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TOWARD DIFFERENTIATION AND INTEGRATION BETWEEN HOPF ALGEBROIDS AND
LIE ALGEBROIDS.

ALESSANDRO ARDIZZONI, LAIACHI EL KAOUTIT, AND PAOLO SARACCO

Abstract. In this paper we set up the foundations around the notions of formal differentiation and formal in-
tegration in the context of commutative Hopf algebroids and Lie-Rinehart algebras. Specifically, we construct
a contravariant functor from the category of commutative Hopf algebroids with a fixed base algebra to that
of Lie-Rinehart algebras over the same algebra, the differentiation functor, which can be seen as an algebraic
counterpart to the differentiation process from Lie groupoids to Lie algebroids. The other way around, we pro-
vide two interrelated contravariant functors form the category of Lie-Rinehart algebras to that of commutative
Hopf algebroids, the integration functors. One of them yields a contravariant adjunction together with the dif-
ferentiation functor. Under mild conditions, essentially on the base algebra, the other integration functor only
induces an adjunction at the level of Galois Hopf algebroids. By employing the differentiation functor, we also
analyse the geometric separability of a given morphism of Hopf algebroids. Several examples and applications
are presented along the exposition.
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1. Introduction

We will describe the motivations behind the ideas of this work and give an algebraic overview on the
classical theory of differentiation and integration in the context of both algebraic and differential geometry.
Thereafter, we will briefly discuss the main results of this paper in sufficient details, aiming to make this
summary, as far as possible, self-contained.

1.1. Motivations and overviews. The main motivation behind the research of this paper is to provide
foundational tools for the formal development of the differentiation and integration in the context of Hopf
algebroids and Lie-Rinehart algebras, both over the same base algebra. Thus, we hereby propose to es-
tablish, in terms of contravariant adjunctions, a relation between these two latter classes of objects, hoping
to leave a paved path for the study of integration problems in this context. Our main results are presented
as Theorems A and B of this introduction, together with Theorem C as an application. The exposition
includes also two Appendices, where we offer alternative approaches and/or clarifications on some topics
we have discussed before in the text.

In the framework of Lie algebras and Lie groups, that is, in the domain of differential geometry, the
notions of “differentiation” and “integration” are involved in the outstanding Lie’s third theorem. Clas-
sically, differentiation means to assign a finite-dimensional Lie algebra to each Lie group (namely, its
tangent vector space at the identity point). Conversely, integration constructs a Lie group out of a given
finite-dimensional Lie algebra (in fact, a connected and simply connected Lie group).

For affine group schemes, that is, in the context of algebraic geometry, both notions are introduced in
a similar way. Specifically, starting with an affine group scheme G, one assigns to it the Lie algebra of
all derivations from the associated Hopf algebra O(G) to the base field, taking as a point the counit of
the Hopf algebra structure of this ring (the identity point). This assignment is functorial and (by abuse
of terminology) can be termed the “differentiation functor”. Conversely, if a Lie algebra is given, then
the finite dual of its universal enveloping algebra acquires a structure of commutative Hopf algebra and
so it leads in a functorial way to an affine group scheme. This procedure might be called the (formal)
“integration functor”.

In a more general “algebraic way”, these two functors induce a contravariant adjunction between the
category of Lie algebras and that of commutative Hopf algebras. More precisely, if k denotes a ground
field, Liek and CHopfk denote, respectively, the categories of Lie k-algebras and of commutative Hopf
k-algebras, then we have a contravariant adjunction

I : Liek
// CHopfk : Loo (1)

explicitly given as follows. For every Lie algebra L and Hopf algebra H, we have I(L) = U(L)◦ (the finite,
or Sweedler’s, dual Hopf algebra of the universal enveloping algebra(1) ) andL(H) = Derk(H, kε) (the vector
space of derivations with coefficients in the H-module k via the counit ε of H).

Thus, the unit and counit of adjunction (1) provide us with a more conceptual way of how to relate Lie
algebras with commutative Hopf algebras (playing here the role of “groups” associated to them). Specifi-
cally, let us denote by ΘL : L → L(I(L)) the unit at a Lie algebra L and by ΨH : H → I(L(H)) the counit
at a Hopf algebra H. Then it is known from the literature that, in characteristic zero, ΘL is injective for
any finite-dimensional Lie algebra L (see Remark A.10 for a proof), while, for an affine algebraic group G,
ΨO(G) is injective if and only if G is connected (see, e.g., [Ta2, 0.3.1(g)]). It is noteworthy to mention that
ΘL is not an isomorphism even for some trivial finite-dimensional Lie algebras. For example, in the case of
the one dimensional abelian Lie C-algebra a, the Hopf algebra I(a) splits as a tensor product of two Hopf
algebras ([Mo, Example 9.1.7]) in such a way that it possesses at least two linearly independent derivations
with coefficient in C; whence Θa is not surjective. However, over an algebraically closed field of char-
acteristic zero, if the given finite-dimensional Lie k-algebra L coincides with its derived Lie algebra (i.e.,
L = [L, L], e.g. when L is semisimple), then ΘL is surjective by [Hoc2, Theorem 6.1(3)], and so an isomor-
phism. As a consequence, the restriction I′ of the functor I : Liek →

(
CHopfk

)op to the full-subcategory of
all those finite-dimensional Lie algebras L such that L = [L, L], is fully faithful. In view of [DG, II, §6, no

2, Corollary 2.8, page 263] and [Hoc2, Theorem 3.1], when L = [L, L], L is an algebraic Lie algebra, that

(1) This is also the commutative Hopf algebra constructed as the coend of the fiber functor attached to the symmetric monoidal
category of finite-dimensional L-representations. It is called the algebra of representative functions on U(L) in [Hoc1, §2].



TOWARD DIFFERENTIATION AND INTEGRATION BETWEEN HOPF ALGEBROIDS AND LIE ALGEBROIDS. 3

is, L = Lie(G) the Lie algebra of a connected and simply connected affine algebraic group G. It turns out
that O(G) is a finitely generated Hopf algebra, it is an integral domain, it has no proper affine unramified
extensions, L(O(G)) � L and, moreover, it can be identified with I(L) (see [Hoc2, top of page 57 and
Theorem 4.1]). Therefore, if we corestrict I′ to its essential image (i.e., the full subcategory of all those
finitely generated Hopf algebras which are integral domains and have no proper affine unramified extension
and such that L(H) = [L(H),L(H)]), it induces an anti-equivalence of categories. Not less important is
the fact that the adjunction (1), when restricted to a certain class of real Hopf algebras (see [Ab, Corollary
3.4.4, page 162]), can be seen as a categorical reformulation of Lie groups differentiation and integration.

Now, if we want to extend these constructions to a category wider than that of groups (respectively
commutative Hopf algebras), for example that of groupoids (resp. commutative Hopf algebroids), then
several obstructions show up, specially in the construction of the integration functor (or functors). For
instance, it is well-known (see [Mac, §3.5]) that to each Lie groupoid, one can attach “in a functorial
way” a Lie algebroid (for the reader’s sake, we included some details in Appendix A.3), but there are Lie
algebroids which do not integrate to Lie groupoids. However, we point out that there are conditions which
guarantee the integrability (see e.g. [CF] and [Fer]).

In the same lines as before, if we want to think of a Hopf algebra, instead of a (Lie) group, then the
closest algebraic prototype of a (Lie) groupoid is a commutative Hopf algebroid(2) . However, in contrast
with the case of Lie groups(3) , as far as we know, there is no functorial way to go directly from the category
of Lie groupoids to that of commutative Hopf algebroids. Nevertheless, there is a well-defined functor
from the category of Lie algebroids (overs a fixed connected smooth real manifoldM) to the category of
complete topological and commutative Hopf algebroids (with C∞(M) as a base algebra), that is, formal
affine groupoid schemes (see [ES] for the precise definition of these algebroids). It is noteworthy that
this functor passes through three constructions: The first one uses the smooth global sections functor
from Lie algebroids to Lie-Rinehart algebras, the second resorts to the well-known universal enveloping
algebroid functor that assigns to any Lie-Rinehart algebra (see §2.3 for the definition) its universal (right)
cocommutative Hopf algebroid, and the third construction utilizes the notion of convolution Hopf algebroid
[ES]. In this way, a notable observation due to Kapranov [Ka] says that the module of smooth global
sections of a given Lie algebroid (as above), can be recovered as the subspace of continuous derivations
(killing the source map) of the attached convolution algebroid. In other words, formal affine groupoid
schemes give rise to an algebraic approach to Lie algebroids integration problem.

Finally, as implicitly suggested above, Lie-Rinehart algebras present themselves as the algebraic coun-
terpart of Lie algebroids and so they become a natural substitute for Lie algebras (in subsection 9.2, we give
new examples of these objects). Moreover, by the foregoing, it is reasonable to expect that Lie-Rinehart
algebras and affine groupoid schemes are closely related, although no adjunction connecting them and ex-
tending the one stated in (1) is known in the literature. It is then natural to look for an adjunction between
the category of Lie-Rinehart algebras (or Lie algebroids) and that of commutative Hopf algebroids (or affine
groupoid schemes), which could set up the bases of the formal differentiation and integration processes in
this context. The main achievement of this paper is to solve this question in the affirmative. As we will see,
similar difficulties as those mentioned above show up in this setting.

1.2. Description of main results. We now give a detailed description of our main results. Let A be a
commutative algebra over a ground field k (usually of zero characteristic). Set CHAlgdA to be the category
of commutative Hopf algebroids with base algebra A and consider its full subcategory GCHAlgdA whose
objects are Galois(4) (see §2.1 and §3.4). The category of (right) co-commutative Hopf algebroids with
base algebra A is denoted by CCHAlgdA (see §2.2).

The first task in order to establish the notion of differentiation and integration in this context and in the
previous sense is to construct a contravariant functor from CCHAlgdA to CHAlgdA. There are two inter-
related ways to construct such a functor. The first one uses what is known in the literature as Tannaka
reconstruction process, applied to a certain symmetric monoidal category of modules (this was mainly

(2) Note that Morita theory of Lie groupoids behaves in a similar way as for commutative Hopf algebroids, see [EK] for details.
(3) In this case for every Lie group we have, in a contravariant functorial way, the commutative real Hopf algebra of smooth

representative functions.
(4) The terminology “Galois” is motivated by the fact that it extends Galois theory of commutative Hopf algebras, which in turn

extends the classical Galois theory.
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achieved in [EG2] and recalled in §3.3 for the reader’s sake). The second way uses the Special Adjoint
Functor Theorem (SAFT) applied to the category of A-rings. The structure maps of the constructed com-
mutative Hopf algebroid (via SAFT) out of a co-commutative one, as well as its universal property, are
explicitly given in §4.2. The construction of these contravariant functors is of independent interest and it
constitutes our first main result, stated below as a combination of Proposition 3.6 and Theorem 4.14.(5)

Theorem A. Let A be a commutative algebra. Then there are two contravariant functors

(−)◦ : CCHAlgdA −→ CHAlgdA, (−)• : CCHAlgdA −→ CHAlgdA.

Explicitly, take a (right) cocommutative Hopf algebroid (A,U) and consider its convolution algebra (A,U∗).
There are two commutative Hopf algebroids (A,U◦) and (A,U•), which fit into a commutative diagram of
(A ⊗ A)-algebras:

U◦
ζ //

ζ̂ %%

U∗

U•,
ξ

99
(2)

where ζ̂ is a morphism of commutative Hopf algebroids. Furthermore, the map ζ̂ is an isomorphism either
whenU is a Hopf algebra (i.e., when A = k), or when it has a finitely generated and projective underlying
(right) A-module.

In contrast to the classical situation, in diagram (2) neither ζ nor ξ are necessarily injective. Its seems
that this injectivity forms part of the structure of the involved Hopf algebroids. For instance, ζ is injective
for any pair (A,U) where A is a Dedekind domain, ξ is injective if and only if its kernel is a coideal, and ζ̂ is
an isomorphism if and only if (A,U•) is a Galois Hopf algebroid. These and other properties are explored
with full details in §4.1.

Now denote by LieRinA the category of all Lie-Rinehart algebras over A.(6) It is well known from the
literature that there is a (covariant) functor VA(−) : LieRinA → CCHAlgdA which assigns to any Lie-
Rinehart algebra its universal enveloping Hopf algebroid (details are expounded in §2.3).

Our first main goal is to show, by employing Theorem A, that there are functors:

L : CHAlgdop
A −→ LieRinA; I , I ′ : LieRinA −→ CHAlgdop

A , (3)

which are termed the differentiation and integration functors, respectively, and to establish two adjunctions
involving these functors. In the notation of §5 below, we have that

L (H) = Derk s(H , Aε) =
{
δ : H → A k-linear map | δ ◦ s = 0, δ(uv) = ε(u)δ(v) + δ(u)ε(v), ∀u, v ∈ H

}
,

this is referred to as the Lie-Rinehart algebra of a given commutative Hopf algebroid (A,H) and its structure
maps are explicitly expounded in Lemma 5.12 and Proposition 5.13.

Mimicking [DG, II §4], we give an alternative construction of the differentiation functor (Proposition
A.4 in Appendix A.1), which can be seen as an algebraic counterpart of the differentiation of Lie groupoids,
and we examine the case of an operation of an affine group scheme on an affine scheme, providing several
illustrating examples (see Appendix B for more details). More examples are also expounded in §9.2,
where we provide with full details the computation of the Lie-Rinehart algebra of a certain Malgrange’s
Hopf algebroid, that arise from differential Galois theory over the affine complex line. Besides, we show
that there is a canonical morphism of Lie-Rinehart algebras between the latter and the one given by the
global sections of the Lie algebroid of the associated invertible jet groupoid. In analogy with Lie groupoid
theory, when the affine scheme attached to A admits k-points, then we are able to recognise the isotropy
Lie algebras underlying the Lie algebroid L (H) as the Lie algebras of the affine isotropy group schemes
of the affine groupoid scheme attached to (A,H). This is achieved in §9.1.

(5) It is noteworthy to mention that for the universal enveloping Hopf algebroidVA(L) of a given Lie-Rinehart algebra (A, L), the
commutative topological Hopf algebroid introduced in [Ko, §4.3] and [KP, §3.4], and called the jet space of L, does not coincide with
VA(L)◦ nor withVA(L)•. However, it coincides with the complete Hopf algebroid constructed in [ES, Proposition 3.17].

(6) When A = C∞(M) is the real algebra of smooth functions on a smooth real manifold, then the category of Lie algebroids over
M can be realised, via the global smooth sections functor, as a subcategory of LieRinA. If, furthermore,M is compact then, by using
Serre-Swan theorem, one can shows that the full subcategory of Lie-Rinehart algebras over A whose underlying modules are finitely
generated and projective of constant rank is equivalent to that of Lie algebroids overM.
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The fact that there are two integrations functors I and I ′, which in the classical case of commutative
Hopf algebras and Lie algebras coincide, is mainly due to the existence of two different and interrelated ap-
proaches in constructing the finite dual contravariant functor on non necessarily commutative rings hereby
explored. More precisely, the first functor I is the composition of two functors I = (−)◦ ◦ VA(−) and
the second integration functor I ′ decomposes as I ′ = (−)• ◦ VA(−), where (−)◦ and (−)• are the func-
tors stated in Theorem A. According to this Theorem, both integrations functors are shown to fit into a
commutative diagram:

I (−)
ζVA(−) //

ζ̂VA (−) %%

(VA(−))∗

I ′(−)
ξVA (−)

88

where, for every Lie-Rinehart algebra (A, L), the algebra (VA(L))∗ is the convolution algebra of VA(L)
endowed with its topological commutative Hopf algebroid structure (see [ES] for the precise notion). In
the above diagram, the natural transformation ζ is the one defined in Eq. (31), ζ̂ is the lifting of ζ by
the universal property (37), and ξ is the natural transformation described in Lemma 4.4, where we also
characterize the injectivity of this map.

The second main result of the paper is the following theorem, which is presented here as a combination
of Theorems 7.1 and 7.2 stated below.

Theorem B. Let A be a commutative algebra. Then there is a natural isomorphism

HomCHAlgdA
(H ,I ′(L)) � // HomLieRinA (L,L (H)) ,

for any commutative Hopf algebroid (A,H) and Lie-Rinehart algebra (A, L). That is, the integration func-
tor I ′ is left adjoint to the differentiation functor L .

Assume now that the map ζR of Eq. (31) is injective for every A-ring R (e.g., when A is a Dedekind
domain(7) ). Then there is a natural isomorphism

HomGCHAlgdA
(H ,I (L)) � // HomLieRinA (L,L (H)) ,

for any commutative Galois Hopf algebroid (A,H) and Lie-Rinehart algebra (A, L). That is, the integration
functor I is left adjoint to the restriction of the differentiation functor L to the full subcategory of Galois
Hopf algebroids.

The unit and the counit of the second adjunction are detailed in Appendix A.2. Given a Lie-Rinehart
algebra (A, L), it is of particular interest to consider the following commutative diagram involving both
units and stated in Proposition A.7 below:

L
ΘL //

Θ′L **

L (VA(L)◦)

L (VA(L)•).

L (ζ̂)

OO
(4)

As a consequence of Theorem B, the commutative Hopf algebroid (A,L (VA(L)•)) (hence its associate
presheaf of groupoids) can be thought of as the universal groupoid of the given Lie-Rinehart algebra (A, L)
with a universal morphism Θ′L : L → L (VA(L)•). In our opinion, the question if either ΘL or Θ′L is an
isomorphism for a specific (A, L) can be regarded as a first step towards the study of the integrability of Lie-
Rinehart algebras (i.e., the problem of integrating Lie-Rinehart algebra(8) ). Another question that Theorem
B introduces, is to seek for full subcategories of LieRinA and CHAlgdA for which the previous adjunction
restrict to an anti-equivalence of categories.

Let (A,H) be a commutative Hopf algebroid, set I = Ker(ε) for the kernel of its counit and consider its
quotient A-bimodule Q(H) := I/I2. Then the Kähler module Ωs

A(H) of (A,H) with respect to the source

(7) This is the case when A is the coordinate algebra of an irreducible smooth curve over an algebraically closed field.
(8) This problem can be rephrased as follows: Given a Lie-Rinehart algebra (A, L) where L is a finitely generated and projective

A-module, under which conditions is there a commutative Hopf algebroid (A,H) such that L � L (H) as Lie-Rinehart algebras? See
Remark 6.5, for more discussions.
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map is shown to be given, up to a canonical isomorphism, by:

Ωs
A(H) � sHt ⊗A sQ(H),

(
ψs : Hs −→ Ωs

A(H),
[
u 7−→ u1 ⊗A π

s(u2)
])

where ψs is the morphism that plays the role of the universal derivation and πs : sH → sQ(H) is the left
A-modules morphism which sends u 7→ (u − s(ε(u))) + I2.

The subsequent one is the third aforementioned main result, which deals with the notion of separable
morphism between commutative Hopf algebroids with same base algebra:

Theorem C. Let (id, φ) : (A,K) → (A,H) be a morphism of commutative Hopf algebroids. Assume that
Q(H) and Q(K) are finitely generated and projective A-modules. The following assertions are equivalent

(a) Q(φ) is split-injective.
(b) L (φ) : L (H)→ L (K) is surjective.
(c) Derk s(φ, −) : Derk s(H , −)→ Derk s(K , φ∗(−)) is surjective on each component.
(d) Derk s(φ, H) : Derk s(H , H)→ Derk s(K , H) is surjective.
(e) H ⊗K Ωs

A(K)→ Ωs
A(H) : h ⊗K w 7→ hΩs

A(φ)(w) is split-injective.

The assumption made in this theorem are, of course, fulfilled whenever the total algebrasH and K are
regular(9) . In analogy with the affine algebraic groups [Ab, page 196], a morphism of Hopf algebroids is
called separable if it satisfies one of the equivalent conditions in Theorem C.

Lastly, we would like to mention that the construction of the finite dual for commutative Hopf algebroids,
which are at least flat over the base algebra, is also possible in principle. Thus, the construction of a
contravariant functor from a certain full subcategory CHAlgdA to CCHAlgdA is feasible in theory. Pushing
further the investigation in this direction, one can be tempted to construct, for instance, a certain analogue
of the hyperalgera (or hyperalgebroid) for an affine algebraic k-groupoid and subsequently establish results
similar to [Ab, Theorems 4.3.13, 4.3.14] for a flat commutative Hopf algebroid. We will not go on this
topic here as, in our opinion, this deserves a separate research project.

1.3. Notation and basic notions. Given a (Hom-set) category C , the notation C ∈ C stands for: C is an
object of C . Given two objects C,C′ ∈ C , we sometimes denote by HomC (C, C′) the set of all morphisms
from C to C′. We work over a base field k (possibly of characteristic zero). All algebras are k-algebras and
the unadorned tensor product ⊗ stands for the tensor product over k, ⊗k. Given an algebra A, we denote by
Ae = A ⊗ Aop its enveloping algebra. Bimodules over algebras are understood to have a central underlying
k-vector space structure. As usual the notations AMod,ModA and AModA stand for the categories of left
A-modules, right A-modules and A-bimodules, respectively.

Given two algebras R, S and two bimodules RMS and RNS , for simplicity, we denote by HomR− (M, N),
Hom−S (M, N) and HomR−S (M, N) the k-vector spaces of all left R-module, right S -module and (R, S )-
bimodule morphisms from M to N, respectively. The left and right duals of R MS are denoted by ∗M :=
HomR− (M, R) and M∗ := Hom−S (M, S ), respectively. These are (S ,R)-bimodules and the actions are
given as follows. For every r ∈ R, s ∈ S , f ∈ ∗M and g ∈ M∗, we have

s f r : M −→ R,
(
m 7−→ f (ms)r

)
; sgr : M −→ S ,

(
m 7−→ sg(rm)

)
. (5)

For two morphisms p, q : A → B of algebras, we shall denote by pB, Bq and pBq, the left A-module, the
right A-module and the A-bimodule structure on B, respectively. In case that only one algebra morphism is
involved, i.e. when p = q, for simplicity, we use the obvious notation: AB, BA and ABA.

For an algebra A, a left (or right) A-linear map stands for a morphism of left (right) A-modules, while an
A-bilinear map refers to a morphism between A-bimodules. For such an algebra A, an A-ring is an algebra
extension A → R, or equivalently a monoid in the monoidal category (AModA,⊗A, A). Given an A-ring
R, we will denote by AR the full subcategory of right R-modules whose underlying right A-modules are
finitely generated and projective.

The dual notion of A-ring is that of A-coring. Thus, an A-coring is a co-monoid in the monoidal category
(AModA,⊗A, A) of A-bimodules. That is, an A-bimodule C with two A-bilinear maps ∆ : C → C ⊗A C (the
comultiplication, sending x to x1 ⊗A x2 with summation understood) and ε : C → A (the counit) subject to
the co-associativity and co-unitarity constraints. A right C-comodule is a pair (M, %M), where M is a right
A-module and %M : M → M ⊗A C is a right A-linear map which is compatible with ∆ and ε in a natural

(9) For instance, regular functions of an algebraic smooth variety.
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way (i.e. (%M ⊗A C) ◦ %M = (M ⊗A ∆) ◦ %M and (M ⊗A ε) ◦ %M = idM). There is an adjunction between right
A-modules and right C-comodules given on the one side by the forgetful functor O : ComodC → ModA

and on the other one by the functor − ⊗A C : ModA → ComodC (see e.g. [BW, §18.10]). For a given
A-coring C we denote by AC the full subcategory of right C-comodules (M, %M) such that O

(
M, %M

)
is a

finitely generated and projective right A-module. For a given A-coring (C,∆, ε) we have an A-ring structure
on ∗C called the left convolution algebra of C. This structure is given by

( f ∗ g)(x) = g
(
x1 f (x2)

)
, 1∗C = ε and (a f b)(x) = f (xa)b (6)

for all f , g ∈ ∗C, a, b ∈ A and x ∈ C. Analogously, one can introduce the right convolution algebra C∗ of C.

Remark 1.4. Recall that given two A-corings C and D we can consider the new A-coring

C �D :=
C ⊗D

Spank {acb ⊗ d − c ⊗ adb | a, b ∈ A, c ∈ C, d ∈ D}

which is a coring with respect to the following structures

a(c � d)b = c � adb, ∆(c � d) = (c1 � d1) ⊗A (c2 � d2) , ε(c � d) = εC(c)εD(d),

where the notation is the obvious one. We point out that C�D has been obtained by applying [Ta1, Theorem
3.10] to C andD endowed with the T |S and the S |R-coring structures respectively whose underlying multi-
module structures are given by (t⊗ s)c(t′⊗ s′) = tsct′s′ and (s⊗ r)d(s′⊗ r′) = s′rdsr′, where R = S = T = A
and r, r′ ∈ R, s, s′ ∈ S , t, t′ ∈ T , c ∈ C and d ∈ D.

Remark 1.5. Notice that given an A-coring C, we may consider the A-coring Ccop with structures given by

∆(ccop) = (c2)cop
⊗A (c1)cop, ε(ccop) = ε(c) and bccopa = (acb)cop, (7)

where ccop denotes c ∈ C as seen in Ccop.

Let A be a commutative algebra, we denote by proj(A) the full subcategory of the category of (one
sided, preferably right) A-modules whose objects are finitely generated and projective. In addition, being
A commutative, these right A-modules will be considered as central A-bimodules. For a given morphism
of commutative algebras φ : A → B we denote by φ∗ : ModB → ModA the restriction functor between the
categories of right modules.

