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Abstract

The correspondence between ordinary differential equations and Bethe ansatz equations for integrable
lattice models in their continuum limits is generalised to vertex models related to classical simple Lie
algebras. New families of pseudo-differential equations are proposed, and a link between specific gen-
eralised eigenvalue problems for these equations and the Bethe ansatz is deduced. The pseudo-differential
operators resemble in form the Miura-transformed Lax operators studied in work on generalised KdV equa-
tions, classical W-algebras and, more recently, in the context of the geometric Langlands correspondence.
Negative-dimension and boundary-condition dualities are also observed.
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1. Introduction

A recent observation [1] has established an unexpected link between two-dimensional con-
formal field theory (CFT) and the theory of ordinary differential equations. This rests on a
correspondence between the transfer matrix eigenvalues of certain integrable models (IMs), in
their conformal limits [2,3], and the spectral determinants [4,5] of ordinary differential equations.

The initial results [1,6–8] connected conformal field theories with Virasoro central charge
c � 1 with Schrödinger problems for one-dimensional anharmonic oscillators. These conformal
field theories are naturally associated to the Lie algebra A1, but a generalisation to models related
to An−1, with additional extended W-algebra symmetries, was soon established [9–12]. However,
contrary to initial expectations, a simple Lie-algebraic structure did not emerge immediately, and
the extension of the correspondence to the theories associated with other simple Lie algebras g

has proved surprisingly elusive.
The purpose of this paper is to begin to fill this gap, by establishing a link between CFTs

related to the classical simple Lie algebras and spectral problems associated with a set of ordinary
(pseudo-) differential equations.

We shall also prove for g = An−1, and conjecture for the other simple Lie algebras, the
existence of closed systems of functional equations (ψ -systems) among uniquely-defined so-
lutions ψ(1),ψ(2), . . . ,ψ(rank(g)) of a set of rank(g) pseudo-differential operators, with each pair
ψ(a)/(operator)a being naturally associated to a node of the Dynkin diagram. These ψ -systems
are very similar to the systems of functional relations introduced by Mukhin and Varchenko in
the framework of the Bethe ansatz (BA) method for g-XXX quantum spin chains [13–16], and
in the context of the so-called Miura-opers related to the geometric Langlands correspondence
(see, for example, [17,18]). This similarity is related to the fact that the homogeneous ‘differen-
tial’ parts of the operators studied here resemble, in form, the Miura-transformed Lax operators
introduced by Drinfel’d and Sokolov in their studies of generalised KdV equations and classical
W-algebras [19].

The rest of the paper is organised as follows. Section 2 gathers together some known, or eas-
ily deduced, properties of the Bethe equations for g-type quantum spin chains in their continuum
limits. Our main results are summarised in Section 3, while extra details and numerical support
for the specific A,D,B and C proposals are given in Sections 4–7 respectively, and Section 8
contains our general conclusions. There are two appendices: Appendix A deals with the semiclas-
sical analysis for A1-related ODEs in the presence of string solutions, and Appendix B describes
a simple algorithm useful for the numerical solutions of the differential equations. The algorithm
is a generalisation of Cheng’s method from Regge pole theory [20], and relies on an elegant dual
formulation of the relevant boundary problems.

2. The Bethe ansatz equations and their string solutions

For any simple Lie algebra g of type An−1 to G2, a set of Bethe ansatz equations (BAEs),
depending on a set of rank(g) twist parameters γ = {γa}, can be written in a universal form as
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[21–26]1

(2.1)
rank(g)∏
b=1

ΩBabγb
Q

(b)
Bab

(E
(a)
i , γ )

Q
(b)
−Bab

(E
(a)
i , γ )

= −1, i = 0,1,2, . . . ,

where

(2.2)Q
(a)
k (E,γ ) = Q(a)

(
ΩkE,γ

)
,

and the numbers E
(a)
i are the—in general complex—zeros of the functions Q(a):

(2.3)Q(a)
(
E

(a)
i , γ

) = 0.

In (2.1) and (2.3) the indices a and b label the simple roots of the Lie algebra, the matrix Bab

is defined by

(2.4)Bab = (αa,αb)

|long roots|2 , a, b = 1,2, . . . , rank(g)

and the α’s are the simple roots of g. The constant Ω is a pure phase, parameterised in terms of
a real number μ > 0 as

(2.5)Ω = exp

(
i

2π

h∨μ

)

where h∨ is the dual Coxeter number of g. Strictly speaking, the BAE (2.1) arise from taking a
suitable continuum or field theory limit of the lattice model BAE, in the fashion explained in, for
example, [27].

The functions Q(a) appearing in (2.1) have a characteristic asymptotic behaviour at large
values of −E

(2.6)lnQ(a)(−E,γ ) = ma

sin( π
h∨ )

sin( π
h∨ Baa)

(−E)μ + · · · .

For the An−1, Bn, Cn and Dn models the sets {ma} are given in Table 1.2 The only free
parameter—the overall constant m in Table 1—depends on the way the conformal field theory
limit is reached.

The negative real E axis is also the direction of maximal growth for lnQ(a)(E) as |E| →
∞. From (2.6), the Hadamard order of Q(a) is therefore μ and, in the so-called ‘semiclassical
regime’ 0 < μ < 1, Q(a) can be written as a convergent infinite product over its zeros as

(2.7)Q(a)(E,γ ) = Q(a)(0, γ )

∞∏
i=0

(
1 − E

E
(a)
i

)
.

1 For finite lattice models, the explicit diagonalisation of the An−1 cases has been performed through the algebraic
Bethe ansatz by Schulz [21] and also by Babelon et al. [22]. For Cn and Dn models, it has been done by Reshetikhin
[23,24]. There is a shortcut to reach the same conclusions via the so-called analytic Bethe ansatz of Reshetikhin [25],
and Wiegmann and Reshetikhin [26].

2 The constants {ma} are related to a particular matrix Kab emerging from the analysis of the Bethe ansatz. For simply-
laced algebras, Kab is proportional to the Cartan matrix and �v = (m1,m2, . . . ,mr ) is its Perron–Frobenius eigenvector.
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Table 1
Dual Coxeter numbers and coefficients {ma} for models based on classical simple Lie algebras

Model h∨ ma

An−1 n ma = 2m sin(a π
h∨ ) (a = 1, . . . , n − 1)

Dn 2n − 2 mn−1 = mn = m, ma = 2m sin(a π
h∨ ) (a = 1, . . . , n − 2)

Bn 2n − 1 mn = m, ma = 2m sin(a π
h∨ ) (a = 1, . . . , n − 1)

Cn n + 1 ma = 2m sin(a π
2h∨ ) (a = 1, . . . , n)

It turns out that the Bethe ansatz roots generally split into multiplets with approximately equal
modulus |E(a)

i |, and that the ground state of the quantum spin chain corresponds to a ‘pure’
configuration of roots, containing only multiplets with a common dimension

(2.8)da = K

Baa

.

The integer K in (2.8) depends on the particular spin chain under discussion, and corresponds to
the degree of fusion [28–30]. For g = A1, the spin-j A1 quantum chains, K = d1 = 2j .

It is generally expected [31] that for large values of i the zeros asymptotically tend to the
perfect string configurations:

(2.9)argE
(a)
i ∼ (da + 1 − 2l)

Baaπ

h∨μ
, l = 1,2, . . . , da.

Appendix A contains some further discussion of the asymptotic behaviour of these string solu-
tions.

3. Summary of the main results

This paper is about the correspondence between the Bethe ansatz equations (2.1) for g =
An−1,Bn,Cn,Dn and spectral problems associated to solutions ψ(x,E,g) of particular pseudo-
differential equations with vanishing boundary conditions

(3.1)ψ(x,E,g) = o
(
e− xM+1

M+1
) (

M > K/(h∨ − K)
)

imposed at large x on the positive real axis. To specify these equations we introduce the nth-order
differential operator [11]

(3.2)Dn(g) = D
(
gn−1 − (n − 1)

)
D

(
gn−2 − (n − 2)

) · · ·D(g1 − 1)D(g0),

(3.3)D(g) =
(

d

dx
− g

x

)
,

with

(3.4)g = {gn−1, . . . , g1, g0}, g† = {n − 1 − g0, n − 1 − g1, . . . , n − 1 − gn−1}.
We also use the inverse differential operator (d/dx)−1, generally defined through its formal
action

(3.5)

(
d

dx

)−1

xs = xs+1

s + 1
.
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The following properties hold

(3.6)

(
d

dx

)(
d

dx

)−1

xs = xs,

(
d

dx

)−1(
d

dx

)
xs = xs (s �= 0),

and the integration by parts property

(3.7)

(
d

dx

)−1[
f (x)

d

dx
g(x)

]
= f (x)g(x) −

(
d

dx

)−1[
g(x)

d

dx
f (x)

]
is satisfied, provided in the x-expansion of f (x)g(x) about the origin the constant term is absent.
In the following we shall assume the validity of (3.7) by working implicitly with non-integer
values for the parameters gi introduced in (3.4), and by invoking continuity of the final results in
these parameters.

Finally, we define a basic ‘potential’

(3.8)PK(E,x) = (
xh∨M/K − E

)K
.

With this notation in place, the following pseudo-differential equations are the main concern
of this article:

An−1 (su(n)):

(3.9)
(
(−1)nDn(g) − PK(x,E)

)
ψ(x,E,g) = 0,

with the constraint
∑n−1

i=0 gi = n(n−1)
2 .

Dn (so(2n)):

(3.10)

(
Dn

(
g†)( d

dx

)−1

Dn(g) − √
PK(x,E)

(
d

dx

)√
PK(x,E)

)
ψ(x,E,g) = 0.

Bn (so(2n + 1)):

(3.11)

(
Dn

(
g†)Dn(g) + √

PK(x,E)

(
d

dx

)√
PK(x,E)

)
ψ(x,E,g) = 0.

Cn (sp(2n)):

(3.12)

(
Dn

(
g†)( d

dx

)
Dn(g) − PK(x,E)

(
d

dx

)−1

PK(x,E)

)
ψ(x,E,g) = 0.

The correspondence we propose links the ground-state Q(1)’s of (2.1) to particular solutions
ψ (3.1) of Eqs. (3.18)–(3.21).

In order to clarify this statement we introduce an alternative basis of solutions {χi(x,E,g)}
to (3.18)–(3.21), characterised by their behaviour near the origin

(3.13)χi(x,E,g) ∼ xλi + · · · , x → 0,

where the λ’s are the ordered (λ0 < λ1 < · · ·) roots of the appropriate indicial equation (see
Table 2).

Writing ψ as a linear combination of the χ ’s, we have in general

(3.14)ψ(x,E,g) = Q
(1)
[0] (E,g)χ0(x,E,g) + Q

(1)
[1] (E,g)χ1(x,E,g) + · · · .
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Table 2
Indicial equations

Model Indicial equation

An−1
∏n−1

i=0 (λ − gi ) = 0

Dn (λ − h∨/2)−1 ∏n−1
i=0 (λ − gi)(λ − h∨ + gi) = 0

Bn
∏n−1

i=0 (λ − gi )(λ − h∨ + gi ) = 0

Cn (λ − n)
∏n−1

i=0 (λ − gi )(λ − 2n + gi ) = 0

If the zeros of Q
(1)
[0] (E,g) are {E(1)

i }, then for E ∈ {E(1)
i } the function x−λ0ψ(x,E,g) vanishes

exceptionally both at x = ∞ and at x = 0. This allows the coefficient Q
(1)
[0] (E,g) to be identified

with the spectral determinant for a boundary problem defined on the positive real axis (see, for
example, [4,5]). An alternative (dual) definition of the spectral functions Q

(1)
[0] (E,g) in terms of

the adjoint equations to (3.18)–(3.21) is briefly discussed in Appendix B.
We claim that for classical Lie algebras with arbitrary degree of fusion K , the ground-state

Q(1)(E,γ )’s in (2.1) and the functions Q
(1)
[0] (E,g) in (3.14) coincide up to a trivial normalisation,

so that

(3.15)
Q(1)(E,γ )

Q(1)(0, γ )
= Q

(1)
[0] (E,g)

Q
(1)
[0](0,g)

.

Moreover, from the WKB approximation

(3.16)lnQ
(1)
[0] (−E,g) = κ(−E)μ̂ + · · · (E 
 0)

with

(3.17)μ̂ = K(M + 1)

h∨M
, κ = κ

(
h∨M

K
,
h∨

K

)

and

(3.18)κ(a, b) =
∞∫

0

dx
((

xa + 1
)b − xab

) = 
(1 + 1/a)
(1 + 1/b) sin(π/b)


(1 + 1/a + 1/b) sin(π/b + π/a)
.

Therefore, in order to have a match between (3.16) and (2.6), we must set

(3.19)μ = μ̂, m1 = κ
sin( π

h∨ B11)

sin( π
h∨ )

, Ω = exp

(
i

2πM

K(M + 1)

)
.

Given a particular ordering convention, the relationship between the twist parameters {γa} and
the constants {ga} is given in Table 3.

Various consistency checks, including the WKB approach and numerical work, support the
correspondence both qualitatively and quantitatively.

Finally, starting from Eqs. (3.18) to (3.21), the Bethe ansatz equations and Table 3 were ob-
tained with the help of a system of functional relations involving ψ(1)(x,E,g) = ψ(x,E,g)

together with other auxiliary functions ψ(a)(x,E,g), (a = 2, . . . , rank(g)) (see Sections 4–7 and
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Table 3
The relationship between the set of parameters {ga} ↔ {γa} with α = 2K/(h∨M)

Model Ordering ∀i < j {ga} ↔ {γa}
An−1 gi < gj γa = α(

∑a−1
i=0 gi − a(h∨−1)

2 )

γa = α(
∑a−1

i=0 gi − a
2 h∨) (a = 1, . . . , n − 2)

Dn gi < gj < h∨/2 γn−1 = α
2 (

∑n−1
i=0 gi − n

2 h∨)

γn = α
2 (

∑n−2
i=0 gi − gn−1 − n−2

2 h∨)

Bn gi < gj < h∨/2 γa = α(
∑a−1

i=0 gi − a
2 h∨)

Cn gi < gj < n γa = α(
∑a−1

i=0 gi − an)

γn = α
2 (

∑n−1
i=0 gi − n2)

[9,11]). We set3

(3.20)ψ
(a)
k = ψ(a)

(
ωkx,ΩkE,g

)
where

(3.21)Ω = exp

(
i

2πM

K(M + 1)

)

as in (3.19), and

ω = ΩK/(h∨M) = exp

(
i

2π

h∨(M + 1)

)
.

