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Abstract: The study of intestinal permeability is gaining growing interest due to its relevance in
the onset and progression of several gastrointestinal and non-gastrointestinal diseases. Though
the involvement of impaired intestinal permeability in the pathophysiology of such diseases is
recognized, there is currently a need to identify non-invasive biomarkers or tools that are able to
accurately detect alterations in intestinal barrier integrity. On the one hand, promising results have
been reported for novel in vivo methods based on paracellular probes, i.e., methods that can directly
assess paracellular permeability and, on the other hand, on fecal and circulating biomarkers able to
indirectly assess epithelial barrier integrity and functionality. In this review, we aimed to summarize
the current knowledge on the intestinal barrier and epithelial transport pathways and to provide an
overview of the methods already available or currently under investigation for the measurement of
intestinal permeability.
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1. Introduction

The concept of the “leaky gut”, also known as increased intestinal permeability (IP),
and its association with the development and progression of a plethora of gastrointestinal
disorders, such as inflammatory bowel disease (IBD), celiac disease, and irritable bowel
syndrome, as well as other diseases, such as diabetes mellitus, asthma, and Alzheimer’s
disease, has progressively gained attention from the scientific community [1].

The intestinal barrier is responsible for maintaining gut homeostasis, separating gut
microbiota and host immune cells. However, the perturbation of this fine balance by
several factors, such as chronic stress, exposure to environmental toxins, such as pesticides,
poor diet, or antibiotics, can lead to an increased passage of luminal antigens through
the epithelial layer into the underlying mucosa and then to the bloodstream [2]. As
a consequence, the translocation of non-self-antigens through the intestinal barrier can
induce an abrogation of immune tolerance in genetically susceptible individuals, with
the development of chronic inflammation that, in turn, contributes to the perturbation of
intestinal barrier integrity (Figure 1). However, studies in humans and mice show that loss
of the intestinal barrier alone is not sufficient to initiate disease [3,4].

The study of novel methodological approaches and tools for measuring intestinal
permeability has rapidly increased in recent years [5,6]. However, how and when to
assess intestinal permeability is still a matter of debate. The evaluation of the intestinal
barrier in clinical studies is often limited to the assessment of paracellular permeability.
Furthermore, not all methodologies used for the assessment of the intestinal barrier are
properly validated against the gold standard, i.e., the Ussing chamber, so caution is needed
in interpreting these data [7]. In addition, sex-related differences in intestinal permeability
have been observed, being lower in women compared to men [3]. In this regard, to better

Diagnostics 2023, 13, 1976. https://doi.org/10.3390/diagnostics13111976 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics13111976
https://doi.org/10.3390/diagnostics13111976
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0003-0479-8825
https://orcid.org/0000-0002-9985-1440
https://orcid.org/0000-0002-9421-3087
https://orcid.org/0000-0002-0529-9481
https://doi.org/10.3390/diagnostics13111976
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics13111976?type=check_update&version=1


Diagnostics 2023, 13, 1976 2 of 12

understand the role of increased intestinal permeability in gastrointestinal diseases, it is
essential to understand how molecules pass through the intestinal epithelium and how
intestinal permeability can be assessed.
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components [8]. All together, these elements limit the contact between the intestinal epi-
thelium and pathogens, commensal bacteria, and dietary antigens present in the intestinal 
lumen while allowing the essential absorption of nutrients introduced with food.  

The first element or layer that constitutes the intestinal barrier is the mucus, com-
posed of mucins and fc-gamma-binding proteins, trefoil factor 3, and phospholipid phos-
phatidylcholine, which confers mechanical protection and the so-called “barrier” and al-
lows the transport of water and macronutrients [10]. The intestinal epithelium, on the 
other hand, consists of a single layer characterized by the presence of numerous cells that 
constitute the luminal surface of the small and large intestine, forming a permeable barrier 
for the passage of food nutrients but that is selective for the passage of harmful molecules 
[11]. The cells of this epithelium, in order to allow this filtering, are mechanically con-
nected to each other through intracellular protein complexes, such as tight junctions (TJs), 
adherens junctions, gap junctions, and desmosomes, which allow the regulation of per-
meability [12]. The epithelium, however, despite being characterized by a single layer, 
differs according to the intestinal tract. Indeed, while the small intestine is characterized 
by protrusions called villi and microvilli, which increase the absorptive surface area, and 
Lieberkühn’s crypts, which are gland-rich invaginations, in the large intestine, the absorp-
tive surface area is smaller due to the absence of this structural organization [10].  

Figure 1. Factors influencing increased intestinal permeability. Genetic susceptibility, environmental
factors, dietary habits, and changes in the composition of gut microbiota can affect the intestinal
barrier directly or indirectly, inducing dysbiosis that, in turn, can lead to increased intestinal perme-
ability. The loss of intestinal barrier integrity may have a pivotal role in the onset and progression of
several gastroenterologic and non-gastroenterologic diseases.