2. Hopf algebroids and Lie-Rinehart algebras: Definitions and examples

A Hopf algebroid can be naively thought as a Hopf algebra over a non-commutative ring. In the present
paper we are going to focus on the distinguished classes of commutative and cocommutative Hopf alge-
broids (i.e. those that have a closer connection with algebraic and differential geometry), instead of dealing
with them in the full generality. Therefore, and for the sake of the unaccustomed reader, we will recall in
the present section the definitions of these objects together with some significant examples, that is to say,
the universal enveloping Hopf algebroids of Lie-Rinehart algebras.

2.1. Commutative Hopf algebroids. We recall here from [Ra, Appendix A1] the definition of commuta-
tive Hopf algebroid. We also expound some examples which will be needed in the forthcoming sections.

A commutative Hopf algebroid over k is a cogroupoid object in the category CAlgk of commutative k-
algebras, or equivalently, a groupoid in the category of affine schemes. Thus, a commutative Hopf algebroid
consists of a pair of commutative algebras (A,H), where A is the base algebra and H is the total algebra
with a diagram of algebra maps:

A s //
t // Hεoo

S

��
∆ // H ⊗A H , (8)

where to perform the tensor product over A, the algebraH is considered as an A-bimodule of the form sHt,
i.e., A acts on the left through s while it acts on the right through t. The maps s, t : A → H are called the
source and target respectively, and η := s ⊗ t : A ⊗ A→ H , a ⊗ a′ 7→ s(a)t(a′) is the unit, ε : H → A the
counit, ∆ : H → H ⊗A H the comultiplication and S : H → H the antipode. These have to satisfy the
following compatibility conditions.
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• The datum (sHt,∆, ε) has to be a coassociative and counital coalgebra in the category of A-
bimodules, i.e., an A-coring. At the level of groupoids, this encodes a unitary and associative
composition law between morphisms.

• The antipode has to satisfy S◦ s = t, S◦ t = s and S2 = idH , which encode the fact that the inverse
of a morphism interchanges source and target and that the inverse of the inverse is the original
morphism.

• The antipode has to satisfy also S(h1)h2 = (t ◦ ε)(h) and h1S(h2) = (s ◦ ε)(h), which encode the
fact that the composition of a morphism with its inverse on either side gives an identity morphism
(the notation h1 ⊗ h2 is a variation of the Sweedler’s Sigma notation, with the summation symbol
understood, and it stands for ∆(h)).

Remark 2.1. Let us make the following observations on the previous definition:
(1) Note that there is no need to require that ε ◦ s = idA = ε ◦ t, as it is implied by the first condition.
(2) Since the inverse of a composition of morphisms is the reverse composition of the inverses, the

antipode S of a commutative Hopf algebroid is an anti-cocommutative map. This means that,
τ∆(S(u)) = (S⊗A S)(∆(u)) inHs ⊗A tH , explicitly, S(u1)⊗A S(u2) = S(u)2 ⊗A S(u)1 for all u ∈ H .
Thus, S : sHt → tHs is an isomorphism of A-corings.

A morphism of commutative Hopf algebroids is a pair of algebra maps (φ0, φ1) : (A,H) → (B,K) such
that

φ1 ◦ s = s ◦ φ0, φ1 ◦ t = t ◦ φ0,

∆ ◦ φ1 = χ ◦ (φ1 ⊗A φ1) ◦ ∆, ε ◦ φ1 = φ0 ◦ ε,

S ◦ φ1 = φ1 ◦ S

where χ : K ⊗A K →K ⊗B K is the obvious map induced by φ0, that is χ (h ⊗A k) = h ⊗B k. The category
obtained in this way is denoted by CHAlgdk, and if the base algebra A is fixed, then the resulting category
will be denoted by CHAlgdA.

Example 2.2. Here there are some common examples of Hopf algebroids (see also [EL]):
(1) Let A be an algebra. Then the pair (A, A⊗A) admits a Hopf algebroid structure given by s(a) = a⊗1,

t(a) = 1⊗ a, S(a⊗ a′) = a′ ⊗ a, ε(a⊗ a′) = aa′ and ∆(a⊗ a′) = (a⊗ 1)⊗A (1⊗ a′), for any a, a′ ∈ A.
(2) Let (B,∆, ε,S ) be a Hopf algebra and A a right B-comodule algebra with coaction A → A ⊗ B,

a 7→ a(0) ⊗ a(1). This means that A is right B-comodule and the coaction is an algebra map (see
e.g. [Mo, §4]). Consider the algebra H = A ⊗ B with algebra extension η : A ⊗ A → H ,
a′⊗a 7→ a′a(0)⊗a(1). Then (A,H) has a structure of Hopf algebroid, known as split Hopf algebroid:

∆(a ⊗ b) = (a ⊗ b1) ⊗A (1A ⊗ b2), ε(a ⊗ b) = aε(b), S(a ⊗ b) = a(0) ⊗ a(1)S (b).

(3) Let B be as in part (2) and A any algebra. Then (A, A⊗ B⊗ A) admits in a canonical way a structure
of Hopf algebroid. For a, a′ ∈ A and b ∈ B, its structure maps are given as follows

s(a) = a ⊗ 1B ⊗ 1A, t(a) = 1A ⊗ 1B ⊗ a, ε(a ⊗ b ⊗ a′) = aa′ε(b),

∆(a ⊗ b ⊗ a′) =
(
a ⊗ b1 ⊗ 1A

)
⊗A

(
1A ⊗ b2 ⊗ a′

)
, S(a ⊗ b ⊗ a′) = a′ ⊗S (b) ⊗ a.

Notice that (1) may be recovered from (3) by considering B = k as Hopf k-algebra with trivial structure.

2.2. Co-commutative Hopf algebroids. Next, we recall the definition of a cocommutative Hopf alge-
broid. It can be considered as a revised (right-handed and cocommutative) version of the notion of a
×A-Hopf algebra as it appears in [Sc, Theorem and Definition 3.5]. However, to define the underlying right
bialgebroid structure we preferred to mimic [Lu] as presented in [BM, Definition 2.2] (in light of [BM,
Theorem 3.1], this is something we may do). See also [Ka, A.3.6] and compare with [Ko, Definition 2.5.1]
and [Sz1, §4.1] as well.

A (right) co-commutative Hopf algebroid over a commutative algebra is the datum of a commutative al-
gebra A, a possibly noncommutative algebraU and an algebra map s = t : A→U landing not necessarily
in the center ofU, with the following additional structure maps:

• A morphism of right A-modules ε : U → A which satisfies

ε(uv) = ε(ε(u)v), (9)



TOWARD DIFFERENTIATION AND INTEGRATION BETWEEN HOPF ALGEBROIDS AND LIE ALGEBROIDS. 9

for all u, v ∈ U;
• An A-ring map ∆ : U → U ×A U, where the module

U ×A U :=

∑
i

ui ⊗A vi ∈ UA ⊗A UA |
∑

i

aui ⊗A vi =
∑

i

ui ⊗A avi

 (10)

is endowed with the algebra structure∑
i

ui ×A vi .
∑

j

u′j ×A v′j =
∑

i, j

uiu′j ×A viv′j, 1U×AU = 1U ⊗A 1U

and the A-ring structure given by the algebra map 1 : A→U ×A U,
(
a 7→ a ×A 1U = 1U ×A a

)
;

subject to the conditions

• ∆ is coassociative, co-commutative in a suitable sense and has ε as a right and left counit;
• the canonical map

β : UA ⊗A AU −→ UA ⊗A UA;
(
u ⊗A v 7−→ uv1 ⊗A v2

)
is bijective, where we denoted ∆(v) = v1 ⊗A v2 (summations understood). As a matter of terminol-
ogy, the map β−1(1 ⊗A −) : U → UA ⊗A AU is the so-called translation map.

The first three conditions say that the category of all right U-modules is in fact a symmetric monoidal
category with tensor product given by − ⊗A − (see the details below), and the forget full functor to the
category of A-bimodules is strict monoidal. The last condition says that this forgetful functor also preserves
right inner homs-functors. The pair (A,U) is then referred to as a right co-commutative Hopf algebroid
over k. From now on the terminology co-commutative Hopf algebroid stands for right ones.

The aforementioned monoidal structure is detailed as follows: Given a co-commutative Hopf algebroid
(A,U), the identity object is the base algebra A, with right U-action given by a � u = ε(au). The tensor
product of two right U-modules M and N is the A-module MA ⊗A NA endowed with the following right
U-action:

(m ⊗A n) � u = (m � u1) ⊗A (n � u2). (11)

The symmetry is provided by the one in A-modules, that is to say, the flip M ⊗A N → N ⊗A M is a natural
isomorphism of rightU-modules. The dual object of a rightU-module M whose underlying A-module is
finitely generated and projective, is the A-module M∗ = Hom−A (M, A) with the rightU-action

ϕ � u : M −→ A,
(
m 7−→ ϕ(m � u−) � u+

)
, (12)

where u− ⊗A u+ = β−1(1 ⊗A u) (summation understood). It is easily checked that, for every a ∈ A and
u, v ∈ U, one has

(au)− ⊗A (au)+ = u− ⊗A au+, (13)
au− ⊗A u+ = u− ⊗A u+a, (14)

v−u− ⊗A u+v+ = (uv)− ⊗A (uv)+, (15)
(1U)− ⊗A (1U)+ = 1U ⊗A 1U, (16)

(u−)1 ⊗A (u−)2 ⊗A u+ = (u+)− ⊗A u− ⊗A (u+)+, (17)
u− ⊗A (u+)1 ⊗A (u+)2 = (u1)− ⊗A (u1)+ ⊗A u2, (18)

u−u+ = ε(u)1U, (19)
(u−)− ⊗A (u−)+u+ = u ⊗A 1U, (20)
u1(u2)− ⊗A (u2)+ = 1U ⊗A u. (21)

Morphisms between co-commutative Hopf algebroids over the same algebra A are canonically defined,
and the resulting category is denoted by CCHAlgdA.
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2.3. Lie-Rinehart algebras and the universal enveloping algebroid. Let A be a commutative algebra
over a field k of characteristic 0 and denote by Derk(A) the Lie algebra of all linear derivations of A.
Consider a Lie algebra L which is also an A-module and let ω : L → Derk(A) be an A-linear morphism of
Lie algebras. In honour of Rinehart [Ri], the pair (A, L) is called a Lie-Rinehart algebra with anchor map
ω provided that

[X, aY] = a[X,Y] + X(a)Y, (22)
for all X,Y ∈ L and a, b ∈ A, where X(a) stands for ω(X)(a).

Apart from the natural examples (A,Derk(A)) (with anchor the identity map), another basic source of
examples are the smooth global sections of a given Lie algebroid over a smooth manifold.

Example 2.3. A Lie algebroid is a vector bundle L → M over a smooth manifold, together with a map
ω : L → TM of vector bundles and a Lie structure [−,−] on the vector space Γ(L) of global smooth
sections of L, such that the induced map Γ(ω) : Γ(L) → Γ(TM) is a Lie algebra homomorphism, and for
all X,Y ∈ Γ(L) and any smooth function f ∈ C∞(M) one has

[X, f Y] = f [X,Y] + Γ(ω)(X)( f )Y. (23)

Then the pair (C∞(M),Γ(L)) is obviously a Lie-Rinehart algebra. In the Appendix A.3, we give a detailed
description, using elementary algebraic arguments, of the Lie-Rinehart algebra attached to the Lie algebroid
of a given Lie groupoid.

Remark 2.4. The fact that the map Γ(ω) : Γ(L)→ Γ(TM) in Example 2.3 is a Lie algebra homomorphism
is a consequence of the Jacobi identity and of Relation (23) (see e.g. [Grw, He, KM]). Therefore, it should
be omitted from the definition of a Lie algebroid. Nevertheless, we decided to keep the somewhat redundant
definition above to make it easier for the unaccustomed reader to see the parallel with Lie-Rinehart algebras.

As in the classical case of (co-commutative) Hopf algebras, primitive elements of a (co-commutative)
Hopf algebroid(10) form a Lie-Rinehart algebra. Compare with [CG, Theorem 3.3.4], [Ko, Proposition
4.2.1], [MM, §2](11) .

Example 2.5 (Primitive elements as Lie-Rinehart algebra). Let (A,U) be a co-commutative Hopf algebroid.
An element X ∈ U is said to be primitive, if it satisfies

∆(X) = 1 ⊗A X + X ⊗A 1 and ε(X) = 0.

Notice that the second equality is a consequence of the first one and the counitality property. The vector
space of all primitive elements Prim(U) inherits simultaneously a structure of A-module and Lie algebra,
where the A-action descends from the right A-module structure of U. In fact, the pair (A,Prim(U)) is a
Lie-Rinehart algebra with anchor map:

ω : Prim(U) −→ Derk(A),
(
X 7−→

[
a 7→ −ε(t(a)X)

])
.

A morphism of Lie-Rinehart algebras f : (A, L)→ (A,K) is an A-linear and Lie algebra map f : L→ K
which is compatible with the anchors. That is, if the following diagram is commutative

L
f //

ω
##

K

ω′{{
Derk(A)

The category so constructed well be denoted by LieRinA

Next we give our main example of co-commutative Hopf algebroids. The (right) universal enveloping
Hopf algebroid of a given Lie-Rinehart algebra (A, L) is an algebra VA (L) endowed with a morphism
ιA : A→VA (L) of algebras and a Lie algebra morphism ιL : L→VA (L) such that

ιL (aX) = ιL(X)ιA(a) and ιL (X) ιA (a) − ιA (a) ιL (X) = ιA (X (a)) (24)

(10) In fact, the claim is true in general for bialgebroids over a commutative base algebra, but we are interested mainly in the
particular case of co-commutative Hopf algebroids.

(11) In fact, in [MM] the terminology used is R/k-bialgebra (as in [Ni]). Nevertheless, as we will see, the universal enveloping
algebra of a Lie-Rinehart algebra inherits actually a Hopf algebroid structure in the sense of [Sc].
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for all a ∈ A and X ∈ L, which is universal with respect to this property. In details, this means that if
(W, φA, φL) is another algebra with a morphism φA : A→ W of algebras and a morphism φL : L→ W of Lie
algebras such that

φL (aX) = φL(X)φA(a) and φL (X) φA (a) − φA (a) φL (X) = φA (X (a)) ,

then there exists a unique algebra morphism Φ : VA (L)→ W such that Φ ιA = φA and Φ ιL = φL.
Apart from the well-known constructions of [Ri] and [MM], the universal enveloping Hopf algebroid

of a Lie-Rinehart algebra (A, L) admits several other equivalent realizations. For instance, one can use the
smash product (right) A-bialgebroid A#Uk(L), as introduced by Sweedler in [Sw], and quotient this algebra
by a proper ideal, in order to perform the universal enveloping of (A, L). In this paper we opted for the
following construction which comes from [ES]. Set η : L → A ⊗ L; X 7−→ 1A ⊗ X and consider the tensor
A-ring TA (A ⊗ L) of the A-bimodule A ⊗ L. It can be shown that

VA (L) �
TA (A ⊗ L)
J

where the two sided ideal J is generated by the set

J :=
〈
η (X) ⊗A η (Y) − η (Y) ⊗A η (X) − η ([X,Y]) ,

η (X) · a − a · η (X) − ω (X) (a)

∣∣∣∣∣∣ X,Y ∈ L, a ∈ A
〉
.

We have the algebra morphism ιA : A → VA (L) ; a 7−→ a + J and the Lie algebra map ιL : L →
VA (L) ; X 7−→ η (X) + J that satisfy the compatibility condition (24). It turns out that VA(L) is a co-
commutative right Hopf algebroid over A with structure maps induced by the assignments

ε (ιA (a)) = a, ε (ιL (X)) = 0,
∆ (ιA (a)) = ιA (a) ×A 1VA(L) = 1VA(L) ×A ιA (a) ,
∆ (ιL (X)) = ιL (X) ×A 1VA(L) + 1VA(L) ×A ιL (X) ,

β−1 (
1VA(L) ⊗A ιA (a)

)
= ιA (a) ⊗A 1VA(L) = 1VA(L) ⊗A ιA (a) ,

β−1 (
1VA(L) ⊗A ιL (X)

)
= 1VA(L) ⊗A ιL (X) − ιL (X) ⊗A 1VA(L).

Remark 2.6. The primitive functor Prim : CCHAlgdA → LieRinA, assigning to a co-commutative Hopf
algebroid (A,U) the space Prim(U) and to a morphism f : (A,U)→ (A,V) its restriction to the primitive
elements, admits as a left adjoint the functorVA : LieRinA → CCHAlgdA, which assigns to a Lie-Rinehart
algebra (A, L) its universal enveloping Hopf algebroid VA(L) and to a morphism of Lie-Rinehart algebras
f : (A, L) → (A,K) the morphism of co-commutative Hopf algebroids VA( f ) induced by the universal
property of VA(L). The unit L → Prim(VA(L)) of the adjunction is given by the corestriction of the
map ιL, while the counit VA(Prim(U)) → U is given by the universal property of its domain applied to
the inclusion of Prim(U) in U. The verification is straightforward. For the analogue in the case of left
bialgebroids we refer to [MM, Theorem 3.1] or [Ko, Proposition 4.2.3].

Remark 2.7. Given a Lie-Rinehart algebra (A, L), there exists a notion of left (A, L)-module, see e.g. [Hu2,
§1] and [Ri, §2]. As it happens for the universal enveloping algebra of an ordinary Lie algebra, the defini-
tion of the universal enveloping algebroid (U(A, L), A, L) is designed in such a way that left (A, L)-modules
bijectively correspond to left U(A, L)-modules in a natural way. In fact, this correspondence turns out to be
an isomorphism of categories. In the present paper, working with right co-commutative Hopf algebroids,
we are interested in dealing with right modules over the universal enveloping algebroid associated to a Lie-
Rinehart algebra. As a consequence, we define right (A, L)-modules to be left modules over (A, Lop,−ω),
where (A, Lop) is the Lie-Rinehart algebra with same underlying A-module L, with opposite bracket and
opposite anchor map with respect to (A, L) (equivalently, A-modules M with a morphism of Lie-Rinehart
algebras from Lop to the Atiyah algebra of M). They are in one-to-one correspondence with right VA(L)-
modules. Moreover,

(a) in general we haveVA(L) � U(A, Lop)op (see [CG, Proposition 2.1.12])
(b) in the particular case of AL free, i.e. L =

⊕
i AXi, we have that U(A, L) with A and ′L given by

′L(
∑

i aiXi) :=
∑

i L(Xi) A(ai) is the right universal enveloping algebra of (A, L) (symmetrically for
VA(L) on the other side).



12 ALESSANDRO ARDIZZONI, LAIACHI EL KAOUTIT, AND PAOLO SARACCO

It is worthy to point out however that our definition of a right representation differs slightly from the
one given in [Hu1, page 430]. The reason to introduce this new one is threefold: first of all this is more
symmetric, secondly it ensures that A is a right representation as much naturally as it is a left one, that is to
say, via the anchor map ω, and thirdly because with this definition right representations correspond to right
modules over the right universal enveloping algebra in a natural way.

3. A dual for cocommutative Hopf algebroids

It is well-known that, for Hopf algebras, the functor Derk(−, k) : CHAlgop
k → Liek is right adjoint to

the functor (U(−))◦ : Liek → CHAlgop
k , where CHAlgk and Liek denote the categories of commutative Hopf

k-algebras and that of Lie k-algebras, respectively. Indeed, this can be seen as the composition of the two
adjunctions (U,Prim) and ((−)◦, (−)◦), where U : Liek → CCHAlgk is the universal enveloping functor,
Prim : CCHAlgk → Liek is the functor of primitive elements and (−)◦ denotes the finite (or Sweedler) dual.
Since we plan to extend this construction to the Hopf algebroid framework, we first need an analogue of
the finite dual. This section and the next one are devoted to this construction. In fact, by following two
different but equally valid approaches, we will provide even two possible such analogues.

3.1. Tannaka reconstruction process. Let A be a commutative algebra andω : A → proj(A) be a faithful
k-linear functor (referred to as a fiber functor), whereA is a k-linear (essentially) small category. The image
ωP of an object P ofA under ω will be denoted by P itself when no confusion may arise. Given P,Q ∈ A,
we denote by TPQ = HomA (P, Q) the k-module of all morphisms in A from P to Q. The symbol TP is
reserved to the ring (in fact, algebra) of endomorphisms of P. Clearly, S P = End(PA) is a ring extension of
TP via ω. In this way, every image ωP of an object P ∈ A, becomes canonically a (TP, A)-bimodule.

Consider now the Gabriel’s ring A attached to A and introduced in [Ga]. That is, the algebra A :=
⊕P,Q ∈ATPQ with enough orthogonal idempotents and such that the multiplication of two composable mor-
phisms is their composition, otherwise is zero. Set Σ = ⊕P ∈AP and Σ† = ⊕P ∈AP∗, direct sums of A-modules,
and identify any element in P (resp. in Q∗) with its image in Σ (resp. in Σ†). It turns out that Σ is an unital
(A, A)-bimodule while Σ† is an unital (A,A)-bimodule.

Now, let us recall from [EG3] the infinite comatrix A-coring associated with the fiber functor ω : A →
proj(A) which is given by the A-bimodule R(A) B Σ† ⊗A Σ. Furthermore, it is clear that any object
P ∈ A admits (via the functor ω) the structure of a right R(A)-comodule, which leads to a well-defined
functor χ : A → AR(A) (see §1.3 for the notation), and that ω factors through the forgetful functor
O : AR(A) → ModA via χ, that is, ω = O ◦ χ.

Remark 3.1. The typical examples of the pairs (A,ω) which we will deal with here are either the category
AC of right C-comodules, for a given A-coring C, which are finitely generated and projective as A-modules
with ω the forgetful functor, or the categoryAR of right R-modules, for a given A-ring R, which are finitely
generated and projective as A-modules and ω is the forgetful functor as well. For the sake of simplicity,
we will often denote by R(C) the coring R

(
AC

)
. Similarly, we set R◦ B R (AR). The latter construction

induces a functor (−)◦ : A-Rings→ (A-Corings)op, which was named the finite dual functor in [EG2, §2.1].
It is noteworthy to mention that from its own construction it is not clear whether the functor (−)◦ is left
adjoint to the functor ∗(−) : (A-Corings)op → A-Rings which sends any A-coring C to its right convolution
algebra ∗C. In the next section we will provide, using the Special Adjoint Functor Theorem (SAFT), a left
adjoint of ∗(−) and study some of its properties.

Assume now thatA is a symmetric rigid monoidal category and ω is a symmetric strict monoidal func-
tor. Then one can endow the associated infinite comatrix A-coring R(A) with a structure of commutative
(A ⊗k A)-algebra. The multiplication is given as follows:

(p∗ ⊗A p) . (q∗ ⊗A q) = (q∗ ? p∗) ⊗A (q ⊗A p), (25)

where for every ϕ ∈ P∗ and ψ ∈ Q∗ we set

(ϕ ? ψ) : P ⊗A Q −→ A,
(
x ⊗A y 7−→ ϕ(x)ψ(y)

)
. (26)

The unit is the algebra map A ⊗k A → R(A) which sends a ⊗ a′ → la ⊗A a′, where la is the image of a
by the isomorphism A � A∗ and as above we identify the identity object ofA with its image A. Notice that
TA is a subring of A and does not necessarily coincide with the base field k.
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It turns out that (A,R(A)) with this algebra structure is actually a commutative Hopf algebroid. The
antipode is given by the map

S : R(A) −→ R(A),
(
p∗ ⊗A p 7−→ evp ⊗A p∗

)
, (27)

where evp is the image of p under the isomorphism of A-modules P � (P∗)∗.
The previous construction, which we may call Tannaka’s reconstruction process, is in fact functorial.

That is, if F : A → A′ is a given symmetric monoidal k-linear functor such that

A
F //

ω ((

A′

ω′vv
proj(A)

(28)

is a commutative diagram, then there is a morphism of Hopf algebroids given by

R(F ) : Σ† ⊗A Σ −→ Σ† ⊗A′ Σ,
(
p∗ ⊗A p 7−→ p∗ ⊗A′ p

)
. (29)

which makes commutative the following diagram:

AR(A) R(F )∗ //

O

$$

(A′)R(A′)

O′

ss

A
F //

χ
99

ω

,,

A′

χ′
88

ω′

vv
proj(A)

(30)

where R(F )∗ is the restriction of the induced functor R(F )∗ : ComodR(A) → ComodR(A′) sending any
right R(A)-comodule (M, %M) to the right R(A′)-comodule

M
%M // M ⊗A R(A)

M⊗AR(F ) // M ⊗A R(A′),

and acting obviously on morphisms.

Remark 3.2. It is noteworthy to mention that the underlying category A is not assumed to be abelian nor
the subalgebra TA of A coincides with the base field k. Thus we are not assuming that the pair (A,ω) is
a Tannakian category in the sense of [Del]. The obtained Hopf algebroids have then less properties then
one constructed from the Tannakian categories. One of these missing properties is, for instance, that the
functor χ : A → AR(A) is not necessarily an equivalence of categories, and that the skeleton of the full
subcategory AR(A) does not necessarily form a set of small generators in the whole category of R(A)-
comodules. Nevertheless, the conditions which we are taking on the pairs (A,ω) are sufficient to build up
the construction of §3.3 below.