For the simply-laced algebras the ψ -systems can then be written in the compact form

(3.22)W
[
ψ

(a)

− 1
2
,ψ

(a)
1
2

] =
rank(g)∏
b=1

(
ψ(b)

)Aab ,

where Aab = 2δab − 2Bab is the incidence matrix of the corresponding Dynkin diagram and W

the Wronskian:

(3.23)W [f,g] = f (x)
d

dx
g(x) − g(x)

d

dx
f (x).

Eq. (3.22) is proven in Section 4.2 for g = An−1, and our numerical results indirectly support
the validity of (3.22) for g = Dn. Currently, we have no analogous pseudo-differential equations
for the exceptional Lie algebras but the similarity between (3.22), the relations proposed in [13–
15] and the other functional equations (Y-systems and T-systems) discovered in the framework
of integrable models [32–37] suggests the validity of (3.22) in its more general form. For the
non-simply-laced algebras our conjectures are

(3.24)

Bn: W
[
ψ

(a)

− 1
2
,ψ

(a)
1
2

] = ψ(a−1)ψ(a+1), a = 1, . . . , n − 1,

W
[
ψ

(n)

− 1
4
,ψ

(n)
1
4

] = ψ
(n−1)

− 1
4

ψ
(n−1)
1
4

.

3 In the An−1 models ψ
(1)
k

(x,E,g) = ω(n−1)k/2y−k(x,E,g), where yk is the function defined in Section 3 of [11].
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(Our root convention is (αi |αi) = 2 for i = 1,2, . . . , n − 1 and (αn|αn) = 1.)

(3.25)

Cn: W
[
ψ

(a)

− 1
4
,ψ

(a)
1
4

] = ψ(a−1)ψ(a+1), a = 1, . . . , n − 2,

W
[
ψ

(n−1)

− 1
4

,ψ
(n−1)
1
4

] = ψ(n−2)ψ
(n)

− 1
4
ψ

(n)
1
4

,

W
[
ψ

(n)

− 1
2
,ψ

(n)
1
2

] = ψ(n−1).

(Here, (αi |αi) = 1 for i = 1,2, . . . , n − 1 and (αn|αn) = 2.)

(3.26)

F4: W
[
ψ

(1)

− 1
4
,ψ

(1)
1
4

] = ψ(2),

W
[
ψ

(2)

− 1
4
,ψ

(2)
1
4

] = ψ(1)ψ
(3)

− 1
4
ψ

(3)
1
4

,

W
[
ψ

(3)

− 1
2
,ψ

(3)
1
2

] = ψ(2)ψ(4),

W
[
ψ

(4)

− 1
2
,ψ

(4)
1
2

] = ψ(3).

(Here, (α1, α1) = (α2, α2) = 1 and (α3, α3) = (α4, α4) = 2.)

(3.27)

G2: W
[
ψ

(1)

− 1
2
,ψ

(1)
1
2

] = ψ(2),

W
[
ψ

(2)

− 1
6
,ψ

(2)
1
6

] = ψ(1)ψ
(1)

− 2
6
ψ

(1)
2
6

.

(Here, (α1|α1) = 3 and (α2|α2) = 1.)
Again, these relations are not proven but we have indirect numerical evidence for g = Bn, Cn.

Further details and numerical support for the above conjectures are provided in the following
sections, which examine the A, D, B and C cases in turn.

4. The An−1 models

The ODE for the An−1 models is

(4.1)
(
(−1)n+1Dn(g) + PK(x,E)

)
ψ(x,E,g) = 0,

where the operator Dn(g) and the generalised potential PK(x,E) were defined in Section 3, and
the additional constraint

(4.2)
n−1∑
i=0

gi = n(n − 1)

2

ensures that the term x−1 dn−1

dxn−1 is absent.
The function ψ(x,E,g) is defined to be the most subdominant solution on the positive real

axis, with asymptotic behaviour, for M > K/(h∨ − K), given by

(4.3)ψ(x,E,g) ∼Nx(1−n)M/2 exp
(−xM+1/(M + 1)

)
as x → ∞. The coefficient N represents an E- and g-independent normalisation constant.

The K = 1 cases have been extensively discussed in [9–12]; they are related to the WAn−1
conformal field theories with integer Virasoro central charge c = n−1. Alternatively, at particular
values of the parameters g and M they can also be put in correspondence with the minimal coset
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conformal field theories

(4.4)
(Ân−1)1 × (Ân−1)L

(Ân−1)L+1
,

with a simple relationship between L in (4.4) and the parameter M in (3.8).
The generalisation to integer K > 1 comes from an observation by Sergei Lukyanov [38] for

the A1 case, for which numerical and analytic support was later provided in [39] and in [40]. It
is reasonable to conjecture that this generalisation works both for An−1 with n > 2 and, up to
minor modifications, for the other models to be discussed in this paper. In analogy to (4.4), at
particular values of g and M , the integer K > 1 cases should correspond to the cosets

(4.5)
ĝK × ĝL

ĝK+L

,

which describe conformal field theories with g = An−1,Bn,Cn,Dn. In Appendix A we shall
explain, in the simplest case, why potentials of such forms naturally lead to string patterns of
roots of the sort mentioned in the introduction.

4.1. Negative-dimension dualities

It is interesting to note that there are formal duality relations among our pseudo-differential
equations involving negative values of n and K . Consider the An−1 ODEs with the twists g =
{n − 1, n − 2, . . . ,1,0}:

(4.6)

(
(−1)n+1 dn

dxn
+ PK(x,E)

)
ψ(x,E) = 0.

Setting ψ̃(x,E) = PK(x,E)ψ(x,E) and multiplying from the left by ( d
dx

)−n, the result is

(4.7)

(
(−1)n+1

(
d

dx

)−n

+ P−K(x,E)

)
ψ̃(x,E) = 0.

Comparing (4.7) with (4.6) and taking into account the boundary conditions, we see that there is
a formal duality and a spectral equivalence between the initial nth-order ODE and the pseudo-
differential equation (4.7):

(4.8){n,M,K} ↔ {−n,M,−K}.
Though the above manipulation might look purely formal, it strongly resembles previously-
observed W-algebra dualities [41]:

(4.9)
(Â−n)K × (Â−n)L

(Â−n)K+L

∼ (Ân)−K × (Ân)−L

(Ân)−K−L

.

A discussion of the precise relation between L and the ODE parameters {n,M,K,g} is not
important for the current naive considerations and we shall postpone it to the future.

Whilst the duality (4.8) remains at the moment a purely formal observation, the second duality
discussed in [41]

(4.10)
(D̂−n)K × (D̂−n)L

(D̂−n)K+L

∼ (Ĉn)−K/2 × (Ĉn)−L/2

(Ĉn)−K/2−L/2
,
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will lead us to the proposal (3.12) for the Cn-related equations. (For the quantisation of the
classical Dn W-algebras in relation to the Miura-opers see, for example, [42].)

Negative-dimension dualities resembling those described here are also well-known to group
theorists; many more details can be found in [43].

4.2. Auxiliary functions and the ψ -system

The solution ψ(x,E,g) of (4.1) with the asymptotic behavior (4.3) is not the only function
associated to the An−1 Bethe ansatz equations. In order to derive the Bethe ansatz itself a total
of n − 1 functions ψ(1), . . . ,ψ(n−1), one for each node of the An−1 Dynkin diagram, should
be introduced. These auxiliary functions are solutions of generally more-complicated ordinary
differential equations.

Following [11], all the functions ψ(a)(x,E,g) decaying at large x on the positive real axis
can be constructed from ψ ≡ ψ(1) as

(4.11)ψ(a) = W(a)

[
1 − a

2
,

3 − a

2
, . . . ,

a − 1

2

]
≡ W(a)

[
ψ 1−a

2
,ψ 3−a

2
, . . . ,ψa−1

2

]
,

where a = 1,2, . . . , n − 1, W(a)[f1, . . . , fa] denotes the generalised Wronskian of the set of
functions {fa}

(4.12)W(a)[f1, . . . , fa] = det

[(
�f ,

d

dx
�f , . . . ,

da−1

dxa−1
�f
)]

with �f = (f1, f2, . . . , fa) (so that W(2)[f,g] ≡ W [f,g], cf. Eq. (3.23)), and ψk denotes the
‘rotated’ solution (3.20).

Finally, normalising ψ(1) by

(4.13)N = i(n−1)/2

√
n

�⇒ ψ(n)(x,E,g) = 1.

Since ψ is a solution of an nth-order ODE, a naive counting of degrees of freedom shows that
the order of the ODE satisfied by ψ(a) should be

(4.14)
n!

(n − a)!a! .

The (n − a + 1) and the (a) equations are related by a (g ↔ g†)-conjugation [9,11], arising
from the Z2 symmetry of the Dynkin diagram. Notice that the result (4.14) exactly matches the
dimensions of the basic representations of An−1; these are again in one-to-one correspondence
with the nodes of the Dynkin diagram.

Fortunately, in order to derive the Bethe ansatz equations an explicit knowledge of the remain-
ing n − 2 ODEs is unnecessary: the derivation of [11] was instead based on the Stokes relation
associated to (4.1)

(4.15)
n∑

k=0

(−1)kC(k)(E,g)yk(x,E,g) = 0,

where, according to [11],

(4.16)yk(x,E,g) = ω(n−1)k/2ψ
(
ω−kx,Ω−kE,g

)
,
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C(0)(E,g) = 1 and the Stokes multipliers C(k)(E,g) with k > 0 are analytic functions of E

and g. Stokes relations for the Dn, Bn and Cn Eqs. (3.10), (3.11) and (3.12) also exist, but we
have encountered some subtle complications4 in generalising the approach of [11] to these cases.

Instead, the strategy here is based on the conjectured validity of a simple ‘universal’ system
of functional equations among the ψ(a) functions, which leads immediately to the Bethe ansatz
equations and bypasses the analysis of Stokes relations.

We shall now prove the An−1 ψ -system (3.22):

(4.17)ψ(a−1)ψ(a+1) = W
[
ψ

(a)

− 1
2
,ψ

(a)
1
2

]
, ψ(0) = ψ(n) = 1.

The proof is based on the observation that determinants satisfy functional equations, in particular
the so-called Jacobi identity

(4.18)ΔΔ[p,q|p,q] = Δ[p|p]Δ[q|q] − Δ[p|q]Δ[q|p].
Here, Δ is the determinant of an (a + 1) × (a + 1) matrix and Δ[p1,p2|q1, q2] denotes the
determinant of the same matrix with the p1,2th rows and q1,2th columns removed.

In order to prove (4.17) we have to consider three different cases: a = 1, 1 < a < n − 1 and
a = n − 1. The a = 1 case follows from the definition of ψ(2) given in (4.11). Eq. (4.17) for
1 < a < n − 1 follows from the following chain of identities

∏
b

(
ψ(b)

)Aab = W(a+1)

[
−a

2
,−a − 2

2
, . . . ,

a − 2

2
,
a

2

]
W(a−1)

[
−a − 2

2
, . . . ,

a − 2

2

]

= (−1)(a−1)W(a+1)

[
−a − 2

2
, . . . ,

a − 2

2
,−a

2
,
a

2

]

× W(a−1)

[
−a − 2

2
, . . . ,

a − 2

2

]
(4.19)= (−1)(a−1)ΔΔ[a, a + 1|a, a + 1],

where we have identified

(4.20)Δ ≡ W(a+1)

[
−a − 2

2
, . . . ,

a − 2

2
,−a

2
,
a

2

]
and

(4.21)Δ[a, a + 1|a, a + 1] = W(a−1)

[
−a − 2

2
, . . . ,

a − 2

2

]
.

This is nothing but the LHS of the Jacobi identity (4.18). Then an application of the Jacobi
identity naturally proves (4.17) in the following way:∏

b

(
ψ(b)

)Aab = (−1)(a−1)
(
Δ[a|a]Δ[a + 1|a + 1] − Δ[a|a + 1]Δ[a + 1|a])

= (−1)(a−1)

(
W ′(a)

[
−a − 2

2
, . . . ,

a − 2

2
,
a

2

]

4 In the Dn case these complications are probably a consequence of the fact that the ODEs associated to the Z2-
conjugate nodes in the Dynkin diagram are somehow more fundamental than Eq. (3.10). This latter equation is more
naturally associated to the first node on the ‘tail’ of the diagram.
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× W(a)

[
−a − 2

2
, . . . ,

a − 2

2
,−a

2

]

− W ′(a)

[
−a − 2

2
, . . . ,

a − 2

2
,−a

2

]
W(a)

[
−a − 2

2
, . . . ,

a − 2

2
,
a

2

])

= W ′(a)

[
−a − 2

2
, . . . ,

a − 2

2
,
a

2

]
W(a)

[
−a

2
,−a − 2

2
, . . . ,

a − 2

2

]

− W ′(a)

[
−a

2
,−a − 2

2
, . . . ,

a − 2

2

]
W(a)

[
−a − 2

2
, . . . ,

a − 2

2
,
a

2

]

(4.22)= ψ
(a)

− 1
2
ψ

′(a)
1
2

− ψ
′(a)

− 1
2
ψ

(a)
1
2

= W
[
ψ

(a)

− 1
2
,ψ

(a)
1
2

]
.

