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Abstract

There is a growing interest in the estimation of the number of unseen features, mostly driven

by biological applications. A recent work brought out a peculiar property of the popular com-

pletely random measures (CRMs) as prior models in Bayesian nonparametric (BNP) inference

for the unseen-features problem: for fixed prior’s parameters, they all lead to a Poisson posterior

distribution for the number of unseen features, which depends on the sampling information only

through the sample size. CRMs are thus not a flexible prior model for the unseen-features prob-

lem and, while the Poisson posterior distribution may be appealing for analytical tractability and

ease of interpretability, its independence from the sampling information makes the BNP approach

a questionable oversimplification, with posterior inferences being completely determined by the

estimation of unknown prior’s parameters. In this paper, we introduce the stable-Beta scaled

process (SB-SP) prior, and we show that it allows to enrich the posterior distribution of the

number of unseen features arising under CRM priors, while maintaining its analytical tractability

and interpretability. That is, the SB-SP prior leads to a negative Binomial posterior distribu-

tion, which depends on the sampling information through the sample size and the number of

distinct features, with corresponding estimates being simple, linear in the sampling information

and computationally efficient. We apply our BNP approach to synthetic data and to real cancer

genomic data, showing that: i) it outperforms the most popular parametric and nonparametric
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competitors in terms of estimation accuracy; ii) it provides improved coverage for the estimation

with respect to a BNP approach under CRM priors.

Keywords: Bayesian nonparametrics, Beta process prior, completely random measure, genetic

variation, predictive distribution, scaled process prior, stable process, unseen-features problem

1 Introduction

The problem of estimating the number of unseen features generalizes the popular unseen-species

problem [Orlitsky et al., 2016], and its importance has grown dramatically in recent years, driven by

applications in biological sciences [Ionita-Laza et al., 2009, Gravel, 2014, Zou et al., 2016, Chakraborty

et al., 2019]. Consider a generic population in which each individual is endowed with a finite collection

of W-valued features, with W possibly being an infinite space, and denote by pi the probability that

an individual has feature wi ∈W for i ≥ 1. The unseen-features problem assumes N ≥ 1 observable

random samples Z1:N = (Z1, . . . , ZN ) from the population, such that Zn = (An,i)i≥1 are independent

Bernoulli random variables with unknown parameters (pi)i≥1. Then, the goal is to estimate the

number of hitherto unseen features that would be observed if M ≥ 1 additional samples were collected,

i.e.

U =
∑
i≥1

1

(
N∑
n=1

An,i = 0

)
1

(
M∑
m=1

AN+m,i > 0

)
,

with 1 being the indicator function. The unseen-species problem arises under the assumption that

each individual is endowed with only one feature, i.e. a species. A wide range of approaches have

been developed to estimate U , including Bayesian methods [Ionita-Laza et al., 2009, Masoero et al.,

2021], jackknife [Gravel, 2014], linear programming [Zou et al., 2016], and variations of Good-Toulmin

estimators [Orlitsky et al., 2016, Chakraborty et al., 2019].

In biological sciences, we may think of individuals as organisms and of features as groups to which

organisms belong to, with each group being defined by any difference in the genome relative to a

reference genome, i.e. a (genetic) variant. In human biology, the estimation of U arises in the context

of optimal allocation of resources between quantity and quality in genetic experiments: spending

resources to sequence a greater number of genomes (quantity), which reveals more about variation

across the population, or spending resources to sequence genomes with increased accuracy (quality),

which reveals more about individual organisms’ genomes. Accurate estimates of U are critical in the

experimental pipeline towards the goal of maximizing the usefulness of experiments under the trade-off

between quantity and quality [Ionita-Laza and Laird, 2010, Zou et al., 2016]. While in human-biology

the cost of sequencing has decreased in recent years [Schwarze et al., 2020], the expense remains non-

trivial, and it is still critical in fields where scientists work with relatively budgets, e.g. non-human and

non-model organisms [Souza et al., 2017]. Other applications arise in precision medicine [Momozawa

and Mizukami, 2020], microbiome analysis [Sanders et al., 2019], single-cell sequencing [Zhang et al.,

2020] and wildlife monitoring [Johansson et al., 2020].
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1.1 Our contributions

We introduce a Bayesian nonparametric (BNP) approach to the unseen-features problem, which relies

on a novel prior distribution for the unknown (pi)i≥1. Completely random measures (CRMs) [King-

man, 1992] provide a broad class of nonparametric priors for feature sampling problems, the most

popular being the stable-Beta process prior [James, 2017, Broderick et al., 2018]. In a recent work,

Masoero et al. [2021] brought out a peculiar feature of CRM priors in the unseen-features problem:

they all lead to a Poisson posterior distribution of U , given Z1:N and fixed prior’s parameters, which

depends on Z1:N only through the sample size N . Despite the broadness of the class of CRM priors,

such a common Poisson posterior structure makes CRMs not a flexible prior model for the unseen-

features problem. While the Poisson posterior distribution may be appealing in principle, making

posterior inferences analytically tractable and easy to interpret, its independence from Z1:N makes

the BNP approach a questionable oversimplification, with posterior inferences being completely de-

termined by the estimation of the unknown prior’s parameters. A somehow similar scenario occurs in

BNP inference for the unseen-species problem under a Dirichlet process (DP) prior [Ferguson, 1973],

and led to the use of the Pitman-Yor process (PYP) prior [Pitman and Yor, 1997] for enriching the

posterior distribution of the number of unseen species, while maintaining analytical tractability and

interpretability of the DP prior [Lijoi et al., 2007].

We show that scaled process (SP) priors, first introduced in James et al. [2015], allow to enrich

the posterior distribution of U arising under CRM priors. Under SP priors, we characterize the

posterior distribution of U as a mixture of Poisson distributions that may include, through the mixing

distribution, the whole sampling information in terms of the number of distinct features and their

frequencies. While this is appealing in principle, it may be at stake with analytical tractability and

interpretability, which are critical for a concrete use of SP priors. Then, we introduce the stable-Beta

SP (SB-SP) prior, which provides a sensible trade-off between the amount of sampling information

introduced in the posterior distribution of U , and analytical tractability and interpretability of the

posterior inferences. In particular, we characterize the SB-SP prior as the sole SP prior for which

the posterior distribution of U , given Z1:N and fixed prior’s parameters, depends on Z1:N through

the sample size N and the number KN of distinct features; the SB-SP may thus be considered as the

natural counterpart of the PYP for the unseen-feature problem. Under the SB-SP prior, the posterior

distribution of U , as well as of a refinement of U that deals with the number of unseen rare features,

is a negative Binomial posterior distributions, whose parameters depend on N , KN and the prior’s

parameters. Corresponding Bayesian estimates of U , with respect to a squared loss function, are

simple, linear in KN and computationally efficient.

We present an empirical validation of the effectiveness of our BNP methodology, both on synthetic

and real data. As for real data, we consider cancer genomic data, where the goal is to estimate

the number of new (genomic) variants to be discovered in future unobservable samples. In cancer

genomics, accurate estimates of the number of new variants is of particular importance, as it might

help practitioners understand the site of origin of cancers, as well as the clonal origin of metastasis,

and in turn be a useful tool to develop effective clinical strategies [Chakraborty et al., 2019, Huyghe

et al., 2019]. We make use of data from the cancer genome atlas (TCGA), and focus on the chal-

lenging scenario in which the sample size N is particularly small, and also small with respect to the
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extrapolation size M . Such a scenario is of interest in genomic applications, where only few samples

of rare cancer might be available. We show that our BNP methodology outperforms the most popular

parametric and nonparametric competitors, both classical (frequentist) and Bayesian, in terms of es-

timation accuracy of U and a refinement of U for rare features. In addition, with respect to the BNP

approach under the stable-Beta process prior [Masoero et al., 2021], our approach provides improved

coverage for the estimation. This is an empirical evidence of the effectiveness of replacing the Poisson

posterior distribution with the negative Binomial posterior distribution, which allows to better exploit

the sampling information.

1.2 Organization of the paper

In Section 2 we show how SP priors allow to enrich the posterior distribution of U arising under

CRM priors. In Section 3 we introduce and investigate the SB-SP prior in the context of the unseen-

features problem: i) we characterize the SB-SP prior in the class of SP priors, providing its predictive

distribution; ii) we apply the SB-SP prior to the unseen-features problem, providing the posterior

distribution of U and a BNP estimator. Section 4 contains illustrations of our method. In Section

5 we discuss our approach, a multivariate extension of it, and future research directions. Proofs and

additional experiments are in the Appendix.

2 Scaled process priors for feature sampling problems

For a measurable space of features W, we assume N ≥ 1 observable individuals to be modeled as a

random sample Z1:N from the {0, 1}-valued stochastic process Z(w) =
∑
i≥1Aiδwi(w), w ∈W, where

(wi)i≥1 are features in W and (Ai)i≥1 are independent Bernoulli random variables with unknown

parameters (pi)i≥1, pi being the probability that an individual has feature wi, for i ≥ 1. That is, Z

is a Bernoulli process with parameter ζ =
∑
i≥1 piδwi , denoted as BeP(ζ). BNP inference for feature

sampling problems relies on the specification of a prior distribution on the discrete measure ζ, leading

to the BNP-Bernoulli model,

Zn | ζ
iid∼ BeP(ζ) n = 1, . . . , N, (1)

ζ ∼ Z ,

namely ζ is a discrete random measure on W whose law Z takes on the interpretation of a prior

distribution for the unknown feature’s composition of the population. By de Finetti’s theorem, the

random variables Zn’s in (1) are exchangeable with directing measure Z [Aldous, 1983]. In this

section, we show how SP priors for ζ [James et al., 2015] allow to enrich the posterior distribution of

the number of unseen features arising under CRM priors.

2.1 CRM priors for Bernoulli processes

CRMs provide a standard tool to define nonparametric prior distributions on the parameter ζ of the

Bernoulli process Z. Consider a homogeneous CRM µ0 on W, i.e. µ0 =
∑
i≥1 ρiδWi

, where the ρi’s
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are (0, 1)-valued random atoms such that
∑
i≥1 ρi < +∞, while the Wi’s are i.i.d. W-valued random

locations independent of the ρi’s. The law of µ0 is characterized, through Lévy-Khintchine formula,

by the Lévy intensity measure ν0(ds,dw) = λ0(s)dsP (dw) on (0, 1)×W, where: i) λ0 is a measure on

(0, 1), which controls the distribution of the ρi’s, and such that
∫

(0,1)
min{s, 1}λ0(s)ds < +∞; ii) P is

a non-atomic measure on W, which controls the distribution of the Wi’s. For short, µ0 ∼ CRM(ν0).

See Appendix A for an account on CRMs [Kingman, 1992, Chapter 8]. Note that, since P is non-

atomic, the random atoms Wi’s are almost surely distinct, that is to say the different features cannot

coincide almost surely. The law of µ0 provides a natural prior distribution for the parameter ζ of the

Bernoulli process. The Beta and the stable-Beta processes are popular examples of µ0 ∼ CRM(ν0),

for suitable specifications of ν0. A comprehensive posterior analysis of CRM priors is presented in

James [2017]. In the next proposition, we recall the predictive distribution of CRM priors [James,

2017, Proposition 3.2].

Proposition 1. Let Z1:N be a random sample from (1) with ζ ∼ CRM(ν0). If Z1:N displays KN = k

distinct features {W ∗1 , . . . ,W ∗KN }, each feature W ∗i appearing exactly MN,i = mi times, then the

conditional distribution of ZN+1, given Z1:N , coincides with the distribution of

ZN+1 |Z1:N
d
= Z ′N+1 +

KN∑
i=1

AN+1,iδW∗i , (2)

where: i) Z ′N+1 |µ′0 =
∑
i≥1A

′
N+1,iδW ′i ∼ BeP(µ′0) and µ′0 ∼ CRM(ν′0), with ν′0(ds,dw) = (1 −

s)Nλ0(s)dsP (dw); ii) the AN+1,i’s are independent Bernoulli random variables with parameters Ji’s,

such that Ji is distributed according to the density function fJi(s) ∝ (1− s)N−mismiλ0(s) for i ≥ 1.

According to (2), ZN+1 displays “new” features W ′i ’s, i.e. features not appearing in the initial

sample Z1:N , and “old” features W ∗i ’s, i.e. features appeared in the initial sample Z1:N . The posterior

distribution of statistics of “new” features is determined by the law of Z ′N+1, which depends on Z1:N

only through the sample size N ; the posterior distribution of statistics of “old” features is determined

by the law of
∑

1≤i≤KN AN+1,iδW∗i , which depends on Z1:N through the sample size N , the number

KN of distinct features and their frequencies (MN,1, . . . ,MN,KN ). As a corollary of Proposition 1,

the posterior distribution of the number of “new” features in (ZN+1, . . . , ZN+M ), given Z1:N and

fixed prior’s parameters, is a Poisson distribution that depends on Z1:N only through N [Masoero

et al., 2021]. Such a posterior structure is peculiar to CRM priors, being inherited by the Poisson

process formulation of CRMs [Kingman, 1992]. That is, despite the broadness of the class of CRM

priors, all CRM priors lead to the same Poisson posterior structure for the number of unseen features,

which thus makes them not a flexible prior model for the unseen-features problem. While the Poisson

posterior distribution may be appealing in principle, making the posterior inferences analytically

tractable and of easy interpretability, its independence from Z1:N makes the BNP approach under

CRM priors a questionable oversimplification, with posterior inferences being completely determined

by the estimation of unknown prior’s parameters.

Remark 1. For the sake of mathematical convenience, and in agreement with the work of James

[2017], in the sequel we maintain the random measure formulation for both the prior model µ0 and the

Bernoulli processes Zn. However, we point out that each Zn is equivalently characterized by means
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of the Bernoulli variables (An,i)i≥1 and the random features (Wi)i≥1. In other terms, there exits

a one-to-one correspondence between Zn and the sequence of points {(An,i,Wi)}i≥1. Finally, note

that, although the values of features’ labels Wi are immaterial, the features Wi’s are assumed to be

random. This is in line with the BNP literature on species sampling models, where the species’ labels

are assumed to be random [Pitman, 1996].

2.2 SP priors for Bernoulli processes

Consider a homogeneous CRM µ =
∑
i≥1 τiδWi on W, where the τi’s are non-negative and such that∑

i≥1 τi < +∞, and the Wi’s are i.i.d. and independent of the τi’s. We denote by ν(ds,dw) =

λ(s)dsP (dw) on R+ ×W, with
∫
R+

min{s, 1}λ(s)ds < +∞, the Lévy intensity measure of µ. Let

∆1 > ∆2 > . . . be the decreasingly ordered τi’s, and consider the discrete random measure

µ∆1
=
∑
i≥1

∆i+1

∆1
δWi+1

,

such that ∆i+1/∆1 ∈ (0, 1), for i ≥ 1, and
∑
i≥1 ∆i+1/∆1 < +∞. A SP on W is defined from µ∆1

as follows. Let F∆1(da) = exp
{
−
∫∞
a
λ(s)ds

}
λ(a)da be the distribution of ∆1 [Ferguson and Klass,

1972, pg. 1636], and let Ga be the conditional distribution of (∆i+1/∆1)i≥1 given ∆1 = a. Moreover,

let ∆1,h denote a random variable whose distribution has a density function f∆1,h
(a) = h(a)f∆1(a),

where h is a non-negative function and f∆1 is the density function of F∆1 . If (ρi)i≥1 are (0, 1)-valued

random variables with distribution G∆1,h
then

µ∆1,h
=
∑
i≥1

ρiδWi+1
. (3)

is a SP. For short, µ∆1,h
∼ SP(ν, h). The law of µ∆1,h

is a prior distribution for the parameter ζ of

the Bernoulli process. The next proposition characterizes the predictive distribution of SP priors. See

also James et al. [2015, Proposition 2.2] for a posterior analysis of SP priors.

Proposition 2. Let Z1:N be a random sample from (1) with ζ ∼ SP(ν, h). If Z1:N displays KN = k

distinct features {W ∗1 , . . . ,W ∗KN }, each feature W ∗i appearing exactly MN,i = mi times, then the

conditional distribution of ∆1,h, given Z1:N , has a density function of the form

g∆1,h |Z1:N
(a) ∝

∏k
i=1

∫ 1

0
smi(1− s)N−miaλ(as)ds

exp
{∑N

n=1

∫ 1

0
s(1− s)n−1aλ(as)ds

}f∆1,h
(a). (4)

Moreover, the conditional distribution of ZN+1, given (∆1,h, Z1:N ), coincides with the distribution of

ZN+1 | (∆1,h, Z1:N )
d
= Z ′N+1 +

KN∑
i=1

AN+1,iδW∗i , (5)

where: i) Z ′N+1 |µ′∆1,h
=
∑
i≥1A

′
N+1,iδW ′i ∼ BeP(µ′∆1,h

) and µ′∆1,h
|∆1,h ∼ CRM(ν′∆1,h

), with

ν′∆1,h
(ds, dw) = (1 − s)N∆1,hλ(s∆1,h)1(0,1)(s)dsP (dw); ii) the AN+1,i’s are independent Bernoulli

random variables with parameters Ji’s, respectively, such that Ji |∆1,h is distributed according to the
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density function fJi |∆1,h
(s) ∝ (1− s)N−mismi∆1,hλ(∆1,hs)1(0,1)(s)ds for i ≥ 1.