3.2. The zeta map and Galois corings. Let (A,R) be a ring over A and consider its finite dual (A,R◦)
constructed as in §3.1 from the pair (AR,ω), where ω is the forgetful functor, see also Remark 3.1. Then
there is an (A, A)-bimodule map

ζR : R◦ −→ R∗,
(
p∗ ⊗AR

p 7−→
[
r 7→ p∗(p r)

])
(31)

where the latter is the right A-linear dual of R endowed with its canonical A-bimodule structure.

Remark 3.3. Notice that ζ should be more properly denoted by ζR if we want to stress the dependence on
R. Moreover, if f : S → R is an A-ring map, then f ∗ ◦ ζR = ζS ◦ f ◦. Indeed,

ζS

(
f ◦

(
ϕ ⊗AR

n
))

(s)
(29)
= ζS

(
ϕ ⊗AS

n
)

(s) = ϕ (n f (s)) = f ∗
(
ζR

(
ϕ ⊗AR

n
))

(s)

for all s ∈ S , ϕ ⊗AR
n ∈ R◦.

For the reader’s sake, we include here the subsequent result.
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Lemma 3.4 ([EG2, 3.4]). The map ζ of (31) fulfils the following equalities for every z ∈ R◦, x, y ∈ R

ζ(z)
(
xy) = ζ(z1)

(
ζ(z2)(x)y

)
, ζ(z)(1R) = ε(z) and ζ(azb)(u) = aζ(z)(bu). (32)

In contrast with the classical case of algebras over fields, the map ζ is not known to be injective, unless
some condition are imposed on the base algebra A. For instance, if A is a Dedekind domain then ζ is always
injective. Strong consequences of the injectivity of ζ were discussed in [EG2], some of them can be seen
as follows. In general, it is known that the functor L : AR◦ → AR induced by the obvious functor AR◦ →

A∗(R◦) (see e.g. [BW, §19.1]) and by the canonical map ηR : R → ∗ (R◦) (where ηR(r)(p∗ ⊗AR
p) = p∗(pr)

for every R-module P and all r ∈ R, p ∈ P, p∗ ∈ P∗) has a right inverse functor χ : AR → A
R◦ which sends

each right R-module P ∈ AR to the right R◦-comodule L(P) with underlying A-module P and coaction

% : P −→ P ⊗A R◦,
(
p 7−→

∑
i

ei ⊗A
(
e∗i ⊗AR

p
))
,

where {ei, e∗i }i is any dual basis for P. If ζ is assumed to be injective then χ and L are mutually inverses and
soAR is isomorphic toAR◦ (see Remark 4.13). Now we give the notion of Galois corings.

Definition 3.5. Let (A,C) be a coring. Then (A,C) is said to be Galois (or AC-Galois), if it can be
reconstructed from the categoryAC , that is, provided that the canonical map

can : Σ† ⊗
AC Σ −→ C,

(
p∗ ⊗

AC p 7−→ p∗(p(0)) p(1)

)
,

is an isomorphism of A-corings, where %P(p) = p(0) ⊗A p(1) is the C-coaction on p ∈ P.

3.3. The finite dual of co-commutative Hopf algebroid via Tannaka reconstruction. Next we want to
apply the Tannaka reconstruction process to a certain full subcategory of the category of right modules over
a co-commutative Hopf algebroid. So take (A,U) to be such a Hopf algebroid. Following the notation of
§1.3, we denote by AU the full subcategory of right U-modules whose underlying A-module is finitely
generated and projective, and by ω : AU → proj(A) the associated forgetful functor. Joining together the
results from §2.2 and §3.1, we get that the pair (AU,ω) satisfies the necessary assumptions such that the
algebra (A,R(AU)) resulting from the Tannaka reconstruction process is a commutative Hopf algebroid.
It is this Hopf algebroid which we refer to as the finite dual of (A,U) and we denote it by (A,U◦). The
subsequent result is contained in [EG2, Theorem 4.2.2]. We give here the main steps of its proof.

Proposition 3.6. Let A be a commutative algebra. Then the finite dual establishes a contravariant functor

(−)◦ : CCHAlgdA −→ CHAlgdA

from the category of co-commutative Hopf algebroids to the category of commutative ones.

Proof. Given a morphism φ : U → U′ of co-commutative Hopf algebroids, the restriction of scalars
leads to a k-linear functor Fφ : AU′ → AU which commutes with the forgetful functor, that is, such that
ω ◦ Fφ = ω′. Using the monoidal structure described in (11), it is easily checked that Fφ is a symmetric
strict monoidal functor. Therefore (see §3.1) we have a morphism φ◦ : U′◦ →U◦ of Hopf algebroids. The
compatibility of (−)◦ with the composition law and the identity morphisms is obvious. �

3.4. The zeta map and Galois Hopf algebroids. Let (A,U) be a co-commutative Hopf algebroid and
consider its right A-linear dual U∗, regarded as an (A ⊗ A)-algebra with the convolution product induced
by the comultiplication ∆ : UA →UA ⊗A UA, that is to say,

( f ∗ g)(u) = f (u1)g(u2), for every f , g ∈ U∗, u ∈ U.

The canonical A-bilinear map from §3.2

ζ = ζU : U◦ −→ U∗,
(
p∗ ⊗AU p 7−→

[
u 7→ p∗(p u)

])
(33)

is an (A ⊗ A)-algebra map and it fulfils (32) for R = U. If ζ is injective, then there is an isomorphism of
symmetric rigid monoidal categoriesAU◦ � AU (see [EG2, Theorem 4.2.2]). The subsequent definition is
a particular instance of Definition 3.5.
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Definition 3.7. A commutative Hopf algebroid (A,H) is called Galois (or AH -Galois), if its underlying
A-coring is Galois in the sense of Definition 3.5, i.e. if the canonical map

can : Σ† ⊗
AH

Σ −→ H ,
(
p∗ ⊗

AH
p 7−→ s(p∗(p(0)))p(1)

)
,

is an isomorphism of Hopf algebroids, where %P(p) = p(0) ⊗A p(1) is the H-coaction on p ∈ P. The full
subcategory of Galois commutative Hopf algebroids with base algebra A is denoted by GCHAlgdA.

Remark 3.8. Let (A,U) be a co-commutative Hopf algebroid. When the canonical map ζ : U◦ → U∗ is
injective, the reconstructed objectU◦ is Galois (see [EG2, Proposition 3.3.3]). The inverse of the canonical
map can is provided by the assignment Σ† ⊗AU Σ → Σ† ⊗

AU
◦ Σ, p∗ ⊗AU p 7→ p∗ ⊗

AU
◦ p, employing the

canonical isomorphism AU◦ � AU. Later on, we will recover the same isomorphism under an apparently
weaker condition. We point out also that this condition makes ofU◦ a Galois coring, even if we replaceU
simply by an A-ring R (see e.g. Remark 7.3).

Example 3.9. Several well-known Hopf algebroids are Galois as the following list of examples shows.

(1) Any commutative Hopf algebra over a field (i.e., a Hopf algebroid with source equal target with
base algebra is a field) is Galois Hopf algebroid.

(2) Let B → A be a faithfully flat extension of commutative algebras. Then (A, A ⊗B A) is a Galois
Hopf algebroid.

(3) Any Hopf algebroid (A,H) whose unit map η : A⊗A→ H is a faithfully flat extension of algebras
is actually Galois. In other words, any geometrically transitive Hopf algebroid is Galois, see [EL]
for more details.

(4) The Adams Hopf algebroids as defined in [Hov] and studied in [Sch] are Galois.

We point out that the first three cases are in fact a particular instance of a more general result [EG3, Theorem
5.7], which asserts that any flat Hopf algebroid whose category of comodules ComodH admitsAH as a set
of small generators, is a Galois Hopf algebroid.

4. An alternative dual via SAFT

In this section we propose a different candidate for the finite dual of a given co-commutative Hopf
algebroid. Its construction is based upon the well-known Special Adjoint Functor Theorem. We also
establish a natural transformation between this new contravariant functor and the one already recalled in
Subsection 3.3. As before, we start by the general setting of rings.

4.1. Finite dual using SAFT: The general case of A-rings. Let A be a commutative algebra. Consider
the category AModA of A-bimodules. Then the functor (−)∗ : AModA → (AModA)op admits a right adjoint
∗(−) : (AModA)op → AModA, where M∗ = Hom− A (M, A) with structure of A-bimodules as in (5). The latter
functor induces a functor

∗(−) : (A-Corings)op −→ A-Rings, (34)

where the category A-Rings stands for k-algebras R with an algebra map A → R (whose image is not
necessarily in the centre of R). The functor of (34) is explicitly given as follows: For a given an A-coring
(C,∆, ε) we have that the A-ring structure on ∗C is given as in (6). As a consequence of the Special Adjoint
Functor Theorem, the functor of equation (34) admits a left adjoint

(−)• : A-Rings→ (A-Corings)op, (35)

see [PS, Corollary 9].(12) For future reference, let us retrieve explicitly the A-ring morphism

η′R : R −→ ∗ (R•) ,
(
r 7−→

[
z 7−→ ξ (z) (r)

] )
(36)

(i.e., unit of the previous adjunction).

(12) For the sake of completeness, let us point out that the quoted Corollary 9 treats the case of A non-commutative, too. The
difference is that A-Rings should be replaced by Aop-Rings. Nevertheless, since the non-commutative case goes beyond the purposes
of the present paper, we will not discuss it further.
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Remark 4.1. Given an A-ring R, the A-coring R• is uniquely determined by the following universal prop-
erty: it comes endowed with an A-bimodule morphism ξ : R• → R∗ which satisfies the analogous of the
relations (32) and if C is an A-coring endowed with a A-bimodule map f : C → R∗ satisfying the same
relations, then there is a unique A-coring map f̂ : C → R• such that ξ ◦ f̂ = f . Conversely, notice that
given an A-coring map g : C → R•, the composition ξ ◦ g satisfies the relations in (32). As a consequence,
if g, g′ : C → R• are coring maps such that ξ ◦ g = ξ ◦ g′, then g = g′.

Remark 4.2. For the reader sake, we show how the adjunction follows from this universal property. Let
R be an A-ring, let C be an A-coring and h : R → ∗C be a k-linear map. Denote by f : C → R∗ the map
defined by f (c)(r) = h(r)(c) for all r ∈ R and c ∈ C. We compute

h(bxa)(c) = f (c)(bxa) = f (c)(bx)a = a f (c)(bx) = (a f (c)b)(x),

(bh(x)a)(c)
(6)
= h(x)(cb)a = ah(x)(cb) = h(x)(acb) = f (acb)(x),

h(xy)(c) = f (c)(xy),

(h(x) ∗ h(y))(c)
(6)
= h(y)(c1h(x)(c2)) =

(
h(x)(c2)h(y)

)
(c1) = h(h(x)(c2)y)(c1) = f (c1)( f (c2)(x)y),

h(1R)(c) = f (c)(1R),

1C∗ (c)
(6)
= ε(c).

Consequently, we see that h from R to ∗C is an A-ring morphism if and only if f corresponds to h via the
adjunction ((−)∗, ∗(−)) and satisfies the conditions in (32). Since there is a 1–1 correspondence between
these f ’s and the f̂ ’s as above, we are done. Note also that given an A-ring map h : R1 → R2, we
can consider the A-bimodule map h∗ : R2

∗ → R1
∗. If we pre-compose h∗ with ξ2 : R2

•
→ R2

∗, the
map f := h∗ ◦ ξ2 satisfies conditions (32) since f (z)(r) = ξ2(z)(h(r)) for all z ∈ R2

•, r ∈ R1 and h is
multiplicative, unital and A-bilinear. As a consequence, the universal property of R2

• yields a unique A-
coring map h• := f̂ : R2

•
→ R1

• such that ξ1 ◦ h• = h∗ ◦ ξ2.

Example 4.3 (the map zeta-hat). Let R and R◦ as in §3.2 together with the A-bimodules morphism ζ of
equation (31). By Lemma 3.4 and the universal property of R•, there is an A-corings morphism

ζ̂ : R◦ −→ R•, (37)

such that ξ ◦ ζ̂ = ζ. In light of Remark 3.3, this induces a natural transformation ζ̂ : (−)◦ → (−)•.

Lemma 4.4. Given an A-ring R and the canonical map ξR := ξ : R• → R∗, we have that Ker (ξ) contains
no non-zero coideals of R• (i.e. ξ is cogenerating in the sense of [Mi1, Definition 1.13]). In particular, ξ is
injective if and only if Ker (ξ) is a coideal of R•.

Proof. By definition, a coideal J of R• is an A-subbimodule such that the quotient A-bimodule C := R•/J
is an A-coring and the canonical projection π : R• → C is an A-coring map. If J ⊆ Ker (ξ), then ξ factors
through a map ξ̄ : C → R∗ such that ξ̄ ◦ π = ξ. Any c ∈ C is of the form π(x) for some x ∈ R•, so that

ξ̄(c1)
(
ξ̄(c2)(r)r′

)
= ξ̄(π(x)1)

(
ξ̄(π(x)2)(r)r′

)
= ξ(x1)

(
ξ(x2)(r)r′

) (32)
= ξ(x)(rr′) = ξ̄(c)(rr′),

ξ̄(c)(1R) = ξ(x)(1R)
(32)
= εR• (x) = εC(c),

ξ̄(acb)(r) = ξ̄(aπ(x)b)(r) = ξ̄(π(axb))(r) = ξ(axb)(r) = aξ(x)(br) = aξ̄(c)(br).

As a consequence of the universal property of R•, there exists a unique A-coring map σ : C → R• such
that ξ ◦ σ = ξ̄. Now, ξ ◦ σ ◦ π = ξ̄ ◦ π = ξ, so that the uniqueness in the universal property entails that
σ ◦ π = idR• . Since π is surjective, this forces π to be invertible whence J = 0. �

Next, we want to relate the two categoriesAR andAR• (see §1.3 for definition), but before we recall the
following general construction that has been and will be used more or less implicitly along the paper. As a
matter of notation, if BMA is a (B, A)-bimodule such that MA is finitely generated and projective with dual
basis

{
ei, e∗i

}
i, then we are going to set

dbM : B→ M ⊗A M∗,

b 7−→∑
i

bei ⊗A e∗i

 and evM : M∗ ⊗B M → A,
(

f ⊗B m 7−→ f (m)
)
.
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Notice that db is B-bilinear while ev is A-bilinear and we have the following isomorphism

β : HomD−B (M, N ⊗C P)→ HomC−B (N∗ ⊗D M, P) ,
(
g 7−→ (evN ⊗C P) ◦ (N∗ ⊗D g)

)
(38)

for B,C,D algebras and DMB, DNC , C PB bimodules such that NC is finitely generated and projective.
For every (B, A)-bimodule N we set

BCoacA(N,N ⊗A C) :=
{
ρ ∈ HomB−A (N, N ⊗A C) | (N, ρ) ∈ AC

}
.

Lemma 4.5. For every (B, A)-bimodule N such that NA is finitely generated and projective, the assignment
βC : HomB−A (N, N ⊗A C)→ HomA−A (N∗ ⊗B N, C) of Equation (38) induces an isomorphism

β̄C : BCoacA(N,N ⊗A C)→ CoringA(N∗ ⊗B N,C) (39)

natural in C.

Proof. By adapting [EG1, Proposition 2.7], one proves that βC induces β̄C . A direct computation shows
that β−1

C restricts to β̄−1
C : CoringA(N∗ ⊗B N,C)→ BCoacA(N,N ⊗A C), providing an inverse for β̄C . �

Lemma 4.6. Let C be an A-coring, M an A-bimodule and f : C → M an A-bilinear map. The following
are equivalent

(a) (N ⊗A f ) ◦ ρ = (N ⊗A f ) ◦ ρ′ implies ρ = ρ′ for every ρ, ρ′ ∈ CoacA(N,N ⊗A C) and for every
N ∈ proj(A),

(b) f ◦ α = f ◦ β implies α = β for every α, β : E → C coring maps and for every A-coring E with
canE (split) epimorphism of corings,

(c) f ◦ α = f ◦ β implies α = β for every α, β : N∗ ⊗B N → C coring maps, for every algebra B and
every bimodule BNA such that NA ∈ proj(A).

Proof. First of all, observe that (a) is equivalent to the same statement but with ρ, ρ′ ∈ BCoacA(N,N ⊗A C),
for every algebra B and every bimodule BNA such that NA ∈ proj(A). To prove that (c) is equivalent to (a)
consider the commutative diagram, for every N ∈ proj(A),

BCoacA(N,N ⊗A C)
β̄C //

� _

��

CoringA(N∗ ⊗B N,C)� _

��
HomB−A (N, N ⊗A C)

βC //

HomB−A(N,N⊗A f )

��

HomA−A (N∗ ⊗B N, C)

HomA−A(N∗⊗N, f)
��

HomB−A (N, N ⊗A M)
βR∗ // HomA−A (N∗ ⊗B N, M)

Since the horizontal arrows are isomorphisms, the vertical composition on the right is injective (i.e. (c)
holds) if and only if the vertical composition on the left is (i.e. (a) holds).

To prove the remaining implications, let us show first that C B N∗ ⊗B N is a coring with canC (split)
epimorphism of corings, for every algebra B and every bimodule BNA as in the statement. Notice that
N ∈ AC with coaction n 7→

∑
i ei ⊗A (e∗i ⊗B n), where {ei, e∗i }i is a dual basis for NA. Thus we may consider

the composition

N∗ ⊗B N
(∗) // N∗ ⊗TN N

ιN // R(N∗ ⊗B N)
canC // N∗ ⊗B N

f ⊗B n � // f ⊗TN n � // f ⊗
AC

n � // ∑
i f (ei)e∗i ⊗B n = f ⊗B n

where (∗) is the isomorphism of [EG1, Lemma 3.9] and TN := EndN∗⊗BN(N). This shows that canC is a
(split) epimorphism of corings for every N and B as above and hence (c) follows from (b).

Conversely, let us show that (c) implies (b). Let α, β, E be as in (b) such that f ◦ α = f ◦ β. Denote by
π :

⊕
N ∈AE N∗ ⊗TN N → R(E) the canonical projection and by jN : N∗ ⊗TN N →

⊕
N ∈AE N∗ ⊗TN N the

canonical injection. Then we have that

f ◦ α ◦ canE ◦ π ◦ jN = f ◦ β ◦ canE ◦ π ◦ jN
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for every N ∈ AE . In light of the hypothesis and since ιN and π are morphisms of corings, we have that
α ◦ canE ◦ π ◦ ιN = β ◦ canE ◦ π ◦ ιN . By the universal property of the coproduct, the surjectivity of π and
the fact that canE is a (split) epimorphism we get that α = β. �

Corollary 4.7. For every A-ring R, the canonical morphism ξ : R• → R∗ satisfies the equivalent properties
of Lemma 4.6.

Proof. From the universal property of ξ (see Remark 4.1), it satisfies (b) of Lemma 4.6. �

Remark 4.8. An open question at the present moment is whether ζ : R◦ → R∗ satisfies (b) of Lemma
4.6 as well. Note that canR◦ is a split epimorphism of corings because canR◦ ◦ R(χ) = idR◦ . As we will
see, an affirmative answer would be equivalent to require that the induced functor Aζ̂ : AR◦ → AR• is an
isomorphism of categories.

Now, in one direction, we have that every object (M, %M) inAR• becomes right R-module as follows:

m . r = m(0)ξ(m(1))(r) (40)

for every m ∈ M and r ∈ R. Its underlying A-module coincides with the image of (M, %M) by the forgetful
functor O : AR• → ModA. Clearly this construction is functorial and so we have a functor

L′ : AR• −→ AR (41)

such that
L′ ◦ Aζ̂ = L. (42)

Conversely, consider the functor
χ′ := Aζ̂ ◦ χ : AR −→ A

R• . (43)
Notice that, since χ is a right inverse of L, we have

L′ ◦ χ′
(43)
= L′ ◦ Aζ̂ ◦ χ

(42)
= L ◦ χ = idAR . (44)

Proposition 4.9. The functors L′ and χ′ establish an isomorphism between the categoriesAR• andAR.

Proof. In light of (44), it is enough to prove that χ′ ◦ L′ = idAR• . Note that, still by (44), we have
L′ ◦ χ′ ◦ L′ = L′. From the latter equality the thesis follows once proved that L′ is cancellable on
the left. Since L′ is always faithful, it remains to prove that it is injective on objects. Observe that for
every M ∈ proj(A), the assignment m ⊗A f 7→

[
r 7→ m f (r)

]
yields an isomorphism of right A-modules

M ⊗A R∗ → HomA (R, M), which in turn induces a bijection

τ : HomA (M, M ⊗A R∗)→ HomA (M ⊗A R, M) ; ρ 7→
[
m ⊗A r 7→ m(ρ)

0 m(ρ)
1 (r)

]
(45)

where we set m(ρ)
0 ⊗A m(ρ)

1 = ρ(m) for every m ∈ M. Let (N, ρ) be an object in AR• and consider L′ (N, ρ).
This is the A-module N endowed with the R-action (40), i.e.

m.r = m(0)ξ(m(1))(r)
(45)
= τ ((N ⊗A ξ) ◦ ρ) (m ⊗A r)

for every m ∈ N, r ∈ R. Denote it by µρ. Now, L′(N, ρN) = L′(P, ρP) if and only if (N, µρN ) = (P, µρP ), if and
only if N = P and µρN = µρP . Since N = P, we may consider ρN , ρP ∈ CoacA(N,N ⊗A R•) and since τ is
bijective and ξ satisfies (a) of Lemma 4.6, the relation µρN = µρP is equivalent to ρN = ρP. �

Corollary 4.10. Let R be an A-ring. Then
(1) If ζ is injective, then R◦ is the largest Galois A-coring inside R∗ with respect to the property of

equation (32).
(2) R• is a Galois A-coring as in Definition 3.5 if and only if the map ζ̂ : R◦ → R• of (37) is an

isomorphism of A-corings.

Proof. By Proposition 4.9, we know that χ′ and L′ establish an isomorphism of categories AR � AR• .
Therefore, using the functor R of §3.1, we have that R(χ′) is an isomorphism. We compute

can′ ◦R(χ′)
(43)
= can′ ◦R

(
Aζ̂

)
◦R(χ)

(can nat)
= ζ̂ ◦ can ◦R(χ) = ζ̂ (46)

where can and can′ are the canonical morphisms of R◦ and R•, respectively. Concerning (1), given a Galois
A-coring C endowed with an injective A-bimodule map f : C → R∗ satisfying the analogue of (32), by
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Remark 4.1 there is a unique A-coring map f̂ : C → R• such that ξ ◦ f̂ = f . Note that f̂ is necessarily
injective. Consider the A-coring map f ′ := R(χ′)−1 ◦R

(
A f̂

)
◦ can−1

C : C → R◦. Then, by (46), we have

ζ̂ ◦ f ′ = can′ ◦R
(
A f̂

)
◦ can−1

C = f̂ , so that f ′ is injective and hence R◦ is the largest Galois A-coring inside
R∗ with respect to the property of equation (32). The fact that R◦ is Galois follows from [EG2, Proposition
3.3.2] together with the observation that can ◦R(χ) = idR◦ . Concerning (2), it follows from (46). �

Remark 4.11. Assume that R is an A-ring which is finitely generated and projective as a right A-module,
then the map ψ : R∗ ⊗A R∗ → (R ⊗A R) ∗ given by ψ( f ⊗A g)(r ⊗A r′) = f (g(r)r′) is invertible, so that we
can define ∆ := ψ−1 ◦ m∗ and ε : R∗ → A by ε( f ) = f (1). As a consequence (R∗,∆, ε) is an A-coring. It is
easy to check that the identity map id : R∗ → R∗ fulfils (32). By the universal property of R•, there exists a
unique morphism îd : R∗ → R• of A-corings such that ξ ◦ îd = id. Clearly, ξ ◦ îd ◦ ξ = ξ ◦ id, so that we
get the equality of the A-coring maps îd ◦ ξ = id. Thus ξ is invertible. On the other hand, we know from
[EG2, Corollary 3.3.5], that the map ζ : R◦ → R∗ of equation (31) is, in a natural way, an isomorphism of
A-corings. Therefore, the natural transformation ζ̂− : (−)◦ → (−)• when restricted to A-rings with finitely
generated and projective underlying right A-modules, leads to a natural isomorphism.

Our next aim is to give a complete characterization of when the functors L and χ establish an isomor-
phism between the categoriesAR◦ andAR, by analogy with Proposition 4.9.

Theorem 4.12. The following are equivalent for ζ̂ : R◦ → R•

(i) Aζ̂ is an isomorphism,
(ii) Aζ̂ is injective on objects,

(iii) L is an isomorphism,
(iv) L is injective on objects,
(v) CoringA(C, ζ̂) is bijective for every coring C whose canC is a split epimorphism of corings,

(vi) CoringA(C, ζ̂) is injective for every coring C whose canC is a split epimorphism of corings.

Remark 4.13. Observe that ζ injective (respectively monomorphism of corings) implies that ζ̂ is injective
(respectively monomorphism of corings), which in turn implies (vi) of Theorem 4.12.

Proof of Theorem 4.12. The equivalences (i) ⇐⇒ (iii) and (ii) ⇐⇒ (iv) follows immediately from (42)
and Proposition 4.9. Obviously, (iii) implies (iv). Conversely, since L is faithful and injective on objects,
the implication follows from L ◦ χ ◦ L = L, which in turn follows from L ◦ χ = idAR .

