Approximation of the Hilbert Transform
on the Real Line Using Freud Weights

Incoronata Notarangelo

Dedicated to Professor Gradimir V. Milovanovi¢ on his 60th birthday

1 Introduction

Let us consider the Cauchy principal value integral

H(G,y) :=/ G0 gy — lim/ O 4y
RX—Y e—0t Jx—y|>e X—Y
where y € R. If the limit exists, we call J{(G) the Hilbert transform of the
function G. It is well known that I is a bounded operator in L?(R) for 1 < p < oo,
while it is, in general, unbounded in the space of continuous functions. Nevertheless,
if the function G satisfies the Dini-type condition

/lwdt<m
o t ’

where @ is its usual modulus of smoothness with step ¢, then its Hilbert transform
H(G) is continuous on R (see [12, p. 218]).

The numerical approximation of the Hilbert transform on R has interested several
authors (see, for instance, [1,3-5, 13, 14,23-25]). To be more precise, to this end
the zeros of Hermite and Markov—Sonin polynomials have been used in [4] and [5],
respectively.
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In this paper, we want to compute integrals of the form

:H:(fw’y) = R%w}(jx)dxy

where w(x) = e~ ™%, a > 1, is a Freud weight. Concerning the study of the smooth-
ness of the function H(fw), we refer the reader to [19]. We remark that integrals
of this form appear in Cauchy singular integral equations, and the numerical treat-
ment of these equations usually requires the approximation of Hilbert transforms
(see [19)).

For this purpose, we suggest some simple quadrature rules obtained from a
Gauss-type formula based on the zeros of Freud polynomials. These rules, in some
aspects, are different from those used in [4,5]. We will consider two different cases:
the first when y is sufficiently small, and the second otherwise. The main effort in
this paper will be to prove the stability and the convergence of the proposed rules.

The paper is organized as follows. In Sect.2, we recall some basic facts. In
Sect. 3, we introduce the quadrature rules and state our main results. In Sect. 4, some
numerical examples are described. In Sect. 5, we prove our main results. Finally, the
Appendix deals with the computation of the Hilbert transform of a Freud weight.

2 Preliminary Results and Notations

In the sequel, C will stand for a positive constant that can assume different values in
each formula, and we shall write C # C(a, b, ...) when C is independent of a, b, ... ..
Furthermore, A ~ B will mean that if A and B are positive quantities depending
on some parameters, then there exists a positive constant C independent of these
parameters such that (A/B)*! < C.

2.1 Function Spaces

Let us consider the weight function u defined by
ulr)=(1+pPe ™, p>0, a>1,

for x € R.
We denote by C, the following set of continuous functions,

G.={recm®: im rwue o},
equipped with the norm

| full := [|.fulloo = sup | £ (x)u(x)] -

xeR
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In the sequel, we will write
|| fullz = sup | f(x)u(x)]
x€E

for any E C R. We note that the Weierstrass theorem implies the limit conditions in
the definition of C,,.
Subspaces of C, are the Sobolev spaces, defined by

Wow)={feC: 70 e ACR), Ifull <=}, rezt,

where AC(R) denotes the set of all functions which are absolutely continuous on
every closed subset of R. We equip these spaces with the norm

1fllw, ) = N2l 117

For any f € C,, we consider the following main part of the r-th modulus of
smoothness (see [6])

@ (f,1)u= sup |8 (Hully,, . rez,

0<h<t

where J,, = [—Arh_l/(“‘l),Arh‘l/(“‘l)] , A > 0is a constant, and

Ahf(x)=f(x+§) —f( —g) A =A(A).

The r-th modulus of smoothness is given by

O (F,0u =t it N =Pl a4, 8 10— Pl

with step ¢ < 1o (o sufficiently small) and ¢* :=¢~1/(%—1),
This modulus of smoothness is equivalent to the following K-functional

r _ _ (| o(7)
K(ft)a=inf {110 =g)ull+gul },

8EW,(u

namely @"(f,?), ~ K(f,t"),. It follows that

@ (f,)u < C1"[|f7u (1)
for any f € W, (u), with C # C(f,¢).

