In Sec.4 some conclusions will be drawn and future possible
developments will be outlined.

2 The integral method

Before introducing the integral method (IM) we briefly review the basic formal-
ism of the standard derivative method. The moments ⟨rλ⟩ of the charge density
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ρE(r) are defined as

⟨rλ⟩ ≡
∫
IR3

d3r rλρE(r) . (2)

Within a non-relativistic description of the internal structure of the proton they
can be related, for the case of even order λ = 2j, to the derivatives of the electric
form factor GE(k

2) at k2 = 0

⟨r2j⟩ = (−1)j
(2j + 1)!

j!

djGE(k
2)

d(k2)j

∣∣∣∣
k2=0

(3)

if the relation

ρE(r) =
1

(2π)3

∫
IR3

d3k eik·rGE(k
2) , (4)

which links ρE(r) to its Fourier transform GE(k
2), is used. Note that here

k2 = k2, a relation holding true in the Breit frame. In particular, for j = 1
one recovers Eq. (1) for the radius Rp =

√
⟨r2⟩. Therefore, using the derivative

method one can evaluate all the moments of even and positive order by extrap-
olating the derivatives of the form factor GE to k2 = 0. This procedure suffers
from the uncertainties described in the Introduction.

Alternatively, one can start from the general expression

⟨rλ⟩ = 1

(2π)3

∫
IR3

d3kGE(k
2)

∫
IR3

d3r eik·rrλ (5)

for the moment (2) of any order λ, which is obtained exploiting Eqs. (2) and (4)
and interchanging the integrals over k and r. The IM consists in evaluating the
radial moments using the expression (5), after some appropriate manipulation
which will be detailed in the following. While the derivative method crucially
depends on the way the form factor approaches its value at zero momentum, the
integral method involves the full k2 physics region. This conceptual change is of
importance for the determination of the functional form of GE(k

2), which can
be expected to be more precise, and likewise for the corresponding moments.
Moreover, unlike the derivative method, Eq.(5) allows one to evaluate moments
of any real order, the only limitation being the convergence of the integral.

To further develop the expression (5), we observe that the left-hand side of
the above equation, the moment ⟨rλ⟩, is a finite quantity which represents a
physics observable; however, the right-hand side contains the integral

gλ(k) =

∫
IR3

d3r eik·rrλ . (6)

This integral does not exist in a strict sense, but it can still be treated as a distri-
bution; the finiteness of the left-hand side ensures the physical representativity
of this expression as well as the convergence of the 6-fold integral. For instance,
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for λ = 0 Eq. (6) corresponds to the Dirac distribution δ(k) which, inserted in
(5), provides

⟨r0⟩ ≡
∫
IR3

d3r ρE(r) = GE(0) . (7)

One then needs to regularize the function gλ(k), using standard methods. In
Ref. [16] two different regularization schemes were presented, one based on the
subtraction of counter-terms and the other on the introduction of an exponen-
tial function inside the integral (6), which makes the integral convergent and is
taken equal to 1 at the end of the calculation. Although the two methods lead to
identical numerical results, it has been proven in [16] that the latter provides a
faster numerical convergence. Here we briefly describe only this method, which
will be used in the application described in Sec.3. Within this approach, the
distribution gλ(k) is expressed as a limit of a convergent integral, namely

gλ(k) = lim
ϵ→0+

∫
IR3

d3r rλe−ϵr eik·r = lim
ϵ→0+

Iλ(k, ϵ) , (8)

where the term e−ϵr ensures the convergence of the integral Iλ(k, ϵ) and “lim”
should be understood as a weak limit 1. This is a standard technique used, for
example, to regularize the Fourier transform of the Coulomb potential [17, 18].
The integration of Eq. (8) is analytical and yields, for any λ > −3 and λ ̸= −2,

Iλ(k, ϵ) =
4π Γ(λ+ 2) sin [(λ+ 2)Arctan (k/ϵ)]

k(k2 + ϵ2)
λ
2 +1

, (9)

which attains the limit (4π/k)Arctan (k/ϵ) at λ=−2. The moments defined in
Eq. (2) can then be written as