Moreover, notice that Aζ̂ is injective on objects is equivalent to (a) of Lemma 4.6 for f = ζ̂, which in
turn is equivalent to (b) of the same lemma, that is to say, to (vi). Obviously (v) implies (vi). Conversely,
assume (vi) and pick a g ∈ CoringA(C,R•). It induces a functor Ag : AC → AR• and a diagram with
commuting squares

R(AC)
R(Ag) //

canC

��

R(AR• )

can′

��

R(AR◦ )
R(Aζ̂ )oo

can

��
C g

// R• R◦
ζ̂

oo

By assumption, there is a coring map σ : C → R(AC) such that canC ◦σ = idC . Thus we may consider the
coring map g̃ := can◦R(Aζ̂)−1◦R(Ag)◦σwhich satisfies ζ̂◦ g̃ = g by definition. Therefore, CoringA(C, ζ̂)
is surjective as well. �

4.2. The finite dual of co-commutative Hopf algebroid via SAFT. In this subsection we use another
general construction relying on the Special Adjoint Functor Theorem (SAFT) §4, in order to construct an-
other functor from the category of (right) co-commutative Hopf algebroids to the category of commutative
ones. We also compare both functors constructed so far.

Fix a commutative algebra A and consider as before the categories CCHAlgdA and CHAlgdA of co-
commutative and commutative Hopf algebroids, respectively. The functor ∗(−) : A-Coringsop

→ A-Rings,
assigning to each A-coring C the ring HomA− (C, A) with the convolution product (6), admits a left adjoint,
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denoted by (−)•, in view of SAFT. Consider the following diagram

A-Rings
(−)• // A-Corings

CCHAlgdA

?�

OO

CHAlgdA,
?�

OO
(47)

where the vertical functors are the canonical forgetful ones.

Theorem 4.14. The functor (−)• in diagram (47) induces a contravariant functor

(−)• : CCHAlgdA −→ CHAlgdA.

Explicitly, given a cocommutative Hopf algebroid (A,U) and the canonical A-bilinear map ξ : U• → U∗,
the structure of commutative Hopf algebroid ofU• is uniquely determined by the following relations

(ξ ◦ η)(a ⊗ b)(u) = ε(bu)a, ξ(xy)(u) = ξ(x)(u1)ξ(y)(u2), ξ
(
S(x)

)
(u) = ε

(
ξ(x)(u−)u+

)
. (48)

The datum (A,U•, ξ) fulfils the following universal property. Let (A,H) be a commutative Hopf algebroid
and f : H → U∗ an A ⊗ A-algebra map satisfying (32), where the A ⊗ A-algebra structure ofU∗ is given
by the convolution product and the unit is a ⊗ b 7→ [u 7→ ε(bu)a]. Then the unique map f̂ : H → U• given
by the universal property ofU• as a coring becomes a morphism of commutative Hopf algebroids.

Proof. Set Ae := A ⊗ A, the enveloping algebra, which we consider as a commutative Hopf algebroid with
base algebra A. By Remark 4.1, the map f : Ae → U∗, given by the assignment a ⊗ b 7→ [u 7→ ε(bu)a],
yields a unique A-coring map η : Ae → U• such that ξ ◦ η = f (recall that the A-coring structure on Ae

is the one given in Example 2.2). To introduce the multiplication, we resort to the operation � recalled
in Remark 1.4 in the case C = D = U•. Then by Remark 4.1 again, the map h : U• � U• → U∗,
given by h(x � y)(u) = ξ(x)(u1)ξ(y)(u2) for all x, y ∈ U• and u ∈ U, gives rise to a unique A-coring map
m : U• �U• →U• such that ξ ◦ m = h.

Consider now the map λ : U∗ →U∗ defined by λ(α)(u) = ε (α(u−)u+). Then the map f := λ ◦ ξ : U• →
U∗, regarded as a morphism fromU•cop toU∗ (see Remark 1.5), induces by Remark 4.1 a unique A-coring
map S : U•cop

→U• such that ξ ◦ S = f = λ ◦ ξ.
So far, we have defined a map η, a multiplication m and a map S satisfying the relations in (48). Let us

check that these maps convert U• into a commutative Hopf algebroid. One proves that, for a, b ∈ A and
x, y, z ∈ U•, the elements of the form

xy−yx, η(a⊗b)x−axb, (xy)z− x(yz), S(xy)−S(y)S(x), S (1U• )−1U• , S2(x)− x, S(x1)x2−η(1⊗ε(x))

span an A-bimodule J which is a coideal ofU• because (π⊗A π)∆(J) = 0 and ε(J) = 0, where π : U• →
U•/J denotes the canonical projection on the quotient. Moreover, it is contained in Ker (ξ) so that J = 0
in view of Lemma 4.4. This proves that all the elements displayed above vanish inU•. As a consequence,
we get in addition that

• U• is commutative.
• the A-coring structure ofU• is the one induced by η. Furthermore, we deduce that η(a⊗b) = a1U•b

where 1U• := η(1⊗1). Thus it follows easily that η(a⊗b)η(a′⊗b′) = η(aa′⊗bb′) for every a, b ∈ A.
Note also that 1U• x = η(1 ⊗ 1)x = x, so that m is unital.

• ∆ and ε are morphisms of algebras, since both m and η are morphisms of A-corings.
• s, t are algebra maps as η is.

The compatibility of S with s and t follows from

S(η(a ⊗ b)) = S(a1U•b)
(∗)
= bS(1U• )a = b1U•a = η(b ⊗ a),

where in (∗) we used that S : U•cop
→U•. Summing up (A,U•) is an object in CHAlgdA.

Now let us check (−)• is compatible with the morphisms. To this aim, let (A,H) be a commutative
Hopf algebroid and f : H → U∗ an Ae-algebra map satisfying (32). The universal property of U• yields
a unique map f̂ : sHt → U

• of A-corings such that ξ ◦ f̂ = f . By the trick we used above, the elements
f̂ (1H ) − 1U• and f̂ (x) f̂ (y) − f̂ (xy) for x, y ∈ H vanish in U• because they generate a coideal J which is
contained in Ker (ξ). We just point out that by A-bilinearity of the involved maps, ξ ◦ f̂ ◦ ηH = ξ ◦ ηU• and
hence the equality of the coring maps f̂ ◦ ηH = ηU• . Summing up, we showed that

(
id, f̂

)
is a morphism



TOWARD DIFFERENTIATION AND INTEGRATION BETWEEN HOPF ALGEBROIDS AND LIE ALGEBROIDS. 21

of commutative bialgebroids. Since the compatibility with the antipodes comes for free, we conclude that
f̂ is a morphism of commutative Hopf algebroids.

Let (idA, φ) : (A,U1)→ (A,U2) be a morphism of cocommutative Hopf algebroids. Apply the previous
construction to f = φ∗ ◦ ξ2, once observed that ξ2 is a morphism of A-rings in view of (48), that φ∗ is so as
well by a direct computation and that f satisfies (32) (see also Remark 4.2). As a consequence f̂ , which
is φ• by definition, becomes a morphism of commutative Hopf algebroids. This leads to the stated functor
and finishes the proof. �

Remark 4.15. Let (A,U) be a co-commutative Hopf algebroid over k and consider both duals (A,U◦) and
(A,U•) as commutative Hopf algebroids over k.

(1) In view of the second claim in Theorem 4.14 and of (32), the canonical map ζ : U◦ →U∗ given in
(33) induces a unique morphism of commutative Hopf algebroids ζ̂ : U◦ →U• such that ξ◦ ζ̂ = ζ.
If A is a field, then ζ̂ is an isomorphism of Hopf algebras.

(2) If the underlying right A-module ofU is finitely generated and projective, then the map ζ̂ induces
an isomorphism of commutative Hopf algebroids (A,U◦) and (A,U•) (see also Remark 4.11).

(3) Consider an A-ring R and the map ψ : R∗⊗A R∗ → (R ⊗A R) ∗ given by ψ( f ⊗A g)(r⊗A r′) = f (g(r)r′).
Given an A-coring C and an A-bimodule map f : C → R∗ satisfying (32), for every x ∈ Ker ( f )
and for all r, r′ ∈ R we have

0 = f (x)(rr′)
(32)
= ψ ( f (x1) ⊗A f (x2)) (r ⊗A r′), 0 = f (x)(1R)

(32)
= ε(x).

Thus ε (Ker ( f )) = 0. Moreover, if we assume ψ injective, we also have ( f ⊗A f ) (∆ (Ker ( f ))) = 0.
These two equalities are very close but not sufficient to claim that Ker ( f ) is a coideal of C. This
would be useful in case C = R• and f = ξ to deduce that ξ is injective by Lemma 4.4.

The fact that Ker ( f ) is a coideal of C can be obtained under a further assumption as follows.
Write f as f̃ ◦ π where π : C → C/Ker ( f ) is the canonical projection and f̃ : C/Ker ( f ) → R∗ is
the obvious induced map. Then ( f̃ ⊗A f̃ )(π ⊗A π) (∆ (Ker ( f ))) = 0. Thus, if we assume that f̃ ⊗A f̃
is injective, we can conclude that (π ⊗A π) (∆ (Ker ( f ))) = 0.

We finish this section by the following useful lemma.

Lemma 4.16. Let (A,H) be a commutative Hopf algebroid and (A,U) a co-commutative one. Then, there
is a bijective correspondence between the following sets of data:

a) morphisms f̂ : H → U• of commutative Hopf algebroids;
b) morphisms f : H → U∗ of Ae-algebras satisfying (32);
c) morphisms h : U → ∗H of A-rings satisfying for all a, b ∈ A, u ∈ U and x, y ∈ H

h(u)(η(a ⊗ b)) = ε(bu)a and h(u)(xy) = h(u1)(x)h(u2)(y). (49)

Proof. From b) to a) we go by the second part of Theorem 4.14. From a) to b) we compose f̂ with the
canonical map ξ which by (48) is a morphism of Ae-algebras and satisfies (32). The correspondence is bi-
jective because of the universal property ofU•. A direct computation shows that we have a correspondence
between A-bimodule maps f : H → U∗ satisfying (32) and A-ring maps h : U → ∗H (see Remark 4.2).
Thus the correspondence between b) and c) is given by h(u)(x) = f (x)(u) for all x, y ∈ H and u ∈ U, since
relations (49) corresponds to f being an Ae-algebra map. �

Remark 4.17. Let (A, L) be a Lie-Rinehart algebra and set (A,U) = (A,VA(L)) and (A,H) = (A,VA(L)•)
in Lemma 4.16. So corresponding to the identity morphism of commutative Hopf algebroids idVA(L)• , there
is a morphism of A-rings i : VA(L) → ∗(VA(L)•) satisfying relations (49). On generators it is explicitly
given by:

i : VA(L) −→ ∗
(
VA(L)•

)
,

(
ιL(X) 7−→

[
z 7→ ξ(z)(ιL(X))

])
. (50)

5. Differentiation in Hopf algebroids framework

Given a commutative algebra A, the assignment that associates every A-module M with the space
Derk(A, M) of k-linear derivations on A with coefficients in M gives a representable functor Derk(A, −) :
ModA → Set whose representing object is the so-called module of Kähler differentials (or simply Kähler
module) Ωk(A). In this section we are going to explore these facts in the Hopf algebroids framework. In



22 ALESSANDRO ARDIZZONI, LAIACHI EL KAOUTIT, AND PAOLO SARACCO

addition, we will see how derivations on Hopf algebroids with coefficients in the base algebra are related
with Lie-Rinehart algebras and provide for us a contravariant functor L : CHAlgdA → LieRinA, called the
differential functor. This functor can be seen as the algebraic counterpart of the construction of Lie alge-
broid from a Lie groupoid. Analysing the case of split Hopf algebroids we will come across a construction
described in [DG] for affine group k-scheme actions.

5.1. Derivations with coefficients in modules. Next we fix a commutative Hopf algebroid (A,H). All
modules overH are rightH-modules and with central action, that is, the left action is the same as the right
action, in the sense that m.u = u m, for every u ∈ H and m ∈ M a rightH-module. Let us denote by ModH
the category ofH-modules and their morphisms. When we restrict to A via the unit map η, we will denote
by Ms and Mt the distinguished A-modules resulting from MH . In particular, for HH this means that we
are consideringHs as an A-algebra via the source map s, whileHt is an A-algebra via the target map t.

Definition 5.1. Let p : A → H and ϕ : H → H be algebra morphisms and MH be an H-module.
Set Mϕ := ϕ∗(M), the H-module obtained by restriction of scalars via ϕ, i.e. m · u = m.ϕ(u) for all
m ∈ M, u ∈ H . It is assumed to be an A-module via further restriction of scalars: m · a = m.ϕ(p(a)). We
define the following rightH-module

DerA(Hp, Mϕ) :=
{
δ ∈ HomA

(
Hp,Mϕp

)
| δ(uv) = δ(u) · v + δ(v) · u = δ(u).ϕ(v) + δ(v).ϕ(u) for all u, v ∈ H

}
withH-action given by (δv)(u) = δ(u).v for all u, v ∈ H , δ ∈ DerA(Hp, Mϕ).

Remark 5.2. Notice that the condition δ ∈ HomA
(
Hp,Mϕp

)
in the definition of DerA(Hp, Mϕ) in Definition

5.1 means that
δ(up(a)) = δ(u).ϕ(p(a))

for all a ∈ A, u ∈ H . Moreover, since the condition δ(uv) = δ(u) · v + δ(v) · u for all u, v ∈ H implies that
δ(1H ) = 0, we have that δ(p(a)) = δ(1H ).ϕ(p(a)) = 0 for all a ∈ A, whence δ ◦ p = 0.

As a matter of notation, if we have p : A → H an algebra map, f : Ht → Hp and g : Hs → Hp two
A-algebra maps and δ : Hs → Mp and λ : Ht → Mp two A-linear morphisms, then we will set

( f ∗ g)(u) := f (u1)g(u2), ( f ∗ δ)(u) := δ(u2). f (u1) and (λ ∗ g)(u) := λ(u1).g(u2) (51)

for every u ∈ H . Notice that the compatibility conditions with A are needed to have that every ∗-product
above is well-defined.

Lemma 5.3. Let p, q : A → H be algebra morphisms. Let also γ : Hq → Hp, ϕ, β : Ht → Hp and
ψ, α : Hs → Hp be A-algebra morphisms. These induceH-module morphisms

DerA(Ht, Mϕ) // DerA(Ht, Mϕ∗ψ),

δ
� // δ ∗ ψ

DerA(Hs, Mα) // DerA(Hs, Mβ∗α),

δ
� // β ∗ δ

DerA(Hp, Mϕ) // DerA(Hq, Mϕγ).

δ
� // δ ◦ γ

(52)

Proof. The proof is simply a matter of checking that the assignments are well-defined and H-linear. Let
us do it for the upper left one and leave the others to the reader.

By definition (51) we have that (δ ∗ψ)(u) = δ(u1).ψ(u2) for all u ∈ H . For every a ∈ A, u, v ∈ H we may
compute directly

(δ ∗ ψ)(uv) = δ(u1).ϕ(v1)ψ(u2)ψ(v2) + δ(v1).ϕ(u1)ψ(u2)ψ(v2)
= (δ ∗ ψ)(u).(ϕ ∗ ψ)(v) + (δ ∗ ψ)(v).(ϕ ∗ ψ)(u),

(δ ∗ ψ)(ut(a)) = (δ ∗ ψ)(u).(ϕ ∗ ψ)(t(a)) + (δ ∗ ψ)(t(a)).(ϕ ∗ ψ)(u)
= (δ ∗ ψ)(u).(ϕ ∗ ψ)(t(a)) + δ(1H ).ψ(t(a))(ϕ ∗ ψ)(u)
= (δ ∗ ψ)(u).(ϕ ∗ ψ)(t(a)),(

(δv) ∗ ψ
)
(u) = (δv)(u1).ψ(u2) = δ(u1).vψ(u2) = (δ ∗ ψ)(u).v =

(
(δ ∗ ψ).v

)
(u),

and this concludes the required checks. �
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Remark 5.4. Notice that the latter morphism in (52) is a particular instance of a more general result,
claiming that for A-algebras p : A → H and q : A → K every A-algebra morphism φ : H → K induces a
natural transformation φ∗ (DerA(K , M))→ DerA(H , φ∗(M)), (δ 7→ δ ◦ φ) inH-modules.

Corollary 5.5. Let M be anH-module. For every p, q ∈ {s, t}, we set:

DerA(Hp, Mq) := DerA(Hp, Mqε) and Derk p(H , M) := DerA(Hp, MidH ) = DerA(Hp, M). (53)

Then we have the following isomorphisms ofH-modules

Derk t(H , M) � // DerA(Ht, Ms),
δ
� // δ ∗ S

γ ∗ idH γ
�oo

Derk s(H , M) � // DerA(Hs, Mt),
δ
� // S ∗ δ

idH ∗ γ γ
�oo

DerA(Hp, Mq) � // DerA(Hq, Mq).
δ
� // δ ◦ S

γ ◦ S γ
�oo

(54)

Proof. Straightforward. �

Let us denote byI := Ker (ε) the augmentation ideal ofH . For every p ∈ {s, t}, we have that u−p(ε(u)) ∈
I for all u ∈ H and hence

v(u − p(ε(u))) + I2 = p(ε(v))(u − p(ε(u))) + I2 (55)

in I/I2 for all v ∈ H . We can define the surjective map associated to I

Hp
πp // I

I2

u � //
(
u − p(ε(u)) + I2

) (56)

which enjoys the following properties.

Lemma 5.6. Consider I/I2 as an H-module via (55). Then, for every p ∈ {s, t} and u, v ∈ H , the map πp

satisfies:
πp ◦ p = 0, πp(uv) = πp(u) p(ε(v)) + p(ε(u)) πp(v) (57)

In particular, πp ∈ Derk p(H , I/I2) = DerA(Hp,
(
I/I2)

p). Furthermore, for every u, v ∈ H , we have

u1 ⊗A u2 π
s(v) = u ⊗A π

s(v) ∈ sHt ⊗A s
(
I/I2), πt(v)u1 ⊗A u2 = πt(v) ⊗A u ∈

(
I/I2)

t ⊗A sHt. (58)

Moreover, the maps

ψs : sHt −→ sHt ⊗A s

( I
I2

)
,
[
u 7−→ u1 ⊗A π

s(u2)
]
; ψt : sHt −→

( I
I2

)
t
⊗A sHt,

[
u 7−→ πt(u1) ⊗A u2

]
(59)

are well-defined left and right A-module morphisms, respectively.

Proof. The properties (57) follow easily by the definition of πp. Concerning (58), we have

u1 ⊗A u2π
s(v)

(55)
= u1 ⊗A s(ε(u2))πs(v) = u1t(ε(u2)) ⊗A π

s(v) = u ⊗A π
s(v),

πs(v)u1 ⊗A u2
(55)
= πs(v)t(ε(u1)) ⊗A u2 = πs(v) ⊗A s(ε(u1))u2 = πs(v) ⊗A u.

It is now clear that Derk p(H , I/I2) = DerA(Hp,
(
I/I2)

p) and that πp belongs to this set. As a consequence
πp ∈ HomA

(
Hp,

(
I/I2)

p

)
whence it makes sense to define ψs := (sHt⊗Aπ

s)◦∆ and ψt := (πt⊗A sHt)◦∆. �

Now we show that, for every p, q ∈ {s, t}, DerA(Hp, (−)q) : ModH → ModH is a kind of a representable
functor.

Lemma 5.7. Given p, q, r ∈ {s, t} with p , q and M anH-module. Then there is a natural isomorphism

DerA(Hp, Mq) � // HomA

((
I

I2

)
p,Mq

)
δ
� // δ :=

[
πp(u) 7→ δ(u)

]
f ◦ πp f ,�oo

(60)
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ofH-modules.

Proof. First note that ε ∈ HomA
(
Hp, A

)
so that it makes sense to consider the following diagram.

Hp ⊗A Hp

mult //
ε⊗AH +H⊗Aε

// Hp
πp // ( I

I2

)
p. (61)

Let us check that it is a coequalizer of A-modules. Let N be an A-module and let δ ∈ HomA
(
Hp,N

)
such

that uv − up(ε(v)) − p(ε(u))v ∈ Ker (δ) for every u, v ∈ H .

0 // Ker (πp) // Hp
πp // ( I

I2

)
p

// 0.

If u ∈ Ker (πp) (i.e. u− p(ε(u)) ∈ I2), then δ(u)
(δp=0)
= δ(u− p(ε(u))) ∈ δ(I2) ⊆ Ip(ε(I)) = 0 so that δ factors

through a unique map δ : I/I2 → N such that δ ◦ πp = δ.
On the other hand, by Lemma 5.6, the map πp coequalizes the parallel pair in the diagram above. Thus

(61) is a coequalizer as claimed. Now, for N = Mq it is clear that the maps δ ∈ HomA
(
Hp,N

)
coequalizing

the parallel pair in (61) are exactly the elements in DerA(Hp, Mq) so that they bijectively correspond to the
elements in HomA

((
I

I2

)
p,Mq

)
by the universal property of the coequalizer. This correspondence is clearly

H-linear and natural in M. �

5.2. The Kähler module of a Hopf algebroid. Next, we investigate the Kähler module of H and con-
struct the universal derivation. The linear dual of this module with values in the base algebra, will have a
structure of Lie-Rinehart algebra. This construction can be seen as the algebraic counterpart of the geomet-
ric construction of a Lie algebroid from a given Lie groupoid(13) . In case the Hopf algebroid we start with
is a split one, then we show that this construction already appeared in the setting of affine group k-scheme
actions [DG], see also Appendix B for more details.

Keep the above notations. For instance, the underlying A-modules of theH-module (I/I2) are denoted
by

(
I/I2)

p = p
(
I/I2), for every p ∈ {s, t}.

Proposition 5.8. For a Hopf algebroid (A,H) and aH-module M, there is a natural isomorphism

Derk s(H , M) � // HomH

(
sHt ⊗A s

(
I

I2

)
,M

)
δ
� //

[
u ⊗A π

s(v) 7−→ uS(v1)δ(v2)
]

[
u 7−→ u1 f (1 ⊗A π

s(u2)
]

f ,�oo

(62)

ofH-modules.

Proof. It follows from Corollary 5.5, Lemma 5.7 and the usual hom-tensor adjunction. �

Corollary 5.9. Let (A,H) be an Hopf algebroid. Then the Kähler module Ωs
A(H) ofH with respect to the

source map is, up to a canonical isomorphism, given by:

Ωs
A(H) � sHt ⊗A s

( I
I2

)
,

(
ψs : Hs −→ Ωs

A(H),
[
u 7−→ u1 ⊗A π

s(u2)
])

where ψs is the morphism of Eq. (59) and now becomes the universal derivation.

Proof. It is clear that, if we take M := sHt ⊗A s

(
I

I2

)
in Proposition 5.8, then the map corresponding to

f := id is exactly the morphism ψs so that ψs ∈ Derk s(H , sHt ⊗A s

(
I

I2

)
). �

Remark 5.10. The analogous of Corollary 5.9 holds for t as well, in the sense that we have an isomorphism
ofH-modules Derk t(H , M) � HomH

(
(I/I2)t ⊗A sHt,M

)
which makes of Ωt

A(H) � (I/I2)t ⊗A sHt the
Kähler module with respect to the target. The universal derivation turns out to be the morphism ψt of (59).

(13) In Appendix A.3 we will review the latter construction, from a slightly different point of view.
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Next, we give another example of Lie-Rinehart algebra attached to a given Hopf algebroid. Recall that
the structure of A-coring onH is given on the bimodule sHt and that a leftH-comodule is a left A-module
N together with a coassociative and counital left A-linear coaction ρN : AN → sHt ⊗A AN. One can consider
the distinguished left H-comodule (sH ,∆). The usual adjunction between sHt ⊗A − : AMod → HComod
and the forgetful functor O : HComod→ AMod leads to a bijection

θ : ∗H −→ EndH (H),
(
α 7−→ [u 7→ u1t(α(u2))]

)
(63)

where EndH (H) denotes the endomorphism ring of the left H-comodule (sH ,∆). It is, in fact, an A-ring
via the ring map

A −→ EndH (H),
(
a 7−→

[
a · idH : u 7→ ut(a)

])
(64)

As a consequence, there exists a unique A-ring structure on ∗H such that θ becomes an A-ring homomor-
phism and it is explicitly given by

A −→ ∗H ,
(
a 7−→

[
u 7→ ε(u)a

])
, α ∗ β : ∗H −→ A,

(
u 7−→ α

(
u1t(β(u2)

))
. (65)

Remark 5.11. Let us make the following observations.
(1) Notice that the ∗H of equation (65) is not the convolution algebra of the A-coring sHt as defined

in (6), but it is its opposite.
(2) The A-bimodule structure on ∗H is explicitly given, for all a, b ∈ A, u ∈ H , by

(a · α · b)(u) =
(
(aε) ∗ α ∗ (bε)

)
(u) = aε

(
u1t

(
α
(
u2t

(
bε(u3)

))))
= aα (ut (b)) .