Let us denote by PP, the set of all algebraic polynomials of degree at most m
and by Ey,(f), = infpep,, ||(f — P)u|| the error of best polynomial approximation of
f € C,. The following Jackson and Stechkin-type inequalities hold true (see [6]):

En(fla<Co’ (£,52) | r<m, @)

)
u
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o (r.22), e (%) B (£) B0

m7 =1 \%

where f € Cy, @y, := a,(u) ~ m!/® is the Mhaskar—-Rahmanov—Saff (M—R—S) num-
ber related to the weight u; in both cases, C is a positive constant independent of f
and m, and | a| stands for the largest integer smaller than or equal to a € R™.

An estimate, weaker than (2), for the error of best polynomial approximation is
given by

am/m QF "
En(fusc [ @

with C # C(m, f).
By means of the modulus of smoothness, we can define the Zygmund spaces

"(f,t
Zs(u) = {fGCu: supw < oo, r>s}, seRY,
>0 t
with the norm
o' (f,t
Al = I ]+ sup 20
>0 t

We remark that, by inequalities (4) and (3), sup,.qQ"(f,#)ut™* < oo implies
SUp,~o @ (f,#)ut™® < oo. Therefore, in the definition of the Zygmund space,
®"(f,t)s can be replaced by Q'(f,1),,.

Finally, in the sequel we will write @(f,t), and Q(f,t), in place of ®!(f,¢), and
Ql (f,t)u-

2.2 Orthonormal Polynomials and Gaussian Rule

Let us consider the Freud weight w(x) = e M a>1,xeR, and its related M-R-S
number a,,, given by (see for instance [15])

_ 2r l/aml/(x
oB((a+1)/2,1/2) ’

am = am(w)

where B is the beta function.

Let {pm(w)},,cn be the corresponding sequence of orthonormal polynomials
with positive leading coefficient and degree m. We denote by xj := xp 4, 1 <k <
|m/2], the positive zeros of p,,(w) and by x_ := X,, _x = —X;x the negative ones,
both ordered increasingly. If m is odd then x,, o0 = 0 is a zero of p,,(w). These zeros
satisfy (see for instance [16])

—am(w) <Xm,—my2] < " <Xm1 <Xm2 < <Xp|m/2] < am(w).
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For a fixed 0 € (0,1), we define an index j = j(m) such that

xj= ISknsn'Lg/zJ {xx: x> Oapu(w)}. ®)

Hence, letting Axy := AXp k = Xmp+1 — Xmk. kK € {—|m/2],...,|m/2| — 1}, we have
(see [18])

m

a .
Axpp~—, [k <. (6)
m

The following proposition will be useful in the sequel.

Proposition 1. Let xp,11 4, |k| < [(m+1)/2], be the zeros of pm+1(W). If Xm+1 k+1
Xmk € (—O0am, 0an), with a fixed 6 € (0,1), we have

am
Xm4+-1,k+1 — Xmk ™~ ; )

where the constants in “~” are independent of m and k.

Finally, we will need the following “truncated” Gaussian quadrature rule,

/R FEWEAx =T Aok (9) f Comi) + Pu() %

lk|<j

where p,,(f) is the remainder term, A := A, x(w) are the coefficients of the usual
Gaussian rule and x,, ; are the zeros of p,,(w). An estimate of the remainder term is
given by the following proposition, proved in [18].

Proposition 2. Let f € C,, where u(x) = (1+ |x|)Be M", o0 > 1. If B > 1, then there
holds

Iom ()| < C{Em(f)u+e 2" full},

where M = | (0/(0+1))*m/2| ~m, C and A are positive constants independent
ofmand f.

3 Main Results

To compute the Hilbert transform

sty = [ L2 ax,

where the integral is understood in the Cauchy principal value sense, we use the
well-known decomposition

simy) = [ L0

w(@)dv+£0) [ v gy ®)

RX—Y
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We assume that the second integral can be calculated with the required precision (in
the Appendix, we will give some examples of how this can be done). The other is
an ordinary improper integral, and so we apply a quadrature rule to compute it. The
presence of the weight w in the first integral in (8) leads us to use the Gauss-type
rule (7). Hence, we get

3(w) = 3 s IO ) [0 g 1,)

|k|<j Xmk —Y xX=y
(xmk)
|k|2<4])'mk x’"k_y
wx) o Am(W)
+£0)| [ 2 dequ?k_y]Jrem(f,y) ©
=+ 3 k00 L 4 f0)8,0) +en(123) (10)
k< j Ym.k
=: m(f>y)+em(f>y)a

en(f,y) being the remainder term, and assuming x,, x # y, |k| < j.
Since the quantities x,, x —y could be “too small”, the rule H,(f,y) is essentially
unstable. Nevertheless, it can be productively used, making some “careful choices”.
First of all, we observe that if, for fixed y and m, there holds |y| > x,, j + 1, then
(9) can be replaced by the simpler formula

fw) S Ao f( mk;erm(f, ), a1

R X—Yy k|<j xm,k
where the remainder term p,,(f,y) can be estimated using the following theorem.