2. Intestinal Permeability

The “intestinal barrier” is a term that defines the component of the intestine that is
responsible for the prevention of harmful substances from passing through the intestinal
epithelium (such as bacteria, microorganisms, and their toxins) [8] while allowing the
passage of molecules, such as water, electrolytes, and nutrients through the transport
systems [9]. To carry out this function, the barrier consists of a heterogeneous structure
composed of several elements: mechanical, such as mucus and the epithelial layer; im-
munological, including IgA, defensins, immune cells, and lymphocytes; and muscular and
neurological components [8]. All together, these elements limit the contact between the
intestinal epithelium and pathogens, commensal bacteria, and dietary antigens present
in the intestinal lumen while allowing the essential absorption of nutrients introduced
with food.

The first element or layer that constitutes the intestinal barrier is the mucus, composed
of mucins and fc-gamma-binding proteins, trefoil factor 3, and phospholipid phosphatidyl-
choline, which confers mechanical protection and the so-called “barrier” and allows the
transport of water and macronutrients [10]. The intestinal epithelium, on the other hand,
consists of a single layer characterized by the presence of numerous cells that constitute
the luminal surface of the small and large intestine, forming a permeable barrier for the
passage of food nutrients but that is selective for the passage of harmful molecules [11].
The cells of this epithelium, in order to allow this filtering, are mechanically connected to
each other through intracellular protein complexes, such as tight junctions (TJs), adherens
junctions, gap junctions, and desmosomes, which allow the regulation of permeability [12].
The epithelium, however, despite being characterized by a single layer, differs according to
the intestinal tract. Indeed, while the small intestine is characterized by protrusions called
villi and microvilli, which increase the absorptive surface area, and Lieberkühn’s crypts,
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which are gland-rich invaginations, in the large intestine, the absorptive surface area is
smaller due to the absence of this structural organization [10].

The term intestinal barrier should not be confused with the term intestinal permeability.
While the term intestinal barrier emphasizes the protective component of the gut, intestinal
permeability is the functional characteristic of the intestinal barrier, which represents the
passage of molecules through the intestinal epithelium and which can be measured by
analyzing the flow rate through the intestinal wall either as a whole or in components of
the wall of defined molecules [11]. Intestinal permeability can be defined as a diagnostic
measure of intestinal barrier integrity and is frequently used for the detection of intestinal
mucosal lesions [13]. Interestingly, intestinal permeability can be distinguished between
normal, i.e., a stable permeability with no signs of alteration, inflammation, or intoxication,
and altered intestinal permeability, i.e., a permeability that leads to the loss of its functional
capacity, intestinal homeostasis, and disease [8].

Intestinal permeability is highly sensitive to several physiological factors, which can
induce an increase in the systemic circulation of bacteria and endotoxins. These factors
include damage or alteration to the intestinal barrier layers, as well as changes in the
bacterial composition toward a dysbiotic pattern of the gut microbiota [8]. In this regard,
factors such as psychological disturbances and lifestyle habits as dietary behaviors based
on the Western diet should also be taken into account when assessing the integrity of the
intestinal barrier and intestinal permeability, as they may alter it [14,15].

3. Epithelial Routes of Transports

There are two routes by which the above-mentioned passage through the intestinal
barrier can occur, which are the transcellular, involving receptor-mediated transport and
diffusion, and the paracellular route, which occurs between two adjacent cells managed by
intercellular junctions (Figure 2) [7].
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Figure 2. Intestinal barrier and passage routes across the epithelium. There are two main pathways
that allow the passage of molecules through the intestinal barrier: the transcellular pathway (used by
smaller hydrophilic and lipophilic solutes) and the paracellular pathway (used by larger hydrophilic
solutes). Moreover, three different types of paracellular permeability are distinguished, two of which
are regulated by tight junctions and are known as the pore pathway and the leak pathway. The last
and third pathway is called the “unrestricted pathway”, which is independent of tight junctions and
describes flux at sites of epithelial damage.

3.1. Transcellular Pathway

This pathway is the preferred route for the absorption of hydrophilic and lipophilic
compounds, as well as nutrients requiring active transporters and energy, such as vitamins,
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amino acids, and sugars. These transporters, which can be found on the lateral and apical
side of the cell membrane, are selective in terms of charge and molecule size. It is important
to emphasize that large molecules, such as proteins, can be absorbed via endocytosis, and
are delivered to the lysosomal compartment and degraded to non-immunogenic peptides.
The overall process of transcytosis, i.e., active transport through the cytoplasm, serves for
the surveillance of antigens in the gastrointestinal tract [16]. Endocytosis and transcytosis
have barrier regulatory functions and thus represent manipulable pathways for microbes
to enter the host [5].