(3) One may consider also the adjunction between − ⊗A sHt : ModA → ComodH and the forgetful
functor O : ComodH → ModA. By repeating the foregoing procedure for the distinguished H-
comodule (Ht,∆) one may endowH ∗ with an A-ring structure with product

( f ∗′ g)(u) = f
(
s
(
g(u1)

)
u2

)
. (66)

However, this turns out to be isomorphic as an A-ring to ∗H via ∗H → H ∗, ( f 7→ f ◦ S) in light of
(2) of Remark 2.1. Indeed, for all f , g ∈ ∗H , u ∈ H we have ε(S(u)) = ε(u) and(

( f ◦ S) ∗′ (g ◦ S)
)
(u)

(66)
= ( f ◦ S)

(
s
(
(g ◦ S)(u1)

)
u2

)
= f

(
S(u2)t

(
g(S(u1))

))
= f

(
S(u)1t

(
g(S(u)2)

)) (65)
=

(
( f ∗ g) ◦ S

)
(u).

In this direction, notice that Derk s(H , H) admits a Lie k-algebra structure given by the commutator
bracket. We can consider the (left) A-submodule of EndH (H) defined by

DerH s(H , H) := EndH (H) ∩ Derk s(H , H)

=

{
δ ∈ Homk (H ,H) | δ ◦ s = 0, δ(uv) = δ(u)v + uδ(v), ∆(δ(u)) = u1 ⊗A δ(u2) for every u, v ∈ H

} (67)

which inherits form Derk s(H , H) a Lie k-algebra structure.
From now on, we will denote by Aε the H-module with underlying A-module A and action via the

algebra map ε. Notice that (with the conventions introduced at the beginning of §5.1) As = At = A, since
we know that ε ◦ s = ε ◦ t = id. Thus, there is only one A-module structure on Derk s(H , Aε), given by

a δ : H −→ Aε,
(
u 7−→ aδ(u)

)
. (68)

Lemma 5.12. The isomorphism θ of equation (63) induces an isomorphism θ′ of A-modules which makes
commutative the following diagram

∗H
θ // EndH (H)

∗
(
I

I2

)
� //

∗(πs)

66

Derk s(H , Aε)
θ′ //?�

OO

DerH s(H , H).
?�

OO

Moreover, Derk s(H , Aε) admits a structure of Lie k-algebra with bracket

[δ, δ′] := δ ∗ δ′ − δ′ ∗ δ : H −→ Aε,
(
u 7−→ δ

(
u1t(δ′(u2)

)
− δ′

(
u1t(δ(u2)

))
(69)
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which turns θ′ into an isomorphism of Lie k-algebras and this structure can be transferred to ∗
(
I

I2

)
in a

unique way making ∗(πs) an inclusion of Lie k-algebras.

Proof. Note that θ−1(δ) = ε ◦ δ for every δ ∈ EndH (H) so that it is clear that θ−1(DerH s(H , H)) ⊆
Derk s(H , Aε). On the other hand, given δ ∈ Derk s(H , Aε), for every a ∈ A and u, v ∈ H , we have

θ(δ)(s(a)) = s(a)1t(δ(s(a)2)) = s(a)t(δ(1)) = 0,
∆(θ(δ)(u)) = ∆(u1t(δ(u2))) = u1 ⊗A u2t(δ(u3)) = u1 ⊗A θ(δ)(u2)

and

θ(δ)(uv) = u1v1t(δ(u2v2)) = u1v1t
(
δ(u2)ε(v2) + ε(u2)δ(v2)

)
= u1t(δ(u2))v1t(ε(v2)) + u1t(ε(u2))v1t(δ(v2)) = θ(δ)(u)v + uθ(δ)(v).

Therefore, θ(Derk s(H , Aε)) ⊆ DerH s(H , H). It is now clear that θ induces an isomorphism

θ′ : Derk s(H , Aε) −→ DerH s(H , H)

making the right square diagram in the statement commutative. Since θ(δ∗δ′) = θ(δ)◦θ(δ′) and DerH s(H , H)
is a Lie subalgebra of EndH (H) we get that Derk s(H , Aε) becomes a Lie subalgebra of ∗H with bracket
defined as in the statement. Since Derk s(H , Aε) = DerA(Hs, As), we can apply Lemma 5.7 to complete the
diagram with the commutative triangle in the statement. �

In contrast with the Hopf algebra case, the Lie algebra Derk s(H , Aε) admits a richer structure. Namely
that of Lie-Rinehart algebra. The anchor map is provided as follows.

Proposition 5.13. Let (A,H) be a Hopf algebroid. The pair (A,Derk s(H , Aε)) is a Lie-Rinehart algebra
with anchor map:

Derk s(H , Aε)
ω:=Derk s(t, Aε) // Derk(A)

δ
� // δ ◦ t.

(70)

Proof. The map ω is clearly a well-defined A-linear map. Let us check that its also a Lie k-algebra map.
Take δ, δ′ ∈ Derk s(H , Aε) and an element a ∈ A, then

(δ ∗ δ′)(t(a))
(65)
= δ(t(a)1t(δ′(t(a)2)) = δ(t(δ′(t(a)))) = (δ ◦ t)((δ′ ◦ t)(a))

so that (δ ∗ δ′) ◦ t = (δ ◦ t) ◦ (δ′ ◦ t) and hence

ω
(
[δ, δ′]

)
= [δ, δ′] ◦ t = (δ ∗ δ′ − δ′ ∗ δ) ◦ t = (δ ◦ t) ◦ (δ′ ◦ t) − (δ′ ◦ t) ◦ (δ ◦ t)

= ω(δ)ω(δ′) − ω(δ′)ω(δ) = [ω(δ), ω(δ′)].

Therefore, ω
(
[δ, δ′]

)
= [ω(δ), ω(δ′)]. We still have to show that ω satisfies equation (22). So take a ∈ A and

δ, δ′ as above. Then, for any element u ∈ H , we have,

[δ, aδ′](u) = δ
(
u1t(aδ′(u2))

)
− aδ′

(
u1t(δ(u2))

)
= δ

(
u1t(a)t(δ′(u2))

)
− a(δ′ ∗ δ)(u)

= δ(t(a))ε
(
u1t(δ′(u2))

)
+ ε(t(a))δ

(
u1t(δ′(u2)

)
− a(δ′ ∗ δ)(u)

= δ(t(a))δ′(u) + a(δ ∗ δ′)(u) − a(δ′ ∗ δ)(u)
= a

(
δ ∗ δ′ − δ′ ∗ δ

)
(u) + δ(t(a))δ′(u)

= a[δ, δ′](u) + ω(δ)(a)δ′(u).

This implies that [δ, aδ′] = a[δ, δ′] + ω(δ)(a)δ′ and the proof is complete. �

Remark 5.14. One can perform another construction of a Lie-Rinehart algebra from a given Hopf algebroid
(A,H) by interchanging s with t, however, the result will be the same up to a canonical isomorphism. In
fact, by resorting to (2) of Remark 2.1, Corollary 5.5 and (3) of Remark 5.11, one may prove that there is
an isomorphism of Lie-Rinehart algebras

Derk s(H , Aε)
�
−→ Derk t(H , Aε),

(
δ 7−→ δ ◦ S

)
where the latter is a Lie-Rinehart algebra with anchor map ω′ := Derk t(s, Aε).



TOWARD DIFFERENTIATION AND INTEGRATION BETWEEN HOPF ALGEBROIDS AND LIE ALGEBROIDS. 27

Example 5.15. Let (H,m, u,∆, ε, S ) be a commutative Hopf k-algebra and let (A, µ, η, ρ) be a left H-
comodule commutative algebra, that is: an algebra in the monoidal category of left H-comodules which is
commutative as k-algebra. By the left-hand version of (2) in Example 2.2, we know that H := H ⊗ A is a
split Hopf algebroid with its canonical algebra structure (i.e., (x ⊗ a)(y ⊗ b) = xy ⊗ ab) and

ηH (a ⊗ b) = a−1 ⊗ a0b, ∆H (x ⊗ a) = (x1 ⊗ 1) ⊗A (x2 ⊗ a), εH (x ⊗ a) = ε(x)a, S(x ⊗ a) = S (x)a−1 ⊗ a0.

Notice that tensoring by A over k induces an anti-homomorphism of Lie algebras

τ : Derk(H, kε)→ Derk t(H , AεH
); [δ 7→ δ ⊗ A] .

Indeed,

(δ ⊗ A)(xy ⊗ ab) = δ(xy)ab = δ(x)ε(y)ab + ε(x)δ(y)ab

= (δ ⊗ A)(x ⊗ a)εH (y ⊗ b) + εH (x ⊗ a)(δ ⊗ A)(y ⊗ b),
[τ(δ), τ(δ′)] (x ⊗ a) = (τ(δ) ∗ τ(δ′))(x ⊗ a) − (τ(δ′) ∗ τ(δ))(x ⊗ a)

= τ(δ) (s (τ(δ′)(x1 ⊗ 1)) (x2 ⊗ a)) − τ(δ′) (s (τ(δ)(x1 ⊗ 1)) (x2 ⊗ a))

= δ′(x1)τ(δ) (x2 ⊗ a) − δ(x1)τ(δ′) (x2 ⊗ a)

= δ′(x1)δ(x2)a − δ(x1)δ′(x2)a = τ(δ′ ∗ δ − δ ∗ δ′)(x ⊗ a).

Consider now the composition

Derk(H, kε)
τ // Derk t(H , AεH

) ω // Derk(A) (71)

where ω(δ) := Derk t(s, AεH
)(δ) = δ ◦ s is the anchor map of the Lie-Rinehart algebra Derk t(H , AεH

). For
every δ ∈ Derk(H, kε), it follows by a direct check that for all a ∈ A

ω (τ(δ)) (a) = τ(δ) (a−1 ⊗ a0) = δ(a−1)a0.

Let us see now that the anti-homomorphism of Lie algebras of Equation (71) already appeared in [DG]
in geometric terms. To this aim, notice that H and A give rise to an affine k-group G := CAlgk (H,−) and an
affine k-scheme X := CAlgk (A,−), respectively. Hence the map in (71) becomes the anti-homomorphism
of Lie algebras Lie(G)(k) → Derk(Ok(X)) (see [DG, II, §4, no4, Proposition 4.4, page 212]). For the
sake of completeness, we include such a construction in §B of the Appendix and we show that these two
anti-homomorphisms of Lie algebras are essentially the same. What we just showed is that the map (71)
descends from the anchor map of the Lie-Rinehart algebra Derk t(H , AεH

) of (A,H).

5.3. The differential functor and base change. Below we show that the construction performed in Propo-
sition 5.13 is functorial. We also discuss the compatibility of this construction with the base ring change.

Proposition 5.16. Fix a commutative algebra A. Then the correspondence

L : CHAlgdA −→ LieRinA,
(
H −→ L (H) := Derk s(H , Aε)

)
establishes a contravariant functor form the category of commutative Hopf algebroids with base algebra A
to the category of Lie-Rinehart algebras over A.

Proof. Let φ : H → K be a morphism in CHAlgdA. We need to check that the map

Lφ : L (K) −→ L (H),
(
δ 7−→ δ ◦ φ

)
(72)

is a morphism of Lie-Rinehart algebras. This map is clearly an A-linear and a Lie algebra morphism. Thus,
we only need to check that it is compatible with the anchor, which is immediate as the following argument
shows. For a ∈ A and δ ∈ L (H), we have ω(Lφ(δ)) = Lφ(δ) ◦ tH = δ ◦ φ ◦ tH = δ ◦ tK = ω(δ). �

The functor L will be referred to as the differential functor. Notice that since the notion of a morphism
of Lie-Rinehart algebras over different algebras is not always possible (mainly due to the problem of con-
necting Derk(A) and Derk(B) in a natural way), the differential functor cannot be defined on maps of Hopf
algebroids with different base algebras. Let us analyse closely this situation.

Let (φ0, φ1) : (A,H) → (B,K) be morphism of Hopf algebroids and consider the associated extended
morphism of Hopf algebroids (id, φ) : (B, B⊗AH⊗A B)→ (B,K) where φ(b⊗A u⊗A b′) = sK (b)φ1(u)tK (b′).
Define also the map κ : H → B ⊗A H ⊗A B which maps u to 1 ⊗A u ⊗A 1 and note that φ ◦ κ = φ1. Denote
by Bφε theH-bimodule B with action given by the algebra extension φ0ε : H → B.



28 ALESSANDRO ARDIZZONI, LAIACHI EL KAOUTIT, AND PAOLO SARACCO

In what follows, by abuse of notation, we will denote by ∗ f the pre-composition with a morphism f ,
i.e., the map g 7→ g ◦ f . The domain and codomain of this map will be clear from the context. Similarly
we will use the notation ∗ f for g 7→ f ◦ g. In this way, we have the following linear maps :

∗(φ0) := Derk s(H , φ0) : Derk s(H , Aε) −→ Derk s(H , Bφε),
(
δ 7−→ φ0 ◦ δ

)
Lφ = ∗φ := Derk s(φ, B) : Derk s(K , Bε) −→ Derk s(B ⊗A H ⊗A B, Bε),

(
δ 7−→ δ ◦ φ

)
∗κ := Derk s(κ, B) : Derk s(B ⊗A H ⊗A B, Bε) −→ Derk s(H , Bφε),

(
δ 7−→ δ ◦ κ

)
∗t := Derk s(t, B) : Derk s(H , Bφε) −→ Derk (A, B),

(
γ 7−→ γ ◦ t

)
.

Proposition 5.17. Let (φ0, φ1) : (A,H) → (B,K) be as above. Then we have a commutative diagram of
A-modules

Derk s(K , Bε)
∗φ //

∗(φ1)

**

Derk s(B ⊗A H ⊗A B, Bε)
ω //

∗κ

��

Derk(B)

∗(φ0)

��
Derk s(H , Aε)

∗(φ0) // Derk s(H , Bφε)
∗ t // Derk (A, B)

(73)

where the right-hand side square is cartesian. Moreover ∗φ is a map of Lie-Rinehart algebras.

Proof. We only show that the square is cartesian. Define τ : B → B ⊗A H ⊗A B : b 7→ 1 ⊗A 1 ⊗A b. Then
κ(t(a)) = 1 ⊗A t(a) ⊗A 1 = 1 ⊗A 1 ⊗A φ0(a) = τ(φ0(a)) so that κ ◦ t = τ ◦ φ0. Note that ω = ∗τ := Derk (τ, B)
so that ∗t ◦ ∗κ = ∗(κ ◦ t) = ∗(τ ◦ φ0) = ∗(φ0) ◦ ∗τ and the square commutes. Hence we have the diagonal map

(∗κ, ∗τ) : Derk s(B ⊗A H ⊗A B, Bε) −→ Derk s(H , Bφε) ×
Derk (A, B)

Derk(B),
(
δ 7−→ (∗κ(δ), ∗τ(δ))

)
.

Let us check that this map is invertible. Take δ ∈ Derk s(B ⊗A H ⊗A B, Bε). Then

δ(b ⊗A u ⊗A b′) = bδ(κ(u)τ(b′)) = bδ(κ(u))b′ + bφ0(ε(u))δ(τ(b′))

so that δ(b ⊗A u ⊗A b′) = bδ1(u)b′ + bφ0(ε(u))δ2(b′) where we set δ1 := δ ◦ κ = ∗κ(δ) and δ2 := δ ◦ τ = ∗τ(δ).
Thus the map (∗κ, ∗τ) is injective. It is also surjective as any pair (δ1, δ2) in its codomain is image of

δ : B ⊗A H ⊗A B→ Bε,
(
b ⊗A u ⊗A b′ 7→ bδ1(u)b′ + bφ0(ε(u))δ2(b′)

)
.

This is a well-defined map thanks to the equality ∗t(δ1) = ∗(φ0)(δ2). Furthermore, it is clear that δ ◦ s = 0
and one shows that δ is a derivation as follows. For every b, b′, c, c′ ∈ B and u, v ∈ H , we have

δ((b ⊗A u ⊗A b′)(c ⊗A v ⊗A c′)) = δ(bc ⊗A uv ⊗A b′c′)
= bcδ1(uv)b′c′ + bcφ0(ε(uv))δ2(b′c′)

= bc
(
δ1(u)φ0(ε(v)) + φ0(ε(u))δ1(v)

)
b′c′ + bcφ0(ε(u))φ0(ε(v))

(
δ2(b′)c′ + b′δ2(c′)

)
=

(
bδ1(u)b′ + bφ0(ε(u))δ2(b′)

)
cφ0(ε(v))c′ + bφ0(ε(u))b′

(
cδ1(v)c′ + cφ0(ε(v))δ2(c′)

)
= δ(b ⊗A u ⊗A b′)ε(c ⊗A v ⊗A c′) + ε(b ⊗A u ⊗A b′)δ(c ⊗A v ⊗A c′).

Note that ∗κ ◦ ∗φ = ∗(φ ◦ κ) = ∗(φ1) so that triangle drawn in the statement commutes. Since ∗φ = Lφ, we
have that ∗φ is by Proposition 5.16 a morphism of Lie-Rinehart algebras and this completes the proof. �

Remark 5.18. As one can expect there is no hope in general to obtain a morphism of Lie-Rinehart algebras
which could relate Derk s(K , Bε) with Derk s(H , Aε) in diagram (73). Even if we extended the A-module
Derk s(H , Aε) to the B-module Derk s(H , Aε) ⊗A B, then one still have to endow this B-module with a
Lie-Rinehart algebra structure over B, which is not always feasible. Nevertheless, if we assume that ∗(φ0) :
Derk s(H , Aε)→ Derk s(H , Bφε) is a split-epimorphism, i.e., that there is some map γ such that ∗(φ0)◦γ = id,
then ∗(φ0) ◦ (γ ◦ ∗(φ1)) = ∗(φ1) = ∗κ ◦ ∗φ so that γ ◦ ∗(φ1) : Derk s(K , Bε) → Derk s(H , Aε) completes the
diagram but it is not clear which kind of morphism it is.
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6. Integrations functors in Lie-Rinehart algebras framework

In this section we construct functors from the category of Lie-Rinehart algebras to the category of
commutative Hopf algebroids over a fixed commutative base algebra A. These functors are termed the
integration functors. There are in fact two ways of constructing the integration functor depending on
which dual we are using, that is, depending on which contravariant functors we will use: (−)◦ or (−)•.
Nevertheless, as we will see in the forthcoming section, the first one will lead (under some condition on the
base algebra) to an adjunction only when restricted to Galois Hopf algebroids while the second one gives
an adjunction to the whole category of commutative Hopf algebroids.

Lemma 6.1. Let A be a commutative algebra. Then there are contravariant functors

I := (−)◦ ◦ VA : LieRinA −→ CHAlgdA,
(
L −→ VA(L)◦

)
,

I ′ := (−)• ◦ VA : LieRinA −→ CHAlgdA,
(
L −→ VA(L)•

)
together with a natural transformation ∇ := ζ̂VA

: I → I ′.

Proof. VA is the functor of Remark 2.6, (−)◦ and (−)• are those of Proposition 3.6 and Theorem 4.14
respectively and ζ̂ is the natural transformation of Example 4.3. �

Let (A, L) be a Lie-Rinehart algebra and consider its universal enveloping Hopf algebroid (A,VA(L)).
Attached to this datum, there are then two commutative Hopf algebroids (A,VA(L)◦) and (A,VA(L)•) and
one can apply the differentiation functor to these objects and obtain other two Lie-Rinehart algebras. In
fact there is a commutative diagram:

(A, L)
ΘL //

Θ′L ))

(A,L (J (L)))

(A,L (J ′(L)))

L (∇L)

OO

of morphisms of Lie-Rinehart algebras, where Θ and Θ′ are natural transformations explicitly given in
Appendix A.2. The following is a corollary of Theorem 4.12.

Proposition 6.2. Assume that ∇ of Lemma 6.1 is a monomorphism of corings on every component. Then,

HomCHAlgdA
(H ,∇L) : HomCHAlgdA

(H ,I (L))→ HomCHAlgdA
(H ,I ′(L))

is a bijection for every commutative Hopf algebroid (A,H) such that canH is a split epimorphism of A-
corings and for every Lie-Rinehart algebra (A, L).

Proof. Since ∇L = ζ̂VA(L), the equivalent conditions of Theorem 4.12 hold. In particular, CoringA(H ,∇L)
is bijective and hence HomCHAlgdA

(H ,∇L) is injective. Moreover, consider g ∈ HomCHAlgdA
(H ,I ′(L)). By

bijectivity of CoringA(H ,∇L) there exists a f ∈ CoringA(H ,I (L)) such that ζ̂VA(L) ◦ f = g.
Since (A,H) is a commutative Hopf algebroid, its multiplication mH : H ⊗H → H factors through a

A-bilinear morphism m̄H : H �H → H and since ∆H and εH are algebra morphisms we get that m̄H is a
morphism of corings. Analogously, also m̄I (L) is a morphism of corings. Since f is a morphism of corings
as well, it induces a coring map f � f : H �H → I (L)�I (L), where � is recalled in Remark 1.4. From
the following computation

ζ̂VA(L) ◦ f ◦ m̄H = g ◦ m̄H = m̄I ′(L) ◦ (g � g) = m̄I ′(L) ◦ (̂ζVA(L) � ζ̂VA(L)) ◦ ( f � f ) = ζ̂VA(L) ◦ m̄I (L) ◦ ( f � f )

and the fact that ζ̂VA(L) is a monomorphism of corings, we get that f ◦ m̄H = m̄I (L) ◦ ( f � f ) so that f is
multiplicative. We also have that ζ̂VA(L) ◦ f ◦ ηH = g ◦ ηH = ηI ′(L) = ζ̂VA(L) ◦ ηI (L) and since ηH and ηI (L)

are morphisms of corings we get as above that f ◦ ηH = ηI (L).
Finally, since SH : H cop → H , whereH cop has the structure as in (7), is easily checked to be a morphism

of corings, from the following computation

ζ̂VA(L) ◦ f ◦ SH = g ◦ SH = SI ′(L) ◦ g = SI ′(L) ◦ ζ̂VA(L) ◦ f = ζ̂VA(L) ◦ SI (L) ◦ f

we deduce that f ◦SH = SI (L)◦ f . We have so proved that f is a morphism of commutative Hopf algebroids
and hence that HomCHAlgdA

(H ,∇L) is surjective as well. �
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We give now a criterion for the existence of a morphism (A, L)→ (A,L (H)) of Lie-Rinehart algebra.

Lemma 6.3. Let (A, L) be a Lie-Rinehart algebra and (A,H) a commutative Hopf algebroid. Assume that
there is a morphism σ̃ : L→ L (H) = Derk s(H , AεH

) of Lie-Rinehart algebras. The map σ : VA(L)→ ∗H

given by σ ◦ ιA(a) = aεH , for every a ∈ A, and σ ◦ ιL(X) = −σ̃(X), for every X ∈ L, is an A-ring map which
satisfy the equalities of equation (49). That is, for all a, b ∈ A, u ∈ VA(L) and x, y ∈ H , we have

σ(u)(η(a ⊗ b)) = εV(ιA(b)u)a and σ(u)(xy) = σ(u1)(x)σ(u2)(y).

Proof. Define φA : A → ∗H sending a to the map aεH and φL : L → ∗H which sends X to −σ̃(X). By the
universal property ofVA(L) there exists a unique algebra morphism σ : VA(L)→ ∗H such that σ ◦ ιA = φA

and σ ◦ ιL = φL. Since φA gives the A-ring structure of ∗H , we have that σ is an A-ring map. Notice that

σ
(
(ιA(a)u

)
(x) =

(
aσ(u)

)
(x)

(6)
= σ(u)

(
xt(a)

)
(74)

for all u ∈ VA(L), x ∈ H , a ∈ A. Let us check that σ fulfils (49). To this aim, let us denote by B the subset
of the elements u ∈ VA(L) such that relations (49) hold for all a, b ∈ A and x, y ∈ H . By means of (74) it is
straightforward to check that ιA(a)u, uv, 1VA(L), ιL(X) ∈ B for every a ∈ A, X ∈ L and u, v ∈ B. Therefore in
light of the fact thatVA(L) is generated as an A-ring by the images of ιA and ιL, we deduce thatVA(L) ⊆ B.
Summing up,VA(L) = B and hence σ satisfies relations (49), for all u ∈ VA(L). �

Lemma 6.4. Let (A, L) a Lie-Rinehart algebra with anchor map ω : L → Derk(A) and take U = VA(L).
Then there is a bijective correspondence between the following sets of data:

a) morphisms h : VA(L)→ ∗H of A-rings satisfying (49);
b) morphisms h̃ : L→ Derk s(H , Aε) = L (H) of Lie-Rinehart algebras.

Proof. Given h : VA(L) → ∗H as in a), we define h̃(X) := −h(ιL(X)), for any X ∈ L. The latter is left
A-linear so that h̃(X) ∈ Derk s(H , Aε) in view of the following computation

h̃(X)(xy) = −h(ιL(X))(xy)
(49)
= −h(ιL(X))(x)h

(
1VA(L)

)
(y) − h

(
1VA(L)

)
(x)h(ιL(X))(y)

= h̃(X)(x)ε(y) + ε(x)̃h(X)(y).

Since ιL is right A-linear Lie algebra map and h is an A-ring morphism, we get that h̃ is a right A-linear
Lie algebra map, more precisely h̃(aX) = h̃(X)a (since we are taking L as a left A-module). Moreover, by
Proposition 5.13

ω
(̃
h(X)

)
(a) = h̃(X)(t(a)) = −h (ιL(X)) (t(a)) = −h (ιL(X)) (1Ha)

(6)
= − (ah (ιL(X))) (1H )

= −h (ιA(a)ιL(X)) (1H )
(49)
= −ε (ιA(a)ιL(X))

(24)
= ε (ιA (ω(X)(a)) − ιL(X)ιA(a)) = ω(X)(a).