Finally, for a = n − 1 the previous calculation shows that

(4.23)ψ(n−2)ψ(n) = W
[
ψ

(n−1)

− 1
2

,ψ
(n−1)
1
2

]
.

Choosing N = i(n−1)/2√
n

gives ψ(n) = 1 and (4.17) is proved.

4.3. The An−1 Bethe ansatz equations

In this section we shall show that the BAEs are a simple consequence of the ψ -system. First,
recall the alternative χ -basis of solutions (3.13) and the formal ordering of Table 3

(4.24)gi < gj , ∀i < j.

These solutions are defined by their behaviour as x → 0

(4.25)χi(x,E,g) ∼ xλi + O
(
xλi+n

)
, λi = gi.

Next, expand ψ(x,E,g) in the χ -basis

(4.26)ψ(x,E,g) =
n−1∑
i=0

Q
(1)
[i] (E,g)χi(x,E,g),

and use the property

(4.27)χi

(
ωkx,ΩkE,g

) = ωkλi χi(x,E,g),

to obtain

(4.28)ψk(x,E,g) =
n−1∑
i=0

Q
(1)
[i]

(
ΩkE,g

)
ωkλi χi(x,E,g).

Now expanding the determinants in the determinants for this new basis leads to

ψ(a)(x,E,g) =
∑

i

(∏
j

Q
(1)
[ij ]

(
ΩjE,g

)
ω

jλij

)
W(a)[χi 1−a

2
, . . . , χi a−1

2
]

(4.29)=
∑′

i

Q
(a)
[i 1−a

2
,...,i a−1

2
](E,g)W(a)[χi 1−a

2
, . . . , χi a−1

2
]

where j = 1−a
2 , 3−a

2 , . . . , a−1
2 ,

∑
i denotes the sum from 0 to n − 1 of the set {ij } while in

∑′
i

there is the additional constraint 0 � i 1−a � i 3−a � · · · � i a−1 .

2 2 2
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A family of x-independent equations is obtained by identifying from the LHS and RHS of
(4.17) the terms corresponding to the same power. It is possible a-priori to identify from every
determinant only the highest, second highest, lowest and second lowest orders. We shall extract
the leading orders, though similar results can be obtained from the subdominant ones.

Setting

(4.30)Q
(a)
k (E,g) = Q

(a)
[0,...,a−1]

(
ΩkE,g

)
, Q̄

(a)
k (E,g) = Q

(a)
[0,...,a−2,a]

(
ΩkE,g

)
we have

ψ
(a)
k (x,E,g) = ωkαaQ

(a)
k (E,g)W(a)[χ0, . . . , χa−1]

(4.31)+ ωk(αa+1−λa−1)Q̄
(a)
k (E,g)W(a)[χ0, . . . , χa−2, χa] + · · · .

The orders of the first and the second terms in (4.31) are αa − a(a − 1)/2 and αa+1 − λa−1 −
a(a − 1)/2 respectively, where

(4.32)αa =
a−1∑
i=0

λi.

Substituting (4.31) into (4.17), comparing the leading terms of both sides for small x and using
the relation

W(a+1)W(a−1) = W
[
W(a), Ŵ (a)

]
,

W(a) := W(a)[χ0, . . . , χa−1], Ŵ (a) := W(a)[χ0, . . . , χa−2, χa]
(also proved through the Jacobi identity), we find

(4.33)Q(a+1)Q(a−1) = ω
1
2 (λa−λa−1)Q

(a)

− 1
2
Q̄

(a)
1
2

− ω
1
2 (λa−1−λa)Q

(a)
1
2

Q̄
(a)

− 1
2
,

Q(0) = 1. Finally, let E
(a)
i be a zero of Q(a)(E,g). Evaluating the above equation at E =

Ω1/2E
(a)
i and at E = Ω−1/2E

(a)
i , and by dividing the two equations thus obtained, we find

the An−1 Bethe ansatz equations

(4.34)
n−1∏
b=1

ΩBabγb
Q

(b)
Bab

(E
(a)
i )

Q
(b)
−Bab

(E
(a)
i )

= −1, i = 0,1,2, . . . ,

where

(4.35)γa = 2K

Mh∨

(
a−1∑
i=0

gi − a
(n − 1)

2

)
.

Notice that in writing relation (4.35) we have used the identity

(4.36)
K

Mh∨ (λa − λa−1) = −
n−1∑
b=1

Babγb,

the ordering (4.24) and imposed the constraint γ0 = γn = 0.
As shown in Table 4, for K = 1 there is very good agreement between the IM results obtained

from the solution of a suitable nonlinear integral equation (NLIE) (see Section 6 in [11]) and the
direct numerical solution of the ODE.

Table 5 also shows the good agreement between the IM results obtained using the spin-1
NLIEs [44,45] and the exact solution of the ODE with K = 2 (see Section 6.2).
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Table 4
Comparison of IM results (A4 NLIE) with the direct numerical solution of the A4 ODE with K = 1, M = 10/21 and
g = {3.421,2.3,1.02,0.2}
Level A4 NLIE ODE numerics

E
(1)
0 14.0495626907 14.0495626922

E
(1)
1 47.7146839354 47.7146839363

E
(1)
2 95.1785845453 95.1785845456

E
(1)
3 154.202021469 154.202021470

E
(1)
4 223.483044292 223.483044292

Table 5
Comparison of IM results (A1 NLIE) with the exact solution of the A1 ODE with K = 2, M = 1 and g0 = 0. The set

{√2E
(1)
i

} are the exact eigenvalues of the B1 linear ODE of Section 6.2

Level A1 NLIE with K = 2 ODE numerics

E
(1)
0 1.49259741085 ± 1.60304589242i 1.49259741085 ± 1.60304589242i

E
(1)
1 2.31180377628 ± 2.38537059826i 2.31180377628 ± 2.38537059826i

E
(1)
2 2.91183770898 ± 2.97068128676i 2.91183770898 ± 2.97068128676i

E
(1)
3 3.40837129214 ± 3.45880577384i 3.40837129216 ± 3.45880577388i

E
(1)
4 3.84143464742 ± 3.88626414305i 3.84143464640 ± 3.88626414641i

5. The Dn models

The Dn pseudo-differential equation (3.10) is

(5.1)

(
Dn

(
g†)( d

dx

)−1

Dn(g) − √
PK(x,E)

(
d

dx

)√
PK(x,E)

)
ψ(x,E,g) = 0.

Following the An−1 example, we start from the solution ψ(x,E,g) of (5.1) with asymptotic
behaviour

(5.2)ψ(x,E,g) ∼Nx−h∨M/2 exp

(
− xM+1

M + 1

) (
M > K/(h∨ − K)

)
as x → ∞ on the positive real axis, and introduce the alternative basis of solutions (3.13)

(5.3)χi(x,E,g), i = 0,1, . . . ,2n − 1

characterised by their behaviour near the origin

(5.4)χi(x,E,g) ∼ xλi + O
(
xλi+2n−1), {

λi = gi, for i � n − 1,

λi = h∨ − g2n−1−i , for i > n − 1.

In (5.4) the parameters λi represent the 2n solutions of the indicial equation (see Table 2) with
the ordering

(5.5)gi < gj � h∨

2
, λi < λj , ∀i < j.
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5.1. The ψ -system and the Dn Bethe ansatz equations

To extract the Dn BAE, we start from

(5.6)ψ
(1)
k = ψk(x,E,g) = ψ

(
ωkx,ΩkE,g

)
,

where Ω and ω are as defined in (3.19) and (3.20), and assume the validity, for a suitable value
of the normalisation constant N , of the ψ -system (3.22)

W
[
ψ

(a)

− 1
2
,ψ

(a)
1
2

] = ψ(a−1)ψ(a+1), a = 1, . . . , n − 3,

W
[
ψ

(n−2)

− 1
2

,ψ
(n−2)
1
2

] = ψ(n−3)ψ(n−1)ψ(n),

(5.7)W
[
ψ

(n−1)

− 1
2

,ψ
(n−1)
1
2

] = W
[
ψ

(n)

− 1
2
,ψ

(n)
1
2

] = ψ(n−2).

Eqs. (5.7) and Jacobi identity (4.18) used in reverse imply the following relations linking the
remaining functions ψ(a)(x,E,g) to ψ(1)(x,E,g):

(5.8)φ(a) ≡ ψ(a) = W(a)[ψ 1−a
2

,ψ 3−a
2

, . . . ,ψa−1
2

], a = 1, . . . , n − 2,

(5.9)φ(n−1) ≡ ψ(n−1)ψ(n) = W(n−1)[ψ 2−n
2

,ψ 4−n
2

, . . . ,ψn−2
2

],
and

(5.10)φ(n) ≡ ψ
(n−1)

− 1
2

ψ
(n−1)
1
2

+ ψ
(n)

− 1
2
ψ

(n)
1
2

= W(n)[ψ 1−n
2

,ψ 3−n
2

, . . . ,ψn−1
2

].

Now notice that the auxiliary functions φ(a)(x,E,g) defined in (5.8), (5.9) and (5.10) satisfy an
A-type ψ -system

(5.11)φ(a−1)φ(a+1) = W
[
φ

(a)

− 1
2
, φ

(a)
1
2

]
, a = 1, . . . , n − 1.

Therefore, the arguments applied in Section 4.3 go through in the same way:

φ
(a)
k (x,E,g) = ωkαa Q̂

(a)
k (E,g)W(a)[χ0, . . . , χa−1]

(5.12)+ ωk(αa+1−λa−1)Q̄
(a)
k (E,g)W(a)[χ0, . . . , χa−2, χa] + · · ·

(a = 1,2, . . . , n − 1). The orders of the first and the second terms in (5.12) are given by αa −
a(a − 1)/2 and αa+1 − λa−1 − a(a − 1)/2 respectively, with αa = ∑a−1

i=0 λi and

(5.13)Q̂
(a)
k (E,g) = Q̂(a)

(
ΩkE,g

)
, Q̄

(a)
k (E,g) = Q̄(a)

(
ΩkE,g

)
are φ-related spectral determinants.

Using Eq. (5.11) we establish the following identity among φ-related spectral determinants

Q̂(a+1)(E)Q̂(a−1)(E)

(5.14)= ω
1
2 (λa−λa−1)Q̂

(a)

− 1
2
(E)Q̄

(a)
1
2

(E) − ω
1
2 (λa−1−λa)Q̂

(a)
1
2

(E)Q̄
(a)

− 1
2
(E);

which leads to

(5.15)
Q̂

(a−1)

− 1
2

(E
(a)
i )

Q̂
(a−1)
1
2

(E
(a)
i )

Q̂
(a)
1 (E

(a)
i )

Q̂
(a)
−1(E

(a)
i )

Q̂
(a+1)

− 1
2

(E
(a)
i )

Q̂
(a+1)
1
2

(E
(a)
i )

= −Ω
α
2 (λa−λa−1)
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with a = 1,2, . . . , n − 1 and α = 2K
Mh∨ . We then make the following identifications

(5.16)Q̂(0)(E,g) = Q(0)(E,g) = 1,

(5.17)Q̂(a)(E,g) = Q(a)(E,g) (a = 1, . . . , n − 1),

(5.18)Q̂(n−1)(E,g) = Q(n−1)(E,g)Q(n)(E,g),

(5.19)Q̂(n)(E,g) = Q
(n−1)

− 1
2

(E,g)Q
(n−1)
1
2

(E,g),

which reflect the relations among the φ’s and the ψ ’s in the above. In (5.19) we have implicitly
assumed

(5.20)ψ(n)(x,E,g) = o
(
ψ(n−1)(x,E,g)

)
as x → 0 and also that (see the discussion in Section 5.2)

(5.21)Q(n−1)
(
E, {gn−1, gn−2, . . . , g0}

) ≡ Q(n)
(
E,

{
h∨ − gn−1, gn−2, . . . , g0

})
.

Plugging relations (5.17), (5.18) and (5.19) into (5.15) and using (5.21) is it easy to check that
(5.15) can be recast in the universal form (2.1)

(5.22)
n∏

b=1

ΩBabγb
Q

(b)
Bab

(E
(a)
i , γ )

Q
(b)
−Bab

(E
(a)
i , γ )

= −1, i = 0,1,2, . . .

where Bab is the Dn-related matrix defined according to (2.4) and we have imposed the extra
condition

(5.23)γn − γn−1 = n − 1 − gn−1

to fix the exact {ga} ↔ {γa} relation as given in Table 3.
Condition (5.23) guarantees that when gn−1 − n + 1 = 0 the operator (d/dx)−1 in (5.1) acts

directly on a d/dx and the relevant equation reduces to an (2n−1)-order ODE. When this occurs
γn = γn−1 and so the pair of Z2-conjugate nodes of the Dynkin diagram are ‘twisted’ in exactly
the same way. Further, a change of sign in the RHS of (5.23) swaps γn and γn−1, a property
that naturally reflects the presence of the Z2-symmetry in the Dn Dynkin diagram. All these
properties are confirmed by the analysis of Sections 5.2 and 5.3 and by 12-digits of numerical
agreement at K = 1 with g = {n − 1, n − 2, . . . ,1,0},

(5.24)γa = α

(
(a − 1)a

2
− a

h∨

2

)
, γn = γn−1 = −nh∨

4
,

between NLIE and ODE results.
Table 6 shows the (still-excellent) agreement at K = 1 away from the γn = γn−1 surface. Ap-

propriate K > 1 NLIEs are unknown but numerical results qualitatively reproduce the expected
IM scenario of Section 2. Further analytic support to the proposed ODE/IM correspondence for
Dn is given in Sections 5.2, 5.3 and 5.4.