3.2. Paracellular Pathway

In contrast to the transcellular, the paracellular is a less selective pathway utilized by
water, ions, and hydrophilic molecules ≤600 Da in vivo to ≤10 kDa in vitro in cell lines [17].
In this regard, this passage occurs passively through intercellular spaces and tight junctions
of intestinal cells via diffusion, electrodiffusion, and osmosis according to the gradient
generated by the transcellular pathway, thus utilizing size and charge selectivity within the
tight junction permeability barrier [5]. The paracellular flow is subjected to regulation by an
apical protein complex, consisting of tight junctions, desmosomes, adherens junctions, and
gap junctions [18]. However, there is no evidence that the latter two play a primary role
in regulating this process [19]. Adherens junctions and desmosomes, on the other hand,
are tightly bound between epithelial cells and allow intercellular communication without
regulating paracellular permeability, which is instead regulated by the tight junctions
surrounding the apical portion of the epithelial cells and which represent a barrier for
harmful molecules and the selective passage of solutes and water [10,20].

Three different types of paracellular permeability can be distinguished, where two of
these three, regulated by tight junctions, define intestinal permeability and are referred to
as the leak and pore pathways [21]. The pore pathway, regulated by claudin, is a highly
selective route that mediates the movement of ions and small solutes, whereas the leak
pathway, which mediates the movement of large solutes, is regulated by occludin, Zonula
occludens (ZO)-1, and myosin light chain kinase [22,23]. The third pathway, independent
of tight junction regulation, is called the “unrestricted pathway”; it allows antigens access
to the lamina propria as it is highly permissive with respect to size and solute charge and is
associated with apoptotic leakage in pathological states [23]. During the pathogenesis of the
disease, there is initially an increase in permeability through the leak and pore pathways
as a result of immune activation of the mucosa, with the production of the tumor necrosis
factor (TNF) and interleukin (IL)-13, and subsequently, with disease progression, epithelial
apoptosis and permeability through the unrestricted pathway occurs [23].

4. Non-Invasive In Vivo Assessment of Intestinal Permeability

For the use and consideration of the “leaky gut” in clinical practice, it is essential to
develop and use accurate biomarkers or tools. Several methods are available to assess
barrier integrity and permeability, and their selection depends on factors such as the
experimental set-up (ex vivo, in vitro, or in vivo), the species (human or animal), the type
of marker molecules used (ions or carbohydrates, macromolecules, antigens, bacterial
products, or bacteria), and the biological compartments used for the measurement of
marker molecules (peripheral blood, portal vein blood, or urine) [8].

As our understanding of the molecular interactions of transporters progresses, the
Ussing chamber methodology will continue to provide a “gold standard” in the application
of this knowledge. This ex vivo approach is widely used in human and animal studies and
allows the assessment of active ion transport across the short-circuit current [24]. Active ion
transport generates a potential difference across the epithelium, which is assessed using two
voltage electrodes placed as close as possible to the tissue/epithelium [25]. The spontaneous
voltage is canceled by injecting a countercurrent called the short-circuit current, which
accurately quantifies the net ion transport through the epithelium. In this section, we
will address different in vivo methods for assessing intestinal permeability (Table 1). It is
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important to note that environmental features, such as dietary intake, circadian rhythm [26],
or stress [27], can influence intestinal permeability.

Table 1. Selection of in vivo permeability assays.

Method Human
Studies

Animal
Models

Expression
Site

Biological
Sample

Biomarker
Levels and

Increased IP

Lactulose/mannitol
Dual sugar

quantification using
mass spectrometry

X X Small intestine Urine
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For each biomarker, the X indicate the availability of data in humans and in the animal model. Abbreviations:
51Cr-EDTA, 51 chromium-labeled EDTA; FABP, fatty-acid-binding protein; LAL, limulus amebocyte lysate assay;
LBP, lipopolysaccharide-binding protein; LCN-2, lipocalin-2; LPS, lipopolysaccharide; PEGs, polyethylene glycols;
sCD14, soluble CD14; SCFA, short-chain fatty acid. * Claudin-2 is highly expressed in permeable epithelial tissues,
is upregulated in IBD, and promotes inflammation, while down-regulation of claudin-5 and -8 can drastically
reduce barrier integrity [28].

4.1. Direct Assessment Using Paracellular Probes

The first techniques used to investigate the integrity of the intestinal barrier function
were in vivo permeability assays [5]. This methodology involves the simultaneous use
of small-pore-sized markers (5–8 Å) and large-pore-sized markers (9.5–11 Å) that are
orally ingested, absorbed in the gastrointestinal tract, and excreted in the urine. Intestinal
permeability is calculated as the ratio of the passage of the large-pore marker to the
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small-pore marker, adjusting for intra-individual confounding factors to obtain a more
accurate result [29].