See Appendix B for the proof of Proposition 2. The marginalization of (5) with respect to (4) leads

to the predictive distribution of SP priors: i) ZN+1 displays “new” features W ′i ’s, and the posterior

distribution of statistics of “new” features, given Z1:N , is determined by the law of (∆1,h, Z
′
N+1);

ii) ZN+1 displays “old” features W ∗i ’s, and the posterior distribution of statistics of “old” features,

given ZN+1, is determined by the law of (∆1,h,
∑

1≤i≤KN AN+1,iδW∗i ). Because of (4) and (5), the

law of (∆1,h, Z
′
N+1) may include the whole sampling information, depending on the specification of ν

and h, and hence the posterior distribution of statistics of “new” features, given Z1:N , also includes

such an information. As a corollary of Proposition 2, the posterior distribution of the number of

unseen features, given Z1:N and fixed prior’s parameters, is a mixture of Poisson distributions that

may include the whole sampling information; in particular, the amount of sampling information in the

posterior distribution is uniquely determined by the mixing distribution, namely by the conditional

distribution of ∆1,h, given Z1:N . SP priors thus allow to enrich the Poisson posterior structure arising

from CRM priors, in terms of both a more flexible distribution and the inclusion of more sampling

information than the sole sample size N , though they may lead to unwieldy posterior inferences due

to the marginalization with respect to (4).

The use of the sampling information in the predictive structure of SPs somehow resembles that of

Poisson-Kingman (PK) models [Pitman, 2006]. PK models form a broad class of nonparametric priors

for species sampling problems. The DP prior is a PK model whose predictive distribution is such that:

i) the conditional probability that the (N+1)-th draw is a “new” species, given N observable samples,

depends only on the sample size; ii) the conditional probability that the (N + 1)-th draw is an “old”

species, given N observable samples, depends on the sample size, the number of distinct species and

their frequencies. Such a behaviour resembles that of CRM priors, i.e. Proposition 1. PK models allow

to include more sampling information in the probability of discovering a “new species” arising under

the DP prior, which typically determines a loss of the analytical tractability of posterior inferences

for the number of unseen species [Bacallado et al., 2017]. Such a behaviour resembles that of SP

priors, i.e. Proposition 2. The PYP prior is arguably the most popular PK model. It stands out for

enriching the probability of discovering a “new” species arising under the DP prior, by including the

sampling information on the number of distinct species, while maintaining the analytical tractability

and interpretability of the DP prior.

3 Stable-Beta Scaled Process (SB-SP) priors for the unseen-

features problem

In Section 2 we showed how SP priors allow to enrich the Poisson posterior structure of the number

of unseen features arising under CRM priors, e.g. the Beta and the stable-Beta process priors. While

this is an appealing property, it may lead to a lack of analytical tractability and interpretability of

posterior inferences, thus making SP priors not of practical interest in applications. In this section,

we introduce and investigate a peculiar SP prior, which is referred to as the SB-SP prior, and we show

that: i) it leads to a negative Binomial posterior distribution for the number of unseen features, which
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generalizes the Poisson distribution while maintaining its analytical tractability and interpretability;

ii) it leads to a posterior distribution for the number of unseen features, which depends on the sampling

through the sample size and the number of distinct features. The SB-SP prior thus provides a sensible

trade-off between the enrichment of the Poisson posterior structure of the number of unseen features

arising under CRM priors and the analytical tractability and interpretability of posterior inferences.

In particular, we characterize the SB-SP prior as the sole SP prior for which the posterior distribution

of the number of unseen features depends on the observable sample only through the sample size and

the number of distinct features. The SB-SP may thus be considered as a natural counterpart of the

PYP for the unseen-feature problem.

3.1 SB-SP priors for Bernoulli processes

Stable scaled processes (S-SP) [James et al., 2015] form a subclass of SPs, and hence their definition

follows from Section 2. In particular, for any σ ∈ (0, 1), let µσ be the σ-stable CRM on W [Kingman,

1975], which is characterized by the Lévy intensity measure νσ(ds,dw) = λσ(s)dsP (dw) on R+ ×W,

with
∫
R+

min{s, 1}λσ(s)ds < +∞, where λσ(s) = σs−1−σ. We recall that the largest atom ∆1 of µσ

is distributed according to the density function

f∆1(a) = σa−1−σ exp
{
−a−σ

}
. (6)

That is, ∆1 = E−1/σ, where E denotes a negative exponential random variable with parameter 1.

For any non-negative function h, a S-SP on W is defined as the SP with law SP(νσ, h). S-SP priors

generalizes the Beta process prior, which is recovered by setting h to be the identity function, and

then letting σ → 0 [James et al., 2015]. The predictive distribution of ζ ∼ SP(νσ, h) is obtained from

Proposition 2. In the next theorem, we characterize the S-SP priors as the sole SP priors for which

the conditional distribution of ∆1,h, given Z1:N , depends on Z1:N only through the sample size N and

the number KN of distinct features in Z1:N .

Theorem 1. Let Z1:N be a random sample from (1) with ζ ∼ SP(ν, h), and let Z1:N displays

KN distinct features with corresponding frequencies (MN,1, . . . ,MN,KN ). Moreover, let ν(ds,dw) =

λ(s)dsP (dw), and let f∆1,h
be the density function of ∆1,h. If f∆1,h

> 0 on R+ and the functions

λ and f∆1,h
are continuously differentiable, then the conditional distribution of ∆1,h, given Z1:N ,

depends on Z1:N only through N and KN if and only if ν = νσ.

See Appendix C for the proof of Theorem 1. We recall from Section 2 that the conditional

distribution of ∆1,h, given Z1,N , uniquely determines the amount of sampling information included in

the posterior distribution of statistics of “new” features. Then, according to Theorem 1, S-SP priors

are the sole SP priors for which the posterior distribution of the number of unseen features, given Z1:N

and fixed prior’s parameters, depends on Z1:N only through N and KN . As a corollary of Theorem 1,

the Beta process prior is the sole S-SP prior for which the posterior distribution of statistics of “new”

features depends on Z1:N only through N . Analogous predictive characterizations are well-known in

species sampling problems, and they are typically referred to as “sufficientness” postulates’ [Bacallado

et al., 2017]. In particular, the DP prior is characterized as the sole species sampling prior for which
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the conditional probability that the (N + 1)-th draw is a “new” species, given N observable samples,

depends only on the sample size [Regazzini, 1978]. Moreover, the PYP prior is characterized as the

sole species sampling prior for which the conditional probability that the (N + 1)-th draw is a “new”

species, given N observable samples, depends only on the sample size and the number of distinct

species in the sample [Zabell, 2005]. Theorem 1 provides a “sufficientness” postulates’ in the context

of feature sampling problems.

As a noteworthy example of S-SPs, we introduce the SB-SP. The SB-SP is a S-SP obtained by a

suitable specification of the non-negative function h. In particular, for any c, β > 0 let

hc,β(a) =
βc+1

Γ(c+ 1)
a−cσ exp

{
−(β − 1)a−σ

}
, (7)

where Γ(·) denotes the Gamma function. Then a SB-SP on W is defined as the SP with law

SP(νσ, hc,β). For short, we denote the law of a SB-SP by SB-SP(σ, c, β). The SB-SP prior gen-

eralizes the Beta process prior, which is recovered by setting c = 0 and β = 1, and then letting

σ → 0. According to the construction of SPs, the distribution of ∆1,hc,β has a density function

obtained by combining (6) and (7); this is a polynomial-exponential tilting of the density function

(6). In particular, ∆−σ1,hc,β
is distributed as a Gamma distribution with shape (c + 1) and rate β.

Such a straightforward distribution for ∆1,hc,β is at the core of the analytical tractability of poste-

rior inferences under the SB-SP prior; this fact will be clear in the application of the SB-SP prior

to the problem of estimating the number of unseen features. The next proposition characterizes the

predictive distribution of the SB-SP prior.

Proposition 3. Let Z1:N be a random sample from (1) with ζ ∼ SB-SP(σ, c, β). If Z1:N displays

KN = k distinct features {W ∗1 , . . . ,W ∗KN }, each feature W ∗i appearing exactly MN,i = mi times, then

the conditional distribution of ∆1,hc,β , given Z1:N , has a density function of the form

g∆1,hc,β
|Z1:N

(a) = σ
(β + γ

(N)
0 )k+c+1

Γ(k + c+ 1)
a−kσ−(c+1)σ−1e−a

−σ(β+γ
(N)
0 ), (8)

where γ
(N)
0 = σ

∑
1≤i≤N B(1 − σ, i), with B(·, ·) being the (Euler) Beta function. Moreover, the

conditional distribution of ZN+1, given (∆1,hc,β , Z1:N ), coincides with the distribution of

ZN+1 | (∆1,hc,β , Z1:N )
d
= Z ′N+1 +

KN∑
i=1

AN+1,iδW∗i , (9)

where:

i) Z ′N+1 |µ′∆1,hc,β
=
∑
i≥1A

′
N+1,iδW ′i ∼ BeP(µ′∆1,hc,β

) such that µ′∆1,hc,β
|∆1,hc,β ∼ CRM(ν′∆1,hc,β

),

with

ν′∆1,hc,β
(ds, dw) = ∆−σ1,∆1,hc,β

(1− s)Nσs−1−σ1(0,1)(s)dsP (dw);

ii) the AN+1,i’s are independent Bernoulli random variables with parameters Ji’s, respectively, such

9



that each Ji |∆1,hc,β is distributed according to a density function of the form

fJi |∆1,hc,β
(s) =

1

B(mi − σ,N −mi + 1)
smi−σ(1− s)N−mi+11(0,1)(s).

See Appendix C for the proof of Proposition 3. According to Equation (8), the conditional distri-

bution of ∆1,hc,β , given Z1:N , depends on Z1:N only through the sample size N and the number KN of

distinct features in Z1:N . This agrees with Theorem 1, implying that the posterior distribution of the

number of unseen features, given Z1:N and fixed prior’s parameters, depends on Z1:N only through

N and KN . Because of (8) and (9), the posterior distribution of statistics of “new” features stands

out for analytical tractability, thus being competitive with that arising from CRMs, e.g. the Beta

and the stable-Beta processes. In particular, from Equation (9), the conditional distribution of Z ′N+1,

given (∆1,hc,β , Z1:N ) is a Poisson distribution that depends on Z1:N only through N . Then, from

(8), its marginalization with respect to the conditional distribution of ∆1,hc,β , given Z1:N , leads to a

negative Binomial posterior distribution. Such an appealing property arises from the peculiar form

hc,β that, combined with νσ, leads to a conjugacy property for the conditional distribution of ∆1,hc,β ,

given Z1:N . That is, the conditional distribution of ∆−σ1,hc,β
, given Z1:N , is a Gamma distribution with

shape (KN + c + 1) and rate β + γ
(N)
0 , which is the distribution ∆−σ1,hc,β

with shape and rate being

updated through Z1:N . The next proposition establishes the distribution of a random sample Z1:N

from a SB-SP prior. See Appendix C for details.

Proposition 4. Let Z1:N be a random sample from (1) with ζ ∼ SB-SP(σ, c, β). The probability that

Z1:N displays a particular feature allocation of k distinct features with frequencies (m1, . . . ,mk) is

p
(N)
k (m1, . . . ,mk) =

σkβc+1

(β+γ
(N)
0 )k+c+1

Γ(c+1)
Γ(k+c+1)

k∏
i=1

Γ(mi − σ)Γ(N −mi + 1)

Γ(N − σ + 1)
. (10)

3.2 BNP inference for the unseen-features problem

Now, we apply the SB-SP prior to the unseen-features problem. For any N ≥ 1 let Z1:N be an

observable sample modeled as the BNP Bernoulli model (1), with ζ ∼ SB-SP(σ, c, β). Moreover,

under the same model of the Zn’s, for any M ≥ 1 let (ZN+1, . . . , ZN+M ) be additional unobservable

sample. Then, the unseen-feature problem calls for the estimation of

U
(M)
N =

∑
i≥1

1

(
M∑
m=1

AN+m,i > 0

)
1

(
N∑
n=1

An,i = 0

)
, (11)

namely the number of hitherto unseen features that would be observed in (ZN+1, . . . , ZN+M ). As

generalization of the unseen-feature problem (11), for r ≥ 1 we consider the estimation of

U
(M,r)
N =

∑
i≥1

1

(
M∑
m=1

AN+m,i = r

)
1

(
N∑
n=1

An,i = 0

)
, (12)

10



namely the number of hitherto unseen features that would be observed with prevalence r in (ZN+1, . . . , ZN+M ).

Of special interest is r = 1, which concerns rare (unique) features. The next theorem characterizes

the posterior distributions of U
(M)
N and U

(M,r)
N , given Z1:N . We denote by NegativeBinonial(n, p) the

negative Binomial distribution with parameter n and p ∈ (0, 1).

Theorem 2. Let Z1:N be a random sample from (1) with ζ ∼ SB-SP(σ, c, β), and let Z1:N displays

KN = k distinct features with frequencies (MN,1, . . . ,MN,KN ) = (m1, . . . ,mk). Then, the posterior

distributions of U
(M)
N and of U

(M,r)
N , given Z1:N , coincide with the distributions of

U
(M)
N |Z1:N ∼ NegativeBinonial

(
KN + c+ 1,

γ
(M)
N

β + γ
(N+M)
0

)
, (13)

and

U
(M,r)
N |Z1:N ∼ NegativeBinonial

(
KN + c+ 1,

ρ
(M,r)
N

β + γ
(N)
0 + ρ

(M,r)
N

)
, (14)

for any index of prevalence r ≥ 1, respectively, where γ
(M)
N = σ

∑
1≤i≤M B(1 − σ,N + i) and where

ρ
(M,r)
N =

(
M
r

)
σB(r − σ,N +M − r + 1), with B(·, ·) denoting the (Euler) Beta function.

See Appendix D for the proof of Theorem 2. The posterior distributions (13) and (14) depend

on Z1:N through the sample size N and the number KN of distinct features. This is in contrast

with the corresponding posterior distributions obtained under the Beta and the stable-Beta process

priors, which are Poisson distributions that depend on Z1:N only through N [Masoero et al., 2021,

Proposition 1]. BNP estimators of U
(M)
N and U

(M,r)
N , with respect to a squared loss function, are

obtained as the posterior expectations of (13) and (14), i.e.

Û
(M)
N = (KN + c+ 1)

γ
(M)
N

β + γ
(N+M)
0 − γ(M)

N

(15)

and

Û
(M,r)
N = (KN + c+ 1)

ρ
(M,r)
N

β + γ
(N)
0

(16)

respectively. The estimators (15) and (16) are simple, linear in the sampling information and com-

putationally efficient. In the next theorem we establish the large M asymptotic behaviour of the

posterior distributions (13) and (14), showing that the number of unseen features has a power-law

growth in M . The same growth in M holds under the stable-Beta process prior [Masoero et al., 2021,

Proposition 2], though the limiting distribution is degenerate.

Theorem 3. Let Z1:N be a random sample from (1) with ζ ∼ SB-SP(σ, c, β), and let Z1:N displays

KN = k distinct features with frequencies (MN,1, . . . ,MN,KN ) = (m1, . . . ,mk). As M → +∞

U
(M)
N

Mσ
| Z1:N

a.s.−→WN , (17)

11



where WN is a Gamma random variable with shape (KN + c+ 1) and rate (β + γ
(N)
0 )/Γ(1− σ), and

U
(M,r)
N

Mσ
| Z1:N

a.s.−→WN,r, (18)

where WN,r is a Gamma random variable with shape (KN+c+1) and rate Γ(r+1)(β+γ
(N)
0 )/σΓ(r−σ).

4 Experiments

Over the last decade, genomics has witnessed an extraordinary improvement in the data availability

due to the advent of next generation sequencing technologies. Thanks to larger and richer datasets,

researchers have started uncovering the role and impact of rare genetic variants in heritability and

human disease [Hernandez et al., 2019, Momozawa and Mizukami, 2020]. The development of methods

for estimating the number of new genomic variants to be observed in future studies is an active research

area, as it can aid the design of effective clinical procedures in precision medicine [Ionita-Laza et al.,

2009, Zou et al., 2016], enhance understanding of cancer biology [Chakraborty et al., 2019], and help to

optimize sequencing procedures [Rashkin et al., 2017, Masoero et al., 2021]. Here, we consider datasets

of individual genomic sequences. Following common practice, we assume that an underlying fixed and

idealized genomic sequence (the “reference”) is given. Then, each coordinate of an individual sequence

reports the presence (1) or absence (0) of variation at a given locus with respect to the reference. All

variants are treated equally, namely, any expression differing from the underlying reference at a given

locus counts as a variant. We make use of our methodology to estimate the number of genomic loci

at which variation was not observed in the original sample, and is going to be observed in (at least

one of) M additional datapoints.