5.2. Example 1: D2 ∼ A1 ⊕ A1

The D2 algebra can be decomposed into a pair of independent A1 algebras, mirroring an
analogous factorisation in the BAE. In this section we shall prove that the solution ψ(x,E,g) to
(5.1) with n = 2 is the product of two solutions of A1-related ODEs.
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Table 6
Comparison of IM results (D4 NLIE) with the direct numerical solution of the D4 pseudo-differential equation with
K = 1, M = 1/3 and g = {2.95,2.3,1.1,0.2}
Level D4 NLIE ODE numerics

E
(1)
0 17.8625636061 17.8625636061

E
(1)
1 50.2942213433 50.2942213430

E
(1)
2 92.8267466445 92.8267466442

E
(1)
3 143.348705065 143.348705065

E
(1)
4 200.738324171 200.738324172

We start from the general D2 equation:((
d

dx
+ g0

x

)(
d

dx
+ g1 − 1

x

)(
d

dx

)−1(
d

dx
− g1 − 1

x

)(
d

dx
− g0

x

)

(5.25)− √
PK(x,E)

(
d

dx

)√
PK(x,E)

)
ψ(x,E,g) = 0.

Expanding and integrating by parts, we obtain an equivalent equation:(
− d3

dx3
+ 4P(x,E,g′) d

dx
+ 2

dP

dx
(x,E,g′)

(5.26)+ (1 − g0)
2(1 − g1)

2

x2

(
d

dx

)−1 1

x2

)
ψ(x,E,g) = 0

where for this subsection it is convenient to define P(x,E, k) = 1
4 [(x2M/K − E)K + k

x2 ], and

g′ = g2
0 − 2g0 + g2

1 − 2g1 + 1.
We now set Z(x) = χ1(x)χ2(x), a product of the solutions of two A1 (spin- 1

2 ) equations,
which for general ρ and σ satisfy

(5.27)
d2

dx2
χ1(x,E,ρ) = P(x,E,ρ)χ1(x,E,ρ),

(5.28)
d2

dx2
χ2(x,E,σ ) = P(x,E,σ )χ2(x,E,σ ).

To show that Z(x) satisfies equation (5.26), we differentiate and repeatedly use the A1 equations
to find

d3Z

dx3
= 2

dP

dx

(
x,E,

ρ + σ

2

)
Z + 2P

(
x,E,

ρ + σ

2

)
dZ

dx
+ 2P(x,E,ρ)χ1

dχ2

dx

(5.29)+ 2P(x,E,σ )
dχ1

dx
χ2.

If we now define the Wronskian

(5.30)W = χ1
dχ2

dx
− dχ1

dx
χ2

and use

(5.31)χ1
dχ2 = 1

(
dZ + W

)
,

dχ1
χ2 = 1

(
dZ − W

)
,

dx 2 dx dx 2 dx
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then (5.29) can be written as

(5.32)
d3Z

dx3
= 2

dP

dx

(
x,E,

ρ + σ

2

)
Z + 4P

(
x,E,

ρ + σ

2

)
dZ

dx
+ ρ − σ

4x2
W.

In order to express W in terms of Z we differentiate, apply (5.27) and (5.28), and then integrate:

(5.33)
dW

dx
= χ1

d2χ2

dx2
− d2χ1

dx2
χ2 = σ − ρ

4x2
Z → W = (σ − ρ)

(
d

dx

)−1
Z

4x2
.

The resulting equation for Z,(
− d3

dx3
+ 4P

(
x,E,

ρ + σ

2

)
d

dx
+ 2

dP

dx

(
x,E,

ρ + σ

2

)

(5.34)− (ρ − σ)2

16x2

(
d

dx

)−1 1

x2

)
Z(x,E,ρ,σ ) = 0,

exactly matches equation (5.26) provided the following relations between g0 and g1, and ρ and
σ hold:

(5.35)ρ + σ = 2
(
g2

0 − 2g0 + g2
1 − 2g1 + 1

)
,

(5.36)
ρ − σ

4
= (g0 − 1)(g1 − 1).

If ρ = σ then either g0 or g1 has to be zero and the integral operator in the D2 equation acts on
a total derivative. This observation agrees with the discussion in Section 5.1 about the relation
between (d/dx)−1 and an asymmetric choice of the twists γn and γn−1.

5.3. Example 2: D3 ∼ A3

The BAE for A3 and D3 are the same under identification of Bethe roots. It is therefore
interesting to discuss the exact correspondence between the two models at the level of the pseudo-
differential equations. Actually, it was the study of this case that lead us to the general Dn-related
equations.

We start from the observation that the solution ψ of the A3-related ODE

(5.37)
(
D4(g) − PK(x,E)

)
ψ(x,E,g) = 0,

is associated to the first node of the A3 Dynkin diagram, while the solution of the D3 equation

(5.38)

(
D3

(
ḡ†)( d

dx

)−1

D3(ḡ) − τ
√

PK(x,E)

(
d

dx

)√
PK(x,E)

)
φ(x,E, ḡ) = 0

is more naturally associated to the central node of the D3 = A3 Dynkin diagram. (A constant
factor τ has been included in Eq. (5.38) to take into account the possibly-different normalisations
for the E parameters.)

Therefore we are looking for a relationship between φ(x,E, ḡ) and

(5.39)ψ(2)(x,E,g) = W
[
ψ

(1)

− 1
2
,ψ

(1)
1
2

]
.

For simplicity, we perform the calculation at g = {2,1,0}. We set

(5.40)ψ(2)(x,E) = [0,1]
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where we have introduced the shorthand notation

(5.41)[i, j ] =
(

di

dxi
ψ

(1)

− 1
2

)(
dj

dxj
ψ

(1)
1
2

)
−

(
dj

dxj
ψ

(1)

− 1
2

)(
di

dxi
ψ

(1)
1
2

)
so that

(5.42)
d

dx
[i, j ] = [i + 1, j ] + [i, j + 1], [i, i] = 0,

and

(5.43)
d4

dx4
ψ

(1)

± 1
2
(x,E) = −PK(x,E)ψ

(1)

± 1
2
(x,E).

Taking derivatives five times and using the above equation we have

ψ(2) = [0,1], d

dx
ψ(2) = [0,2], d2

dx2
ψ(2) = [1,2] + [0,3],

d3

dx3
ψ(2) = 2[1,3] + [0,4] = 2[1,3] − PK [0,0] = 2[1,3],

d4

dx4
ψ(2) = 2[2,3] + 2[1,4] = 2[2,3] + 2PKψ(2),

(5.44)
d5

dx5
ψ(2) = 2[2,4] + 2

d

dx

(
PKψ(2)

) = 2PK

d

dx
ψ(2) + 2

d

dx

(
PKψ(2)

)
,

and therefore obtain the desired ODE

(5.45)

(
d5

dx5
− 2

√
PK(x,E)

d

dx

√
PK(x,E)

)
ψ(2)(x,E) = 0,

which matches (5.38) at τ = 2.
We have also checked that the solution ψ(1)(x,E,g) of the more general A3-related differ-

ential equation (5.37) leads to a function ψ(2)(x,E,g) = W [ψ(1)

− 1
2
,ψ

(1)
1
2

], which is the solution

of

(5.46)

(
D3

(
ḡ†)( d

dx

)−1

D3(ḡ) − 2
√

PK(x,E)

(
d

dx

)√
PK(x,E)

)
ψ(2)(x,E,g) = 0.

As already seen in Section 5.2, in order to recast the resulting equation in the factorised form
(5.46) one has perform a number of integrations by parts.

The exact relation between the A3 and D3 sets of parameters is

2g0 = 1 + ḡ0 + ḡ1 − ḡ2,

2g1 = 1 + ḡ0 − ḡ1 + ḡ2,

(5.47)2g2 = 1 − ḡ0 + ḡ1 + ḡ2.

5.4. Relationship with the sine-Gordon model

The reader may have noticed that the sets of numbers {ma} for the Dn and Bn models sum-
marised in Table 1 match the mass spectra of the sine-Gordon model at particular values of the
coupling constant. From the sine-Gordon point of view the Dn-related mass spectrum emerges
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at the reflectionless points where the scattering between the solitons becomes purely diagonal.
This link between the sine-Gordon model, affine Toda field theories and perturbed coset CFTs
has been discussed in various places [46–49].

In this section we would like to point out that there is a simple connection between equation
(5.1) taken at

(5.48)K = 1, M = 1/(n − 1), g = {n − 1, n − 2, . . . ,1,0}
and the Schrödinger problem associated, through the first instance of the ODE/IM correspon-
dence [1,6], to the CFT limit of the sine-Gordon model. We start from (5.1) with parameters
(5.48):

(5.49)

(
− d2n−1

dx2n−1
+ (

x2 − E
) d

dx
+ x

)
χ(x,E) = 0

and require χ(x,E) to be absolutely integrable on the full real line; this restricts the possible
values taken by E to a discrete set. Fourier transforming (5.49) yields

(5.50)

(
− d2

dk2
− 1

k

d

dk
+ (

(−1)nk2n−2 − E
))

χ̃ (k,E) = 0,

and replacing

(5.51)k → ik, E → −E, χ̃(k,E) → k−1/2χ̃(k,E)

we finally find

(5.52)

(
− d2

dk2
+ k2n−2 − 1

4k2
− E

)
χ̃ (k,E) = 0.

Eq. (5.52) exactly matches the ODE associated in [1,6] to the reflectionless points of the un-
twisted sine-Gordon model at its c = ceff = 1 conformal point.

This simple observation gives extra support to the correctness of the Dn proposal (5.1), and it
leads naturally to the Bn proposals discussed in the next section.

6. The Bn models

The discussion in Section 5.4 of the link between the sine-Gordon and Dn scattering theories
at specific values of the parameters can be extended to the Bn models [48,49]. This and further
considerations led us to the ODE (3.11), which we repeat here:

(6.1)

(
Dn

(
g†)Dn(g) + √

PK(x,E)

(
d

dx

)√
PK(x,E)

)
ψ(x,E,g) = 0.

The results of Sections 5.1 and 5.2 suggest a link between the presence of the integral operator
(d/dx)−1 and the possibility of breaking the symmetry between the n and n− 1 nodes of the Dn

Dynkin diagram by choosing γn �= γn−1 in the BAE. Therefore, in writing (6.1) we have omitted
the integral operator (d/dx)−1 of (5.1) because, in contrast to the Dn Dynkin diagrams, the Bn

diagrams have no Z2 symmetry.
The relevant solution ψ(x,E,g) to (6.1) has the asymptotic x → ∞ behaviour

(6.2)ψ(x,E,g) ∼Nx−h∨M/2 exp

(
− xM+1 ) (

M > K/
(
h∨ − K

))

M + 1
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on the positive real axis. The solutions (3.13)

(6.3)χi(x,E,g), i = 0,1, . . . ,2n − 1

are instead characterised by the x → 0 behaviour

(6.4)χi(x,E,g) ∼ xλi + O
(
xλi+2n

)
,

{
λi = gi, for i � n − 1,

λi = h∨ − g2n−1−i , for i > n − 1.

In (6.4) the λ’s represent the 2n solutions of the indicial equation in Table 2 with the ordering

(6.5)gi < gj <
h∨

2
, λi < λj , ∀i < j.

6.1. The ψ -system and the Bn Bethe ansatz equations

The Bn ψ -system is

(6.6)ψ(a−1)ψ(a+1) = W
[
ψ

(a)

− 1
2
,ψ

(a)
1
2

]
, a = 1, . . . , n − 1,

(6.7)ψ
(n−1)

− 1
4

ψ
(n−1)
1
4

= W
[
ψ

(n)

− 1
4
,ψ

(n)
1
4

]
.

Using the identity (4.18) we can express ψ(a) with a > 1 in terms of ψ(1) ≡ ψ . The result is

(6.8)ψ(a) = W [ψ 1−a
2

, . . . ,ψa−1
2

], a = 1,2, . . . , n.

Following the derivation in Section 4.3, define αa = ∑a−1
i=0 λi ,

(6.9)Q
(a)
k (E,g) = Q

(a)
[0,...,a−1]

(
ΩkE,g

)
, Q̄

(a)
k (E,g) = Q

(a)
[0,...,a−2,a]

(
ΩkE,g

)
where Q

(a)
[0,...,a−1] and Q

(a)
[0,...,a−2,a] are defined as in (4.29) and

ψ
(a)
k (x,E,g) = ωkαaQ

(a)
k (E,g)Wa[χ0, . . . , χa−1]

(6.10)+ ωk(αa+1−λa−1)Q̄
(a)
k (E,g)Wa[χ0, . . . , χa−2, χa] + · · · .

Using (6.10) in (6.6) and identifying the leading contributions about x = 0 gives

Q(a+1)(E)Q(a−1)(E)

(6.11)= ω
1
2 (λa−λa−1)Q

(a)

− 1
2
(E)Q̄

(a)
1
2

(E) − ω
1
2 (λa−1−λa)Q

(a)
1
2

(E)Q̄
(a)

− 1
2
(E)

with Q(0)(E) = 1 and

(6.12)
Q

(a−1)

− 1
2

(E
(a)
i )

Q
(a−1)
1
2

(E
(a)
i )

Q
(a)
1 (E

(a)
i )

Q
(a)
−1(E

(a)
i )

Q
(a+1)

− 1
2

(E
(a)
i )

Q
(a+1)
1
2

(E
(a)
i )

= −Ω−2γa+γa−1+γa+1 .

In (6.12), a = 1, . . . , n − 1 and

(6.13)γa = α

(a−1∑
i=0

λi + av

)
, a = 1,2, . . . , n,



270 P. Dorey et al. / Nuclear Physics B 772 [FS] (2007) 249–289
where α = 2K
Mh∨ and v is still to be fixed. Plugging (6.10) into (6.7) leads to

Q
(n−1)

− 1
4

(E)Q
(n−1)
1
4

(E)

(6.14)= ω
1
4 (λn−λn−1)Q

(n)

− 1
4
(E)Q̄

(n)
1
4

(E) − ω
1
4 (λn−1−λn)Q

(n)
1
4

(E)Q̄
(n)

− 1
4
(E)

and

(6.15)
Q

(n−1)

− 1
2

(E
(n)
i )

Q
(n−1)
1
2

(E
(n)
i )

Q
(n)
1
2

(E
(n)
i )

Q
(n)

− 1
2
(E

(n)
i )

= −Ω−γn+ 1
2 (γn−1+γn+1).