Theorem 1. Assume |y| > x,, j + 1. For any f € W,(u), with B > 1, and for a suffi-
ciently large m (say, m > my), we have

Pn(£3)] <€ (52) I fllwoays (12)

where M = |(6/(0+1))*m/2| ~ m and C is a positive constant independent of
mand f.

Now we observe that, for every fixed y and for m > mgy (mo = my(y, 0)), we
have |y| < x, ;. Therefore, let us consider the rule H,,(f,y) under the assumption
|y| < Xm,j. We remark that the term in (9) producing instability is the one related
to the knot x,, 4 closest to y, i.e., Ay, 4(W)/(Xm,q —y). But for y € [—xp, j, x¥m ;] there

holds
AndW)  am Wtma)

Xmd =Y M Xpmd—Y
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Thus, for a fixed y € [—x, jrXm, j], we are going to construct a sequence of integers
{m*} C N, and then a sequence {H(f,y) }m*eN, such that

a
|xm*,d —y| ~ o .
m

This is possible by virtue of Proposition 1, and our choice is determined as follows.

Assume that x,, 4 <y < Xp 441 for some d € {—j,...,j— 1}. Because of the
interlacing properties of the zeros of p,,+1(w) with those of p,,(w), two cases are
possible:

@ xpg <y <Xmira+1s 0 Xpp1a41 Sy <Xmdti-

In the case (a), if y < (X4 +Xm+1,4+1)/2, then we choose m* = m+1 and we use
the quadrature rule H,,11(f,y), otherwise we choose m* = m and we use H,(f,y).
We make a similar choice in the case (b).

Thus, for every fixed y € [—x,j,Xm,j| We can define a sequence {Hp«(f,y)},
m* € {m,m+ 1}. The next theorem proves the stability and the convergence of this
sequence.

Theorem 2. Let y € [—Xy* j,Xm+ ;] be fixed, with j defined by (5). For any f € C,,
with B > 1, we have

|Hw (f,¥)| < C|| ful|logm. (13)
Moreover; if f is such that

1 7 t

/ AU )”dt<oo, rezt,
0 t
there holds
s @’ (f,1),
en (£,3)| C{logm [ L2 Dha v . a4

In both inequalities, C and A are positive constants independent of m, y and f, while
M = [(9/(9 + 1))am/2J ~ m.

In particular, by Theorem 2, for m > mg and for B > 1, if f € Z;(u), s > 0, we
have

am\*
lew (£:3)] < Clogm (221 £llz, 0

m

while if f € W, (u) we get

e (£,9)] < Clogm ()"l o, (15)

using inequality (1).

Thus, Theorem 2 shows that the rule H,(f,y) is stable and its remainder term
converges with the same order of the best polynomial approximation, apart from an
extra factor logm.
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From a numerical point of view, we remark that we have to compute only 2 (or
2j+ 1 if m* is odd) Christoffel numbers, zeros of p,+(w), and values of the func-
tion f. Moreover, if o = 2, then {p,+ (W) }men is the sequence of Hermite polyno-
mials, that is the simplest case, and one can use the routine “gaussq” (see [10, 11])
or the routines “recur” and “gauss” (see [9]). In the case & # 2, we can use the
Mathematica Package “OrthogonalPolynomials” (see [2]).

Remark 1. We can use the same method to evaluate
f(x)ws(x
fH(fvva,y)=/ JEws () )dx,
R X—=Yy

where ws(x) =e 9% § > 0.
In fact, since { p(Ws, %) bmen = {8/ C% p,,(w, 8'/%x)} uen, We have

i _xm7k(w) ﬂ
Pulws, ) =0 & 5= K< |F,

and the same relation holds for the Christoffel numbers.

4 Numerical Examples

In this section, we show some approximate values for the integral H(fw,y), y € R,
obtained by using the algorithms described in Sect. 3.

Since the exact value of the integral is not known, in all the tables we report the
digits which are correct according to the results obtained for m = 400.