We find in our experiments that the estimates of the total number of new variants to be observed

produced using the SB-SP-Bernoulli model, hereafter referred to as SSB, tend to be more accurate

than other available methods in the literature. This phenomenon is particularly evident when the

sample size N of the training set is small, and when the extrapolation size M is large with respect to

N . Moreover, the SSB model is particularly effective in estimating the number of new rare variants,

e.g. variants appearing only once in the additional unobservable samples. Accurate estimation of rare

variants is particularly important, as these are believed to be largely responsible for heritability of

human disease [Rashkin et al., 2017, Chakraborty et al., 2019]. To benchmark the quality of the

SSB, we consider a number of competing methodologies for the feature prediction problem available

in the literature: i) Jackknife estimators (J) [Gravel, 2014]; ii) a linear programming method (LP)

[Zou et al., 2016] and variations of Good-Toulmin estimators (GT) [Chakraborty et al., 2019]. We

also compare our empirical findings to a BNP estimator obtained under the stable-Beta process prior

(3BB), which has been introduced in Masoero et al. [2021]. We complete our analysis with a thorough

investigation on synthetic data in Appendix F and Appendix G, as well as on additional real data

from the gnomAD database [Karczewski et al., 2020] in Appendix H.
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4.1 Empirics and evaluation metrics

For the SSB method to be useful, we need to estimate the underlying, unknown, parameters of

the SB-SP prior. To learn these prior’s parameters, we here adopt an empirical Bayes procedure,

which consists in maximizing the marginal distribution (10). In particular, we maximize numerically

Equation (10) with respect to the parameters β > 0, c > 0 and σ ∈ (0, 1) of the SB-SP prior, and use

the resulting values to produce our estimators. That is, we let

(β̂, ĉ, σ̂) = arg max
(β,c,σ)

{
p

(N)
k (m1, · · · ,mk)

}
,

and plug these values in the BNP estimator (13) and (14). The resulting values provide our BNP

estimates of the number U
(M)
N of new variants and the number U

(M,r)
N of new variants with prevalence

r.

To assess the accuracy of our estimates, we consider the percent deviation of the estimate from

the truth to be the achieved accuracy. That is, the accuracy of the estimator Û
(M)
N is defined as

v
(M)
N := 1−min

{
|U (M)
N − Û (M)

N |
U

(M)
N

, 1

}
. (19)

In particular, the accuracy v
(M)
N equals 1 when the estimate is perfect (no error is incurred), and

decreases to 0 as the estimate deviates from the truth. The min operator in (19) ensures that v
(M)
N

lies in [0, 1]: we let the accuracy to be equal to 0 whenever there is a severe overestimation, and

the percentage estimation error exceeds 100%, i.e. when Û
(M)
N ≥ 2 × U (M)

N . The SSB, 3BB and LP

methods also offer an estimate for the number of new features observed with a given prevalence r.

We let v
(M,r)
N be the accuracy metric, where we replace in (19) U

(M)
N with U

(M,r)
N , the number of new

features observed with prevalence r, and Û
(M)
N with Û

(M,r)
N .

4.2 Estimating the number of new variants in cancer genomics

Following the empirical study of Chakraborty et al. [2019], we make use of data from the Cancer

Genome Atlas (TCGA), the largest publicly available cancer genomics dataset, containing somatic

mutations from 10,295 patients and spanning 33 different cancer types. We partition the samples into

33 smaller datasets according to cancer-type annotation of each patient. See Chakraborty et al. [2019]

and Masoero et al. [2021, Appendix F] for details on the data and the experimental setup. For each

cancer type, we retain a small fraction of the data for purposes of training, and consider the task

of estimating the number of new variants that will be observed in a follow-up sample given a pilot

sample. We validate our estimates by comparing the estimate Û
(M)
N of the number of distinct variants

to the true value, obtained by extrapolating to the remaining data. To assess the variability and error

in our estimates, we repeat for every cancer type the experiment on S = 1,000 subsets of the data,

each obtained by randomly subsampling without replacement from the full sample.

We find that the SSB and 3BB methods perform particularly well when the training sample size

N is small compared to the extrapolation sample size M . This setting is relevant in the context

of cancer genomics, as scientists are interested in understanding the “unexploited potential” of the
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genetic information, especially for rare cancer subtypes [Chakraborty et al., 2019, Huyghe et al., 2019].

To compare and quantify the performance of the available methodologies in this setting, we report in

Figure 1 the distribution of the estimation accuracy when retaining only N = 10 samples for training

and extrapolating to the largest possible sample size M for which we can compute the accuracy metric

(Equation (19)). We report results for the 10 cancer types with the largest number of samples in the

original dataset. For each cancer type and for each method, the distribution of the estimation accuracy

is obtained by considering its performance across the S = 1,000 replicates. Across all cancer types,

the estimates obtained from the SSB method achieve higher accuracy.

We show in Figure 2 the behavior of Û
(i)
N for five different cancer types as i = 1, . . . ,M . Again,

we let N = 10, and M be the largest possible extrapolation value, as dictated by the dataset size. We

report the estimates obtained from a fixed sample of size N = 10, as well as the variability around such

estimates obtained by re-fitting each model, iteratively leaving one datapoint out from the sample.

In this setting, the SSB method outperforms competing methods in terms of estimation accuracy.

Moreover, the variability in the estimates arising from re-fitting the model on subsets of the data

provides a useful measure of uncertainty in such estimation.
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Figure 1: Estimation accuracy v
(M)
N for the number of new genomic variants Û

(M)
10 . For each method and each cancer

type, we retain N = 10 random samples and use them to estimate up to M total observations, where N +M is the size
of the original sample.

4.3 Estimating the number of new rare variants in cancer genomics

In recent years, the cancer genomics research community has become increasingly interested in study-

ing and understanding the role of extremely rare variants, such as singletons, i.e. observed in only
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Figure 2: Estimation of the number of new genomic variants Û
(i)
N , for i = 1, . . . ,M . For each method and cancer

type, we retain N = 10 random samples and use them to estimate up to the largest possible size. We fit each model on
the full sample, as well as N = 10 additional times by iteratively leaving one datapoint out from the training sample.
The solid black line is the true number of features that would have been observed (vertical axis) for any extrapolation
size N +M (horizontal axis), for a fixed ordering of the data. Shaded regions report the prediction range obtained from
the estimates from the leave-one-out fits.

one patient. Evidence suggests that rare deleterious variants can have far stronger effect sizes than

common variants [Rasnic et al., 2020] and can play an important role in the development of cancer.

For example, in breast cancer, it is well accepted that the risk of a variant is inversely proportional

with respect to its prevalence: the rarer the variant, the higher the risk [Wendt and Margolin, 2019].

Therefore, effective identification and discovery of rare variants is an active, is an ongoing research

area [Lawrenson et al., 2016, Lee et al., 2019]. This phenomenon is not limited to breast cancer, but

is progressively being studied across different cancer types. See, e.g. the recent works on ovarian

[Phelan et al., 2017], skin [Goldstein et al., 2017], prostate [Nguyen-Dumont et al., 2020] and lung

[Liu et al., 2021] cancers and references therein. In downstream analysis, these estimates could be

useful for planning and designing future experiments, e.g. informing scientists on the number of new

samples to be collected in order to observe a target number of new variants, or for power analysis

considerations in rare variants association tests [Rashkin et al., 2017].

The BNP framework considered here allows us to estimate the number of new rare variants

to be discovered. While Zou et al. [2016] did not consider the problem of estimating rare vari-

ants, it is straightforward to obtain an estimate for this quantity from their framework. Indeed,

for every prevalence x ∈ [0, 1], the LP estimates the histogram h(x), which counts the number

of variants appearing with prevalence x in the population, and the number of variants appear-

ing with prevalence r follows from the binomial sampling model assumption, namely Û
(M,r)
N =∑

x h(x)
{(

N+M
r

)
xr(1− x)N+M−r −

(
N
r

)
xr(1− x)N−r

}
. We show in Figure 4 that the SSB method

provides better estimates than the 3BB and LP methods.

4.4 Coverage and calibrated uncertainties

One of the benefits of the BNP approach is that it automatically yields a notion of variability of

the estimate of U via posterior credible intervals. We here check whether these intervals produce a

useful notion of uncertainty, by investigating their calibration. For α ∈ (0, 1), we say that a 100×α%

credible interval is calibrated if it contains the true value of interest, arising from hypothetical repeated

draws, 100×α% of the times. We here assess the calibration of a 100×α% credible interval for U
(M)
N

conditionally given Z1:N as follows. Let S be a large number (S = 1,000 in our experiments). For
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Figure 3: Estimation accuracy v
(M,1)
N for new variants appearing with prevalence one in future unobservable samples

for different cancer types. For each method and each cancer, we retain N = 10 random samples and use them to
estimate up to the largest possible size.
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Figure 4: Estimation accuracy v
(M,1)
N for new variants appearing with prevalence one in future samples. For each

method and different cancer types, we retain a random sample of size N = 5% of the available dataset, and use it to
estimate up to the largest possible size.

each s = 1, . . . , S, we retain a random subset of the data of size N , and estimate the corresponding

parameters β̂, ĉ, σ̂ as discussed in Section 4.1. Then, we let Ŵ
(M)
N,s,low(α), Ŵ

(M)
N,s,hi(α) be the endpoints

of a 100 × α% credible interval for the distribution of the number of new features, as given by

Equation (13), centered around the posterior predictive mean. We compute coverage calibration via

w
(M)
N (α) =

1

S

S∑
s=1

1
{
Ŵ

(M)
N,s,low(α) ≤ KN+M ≤ Ŵ (M)

N,s,hi(α)
}
.

This is the fraction of the S experiments in which the true value was contained by an 100×α% credible

interval. The closer w
(M)
N (α) to α, the better calibrated the credible intervals. We compute the same

quantity for the 3BB method using the results in Masoero et al. [2021]. Although still not perfect, we

find that the posterior predictive intervals obtained from the SSB method are better calibrated than

the ones under the 3BB method (see Figure 5).
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Figure 5: Coverage calibraiton of BNP estimators for number of new variants in future samples across all cancer types
in TCGA. Different subplots refer to different ratios of the training N with respect to the extrapolation M . For each
cancer, we retain a training sample of size N ∈ {5%, 10%, 20%, 30%} of the total available dataset, and extrapolate

up to the largest available M . Colored lines report the average coverage w
(M)
N (α) across all cancer types (y-axis) as a

function of α (x-axis). Faded dots refer to coverage for individual cancer types.

5 Discussion

Masoero et al. [2021] first applied CRM priors to the unseen-features problem, showing that: i) despite

the broadness of the class of CRM priors, all CRM priors lead to the same Poisson posterior structure

for the number of unseen features, which thus makes them not a flexible prior model for the unseen-

features problem; ii) while the Poisson posterior distribution may be appealing in principle, making

the posterior inferences analytically tractable and of easy interpretability, its independence from Z1:N

makes the BNP approach a questionable oversimplification, with posterior inferences being completely

determined by the estimation of unknown prior’s parameters. In this paper, we introduced the SB-SP

prior, and showed that: i) it enriches the posterior distribution of the number of unseen features arising

under CRM priors, which results in a negative Binomial distribution whose parameters depend on the

sample size and the number of distinct features; ii) it maintains the same analytical tractability and

interpretability as CRM priors, which results in BNP estimators that are simple, linear in the sampling

information and computationally efficient. The effectiveness of the SB-SP prior is showcased through

an empirical analysis on synthetic and real data. Under the SB-SP prior, we found that estimates of

the unseen number of features are accurate, and they outperform the most popular competitors in

the challenging scenario where the sample size N is particularly small, and also small with respect to

the extrapolation size M .

Our approach admits an extension to the multiple-feature setting, which takes into account of the

many forms of variation, e.g. single nucleotide changes, tandem repeats, insertions and deletions, copy

number variations [Zou et al., 2016]. We briefly describe the multiple-feature setting, and defer to

Appendix E for details. It is assumed that a feature wi comes with a characteristic, i.e. the form of

variation, chosen among q > 1 characteristics. For N ≥ 1, the observable sample Z1:N = (Z1, . . . ,ZN )

is modeled as a {0, 1}q-valued stochastic process Z =
∑
i≥1Aiδwi , where Ai := (Ai,1, . . . , Ai,q) is a

Multinomial random variable with parameter pi = (pi,1, . . . , pi,q) such that |pi| =
∑

1≤j≤q pi,j < 1,

and the Ai’s are i.i.d. That is, for any i ≥ 1 all the Ai,j ’s are equal to 0 with probability (1 − |pi|),
i.e. wi does not display variation, or only one Ai,j ’s is equal to 1 with probability pi,j , i.e. wi displays

variation with characteristic j. Z is a multivariate Bernoulli process with parameter ζ =
∑
i≥1 piδwi .

The stable-Beta-Dirichlet process prior for ζ is a multivariate generalization of the stable-Beta process

prior [James, 2017], and it leads to a Poisson posterior distribution for the number of unseen features,
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given Z1:N , which depends on Z1:N only through N . In Appendix E we introduce a scaled version of

the stable-Beta-Dirichlet process, and show that it leads to a negative Binomial posterior distribution

for the number of unseen features, which depends on Z1:N through N and the number of distinct

features in Z1:N .

SP priors have been introduced in James et al. [2015] and, to the best of our knowledge, since

then no other works have further investigated such a class of priors. To date, the peculiar predictive

properties of SP priors appear to be unknown in the BNP literature. Our work on the unseen-features

problem is the first to highlight the great potential of SP priors in BNPs, showing that they provide a

critical tool for enriching the predictive structure of the popular CRM priors [James, 2017, Broderick

et al., 2018]. We believe that SPs may be of interest beyond the unseen-features problem, and more

generally beyond the broad class of feature sampling problems. CRM priors, and in particular the

Beta and stable-Beta process priors, have been widely used in several contexts, with a broad range

of applications in topic modeling, analysis of social networks, binary matrix factorization for dyadic

data, analysis of choice behaviour arising from psychology and marketing surveys, graphical models,

and analysis of similarity judgement matrices. See Griffiths and Ghahramani [2011] and references

therein for details. In all these contexts, SP priors may be more effective than CRM priors, as they

allow to better exploit the sampling information in posterior inferences.

Among applications of SP priors beyond features sampling problems, it is worth mentioning the

use of SP priors as hierarchical (or latent) priors in models of unsupervised learning [Griffiths and

Ghahramani, 2011, Section 5], the most popular being Gaussian latent feature modeling. Differently

from features sampling problems, where the values of features’ labels Wis are immaterial, in Gaussian

latent feature modeling the values the Wi’s become material. That is, under the Gaussian latent

feature model with a SP prior, observations are assumed to modeled as a multivariate Gaussian

distribution, whose mean depends on latent features that are modeled with a SP prior, thus making

the values of features’ labels Wi’s of critical importance for the analysis. Bayesian factor analysis

[Knowles and Ghahramani, 2011] provides another context where SP priors may be usefully applied

as hierarchical priors. Within the context of factor analysis, we also mention the work of Ayed and

Caron [2021] with applications to network analysis. There, the authors exploit CRM priors to recover

the latent community structure in a network between individuals, and the features’ labels describe

the level of affiliation of a certain individual to a latent community. In such a context, we believe that

SP priors may be used in place of CRM priors, with the advantage of introducing richer predictive

structure. In this respect, our work paves the way to promising directions of future research, in terms

of both methods and applications.

Acknowledgement

The authors thank Joshua Schraiber for useful discussions. Federico Camerlenghi and Stefano Favaro

received funding from the European Research Council (ERC) under the European Union’s Horizon

2020 research and innovation programme under grant agreement No 817257. Federico Camerlenghi and

Stefano Favaro gratefully acknowledge the financial support from the Italian Ministry of Education,

University and Research (MIUR), “Dipartimenti di Eccellenza” grant 2018-2022. Lorenzo Masoero

18



and Tamara Broderick were supported in part by the DARPA I2O LwLL program, an NSF CAREER

Award, and ONR award N00014-17-1-2072.

A A brief account on completely random measures

In this section we provide a short account on completely random measures (CRMs). For a more

exhaustive treatment refer to Daley and Vere-Jones [2008], Kingman [1992]. Let us denote by W a

Polish space equipped with its Borel σ-field W, and we also indicate by BR+
the Borel σ-field of the

positive real line R+. Denote by MW the space of all bounded and finite measures on (W,W), in other

words µ ∈ MW iff µ(A) < +∞ for any bounded set A ∈ W. The space MW is usually assumed to be

equipped with a proper Borel σ-algebra, which is induced by the so called weak-hash convergence and

denoted here as MW (see Daley and Vere-Jones [2008] for details).