The boundary condition γn+1 = γn−1 fixes v = −h∨/2, the {ga} ↔ {γa} relation in Table 3 and
allows (6.12) and (6.15) to be recast in the form (2.1).

We have checked the consistency of the n = 2 case both numerically and analytically. The
relation with the sine-Gordon model briefly mentioned at the beginning of Section 6 and the
analysis of Sections 6.2 and 7.1.2 lend extra analytic support to the proposal.

6.2. Example 3: B1

This is a singular limit for the analytic BAE study in [37]. It however suggests the equivalence
of the K = 1 case of B1 to the K = 2 case of A1 in the integrable system. Indeed, the differential
equation is second order in the former case and it can be written in the more-standard form

(6.16)

(
d2

dx2
+ PK(x,E)

d

dx
+ 1

2

(
d

dx
PK(x,E)

)
− g0(g0 − 1)

x2

)
ψ(x,E,g0) = 0.

Performing a Liouville transformation

(6.17)ψ(x,E,g0) → ψ(x,E,g0) exp

(
−1

2

x∫
PK(ξ,E)dξ

)

we find

(6.18)

(
− d2

dx2
+ 1

4

(
xM/K − E

)2K + g0(g0 − 1)

x2

)
ψ(x,E,g0) = 0.

Eq. (6.18) coincides with the equations studied by Sergei Lukyanov [38] which are related to the
A1 lattice models with integer spin

(6.19)j = K, K = 1,2,3, . . . .

The cases g0 = 0 with M = K can be solved in closed form. After a shift x → x + E, the
simplest case K = 1 becomes

(6.20)

(
d2

dx2
+ x

d

dx
+ 1

2

)
ψ(x) = 0

which has general solution

(6.21)y(x) = c1e
− x2

2 H− 1
2

(
x√
2

)
+ c2e

− x2
4
√

xI− 1
4

(
x2

4

)
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Fig. 1. 2-strings in the B1 model at g0 = 0,M = K = 1. Contour plot of 1/(1+|H− 1
2
(− 1√

2
eθ )|) in the complex θ -plane.

where H and I are respectively the Hermite and the Bessel functions. Since

(6.22)Hν(x) ∼ 2νxν
(
1 + O(1/x)

)
as Re(x) > 0, |x| → ∞, while

(6.23)Iν(x) ∼ ex

√
2πx

(
1 + O(1/x)

)
,

the most subdominant solution at large x on the positive real axis is

(6.24)ψ(x) = e− x2
2 H− 1

2

(
x√
2

)
.

Fig. 1 shows the first five complex-conjugate pairs of zeros of ψ(−eθ ). This 2-string pattern is
typical of A1-related spin-1 integrable models. The exact eigenvalues are reported in Table 5
above. There is also good agreement between the position of the first pairs of zeros shown in
Fig. 1 and the WKB asymptotic prediction of Appendix A.

7. The Cn models

The analytic and numerical results of Section 5 support the conjectured link between the Dn

BAE (2.1) and Eq. (5.1). At g = {n − 1, n − 2, . . . ,1,0}, the Dn ODE is

(7.1)

(
d2n−1

dx2n−1
− √

PK(x,E)

(
d

dx

)√
PK(x,E)

)
ψ(x,E) = 0.

In this section, we start from (7.1) and consider a second duality relation

(7.2)
(D̂−n)K × (D̂−n)L

(D̂−n)K+L

∼ (Ĉn)−K/2 × (Ĉn)−L/2

(Ĉn)−K/2−L/2
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discussed by Hornfeck [41]. Motivated by the results of Section 4.1 on the analogy between the
An ↔ A−n spectral duality and the An-related duality in [41], we change n → −n and K →
−2K in (7.1):

(7.3)

(
(−1)−2n−1 d−2n−1

dx−2n−1
+ √

P−2K(x,E)

(
d

dx

)√
P−2K(x,E)

)
ψ(x,E) = 0,

where

(7.4)P−2K(x,E) = (
x

M(2n+2)
2K − E

)−2K
.

Replacing

(7.5)ψ(x,E) →
((

P−2K(x,E)
)− 1

2

(
d

dx

)−1(
P−2K(x,E)

)− 1
2

)
ψ(x,E),

multiplying by d2n+1

dx2n+1 and noticing that

(7.6)
(
P−2K(x,E)

)− 1
2 ≡ PK(x,E) = (

xh∨M/K − E
)K

,

where h∨ = n + 1 is the dual Coxeter number of Cn, we can write the resulting equation as

(7.7)

(
d2n+1

dx2n+1
− PK(x,E)

(
d

dx

)−1

PK(x,E)

)
ψ(x,E) = 0.

Eq. (7.7) is our Cn candidate at g = g0 = {n−1, n−2, . . . ,1,0}. Further, adapting the discussion
of Section 5 that led to the full Bn equation, and noting the similarity between the pseudo-
differential operators (3.9), (3.10) and (3.11), we replace

(7.8)
d2n+1

dx2n+1
≡ Dn

(
g†

0

)( d

dx

)
Dn(g0) �⇒ Dn

(
g†)( d

dx

)
Dn(g),

and the final Cn proposal becomes (3.12):

(7.9)

(
Dn

(
g†)( d

dx

)
Dn(g) − PK(x,E)

(
d

dx

)−1

PK(x,E)

)
ψ(x,E,g) = 0.

The relevant solution of (7.9) has the asymptotic x → ∞ behaviour

(7.10)ψ(x,E,g) ∼Nx−nM exp

(
− xM+1

M + 1

) (
M > K/

(
h∨ − K

))
on the positive real axis. The solutions (3.13)

(7.11)χi(x,E,g), i = 0,1, . . . ,2n + 1

are characterised by the x → 0 behaviour

(7.12)χi(x,E,g) ∼ xλi + O
(
xλi+2n+1),

{
λi = gi, for i � n − 1,

λn = n,

λi = 2n − g2n−i , for i > n.

In (7.12) the λ’s represent the 2n + 1 roots of the indicial equation in Table 2 with the ordering

(7.13)gi < gj < n, λi < λj , ∀i < j.
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7.1. The ψ -system and the Cn Bethe ansatz equations

We now deduce the Cn Bethe ansatz equations from the proposed Cn ψ -system:

W
[
ψ

(a)

− 1
4
,ψ

(a)
1
4

] = ψ(a−1)ψ(a+1), a = 1,2, . . . , n − 2,

W
[
ψ

(n−1)

− 1
4

,ψ
(n−1)
1
4

] = ψ(n−2)ψ
(n)

− 1
4
ψ

(n)
1
4

,

(7.14)W
[
ψ

(n)

− 1
2
,ψ

(n)
1
2

] = ψ(n−1).

Using the Jacobi identity we find

(7.15)φ(a) ≡ ψ(a) = W(a)[ψ 1−a
4

,ψ 3−a
4

, . . . ,ψa−1
4

], a = 1,2, . . . , n − 1,

(7.16)φ(n) ≡ ψ
(n)

− 1
4
ψ

(n)
1
4

= W(n)[ψ 1−n
4

,ψ 3−n
4

, . . . ,ψn−1
4

],

where the functions φ(a)(x,E,g) satisfy the following system of functional relations

(7.17)W
[
φ

(a)

− 1
4
, φ

(a)
1
4

] = φ(a−1)φ(a+1), a = 1, . . . , n − 1,

and

(7.18)W
[
φ

(n)

− 1
4
, φ

(n)
1
4

] = φ(n−1)
(
ψ(n)

)2
.

From (7.18) we see that

(7.19)ψ(n)(x,E,g) =
√

W(n+1)[ψ− n
4
, . . . ,ψn

4
].

Now set

φ
(a)
k (x,E,g) = ωkαa Q̂

(a)
k (E,g)W(a)[χ0, . . . , χa−1]

(7.20)+ ωk(αa+1−λa−1)Q̄
(a)
k (E,g)W(a)[χ0, . . . , χa−2, χa] + · · ·

with a = 1,2, . . . , n. The orders of the first and the second term in (7.20) are given respectively
by αa − a(a − 1)/2 and αa+1 − λa−1 − a(a − 1)/2, where αa = ∑a−1

i=0 λi . Assuming

(7.21)ψ
(n)
k (x,E,g) = ωkβxβQ

(n)
k (E,g) + ωkσ xσ Q̃

(n)
k (E,g) + · · ·

where β < σ , we can make the following identifications

(7.22)β = αn/2 − n(n − 1)/4, σ = β + (λn − λn−1)

and

(7.23)Q̂(0)(E) = Q(0)(E) = 1,

(7.24)Q̂(a)(E) = Q(a)(E), a = 1,2, . . . , n − 1,

(7.25)Q̂(n)(E) ∝ Q
(n)

− 1
4
(E)Q

(n)
1
4

(E),

(7.26)Q̄(n)(E) ∝ ω
1
4 (λn−λn−1)Q

(n)

− 1
4
(E)Q̃

(n)
1
4

(E) + ω
1
4 (λn−1−λn)Q

(n)
1
4

(E)Q̃
(n)

− 1
4
(E).

Using (7.20) in (7.17) and selecting the leading terms we find
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Q̂(a+1)(E)Q̂(a−1)(E)

(7.27)= ω
1
4 (λa−λa−1)Q̂

(a)

− 1
4
(E)Q̄

(a)
1
4

(E) − ω
1
4 (λa−1−λa)Q̂

(a)
1
4

(E)Q̄
(a)

− 1
4
(E).

With the identifications (7.24) and (7.25) this leads to

(7.28)
n∏

b=1

Q
(b)
Bab

(E
(a)
i )

Q
(b)
−Bab

(E
(a)
i )

= −Ω
α
4 (λa−λa−1),

where a = 1,2, . . . , n − 1 and α = 2K
Mh∨ . Using (7.20) with a = n in (7.18), (7.26) and (7.25)

gives instead

(7.29)Q(n−1)(E) = ω
1
2 (λn−λn−1)Q

(n)

− 1
2
(E)Q̃

(n)
1
2

(E) − ω
1
2 (λn−1−λn)Q

(n)
1
2

(E)Q̃
(n)

− 1
2
(E),

which leads to

(7.30)
Q

(n−1)

− 1
2

(E
(n)
i )

Q
(n−1)
1
2

(E
(n)
i )

Q
(n)
1 (E

(n)
i )

Q
(n)
−1(E

(n)
i )

= −Ω
α
2 (λn−λn−1).

Finally, with the identification (7.12) and the choice in Table 3 for the {ga} ↔ {γa} relation,
Eqs. (7.28) and (7.30) can be assembled into the universal form (2.1).

7.1.1. Example 4: C1
The n = 1 case is again a singular limit of the analytic BAE, but it also suggests the similarity

of this case to the A1 models [37]. The pseudo-differential equation is, however, not second order
but instead third order

(7.31)

(
d3

dx3
− L

x2

d

dx
+ L

x3
− PK(x,E)

(
d

dx

)−1

PK(x,E)

)
ψ(x,E,g0) = 0,

where L= g0(g0 − 2). It is nevertheless easy to check that (7.31) is solved by the product of two
functions satisfying second order ODEs:

(7.32)ψ(x,E,g0) = χ−(x,E,g0)χ+(x,E,g0)

where χ± originates from a single function χ as follows

(7.33)χ±(x,E,g0) = χ
(
ω±1/4x,Ω±1/4E,g0

)
.

Since we assume that χ satisfies the standard ODE associated with A1,

(7.34)

(
d2

dx2
− 1

2
PK(x,E) − L

4x2

)
χ(x,E,g0) = 0,

the functions χ± satisfy the following:

(7.35)
d2

dx2
χ±(x,E,g0) =

(
± i

2
PK(x,E) + L

4x2

)
χ±(x,E,g0).

Starting from (7.33) and differentiating ψ = ψ(x,E,g0) three times we find
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dψ

dx
= dχ+

dx
χ− + χ+

dχ−
dx

,
d2ψ

dx2
= 2

dχ−
dx

dχ+
dx

+ L
2x2

ψ,

(7.36)
d3ψ

dx3
= iPK

(
χ+

dχ−
dx

− dχ+
dx

χ−
)

+ L
x2

dψ

dx
− L

x3
ψ.

We notice that

(7.37)
d

dx

(
χ+

dχ−
dx

− dχ+
dx

χ−
)

= −iPKψ

and therefore

(7.38)χ+
dχ−
dx

− dχ+
dx

χ− = −i

(
d

dx

)−1

PKψ.

Inserting (7.38) into (7.36) we finally arrive at Eq. (7.31).

7.1.2. Example 5: C2 ∼ B2
The ODEs for B2 and for C2 are both deduced from the Dn-type ODE, but through completely

different routes. It is thus a good test to check the equivalence of these two cases. We start with
the B2-related ODE at g = {1,0}

(7.39)
d4ψ

dx4
+ PK

dψ

dx
+ 1

2

dPK

dx
ψ = 0.

The ODE associated with the second node of B2, which is nothing but the first node of C2, would
be satisfied by the following function

(7.40)ψ(2) = W [ψ− 1
2
,ψ 1

2
] = [0,1],

where

(7.41)
d4ψ± 1

2

dx4
= PK

dψ± 1
2

dx
+ 1

2

dPK

dx
ψ± 1

2
.

We then easily evaluate the derivatives of ψ(2):

dψ(2)

dx
= [0,2], d2ψ(2)

dx2
= [1,2] + [0,3], d3ψ(2)

dx3
= 2[1,3] + PKψ(2),

(7.42)
d4ψ(2)

dx4
= 2[2,3] + PK

dψ(2)

dx
,

d5ψ(2)

dx5
= PK

d2ψ(2)

dx2
− 2PK [1,2].