Moreover, J = J(m) will denote the number of the points that we use in the
quadrature rules (9) and (11). To be more precise, J will be equal to 2 j, with j given
by (5), if m* is even, and it will be equal to 2 + 1 otherwise.

All the computations have been done in double-precision arithmetic (ca. 16 dec-
imal digits).

Example 1. We want to evaluate the following integral

/ L 1|4e_|"|

Since the function f(x) = |x— 1|* € Wa(u), with u(x) = (1 + |x|)Pe " and B > 1,
the theoretical error behaves like m=%/3logm by using (15) and a,, ~ m'/3. In
Table 1, we approximate the above integral by using quadrature rules (9) and (11),
choosing 6 = 3/5 in (5). We can see that the numerical results agree with the theo-
retical ones.
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Table 1 Approximate values obtained for 6 = 3/5

m J y=1 J y=10

16 10 -3.7 10 —0.5

32 21 —3.7859 20 —0.592

64 42 —3.785959023 42 —0.592611694

128 83 —3.78595902313849 82 —0.592611694730986

Example 2. Let us consider the integral

4
coshxe™
[otaety,
R X—Y

Since the function f(x) = coshx = (e* +e™)/2 is an analytic function, we obtain
very accurate results. In Table 2, we report the results obtained for 6 = 3/5.

We remark that one obtains the same approximations for m = 384 and 6 = 3/5
and for m = 32 and 0 = 0.95. Therefore, the parameter 0 influences the numerical
results, notably for very smooth functions and small values of m, but the appropriate
choice of this parameter is not yet totally clear.

Table 2 Approximate values obtained for 6 =3/5

m J y=0.5 J y=-—6

16 11 —1.16 10 0.3

32 18 —1.167 18 0.360

64 39 —1.167487 38 0.36052

128 75 —1.16748708017 76 0.36052114077

256 150 —1.16748708017153 150 0.360521140776152
384 225 —1.167487080171531 224 0.360521140776152

Example 3. Now we want to evaluate the integral

e_|x|3
/ 2y7 dx
R (1+2%)7(x—y)
As in Example 2, the function f(x) = (14 x2)~7 is very smooth and one could

observe the influence of the parameter 0 in the numerical results. In Table 3, we
have chosen 6 = 1/2.

Example 4. Finally, we consider the integral

dx [ e hP
/R(l-l—xz)7(x—y)_/R x—y d.
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Table 3 Approximate values obtained for 6 = 1/2

m J y=0.2 J y=17

16 9 —1.553 8 —9.72E-2

32 17 —1.553 16 —9.7383 E -2

64 35 —1.5536242 34 —9.738383637T E —2

128 68 —1.5536242711590 68 —9.7383836377130 E —2
256 135 —1.55362427115905 134 —9.7383836377130 E —2
384 201 —1.553624271159052 202 —9.738383637713081 E —2

Since f(x) = (1 —|—;\cz)_7e|"|3 € Ws(u), with u(x) = (1+ |x|)2e_|x|3, the theoretical
error behaves like m~*logm. Note that || f®u| = ©(10°), and this influences in a
negative way the numerical results in Table 4, obtained for 6 = 1/2.

Table 4 Approximate values obtained for 6 = 1/2

m J y=02 J y=17

16 9 -15 8 —0.101

32 17 —~1.519 16 —0.1014

64 35 —1.5192 34 —0.10143

128 68 ~1.5192 68 —0.101431

256 135 —1.51924 134 —0.1014318

384 201 —1.5192406 202 —~0.1014318
5 Proofs

First of all, we recall a well-known inequality (see [16]). Let 1 < p < o and let
u(x) = (14 |x|)Be~M", with oc > 1, B > 0. For every P € P,,, and 6 > 0, there holds

1Pu (s, < Ce || Pullp, (16)

where J,, = {x €R: |x| > (14 0)an(u)}, an(u) ~ m'/* ~ ap/2(w), C and A are
positive constants independent of m and P.

By (16), it easily follows that (see for instance [21]) the inequality

1 fulls, < CLEn(f)u+e™"| full} (17)
holds for any f € C,.