Definition 1. A Completely Random Measure (CRM) µ on (W,W) is a random element defined on a

suitable probability space and taking values in (MW,MW) such that the random variables µ(A1), . . . , µ(An)

are independent for any choice of bounded and disjoint sets A1, . . . , An ∈ W and for any n ≥ 1.

Kingman [1967] proved that a CRM may be decomposed as the sum of three main components:

i) a deterministic drift u, namely a deterministic measure on (W,W); ii) a part with random jumps

(τi)i≥1 at random locations (Wi)i≥1, denoted here as µc =
∑
i≥1 τiδWi ; iii) a component with random

jumps (ηi)i≥1 at fixed locations w1, w2, . . . ∈W. That is to say

µ( · ) = u( · ) + µc( · ) +
∑
i≥1

ηiδwi( · ). (20)

See Daley and Vere-Jones [2008] for a proof.

Following standard practice in the nonparametric literature, in this paper we deal with CRMs

without deterministic drift and without fixed atoms, namely we assume that µ ≡ µc. In this case

µ = µc is characterized through the Lévy-Khintchine representation of its Laplace functional:

E
[
e−

∫
W
f(w)µc(dw)

]
= exp

{
−
∫
R+×W

(1− e−sf(w))ν(ds,dw)

}
, (21)

for any measurable function f : W → R+, where ν is a measure on R+ ×W and it is referred to as

the Lévy intensity of the CRM µc. The measure ν is also required to satisfy the following conditions

ν(R+ × {w}) = 0 ∀w ∈W, and

∫
R+×A

min{s, 1}ν(ds,dw) <∞

for any bounded A ∈ W. The representation (21) is of paramount importance to prove all our poste-

rior results, and it clarifies the pivotal role of ν in the determination of the distributional properties

of µc. Kallenberg [2010] provides a very general decomposition for such a measure ν as follows:

ν(ds,dw) = λw(ds)Λ(dw), where Λ is a σ-finite measure on (W,W) and λw is a transition kernel, i.e.,

w → λw(A) is W-measurable for all Borel sets A ∈ BR+ and A→ λw(A) is a measure on (R+,BR+).

When λw(ds) ≡ λ(ds) does not depend on w ∈ W, we say that the CRM is homogeneous, which is
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tantamount to saying that the atoms Wi’s and the jumps τi’s are independent random variables. In

BNP problems, it is common to suppose that Λ(dw) = αP (dw), where P is a probability measure

on (W,W) and α > 0. Two remarkable examples of CRMs are the σ-stable process, which can be

recovered by choosing λ(ds) = σs−1−σds, and the gamma process, which corresponds to the choice

λ(ds) = e−s/s ds. See also [Lijoi and Prünster, 2010] for additional details and connections with the

BNP literature.

In Section E, we will make use of multivariate CRMs to define a multivariate extension of the

Bernoulli process model, called the Bernoulli process model with a condiment. For this reason we

now specify what we mean for a multivariate CRM. A vector µ = (µ1, . . . , µq) of completely random

measures is said to be a multivariate CRM if the random variables

(µ1(A1), . . . , µq(A1)), . . . , (µ1(An), . . . , µq(An))

are independent for any choice of bounded and disjoint Borel sets A1, . . . , An ∈ W and for any n ≥ 1.

A decomposition similar to the one stated in Equation (20) holds true for multivariate CRMs as well

[Kallenberg, 2010]. In the present paper we focus on multivariate CRMs which are functionals of

marked Poisson point processes on Rq+ ×W, i.e.,

µ =
∑
i≥1

τiδWi ,

where (τi)i≥1 are random jumps in Rq+ and (Wi)i≥1 is a sequence of random atoms in W. Such a

multivariate CRM has the following Lévy-Khintchine representation which generalizes Equation (21):

E[e−
∫
W
f1(w)µ1(dw)−···−

∫
W
fq(w)µq(dw)]

= exp

{
−
∫
W

∫
R
q
+

(1− e−s1f1(w)−···−sqfq(w))ν(q)(ds1, . . . ,dsq,dw)

}
(22)

for arbitrary measurable functions f1, . . . , fd : W→ R+. The intensity measure ν(q) in (22) is required

to simultaneously satisfy

ν(q)(R
q
+ × {w}) = 0 ∀w ∈W

and ∫
R+×A

min{||s||, 1}ν(q)(ds1, . . . ,dsq,dw) <∞,

for any bounded A ∈ W, and having denoted by ||s|| the Euclidean norm of the vector s := (s1, . . . , sq).

In the present paper, we will work with a homogeneous Lévy intensity measure of the following form

ν(q)(ds1, . . . ,dsq,dw) = λ(q)(s1, . . . , sq)ds1 · · · dsqP (dw), where P is a diffuse probability measure on

(W,W) and λ(q) : Rq+ → R+ is measurable. See, e.g., [Kallenberg, 2017] for further details.
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B Posterior analysis for SP priors: proofs and details

In the present section we derive the marginal, posterior and predictive distributions for the Bernoulli

process model under a scaled process prior. Specifically we focus on the following statistical model

throughout the section:

Zn | µ
iid∼ BeP(µ∆1,h

), for n = 1, . . . , N

µ∆1,h
∼ SP(ν, h),

(23)

where µ∆1,h
has been defined at the beginning of Section 2.2. In Subsection B.1 we provide some

lemmas regarding SP priors, then Subsection B.2 is concerned with the Bayesian posterior analysis of

the model in (23).

B.1 Preparatory lemmas

Some preparatory lemmas are required before the posterior analysis. The first lemma provides the

reader with the conditional distribution of µ∆1,h
given ∆1,h.

Lemma 1. Let µ∆1,h
∼ SP(ν, h), governed by the Lévy intensity measure ν(ds,dw) = λ(s)dsP (dw)

on R+ ×W. The conditional distribution of µ∆1,h
, given ∆1,h, equals the one of a CRM on (W,W)

with Lévy intensity

∆1,hλ(∆1,hs)1(0,1)(s)dsP (dw).

Proof. Recall the construction of a SP prior, as detailed in Section 2.2. It starts from an underlying

CRM µ =
∑
i≥1 τiδWi with intensity ν on R+ ×W. Moreover, having denoted by ∆1 > ∆2 > . . . the

decreasingly ordered jumps τi’s of µ, one considers:

µ∆1
=
∑
i≥1

∆i+1

∆1
δWi+1

,

and the SP process is defined by a change of measure of the largest jump ∆1, replaced with the

distribution of ∆1,h. As a consequence it is sufficient to prove that µ∆1
| ∆1 is a CRM with Lévy

intensity

∆1λ(∆1s)1(0,1)(s)dsP (dw). (24)

In order to prove this remind that (∆i)i≥2|∆1 are the points of a Poisson process with Lévy intensity

λ(s)1(0,∆1)(s)ds, thanks to the representation by Ferguson and Klass [1972]. Therefore, the condi-

tional distribution of µ∆1
, given ∆1, may be found by a simple evaluation of the Laplace functional.

To this end, consider a measurable function f : W→ R+ and compute

E[e−
∫
W
f(w)µ∆1 (dw)|∆1] = E

[
e−

∑
i≥1 f(Wi+1)∆i+1/∆1 |∆1

]
= exp

{
−
∫
W

∫ +∞

0

(1− e−f(w)s/∆1)1(0,∆1)(s)λ(s)ds P (dw)

}
= exp

{
−
∫
W

∫ +∞

0

(1− e−f(w)s)1(0,1)(s)λ(s∆1)∆1ds P (dw)

}
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which is exactly the Laplace functional of a CRM having Lévy intensity (24).

We now provide the reader with a sufficient condition to ensure that each Zn in (23) is almost

surely finite, for any n ≥ 1.

Lemma 2. Consider the model in Equation (23). If

E

[∫ 1

0

∆1,hλ(s∆1,h)ds

]
<∞, (25)

then each Zn displays almost surely finitely many features — i.e.
∑
i≥1An,i < ∞, almost surely, for

every n ≥ 1.

Proof. For a fixed n ≥ 1, it is sufficient to show that condition (25) entails

E

[ ∞∑
i=1

An,i

]
<∞.

The expected value in the previous formula may be computed as follows

E

[ ∞∑
i=1

An,i

]
= E

[
E

[ ∞∑
i=1

An,i

∣∣∣∆1,h

]]
= E

[
E[µ∆1,h

(W)|∆1,h]
]

= E

[∫
W

∫ 1

0

s∆1,hλ(∆1,hs)dsP (dw)

]
= E

[∫ 1

0

s∆1,hλ(∆1,hs)ds

]
where we have applied the Campbell theorem [Kingman, 1992] and Lemma 1 to evaluate the total mass

µ∆1,h
(W) of µ∆1,h

. As a consequence, condition (25) is sufficient for the finiteness of the Bernoulli

process Zn.

B.2 Posterior analysis

We start with the marginal distribution of the observations Z1:N induced by the model. Our deriva-

tion closely follows the proof in James [2017]. The marginal distribution is the counterpart of the

“exchangeable feature probability function” (EFPF) for the Indian Buffet Process (IBP; see, e.g.,

Broderick et al. [2013]).

Proposition 5 (Joint marginal distribution). For any N ≥ 1, let Z1:N be a random sample modeled

as the BNP-Bernoulli model (23), where µ∆1,h
∼ SP(ν, h). The probability that the observations

Z1:N display KN = k distinct features, labelled by {W ∗1 , . . . ,W ∗KN }, with corresponding frequencies

(MN,1, . . . ,MN,KN ) = (m1, . . . ,mk), equals

p
(N)
k (m1, . . . ,mk) =

∫ +∞

0

e−
∑N
n=1 φn(a)

k∏
i=1

∫ 1

0

smi(1− s)N−miaλ(as)ds f∆1,h
(a)da,

where φn(a) =
∫ 1

0
s(1− s)n−1aλ(as)ds.
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Proof. From the result showed in Lemma 1, we know that conditionally on a known value of ∆1,h = a,

the random measure µ∆1,h
is completely random. Therefore, we can exploit the result in James [2017,

Proposition 3.1] to characterize the marginal distribution of the feature counts mN,1, . . . ,mN,KN . This

is given by

p
(N)
k (m1, . . . ,mk | ∆1,h = a)

= exp

{
−

N∑
n=1

φn(a)

}
k∏
i=1

{∫ 1

0

smi(1− s)N−miaλ(as)ds

}
,

(26)

with φn(a) =
∫ 1

0
s(1− s)n−1aλ(as)ds. Integrating with respect to f∆1,h

— the mixing distribution of

∆1,h — yields the desired result.

Next, we characterize the posterior distribution of the random measure µ∆1,h
∼ SP(ν, h). The pos-

terior distribution of the law of ∆1,h is an important ingredient in the study of the predictive properties

of the model. We mention that the posterior characterization of Proposition 6 is a consequence of

[James et al., 2015, Propositions 2.2] and the results developed by James [2017].

Proposition 6 (Posterior distribution). For any N ≥ 1, let Z1:N be a random sample modeled as the

BNP-Bernoulli model (23), where µ∆1,h
∼ SP(ν, h). Suppose that the observations Z1:N display KN =

k distinct features, labelled by W ∗1 , . . . ,W
∗
KN

, with corresponding frequencies (MN,1, . . . ,MN,KN ) =

(m1, . . . ,mk), then the conditional distribution of ∆1,h, given Z1:N , has density function

g∆1,h|Z1:N
(a) ∝ exp

{
−

N∑
n=1

φn(a)

}
k∏
i=1

{∫ 1

0

smi(1− s)N−miaλ(as)ds

}
f∆1,h

(a), (27)

with φn(a) =
∫ 1

0
s(1 − s)n−1aλ(as)ds. Moreover, the posterior distribution of the random measure

µ∆1,h
, conditionally given Z1:N and ∆1,h, equals

µ∆1,h
| (∆1,h, Z1:N )

d
= µ′∆1,h

+

KN∑
i=1

JiδW∗i , (28)

where

i. µ′∆1,h
|∆1,h ∼ CRM(ν′∆1,h

) with

ν′∆1,h
(ds,dw) = (1− s)N∆1,hλ(s∆1,h)1(0,1)(s)ds P (dw); (29)

ii. J1:KN are KN independent random jumps and independent of µ′∆1,h
, with density on [0, 1] pro-

portional to

fJi|∆1,h
(s) ∝ (1− s)N−mismi∆1,hλ(∆1,hs). (30)

Proof. Again, leveraging the result showed in Lemma 1, we know that conditionally on a known
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value of ∆1,h, the measure µ∆1,h
is completely random. Therefore, we can simply apply James [2017,

Theorem 3.1] to obtain the posterior distribution of µ∆1,h
|(∆1,h, Z1:N ) as described in Equation (28).

Finally, the posterior distribution of the largest jump ∆1,h conditionally on the observations Z1:N

derived in Equation (27) follows by direct application of Bayes’ theorem, recognizing that f∆1,h
is the

prior distribution for ∆1,h, and the distribution in (26) as the likelihood of the observations Z1:N |∆1,h.

Last, we prove the predictive characterization provided in Proposition 2, which has a pivotal role

in our analysis, as it is the conceptual starting point in order to study the predictive behavior of the

model, and it again follows form [James, 2017].

Proof of Proposition 2. We consider ζ
d
= µ∆1,h

, thus we are dealing with the model (23). The posterior

distribution of ∆1,h in (8) follows from (27), by the argument used in Proposition 6. In order to prove

the characterization in Equation (9), we use once again the fact that conditionally on a known value

of ∆1,h, µ∆1,h
is a completely random measure (see Lemma 1). Thus, we can exploit the results in

[James, 2017] to characterize the predictive distribution of ZN+1 given the sample Z1:N and the jump

∆1,h. More specifically the form of the predictive distribution in (9) follows by a plain application of

James [2017, Proposition 3.2].

C Posterior analysis for SB-SP priors: proofs and details

Here we provide details and proofs of the results in Section 3.1, i.e. a full Bayesian analysis for

the SB-SP prior. More specifically we prove Theorem 1, then we move to characterize the posterior

distribution of ∆1,hc,β , marginal, predictive and posterior distributions of the SB-SP model.

C.1 Proof of Theorem 1

The posterior density of ∆1,h, given Z1:N , has density proportional to

N∏
n=1

e−φn(a)
KN∏
i=1

∫ 1

0

smN,i(1− s)N−mN,iaλ(as)ds f∆1,h
(a),

where we used the notation φn(a) =
∫ 1

0
s(1− s)n−1aλ(as)ds. Hence, there exists a normalizing factor

c(mN,1, . . . ,mN,k, N,KN ), depending on the sample size N , the distinct number of features KN and

the frequency counts, such that

g∆1,h|Z1:N
(a) =

∏N
n=1 e

−φn(a)
∏KN
i=1

∫ 1

0
smN,i(1− s)N−mN,iaλ(as)ds f∆1,h

(a)

c(mN,1, . . . ,mN,KN , N,KN )
,
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or equivalently we can write

g−1
∆1,h|Z1:N

(a)

N∏
n=1

e−φn(a)
KN∏
i=1

∫ 1

0

smN,i(1− s)N−mN,iaλ(as)ds f∆1,h
(a)

= c(mN,1, . . . ,mN,KN , N,KN ).

(31)

If the posterior density g∆1,h|Z1:N
(a) does not depend on mN,1, . . . ,mN,KN , then the function

g−1
∆1,h|Z1:N

(a)

N∏
n=1

e−φn(a) g(a) = f1(a,KN , N)

depends only on KN , N and a, but not on the frequency counts. Therefore, (31) boils down to

f1(a,KN , N) ·
KN∏
i=1

∫ 1

0

smN,i(1− s)N−mN,iaλ(as)ds = c(mN,1, . . . ,mN,KN , N,KN ). (32)

As a consequence, the function on the right hand side of (32) is independent of a, for any choice of

the vector (mN,1, . . . ,mN,KN , N,KN ). Now we consider mN,1 = · · · = mN,KN = m > 0, and we can

say that the function [
w(a,KN , N)

∫ 1

0

sm(1− s)N−maλ(as)ds

]KN
(33)

does not depend on a ∈ R+, where w(a,KN , N) = KN

√
f1(a,KN , N). We now select m = N , thus

the function

w(a,KN , N)

∫ 1

0

sNaλ(as)ds (34)

does not depend on a ∈ R+. Note that, since f∆1,h
and λ are functions of class C1(R+), i.e., derivable

with continuous derivative, also w is in class C1(R+) with respect to the variable a. Thus, we can

take the derivative of (34), and this is equal to 0:

d

da
w(a,KN , N)

∫ a

0

sNλ(s)dsa−N −Na−N−1w(a,KN , N)

∫ a

0

sNλ(s)ds+ w(a,KN , N)λ(a) = 0

which is an ordinary differential equation in w, and it can be easily solved by separation of variables,

thus obtaining

w(a,KN , N) = aN · R∫ a
0
sNλ(s)ds

where R > 0 is a suitable constant independent of a. As a consequence, the function in (33) equals

[
R∫ 1

0
sNλ(as)ds

·
∫ 1

0

sm(1− s)N−mλ(as)ds

]KN
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and this is independent of a ∈ R+. It is possible to choose m = N − 1 in the previous function, and

we can state that ∫ 1

0

sN−1λ(as)ds−
∫ 1

0

sNλ(as)ds = C

∫ 1

0

sNλ(as)ds

where C is constant with respect to a. If one takes the derivative of the previous equation two times

with respect to a, then she obtains

λ(a)(1−NC) = aλ′(a)C,

which is an ordinary differential equation in λ that can be solved by separation of variables. In

particular we get the following result

λ(a) = αa(1−NC)/C , for α > 0. (35)

The exponent of a in (35) should satisfy∫ +∞

0

min{1, a}λ(a)da < +∞,

from which it is easy to realize that −2 < (1−NC)/C < −1, hence

λ(a) = α
1

a1+σ

where α > 0 and σ ∈ (0, 1). The reverse implication of the theorem is trivially true, hence the proof

is completed.