Finally, noticing that

(7.43)2[1,2] = 2

(
d

dx

)−1

[1,3] = d2ψ(2)

dx2
−

(
d

dx

)−1

PKψ(2)

we have obtained a closed form ODE for ψ(2):

(7.44)

(
d5ψ(2)

dx5
− PK(x,E)

(
d

dx

)−1

PK(x,E)

)
ψ(2)(x,E) = 0.

This equation is exactly the g = {1,0} equation associated to the first node of C2. This verifies
the consistency of our proposal.
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Table 7
C2 = B2: comparison of Bethe ansatz results with the numerical solution of the B2 and C2 equations using the algorithm
described in Appendix B. (B2 node convention with g = {1,0}, K = 1 and M = 2/3)

BA numerics ODE numerics

1st node 2nd node 1st node 2nd node

6.28405 6.8368 ± 5.8640i 6.28390 6.8365 ± 5.8637i

13.2379 18.216 ± 14.265i 13.2376 18.214 ± 14.264i

21.6307 30.996 ± 23.645i 21.6303 30.992 ± 23.642i

30.5039 44.747 ± 33.707i 30.5034 44.739 ± 33.700i

39.8617 59.254 ± 44.304i 39.8613 59.240 ± 44.292i

More generally, the correspondence between the B2 parameters g = {g1, g0} and the C2 para-
meters ḡ = {ḡ1, ḡ0} is established by

2g0 = ḡ0 + ḡ1 − 1,

(7.45)2g1 = ḡ0 − ḡ1 + 3.

Finally we have directly checked the C2 = B2 ψ -system at g = {1,0} by verifying that both
sides of

(7.46)W
[
ψ

(1)

− 1
4
,ψ

(1)
1
4

] = ψ
(2)

− 1
4
ψ

(2)
1
4

,

satisfy the same 15th order ODE.
Unfortunately we do not currently have NLIEs for the Bn/Cn models and the numerical

checks presented below are instead based on an approximate solution similar to that used by
Voros in [5]. For the B2 BAEs for the case g = {1,0}, K = 1 and M = 2/3, we started from a
perfect-string estimate for the first 1000 roots as follows:

(7.47)Ej =
(

4

√
π

3


( 11
6 )


( 4
3 )

j

) 6
5

1st node,

(7.48)Ej = e±i π
5

(
4
√

π

( 11

6 )


( 4
3 )

(
j − 1

6

)) 6
5

2nd node.

We then solved the BAEs recursively using the Newton–Raphson method on the first 20 roots,
keeping the remaining roots fixed. Table 7 compares the lowest roots thus obtained with the
results from the solution of the (pseudo-)differential equations. The relatively low accuracy in
comparison with Tables 4, 5 and 6 is most likely to be a consequence of the slow convergence
rate of the algorithm used to solve the Bethe ansatz equations, and in particular the systematic
errors introduced by fixing the higher levels (Ej , j > 20) to their perfect-string values.

8. Conclusions

There are many aspects about the correspondence between integrable models and the spectral
theory of ordinary differential equations that we would like to explore and understand at a deeper
level. Given the applications of the Bethe ansatz to the study of QCD in its leading-logarithm
approximation [50] and to the study of anomalous dimensions of composite operators in Yang–
Mills theories [51,52], the extension of the correspondence to lattice models is certainly desirable
from a physical point of view. On the other hand the mathematical structures arising from the
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generalisation of the correspondence to other conformal field theories with extended symmetries
has the potential to link areas of modern and classical mathematics in an elegant way. In this paper
our results were obtained very much on a case-by-case basis, but we already saw the emergence
of interesting mathematical objects: the ψ -systems, negative-dimension dualities, and the formal
similarity with the Miura-opers studied both in the classical work [19] (see also [53–55]) and
more recently in [13–15,17,18].

It would be very interesting to generalise equations (3.18)–(3.21) to encompass the excited
states of the integrable models; to date this has been completed for the K = 1 case of A1 [56,
57]. More challenging, but also extremely interesting, would be to extend the correspondence to
perturbed conformal field theories defined on a cylinder, both for the ground state [58] and for
excited states [59,60].

Finally, even remaining inside the current setup, the ODE/IM correspondence has already had
an impact on condensed matter physics: it has been applied to interacting Bose liquids [61], the
single electron box [62] and quantum dots [63].
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Appendix A. Root strings from the complex WKB method

As mentioned in Section 2, a characteristic feature of the ‘fused’ models with K > 1 is that
the asymptotic roots are not necessarily real, but rather are grouped into so-called ‘strings’ of
complex roots. Here we show how this behaviour can be recovered from a treatment of the ODE
using the complex WKB method. We shall restrict the analysis to the A1 case and for simplicity
set g = {1,0}. The ODE is the n = 2 case of (4.1):

(A.1)

(
− d2

dz2
+ PK(z)

)
ψ(z,E) = 0, PK(z) = (

z2M/K − E
)K

and the boundary condition determining the eigenvalues is that there should be a solution which
decays as z → ∞ on the positive real axis, and is simultaneously zero at z = 0. (In this section
we use z instead of x to emphasise that it must be considered in the complex plane.)

Before giving the WKB treatment, we summarise the expectations from integrable models.
A useful discussion of the K = 2 case, for generic twist parameter, is in Appendix 2 of [64].
For a finite lattice of size N , the integral equation derived in that paper leads to the following
asymptotic condition on the Bethe ansatz roots θ±

j

(A.2)N ln

(
tanh

(
πθ±

j

2γ

))
= ±Nπi ∓

(
2j − 1 + φ

π − 2γ

)
πi + 1

2
ln 2,
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Fig. 2. Two-strings from the asymptotics of the NLIE [64].

where 1 � j < N/2 + 1. This equation describes the approximate position of complex-conjugate
pairs of roots {θ−

j , θ+
j }, with θ−

j and θ+
j lying in the upper and lower halves of the complex

plane. The relationship between γ , φ in (A.2) and M and g = {1 − g0, g0} is

(A.3)μ = M + 1

M
= π

2γ
,

φ

π − 2γ
= 1

2
− g0.

In the continuum limit, N → ∞ and the numbers e
θ±
j with 1 � j � N/2 tend to zero. Shifting

θ±
j appropriately, Eq. (A.2) becomes

(A.4)e
2μθ±

j = ±
(

2j − 1

2
− g0

)
πi − 1

2
ln 2, j = 1,2, . . . .

The second term causes deviations from the string pattern, even within this asymptotic approxi-
mation. Set θ±

j = ±iπ/(4μ) + β±
j ; then

(A.5)e
2μβ±

j =
(

2j − 1

2
− g0

)
π ± i

2
ln 2

or, taking logs and expanding for large j ,

(A.6)2μβ±
j = ln

(
2j − 1

2
− g0

)
π ± i

ln 2

2(2j − 1
2 − g0)π

+ · · · .

Eq. (A.6) exhibits the asymptotic deviations from the perfect string configurations, which are
only recovered in the limit j → ∞. This qualitative pattern matches the results of Table 5 and
Fig. 1, and is illustrated in Fig. 2. To compare with the A1, K = 2 results in Section 4.3 one has
to identify

(A.7)
{
e

2μθ+
j , e

2μθ−
j
} = {

μ−1(E2j−1)
μ,μ−1(E2j )

μ
}

in (A.4).
These features (and their generalisations to higher K) can all be recovered from a complex

WKB treatment of (A.1). The practicalities of this method have been very clearly explained by
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Heading [65,66], and we shall, more-or-less, follow his notations, which we now summarise. The
behaviour of (A.1) is controlled by PK(z) ≡ (z2M/K − E)K , and the possibly-complex zeros of
this function are called turning (or transition) points. For each turning point z0, a branch cut is
inserted joining z0 to infinity; and for 2M/K /∈ Z, another is added starting from the origin along
the negative-imaginary axis. After this, taking arg(PK(z)) to tend to zero along the positive real
z axis renders (PK(z))1/2 and (PK(z))1/4 uniquely defined. From each turning point z0 there is
a set of lines

(A.8)�m

z∫
z0

dt
√

PK(t) = 0

called Stokes lines, and another set

(A.9)�e

z∫
z0

dt
√

PK(t) = 0

called anti-Stokes lines.5 A K th order turning point has K +2 Stokes lines, and K +2 anti-Stokes
lines, emanating from it. Leading-order WKB solutions are written as

(A.10)(z0, z) ≡ (
PK(z)

)−1/4 exp

( z∫
z0

dt
√

PK(t)

)
.

If �e
∫ z

z0
dt

√
PK(t) > 0, a subscript d is added, signifying that (z0, z)d is a dominant solution;

(z, z0) is then subdominant, and is written (z, z0)s . On anti-Stokes lines, dominant and subdom-
inant solutions swap roles.6

Formal WKB solutions α(z, z0) + β(z0, z) are only valid in restricted domains: the Stokes
phenomenon means that the coefficient of the subdominant term changes by an amount pro-
portional to the dominant term when a Stokes line is crossed, so that α(z, z0)d + β(z0, z)s is
replaced by α(z, z0)d + (β + T α)(z0, z)s , where the Stokes multiplier T is a constant character-
istic of the given Stokes line and crossing direction. (Note, since the discontinuity always occurs
in the coefficient of a subdominant term, there is no contradiction with the fact that the WKB so-
lution provides an asymptotic approximation to the exact—continuous—solutions of the original
equation.) For a Stokes line emanating from a K th order turning point, traversed in a positive
(anticlockwise) sense, the Stokes multiplier is [67]

(A.11)T = 2i cos
(
π/(K + 2)

)
.

This can alternatively be recovered via the E = 0, l = 0, M = K/2 value of the function C(E, l)

discussed in [8], Eq. (3.10). For a clockwise traverse, T is replaced by −T .
The key feature of (A.1), leading to the formation of strings, is that the turning points which

control the WKB eigenvalues all have order K . If a solution which decays along the positive

5 Here we follow the conventions of Heading and, for example, Berry, but beware that other’s conventions are exactly
the reverse. Note also that our PK(z) is minus the function q(z) used by Heading.

6 Note, in contrast to elsewhere in this paper, the terms dominant and subdominant are used here with respect to the

WKB expansion parameter, which for brevity we have set equal to 1. The parameter, a factor of ε2 in front of the
derivative term in (A.1), can easily be restored if desired. In Heading’s notations, ε corresponds to k−1.
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Fig. 3. Initial directions of Stokes lines (continuous) and anti-Stokes lines (dotted) from a 4th order turning point.

Fig. 4. The full Stokes and anti-Stokes lines for the situation shown in Fig. 3.

real axis is traced in to a turning point, there are K different directions away from that turning
point along which the two WKB solutions (z0, z) and (z, z0) might come into balance and have
a chance to cancel; if the continuation of any of these directions can be arranged to hit the origin,
then a (WKB) eigenvalue is possible. When the Stokes multipliers have unit modulus, these
directions are precisely the anti-Stokes lines; departures from unit modulus cause small shifts,
and lead to deviations from the string pattern.

An example should make this clear. Fig. 3 shows the set of Stokes and anti-Stokes directions
away from a turning point of (A.1) with M = 3, K = 4. Between each pair of anti-Stokes lines
there is a Stokes sector, which is further divided into two segments by the Stokes line which lies
exactly in the middle of the Stokes sector. The first few of these segments are labelled 1 . . .5 in
the figure; note that segments 1 and 2 make up one Stokes sector, and segments 3 and 4 another.
For the figure, arg(E) was chosen so that the origin lies in the union of segments 4 and 5, and
the positive real axis in the union of the continuations of segments 1 and 2. Across the (dotted)
anti-Stokes lines, dominant and subdominant solutions swap over, while across the (continuous)
Stokes lines, the coefficients of subdominant terms may change by the Stokes phenomenon.
Fig. 4 shows the continuation of the Stokes directions shown in Fig. 3 into the full complex
plane, justifying the claim that the real axis lies in the continuation of segments 1 and 2.
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Our aim is to find an approximate solution which decays as z → ∞ on the positive real axis,
and is also zero at the origin. Since the positive real axis lies in the continuations of segments
1 and 2, we start with a solution subdominant in segments 1 and 2, and continue it clockwise
around the turning point to find the behaviour in the region of the origin. There is no Stokes
phenomenon passing between 1 to 2 since the dominant term is absent in both of these segments,
but from then on the phenomenon must be taken into account each time a Stokes line is crossed.
With z0 the location of the turning point, and (z, z0) the approximate subdominant solution in
segments 1 and 2, we have:

1,2: (z, z0)s,

3: (z, z0)d ,

4: (z, z0)d − 2i cos(π/6)(z0, z)s,

5: (z, z0)s − 2i cos(π/6)(z0, z)d .

Near to the anti-Stokes line between segments 4 and 5, the WKB solutions (z, z0) and
2i cos(π/6)(z0, z) are of similar magnitude, and the (WKB) condition yielding the eigenvalues
is found by demanding that they cancel exactly at z = 0:

(A.12)(z0,0) − 2i cos(π/6)(0, z0) = 0.

That is

(A.13)exp

(
2

z0∫
0

dt
√

PK(t) + iπ/2

)
= 1

2 cos(π/6)

or

(A.14)2

z0∫
0

dt
√

PK(t) =
(

2j − 1

2

)
πi − ln

(
2 cos(π/6)

)
.

Remembering that z0 = EK/(2M), the integral can be evaluated to

EK/(2M)∫
0

(
t2M/K − E

)K/2
dt = (−1)K/2Eμ

1∫
0

(
1 − u2M/K

)K/2
du

(A.15)= (−1)K/2κ̃(2M/K,2/K)Eμ,

where μ = K(M + 1)/(2M) and

(A.16)κ̃(a, b) = 
(1 + 1/a)
(1 + 1/b)


(1 + 1/a + 1/b)
.