⟨rλ⟩ = 2

π
Γ(λ+ 2) lim

ϵ→0+

∫ ∞

0

dk GE(k
2)

k sin [(λ+ 2)Arctan (k/ϵ)]

(k2 + ϵ2)λ/2+1
. (10)

For integer orders, λ = m, Eq. (10) can also be recast as

⟨rm⟩ = 2

π
(m+ 1)! lim

ϵ→0+
ϵm+2

∫ ∞

0

dk GE(k
2)

kΦm(k/ϵ)

(k2 + ϵ2)m+2
(11)

with

Φm(k/ϵ) =

m+2∑
j=0

sin

(
jπ

2

)
(m+ 2)!

j!(m+ 2− j)!

(
k

ϵ

)j

. (12)

This formulation allows us to determine the moments directly in momentum
space, for both integer and non-integer values of λ. For a given GE(k

2) func-
tional form, the moments are numerically computed from the above expressions
and can also be obtained analytically for specific cases.

1that is, the limit should be taken after performing the integral over k.
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As a simple illustration, let us consider the radial density

ρD(r) =
Λ3

8π
e−Λr , (13)

leading to the well-known dipole parameterization

G
(D)
E (k2) =

∫
IR3

d3r e−ik·rρD(r) =
Λ4

(k2 + Λ2)2
, (14)

where Λ represents the dipole mass parameter. In this case the moments can be
easily determined directly in configuration space, as

⟨rλ⟩D =

∫
IR3

d3r rλ fD(r) =
Γ(λ+ 3)

2

1

Λλ
. (15)

For integer λ=m values, Eq. (11) yields (see [16] for the detailed calculation)

⟨rm⟩D =
2Γ(m+ 2)

π

1

Λm
lim

ϵ̃→0+

π

4

m+ 2

(1 + ϵ̃)3
=

Γ(m+ 3)

2

1

Λm
, (16)

which coincides with the result (15) obtained from the configuration space inte-
gral. The same result is obtained for any real (integer and non-integer) λ value
from the numerical evaluation of the integral (10).

The IM has also been tested for different mathematical realizations of the
radial function ρ(r) and several λ, in particular for a Yukawa-like density corre-
sponding to the parameterization of the proton electromagnetic form factors in
terms of a k2-polynomial ratio, the Kelly’s parameterization of Eq. [19]

GE(k
2) =

1 + a1k
2

1 + b1k2 + b2k4 + b3k6
. (17)

Also in this case, the numerical evaluation of the integral (10) provides with a
very high accuracy the same results as the configuration space integrals.

As already mentioned, the IM overcomes the limitation of the derivative
method to moments of positive even-valued orders. This is a remarkable advan-
tage, since each moment order of the charge density is of interest, as it carries
complementary information on the charge distribution inside the proton. For
instance, the short-distance behaviour of the charge distribution is encoded in
the negative order moments which are particularly sensitive to the large k2-
dependence of GE , while the long-distance behaviour is encoded in the high
positive order moments. However, the evaluation of moments via this method
requires an experimentally defined asymptotic limit which may be hardly ob-
tained considering the momentum coverage of actual experimental data. The
momentum dependence of the integrand in Eq. (10) provides the solution to this
issue. The denominator of the integrand scales at large momentum like kλ+1,
meaning that the integral is most likely to saturate at a momentum value well
below infinity.
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Truncated moments, defined from Eq. (11) and Eq. (10) by replacing the
infinite integral boundary by a cut-off Q, allow us to understand the saturation
behaviour of the moments. Considering for sake of simplicity the case of integer
λ=m values, the truncated moments can be written from Eq. (11) as

⟨rm⟩Q =
2

π
(m+ 1)! lim

ϵ→0+
ϵm+2

∫ Q

0

dk GE(k
2)

kΦm(k/ϵ)

(k2 + ϵ2)m+2
. (18)

For the typical example of the dipole parameterization of Eq. (14), the truncated
moments of even order are given by

⟨r2p⟩Q =
(2p+ 2)!