C.2 Detailed derivation of the distribution of ∆1,hc,β

We first derive explicitly the distribution of the largest jump given in Equation (6). This follows from

direct application of the law of the largest jump,

F∆1
(da) = exp

{
−
∫ ∞
a

λσ(s)ds

}
λσ(a)da

when the Lévy measure is

λσ(s)ds = σs−σ−11R+
(s)ds.

Having denoted by f∆1
the density function of F∆1

, we get

f∆1
(a) = λσ(a)e−Λ(a)1R+

(a) = σa−σ−1 exp

{
−
∫ ∞
a

σu−1−σdu

}
1R+

(a)

= σa−σ−1e−a
−σ
1R+(a).

From direct inspection, we recognize that this is the density function of ∆1 = T−1/σ, where T is a

Gamma with parameters (1, 1). The mixing measure is then obtained by tilting the density f∆1
as
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follows:

f∆1,hc,β
(a) ∝ f∆1

(a)hc,β(a) = σa−σ(c+1)−1 exp
{
−βa−σ

}
1R+

(a),

i.e. letting

hc,β(a) ∝ a−σc exp
{
−(β − 1)a−σ

}
.

By integration, we get the normalizing constant:∫ ∞
0

a−σ(c+1)−1 exp
{
−βa−σ

}
da =

Γ(c+ 1)

σβc+1
.

from which

f∆1,hc,β
(a) =

σβc+1

Γ(c+ 1)
a−σ(c+1)−1 exp

{
−βa−σ

}
1R+

(a). (36)

C.3 Posterior distribution of SB-SP priors

Here we characterize the posterior distribution of SB-SP priors: the result is not included in the paper,

but we think it is useful to have a full picture on SB-SP priors from a Bayesian viewpoint.

Proposition 7. For N ≥ 1 let Z1:N be a random sample modeled as the BNP-Bernoulli model (1),

with ζ ∼ SB-SP(σ, c, β). If Z1:N displays KN = k distinct features {W ∗1 , . . . ,W ∗KN }, each feature W ∗i
appearing exactly MN,i = mi times in the samples, then the conditional distribution of ∆1,hc,β , given

Z1:N , has a density function of the form

g∆1,hc,β
|Z1:N

(a) = σ
(β + γ

(N)
0 )k+c+1

Γ(k + c+ 1)
a−kσ−(c+1)σ−1 exp{−a−σ(β + γ

(N)
0 )}, (37)

where γ
(n)
0 = σ

∑
1≤i≤nB(1− σ, i), with B(·, ·) denoting the (standard) Beta function. Moreover, the

conditional distribution of ζ, given (∆1,hc,β , Z1:N ), coincides with the distribution of

ζ | (∆1,hc,β , Z1:N )
d
= µ′∆1,hc,β

+

KN∑
i=1

JiδW∗i , (38)

where:

i) µ′∆1,hc,β
is a discrete random measure such that µ′∆1,hc,β

|∆1,hc,β ∼ CRM(ν′∆1,hc,β
), with ν′∆1,hc,β

being

ν′∆1,hc,β
(ds, dw) = ∆−σ1,∆1,hc,β

(1− s)Nσs−1−σ1(0,1)(s)dsP (dw); (39)

ii)

Ji|∆1,hc,β ∼ Beta(mi − σ,N −mi + 1), (40)

where Beta denotes the beta distribution.

Proof. We apply Proposition 6, which describes the general posterior distribution of a SP process. We

first compute the posterior distribution (8) of the largest jump conditionally on observations Z1:N .
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To do so we specify (27) in our case, and we first compute the exponent φn(a). In our case the Lévy

density equals λσ(s) = σs−σ−1 and the mixing density of ∆1,hc,β is provided in Equation (36), thus

the exponent φn takes the form

φn(a) = σ

∫ 1

0

s(1− s)n−1a−σs−σ−1ds = σa−σB(1− σ, n). (41)

Recalling the shorthand notation γ
(N)
0 = σ

∑
1≤n≤N B(1− σ, n), the posterior distribution of ∆1,hc,β

is then proportional to

ak exp
{
−a−σγ(N)

0

} k∏
i=1

∫ 1

0

tmi(1− t)N−miλσ(at)dt f∆1,hc,β
(a)

∝ a−σ(k+c+1)−1 exp
{
−a−σ

[
β + γ

(N)
0

]}
,

where f∆1,hc,β
has been specified in (36). As a consequence we get

∆−σ1,hc,β
| Z1:N ∼ Gamma

(
k + c+ 1, β + γ

(N)
0

)
,

which corresponds to the posterior density in (37). The characterization of the posterior distribution

in (38) is an easy consequence of Proposition 6, by a specialization of this result with the choice

λ(s) = λσ(s) = σs−σ−1 for the underlying Lévy intensity.

C.4 Proof of Proposition 3

The predictive characterization is a simple consequence of the general characterization in Proposition

2 with the SB-SP specifications λ(s) = λσ(s) = σs−σ−1.

C.5 Proof of Proposition 4

We apply Proposition 5 to obtain the marginal distribution for the SB-SP prior. Conditionally on

∆1,hc,β = a, using the form φn(a) derived in (41), the marginal distribution is given by

p
(N)
k (m1, . . . ,mk | ∆1,hc,β = a) = (σa−σ)k exp

{
−a−σγ(N)

0

} k∏
i=1

∫ 1

0

smi−σ−1(1− s)N−mids,

that may be written in terms of the Beta function as follows

p
(N)
k (m1, . . . ,mk | ∆1,hc,β = a) = (σa−σ)k exp

{
−a−σγ(N)

0

} k∏
i=1

B(mi − σ,N −mi + 1).
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Last, we obtain the marginal distribution in Equation (10) by randomizing with respect to the mixing

distribution of the largest jump given in Equation (36). We need to compute

p
(N)
k (m1, . . . ,mk) =

∫ ∞
0

p
(N)
k (m1, . . . ,mk | ∆1,hc,β = a)f∆1,hc,β

(a)da

=
σk+1βc+1

Γ(c+ 1)

k∏
i=1

B(mi − σ,N −mi + 1)

×
∫ ∞

0

a−σ(k+c+1)−1 exp
{
−a−σ

[
β + γ

(N)
0

]}
da

=
σkβc+1

(β + γ
(N)
0 )k+c+1

Γ(k + c+ 1)

Γ(c+ 1)

k∏
i=1

B(mi − σ,N −mi + 1),

and the thesis now follows.

D Estimation of the unseen features via SB-SP priors: proofs

Here we detail the proofs of Section 3.2, which is devoted to the unseen-features problem under the

SB-SP prior.

D.1 Proof of Theorem 2

We first focus on the proof of (13), i.e. the posterior distribution of U
(M)
N . In order to do this we

exploit the predictive characterization provided in Proposition 3 to evaluate the probability generating

function (PGF) of the random variable U
(M)
N a posteriori, conditionally on the sample Z1:N . We denote

the PGF as G
U

(M)
N

( · ). If t belongs to a neighborhood of the origin, then one has

G
U

(M)
N

(t) = E
[
tU

(M)
N | Z1:N

]
= E

[
E
[
tU

(M)
N | Z1:N ,∆1,hc,β

]
| Z1:N

]
(42)

where we have applied the tower property of the conditional expectation. We now observe that,

conditionally on Z1:N and ∆1,hc,β , the random variable U
(M)
N may be represented as

U
(M)
N |(Z1:N ,∆1,hc,β )

d
=
∑
i≥1

1

(
M∑
m=1

A′N+m,i > 0

)
,

where we used the representation given in Proposition 3. Here, independently across i, A′N+m,i is

a Bernoulli random variable with parameter ρ′i, conditionally on the random measure µ′∆1,hc,β
=∑

i≥1 ρ
′
iδW ′i with Lévy intensity σ∆−σ1,hc,β

(1− s)Ns−1−σ1(0,1)(s)dsP (dw). We now focus on the eval-
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uation of the expected value in Equation (42):

E
[
tU

(M)
N | Z1, . . . , ZN ,∆1,hc,β

]
= E

E
∏
i≥1

(
(t− 1)1

{
M∑
m=1

A′N+m,i > 0

}
+ 1

)∣∣∣µ′∆1,hc,β


= E

∏
i≥1

[
(t− 1)P

(
M∑
m=1

A′N+m,i > 0 | µ′∆1,hc,β

)
+ 1

]
= E

∏
i≥1

[
(t− 1)

{
1−

M∏
m=1

P(A′N+m,i = 0 | µ′∆1,hc,β
)

}
+ 1

] ,
where we applied the independence of the Bernoulli random variables A′N+m,is, conditionally on

µ′∆1,hc,β
. We now recall that µ′∆1,hc,β

is a CRM with a known Lévy measure and that the A′N+m,is

are Bernoulli with parameter ρ′i to obtain

E
[
tU

(M)
N | Z1, . . . , ZN ,∆1,hc,β

]
= E

∏
i≥1

((t− 1)(1− (1− ρ′i)M ) + 1)


= E

exp

∑
i≥1

log
[
(t− 1)(1− (1− ρ′i)M ) + 1

]


= exp

{
−(1− t)

∫ 1

0

(1− (1− s)M )(1− s)N∆−σ1,hc,β
σs−1−σds

}
.

= exp
{
−(1− t)∆−σ1,hc,β

γ
(M)
N

}
,

where we used the identity

∫ 1

0

[
1− (1− s)M

]
(1− s)Ns−1−σds =

M∑
m=1

B(1− σ,N +m).

We replace this expression in Equation (42) to obtain

G
U

(M)
N

(t) = E[exp{−(1− t)∆−σ1,hc,β
γ

(M)
N } | Z1:N ]. (43)
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The results now follows by integrating with respect to the posterior distribution of ∆−σ1,hc,β
, given in

Equation (37):

G
U

(M)
N

(t) =
(β + γ

(N)
0 )KN+c+1

Γ(KN + c+ 1)

∫ ∞
0

exp
{
−(1− t)γ(M)

N x
}
xKN+ce−(β+γ

(N)
0 )xdx

=
(β + γ

(N)
0 )KN+c+1

Γ(KN + c+ 1)

Γ(KN + c+ 1)

(β + γ
(N)
0 + (1− t)γ(M)

N )KN+c+1

=

(
β + γ

(N)
0

β + γ
(N+M)
0 − tγ(M)

N

)KN+c+1

=

(
1− p(M)

N

1− tp(M)
N

)KN+c+1

,

for any |t| < 1/p
(M)
N , where p

(M)
N := γ

(M)
N /(β + γ

(N+M)
0 ) ≤ 1. This is the probability generating

function of a negative binomial distribution where KN + c+ 1 is the number of failures, and p
(M)
N is

the success probability in each experiment.

We now apply similar arguments to derive the posterior distribution of U
(M,r)
N , provided in

(14). Again, we calculate the probability generating function of U
(M,r)
N a posteriori, denoted here

as G
U

(M,r)
N

( · ). If t belongs to a neighborhood of the origin, then one has

G
U

(M,r)
N

(t) = E
[
tU

(M,r)
N | Z1:N

]
= E

[
E
[
tU

(M,r)
N | Z1:N ,∆1,hc,β

]
| Z1:N

]
. (44)

It is now easy to see that, conditionally on Z1, . . . , ZN ,∆1,hc,β , the random variable U
(M,r)
N may be

written as

U
(M,r)
N |Z1, . . . , ZN ,∆1,hc,β

d
=
∑
i≥1

1

{
M∑
m=1

A′N+m,i = r

}

by applying Proposition 3. With the same notation used in the first part of the proof, we recall

that the A′N+m,is are independent Bernoulli variables with parameters ρ′i, conditionally on the CRM

µ′∆1,hc,β
=
∑
i≥1 ρ

′
iδW ′i with Lévy intensity σ∆−σ1,hc,β

(1 − s)Ns−1−σ1(0,1)(s)dsP (dw). Across i, the

random variables

SM,i :=

M∑
m=1

A′N+m,i

are independent, each one distributed as a binomial with parameters M and success probability ρ′i.

We then evaluate the expected value appearing in (44) as follows:

E
[
tU

(M,r)
N | Z1:N ,∆1,hc,β

]
= E

E
∏
i≥1

(
(t− 1)1

{
M∑
m=1

A′N+m,i = r

}
+ 1

)∣∣∣µ′∆1,hc,β


= E

∏
i≥1

[
(t− 1)P(SM,i = r | µ′∆1,hc,β

) + 1
]

= E

∏
i≥1

[
(t− 1)

(
M

r

)
(ρ′i)

r(1− ρ′i)M−r + 1

] .
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Since µ′∆1,hc,β
is a CRM with a known Lévy measure, we can evaluate the previous expected value:

E
[
tU

(M,r)
N | Z1, . . . , ZN ,∆1,hc,β

]
= E

exp

∑
i≥1

log

(
(t− 1)

(
M

r

)
(ρ′i)

r(1− ρ′i)M−r + 1

)


= exp

{
−(1− t)

(
M

r

)∫ 1

0

sr−σ−1(1− s)M+N−rdsσ∆−σ1,hc,β

}
= exp

{
−(1− t)∆−σ1,hc,β

σ

(
M

r

)
B(r − σ,M +N − r + 1)

}
= exp

{
−(1− t)∆−σ1,hc,β

ρ
(M,r)
N

}
,

where we used the notation introduced in the statement of the theorem, i.e. ρ
(M,r)
N = σ

(
M
r

)
B(r −

σ,M+N−r+1). Then the probability generating function in Equation (44) is obtained by integrating

with respect to the posterior distribution of the largest jump provided in (37):

G
U

(M,r)
N

(t) =

∫ ∞
0

exp
{
−(1− t)xρ(M,r)

N

}
· (β + γ

(N)
0 )KN+c+1

Γ(KN + c+ 1)
xKN+ce−(β+γ

(N)
0 )xdx

=
Γ(KN + c+ 1)

(β + γ
(N)
0 + (1− t)ρ(M,r)

N )KN+c+1
· (β + γ

(N)
0 )KN+c+1

Γ(KN + c+ 1)

=

(
β + γ

(N)
0

β + γ
(N)
0 + ρ

(M,r)
N − tρ(M,r)

N

)K+c+1

=

(
1− p(M,r)

N

1− tp(M,r)
N

)KN+c+1

for any |t| < 1/p
(M,r)
N , where we have set

p
(M,r)
N :=

ρ
(M,r)
N

β + ρ
(M,r)
N + γ

(N)
0

.

Then we conclude that the posterior distribution of U
(M,r)
N is a negative binomial distribution where

KN + c+ 1 is the number of failures, and p
(M,r)
N is the success probability in each experiment.

D.2 Proof of Theorem 3

In order to prove this result, we first exploit the Lévy continuity theorem, to obtain a convergence in

distribution, and later strengthen this result to show that the convergence holds true also in the almost-

sure sense. For the convergence in distribution, thanks to Theorem 2, the characteristic function of

U
(M)
N /Mσ | Z1:N is given by

Φ
U

(M)
N /Mσ (t) =

(
1− p(M)

N

1− p(M)
N eit/Mσ

)KN+c+1
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where t ∈ R, KN is the number of distinct features in Z1:N and p
(M)
N = γ

(M)
N /(γ

(N)
0 + γ

(M)
N + β). The

quantity above can be rewritten as

Φ
U

(M)
N /Mσ (t) =

(
β + γ

(N)
0

β + γ
(N)
0 + γ

(M)
N − γ(M)

N eit/Mσ

)KN+c+1

.