Eqs. (A.14)–(A.15) give the WKB prediction at K = 4. Had we instead performed the calculation
for K = 2, the logarithm on the RHS of (A.14) would have been replaced by − ln(2 cos(π/4)) =
− 1

2 ln 2, and (A.4) would have been reproduced. More generally, the Stokes multipliers solve a
stationary T-system, and the constant determining the deviation of the j th root in a K-string is
found to be

(A.17)ln
(
sin

(
πj/(K + 2)

)
/ sin

(
π(j + 1)/(K + 2)

))
, j = 1,2, . . . ,K.

The reason why only K out of the K + 2 anti-Stokes directions allow for zeros of the wavefunc-
tion is that on the two anti-Stokes lines next to the sector where the initial subdominant solution
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is defined (the anti-Stokes lines bordering the union of segments 1 and 2 in the example) there is
only a single ‘pure’ WKB solution, and thus there is no chance to get the cancellation between
two WKB solutions which leads to the wavefunction zeros near the other anti-Stokes directions.

It would be interesting to reproduce these results from a study of the relevant nonlinear integral
equations in the integrable models, but we will leave a more detailed study of such issues for
future work.

Appendix B. The numerical algorithm and the dual formulation of the boundary problem

In this appendix we describe the numerical methods used to test our conjectures. We solved the
pseudo-differential equations using an iterative power-series method, which we describe below.
On the integrable model side, there is a well-known method to rewrite an infinite set of Bethe
ansatz equations such as (2.1) into a finite set of nonlinear integral equations (NLIEs) [68]. We
applied this to the K = 1 simply-laced cases An−1 and Dn.

B.1. The χ -functions and the generalised Cheng algorithm

The special solution ψ(x,E,g) and its derivatives can be written in terms of the χ -functions
(3.13) and the spectral determinants as

(B.1)

dm

dxm
ψ(x,E,g) = Q

(1)
[0] (E,g)

dm

dxm
χ0(x,E,g) + Q

(1)
[1] (E,g)

dm

dxm
χ1(x,E,g) + · · · .

By solving for Q
(1)
[0] (E,g):

(B.2)Q
(1)
[0] (E,g) = W [ψ,χ1, χ2, . . .]

W [χ0, χ1, χ2, . . .] .
In order to calculate the spectral determinant from (B.2) we must first find the χ -solutions by
numerically solving the pseudo-differential equations. This can be done, with very high preci-
sion, using a generalisation of the iteration method introduced by Cheng many years ago [20]
and more recently used in [69]. In the following we shall define the iterative solution for each
Lie algebra on a case-by-case basis.

An−1: We begin by defining a solution for (3.9)

(B.3)Dn(g)χa(x,E,g) = (−1)nPK(x,E)χa(x,E,g),

and its adjoint equation

(B.4)Dn

(
g†)χ†

a

(
x,E,g†) = PK(x,E)χ†

a

(
x,E,g†),

where g = {gn−1, gn−2, . . . , g1, g0} and g† = {n − 1 − g0, n − 1 − g1, . . . , n − 1 − gn−1}.
Eq. (B.4) was defined, as usual, by applying the rule (dp/dxp)† = (−1)p(dp/dxp). Notice

also that (B.4) is not the ψ(n−1)-related ODE, which is instead obtained by simply replacing g
with g† in (B.3).

Consider equation (B.3). The first step is to define a linear operator

(B.5)LA
g
(
xp

) = xp+n∏n−1
b=0(p + n − gb)
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such that for any polynomial P(x) of x

(B.6)Dn(g)LA
g
(
P(x)

) =P(x).

Now it is easy to check that

(B.7)χa(x,E,g) = xga + (−1)nLA
g
(
PK(x,E)χa(x,E,g)

)
defines a solution to (B.3) solvable by iteration. Setting g

†
a = n − 1 − gn−1−a ,

(B.8)χ†
a

(
x,E,g†) = xg

†
a + LA

g†

(
PK(x,E)χ†

a

(
x,E,g†)),

instead defines an iterative solution to the adjoint equation (B.4).

Dn: The appropriate linear operator for the self-adjoint equation (3.10)

(B.9)Dn

(
g†)( d

dx

)−1

Dn(g)χa(x,E,g) = √
PK(x,E)

(
d

dx

)√
PK(x,E)χa(x,E,g)

is

(B.10)LD
g

(
xp

) = (p + h∨
2 + 1)xp+h∨+1∏2n−1

b=0 (p + 1 + λb)
,

and the corresponding iterative solution is

(B.11)χa(x,E,g) = xλa + LD
g

(√
PK(x,E)

(
d

dx

)√
PK(x,E)χa(x,E,g)

)
.

The relation between the λ’s and the g’s is given in (5.4).

Bn: The iterative solution of the Bn Eq. (3.11)

(B.12)Dn

(
g†)Dn(g)χa(x,E,g) = −√

PK(x,E)

(
d

dx

)√
PK(x,E)χa(x,E,g)

and its adjoint

(B.13)Dn

(
g†)Dn(g)χ†

a (x,E,g) = √
PK(x,E)

(
d

dx

)√
PK(x,E)χ†

a (x,E,g)

are, respectively,

(B.14)χa(x,E,g) = xλa − LB
g

(√
PK(x,E)

(
d

dx

)√
PK(x,E)χa(x,E,g)

)

and

(B.15)χ†
a (x,E,g) = xλa + LB

g

(√
PK(x,E)

(
d

dx

)√
PK(x,E)χ†

a (x,E,g)

)
,

with

(B.16)LB
g
(
xp

) = xp+h∨+1∏2n−1
b=0 (p + 1 + λb)

.

The relation between the λ’s and the g’s is given in (6.4).
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Cn: The χ -solutions to the self-adjoint equation (3.12)

(B.17)Dn

(
g†)( d

dx

)
Dn(g)χa(x,E,g) = PK(x,E)

(
d

dx

)−1

PK(x,E)χa(x,E,g)

satisfy

(B.18)χa(x,E,g) = xλa + LC
g

(
PK(x,E)

(
d

dx

)−1

PK(x,E)χa(x,E,g)

)
with

(B.19)LC
g
(
xp

) = xp+2n+1∏2n−1
b=0 (p + 1 + λb)

,

and the relation between the λ’s and the g’s given in (7.12).

B.2. Dual formulation of the boundary problem

From (B.2), with the numerical estimates for the χ -functions and their derivatives at large
values of x, replacing ψ(x,E,g) by its asymptotic behaviour and by varying E one has in prin-
ciple access to Q

(1)
[0] (E,g) and in particular to its zeros. This process is certainly possible but

it is tedious and the CPU time increases at least quadratically with the order of the equation.
Surprisingly, there is a short-cut that makes the algorithm essentially order-independent.

To see this, consider the An−1 case

(B.20)CQ
(1)
[0] (E,g) = W [ψ,χ1, χ2, . . . , χn−1],

where

(B.21)C = W [χ0, χ1, χ2, . . . , χn−1] = (−1)int[n/2]
n−1∏

i=0,j=i+1

(λi − λj ).

Expand (B.20) with respect to the first column:

(B.22)CQ
(1)
[0] (E,g) =

n−1∑
p=0

(−1)pwp

dpψ

dxp
,

where, borrowing the short-hand notation of Section 5.3,

wp(E,g) = [0,1, . . . , p − 1,p + 1, . . . , n − 1]
(B.23)= det

[(
�χ,

d

dx
�χ, . . . ,

dp−1

dxp−1
�χ,

dp+1

dxp+1
�χ, . . . ,

dn−1

dxn−1
�χ
)]

with �χ = (χ1, χ2, . . . , χn−1). At large x on the positive real axis

(B.24)
dp

dxp
ψ(x) ∼ (−1)px(1−n+2p)M/2 exp

(−xM+1/(M + 1)
) (

M > K/
(
h∨ − K

))
.

Therefore, if for all functions wp(E,g) we have

(B.25)wp(ei,g) = o
(
x(1−n)M/2 exp

(
xM+1/(M + 1)

))
, p = 0,1, . . . , n − 1
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for some E = ei , then from (B.22)

(B.26)Q
(1)
[0] (ei,g) = 0.

This shows that {ei} ⊂ {E(1)
i }. We shall now argue that the set {ei} is not empty and further prove

that

(B.27){ei} = {
E

(1)
i

}
.

To do this consider wn−1(E,g) = [0,1,3, . . . , n−2]. By repeated differentiation and substitution
of the ODE, one can prove as in [11] that

(B.28)wn−1(E,g) =
(

(−1)int[(n−1)/2]
n−1∏

i=1,j=i+1

(gi − gj )

)
χ

†
n−1

(
x,E,g†)

i.e. wn−1 satisfies the adjoint An−1-equation (B.4) and thus can be determined using (B.8) with
g

†
n−1 = n − 1 − g0.

At large x,

(B.29)wn−1(x) = S(E,g)
(
x(1−n)M/2 + o

(
x(1−n)M/2)) exp

(
xM+1

M + 1

)
+ · · ·

where the dots in (B.29) indicate terms that grow exponentially at most as

(B.30)exp

(
cos

(
2π

n

)
xM+1

M + 1

)
.

Therefore, the condition (B.25) for p = n − 1 is fulfilled for any value of E = ei such that
S(ei,g) = 0. Since this a single condition imposed on a nontrivial function of E, we expect an
infinite but countable set of solutions.

For the next step, we want to argue that if the condition (B.25) is satisfied for p = n − 1 it is
simultaneously satisfied for p = 0,1, . . . , n − 2.

From (B.29) we see that at S(ei,g) = 0 also

(B.31)
dp

dxp
wn−1(ei,g) = o

(
xb exp

(
xM+1/(M + 1)

))
for any finite complex number b. We now claim that all of the wa can be written as a linear
combination of wn−1 and its derivatives:

(B.32)wp(x,E,g) =
n−1−p∑

a=0

K
(p)
a

xn−1−p−a

da

dxa
wn−1(x,E,g),

where the constants K
(p)
a depend only on g. It is very simple to see that (B.32) is true in general.

Write the adjoint An−1 ODE in the ‘expanded’ form

(B.33)
dn

dxn
wn−1 =

(
A2

x2

dn−2

dxn−2
+ A3

x3

dn−3

dxn−3
+ · · · + PK(x,E)

)
wn−1.

Differentiating once

(B.34)
d

dx
wn−1 = [0,1,2, . . . , n − 3, n − 1] = wn−2,
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taking further derivatives and using (B.33) the general result is

(B.35)wp−1 = d

dx
wp − An−p

xn−p
wn−1.

Solving (B.35) recursively proves (B.32).
Eqs. (B.32) and (B.31) together are equivalent to (B.25). To prove (B.27), substitute the as-

ymptotic behaviours (B.24) and

(B.36)wn−1−i ∼ di

dxi
wn−1(x) ∼ S(E,g)x(1−n+2i)M/2 exp

(
xM+1

M + 1

)
into (B.22) to see that

(B.37)CQ
(1)
[0] (E,g) = nS(E,g).

The eigenvalues are obtained by solving χ
†
n−1(x,E,g†) = 0 for fixed x, chosen large enough to

capture the asymptotic behaviour of the solution while also ensuring the power series is reliable.
This condition is different from the precise requirement (B.31), but considering (B.29) and (B.30)
it is clear that, provided x is very large, the error can be minimised and it selects the points on
the complex E-plane where the function S(E,g) is approximately zero.

Similarly, for Bn the eigenvalues of the spectral determinant Q
(1)
[0] are found by solving (B.15)

for χ
†
2n−1(x,E,g). The situation is more complicated in the presence of the integral operators

that appear in the Dn and the Cn models, and we have not yet fully completed the analysis.
However, guided by the above and the results when the integral operator is absent, the obvious
prescription to compute χ2n−1(x,E,g) from (B.11) and χ2n+1(x,E,g) from (B.18) for Dn and
Cn respectively works very well.

B.3. NLIEs

The Bethe ansatz equations of type An−1 and Dn for K = 1 can be rephrased as a set of r

nonlinear integral equations where r is the rank of the algebra [68] (see also [3,9,11,64,70–73]).
They are compactly written as

f (a)(θ) = −2iπ

h∨
γa

α
− 2ib0e

θ +
r∑

b=1

( ∫
C1

dθ ′ ϕab(θ − θ ′) ln
(
1 + ef (b)(θ ′))

(B.38)−
∫
C2

dθ ′ ϕab(θ − θ ′) ln
(
1 + e−f (b)(θ ′))),

with b0 = m1 sinμ and

(B.39)ϕab(θ) =
∞∫

−∞

dk

2π
eikθ

(
δab − sinh(πμk)

sinh(πk
h∨ (h∨μ − 1)k) cosh(πk

h∨ )
C−1

ab (k)

)
.

The integration contours C1 and C2 run from −∞ to ∞ just below and just above the real axis
respectively. The algebra dependence is encoded in the constant b0, the ‘twists’ {γa/α}, and the
deformed Cartan matrix

(B.40)Cab(k) =
{

2 a = b,
−1

cosh( πk∨ )
〈ab〉.
h
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Above, 〈ab〉 implies the nodes a and b of the Dynkin diagram are connected. The explicit ex-
pressions for the inverse Cartan matrices can be found in [68].

By construction, the spectrum of the ordinary differential equation is encoded in the zeros θj

of 1 + exp(f (a)(θ)) that lie on the real axis of the complex-θ plane [1]. The eigenvalues of the
relevant ODE are obtained via the relation

(B.41)Ej = eθj /μ.

The large-E WKB-like behaviour can be obtained from the large-θ limit of these equations.
In this limit the convolution terms in (B.38) can be dropped, and imposing f (1)(θj ) = iπ(2j −1)

for integer j yields the semiclassical prediction

(B.42)2 sin(μπ)ma

(
E

(a)
j

)μ ∼
(

2j + 1 − 2

αh∨ γa

)
π, j = 0,1,2, . . .

with α = 2(μ − 1/h∨).
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(1999) L183, hep-th/9902053.