Conversely, starting with h̃ : L → Derk s(H , Aε) = L (H) as in b). By applying Lemma 6.3, we know that
there is an A-ring map h : VA(L) → ∗H as in a). The bijectivity of the correspondence between the set of
maps as in a) and those of b), is easily checked. �

Remark 6.5. Let (A,H) be a Hopf algebroid and consider the canonical map g : VA(L (H))→ ∗H , which
corresponds by Lemma 6.4 to −idL (H) (in the above notation this means that g̃ = −idL (H)). By Lemma
5.12, we have an algebra morphism h := θ ◦ g : VA(L (H)) → Endk(H). Let us consider the canonical
injective maps

iA : A −→ Endk(H),
(
a 7→

[
u 7→ ut(a)

])
iL (H) : L (H) −→ Endk(H),

(
δ 7−→

[
u 7→ u(1)t(δ(u(2)))

])
(75)

of algebras and Lie algebras, respectively. Denote by V the sub k-algebra of Endk(H) generated by the
images of iA and iL (H). The isomorphism stated in Lemma 5.12 shows that V is the subalgebra of the
algebra of differential operators ofH generated by A and the derivations ofH which are rightH-colinear
and kill the source map. Clearly the maps iA and iL (H) satisfy the equalities of equation (24). Moreover,
h ◦ iL (H) = ιL (H) and h ◦ iA = ιA. Therefore, h : VA(L (H)) → Endk(H) is the unique morphism
arising from the universal property of the enveloping algebroid and, as a consequence, we have that it
factors through the inclusion V ⊂ Endk(H). In contrast with the classical case of Lie k-algebras (k is of
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characteristic zero), it is not clear here if the map h is injective or not. Nevertheless, we believe that the
first step in studying the problem of integrating a Lie-Rinehart algebra passes through the analysis of the
A-algebra map h.

7. Differentiation as a right adjoint functor of the integration functor

Now that we collected all the required constructions and notions, we can extend the duality between
commutative Hopf algebras and Lie algebras given by the differential functor to the framework of commu-
tative Hopf algebroids, as we claimed at the very beginning of §3.

Theorem 7.1. Let us keep the notations of Lemma 6.1. There is a natural isomorphism

HomCHAlgdA
(H ,I ′(L)) � // HomLieRinA (L,L (H)) ,

for any commutative Hopf algebroid (A,H) and Lie-Rinehart algebra (A, L). That is, the integration func-
tor I ′ : LieRinA → CHAlgdop

A is left adjoint to the differentiation functor L : CHAlgdop
A → LieRinA.

Proof. The natural isomorphism is constructed as follows. Given a morphism of commutative Hopf alge-
broids φ : H → I ′(L) = VA(L)•, we have by Lemmas 4.16 and 6.4, the following Lie-Rinehart algebra
map: Lφ : L→ Derk s(H , Aε) sending X 7→

[
u 7→ −ξ(φ(u))(ιL(X))

]
. As it was shown in those Lemmas, this

is a bijective correspondence, which is clearly a natural morphism. �

Notice that, by Theorem 7.1, we always have the map

HomCHAlgdA
(H ,I (L))

HomCHAlgdA (H ,∇L)
// HomCHAlgdA

(H ,I ′(L)) � // HomLieRinA (L,L (H)) , (76)

induced by the natural transformation ∇ = ζ̂VA of Lemma 6.1. Under some additional hypotheses, this
becomes an isomorphism as well.

Theorem 7.2. Let A be a commutative algebra for which the map ζR of equation (31) is injective for every
A-ring R (e.g., A is a Dedekind domain). Then there is a natural isomorphism

HomGCHAlgdA
(H ,I (L)) � // HomLieRinA (L,L (H)) ,

for any commutative Galois Hopf algebroid (A,H) and Lie-Rinehart algebra (A, L). That is, the integration
functor I : LieRinA → GCHAlgdop

A is left adjoint to the differentiation functor L : GCHAlgdop
A →

LieRinA.

Proof. First of all, in light of Remark 3.8 we know that I (L) is a commutative Galois Hopf algebroid,
whence the statement makes sense. Moreover, since GCHAlgdA is a full subcategory of CHAlgdA, we
have HomGCHAlgdA

(H ,I (L)) = HomCHAlgdA
(H ,I (L)). In light of Proposition 6.2, the injectivity of ζVA(L)

implies that HomCHAlgdA
(H ,∇L) is bijective and hence, by Theorem 7.1, (76) is a bijection as well. �

Remark 7.3. Observe that in Theorem 7.2 we may replace the category GCHAlgdA with the subcategory of
CHAlgdA of all those commutative Hopf algebroids whose canonical map is a split epimorphism of corings,
once noticed that I (L) = VA(L)◦ is always in this category because can ◦ R(χ) = idR◦ for every R. In
addition, the injectivity of ζR for every A-ring R can be replaced by asking that ζ̂ is either injective or a
monomorphism of corings on every component. Notice also that these requirements on ζ̂ implies that χ is
an isomorphism in view Theorem 4.12. Hence, by the foregoing, can is invertible and so R◦ is a Galois
coring for every R.

When we restrict to the category of commutative Hopf algebras, that is, assuming that A is the base field
k (the source is equal the target in such a case, since all Hopf algebroids are over k), we have the following
well-known adjunction (recall from Remark 4.15 (3) that I = I ′).

Corollary 7.4. There is a natural isomorphism HomCHAlgk (H,I (L)) � HomLiek (L,L (H)) , for any com-
mutative Hopf algebra H and Lie algebra L. That is, the integration functor I : Liek → CHAlgop

k is left
adjoint to the differentiation functor L : CHAlgop

k → Liek.



32 ALESSANDRO ARDIZZONI, LAIACHI EL KAOUTIT, AND PAOLO SARACCO

8. Separable morphisms of Hopf algebroids

We conclude the theoretical part of the paper by finding equivalent conditions to the surjectivity of the
morphism Lφ : Derk s(K , A) → Derk s(H , A) induced by a Hopf algebroid map φ : (A,H) → (A,K). In-
spired by [Ab, Theorem 4.3.12], we also suggest a definition of separable morphism between commutative
Hopf algebroids based on this characterization.

Let (A,H) be a commutative Hopf algebroid. Consider the category ModH as in §5.1. Let us denote
by RH : ModH → ModH the functor given by RH (M) := Derk s(H , M) on objects and by RH ( f ) = ∗ f
on morphisms. Let I = Ker (ε) and set Q(H) := s

(
I/I2). Given a morphism of commutative Hopf

algebroids (id,φ) : (A,K) → (A,H), the universal property of the coequalizer (61) applied to K gives a
unique A-module map Q(φ) : Q(K)→ Q(H) such that Q(φ) ◦ πs

K
= πs

H
◦ φ. In this way we get a functor

Q(−) : CHAlgdA −→ ModA.

Note that the morphism φ⊗A Q(φ) : K⊗A Q(K)→ H⊗A Q(H) yields a morphism Ωs
A(φ) : Ωs

A(K)→ Ωs
A(H)

by Corollary 5.9.

Remark 8.1. We know from Proposition 5.8 that RH (M) � HomH
(
Ωs

A(H), M
)

whence RH admits a left
adjoint, namely LH = − ⊗H Ωs

A(H). Notice that Ωs
A(H) � H ⊗A Q(H) as H-modules by Corollary 5.9

and A ⊗H Ωs
A(H) � Q(H) as A-modules. Therefore RH preserves small colimits if and only if Ωs

A(H) is
finitely generated and projective as H-module, if and only if Q(H) is finitely generated and projective as
A-module.

Theorem 8.2. Let (id, φ) : (A,K) → (A,H) be a morphism of commutative Hopf algebroids. Assume that
Q(H) and Q(K) are finitely generated and projective A-modules. The following assertions are equivalent

(a) Q(φ) is split-injective.
(b) Lφ is surjective.
(c) Derk s(φ, −) : Derk s(H , −)→ Derk s(K , φ∗(−)) is surjective on each component.
(d) Derk s(φ, H) : Derk s(H , H)→ Derk s(K , H) is surjective.
(e) H ⊗K Ωs

A(K)→ Ωs
A(H) : h ⊗K w 7→ hΩs

A(φ)(w) is split-injective.

Proof. To prove the equivalence between (a) and (b), observe that Q(φ) is a split-monomorphism of A-
modules if and only if ∗(Q(φ)) : ∗(Q(H)) → ∗(Q(K)) is a split-epimorphism of A-modules. However, as
Q(K) is finitely generated and projective, ∗(Q(K)) is finitely generated and projective as well and hence
requiring that ∗(Q(φ)) splits is superfluous. By Lemma 5.12, the map ∗(Q(H)) → L(H) which assigns to
every f the composition f ◦πs

H
is an isomorphism of A-modules. In view of the relation Q(φ)◦πs

K
= πs

H
◦φ

and of the definition (72) of Lφ we have that the following diagram commutes

∗
(
Q(H)

)
∗
(

Q(φ)
)
��

∗
(
πs
H

)
// L(H)

Lφ

��
∗(Q(K))

∗
(
πs
K

) // L(K)

so that ∗(Q(φ)) is an epimorphism of A-modules if and only if Lφ is. The implications from (c) to (b) and
(d) are obtained evaluation the natural transformation Derk s(φ, −) on Aε andH respectively. To prove that
(b) implies (c), consider the following diagram for every M ∈ ModH .

M ⊗A Derk s(H , Aε)
id //

ςH

��

M ⊗A DerA(Hs, At)
�

(60)
// M ⊗A HomA (Q(H), At)

�

��
Derk s(H , M)

�

(54) // DerA(Hs, Mt) �

(60) // HomA (Q(H),Mt)

The undashed vertical arrow is the map m ⊗A f 7→
[
q 7→ mt f (q)

]
which is invertible because Q(H) is

finitely generated and projective. As a result we get the dashed vertical isomorphism ςH given by m⊗A δ 7→
[u 7→ mu1tδ(u2)] which is clearly H-linear (with respect to the action of H on M) and natural in H . This
naturality implies that Derk s(φ, M) is an epimorphisms whenever Lφ is. To show the implication from (d)
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to (b), notice that the above naturality implies in particular thatH ⊗A Lφ is an epimorphism of A-modules.
Now sinceLφ can be recovered fromH⊗ALφ by applying the functor A⊗H −, it is an epimorphism as well.
Finally, observe that the map in (e) can be easily identified with H ⊗K Q(φ) since Ωs

A(K) � K ⊗A Q(K)
and analogously for H . Now it is clear that (a) implies (e) and the other implication follows by applying
the functor A ⊗H −, and this finishes the proof. �

Remark 8.3. Assume thatH and K are ordinary commutative Hopf algebras over A = k and also integral
domains such that G := CAlgk(H , k) and E := CAlgk(K , k) are connected affine algebraic k-groups. Notice
that any one of these algebras is smooth and then both Q(H) and Q(K) are finite-dimensional k-vector
spaces. Let ϕ := CAlgk(φ, k) : G → E. By resorting to the notation of [Ab, 3.1], we have that dϕ = Lφ.
Therefore, in view of [Ab, Theorem 4.3.12], the separability of the morphism ϕ can be rephrased at the
level of commutative Hopf algebroids by requiring that the morphism φ satisfies the equivalent conditions
of Theorem 8.2. In this way, a morphism of commutative Hopf algebroids with smooth total algebras may
be called a separable morphism when it satisfies one of the equivalent conditions of Theorem 8.2.

9. Some applications and examples

This section illustrate some of our theoretical construction elaborated in the previous sections.

9.1. The isotropy Lie algebra as the Lie algebra of the isotropy Hopf algebra. In analogy with the Lie
groupoid theory, we will show here that the isotropy Lie algebra of the Lie-Rinehart algebra of a given Hopf
algebroid coincides, up to a canonical isomorphism, with the Lie algebra of the isotropy Hopf algebra.

Let (A,H) be a commutative Hopf algebroid whose character groupoid is not empty. This amounts
to the assumption A(k) = CAlgk(A, k) , ∅, that is, CAlgk(A,−) admits k-points. Take a point x ∈ A(k),
and consider the isotropy Hopf k-algebra (k,Hx) at the point x. By definition, see [EL, Definition 5.1] and
[EG2, Example 1.3.5],Hx = kx⊗AH⊗A kx is the base extension Hopf algebroid of (A,H) along the algebra
map x : A→ k (the notation kx means that we are considering k as an A-algebra via x). The Lie algebra of
the commutative Hopf algebra (k,Hx) is by definition the k-vector space Derk(Hx, kxε).

On the other hand, for a given point x ∈ A(k), we set

L (H)x :=
{
δ ∈ Ders

k(H , kxε)| δ ◦ t = 0
}

(14) (77)

These are vectors in the fibre X (k)x of the vector bundle X (k) at the point x, which are killed by the
anchor (70); in the notation of Appendix A.1 and equation (87), this is the vector space X `(k)x. The
vector space L (H)x, x ∈ A(k), is referred to as the isotropy Lie algebra of the Lie algebroid L (H). The
terminology is justified by the following result.

Proposition 9.1. Let (A,H) be a commutative Hopf algebroid over k with A(k) , ∅. Then

(i) for a given point x ∈ A(k), the k-vector space L (H)x of equation (77) admits a structure of Lie
algebra whose bracket is given by

[δ, δ′] : H −→ kxε,
(
u 7−→

(
δ(u1)δ′(u2) − δ′(u1)δ(u2)

))
;

(ii) there is an isomorphism of Lie algebras given by

∇ : L (H)x −→ L (Hx) = Derk(Hx, kxε),
(
δ 7−→

[
1 ⊗A u ⊗A 1 7→ δ(u)

])
(78)

Proof. (ii). The map ∇ is a well-defined k-linear morphism, since any vector in L (H)x is an A-linear map
with respect to both source and target. The inverse of ∇ sends any derivation γ ∈ L (Hx) to the derivation
γπx, where πx : H → Hx is the canonical algebra map sending u 7→ 1kx ⊗A u⊗A 1kx . Now, it is easy to check
that the bracket of L (Hx) induces the one in (i) via ∇. �

(14) By abuse of notation we employ L (H) the Lie-Rinehart algebra of (A,H) in this equation. However, this can be justified
using the identification of the A-module of global sections Γ(X ) with L (H), as stated in Proposition A.4.
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9.2. The Lie-Rinehart algebra of Malgrange’s Hopf algebroids. In this final subsection we compute the
Lie-Rinehart algebras of some Hopf algebroids which arise from differential Galois theory over differential
Noetherian algebras. Inspired by [Mal1, Mal2], [MU] and [Um], some of these Hopf algebroids were
introduced and described in [EG2]. We also construct a morphism from the Lie-Rinehart algebra of one
those Hopf algebroids, to the one arising from the global smooth sections of the Lie algebroid of the
invertible jets groupoid attached to this Hopf algebroid.

Let us consider the polynomial complex algebra A = C[X] and {x0, yn | n ∈ N} a set of indeterminates.
For a given element p ∈ A, we denote by ∂p its derivative, where ∂ := ∂/∂X is the differential of A.
Consider the Hopf algebroid (A,H) over C, where

H := C[x0, y0, y1, · · · , yn, · · · ,
1
y1

],

is the polynomial C-algebra, and where the structure maps are given as follows.
The source and the target are given by:

s : A→ H ,
(
X 7→ x0 := x

)
and t : A→ H ,

(
X 7→ y0 := y

)
(79)

The comultiplication is:

sHt
∆ //

sHt ⊗A sHt

∆(x) = x ⊗A 1, ∆(y) = 1 ⊗A y,

∆(yn) =
∑

(k1 , k2 ,··· , kn)

k1+2k2+···+nkn=n

n!
k1! · · · kn!

( ( y1

1!

)k1 ( y2

2!

)k2

· · ·

( yn

n!

)kn )
⊗A yk1+k2+···+kn , for n ≥ 1.

(80)

(see [EG2, §5.6] for the symbols in the sum). Thus, for n = 1, 2, 3, 4, the image by ∆ of the variables yn’s
reads as follows:

∆(y1) = y1 ⊗A y1, ∆(y2) = y2 ⊗A y1 + y2
1 ⊗A y2, ∆(y3) = y3 ⊗A y1 + 3y1y2 ⊗A y2 + y3

1 ⊗A y3,

∆(y4) = y4 ⊗A y1 + 4y3y1 ⊗A y2 + 6y2y2
1 ⊗A y3 + 3y2 ⊗A y2 + y4

1 ⊗A y4, · · · .

Lastly the counit is given by:

sHt
ε // A

ε(x) = X, ε(y) = X, ε(yn) = δ1, n, for every n ≥ 1.
(81)

An explicit formula for the antipode S : sHt → tHs can be found in [EG2, §5.6].

Proposition 9.2. Consider the above Hopf algebroid (A,H) over the complex numbers. Then the Lie-
Rinehart algebra L (H) of (A,H) has underlying A-module the free module AN whose anchor map is

ω : AN −→ DerC(A),
(
a := (an)n ∈N 7−→

(
p 7→ a0∂p

))
and the bracket is defined as follows. For sequences a and b as above, the sequence [a, b] is given by:[

a, b
]

0 = a0∂b0 − b0∂a0,
[
a, b

]
1 = a0∂b1 − b0∂a1,

[
a, b

]
2 = a2b1 − b2a1 + a0∂b2 − b0∂a2,[

a, b
]

n =

n∑
i=1

(
n
i

)(
aibn−i+1 − bian−i+1

)
+

(
a0∂bn − b0∂an

)
, for n ≥ 3.

Proof. Let δ be an element in L (H) = Ders
C(H , Aε), then δ is entirely determined by the sequence of

polynomials (δ(x0), δ(y0), δ(y1), .....). Since we know that δ(x0) = 0, we have a sequence

(δ(y0), δ(y1), δ(y2), .....) ∈ AN

Namely, we know that any such δ satisfies the following equalities:

δ(y−1
1 ) = −δ(y1), δ(y j

i ) = 0, for every i, j ≥ 2, and δ(p(y0)) = δ(y0)
∂p(x0)
∂x0

. (82)

The last equality gives us the anchor map. Now, for the bracket we need to involve the comultiplication
of equation (80) and the formula of equation (69). For lower cases, that is, for n = 1, 2, one uses directly
these formulae. As for n ≥ 3, one should observe, using equations (82), that when applying the rule (69)
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to the comultiplication (80), the only terms which survive in the sum are the summands corresponding the
following n-tuples

(n, 0, . . . , 0), (n − i, 0, . . . , 0, 1︸︷︷︸
i−th

, 0, . . . , 0), for 2 ≤ i ≤ n,

which give the summands claimed in the bracket
[
a, b

]
n. �

The C-algebraH is in fact a differential algebra, whose differential is given by:

H
δ // H

δ(x) = 1, δ(y) = y1, δ(yn) = yn+1, for n ≥ 1.
(83)

Thus, we have

δ =
∂

∂x
+

∞∑
i=0

yi+1
∂

∂yi
.

A Malgrange’s Hopf algebroid over C with base A is a Hopf algebroid of the form (A,H/I), where
I is a Hopf ideal which is also a differential ideal (i.e., δ(I) ⊆ I). For instance, the ideal I = 〈yn〉n≥2, is
clearly a differential ideal and H/I � C[x, y, z±1], which is a Hopf algebroid with base A and grouplike
elements z±1. It can be identified with the polynomial algebra (A⊗C A)[z±1], whose presheaf of groupoids is
the induced groupoid of the multiplicative group by the affine line (see [EL] for this general construction).

The following corollary is immediate.

Corollary 9.3. Let (A,H/I) be a Malgrange Hopf algebroid with base A. Then the Lie-Rinehart algebra
L (H/I) is a sub-Lie-Rinehart algebra of L (H). Precisely, an element δ ∈ L (H) belongs to L (H/I),
if and only if δ(I) = 0.

For instance, by Proposition 9.2, we have that L (H/I) = A× A, where I = 〈yn〉n≥2, is the Lie-Rinehart
algebra with anchor (a0, a1) 7→ (p 7→ a0∂p) and the bracket is given by

[(a0, a1), (b0, b1)] =
(
a0∂b0 − b0∂a0, a0∂b1 − b0∂a1

)
.

Remark 9.4. The Hopf algebroid (A,H) is the a direct limit of the Hopf algebroids (A,Hr), r ∈ N, where
Hr is the subalgebra of H generated up to the variable yr, that is, we have H = lim

−−→
Hr. Applying the

differentiation functor L , we obtain a projective limit of Lie-Rinehart algebras L (H) = lim
←−−

L (Hr).

In the remainder of this subsection we will relate the Lie-Rinehart algebra of (A,H) and the Lie-Rinehart
algebra of the (polynomial) global sections of the Lie-groupoid attached to the varieties associated to the
pair of algebras (A,H). To this end, consider the invertible jet groupoid attached to (A,H). This, by
definition [Mal2], is the Lie groupoid (J∗(A1

C),A
1
C), where A1

C is the complex affine line and J∗(A1
C) ⊆

A1
C × (A1

C)
N is defined by the points (x0, y0, y1, · · · , yn, · · · ) ∈ A1

C × (A1
C)
N with y1 , 0. In other words, this

groupoid is the character groupoid of the Hopf algebroid (A,H), see [EL] for this definition. Denote by
E the Lie algebroid of this Lie groupoid (see Appendix A.3) below). Then, one can show that there is a
morphism L (H) → Γ(E) of Lie-Rinehart algebras, where Γ(E) is the A-module of global sections of the
Lie algebroid E. This claim will be achieved in the forthcoming steps.

First let us denote by

H(C) = CAlgC(H ,C) ' J∗(A1
C)

s∗ //
t∗ // A(C) = CAlgC(A,C) ' A1

C,ε∗oo

the structure maps of this groupoid, where the source and the target are, respectively, the first and second
projections, and the identity map coincides with the map x 7→ (x, x, 1, 0, · · · ), see [Mal2]. Here we are
consideringH(C) and A(C) as algebraic varieties whose ring of polynomial functions coincide withH and
A, respectively. In this way the elements of H and A are considered as polynomial functions from H(C)
and A(C) to C, respectively.

We know that the fibers of E are of the form Ker (Tx s∗), for x ∈ A1
C. Specifically, given a point x ∈ A1

C,
we identify it with the associated algebra map x : A → C sending X 7→ x. In this way, the notation
Cx stands for C considered as an extension algebra of A via x, and the identity arrow of the object x is
ε∗(x) = xε : H → C. The same notations will be employed for J∗(A1

C). Now, for any point x ∈ A1
C, a
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derivation d in the vector space Ker (Tx s∗), is nothing but an element d ∈ DerC(H ,Cε∗(x)) such that ds = 0.
Therefore, we have the following identifications of vector spaces:

Ker (Tx s∗) = {d ∈ DerC(H ,Cε∗(x))| ds = 0} = Ders
C(H ,Cxε) = X (C)x, for every x ∈ A1

C,

where the X (C)x’s are the fibers of the presheaf of equation (87) at the base field C. This gives us the
identification of vector bundles E = X (C).

On the other hand, any (polynomial) section of the vector bundle X (C) can be extended “uniquely”, as
follows, to a (polynomial) section of the vector bundle ∪g ∈H(C)Ders

C(H ,Cg). This extension is the same as
the one given in Proposition A.3 of the Appendix. Take a section {δx}x ∈A1

C
of X (C)(15) , we set

δ̃g : H −→ Cg,
(
u 7−→ g(u1) δgt(u2)

)
, for every g ∈ H(C).

These are called left invariant sections tangent to the fiber of s. For a fixed polynomial function u ∈ H , we
have a polynomial function δ̃−(u) : H(C)→ C sending g 7→ δ̃g(u), which we identify with its image inH .
This function satisfies the following equalities(16) :

δ̃−(s(a)) = 0, (̃aδ)−(u) = t(a)̃δ−(u), xε
(̃
δ−(u)

)
= δx(u), (84)

for every a ∈ A, u ∈ H and x ∈ A1
C. Furthermore, there is a derivation ofH , defined by u 7→ δ̃−(u). Namely,

for every point g ∈ H(C) and two polynomial functions u, v ∈ H , we have

δ̃−(uv)(g) = δ̃g(uv) = g(u1v1)δgt(u2v2)

= g(u1)g(v1)
(
gtε(u2)δgt(v2) + δgt(u2)gtε(v2)

)
= g(u1)g(v1) gtε(u2)δgt(v2) + g(u1)g(v1) δgt(u2)gtε(v2)
= g(u) g(v1)δgt(v2) + g(u1)δgt(u2) g(v)

= g(u) δ̃−(v)(g) + δ̃−(u)(g) g(v)

= u(g) δ̃−(v)(g) + δ̃−(u)(g) v(g)

Therefore, we have
δ̃−(uv) = ũδ−(v) + δ̃−(u)v. (85)

Next, we describe the anchor map and the bracket of Γ(E). Given a section δ ∈ Γ(E), its anchor at a
given polynomial a ∈ A, is defined as the polynomial function ω(δ)(a) : A1

C → C sending x 7→ δx(t(a)). As
for the bracket, taking two sections δ, γ, we set the section x 7→ [δ, γ]x, defined by

[δ, γ]x : H −→ Cxε,
(
u 7−→

(
δx( γ̃−(u) ) − γx( δ̃−(u) )

))
.