We can exploit Masoero et al. [2021, Lemma 1] to determine the asymptotic expansion γ
(M)
N =

MσΓ(1−σ)(1 +O(M−σ)) as M → +∞, having used the big-O notation. Thus, using the asymptotic

expansion of the exponential function, one has

Φ
U

(M)
N /Mσ (t) =

(
β + γ

(N)
0

β + γ
(N)
0 + γ

(M)
N − γ(M)

N (1 + itM−σ +O(M−2σ))

)KN+c+1

=

(
β + γ

(N)
0

β + γ
(N)
0 − γ(M)

N itM−σ +O(M−σ)

)KN+c+1

=

(
β + γ

(N)
0

β + γ
(N)
0 − itΓ(1− σ) +O(M−σ)

)KN+c+1

which converges to the characteristic function of a gamma random variable with parameters (KN +

c+ 1, (γ
(N)
0 + β)/Γ(1− σ)) as M → +∞. This proves that

U
(M)
N /Mσ | Z1:N

d→WN , where WN ∼ Gamma

(
KN + c+ 1,

β + γ
(N)
0

Γ(1− σ)

)
.

In order to prove convergence in the almost sure sense, we exploit the corresponding results proved

for the stable beta-Bernoulli process in Masoero et al. [2021, Theorem 2] for the statistic U
(M)
N . We

first notice that if we condition on the value of the largest jump ∆1,hc,β , then the SB-SP-Bernoulli

is a completely random measure whose asymptotic behavior is analogous to the stable beta-Bernoulli

process. Thus, specializing the almost sure convergence results given in Masoero et al. [2021, Theorem

2], a posteriori, we have

P

(
lim

M→+∞

U
(M)
N

Mσ
= a−σΓ(1− σ)

∣∣∣Z1:N ,∆1,hc,β = a

)
= 1. (45)

The probability limit for the model in which the largest jump is random is obtained by observing that

P

(
lim

M→+∞

U
(M)
N

Mσ
= ∆−σ1,hc,β

Γ(1− σ)
∣∣∣Z1:N

)

= E

[
P

(
lim

M→+∞

U
(M)
N

Mσ
= ∆−σ1,hc,β

Γ(1− σ)
∣∣∣Z1:N ,∆1,hc,β

)∣∣∣Z1:N

]
(45)
= 1,

33



in other words U
(M)
N /Mσ converges almost surely to the random variable ∆−σ1,hc,β

Γ(1−σ), with respect

to the conditional probability P given Z1:N . Note also that the posterior distribution of ∆−σ1,hc,β
Γ(1−σ)

is a Gamma with parameters (
KN + c+ 1,

β + γ
(N)
0

Γ(1− σ)

)
,

thus the a.s. convergence in (17) now follows.

We proceed along the same lines as to show the validity of (18). First, we show the convergence in

distribution of U
(M,r)
N using the characteristic function, and then we show that the result also holds

in an almost sure sense. From Theorem 2, the characteristic function of U
(M,r)
N /Mσ | Z1:N is given by

Φ
U

(M,r)
N /Mσ (t) =

(
1− p(M,r)

N

1− p(M,r)
N eit/Mσ

)KN+c+1

where t ∈ R, and p
(M)
N = ρ

(M,r)
N /(γ

(N)
0 + ρ

(M,r)
N + β), and ρ

(M,r)
N was defined in the statement of

Theorem 2. The expression above is equivalent to

Φ
U

(M,r)
N /Mσ (t) =

(
β + γ

(N)
0

β + γ
(N)
0 + ρ

(M,r)
N (1− eit/Mσ )

)KN+c+1

.

Thanks to the well-known asymptotic relation for the ratio of gamma functions, it is easy to see that

ρ
(M,r)
N =

σ

r!
Γ(r − σ)(r − σ)

Γ(M + 1)

Γ(M + 1− r)
Γ(N +M + 2− r)
Γ(N +M + 2− σ)

=
σ

r!
Γ(r − σ)Mσ(1 +O(M−1))

as M → +∞. Hence, the characteristic function under study boils down to

Φ
U

(M,r)
N /Mσ (t) =

(
β + γ

(N)
0

β + γ
(N)
0 + σΓ(r − σ)(r!)−1M−σ(1 +O(M−1))(1− eit/Mσ )

)KN+c+1

=

(
β + γ

(N)
0

β + γ
(N)
0 − σΓ(r − σ)(r!)−1it+O(M−σ)

)KN+c+1

which converges, as M → +∞, to the characteristic function of a gamma random variable with

parameters as in the thesis. The almost sure statement of (18) goes along similar lines, indeed one

can exploit the convergence theorems proved by Masoero et al. [2021] to state that

P

(
lim

M→+∞

U
(M,r)
N

Mσ
=
σ(1− σ)(r−1)

r!
∆−σ1,hc,β

Γ(1− σ)
∣∣∣Z1:N ,∆1,hc,β

)
= 1.

Exactly as before, one can conclude that

P

(
lim

M→+∞

U
(M,r)
N

Mσ
=
σ(1− σ)(r−1)

r!
∆−σ1,hc,β

Γ(1− σ)
∣∣∣Z1:N

)
= 1,
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where the posterior distribution of the limiting random variable is a gamma with the same parameters

as in the statement of the theorem (Equation (18)).

E Multivariate extension

In the present section we discuss the multivariate version of the Bernoulli process, which we call the

Bernoulli process with a condiment or the simple multinomial process, using the terminology of James

[2017]. We first revise the model of James [2017] and the associated prior, called stable-Beta-Dirichlet

process, then we move to introduce a new scaled prior for the model. In both the cases, we determine

closed-form results to face prediction of new features with condiments. These models are extremely

important in genomics to account for the presence of variants at certain genomic loci with a specific

characteristic (or condiment). See, e.g., Lee et al. [2016].

E.1 Bernoulli process with a condiment

The IBP process with a condiment has been introduced by James [2017] and we remind the definition

here. For q = 1, 2, . . ., we define the vector of probabilities p = (p1, . . . , pq) taking values in the

following set

Sq = {s := (s1, . . . , sq) : sj > 0 as j = 1, . . . , q, |s| :=
q∑
j=1

sj < 1}

where for a generic vector s, |s| =
∑q
j=1 sj denotes the L1 norm of the vector. For a fixed vector p ∈ Sq,

we also define the simple multinomial distribution M(1,p). A vector A = (A1, . . . , Aq) ∈ {0, 1}q is

said to have the simple multinomial distribution with parameter vector p iff it has the following

probability mass function

P(A = a) = P(A1 = a1, . . . , Aq = aq) =

{ ∏q
j=1 p

aj
j · (1− |p|)1−|a| if |a| ≤ 1

0 if |a| > 1

and we will write A ∼ M(1,p). In other words A concentrates on the vectors of {0, 1}q for which at

most one element is equal to 1 and all the other entries are zero.

The Bernoulli process with a condiment assumes that each observation Z is a multivariate {0, 1}q-
valued stochastic process

Z(w) =
∑
i≥1

Aiδwi(w)

where (wi)i≥1 are features in W and (Ai)i≥1 are independent simple multinomial random variables

with parameter vector pi = (pi,1, . . . , pi,q) as i = 1, 2, . . .. Here |pi| represents the probability that

an individual displays feature wi, while pi,j is the probability that the individual exhibits feature

wi with condiment j ∈ {1, . . . , q}. Thus, Z is termed a simple mutlinomial process with parameter

ζ =
∑
i≥1 piδwi , and it is denoted by MP(ζ). In order to carry out BNP inference, we need to specify
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a distribution for the discrete measure ζ. Thus, we obtain a multivariate version of the model (1):

Zn|ζ
iid∼ MP(ζ) n = 1, . . . , N

ζ ∼ Z
(46)

where Z denotes the distribution of the discrete random measure ζ.

E.2 Priors based on multivariate CRMs

In this section we consider a class of priors Z in (46) defined by James [2017] and based on a mul-

tivariate extension of CRMs (see Daley and Vere-Jones [2008]). In particular consider a multivariate

CRM on W:

µ =
∑
i≥1

ρiδWi

where ρi = (ρi,1, . . . , ρi,q) is a vector of [0, 1]-valued random jumps with the property
∑
i≥1 |ρi| < +∞,

the Wi’s are i.i.d. W-valued random locations independent of the ρi’s. Under this nonparametric

prior each observation Zn in (46) admits the representation Zn|µ =
∑
i≥1An,iδWi

, where An,i =

(An,i,1, . . . , An,i,q)|µ
ind∼ M(1,ρi). Note that the random measure µ equals the vector of random

measures (µ1, . . . , µq), where

µj =
∑
i≥1

ρi,jδWi , j = 1, . . . , q.

As a simple CRM of Section A, the multivariate extension of a CRM is characterized by its Lévy-

Khintchine representation:

E[e−
∫
W
f1(w)µ1(dw)−···−

∫
W
fq(w)µq(dw)]

= exp

{
−
∫
W

∫
R
q
+

(1− e−s1f1(w)−···−sqfq(w))λ(q)(s1, . . . , sq)ds1 · · · dsqP (dw)

}

for arbitrary measurable functions f1, . . . , fd : W → R+, where P is a probability measure on W.

The multivariate Lévy intensity λ(q) is assumed to satisfy the integral condition∫
R
q
+

min{1, ||s||}λ(q)(s1, . . . , sq)ds1 · · · dsq < +∞

where ||s|| is the Euclidean norm of the vector s. When λ(q)(s1, . . . , sq) concentrates on Sq, the law

of µ may be employed as a distribution for the parameter ζ of the simple multinomial process in (46).

A possible choice indicated by James [2017] is to select a stable-Beta-Dirichlet process, which is a

generalization of the Beta-Dirichlet process [Kim et al., 2012] with power law behavior. We say that a

multivariate CRM µ = (µ1, . . . , µq) is a stable-Beta-Dirichlet process with parameters (α, κ+α;γ;ϑ),

where γ = (γ1, . . . , γq), if it is characterized by the following Lévy intensity specification

λ(q)(s) =
ϑΓ(|γ|)∏q
j=1 Γ(γj)

|s|−α−|γ|(1− s)κ+α−1

q∏
j=1

s
γj−1
j 1[0,1](|s|), s ∈ Sq (47)
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where 0 ≤ α < 1, κ > −α, ϑ > 0 and γj > 0 for any j = 1, . . . , q. We write µ ∼ mSBD(α, κ+ α;γ;ϑ)

to denote the distribution of the stable-Beta-Dirichlet process. As emphasized by James [2017], it

can be easily checked, by means of the Laplace functional, that
∑q
j=1 µj is a stable-Beta process

of Teh and Gorur [2009], i.e. a simple CRM on W with Lévy intensity on [0, 1] × W equal to

ϑs−α−1(1− s)κ+α−1dsP (dw).

E.2.1 Estimation of the unseen features with a condiment

In order to face predictive inference with the model (46) under the prior specification ζ ∼ mSBD(α, κ+

α;γ;ϑ), we need to characterize the predictive distribution of ZN+1|Z1:N for the model (46). To this

end it is worth recalling the definition of the finite-dimensional Beta-Dirichlet distribution by Kim

et al. [2012]. A random vector P := (P1, . . . , Pq) on Sq is said to follow a Beta-Dirichlet distribution

with positive parameters α, κ and γ = (γ1, . . . , γq) if the probability density function of the random

vector (P1, . . . , Pq) has density proportional to

|s|α−|γ| · (1− |s|)κ−1

q∏
j=1

s
γj−1
j · 1Sq (s) (48)

and we write (P1, . . . , Pq) ∼ BD(α, κ;γ). This distribution can be characterized as follows: |P | has

a Beta distribution with parameters (α, κ) and the normalized vector (P1/|P |, . . . , Pq/|P |) follows a

Dirichlet distribution with parameters (γ1, . . . , γq).

We first characterize the distribution of ZN+1|Z1:N under the prior specification ζ ∼ mSBD(α, κ+

α;γ;ϑ) in (46). The following result is immediate from the theory developed by James [2017].

Theorem 4. For any N ≥ 1, let Z1:N be a random sample modeled as the BNP multinomial process

model (46), with ζ ∼ mSBD(α, κ + α;γ;ϑ). If Z1:N displays KN = k distinct features, labeled by

W ∗1 , . . . ,W
∗
KN

, with condiment-specific frequencies (MN,1,j , . . . ,MN,KN ,j) = (m1,j , . . . ,mk,j), for any

j = 1, . . . , q, then the conditional distribution of ZN+1, given Z1:N , coincides with the distribution of

ZN+1|Z1:N
d
= Z ′N+1 +

KN∑
i=1

AN+1,iδW∗i (49)

where:

i) Z ′N+1 is such that Z ′N+1 =
∑
i≥1A

′
N+1,iδW ′i ∼ MP(µ′) and µ′ ∼ mSBD(α, κ+M + α;γ;ϑ);

ii) AN+1,1:KN is a collection of independent simple multinomial random variables with respective

parameters J1:KN , such that each Ji = (J1, . . . , Jq) has a Beta-Dirichlet distribution, i.e., Ji
ind∼

BD(mi−α,N−mi+κ+α;γ+mi), where we put mi := (mi,1, . . . ,mi,q) and mi =
∑q
j=1mi,j =

|mi| for any i = 1, . . . ,KN .

Note that in Theorem 4 MN,i,j is the random number of times feature W ∗i has been observed out

of Z1:N with condiment j ∈ {1, . . . , q}, while mi =
∑q
j=1mi,j is the number of times feature W ∗i has

been observed out of the sample.
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For any N ≥ 1, let Z1:N be an observable sample modeled as the multinomial model in (46),

with ζ ∼ mSBD(α, κ + α;γ;ϑ). Moreover, under the same model, for M ≥ 1 let ZN+1:N+M =

(ZN+1, . . . ,ZN+M ) be an additional and unobserved sample. We now define the number of hitherto

unobserved feature with condiment ` ∈ {1, . . . , q} that will be recorded out of ZN+1:N+M as

U
(M)
N,` :=

∑
i≥1

1

(
M∑
m=1

Am,i,` > 0

)
· 1

(
N∑
n=1

An,i,` = 0

)
. (50)

Posterior inference for such a quantity could have potential interest in genomics to account for the

presence of a variant with certain biological characteristics (condiment). The next theorem provides

the posterior distribution of U
(M)
N,` .

Theorem 5. For any N ≥ 1, let Z1:N be a random sample modeled as the BNP simple multino-

mial process model (46), with ζ ∼ mSBD(α, κ + α;γ;ϑ). Suppose that Z1:N displays KN = k dis-

tinct features, labeled by W ∗1 , . . . ,W
∗
KN

, with condiment-specific frequencies (MN,1,j , . . . ,MN,KN ,j) =

(m1,j , . . . ,mk,j), for any j = 1, . . . , q. Then, the posterior distribution of U
(M)
N,` , given Z1:N , coincides

with the distribution of

U
(M)
N,` |Z1:N ∼ Poisson

(
ϑ

M∑
m=1

(−1)m+1

(
M

m

)
B(m− α,N + α+ κ)

(γ`)m
(|γ|)m

)
(51)

Proof. The proof is based on the posterior characterization provided in Theorem 4 and the evaluation

of the probability generating function of the random variable U
(M)
N,` , conditionally on the sample Z1:N .

The probability generating function is denoted as usual by G
U

(M)
N,`

( · ). Thanks to the characterization

(49), conditionally on Z1:N , the random variable U
(M)
N,` may be written as

U
(M)
N,` |Z1:N

d
=
∑
i≥1

1

(
M∑
m=1

A′m+N,i,` > 0

)
.

Fix t in a neighborhood of the origin, then one has

G
U

(M)
N,`

(t) = E
[
tU

(M)
N,` | Z1:N

]
. (52)

Here, independently across i, A′N+m,i,` is a Bernoulli random variable with parameter ρ′i,`, condi-

tionally on the random measure µ′ =
∑
i≥1 ρ

′
iδW ′i with Lévy intensity λ′(q)(s)ds1 · · · dsqP (dw) such

that

λ′(q)(s) =
ϑΓ(|γ|)∏q
j=1 Γ(γj)

|s|−α−|γ|(1− s)N+κ+α−1

q∏
j=1

s
γj−1
j 1[0,1](|s|), s ∈ Sq. (53)
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Thus, the expected value in (52) boils down to

G
U

(M)
N,`

(t) = E
[
t
∑
i≥1 1(

∑M
m=1 A

′
m+N,i,`>0)

]
= E

∏
i≥1

E
[
t1(

∑M
m=1 A

′
m+N,i,`>0) | µ′

]
= E

∏
i≥1

(
t+ (1− t)

M∏
m=1

P(A′m+N,i,` = 0|µ′)

)
= E

∏
i≥1

(t+ (1− t)(1− ρ′i,`)M )

 .

where we used the fact that each A′m+N,i,` is a Bernoulli random variable with parameter ρ′i,`, con-

ditionally on the random measure µ′, and in addition these random variables are conditionally inde-

pendent. We now exploit the Laplace functional of the multivariate CRM µ′ to obtain

G
U

(M)
N,`

(t) = E

exp

∑
i≥1

log(t+ (1− t)(1− ρ′i,`)M )




= exp

{
−(1− t)

∫
Sq

[1− (1− s`)M ]λ′(q)(s)ds1 · · · dsq

}

= exp

{
(1− t)

M∑
m=1

(−1)m
(
M

m

)∫
Sq

sm` λ
′
(q)(s)ds1 · · · dsq

}
(54)

where λ′(q) has been specified in (53) and we exploited the following formula

[1− (1− s`)M ] = 1−
M∑
m=0

(−1)m
(
M

m

)
sm` = −

M∑
m=1

(−1)m
(
M

m

)
sm` . (55)

The integrals over Sq in (54) may be easily evaluated (see, e.g., [Gradshteyn and Ryzhik, 2007, Formula

4.635.2]) to get ∫
Sq

sm` λ
′
(q)(s)ds1 · · · dsq = ϑ

(γ`)m
(|γ|)m

·B(m− α,N + α+ κ).