2

1

Λ2p
(19)

and are independent of Q, while the odd-order ones

⟨r2p+1⟩Q =
2

π
(2p+ 2)!

[
u2p+1(Q, 0+) + v2p+1(0

+)Arctan

(
Q

Λ

)]
(20)

are still depending on the cut-off. Indeed, Eq. (19) can be seen as a proof of the
Q-independence of even moments. The explicit expressions for the functions ui

and vi can be found in Ref. [16]. The ui’s functions behave like 1/Q at large cut-
off, and consequently vanish for infinite Q; only the vi’s remain in the infinite-Q
limit, leading to the expression of Eq. (16).

The Q-convergence of truncated moments is illustrated in Fig. 1 in the case
of the dipole form factor for selected moment orders, as obtained for the two
previously mentioned regularization schemes, based on counterterms subtrac-
tion (IM1) or on the introduction of an exponential convergence factor (IM2).
The Q-independence of even truncated moments is reproduced by both pre-
scriptions, as shown in Fig. 1(a). This is a general feature independent of the
specific form factor: for even moments the integral method recovers formally
the same quantities as the derivative method. In the ideal world of perfect ex-
periments, adjusting experimental data with the same function over a small or
large k2-domain affects only the precision on the parameters of the function. In
the context of the limited quality of real data, the IM provides the mathemati-
cal support required to consider the full k2-unlimited domain of existing data,
leading therefore to a more accurate determination of the moments. The prac-
tical constraint is to obtain an appropriate description of the data over a large
k2-domain. Fig. 1(b) shows the Q-convergence of selected odd-order moments,
comparing the integral method prescriptions. In this case the different regular-
ization schemes lead to different saturation behaviours: while IM1 asks for large
Q-values, IM2 rapidly saturates about 6 fm−1, i.e. in a momentum region well
covered by proton electromagnetic form factors data [20]. Fig. 1(c) shows the
Q-convergence of selected moments with negative non-integer orders. For such
orders, there are no counterterms for the IM1 regularization and the effect of
the exponential regularization term in Eq. (8) is strongly suppressed since the
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(c)  Negative Truncated Moments
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(c)  Negative Truncated Moments

Figure 1. Convergence of truncated moments of the proton electric form factor for se-
lected orders within the dipole parameterization: (a) positive even, (b) positive odd, and
(c) negative non-integer. IM1 and IM2 denote the principal value and the exponential
regularizations, respectively.

integrand converges at infinity (for −3 < λ < −1). Indeed, there is no need
of regularization for negative orders and all prescriptions should lead to identi-
cal results: this is verified in Fig. 1(c) where the numerical evaluation of each
prescription is shown to provide the same result for −3 < λ < 0.

Similar features can be derived for the polynomial ratio parameterization
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(17), leading to the the truncated moments [16]

⟨r−2⟩
Q
=

1

2

3∑
n=1

An ln

(
1 +

Q2

(ikn)2

)

⟨r2p−1⟩
Q
= (2p)!

2

π

3∑
n=1

An

(ikn)2p+1

Arctan

(
Q

ikn

)
− Q

ikn
−

p∑
j=0

(−1)j

2j − 1

(
ikn
Q

)2j−1


⟨r2p⟩
Q
= (2p+ 1)!

3∑
n=1

An

(ikn)2p+2
, (21)

where ikn are the poles of the form factor (17) in the positive imaginary plane
and An the corresponding residues.

Summarizing, for practical applications the entire k2 physics region can be
restricted as the high k2-region may not contribute significantly to the inte-
gral. This is particularly true for positive order moments which, considering
the k2-dependence of experimental data, are dominated by the region k2 ≤
2 GeV2 [16]. The situation is more tricky for negative order moments due to
their sensitivity to large k2.