[8] P. Dorey, R. Tateo, On the relation between Stokes multipliers and the T-Q systems of conformal field theory, Nucl.
Phys. B 563 (1999) 573, hep-th/9906219;
P. Dorey, R. Tateo, Nucl. Phys. B 603 (2001) 581, Erratum.

[9] P. Dorey, R. Tateo, Differential equations and integrable models: The SU(3) case, Nucl. Phys. B 571 (2000) 583,
hep-th/9910102;
P. Dorey, R. Tateo, Nucl. Phys. B 603 (2001) 582, Erratum.

[10] J. Suzuki, Functional relations in Stokes multipliers and solvable models related to U(q)(A
(1)
n ), J. Phys. A 33 (2000)

3507, hep-th/9910215.
[11] P. Dorey, C. Dunning, R. Tateo, Differential equations for general SU(n) Bethe ansatz systems, J. Phys. A 33 (2000)

8427, hep-th/0008039.
[12] V.V. Bazhanov, A.N. Hibberd, S.M. Khoroshkin, Integrable structure of W(3) conformal field theory, quantum

Boussinesq theory and boundary affine Toda theory, Nucl. Phys. B 622 (2002) 475, hep-th/0105177.
[13] E. Mukhin, A. Varchenko, Critical points of master functions and flag varieties, Commun. Contemp. Math. 6 (2004)

111, math.QA/0209017.
[14] E. Mukhin, A. Varchenko, Solutions to the XXX type Bethe ansatz equations and flag varieties, Cent. Eur. J. Math. 1

(2003) 238, math.QA/0211321.



288 P. Dorey et al. / Nuclear Physics B 772 [FS] (2007) 249–289
[15] E. Mukhin, A. Varchenko, Populations of solutions of the XXX Bethe equations associated to Kac–Moody algebras,
Contemp. Math. 392 (2005) 95, math.QA/0212092;
E. Mukhin, A. Varchenko, Infinite-Dimensional Aspects of Representation Theory and Applications, Amer. Math.
Soc., Providence, RI, in press.

[16] E. Frenkel, Opers on the projective line, flag manifolds and Bethe ansatz, math.QA/0308269.
[17] E. Frenkel, Lectures on the Langlands program and conformal field theory, hep-th/0512172.
[18] A. Chervov, D. Talalaev, Quantum spectral curves, quantum integrable systems and the geometric Langlands corre-

spondence, hep-th/0604128.
[19] V.G. Drinfel’d, V.V. Sokolov, Lie algebras and equations of Korteweg–de Vries type, J. Sov. Math. 30 (1984) 1975.
[20] H. Cheng, Meromorphic property of the S matrix in the complex plane of angular momentum, Phys. Rev. 127 (1962)

647.
[21] C.L. Schulz, Eigenvectors of multi-component generalization of the six-vertex model, Physica A 122 (1983) 71.
[22] O. Babelon, H.J. de Vega, C.M. Viallet, Exact excitation spectrum of the Z(N +1)×Z(N +1) generalized Heisen-

berg model, Nucl. Phys. B 220 (1983) 283.
[23] N.Y. Reshetikhin, Integrable models of quantum one-dimensional magnets with O(N) and SP(2K) symmetry,

Theor. Math. Phys. 63 (1985) 555, Teor. Mat. Fiz. 63 (1985) 347.
[24] N.Y. Reshetikhin, Algebraic Bethe ansatz for SO(n) invariant transfer-matrices, LOMI 169 (1984) 122 (in Russian).
[25] N.Y. Reshetikhin, The spectrum of the transfer matrices connected with Kac–Moody algebras, Lett. Math. Phys. 14

(1987) 235.
[26] N.Y. Reshetikhin, P.B. Wiegmann, Towards the classification of completely integrable quantum field theories, Phys.

Lett. B 189 (1987) 125.
[27] P. Dorey, C. Dunning, R. Tateo, Aspects of the ODE/IM correspondence, in: Recent trends in exponential asymp-

totics, RIMS Research Project 2004, Kyoto, Japan, hep-th/0411069.
[28] P.P. Kulish, N.Y. Reshetikhin, E.K. Sklyanin, Yang–Baxter equation and representation theory: I, Lett. Math. Phys. 5

(1981) 393.
[29] V. Bazhanov, N. Reshetikhin, Restricted solid on solid models connected with simply laced algebras and conformal

field theory, J. Phys. A 23 (1990) 1477.

[30] A. Kuniba, Thermodynamics of the Uq(X
(1)
r ) Bethe ansatz system with q a root of unity, Nucl. Phys. B 389 (1993)

209.
[31] M. Takahashi, M. Suzuki, One-dimensional anisotropic Heisenberg model at finite temperature, Prog. Theor.

Phys. 48 (1972) 2187.
[32] A.B. Zamolodchikov, On the thermodynamic Bethe ansatz equations for reflectionless ADE scattering theories,

Phys. Lett. B 253 (1991) 391.
[33] A. Kuniba, T. Nakanishi, Spectra in conformal field theories from the Rogers dilogarithm, Mod. Phys. Lett. A 7

(1992) 3487, hep-th/9206034.
[34] F. Ravanini, R. Tateo, A. Valleriani, Dynkin TBAs, Int. J. Mod. Phys. A 8 (1993) 1707, hep-th/9207040.
[35] A. Kuniba, T. Nakanishi, J. Suzuki, Functional relations in solvable lattice models. 1: Functional relations and

representation theory, Int. J. Mod. Phys. A 9 (1994) 5215, hep-th/9309137.
[36] A. Kuniba, T. Nakanishi, J. Suzuki, Functional relations in solvable lattice model 2: Applications, Int. J. Mod. Phys.

A 9 (1994) 5267, hep-th/9310060.
[37] A. Kuniba, J. Suzuki, Analytic Bethe ansatz for fundamental representations of Yangians, Commun. Math. Phys. 173

(1995) 225, hep-th/9406180.
[38] S.L. Lukyanov, private communication, 1999.
[39] P. Dorey, J. Suzuki, R. Tateo, Finite lattice Bethe ansatz systems and the Heun equation, J. Phys. A 37 (2004) 2047,

hep-th/0308053.
[40] S.L. Lukyanov, Notes on parafermionic QFT’s with boundary interaction, hep-th/0606155.
[41] K. Hornfeck, W algebras of negative rank, Phys. Lett. B 343 (1995) 94, hep-th/9410013.
[42] S.L. Lukyanov, V.A. Fateev, Exactly solvable models of conformal quantum theory associated with simple Lie

algebra D(N), Sov. J. Nucl. Phys. 49 (1989) 925, Yad. Fiz. 49 (1989) 1491 (in Russian).
[43] P. Cvitanovic, Classics illustrated: Group theory, Nordita notes; and group theory webbook at

http://www.nbi.dk/GroupTheory/.
[44] J. Suzuki, Spinons in magnetic chains of arbitrary spins at finite temperatures, J. Phys. A 32 (1999) 2341, cond-

mat/9807076.
[45] C. Dunning, Finite size effects and the supersymmetric sine-Gordon models, J. Phys. A 36 (2003) 5463, hep-

th/0210225.
[46] T.R. Klassen, E. Melzer, Purely elastic scattering theories and their ultraviolet limits, Nucl. Phys. B 338 (1990) 485.

http://www.nbi.dk/GroupTheory/


P. Dorey et al. / Nuclear Physics B 772 [FS] (2007) 249–289 289
[47] H.W. Braden, E. Corrigan, P. Dorey, R. Sasaki, Affine Toda field theory and exact S matrices, Nucl. Phys. B 338
(1990) 689.

[48] R. Tateo, The sine-Gordon model as SO(n)1 × SO(n)1/SO(n)2 perturbed coset theory and generalizations, Int. J.
Mod. Phys. A 10 (1995) 1357, hep-th/9405197.

[49] P. Dorey, R. Tateo, K.E. Thompson, Massive and massless phases in self-dual ZN spin models: Some exact results
from the thermodynamic Bethe ansatz, Nucl. Phys. B 470 (1996) 317, hep-th/9601123.

[50] L.N. Lipatov, Asymptotic behavior of multicolor QCD at high energies in connection with exactly solvable spin
models, JETP Lett. 59 (1994) 596, Pis’ma Zh. Eksp. Teor. Fiz. 59 (1994) 571.

[51] J.A. Minahan, K. Zarembo, The Bethe-ansatz for N = 4 super-Yang–Mills, JHEP 0303 (2003) 013, hep-th/0212208.
[52] G. Ferretti, R. Heise, K. Zarembo, New integrable structures in large-N QCD, Phys. Rev. D 70 (2004) 074024,

hep-th/0404187.
[53] I.M. Gelfand, L.A. Dikii, Asymptotic behavior of the resolvent of Sturm–Liouville equations and the algebra of the

Korteweg–De Vries equations, Russ. Math. Surveys 30 (1975) 77, Usp. Mat. Nauk 30 (1975) 67.
[54] J. Balog, L. Feher, L. O’Raifeartaigh, P. Forgacs, A. Wipf, Toda theory and W algebra from a gauged WZNW point

of view, Ann. Phys. 203 (1990) 76.
[55] P. Di Francesco, C. Itzykson, J.B. Zuber, Classical W algebras, Commun. Math. Phys. 140 (1991) 543.
[56] V.V. Bazhanov, S.L. Lukyanov, A.B. Zamolodchikov, Higher-level eigenvalues of Q-operators and Schrödinger

equation, Adv. Theor. Math. Phys. 7 (2004) 711, hep-th/0307108.
[57] D. Fioravanti, Geometrical loci and CFTs via the Virasoro symmetry of the mKdV–SG hierarchy: An excursus,

Phys. Lett. B 609 (2005) 173, hep-th/0408079.
[58] Al.B. Zamolodchikov, Thermodynamic Bethe ansatz in relativistic models. Scaling three state Potts and Lee–Yang

models, Nucl. Phys. B 342 (1990) 695.
[59] V.V. Bazhanov, S.L. Lukyanov, A.B. Zamolodchikov, Quantum field theories in finite volume: Excited state ener-

gies, Nucl. Phys. B 489 (1997) 487, hep-th/9607099.
[60] P. Dorey, R. Tateo, Excited states by analytic continuation of TBA equations, Nucl. Phys. B 482 (1996) 639, hep-

th/9607167.
[61] V. Gritsev, E. Altman, E. Demler, A. Polkovnikov, Full quantum distribution of contrast in interference experiments

between interacting one dimensional Bose liquids, Nature Phys. 2 (2006) 705, cond-mat/0602475.
[62] S.L. Lukyanov, P. Werner, Universal scaling behavior of the single electron box in the strong tunneling limit, J. Stat.

Mech. (2006) P11002, cond-mat/0606453.
[63] V.V. Bazhanov, S.L. Lukyanov, A.M. Tsvelik, Analytical results for the Coqblin–Schrieffer model with generalized

magnetic fields, Phys. Rev. B 68 (2003) 094427, cond-mat/0305237.
[64] A. Klümper, M.T. Batchelor, P.A. Pearce, Central charges of the 6- and 19-vertex models with twisted boundary

conditions, J. Phys. A 24 (1991) 3111.
[65] J. Heading, An Introduction to Phase-Integral Methods, Methuen, 1962.
[66] J. Heading, Phase-integral methods I, Q. Jl Mech. Appl. Math. 15 (1962) 215;

J. Heading, Global phase-integral methods, Q. Jl Mech. Appl. Math. 30 (1977) 281.
[67] J. Heading, The Stokes phenomenon II, Proc. Cambridge Philos. Soc. 53 (1957) 419.
[68] P. Zinn-Justin, Non-linear integral equations for complex affine Toda models associated to simply laced Lie algebras,

J. Phys. A 31 (1998) 6747, hep-th/9712222.
[69] P. Dorey, C. Dunning, R. Tateo, Spectral equivalences from Bethe ansatz equations, J. Phys. A 34 (2001) 5679,

hep-th/0103051.
[70] A. Klümper, P.A. Pearce, Analytical calculations of scaling dimensions: Tricritical Hard square and critical Hard

hexagons, J. Stat. Phys. 64 (1991) 13.
[71] C. Destri, H.J. de Vega, New thermodynamic Bethe ansatz equations without strings, Phys. Rev. Lett. 69 (1992)

2313;
C. Destri, H.J. de Vega, Unified approach to thermodynamic Bethe ansatz and finite size corrections for lattice
models and field theories, Nucl. Phys. B 438 (1995) 413, hep-th/9407117.

[72] J. Suzuki, Functional relations in Stokes multipliers—Fun with x6 + αx2 potential, J. Stat. Phys. 102 (2001) 1029,
quant-ph/0003066.

[73] C. Dunning, Massless flows between minimal W models, Phys. Lett. B 537 (2002) 297, hep-th/0204090.


	Pseudo-differential equations, and the Bethe ansatz  for the classical Lie algebras
	Introduction
	The Bethe ansatz equations and their string solutions
	Summary of the main results
	The An-1 models
	Negative-dimension dualities
	Auxiliary functions and the psi-system
	The An-1 Bethe ansatz equations

	The Dn models
	 The psi-system and the Dn Bethe ansatz equations
	Example 1: D2 A1 A1
	Example 2: D3 A3
	Relationship with the sine-Gordon model

	The Bn models
	The psi-system and the Bn Bethe ansatz equations
	Example 3: B1 

	The Cn models
	The psi-system and the Cn Bethe ansatz equations
	Example 4: C1
	Example 5: C2 B2


	Conclusions
	Acknowledgements
	Root strings from the complex WKB method
	The numerical algorithm and the dual formulation of the boundary problem
	The chi-functions and the generalised Cheng algorithm
	Dual formulation of the boundary problem
	NLIEs

	References