By substituting the previous expression in (54), we obtain

G
U

(M)
N,`

(t) = exp

{
(t− 1)

M∑
m=1

(−1)m+1

(
M

m

)
ϑ

(γ`)m
(|γ|)m

·B(m− α,N + α+ κ)

}

which is exactly the probability generating function of a Poisson random variable with parameter

M∑
m=1

(−1)m+1

(
M

m

)
ϑ

(γ`)m
(|γ|)m

·B(m− α,N + α+ κ).
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As a consequence of Theorem 5, one can define a BNP estimator of U
(M)
N,` with respect to a squared

loss function as follows:

Û
(M)
N,` = ϑ

M∑
m=1

(−1)m+1

(
M

m

)
B(m− α,N + α+ κ)

(γ`)m
(|γ|)m

. (56)

We point out that for computational convenience one may write

Û
(M)
N,` = ϑB(1− α,N + α+ κ)E(X,Y )

[
1− (1−XY )M

Y

]
(57)

where the expected value is taken with respect to the two independent random variables with the

following beta distributions

X ∼ Beta(γ`, |γ| − γ`), Y ∼ Beta(1− α,N + α+ κ).

The equality (57) may be easily proved by observing that

EX [Xm] =
(γ`)m
(|γ|)m

and B(m− α,N + α+ κ) = EY [Y m−1]B(1− α,N + α+ κ).

E.3 Scaled stable-Beta-Dirichlet prior for multinomial processes

From Theorems 4-5, it is apparent that, under the stable-Beta-Dirichlet process, the conditional

distribution of a statistic involving hitherto unobserved features, depends on the initial sample Z1:N

only trough the sample size N and not on other sample statistics. This behavior resembles what

happens for the Bernoulli process model described in the main paper when the prior ζ in (1) is a

CRM. We then introduce a multivariate analogue of the stable-Beta scaled prior, that will be termed

scaled stable-Beta-Dirichlet process with the goal to enrich the predictive structure. We introduce a

discrete random measure depending on the random jump ∆1,hc,β , that has been defined in the main

paper as a polynomial-exponential tilting of the density function (6), whose density equals

f∆1,hc,β
(a) =

σβc+1

Γ(c+ 1)
a−σ(c+1)−1 exp

{
−βa−σ

}
1R+

(a) (58)

as shown in (36). The scaled stable-Beta-Dirichlet random measure is an almost surely discrete random

measure that can be represented as

µ∆1,hc,β
=
∑
i≥1

ρiδWi
, ρi = (ρi,1, . . . , ρi,q)

and consisting of q components

µ∆1,hc,β
,j =

∑
i≥1

ρi,jδWi as j = 1, . . . , q.
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Conditionally on the jump ∆1,hc,β , the multivariate random measure µ∆1,hc,β
is completely random

with Lévy intensity λ(q),∆1,hc,β
(s)ds1 · · · dsqP (dp) with the specification

λ(q),∆1,hc,β
(s) =

Γ(|γ|)∏q
j=1 Γ(γj)

σ∆−σ1,hc,β
|s|−σ−|γ|

q∏
j=1

s
γj−1
j 1[0,1](|s|), s ∈ Sq (59)

where 0 < σ < 1 and γj > 0 for any j = 1, . . . , q. We write µ∆1,h
∼ S-mSBD(σ,γ;hc,β). A remarkable

property of this model is that
∑q
j=1 µ∆1,hc,β

,j is distributed as the stable-Beta scaled process prior,

i.e., |µ∆1,hc,β
| ∼ SB-SP(σ, c, β). Such a property may be easily proved by means of the Laplace

functionals. Note that one could potentially introduce an additional mass parameter in the model,

but this is irrelevant to carry out posterior inference in the stable case.

E.3.1 Posterior Analysis

We now provide posterior, predictive and marginal characterizations for the multivariate model (46)

under the scaled stable-Beta-Dirichlet process prior specification for Z . The results we present here

may be proved by exploiting [James, 2017, Section 5], conditionally on ∆1,hc,β and then by marginal-

izing over the mixing distribution (58). We omit the details.

Theorem 6. For any N ≥ 1, let Z1:N be a random sample modeled as the BNP simple multinomial

process model (46), with ζ ∼ S-mSBD(σ,γ;hc,β). If Z1:N displays KN = k distinct features, labeled by

W ∗1 , . . . ,W
∗
KN

, with condiment-specific frequencies (MN,1,j , . . . ,MN,KN ,j) = (m1,j , . . . ,mk,j), for any

j = 1, . . . , q, then the conditional distribution of ∆1,hc,β given Z1:N , coincides with the distribution of

∆−σ1,hc,β
∼ Gamma(KN + c+ 1, β + γ

(N)
0 ) (60)

where γ
(n)
0 = σ

∑
1≤i≤nB(1 − σ, i). Moreover, the conditional distribution of ζ, given Z1:N ,∆1,hc,β ,

coincides with the distribution of

ζ|(Z1:N ,∆1,hc,β )
d
= µ′∆1,hc,β

+

KN∑
i=1

JiδW∗i (61)

where:

i) µ′∆1,hc,β
is a discrete multivariate random measure with Lévy intensity

ν′∆1,hc,β
(ds1, . . . ,dsq,dw) =

Γ(|γ|)∏q
j=1 Γ(γj)

× |s|−σ−|γ|(1− s)N
q∏
j=1

s
γj−1
j 1[0,1](|s|)σ∆−σ1,hc,β

ds1 · · · dsq P (dw);

(62)

ii) J1:KN is a vector of independent random jumps such that each Ji = (J1, . . . , Jq) has a Beta-

Dirichlet distribution, i.e.,

Ji|∆1,hc,β ∼ BD(mi − σ,N −mi + 1;γ +mi) (63)
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where we put mi := (mi,1, . . . ,mi,q) and mi =
∑q
j=1mi,j = |mi| for any i = 1, . . . ,KN .

Theorem 7. For any N ≥ 1, let Z1:N be a random sample modeled as the BNP simple multinomial

process model (46), with ζ ∼ S-mSBD(σ,γ;hc,β). If Z1:N displays KN = k distinct features, labeled by

W ∗1 , . . . ,W
∗
KN

, with condiment-specific frequencies (MN,1,j , . . . ,MN,KN ,j) = (m1,j , . . . ,mk,j), for any

j = 1, . . . , q, then the conditional distribution of ∆1,hc,β given Z1:N , coincides with (60). Moreover,

the conditional distribution of ZN+1, given Z1:N ,∆1,hc,β , coincides with the distribution of

ZN+1|(Z1:N ,∆1,hc,β )
d
= Z ′N+1 +

KN∑
i=1

AN+1,iδW∗i (64)

where:

i) Z ′N+1 is such that Z ′N+1|∆1,hc,β =
∑
i≥1A

′
N+1,iδW ′i ∼ MP(µ′∆1,hc,β

) and µ′∆1,hc,β
|∆1,hc,β is the

completely random measure having the Lévy intensity (62);

ii) AN+1,1:KN is a collection of independent simple multinomial random variables with parameters

J1:KN , each one distributed according to Equation (63).

Theorem 8. For any N ≥ 1, let Z1:N be a random sample modeled as the BNP simple multinomial

process model (46), with ζ ∼ S-mSBD(σ,γ;hc,β). The probability that Z1:N displays a particular fea-

ture allocation of KN = k distinct features with condiment-specific frequencies (MN,1,j , . . . ,MN,KN ,j) =

(m1,j , . . . ,mk,j), for any j = 1, . . . , q, equals

p
(N)
k (m1, . . . ,mk) =

k∏
i=1

{
B(mi − σ,N −mi + 1)

∏q
j=1(γj)mi,j

(|γ|)mi

}

× Γ(k + c+ 1)

Γ(c+ 1)
· σkβc+1

(β + γ
(N)
0 )k+c+1

.

(65)

E.3.2 Estimation of the unseen features with a condiment

For any N ≥ 1, let Z1:N be an observable sample modeled as the simple multinomial model in

(46), with ζ ∼ S-mSBD(σ,γ;hc,β). Moreover, under the same model, for M ≥ 1 let ZN+1:N+M =

(ZN+1, . . . ,ZN+M ) be an additional and unobserved sample. Under this model, we now determine the

posterior distribution of the sample statistic U
(M)
N,` in (50), counting the number of hitherto unobserved

feature with condiment ` ∈ {1, . . . , q} that will be recorded out of the additional sample.

Theorem 9. For any N ≥ 1, let Z1:N be a random sample modeled as the BNP simple multinomial

process model (46), with ζ ∼ S-mSBD(σ,γ;hc,β). Suppose that Z1:N displays KN = k distinct features

with condiment-specific frequencies (MN,1,j , . . . ,MN,KN ,j) = (m1,j , . . . ,mk,j), for any j = 1, . . . , q.

Then, the posterior distribution of U
(M)
N,` , given Z1:N , coincides with the distribution of

U
(M)
N,` |Z1:N ∼ NegativeBinomial

(
KN + c+ 1,

ψ
(M)
N,`

ψ
(M)
N,` + γ

(N)
0 + β

)
(66)
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where we defined

ψ
(M)
N,` := σ

M∑
m=1

(
M

m

)
(−1)m+1 (γ`)m

(|γ|)m
B(m− σ,N + 1).

Proof. The proof is based on the posterior characterization in Theorem 6 and on Theorem 7. As

in the proof of Theorem 5 we evaluate the probability generating function of the random variable

U
(M)
N,` , conditionally on the sample Z1:N . The probability generating function is denoted as usual by

G
U

(M)
N,j

( · ). Thanks to the characterization (64), conditionally on Z1:N ,∆1,hc,β , the random variable

U
(M)
N,` may be written as

U
(M)
N,` |(Z1:N ,∆1,hc,β )

d
=
∑
i≥1

1

(
M∑
m=1

A′m+N,i,` > 0

)
.

Fix t in a neighborhood of the origin, then one has

G
U

(M)
N,`

(t) = E
[
tU

(M)
N,` | Z1:N

]
= E

[
E
[
tU

(M)
N,` | Z1:N ,∆1,hc,β

]
| Z1:N

]
(67)

by an application of the tower property. We now focus on the evaluation of the inner expected value

in (67):

E
[
tU

(M)
N,` | Z1:N ,∆1,hc,β

]
= E

[
t
∑M
m=1 A

′
m+N,i,`

]
= E

∏
i≥1

E[1 · P(

M∑
m=1

A′m+N,i,` = 0) + t · P(

M∑
m=1

A′m+N,i,` > 0)]

 .
From Theorem 7, the A′m+N,i,`s are independent random variables as m = 1, . . . ,M , and each

one A′N+m,i,` is a Bernoulli with parameter ρ′i,`, conditionally on the random measure µ′∆1,hc,β
=∑

i≥1 ρ
′
iδW ′i with Lévy intensity (62). As a consequence we obtain

E
[
tU

(M)
N,` | Z1:N ,∆1,hc,β

]
= E

∏
i≥1

[
t+ (1− t)(1− ρ′i,`)M

] .
Proceeding along the same lines as in the proof of Theorem 5 we have that

E
[
tU

(M)
N,` | Z1:N ,∆1,hc,β

]
= E

exp

∑
i≥1

log(t+ (1− t)(1− ρi,`)M )




= exp

{
−(1− t)

∫
W

∫
Sq

[1− (1− s`)M ]ν′∆1,hc,β
(ds1, . . . ,dsq,dw)

}
.

Now define

λ′(q),∆1,hc,β
(s) :=

Γ(|γ|)∏q
j=1 Γ(γj)

|s|−σ−|γ|(1− s)N
q∏
j=1

s
γj−1
j 1[0,1](|s|)σ∆−σ1,hc,β
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thus, the conditional expected value under study may be written as

E
[
tU

(M)
N,` | Z1:N ,∆1,hc,β

]
= exp

{
−(1− t)

∫
Sq

[1− (1− s`)M ]λ′(q),∆1,hc,β
(s)ds1, . . . ,dsq

}

= exp

{
−(1− t)

M∑
m=1

(
M

m

)
(−1)m+1

∫
Sq

sm` λ
′
(q),∆1,hc,β

(s)ds1, . . . ,dsq

}
(68)

where we applied (55). The integral over Sq appearing in (68) may be evaluated resorting to [Grad-

shteyn and Ryzhik, 2007, Formula 4.635.2], therefore∫
Sq

sm` λ
′
(q),∆1,hc,β

(s)ds1, . . . ,dsq

= σ∆−σ1,hc,β

Γ(|γ|)∏q
j=1 Γ(γj)

∫
Sq

sm` (1− |s|)N |s|−σ−|γ|
q∏
j=1

s
γj−1
j ds1 · · · dsq

= σ∆−σ1,hc,β

(γ`)m
(|γ|)m

B(m− σ,N + 1).

Thus, by substituting the previous expression in (68) one obtains

E
[
tU

(M)
N,` | Z1:N ,∆1,hc,β

]
= exp

{
−(1− t)∆−σ1,hc,β

ψ
(M)
N,`

}
(69)

where we recall that ψ
(M)
N,` has been defined as follows

ψ
(M)
N,` = σ

M∑
m=1

(
M

m

)
(−1)m+1 (γ`)m

(|γ|)m
B(m− σ,N + 1).

As a consequence, the probability generating function in (67) equals

G
U

(M)
N,`

(t)
(69)
= E

[
exp

{
−(1− t)∆−σ1,hc,β

ψ
(M)
N,`

}
| Z1:N

]
.

The conclusion follows by a marginalization w.r.t. the posterior distribution of ∆−σ1,hc,β
which is a

gamma random variable (see (60)):

G
U

(M)
N,`

(t) =

∫ ∞
0

e−(1−t)ψ(M)
N,` x · (β + γ

(N)
0 )KN+c+1

Γ(KN + c+ 1)
xKN+ce−x(γ

(N)
0 +β)dx

=
(β + γ

(N)
0 )KN+c+1

Γ(KN + c+ 1)

∫ ∞
0

e−[(γ
(N)
0 +β)+(1−t)ψ(M)

N,` ]xxKN+c+1−1dx

=
(β + γ

(N)
0 )KN+c+1

[(γ
(N)
0 + β) + (1− t)ψ(M)

N,` ]KN+c+1

=

(
β + γ

(N)
0

γ
(N)
0 + β + ψ

(M)
N,` − tψ

(M)
N,`

)KN+c+1

which is the probability generating function of a negative binomial distribution as in the statement.
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As a consequence of Theorem 9, the BNP estimator of U
(M)
N,` under a squared loss function equals

Û
(M)
N,` = (KN + c+ 1)

ψ
(M)
N,`

γ
(N)
0 + β

. (70)

For computational purposes, we finally note that the parameter ψ
(M)
N,` in the posterior representations

may be computed as

ψ
(M)
N,` = B(1− σ,N + 1)E(X,Y )

[
1− (1−XY )M

Y

]
where the expected value is made w.r.t. two independent random variables X and Y having beta

distributions as follows

X ∼ Beta(γ`, |γ| − γ`) and Y ∼ Beta(1− σ,N + 1).

F Synthetic experiments from the model

We now analyze empirically the properties of the SB-SP-Bernoulli model used in Section 3. We will

use the acronym SSB for brevity in the captions. I.e., we consider the hierarchical model detailed in

(1), with µ ∼ SB-SP(σ, c, β). The predictive characterization detailed in Proposition 3, together with

Equation (13), provides an algorithm to sample N observations from the model: given β > 0, σ ∈
(0, 1), c > 0,

• at every step n = 1, . . . , N , conditionally on the previous n − 1 samples Z1:n−1 showing Kn−1

distinct features, each feature k = 1, . . . ,mKn−1
with frequency mk, sample

– a random number of new features observed:

U
(1)
n−1 | Z1:n−1 ∼ NegativeBinonial

(
Kn−1 + c+ 1,

γ
(1)
n−1

β + γ
(n)
0

)
;

– for previously observed feature i = 1, . . . ,Kn−1:

An,i | Z1:n−1 ∼ Bernoulli (mi − σ,N −mi + 1) ;

In particular, for the first step, K0 = 0.