3 Application to experimental data

Following the formal demonstration of the integral method, we now present
the experimental evaluation of a selected set of λ-order moments of the proton
charge density from the proton electric form factor data.

The data inputs consist of proton electric form factor data GE(k
2) extracted

from electron scattering experiments via a Rosenbluth separation [21] or for
kinematical conditions where the contribution of the magnetic form factor GM (k2)
to the cross section is strongly suppressed, for instance at very low four momen-
tum transfer. The experimental data set considered consists of 21 single data
sets covering k2 values up to 226 fm−2 (8.8 GeV2) (see Ref. [5] for the list of
experiments and the selection critera).

The complete set is analyzed within a simultaneous fit approach requiring the
same k2-dependence for each experiment and a separate normalization factor per
data set. The chosen fitting function is in the polynomial ratio (17) multiplied
by a normalization parameter ηi for each data set i. This method follows the
analysis techniques of the most recent experiments [11, 22, 23]. The results of
the best fit to experimental data are represented in Fig. 2, where the residual
deviations ∆Gi(k

2) of each experimental data set (i) from the fit is also reported.
The fit accounts for a reduced χ2

r=2.96, quite reasonable considering the actual
data dispersion.

The experimental moments of the proton charge density are determined from
the form factor functional using the integral method restricted to the measured
physics region. In the absence of experimental data at very large four momentum
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Figure 2. Left: Simultaneous fit (black line) of GE(k
2) experimental data considered in

this work using the polynomial ratio function of Eq. (17). Right: residual deviation of the
experimental data with respect to the fit.

λ
⟨rλ⟩

Q
⟨rλ⟩ ⟨r2p⟩d

Statistical Error Systematic Error
δ
[
⟨rλ⟩

Q

]
δ
[
⟨r2p⟩d

]
Dat. Int. Fun. Mod.

(fmλ) (fmλ) (fmλ) (fmλ) (fmλ) (fmλ) (fmλ) (fmλ) (fmλ)
-2 6.5826 8.9093 − 0.0039 − 0.0141 2.3267 0.0008 0.0183
-1 1.9752 2.1043 − 0.0005 − 0.0024 0.1291 0.0002 0.0022
1 0.7186 0.7158 − 0.0004 − 0.0025 0.0030 0.0001 0.0008
2 0.6824 0.6824 0.6824 0.0020 0.0021 0.0113 0 0.0001 0.0053
3 0.7966 0.7970 − 0.0096 − 0.0500 0.0004 0.0005 0.0300
4 1.0208 1.0208 1.0208 0.0515 0.0472 0.2498 0 0.0042 0.1752
5 0.9219 0.9217 − 0.3098 − 1.4388 0.0002 0.0273 1.0995
6 -3.6823 -3.6823 -3.6823 2.0835 2.2561 9.5186 0 0.2372 7.5914
7 -49.6804 -49.6802 − 15.8544 − 71.5437 0.0002 1.7403 58.1979

Table 1. Moments of the proton charge density as determined from the integral method
and the derivative one for even moments; the truncated moments of the second column
are evaluated for the cut-off Q2=52 fm−2; the infinite moments of the third column are
similarly evaluated in the limit Q → ∞, assuming that the large k2-dependence of the
form factor is described by Eq. (17); refer to the text for the determination of the statistic
and systematic errors of the moments.

transfer, pertubative QCD provides scaling rules which predict a rapid decrease
of GE(k

2) [24]. Thus, the effect of the truncation of the integral can be con-
trolled. The integration cut-off Q2=52 fm−2 considered in the present study was
proven to only impact the evaluation of negative order moments [16].

The values of the truncated moments, obtained according to Eqs. (21), are
reported in Tab. 1 for odd and even orders in the range −2 ≤ λ ≤ 7, together
with their asymptotic limits for Q → ∞. Note that the 0th-order moment is 1 by
definition of the fit function, thus is not an experimentally determined moment.
As expected, negative moments are the only ones to significantly suffer from the
truncation of the moment integral. Positive even moments are also compared to
values ⟨r2p⟩d obtained from the derivative (3).