Proof of Proposition 1. An analog of this proposition was proved in [4] (Lemma 2.1)
for Hermite zeros. Similar arguments apply in the case of Freud zeros, taking into
account (6). Therefore, we omit the proof. 0O
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We recall the Posse—Markov—StleltJes inequalities (see [8], p. 33 and [17]). If a
function g is such that g®)(x) >0, k=0,1,...,2m—1, m > 1, for x € (—eo,x,],
d=—|m/2|+1,...,|m/2], then we have

d—1 X d
S kg < [Ce@wies X Mgl (18)
ke=—|m/2] —e ke=—|m/2]

On the other hand, if (—1)*g®) (x) >0,k=0,1,...,2m—1,m > 1, for x € [xy, +o),
d=—|m/2|,...,|m/2] — 1, then we have

[m/2] oo lm/2]
Y Mgl) < [ gwdr< X Agxn). (19

k=d+1 *d k=d

Proposition 3. Let A, (y) and j be given by (10) and (5), respectively. Let us assume
that |y| < x; and ming |x; —y| > can/m, c # c(m). Then we have

[Am(y)| < Cw(y)logm, (20)
where C is a positive constant independent of m and y.

Proof. Letxg_1 <x4 <y<x4.1, |d| < j. We can write

up>

|k|>j

Ay

Xk —Y

A
:H:(W,y) - z
k| <[m/2) ¥k~

|Am(¥)] < =: |B1|+|B]. (21)

We can decompose the integral in B; as

feSe={ L [ [

Using the Posse-Markov—Stieltjes inequalities (18) for the first integral, with g(x) =
1/(y —x), and (19) for the last integral, with g(x) = 1/(x—y), we get

/x"“ W(x)dx_ Aav1 A SB1S/Xd+1 W(x)dx— Aacr Mg

-1 XY Xd+1—Y Xd—)y a-1 XY Xd—1—Y xd_y.
It follows that
Xd+1 W A A
|B1| < / dx| —|—max{ -1 , a+l } . (22)
X4—1 xX—y Xd—Y Xd—1—Y Xd+1—Y

Since y —xg ~ am/m ~ xg.1 — x4, |d| < j, we have (see for instance [18])

)vd -~ Axd w(xd)

<C ~ 23
|-xd_y| |xd_y| = w(xd) W(y)a ( )
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using
=y SCZ = W)~ wi). 24)
Analogously, we obtain
A ey, 25)
[xa+1 — Y|

On the other hand, by the mean value theorem, we have

Xd+1 Xd+1  dx
[ <) =
xXg—1 XY X4—1 XY

x —_—
log d+1—Y
y—Xd-1

xd“ w(x) —w(y)
X4—1 xX—=Yy

<a [ a1 IWE) drw )

Xd—1

dxl +w(y

,  (26)

for some &, € (x,y). Since x4,1 —y ~y—X4_1, by (24) and (6), the right-hand side
of (26) is equivalent to

[ @ +w6) ~wo) @)

Xd—1
Combining (23), (25)—(27) in (22), we get
|B1| < Cw(y). (28)
Now let us consider the term B,. Since w(x;) < w(y) for |k| > j, we have
Aka
-yl yl =Cwh) 2

iy |

B <C Y, < Cw(y)logm. (29)

|k|> j
Combining (28) and (29) in (21), we obtain (20). O
Proof of Theorem 1. We will consider only the case f € W;(u), since the case r > 2

can be proved by iteration.
Given ¥ € C*(R) an arbitrary nondecreasing function such that

0, x<0,
‘I’(x)={

1, x>1,

and x; defined by (5), we set
—Xj 17 X| 2 Xjt+1,
‘I’j(x)=‘1’<|x| x])z x| > x4
ij 07 |X| ij-
Then we can write

f@) _ =¥ B0 g o
xX—y xX—y x—y |
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and so )
RxTydxz/RFl(x)dx+/RF2(x)dx.

Using the truncated Gaussian rule (7), we obtain

Setting
pulf,3) = pu(F) + [ Fa(9)d, (30)
we have

S gy el

RX—Y k[<j Xk —Y

+ pm(f,y) -

Let us consider the first term on the right of (30). By Proposition 2, since 8 > 1,
we get

lpm(F1)| < C{EM(Fl)u-I-e_AmHFlu”}
am —Am au
< c{ SHIFull +e A\ full} < €2 fllw s a1

by Jackson’s inequality (2) and (1). In fact for m > mg and |x| < x;;1, we have
|x—y| >1—Ax; > 1/2 and then | Fju|| < 2||fu||. Moreover, we can write

VI 70 P I (SO
xX—y xX—=y (x—y)