F.1 Predictive behavior of the number of new features from the prior

First, we investigate the predictive behavior of the model as we vary the hyperparameters of the

process — β, σ, c. Because our interest is in understanding the coverage properties of the posterior

predictive distribution induced by the model, we report, together with the predictive mean, also

posterior predictive credible intervals. In this first set of simulations reported in Appendices F.1.1

to F.1.3, we assume the hyperparameter σ, c, β to be known.
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Figure 6: 90% centered credible interval for the number of distinct features KN (y-axis) as a function of the sample
size N (x-axis). We fix β = 1, c = 5, and vary σ across subplots. For the 5%, 50%, 95% quantiles, we compare the
theoretical value (solid black lines) to empirical result (dashed red lines), obtained by drawing NMC = 1000 different
datasets with the same parameter specification.
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Figure 7: 90% centered credible interval for the number of distinct features KN (y-axis) as a function of the sample
size N (x-axis). We repeat the same experiments as in Figure 6, but now fix β = 1, σ = 0.2, and vary c across subplots.

F.1.1 The role of σ

We start by analyzing the role of σ in Figure 6. As suggested by the asymptotic behavior analyzed in

Theorem 3, σ directly controls the asymptotic rate of growth of the number of distinct features: as

σ increases, the expected number of variants increases, approaching a linear behavior as σ → 1. We

notice that this behavior is reminiscent of the tail parameter of the stable beta-Bernoulli process [Teh

and Gorur, 2009, Broderick et al., 2012].

F.1.2 The role of c

We now move to the analysis of the polynomial tilting parameter, c. As suggested by the predictive

distribution given in Equation (13), c acts as a “prior” number of features. That is, in the prior, the

expected number of features to be observed from N samples is a Negative Binomial random variable

with parameters c+ 1, γ
(N)
0 /(β + γ

(N)
0 ), i.e. with expectation given by

E[UN0 ] = (c+ 1)

(
γ

(N)
0

β

)
.

Again, larger values of c induce a higher rate of growth in the number of features, as showed in Figure

7.

F.1.3 The role of β

Last, we analyze the role of the exponential tilting parameter, β. Inspecting again the predictive

distribution Equation (13), β affects the number of new variants thorugh the success probability of
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Figure 8: 90% centered credible interval for the number of distinct features KN (y-axis) as a function of the sample
size N (x-axis). We repeat the same exercise as in Figures 6-7 but now c = 1, σ = 0.2, and vary β across subplots.
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Figure 9: 90% centered credible interval for the expected number of distinct features E[U
(M)
N | Z1:N ] (y-axis) as

a function of the sample size N (x-axis). We fix β = 1, c = 5, σ = 0.5, and total sequencing capacity L = 2000.

In different subplots, we show E[U
(M)
N | Z1:N ] for different values of N . Here, the first N samples display exactly

KN = E[U
(N)
0 ] distinct features.

the negative binomial — for fixed c, σ,N,M,Z1:N , the expected number of new variants U
(M)
N | Z1:N

depends inversely on the parameter β. We verify this empirically in Figure 8.

F.2 Predictive behavior of the number of new features from the posterior

Next, we perform a slightly different exercise from the one described above. We still assume the

parameters to be known, and we investigate how the posterior predictive behavior varies as we change

the number of training samples N with respect to a total sampling “capacity” L. Intuitively, for a fixed

value of this “sampling capacity”, N + M = L, the expected number of observed features from the

model should be the independent of the choice of N,M . However, we expect the distribution (e.g., the

posterior variance), to concentrate as N increases relative to M . To perform this experiment, we do as

follow: we fix β, c, σ and, for each ` = 1, . . . , 2000, we let K` = U
(`)
0 . Next, for N ∈ {50, 100, 500, 1000},

we compute U
(M)
N | Z1:N , where we condition on the number of observed variants as given by the curve

{K`}`=1,...,2000. As displayed in Figure 9 and Figure 10, the width of the credible intervals shrinks

with increasing training sizes N .

F.3 Estimation of the parameters

Next, we move to the more interesting scenario in which the parameters are unknown and need to

be inferred from the data. The natural way to estimate the unknown parameters is to maximize

a likelihood criterion, such as the marginal distribution of the feature counts m1, . . . ,mK , given in
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Figure 10: 90% centered credible interval for the expected number of distinct features E[U
(M)
N | Z1:N ] (y-axis) as a

function of the sample size N (x-axis). We repeat the same exercise as in Figure 9 but now fix β = 2, c = 1000, σ = 0.2.
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Figure 11: 99% credible interval centered around the posterior predictive mean (dashed red line) of the number of

distinct features U
(M)
N | Z1:N (y-axis) as a function of the sample size N (x-axis). We fix β = 1, c = 20, σ = 0.5, and

learn the parameters for different training size N ∈ {100, 400, 700, 1000} across subplots for a total sequencing capacity
L = 5000.

Equation (10). We found this method to work well both on real data, as displayed in Section 4, and

on synthetic data. We here report some results in Figures 11 and 12. In general, and not surprisingly,

the precision of our estimates increases with larger sample sizes.

In our synthetic experiments, as expected, the values maximizing the marginal likelihood converge

to the underlying true values of the data generating process as the sample size N →∞. By performing

a visual investigation, we find that indeed the negativd marginal likelihood is a convex function in

each argument, with a unique, well-defined minimum (see Figures 13 to 15).

When most of the features are very rare (e.g., they appear once or twice in the sample), we found

that an alternative empirical Bayes approach, akin to the one adopted in Masoero et al. [2021], worked

better, as further discussed in Appendix G.
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Figure 12: 99% credible interval centered around the posterior predictive mean (dashed red line) of the number of

distinct features U
(M)
N | Z1:N (y-axis) as a function of the sample size N (x-axis). We repeat the same experiment as

in Figure 11, but now for β = 1, c = 100, σ = 0.25.
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Figure 13: We draw a synthetic dataset of size N = 10′000 from a SSB with parameters β = 5, σ = 0.1, c = 3. In the
left subplot, we plot the value of the negative marginal likelihood (vertical axis) as we vary the value of β (horizontal
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with the corresponding marginal likelihood value (vertical axis).
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Figure 14: We repeat the same exercise of Figure 13 for N = 1′000, β = 10, σ = 0.7, c = 20.
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Figure 15: We repeat the same exercise as in Figures 13 and 14 for N = 100, β = 5, σ = 0.35 and c = 102.
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Figure 16: Frequencies distribution for different choices of the parameter ξ.
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Figure 17: Estimates for the number of new features for the SB-SP-Bernoulli (red) and the stable beta-Bernoulli
(blue) processes as the exponent ξ varies across subplots. Shaded regions cover a 95% credible interval around the
predictive mean. The solid black line represents the true counts. Here, the training is done using the first N = 100
observations, and extrapolating up to the remaining M = 1900 observations.

G Synthetic experiments from Zipf distributions

To compare the predictive performance of the SB-SP-Bernoulli process proposed in Section 3.1 to

existing competing methods, we also consider synthetic data from Zipf-distributed frequencies (see

Figure 16). That is to say, we imagine that there exists a countable number of features in the

population, and that, for some ξ > 0, feature k is observed independently of any other feature with

probability πk = (k + 1)−ξ. An observation X` then a binary vector, in which, conditionally on the

frequencies π = (π1, π2, . . .) the k-th coordinate is a Bernoulli random variable:

X`,k | π
i.i.d.∼ Bernoulli(πk), π = {(k + 1)−ξ}k≥1. (71)

We perform our simulations as follows: we fix a total sequencing capacity of L = 2000, and draw L

i.i.d. samples from the model, following the recipe given in Equation (71). For simulation purposes,

we only consider the first K = 105 features to have non-zero probability, i.e. πk = 0, for all k > K.

We compare the estimates of our proposed SB-SP-Bernoulli model (Section 3.1), to the stable beta-

Bernoulli process [3BP], the linear program of Zou et al. [2016], the first four orders of the Jackknife

estimator originally proposed in Burnham and Overton [1978] and recently employed in the genomics

context by Gravel [2014], and the Good-Toulmin estimator, recently used in Chakraborty et al. [2019],

with the two alternative smoothing choices described in Orlitsky et al. [2016]. Estimates for Bayesian

methods are obtained by using the posterior predictive mean for the number of new variants condition-

ally on the observed sample, with hyper-parameters learned by numerically maximizing the marginal

distribution (EFPF) of the features counts, as described in Section 4.1.

As expected, we find the nonparametric Bayesian estimators to do particularly well for larger

values of the exponent ξ — that is when most features are exceedingly rare. The SB-SP-Bernoulli

and the SB-SP-Bernoulli-parameter beta-Bernoulli processes performed comparably on these datasets,

both in terms of estimation accuracy and uncertainty quantification, as displayed in Figure 17.
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Figure 18: Accuracy of the competing methods (SB-SP-Bernoulli [SSP], stable beta-Bernoulli [3BP], Jackknife [J],
linear program [LP], Good-Toulmin [GT]) on simulated data from a Zipf model (Equation (71)) with parameter ξ = 1.2.

For L = 2000, we report v
(M)
N,a as N increases, for M = L−N . For each N , results across S = 100 datasets are reported

in the boxplots.
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Figure 19: Accuracy of the competing methods (SB-SP-Bernoulli [SSP], stable beta-Bernoulli [3BP], Jackknife [J],
linear program [LP], Good-Toulmin [GT]) on simulated data from a Zipf model (Equation (71)) with parameter ξ = 0.8.

For L = 2000, we report v
(M)
N,a as N increases, for M = L−N . For each N , results across S = 100 datasets are reported

in the boxplots.

To better asses the predictive quality of the different methods, we ran extensive simulation exper-

iments; for each value of ξ ∈ {0.8, 1, 1.2, 1.4, 1.6}, we generated S = 100 datasets of size L = 2000,

and for each value of N ∈ {10, 50, 100, 200} we trained each method, and extrapolated to predict the

number of new variants to be observed up to M = L−N ∈ {1990, 1950, 1900, 1800} remaining sam-

ples. We report as measure of accuracy the percentage accuracy incurred by each estimation method

v
(M)
N,a , defined in Equation (19), at the largest extrapolation level M = L−N , across different values

of N and all S = 100 simulation studies. Results are reported via boxplots in Figures 18 to 20. While

all methods improve their performance with larger sample sizes, we find that the BNP estimators

(SSP, 3BP) provide relatively more accurate results for smaller samples sizes (e.g., N = 10, N = 50

in Figures 18 and 19). The performance of the BNP methods exceed those of competing methods for

larger values of the exponent (ξ ∈ {1.2, 1.4, 1.6}), while higher order Jackknife and linear programs

tend to do better for smaller values of the exponent (ξ ∈ {0.8, 1}).

H Additional experiments on the gnomAD dataset

H.1 Experimental setup

In order to run our experiments, we use data from the gnomAD (genome aggregation dataset) discov-

ery project [Karczewski et al., 2020], the largest and most comprehensive publicly available human

genome dataset. We follow the same experimental setup adopted in Masoero et al. [2021]. We briefly

summarize this setup in this section. The gnomAD dataset contains 125’748 exomes sequences (i.e.

protein-coding regions of the genome), from 8 main populations. Sample size varies widely across sub

populations, e.g. the “Other” subgroup counts about 3’000 observations, while “South Easy Asian”

contains almost 16’000 individuals (see Karczewski et al. [2020] for additional details).
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Figure 20: Accuracy of the competing methods (SB-SP-Bernoulli [SSP], stable beta-Bernoulli [3BP], Jackknife [J],
linear program [LP], Good-Toulmin [GT]) on simulated data from a Zipf model (Equation (71)) with parameter ξ ∈
{1, 1.4, 1.6} (top row, center row, bottom row). For L = 2000, we report v

(M)
N,a as N increases, for M = L−N . For each

N , results across S = 100 datasets are reported in the boxplots.

For privacy reasons not all individual sequences are accessible. Hence, in order to run our analysis

we generate synthetic data which closely resembles the true data as follows. For every subpopulation

with N individuals and every position j = 1, . . . ,K in the exome, we have access to the total number

of individuals Nj showing variation at position j. We compute the empirical frequency of variation at

site j, θ̂j := Nj/N for all j = 1, . . . ,K. Our data is then generated by sampling independent Bernoulli

random vectors X1, . . . , XN , with Xn = [xn,1, . . . , xn,K ]. The entries in the vector are independent

Bernoulli random variables, xn,j ∼ Bernoulli(θ̂j).

H.2 Results from the gnomAD data

For each of eight subpopulations in the data, we performed the following experiment. Let θ̂ =

[θ̂1, . . . , θ̂Kmax ] ⊆ [0, 1] denote the “genetic signature” of the population, with θ̂k = Nk/N , with Ntot

the total number of individuals in the population and Nk the number of individuals in the population

displaying such variant, 1 ≤ Nk ≤ Ntot. Then, for each population, we generate S = 50 datasets by

drawing Ntot i.i.d. binary random vectors of length Kmax as described above, with biases given by

θ̂. We then retain for each dataset N ∈ {50, 100} observations for training, and try to predict the

number of new variants that are going to be observed if we were to sample additional M = Ntot −N
observations.

In a nutshell, also on this data, the findings are similar to the results obtained on the MSK-IMPACT

cancer data. In particular, we find that when the sample size N is small, the proposed SB-SP Bernoulli

model leads to predictions that are often comparable or more accurate than competing methods.

First, we report the accuracy metric v
(M)
N for eight subpopulations in gnomAD, Afroamerican

(Amr.), South East Asian (SE. As.), Other East Asian (Ot. E. As.), Finnish (Fin.), South European

(S. Eu.), Swedish (Swe.), South Asian (S. As.) and the remaining Other. In Figure 21 we show results

(over S = 50 Monte-Carlo re-draws of the data from the estimated frequencies θ̂) of retaining N = 50

datapoints for training, and extrapolating to the largest available sample size M . In Figure 22 we

report results for the same metric, with training performed by retaining N = 100 datapoints.
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Figure 21: Accuracy metric v
(M)
50 for eight subpopulations in the gnomAD dataset. For each subpopulation we retain

N = 50 observations for training, and extrapolate to the largest possible value M . Results are over S = 50 Monte-Carlo
draws of the data, as described in Appendix H.1
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Figure 22: Same setup as in Figure 21, now for N = 100.
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Figure 23: Accuracy of the compared methods, now over all the eight subpopulations and over 50 Monte Carlo draws
for each population. N = 50, and M is set to be the largest possible extrapolation size for each subpopulation.

SSB (90.7%) 3BB (84.1%) LP (33.2%) J1 (48.1%) J2 (76.2%) J3 (91.7%) J4 (78.5%) GT1 (47.1%) GT2 (42.9%)1%
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Figure 24: Same setup as in Figure 23, now for N = 100.

Next, we provider boxplots that report the (aggregated) accuracy of the metric v
(M)
N across all the

eight populations, and all the S = 50 Monte-Carlo draws (so that each boxplot reports the accuracy

of a total of 50× 8 = 400 accuracy values), for N = 50 (Figure 23) as well as N = 100 (Figure 24).
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Figure 25: Same setup as in Figure 23, but only for the American subpopulation.

SSB (94.4%) 3BB (55.6%) LP (32.3%) J1 (38.4%) J2 (62.9%) J3 (93.9%) J4 (85.9%) GT1 (36.6%) GT2 (32.8%)1%
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Figure 26: Same setup as in Figure 23, but only for the Other East Asian subpopulation.

H.3 Additional boxplots

Since in Figure 23 and Figure 24 we are aggregating result in which N is consistent for all populations,

but M differs, we also report boxplots of each subpopulation individually.
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Figure 27: Same setup as in Figure 23, but only for the East Asian subpopulation.
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Figure 28: Same setup as in Figure 23, but only for the Finnish subpopulation.
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Figure 29: Same setup as in Figure 23, but only for the Southern European subpopulation.
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Figure 30: Same setup as in Figure 23, but only for the Swedish subpopulation.
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Figure 31: Same setup as in Figure 23, but only for the “Other” subpopulation.

SSB (85.4%) 3BB (84.7%) LP (29.4%) J1 (33.1%) J2 (62.4%) J3 (95.2%) J4 (87.1%) GT1 (32.0%) GT2 (30.0%)1%

25%

50%

75%

100%

Ac
cu

ra
cy

Amr., N = 100, M = 17100

Figure 32: Same setup as in Figure 24, but only for the American subpopulation.
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Figure 33: Same setup as in Figure 24, but only for the Other East Asian subpopulation.

SSB (94.9%) 3BB (83.5%) LP (40.3%) J1 (41.6%) J2 (70.9%) J3 (98.6%) J4 (79.4%) GT1 (43.3%) GT2 (38.3%)1%
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Figure 34: Same setup as in Figure 24, but only for the East Asian subpopulation.
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Figure 35: Same setup as in Figure 24, but only for the Finnish subpopulation.
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Figure 36: Same setup as in Figure 24, but only for the Southern European subpopulation.

SSB (95.2%) 3BB (72.7%) LP (36.7%) J1 (47.7%) J2 (73.0%) J3 (98.1%) J4 (83.0%) GT1 (44.0%) GT2 (40.0%)1%
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Figure 37: Same setup as in Figure 24, but only for the Swedish subpopulation.
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Figure 38: Same setup as in Figure 24, but only for the “Other” subpopulation.
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