The statistical errors of the experimental moments reported in Tab. 1 are de-
termined from the propagation of the statistical errors of the fit parameters taking
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into account their correlations. The magnitude of the statistical error limits the
significance of the moments determination to λ < 6. This is a consequence of
the existing data set which lacks measurements at ultra low momentum trans-
fer. High order positive moments indeed probe the long distance behaviour of
the charge density and are therefore specifically sensitive to this region. High
accuracy measurements in this region are extremely challenging.

Concerning systematic errors, four different sources are considered: the one
related to the systematic error of the form factor measurements, the one related
to the determination method of the moments, the one intrinsic to the fit function,
and a last one attached to the choice of fit function. More details on the evalu-
ation of these errors can be found in Ref. [5]. The only experimental source of
systematics corresponds to the error on the moment originating from the system-
atic errors of the measurements. The other systematics are specifically attached
to the integral method, i.e. they do not have an experimental origin per se. Ex-
cept negative moments where truncation effects are dominant, the model choice
turns out to be the most significant contribution to systematic errors of the IM.
It is worth noticing that this error is sometimes omitted, particularly in some of
the many analyses of experimental data looking for the charge radius of the pro-
ton after the highlighting of the proton radius puzzle [3]. Using a mathematical
function obtained from a physics model is the only way to minimize this error.

As a particular case, the proton charge radius is determined directly from the
second moment of the charge density as

Rp =
√

⟨r2⟩ = 0.8261± 0.0012± 0.0076 fm , (22)

where the first error is statistical and the second is systematic.

4 Conclusions

We have proposed a new method to determine the spatial moments of densi-
ties expressed in momentum space, i.e. form factors. The method provides a
direct access to real moments, both positive and negative, for any form factor
functional. Particularly, it represents the only opportunity to access spatial mo-
ments when the Fourier transform of a parameterization cannot be performed.
In addition, unlike the derivative method which is restricted to even moments,
the integral method gives access to moments of any order λ, especially odd λ
values and more generally any real order λ > −3. Furthermore, it provides the
formal support to take into account the full range of existing data for the deter-
mination of even moments, allowing us to improve the accuracy as compared to
the derivative method.

The integral method involves the regularization of integrals treated as distri-
butions. Two regularization techniques have been tested with respect to different
parameterizations of the electromagnetic form factor of the proton. In particu-
lar, it has been demonstrated that the exponential regularization provides the
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most performant approach, allowing us to determine accurately positive mo-
ments considering a saturation squared four-momentum transfer of 2 GeV2.
Negative moments require larger saturation momenta but remain quite acces-
sible with reduced accuracy (a few percents) in the proton case.

Based on a comprehensive analysis of the proton electric form factor data
obtained from Rosenbluth separation and low k2 measurements, the method
has been applied to the experimental evaluation of the moments of the proton
charge density, paying specific attention to the determination of statistical and
systematic errors. The actual status of experimental data allows a meaningful de-
termination of the moments up to the fifth order. The sensitivity to the specific
mathematical expression of the form factor fit function and the actual experiment
systematics are found to be the most significant contributions to the systematic
error. Taking into account the fit function sensitivity appears to reconcile the
different determinations of the proton charge radius. In that respect, the integral
method approach yields the proton charge radius value 0.8261± 0.0012 (stat.) ±
0.0076 (syst.) fm. The current analysis suggests that the accuracy of this result,
already in fair agreement with the muonic hydrogen spectroscopy value, would
be improved by enriching the electric form factor data set at very low k2 and
using form factor functions supported by physics models.

The present study paves the way to possible future developments, includ-
ing the application of the integral method to the study of the magnetic charge
distribution in the nucleon. Furthermore, the generalization of Eq. (10) to a D-
dimensional density, performed in Ref. [16], offers the possibility to address the
relativistic nature of the nucleon structure for D=2 [25].
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