= :G1(x) + G2(x) + G3(x). (32)
There holds ful )
ul(x

|Gl = |x|SSIiI]:')+1 (x—y)? < 4l ful G

and .
16l < sup LA <oy, (34)

x| <xji1 |x - yl

since |y| > x;+ 1 and [x—y| > 1 — Ax; > 1/2. Furthermore, using inequalities (17),
(2) and (1), we get

| ful|(x) <c sup |ful(x)

Ax]lx_y| N mxj§|x|§xj+1

|Gul = sup

X <|x|<xjy1

< {2 g+ e ul } <Cllmon (39)

m

since M ~ m. Therefore, by (33)—(35) and (32), we obtain (31).
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To handle the term in (30) containing F;, we assume for simplicity y > 0, since
the other case is similar. We have

/F2 w(x)dx = {/+°° /_x’} xw(x)dx=:11+12. (36)

Using (17) we get
dx

I </_xj dx< s /—xj
= WPl ] G+
< B+l <P . o7

f (X)W(X)

since B >1and M = [(6/(6+1))%m/2|.
However, setting € = a,,/m, we have

Ilz{/y £+/y . w} i) (xy)w( Jax = h+h+ds.  38)

The integrals J; and J3 are nonsingular and using the same arguments as in the
estimate of I,, we obtain

a
1l + sl < €S2l (39)

To estimate J,, we can write

y+£f(x
| = / —dx|
y-¢ X—)Y
Efx) - f) yre o wx) —w(y)
<o) [ TP e | [ e
=: A1 +A,. (40)

Using the mean value theorem, with £, &, € (y — €,y + €), and by (24), since 8 > 1,
we have

A1 < 2ewO)IF ()] < C 2 ful @)

and

y+E€

A <IE) [ WElds

e
~ U@ [ ~aw) = 17| Iwir—e)~wir+ )
< C|| fullp) 4oy < CLEM(F)u €| ful }
< 21 llwi oy “2)
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by (17). Combining (41) and (42) in (40), we get
apm
2l < €SP Fllwa -
It follows that recalling (39) and (38),
am
|4 SCﬁ”f”Wl(u)- (43)

By (43), (37), and (36) we obtain

[ Pow(a) x| < €5 (44)

Finally, combining (31) and (44) in (30), we get (12). O

To prove Theorem 2 we need the following lemmas.

Lemma 1. Letw(x) =e~ ™%, a0 > 1, and u(x) = (1 + |x|)Pw(x), B > 0. For 6 € (0,1)
and |y| < Oay,, we have

F)w(x) dx‘ <c {llfu||logm—|— /01 Q(];,t)u dt}, (45)

R X—Yy
with C a constant independent of f, m and y.

Proof. We assume y > 0, since the other case can be treated in a similar way.
Letting € = a,,/m, we can write

B (e L=

= h+bL+L+11+1s. (46)
Since 8 > 0, we get
Fee dx dx
|Is| < || full < C| ful ———= <C|full @7
2am (X —y)(1+|x I)ﬁ 2am %(1+|x[)P
and also
|| < C| ful. (43)

Moreover, we have

2am —
<l [ 2 <Clyulog ™= <cClruogm.  @9)

mdx
y+ -y

Analogously, we obtain
|| < C||ful|logm. (50
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Now let us consider the term I5. We can write

[ Lo dx| [FLo )1,

—& X—=Yy t

|| =

Since w(y +1/2) < w(y) < u(y), we obtain

< LN gy [ O

<[ (f’)dt+llf I %dt 5D

As in the proof of Proposition 3, using the mean value theorem, (24) and (6), we
have

2 _|Aw(y)l 2 &7 w(&) o- o~
b nemme =k e vscf resciatse.

Combining (47)—(52) in (46) we get (45). O

Lemma 2. For any function f such that
Lo (f,t
/ —({’ )“dt<oo, re’Zt,
0

and with P € P, the polynomial of best approximation of f, we have

1 _ am/m
/ wdt < Clogm/ Mdt’ (53)
0 0

with C a positive constant independent of m, f and P.