Take u, v ∈ H , we compute

[δ, γ]x(uv) = δx( γ̃−(uv) ) − γx( δ̃−(uv) )
(85)
= δx

(
uγ̃−(v) + γ̃−(u)v

)
− γx

(
ũδ−(v) + δ̃−(u)v

)
= xε(u)δx( γ̃−(v) ) + δx(u)xε(̃γ−(v)) + xε(̃γ−(u))δx(v) + δx( γ̃−(u) )xε(v)

−xε(u)γx( δ̃−(v) ) − γx(u)xε(̃δ−(v)) − xε(̃δ−(u))γx(v) − γx( δ̃x(u) )xε(v)
(84)
= xε(u)[δ, γ]x(v) + [δ, γ]x(u)xε(v).

Thus [δ, γ]x ∈ Ders
C(H ,Cxε). It is not hard now to check that this bracket endows Γ(E) with a structure of

Lie algebra and it is compatible with the anchor map, that is, satisfies equation (22). This completes the
Lie-Rinehart algebra structure of Γ(X (C)) = Γ(E).

The desired morphism of Lie-Rinehart algebras L (H) → Γ(E), is now deduced as follows. Using the
isomorphism of Proposition A.4 in conjunction with the canonical map

Γ(X ) −→ Γ
(
X (C)

)
,

(
τ 7−→ τC

)
of Lie-Rinehart algebras, we obtain a morphism L (H) � Γ(X ) −→ Γ

(
X (C)

)
= Γ(E) of Lie-Rinehart

algebras.

(15) Here, we are assuming that, for every u ∈ H , the function x 7→ δx(u) is polynomial, where x ∈ A1
C

, or equivalently, each of
the functions x 7→ δx(x0), δx(y0), δx(y1), · · · , δx(yn), · · · , is polynomial.

(16) For the sake of clearness, aδ : x 7→ x(a)δx and ũδ−(v) : g 7→ g(u)̃δg(v).
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Remark 9.5. Given (A,H) as above we already observed that the fibers of E are of the form Ker (Tx s∗) =

Ders
C(H ,Cxε), for x ∈ A1

C. As explained in Remark A.1, we can consider in the category of augmented
algebras the following cokernel

A s // H
π(x) // H(x)

// C,

where A has augmentation x, whileH has augmentation x◦ε. Note that, by construction,H(x) isH quotient
by the ideal 〈s(a) − x(a)1H | a ∈ A〉. By the remark quoted above we get an isomorphism of vector spaces

Ders
C(H ,Cxε) � Derk(H(x), Cεx ),

where εx : H(x) → C is the unique algebra map such that εx ◦ π(x) = x ◦ ε. Since we know that

CAlgC(H(x),C) �
{
g ∈ H(C) | g(s(a) − x(a)1H ) = 0, ∀ a ∈ A

}
=

{
g ∈ H(C) | s∗(g) = g ◦ s = x

}
= H(C)x,

then H(x) � kx ⊗A sH is the coordinate algebra of the subvariety H(C)x known as the left star of the point
x in the groupoid H(C). Furthermore, the morphism of Hopf algebroids πx : H → Hx, where (C,Hx)
is, as in subsection 9.1, the isotropy Hopf algebra of H at the point x, factors throughout the morphism
π(x), leading to a morphism of augmented C-algebras H(x) → Hx

(17) . Applying the derivations functor
DerC(−,C) to this latter morphism gives rise to the canonical injection of Lie algebras

L (H)x
(78)
=

{
δ ∈ Ders

C(H ,Cxε)| δ ◦ t = 0
}
↪→ Ders

C(H ,Cxε).

Notice that all these observations are valid for any Hopf algebroid (A,H) over k such that A(k) , ∅.

Appendix A. The functorial approach, the units of the adjunctions and Lie groupoids.

In this section we provide an alternative construction of the differential functor L constructed in §5.3.
This is done by mimicking the differential calculus on affine group schemes [DG, II §4] parallel to the con-
struction of a Lie algebroid from a Lie groupoid. Moreover, we provide an alternative (direct) construction
of the unit of the adjunction in Theorem 7.2. Finally, we revisit also the construction of the Lie algebroid
of a Lie groupoid under an algebraic point of view.

The following remark will be used all along the appendices.

Remark A.1. Recall that the category Alg+

k of augmented algebras has as objects pairs (A, ε) where A is an
algebra and ε : A→ k is a distinguished algebra map, called augmentation, and as morphism algebra maps
preserving the augmentation. Analogously, the category of coaugmented coalgebras Coalg+

k has as objects
pairs (C, g) where C is a coalgebra and g is a distinguished group-like element in C and as morphism
coalgebra maps preserving the group-likes. The duality (−)∗ : Coalgk

// Algop
k : (−)◦oo induces a duality

between Coalg+

k and
(
Alg+

k

)op, namely (C, g)∗ = (C∗, g∗), where g∗ : C∗ → k is the evaluation at g, and
(A, ε)◦ = (A◦, ε). In addition, we have an adjunction between the category of vector spaces Veck and Coalg+

k

given by the functor P : Coalg+

k → Veck sending every (C, g) to P(C, g) := {c ∈ C | ∆(c) = c ⊗ g + g ⊗ c}
and its left adjoint sending V to (k ⊕ V, 1k), where ∆(v) = v ⊗ 1k + 1k ⊗ v for every v ∈ V .

Note that composing the right adjoints we get P ((A, ε)◦) = P(A◦, ε) = Derk(A, kε). As a consequence,
the functor

(
Alg+

k

)op
→ Veck sending every (A, ε) to Derk(A, kε) is a right adjoint. In particular, it preserves

kernels once observed that Alg+

k has (k, idk) as zero object. By the existence of this zero object, given a
morphism of augmented k-algebras s : A0 → A1 we can consider in Alg+

k the cokernel

A0
s // A1

π // A2
// k,

which is defined as the coequalizer of the pair (s, u1 ◦ ε0) in the category of algebras with the induced
augmentation. Here we denoted by εi : Ai → k the augmentations and by ui : k → Ai the units. By the
foregoing, we get the following kernel of vector spaces

0 // Derk(A2, kε2 ) π∗ // Derk(A1, kε1 ) s∗ // Derk(A0, kε0 ).

Summing up, π∗ induces an isomorphism

Derk(A2, kε2 ) � Ker (s∗) = {δ1 ∈ Derk(A1, kε1 ) | δ1 ◦ s = 0} = Ders
k(A1, kε1 ). (86)

(17) This algebra maps is nothing but the canonical surjective map: C[x0, y0, y1, y2, · · · ,
1
y1

]/〈x0−x〉 → C[X, y1, y2, · · · ,
1
y1

]/〈X−x〉.
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A.1. The functorial approach to the differential functor. Let us introduce some useful notation. Given
two algebras T and R we denote by T (R) := CAlgk(T,R) the set of all algebra maps from T to R, and by
CAlgk the category of all commutative algebras. To any commutative Hopf algebroid (A,H) one associates
the presheaf of groupoids H : CAlgk → Grpds assigning to an algebra R ∈ CAlgk the groupoid

H1(R) := H(R) s //
t // A(R) := H0(R)ιoo

whose structure is given as follows: For any g ∈ H(R), x ∈ A(R), we have s(g) = gs, t(g) = gt, ιx = xε,
g−1 = gS, and if gs = g′t for some other g′ ∈ H(R), then g.g′ : H → R sends u 7→ g′(u1)g(u2).

Let us define the following functor:

X : CAlgk −→ Sets,

R 7−→ ⊎
x ∈ A(R)

Derk s(H , Rxε)

 , (87)

where
⊎

denotes the disjoint union of sets. For each R ∈ CAlgk, X (R) can be seen as a bundle (in
the sense of [Hm, Definition 1.1, chapter 2]) of H-modules over H0(R) with canonical projection πR :
X (R) → A(R) sending δ ∈ Derk s(H , Rxε) to x. Now, X is a functor as for any morphism f : R → T ,
the map X ( f ) : X (R) → X (T ) is fiberwise defined by composition with f . This makes π : X → H0 a
natural transformation.

Following [DG], let us consider the trivial extension algebra R[~] of a given algebra R, that is, ~2 = 0
together with the canonical algebra injection i : R→ R[~], r 7→ (r, 0). Denote by p : R[~]→ R the algebra
projection to the first component and by p′ : R[~] → R the R-linear projection to the second component.
Then we have a morphism of groupoids H (p) : H (R[~])→H (R). For a fixed x ∈ A(R), we set

Dx(R) :=
{
γ ∈ H(R[~])| p′γs = 0, pγ = xε

}
.

Clearly, any arrow γ ∈ Dx(R) belongs to the kernel of H (p), i.e. {γ ∈H1(R[~]) |H1(p)(γ) ∈ ι (H0(R))}.
Furthermore, if we denote by γ̃ := p′γ, then γ̃ becomes a xε-derivation, in the sense that

γ̃(uv) = xε(u)̃γ(v) + γ̃(u)xε(v),

for every u, v ∈ H . Each of the fibers Dx(R) is as follows a k-vector space:

λγ := (xε, λγ̃), γ + γ′ := (xε, γ̃ + γ̃′), for every λ ∈ k, and γ, γ′ ∈ Dx,

where the notation is the obvious one for diagonal morphisms. We have then constructed a functor

D : CAlgk −→ Sets,

R 7−→ ⊎
x ∈ A(R)

Dx(R)

 , (88)

where for any morphism f : R → T , the map D( f ) : D(R) → D(T ) is fiberwise defined by composition
with ( f , f ). The functor D is naturally isomorphic to X . Namely, the isomorphism is fiberwise given by

Dx(R) −→ Derk s(H , Rxε),
(
γ 7−→ γ̃

)
; Derk s(H , Rxε) −→ Dx(R),

(
δ 7−→ (xε, δ)

)
.

Under this isomorphism, the elements of X (R), for a given algebra R, can be seen as arrows in the groupoid
H (R[~]), although, contrary to the classical situation, they only form a subcategory and not necessarily
a subgroupoid. Let us show that the set X `(R) of loops in the category X (R) is a groupoid-set in the
following sense (for the definition of groupoid-set, see e.g. [EL]).

An element δ ∈ X (R) belongs to X `(R) provided that it satisfies also the equation δt = 0. Thus, δ is a
xε-derivation which kills both source an target and we can write

X ` : CAlgk −→ Sets,

R 7−→ ⊎
x ∈ A(R)

Derk s,t(H , Rxε)

 . (89)

It is easily checked that X ` is a functor. What we are claiming is that X ` with the structure map given
by the restriction of π is actually an H -set, in the sense of presheaves of groupoids. Taken the natural
transformations π : X ` →H0 and t : H1 →H0, consider the fiber product

X `
π×t H1 : CAlgk −→ Sets,

(
R −→X `(R) πR×t H1(R) =

{
(δ, g) ∈ X `(R) ×H1(R)| gt = πR(δ)

})
.
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Given an element (δ, g) ∈X `(R) πR×t H1(R), we define the conjugation action by

δ . g : H −→ Rgsε,
(
u 7−→ g(u(1))δ(u(2))g(S(u(3)))

)
. (90)

Notice that this map is well-defined as

δ(s(a)ut(b)) = x(a)δ(u)x(b) and g(ut(a)) = g(u)g(t(a)) = g(u)πR(δ)(a) = g(u)x(a)

for every a, b ∈ A, u ∈ H , where δ ∈ Derk s(H , Rxε). The following is the desired claim.

Lemma A.2. For every algebra R ∈ CAlgk, the pair (X `(R), πR) is a right H (R)-set with action given by
conjugation as in (90). Furthermore, this is a functorial action, that is, (X `, π) is a right H -functor.

Proof. It is straightforward to show that δ . g belongs to X (R) with projection gs ∈ A(R), where x =

πR(δ) = gt. The rest of the first claim is clear.
Now let f : R → S be an algebra map. If δ ∈ X `(R) with πR(δ) = x, then clearly πS (X ( f )(δ)) = f x.

On the other hand, the following diagram

X `(R) πR×t H1(R) //

X `( f ) πR×t H1( f )

��

X `(R)

X `( f )

��
X `(S ) πR×t H1(S ) // X `(S )

commutes, which means that X `( f ) is a right H -equivariant map. This shows that the natural transfor-
mation X `

π×t H1 →X ` defines effectively a right H -action on X `. �

Viewing X as a bundle over H0, one can define its module of sections as follows

Γ(X ) =
{
τ ∈ Nat (H0,X ) | π ◦ τ = id

}
. (91)

This is a vector space, whose operations are defined fiberwise.
On the other hand, for any algebra R ∈ CAlgk, we may consider the following bundle

Y (R) =
⊎

g ∈H1(R)
Derk s(H , Rg)

πR // H1(R). (92)

When R runs in CAlgk, Y gives a functor, and one can consider as before its vector space of sections Γ(Y ).

Proposition A.3. Let Γ(X ) and Γ(Y ) be as above. Then we have the following properties:

(a) For any algebra map f : R→ S in CAlgk, any object x ∈H0(R) and any τ ∈ Γ(X ), we have:

x ◦ τA(idA) = τR(x), f ◦ τR(x) = τS ( f x). (93)

In particular, we have

ε ◦ τH (t) = τA(idA) and xε
(
u(1)τH (t)(u(2))

)
= τR(x)(u), (94)

for every x ∈H0(R) and u ∈ H .
(b) Both Γ(X ) and Γ(Y ) admit a structure of A-module given as follows:

(a .τ)R(x) = x(a) .τR(x), (a .α)R(g) = gt(a) .αR(g), (95)

for R in CAlgk, x ∈H0(R), g ∈H1(R) and for every τ ∈ Γ(X ), α ∈ Γ(Y ) and a ∈ A.
(c) The following map

Γ(X ) Σ // Γ(Y )

τ
� //

 Στ
R : H1(R) −→ X (R)

g 7−→ Στ
R(g) : H → Rg

u 7→ g(u(1))τR(gt)(u(2))

 ,
where R ∈ CAlgk and g ∈ H1(R), is a monomorphism of A-modules. Thus, any section of X
extends uniquely to a section of Y .
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Proof. Part (a) follows from naturality of τ. Part (b) is straightforward. As for part (c), let us first check
that Σ is a well-defined map. Take τ ∈ Γ(X ), g ∈ H1(R) and set x = gt. By using the fact that τR(x) is
a derivation, one easily checks that Στ

R(g) ∈ Derk s(H, Rg). Assume we are given τ, τ′ ∈ Γ(X ) such that
Σ(τ) = Σ(τ′). Then, for every g ∈H1(R), we have that

g(u(1))τR(gt)(u(2)) = g(u(1))τ′R(gt)(u(2))

for every u ∈ H . Now, take an arbitrary x′ ∈H0(R) and set g = x′ε. Hence, for every u ∈ H , we obtain

x′ε(u(1))τR(x′)(u(2)) = x′ε(u(1))τ′R(x′)(u(2)) ⇒ τR(x′)(sε(u(1))u(2)) = τ′R(x′)(sε(u(1))u(2))⇒ τ′R(x′) = τR(x′).

Therefore τ = τ′ and Σ is injective. The fact that Σ is A-linear is immediate and this finishes the proof. �

Proposition A.4. Let (A,H) be a Hopf algebroid with associated presheaf H and consider the bundle
(X , π) as given in (87). Then we have a bijection

∇ : Γ(X ) −→ Derk s(H , Aε),
(
τ 7−→ τA(idA)

)
.

In particular, the A-module of global sections Γ(X ) admits a unique structure of Lie-Rinehart algebra in
such a way that ∇ becomes an isomorphism of Lie-Rinehart algebras. Explicitly, for any R ∈ CAlgk the
bracket [τ, τ′]R : H0(R)→X (R) and the anchor ω′ are respectively given by

H
[τ,τ′]R(x) // Rxε

u � // τR(x)
(
u(1) τ

′

H
(t)(u(2))

)
− τ′R(x)

(
u(1) τH (t)(u(2))

) Γ(X ) ω′ // Derk(A)
τ
� // τA(idA) ◦ t

Proof. In light of Yoneda’s Lemma, we have a bijection ∇ : Nat (H0,X ) � X (A) sending every natural
transformation η ∈ Nat (H0,X ) to ∇(η) := ηA(idA). It turns out that this bijection restricts to ∇ : Γ(X ) �
X ′(A) where X ′(A) = {δ ∈X (A) | πA(δ) = idA}. By definition of πA, we have πA(δ) = idA for every
δ ∈ Derk s(H , Aε) so that X ′(A) = Derk s(H , Aε). This induces on Γ(X ) the given Lie-Rinehart algebra
structure since for τ, σ ∈ Γ(X ), R ∈ CAlgk, x ∈H0(R), a ∈ A and u ∈ H we have(
[τ, σ]R(x)

)
(u) =

(
∇−1

(
[∇(τ),∇(σ)]

)
R
(x)

)
(u) =

(
∇−1

(
[τA(idA), σA(idA)]

)
R
(x)

)
(u) =

(
x ◦ [τA(idA), σA(idA)]

)
(u)

(69)
= x

(
τA(idA)

(
u(1)t

(
σA(idA)(u(2))

)))
− x

(
σA(idA)

(
u(1)t

(
τA(idA)(u(2))

)))
(93)
= τR(x)

(
u(1)σH (t)(u(2))

)
− σR(x)

(
u(1)τH (t)(u(2))

)
,

ω′(τ)(a) = ω(∇(τ))(a) = ω (τA(idA)) (a)
(70)
= τA(idA)(t(a)).

This concludes the proof. �

Remark A.5. By mimicking Proposition A.4, we get a bijection ∇` : Γ(X `) → Derk s, t(H , Aε), induced
by ∇ of the same proposition, where Γ(X `) is the A-module of global sections of the bundle X ` and
Derk s, t(H , Aε) is the A-module of k-algebra derivations δ : H → Aε such that δs = δt = 0, which
in turns is the kernel of the anchor map given in equation (70). Consider the so-called total isotropy
Hopf algebroid H ` := H/〈s − t〉 of H and denote by π : H → H ` the canonical projection(18) . Note
that given a symmetric A-bimodule M (i.e. am = ma for all a ∈ A,m ∈ M) we have an isomorphism
HomA−

(
H`,M

)
= HomA−A

(
H`,M

)
→ HomA−A (H,M) given by pre-composition by π. This isomorphism

induces an isomorphism Derk s(H `, Mε` ) � Derk s, t(H , Mε). As a consequence, Γ(X `) is isomorphic to
the Lie-Rinehart algebra L (H `) of H `. If x ∈ A(k), then the fiber X `(k)x = Derk s, t(H , kxε) of the
bundle X `(k) coincides by (77) with the isotropy Lie algebra L (H)x of L (H). On the other hand, since
Derk s, t(H , kxε) � Derk s(H `, kxε) = L (H `)x we get that X `(k)x � L (H `)x.

Remark A.6. Note that the isomorphism ∇ of Proposition A.4 can be adapted to get an isomorphism
∇′ : Γ(Y ) → Derk s(H , H). Via these isomorphisms, one can see that the morphism Σ from Proposition
A.3 corresponds to a morphism Derk s(H , Aε) → Derk s(H , H), whose corestriction to its image is θ′ of
Lemma 5.12. This makes also clear why Σ is injective.

(18) Here 〈s − t〉 stands for the Hopf ideal generated by the set {s(a) − t(a)}a ∈ A. Moreover the Hopf A-algebraH` is considered as
a Hopf algebroid with base algebra A with source equal to the target.
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A.2. Units of the adjunction between differentiation and integration. We give here an explicit descrip-
tion of the unit and counit of the adjunction proved in §7.

Proposition A.7. Let (A, L) be a Lie-Rinehart algebra. Then there is a natural transformation

ΘL : L −→ Derk s(VA(L)◦, Aε) = L I (L),
(
X 7−→

[
z 7→ −ζ(z)

(
ιL(X)

)])
(96)

of Lie-Rinehart algebras. Moreover, this morphism factors as follows and leads to

L
ΘL //

Θ′L ))

Derk s(VA(L)◦, Aε)

Derk s(VA(L)•, Aε)

L (ζ̂)

OO
(97)

a commutative diagram of Lie-Rinehart algebras, where Θ′L is the map which corresponds, by using the
bijection of Lemma 6.4, to the A-ring morphism i : VA(L)→ ∗(VA(L)•) defined in equation (50).

Proof. By Lemma 6.4, Θ′L is a morphism of Lie-Rinehart algebras. By Proposition 5.16, we know that
L (ζ̂) is Lie-Rinehart as well. As a consequence, ΘL := L (ζ̂) ◦Θ′L is a morphism of Lie-Rinehart algebras.
It remains to check that it behaves as in (96). By using b) of Lemma 6.4, we know that Θ′L = ĩ. Therefore,
for any X ∈ L, we have ΘL(X) = L (ζ̂)

(
Θ′L(X)

)
= Θ′L(X) ◦ ζ̂ = ĩ(X) ◦ ζ̂ = −i(ιL(X)) ◦ ζ̂ and so, by (50), we

get ΘL(X)(z) = −
(
ξ ◦ ζ̂

)(
z
)(
ιL(X)

)
= −ζ

(
z
)(
ιL(X)

)
. �

Now, consider (A,H) a commutative Hopf algebroid and let VA(L (H)) be the universal algebroid of
the Lie-Rinehart algebra (A,L (H)) of derivations ofH . Take an object (V, %V) in the full subcategoryAH

(that is, a rightH-comodule such that VA is finitely generated and projective(19) ), then we have a map

λV : L (H) // Endk(V)

δ
� //

[
v 7→ −v(0) δ(v(1))

]
.

(98)

Proposition A.8. Let (A,H) be as above. Then the map (98) induces a structure of right VA(L (H))-
module on V. Moreover, this establishes a symmetric monoidal functor

∇ : AH −→ AVA(L (H)),
(
(V, %V) −→ (V, λV)

)
which commutes with the fibers functor, and so we obtain

R(∇) : Σ† ⊗
AH

Σ −→ Σ† ⊗AVA (L (H))
Σ = VA(L (H))◦.

a morphism of commutative Hopf algebroids. Furthermore, there is a natural transformation

ΩH : H
can−1

// Σ† ⊗
AH

Σ
R(∇) // Σ† ⊗AVA (L (H))

Σ = VA(L (H))◦

wheneverH is a Galois Hopf algebroid.

Proof. Let us check first that λ := λV is an anti-Lie algebra map. So take v ∈ V and δ, δ′ ∈ L (H). We
compute on the one hand:

λ([δ, δ′])(v) = −v(0) [δ, δ′](v(1)) = −v(0)

(
δ
(
v(1) t(δ′(v(2)))

)
− δ′

(
v(1) t(δ(v(2)))

))
,

and on the other hand,

[λ(δ), λ(δ′)](v) = λ(δ)
(
λ(δ′)(v)

)
− λ(δ′)

(
λ(δ)(v)

)
= −λ(δ)

(
v(0) δ

′(v(1))
)

+ λ(δ′)
(
v(0) δ(v(1))

)
= v(0)

(
δ
(
v(1) t(δ′(v(2)))

)
− δ′

(
v(1) t(δ(v(2)))

))
,

which implies that λ([δ, δ′]) = −[λ(δ), λ(δ′)]. Let us denote by la ∈ Endk(V) the A-action on V by a. So, for
every v ∈ V , a ∈ A and δ ∈ L (H), we have that(

la ◦ λ(δ) − λ(δ) ◦ la

)
(v) = −av(0)δ(v(1)) + v(0)δ(v(1)t(a)) = −av(0)δ(v(1)) + v(0)δ(v(1))a + v(0)ε(v(1))δ(t(a))

= v δ(t(a)) = lω(δ)(a)(v),

(19) Actually this assumption is not needed for the next construction.
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so that λ(δ)◦ la − la ◦λ(δ) = l−ω(δ)(a). Summing up, V is a right representation of L (H) and, by the universal
property ofVA(L (H)), this implies that there is an algebra mapVA(L (H))→ Endk(V)op which makes of
V a rightVA(L (H))-module. This defines the functor ∇ on the objects. On arrows this functor acts as the
identity, that is, ∇( f ) = f for everyH-colinear map f : V → V ′. The fact that f isVA(L (H))-linear may
be proved by mimicking the argument of the proof of the second claim in Lemma 6.3: take B ⊆ VA(L (H))
such that f (vb) = f (v)b for all b ∈ B and show that B = VA(L (H)). Monoidality of ∇ comes as follows:
both tensor products are modelled on ⊗A and the subsequent computation

λV⊗AW(δ)(v ⊗A w) = −(v(0) ⊗A w(0)) δ(v(1)w(1)) = −(v(0) ⊗A w(0))
(
ε(v(1))δ(w(1)) + δ(v(1))ε(w(1))

)
= v ⊗A λ

V(δ)(w) + λW(δ)(v) ⊗A w = v ⊗A w ιL (H)(δ) + v ιL (H)(δ) ⊗A w = (v ⊗A w) ∆(ιL (H)(δ)).

shows that the action on ∇(V ⊗A W) coincides with the diagonal one. The identity object A has the action
λA : L (H) → Endk(A)op given by λ(δ)(a) = −a(0) δ(a(1)) = −δ(t(a)). Therefore λA = −ω, the anchor
described in Proposition 5.13. The rest of the proof of the first statement follows from the construction
performed in §3.1.

Lastly, the naturality of Ω is proved as follows. Given a morphism φ : H → H ′ of Galois Hopf
algebroids, then on the one hand we have a commutative diagram

AH
′ ∇′ //

O

!!

AVA(L (H ′))

O′

ss

AH
∇ //

φ∗
;;

ω

++

AVA(L (H))

VA(L (φ))∗
77

ω′

vv
proj(A)

which leads to a commutative diagram

Σ† ⊗
AH

Σ
R(∇) //

R(φ∗)

��

I L (H)

I L (φ)∗=R(VA(L (φ))∗)

��
Σ† ⊗

AH
′ Σ

R(∇′) // I L (H ′).

On the other hand we have, by definition of the functor R, a commutative diagram

Σ† ⊗
AH

Σ
canH //

R(φ∗)

��

H

φ

��
Σ† ⊗

AH
′ Σ

canH′ // H ′.

Putting together the two diagrams leads to the naturality of Ω and it finishes the proof. �

A.3. The Lie-Rinehart algebra of a Lie groupoid. Revisited. Here we provide an algebraic approach
to the construction of a Lie algebroid, or Lie-Rinehart algebra, from a given Lie groupoid. This approach
unifies in fact the definition given in [Mac, §3.5] and the one in [Ca]. We also discuss the injectivity of the
unit of the adjunction between integration and differentiation functors, see Appendix A.2.

We will employ the following notations. Consider a diagram of commutative R-algebras B x // C
y // D,

where R denotes the field of real numbers. As usual, we denote

Derx
R(C,Dy) :=

{
γ ∈ DerR(C, Dy)| γ ◦ x = 0

}
Given a connected smooth real manifold M, for each point x ∈ M, we denote by x itself the algebra

map C∞(M) → R sending p 7→ p(x). The global smooth sections of the tangent vector bundle TM =
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∪x ∈MDerR(C∞(M), Rx) ofM are identified with the C∞(M)-module of derivations of C∞(M) as follows:
Take a section δ ∈ Γ(TM), we have a derivation

C∞(M) −→ C∞(M),
(
p 7−→ [x 7→ δx(p)]

)
,

see [Ne, §9.38]. Let us consider a Lie groupoid

G : G1
s //
t // G0,ιoo

where G1 is assumed to be a connected smooth real manifold and s, t are surjective submersions. This leads
to a diagram of (geometric [Ne, Definition 3.7]) smooth real algebras

C∞(G0) s∗ //
t∗ // C

∞(G1).ι∗oo

The left star of a point x ∈ G0 is by definition the (sub)-manifold Gx = {g ∈ G1| s(g) = x} of G1, and denote
by τx : Gx ↪→ G1 the corresponding embedding. Notice that we have a disjoint union G1 = ]x ∈G0Gx. For
an object x ∈ G0, we have the following surjective R-linear map: Tx s : Tι(x)G1 → TxG0, so we can set
Ex := Ker (Tx s) and then consider the vector bundle E = ∪x ∈G0Ex. Each fiber Ex is then identified with
R-vector space Ders∗

R (C∞(G1),Rι(x)), thus, Ex = Ders∗

R (C∞(G1),Rι(x)).
There is another vector bundle F whose fibers at a point x ∈ G0 is given by the R-vector space

Fx = Tι(x)(Gx) = DerR(C∞(Gx), Rι(x)).

Lemma A.9. We have an isomorphism of R-vector spaces

ηx : DerR(C∞(Gx), Rι(x))→ Ders∗

R (C∞(G1),Rι(x)),
(
γx 7−→

[
p 7→ γx(pτx)

])
(99)

induced by τ∗x : C∞(G1)→ C∞(Gx), p 7→ pτx.

Proof. Recall that, by hypothesis, s : G1 → G0 is a surjective submersion. In particular, in light of [Le,
Corollary 5.14] for example,Gx = s−1(x) is a closed embedded submanifold ofG1 with local (in fact, global)
defining map s itself. Thus, as a consequence of [Le, Proposition 5.38], for any h ∈ Gx we have that ThGx =

Ker
(
Ths : ThG1 → T s(h)G0

)
. In particular, DerR(C∞(Gx), Rι(x)) = Tι(x)Gx = Ker

(
Tι(x) s : Tι(x)G1 → T sι(x)G0

)
,

where the second identification is given through the inclusion Tι(x)τx : Tι(x)Gx → Tι(x)G1 induced by τx. �

As a consequence we get an isomorphism of vector bundles η : F → E and hence an isomorphism of
C∞(G0)-module η := Γ(η) : Γ(F )→ Γ(E). There are two morphisms of C∞(G0)-modules:

ωE : Γ(E) −→ DerR(C∞(G0)),
(
δ 7−→ [a 7→ δ−(at)]

)
(100)

and ωF := ωE ◦ η. Recall that, by the foregoing, we can identify Γ (TG0) with DerR(C∞(G0)). By means
of this identification one can check that the morphism of vector bundles Tt : E → TG0 induced by the
R-linear maps Txt : Tι(x)G1 → TxG0 is such that ωE = Γ(Tt). Clearly, ωF = Γ(Tt ◦ η).

Given an arrow g ∈ G1, we have the right multiplication action Rg : Gt(g) → Gs(g), h 7→ hg (this, by the
Lie groupoid structure of G, is a diffeomorphism). Now, fix an object x ∈ G0, a function q ∈ C∞(Gx) and a
global section γ ∈ Γ(F ), then we have a smooth function

→

γ−(q) ∈ C∞(Gx) given by
→

γ−(q) : Gx −→ R,
(
h 7−→

→

γh(q) := γt(h)(qRh)
)

see [Mac, Corollary 3.5.4]. The derivation
→

γ− : C∞(Gx)→ C∞(Gx) satisfies the following equalities:(
→

aγ
)
−

= τ∗x (t∗(a))
→

γ−,
→

γι− = γ−, for all a ∈ C∞(G0), (101)

where (aγ)x = a(x)γx and (b
→

γ−)h = b(h)
→

γh for every x ∈ G0, a ∈ C∞(G0), b ∈ C∞(Gx), h ∈ Gx. In this way,
for a given pair of sections (γ, γ′) ∈ Γ(F ) × Γ(F ), we have the following smooth global section

[γ, γ′]x : C∞(Gx) −→ Rι(x),
(
q 7−→ γx(

→

γ′−(q)) − γ′x(
→

γ−(q))
)
.

Namely, since ι(x) ∈ Gx, for two functions p, q ∈ C∞(Gx) we may compute

[γ, γ′]x(pq) = γx(
→

γ′−(pq)) − γ′x(
→

γ−(pq))

= γx

(
p
→

γ′−(q) +
→

γ′−(p)q
)
− γ′x

(
p
→

γ−(q) +
→

γ−(p)q
)

= p(ι(x))γx(
→

γ′−(q)) + γx(p)
→

γ′ι(x)(q) +
→

γ′ι(x)(p)γx(q) + γx(
→

γ′−(p))q(ι(x))
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−γ′x(p)
→

γι(x)(q) − p(ι(x))γ′x(
→

γ−(q)) − γ′x(
→

γ−(p))q(ι(x)) −
→

γι(x)(p)γ′x(q)
= p(ι(x))[γ, γ′]x(q) + [γ, γ′]x(p)q(ι(x))

+γx(p)
→

γ′ι(x)(q) +
→

γ′ι(x)(p)γx(q) − γ′x(p)
→

γι(x)(q) −
→

γι(x)(p)γ′x(q)
(101)
= p(ι(x))[γ, γ′]x(q) + [γ, γ′]x(p)q(ι(x)),

which shows that ([γ, γ′]x)x ∈G0 ∈ Γ(F ). Furthermore, for a given a ∈ C∞(G0), we have

[γ, aγ′]x(q) = γx(
→

(aγ′)−(q)) − a(x)γ′x(
→

γ−(q))
(101)
= γx

(
τ∗x(t

∗(a))
→

γ′−(q)
)
− a(x)γ′x(

→

γ−(q))

= τ∗x(t
∗(a))(ι(x))γx(

→

γ′−(q)) + γx(τ∗x(t
∗(a)))

→

γ′ι(x)(q) − a(x)γ′x(
→

γ−(q))
(101)
= a(x)[γ, γ′]x(q) + ωF (γ)(a)(x)γ′x(q),

for every function q ∈ C∞(Gx). Thus, for every function a ∈ C∞(G0), we have

[γ, aγ′] = a[γ, γ′] + ωF (γ)(a)γ′

as an equality in Γ(F ). This completes the structure of the Lie algebroid (F ,G0), and the structure of
Lie-Rinehart algebra of (Γ(F ),C∞(G0)). This Lie algebroid is know in the literature as the Lie algebroid of
the Lie groupoid G.

Now, we come back to the vector bundle (E,G0). We can endow it with a Lie algebroid structure via the
isomorphism η. The bracket on Γ(E) is given by

[δ, δ′]x : C∞(G1) −→ Rι(x),
(
b 7−→ δx(

→

δ′−(b)) − δ′x(
→

δ−(b))
)

and the anchor is the map ωE of equation (100). In fact, concerning the bracket we can compute

ηx([γ, γ′]x)(p) = [γ, γ′]x(pτx) = γx(
→

γ′−(pτx)) − γ′x(
→

γ−(pτx))
(∗)
= γx(

→

η(γ′)
−
(p)τx) − γ′x(

→

η(γ)
−
(p)τx)

= η(γ)x(
→

η(γ′)
−
(p)) − η(γ′)x(

→

η(γ)
−
(p))

= [η(γ), η(γ′)]x(p)

where (∗) follows from the equality
→

η(γ)
−
(p)τx =

→

γ−(p ◦ τx) which descends from

(
→

η(γ)
−
(p)τx

)
(h) =

→

η(γ)
−
(p)(τx(h)) = η(γ)t(τx(h))(p ◦ Rτx(h))

= η(γ)t(h)(p ◦ Rτx(h)) = ηt(h)(γt(h))(p ◦ Rτx(h))
= γt(h)(p ◦ Rτx(h) ◦ τt(h)) = γt(h)(p ◦ τx ◦ Rh)

=
(
→

γ−(p ◦ τx)
)

(h).

With these structures, we get that η : Γ(F ) → Γ(E) is an isomorphism of Lie-Rinehart algebras, where
η = Γ(η) and η is fiberwise given by equation (99).

Lastly, applying the differentiation functor of §5.3 and using the natural transformation of equation (96)
together with the commutative diagram of equation (97), we obtain a commutative diagram of Lie-Rinehart
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algebras over A := C∞(G0)

Ders
R

(
VA(Γ(F ))◦, Aε

) L I (η) // Ders
R

(
VA(Γ(E))◦, Aε

)

Γ(F )
η

//

ΘΓ(F )

88

Θ′
Γ(F )

��

Γ(E)

ΘΓ(E)

88

Θ′
Γ(E)

��
Ders

R

(
VA(Γ(F ))•, Aε

) L (ζ̂)

GG

L I ′(η) // Ders
R

(
VA(Γ(E))•, Aε

)
,

L (ζ̂)

HH

(102)

whose horizontal arrows are isomorphisms of Lie-Rinehart algebras.

Remark A.10. In the case of Lie groups, the map Θ of the diagram (102) is injective. In fact this map is
injective for any finite-dimensional Lie algebra. Namely, taking a finite dimensional Lie k-algebra L, we
have, as in Proposition A.7, the map ΘL : L→ Derk (Uk(L)◦, kε) given by the evaluation X 7→ [ f 7→ f (X)]],
where Uk(L)◦ is the finite dual Hopf algebra of the universal enveloping algebra of L. Since, in light of
[Mo, p. 157], Uk(L)◦ is a dense in Uk(L)∗ (here the topology is the linear one), Uk(L) is a proper algebra
in the sense of [Ab, page 78], so ΘL is injective. Furthermore, in light of [Hoc2, Theorem 6.1], for k an
algebraically closed field of characteristic zero ΘL is bijective if and only if L = [L, L].

Now if G is a compact Lie group, then G � CAlgR(RR(G),R), the character group of the commu-
tative Hopf real algebra RR(G) of all representative smooth functions on G. The Lie algebra Lie(G) =

L (RR(G)) = DerR(RR(G),Rε) of G is then identified with the Lie algebra of the primitive elements
Lie(G) � Prim(RR(G)◦) [Ab, §4, Section 3] of the finite dual RR(G)◦. Denote by τ : UR(Lie(G)) ↪→ RR(G)◦

the canonical monomorphism of co-commutative Hopf algebras. Then, we know [Mi2] that the map

ˆ(−) : RR(G) −→ (RR(G)◦)∗,
(
% 7−→ [ f 7→ f (%)

)
factors through the inclusion RR(G)◦◦ ⊆ (RR(G)◦)∗. Therefore, the map ΘLie(G) is a split monomorphism
of Lie algebras, namely, with splitting map L (τ◦ ˆ(−)).

In the case of compact Lie groupoid (i.e., G0 is a compact smooth manifold and each of the isotropy Lie
groups of G is compact), it would be interesting to study the injectivity of the map Θ either in the left hand
or right hand triangle in diagram (102).

Appendix B. The factorization of the anchor map of the Lie-Rinehart algebra of a split Hopf algebroid

In this last appendix we show how the anti-homomorphism of Lie algebras Lie(G)(k) → Derk(Ok(X))
of [DG, II, §4, no4, Proposition 4.4, page 212] becomes the map of equation (71). We also give some
specific cases of Example 5.15.

Recall that we have a commutative Hopf algebra H such that G = CAlgk (H,−) and a left H-comodule
commutative algebra A such that X = CAlgk (A,−). The coaction ρ : A → H ⊗ A induces on X a G-
operation CAlgk(H,R) × CAlgk(A,R)→ CAlgk(A,R), in the sense of [DG, II, §1, no3, Définition 3.1, page
160], which is an instance of

µB : CAlgk(H,R) × CAlgk(A, B)→ CAlgk(A, B) : ( f , g) 7→
[
a 7→ f (a−1)g(a0)

]
for R ∈ CAlgk and every R-algebra B. Define

0R : CAlgk(H,R)→ AutR(X ⊗ R) : f 7→ 0R( f )

where 0R( f )B : CAlgk(A, B) → CAlgk(A, B) : g 7→ µB( f , g) and where the functor X ⊗ R : CAlgR → Sets
is simply the restriction of X to CAlgR. The group AutR (X ⊗ R) is the group of natural isomorphisms in
Nat(X ⊗ R,X ⊗ R).

Define the functor Aut (X) : CAlgk → Sets by setting Aut (X) (R) := AutR (X ⊗ R) and for every
morphism φ : S → R set Aut (X) (φ) : Aut (X) (S ) → Aut (X) (R) sending every natural transformation
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(τB)B∈ModS to the natural transformation (τB)B∈ModR . Note that for every f ∈ CAlgk(H, S ) and every g ∈
CAlgk(A, B) with B ∈ ModR, for all a ∈ A we have that

(0S ( f )B(g)) (a) = f (a−1) · g(a0) = ξ( f (a−1))g(a0) = (0R(ξ ◦ f )B(g)) (a).

As a consequence, 0S ( f )B = 0R(ξ ◦ f )B for all B ∈ ModR, which means that 0R is natural in R and hence
we can write 0 : G → Aut (X).

Now, recall that for every R-algebra B we have an isomorphism CAlgk(A, B) � CAlgR(A ⊗ R, B).
As a consequence, AutR (X ⊗ R) � AutR

(
CAlgR(A ⊗ R,−)

)
and, in view of the Yoneda isomorphism,

AutR
(
CAlgR(A ⊗ R,−)

)
� AutR(A ⊗ R)op. Summing up, we have a group isomorphism

YR : AutR(X ⊗ R)→ AutR(A ⊗ R)op.

The composition of 0R with YR yields a natural transformation

CAlgk(H,R)
0R
−→ Aut (X) (R) = AutR (X ⊗ R)

YR
−→ AutR(A ⊗ R)op (103)

acting, from the left-most member to the right-most, as

f 7−→
[
(a ⊗ r) 7→ (a0 ⊗ f (a−1)r)

]
(see [DG, II, §1, no2, 2.7, page 153]). Set Ok := CAlgk(k[T ],−) : CAlgk → Sets and Ok(X) := Nat (X,Ok)
as in [DG, I, §1, no6, 6.1, page 26]. In view of Yoneda Lemma again, Ok(X) � A. Therefore, Derk(Ok(X)) �
Derk(A).

If we write k(ε) := k[T ]/〈T 2〉, where ε := T + 〈T 2〉, for the k-algebra of dual numbers, then Lie(G)(k) ⊆
CAlgk(H, k(ε)) as defined in [DG, II, §4, no1, 1.2, page 200] is the kernel of the group homomorphism
CAlgk(H, k(ε))→ CAlgk(H, k) given by composition with p1 : k(ε)→ k; [(a + bε) 7→ a], i.e.,

Lie(G)(k) =
{
f : H → k(ε) | p1 ◦ f = ε

}
.

Set p2 : k(ε)→ k; [(a + bε) 7→ b]. Clearly,

Derk(H, kε) oo
� // Lie(G)(k)

δ
� // [(ε + δε) : x 7→ (ε(x) + δ(x)ε)]

p2 ◦ f f�oo

The functor 0 : G → Aut(X) gives Lie(0)(k) : Lie(G)(k) → Lie(Aut(X))(k) by restriction of the
morphism 0k(ε) : G(k(ε))→ Aut(X)(k(ε)). Note that

Yk(ε) ◦ 0k(ε) : CAlgk (H, k(ε)) −→ Autk(ε) (A(ε))op ;
(

f 7−→
[
(a + bε) 7→ (a0 f (a−1) + b0 f (b−1)ε)

] )
.

Now, for every φ ∈ Lie (Aut(X)) (k), F ∈ Ok(X) and S ∈ CAlgk one may consider

DXφ (F )S :=
(
X(S )

X(i1)
−→ X(S (ε))

φS (ε)
−→ X(S (ε))

FS (ε)
−→ Ok(S (ε))

Ok(p2)
−→ Ok(S )

)
(104)

where i1 : S → S (ε); [s 7→ s]. Here we may apply φS (ε) because φ ∈ Lie (Aut(X)) (k) ⊆ Aut(X)(k(ε)) =

Autk(ε)(X ⊗ k(ε)) and S (ε) is a k(ε)-algebra. This defines a map

DXφ : Ok(X)→ Ok(X) (105)

which turns out to be a k-derivation of the algebra Ok(X) (cf. [DG, II, §4, no2, 2.4, page 203]). By
considering the composition

$ :=
(
Derk(H, kε)

�
→ Lie(G)(k)

Lie(0)(k)
−→ Lie (Aut(X)) (k)

DX−
−→ Derk(Ok(X))

�
→ Derk(A)

)
(106)

one gets the canonical morphism claimed at the beginning of this subsection. Let us compute explicitly
how this composition acts on a δ ∈ Derk(H, kε). The first isomorphism associates to δ the map ε + δε ∈
Lie(G)(k). Set φ := Lie(0)(k) (ε + δε) = 0k(ε) (ε + δε) ∈ Lie (Aut(X)) (k). Then DX− maps φ to DXφ ∈
Derk(Ok(X)). The last isomorphism in (106) sendsDXφ to the composition

A � // Ok(X)
DXφ // Ok(X) � // A

a � // F a = CAlgk (eva,−) � // DXφ (F a) � //
(
DXφ (F a)A(idA)

)
(T ).
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Here eva : k[T ]→ A is the unique algebra map sending T to a. Now, let us compute explicitly(
DXφ (F a)A(idA)

)
(T )

(104)
=

[(
Ok(p2) ◦ F a

A(ε) ◦ φA(ε) ◦ X(i1)
)

(idA)
]

(T )

=
[(
Ok(p2) ◦ F a

A(ε) ◦ φA(ε)

)
(i1)

]
(T ) =

[(
Ok(p2) ◦ F a

A(ε)

) (
0k(ε) (ε + δε)A(ε) (i1)

)]
(T )

=
[(
Ok(p2) ◦ F a

A(ε)

) (
µA(ε)(ε + δε, i1)

)]
(T ) =

[
Ok(p2)

(
µA(ε)(ε + δε, i1) ◦ eva

)]
(T )

=
(
p2 ◦ µA(ε)(ε + δε, i1) ◦ eva

)
(T ) = p2

(
µA(ε)(ε + δε, i1)(a)

)
= p2 ((ε + δε)(a−1)i1(a0))

= p2 (ε(a−1)a0 + εδ(a−1)a0) = δ(a−1)a0

Summing up, the canonical morphism is given by

$ : Derk(H, kε) −→ Derk(A) : δ 7−→ [a 7→ δ(a−1)a0] .

Thus $ = ω ◦ τ as in (71).
Now, let us give some examples of the factorization introduced in Example 5.15.

Example B.1. If A = k, then Derk t(H , AεH
) = Derk(H, kε) and Derk(A) = 0, whence ω = 0 = $ and τ is

the identity.

Example B.2. Take A to be the Hopf algebra H itself with comodule structure given by ∆ (this would
correspond to the action of G on itself by left multiplication). In this case,H = H ⊗ H with

ηH (x ⊗ y) = x1 ⊗ x2y, ∆H (x ⊗ y) = (x1 ⊗ 1) ⊗H (x2 ⊗ y),

εH (x ⊗ y) = ε(x)y, S(x ⊗ y) = S (x)y1 ⊗ y2

and $ satisfies $(δ) : x 7→ δ(x1)x2 for every δ ∈ Derk(H, k), x ∈ H. Notice that the anchor map

ω : Derk t(H , HεH
) // Derk(H),

δ
� // [x 7→ δ(x1 ⊗ x2) = δ(x1 ⊗ 1)x2

]
admits an inverse, explicitly given by

ω−1 : Derk(H) // Derk t(H , HεH
)

d � // [x ⊗ y 7→ d(x1)S (x2)y
]
,

whence the factorization of the morphism $ is trivial.
We recall(20) that in this case $ induces an anti-isomorphism of Lie algebras between Derk(H, kε) and

the Lie subalgebra of Derk(H) formed by the right-invariant derivations, where a linear operator T : H → H
is said to be right-invariant if it satisfies ∆ ◦ T = (T ⊗ H) ◦ ∆ (from a geometric point of view, e.g. when
H is the Hopf algebra of an affine algebraic group G, this encodes the fact that T commutes with all the
right-translation operators Tg : H → H given by

(
Tg( f )

)
(h) = f (hg) for all g, h ∈ G. See e.g. [Wa, §12.1]).

It is easy to check that for every δ ∈ Derk(H, kε), $(δ) is right-invariant. Conversely, if d ∈ Derk(H) is
right invariant then d(x)1 ⊗ d(x)2 = d(x1) ⊗ x2 and hence d(x) = εd(x1)x2 = $(εd)(x) for every x ∈ H.

Example B.3. Consider the obvious action of GL2(C) on C2. This makes of the coordinate ring A :=
C[X1, X2] of C2 a left comodule algebra over the coordinate ring H := C[Zi, j, det(Z)−1] of GL2(C), where
det(Z) = Z1,1Z2,2 − Z1,2Z2,1. Explicitly, the Hopf algebra structure on H is given by

∆(Z1,1) = Z1,1 ⊗ Z1,1 + Z1,2 ⊗ Z2,1, ∆(Z1,2) = Z1,1 ⊗ Z1,2 + Z1,2 ⊗ Z2,2, S (Z1,1) =
Z2,2

det(Z)
, S (Z1,2) = −

Z1,2

det(Z)
,

∆(Z2,1) = Z2,1 ⊗ Z1,1 + Z2,2 ⊗ Z2,1, ∆(Z2,2) = Z2,1 ⊗ Z1,2 + Z2,2 ⊗ Z2,2, S (Z2,1) = −
Z2,1

det(Z)
, S (Z2,2) =

Z1,1

det(Z)
,

and ε(Zi, j) = δi, j for every i, j ∈ {1, 2}, while the comodule structure on A is given by

ρ(X1) = Z1,1 ⊗ X1 + Z1,2 ⊗ X2, ρ(X2) = Z2,1 ⊗ X1 + Z2,2 ⊗ X2.

For every δ ∈ DerC(H, Cε), the morphism $ satisfies

$(δ)(X1) = δ(Z1,1)X1 + δ(Z1,2)X2, $(δ)(X2) = δ(Z2,1)X1 + δ(Z2,2)X2 (107)

(20) See [DG, II, §4, no4, Proposition 4.6, page 214] and, for example, [Ab, Corollary 4.3.2] for the left-hand analogue.
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and it factors through τ(δ) : Zi, j ⊗ Xk 7→ δ(Zi, j)Xk ∈ Derk t(H ⊗ A, AεH⊗A ), for k = 1, 2.
Notice that from Equation (107) we deduce that $ is injective and that $(δ) is uniquely determined by

the 2×2 complex matrix M(δ) :=
(
mi, j

)
with mi, j = δ(Zi, j) for all i, j ∈ {1, 2}. Note that the latter assignment

yields a bijective correspondence
M : DerC(H, Cε)→ Mat2(C)

which satisfies

M([δ, δ′]) = ([δ, δ′](Zi, j)) = (δ(Zi, j)) · (δ′(Zi, j)) − (δ′(Zi, j)) · (δ(Zi, j)) = [M(δ),M(δ′)].

Thus M is the well-known identification between the Lie algebra of the algebraic group GL2(C) and the
general linear algebra gl2(C) = Mat2(C).
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