Proof. By inequality (4), we have

/1 Q(f_Pat)u dr = /am/m Q(f_Pat)u dt-l- 1 Q(f_Rt)udt
0 t 0 t am/m t
am/m _
[y o
0

am/m _ am/m QF
g/ Mdt-l—Clogm/ Q(J:’t)udt.
0 0

By using the Jackson and Stechkin-type inequalities (2) and (3), and proceeding
as in the proof of Proposition 4.2 in [20], we obtain

[ OB o [
0 t - 0 t ’
from which we get (53). O
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Proof of Theorem 2. Let us first prove (13). By Proposition 3, with B > 1, we have

o (F)] < 17O Ao 0] +| 3 sl x(x”’*_")
< C|lfulllogm+ An a(w) ,%
S O )
+ A k(W) ’
|klg%€?éd g Xm*k — Y
(54)

=: C||ful|logm+|B1|+ |Ba|,

Xm+ 4 being a zero closest to y.

Since 8 > 1, by (23), we get
|B1| < CJ| ful|. (55

Moreover, we have
Axp
2 —— = < C||ful|logm. (56)

|k|<jk#d Xm*

Combining (55) and (56) in (54), we obtain (13).
Now, we prove (14). Letting P € Py, be the polynomial of best approximation of

f ofdeg:reeM =1(0/(6+1))*m/2| ~ m, we have
|em= (£, )| < lem= (f — Py)|+ |em (P,Y)]. (57)

Since the ordinary Gaussian rule is exact for polynomials of degree at most 2m — 1

we get

P(xpx k) — P(y
e (PY)] = | 3 e () PO ZP0)
k> m*k Y
< z)mk P(xmk) |2 A«mk(w)
=) 2 o=
=: |S1]+1S2- (58)
By (29), since 8 > 1, and by (16), we have
P * *
51/ <C Y Ay k' G )| Wi ) Ce=A||Pul|. (59)
T ekl
k1> k=Y
Moreover, we have
Axpys L eI bkl
S| < C||P . ,
52| < CllPull premepeizply X, P

|| > j
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Two cases are possible. If |y| < X+ j+1/2"/%, then

Mgt (Bam)® _ m
i

a—_X* IX<

Otherwise, by (16), we get
|1 Pue| (xerefi> )y < ||P“||{xeR:|x|zxm*J+1/z} < Ce™"||Pul.
In both cases, we obtain
[S2] < Ce™"||Pul. (60)
Combining (59) and (60) in (58), we have
lems (Py)| < Ce™ || Pull < C{Em(f)u+e "I ful }- (61)

On the other hand, using Proposition 3 and proceeding as in the proof of inequal-
ity (13), we have

lew (f = Py)| < |f () = PO)||Am= ()]
+ z M*,k(W) [f_P] (xm*,k) +
k<) Xm ke =Y

[f P](x)w
x—y

= Pl@w)

R x—y |

< CEy(f)ulogm+

!
By using Lemmas 1 and 2, we obtain

[f = Pl(x)w(x) dx| < C{EM(f) 10gm+/ f—Pt)dt}

R X—y
L)
L0\,

<C {EM(f)ulogm+logm/
0

Therefore, we have
m/M @ (f,1)u
e (£ =Rl < Clogm{Eu(r+ [ Tl @)
By inequalities (61), (62) and (57), using (4), we get (14). O
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Appendix

We want to show a simple case for computing

e_lxla

H(w,y) = /R ) dx

that is if o € N. We recall that for the case a = 2 one can use the error function (see

a>1,

I

for instance [22]).
Let us assume y > 0, since H(w) is an odd function. We can write

oo e—|x|a oo e—xa oo e—xa
= = =t

e X—Y 0o XxX—Yy 0o Xty
oo yl/0—1g—x

1 +oox1/oc—le—x
= — —dx—/ ——dx|. 63
[/0 xl/e—y o xl/e4y ] ©3)

o

By (63), if o is even, we get

e—x* 2 /2 +oo (1-2k) [ a—x
=2 3[R 64
| D (64)

while if o is odd we have

—[x* 1 &
€

dx= — k—1
A 22

too  (1-k) /0t —x
/ X €
X—y =1 0

x—y*

_ oo x(l_k)/ae_x
(1) 1/0 e | 65)

The Cauchy principal value integrals in (64) and (65) are confluent hypergeometric
functions, while, for the Stieltjes transforms in (65), forany k = 1,.. ., a, there holds

(see for instance [7])
oo L (1-K) /et a—x 1—k k—1
k—1 X © @ o
——dx=e I'(1+— |T"| —
y/o x+y% © <+a><a’y>’

where I stands for the Gamma and the incomplete Gamma functions.
Finally, we remark that a similar method can be applied also if « is rational.
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