The most widely used probes are small-pore markers, polyethylene glycols (PEG)
400 Da, and monosaccharides (mannitol and rhamnose) as well as the PEG with a molecular
weight of approximately 1000 Da [29], or the 51Chromium-ethylenediaminetetraacetic acid
(51Cr-EDTA). In addition, disaccharides, such as lactulose, sucrose, or cellobiose, have
been used as markers of gastroduodenal patency [30]. Specifically, the lactulose/mannitol
(LAMA) ratio can be interpreted as a measure of leakage pathway permeability and ep-
ithelial damage normalized to the surface of the small intestine [31]. Lactulose is large and
can only cross the barrier through the leakage pathway or in areas of epithelial damage;
thus, it can be considered a marker of barrier integrity [32]. In contrast, mannitol, which is
three-fold smaller, crosses the pore pathway and can be considered a measure of surface
area. Over the years, the technique has evolved to become increasingly accurate and
specific. Studies now use a multi-sugar test (including five different sugar probes: sucrose,
lactulose, l-rhamnose, erythritol, and sucralose), which has been shown to provide a more
physiological setting for permeability analysis due to its reduced oral dose of lactulose [29].
Importantly, the ratio of erythritol to sucralose is used as an assessment of colonic perme-
ability, whereas lactulose and mannitol are degraded by colonic bacteria making them of
little use as a measure of colonic permeability [1].

Both ex vivo and direct in vivo tests are considered reliable for the assessment of
intestinal permeability; however, they have some important limitations, such as the lack
of standardization, they cannot be performed retrospectively, they are time-consuming
and still have limited validity, which is based on the uncertainty of the proposed normal
values [33].

4.2. Indirect Assessment Using Serum Biomarkers

Over the last decade, particular efforts have been made to identify reliable biomarkers
capable of assessing intestinal permeability in blood and, in some cases, in feces. One of
the first proteins identified with promising results was zonulin (47 kDa), an acute phase
reaction protein that controls intestinal permeability by inducing the disassembly of tight
junctions; zonulin has been suggested as a biomarker of intestinal permeability, which
can be measured in both blood and fecal samples [10]. In this regard, an intervention
study (control diet vs. polyphenol-rich diet) conducted in 66 subjects (aged ≥ 60 years)
with increased intestinal permeability based on the measurement of serum zonulin levels
showed that zonulin reduction was greater among subjects with a higher body mass index
and with insulin resistance at baseline, which demonstrated the close interplay between
intestinal permeability and metabolic features [34]. However, recent studies have noted that
the current commercially available assays do not detect only zonulin (prehaptoglobin-2)
but rather quantify haptoglobin and complement factor C3 levels [35,36]. Similarly, in a
study using colonic biopsies from 32 irritable bowel syndrome (IBS) patients and 15 healthy
controls, increased colonic paracellular permeability correlated positively with zonulin
values in biopsy lysates but negatively with plasma zonulin [37]. In addition, genotyping
revealed the unspecificity of the zonulin kit, as all prehaptoglobin 2 non-producers had
detectable levels. Therefore, zonulin levels, as a marker of barrier integrity, should be
interpreted with caution.

Furthermore, TJs include several junctional molecules, such as occludin and claudin [38].
In humans, at least 27 subtypes of claudins have been identified that are expressed in an
organ-specific manner and regulate the tissue-specific physiological functions of TJs [20].
The examination of claudins in the intestinal context revealed that the absence of intestine-
specific claudin-7 (CLDN7) resulted in intestinal inflammation three weeks after birth,
together with an elevation of paracellular permeability at two weeks after birth [39]. Sim-
ilarly, intestine-specific CLDN7 deficiency also increased paracellular permeability for
N-formyl-L-methionyl-L-leucyl-L-leucyl-L-leucyl-L-phenylalanine pFlux, a major bacterial
product, and subsequently initiated colonic inflammation. On the other hand, occludin
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is an integral membrane protein that localizes in epithelial and endothelial cells, whose
overexpression increases the complexity of the TJ filament network and reinforces the
barrier function [40]. It has been observed that twelve weeks of feeding mice with glucose-
and fructose-rich diets induced endotoxemia and increased IP to fluorescein isothiocyanate-
labeled dextran, an epithelial TJ functional marker [41]. Furthermore, the diets resulted in
reduced occludin and ZO-1 values and higher concentrations of inflammation cytokines,
including TNF-α and IL-1β, in the colon.

Serum levels of lipopolysaccharide (LPS) are a component of the outer membranes
of most Gram-negative bacteria and have also been implicated as a potential marker of
bacterial translocation [42]. When the barrier is breached, bacterial endotoxins, such as LPS,
can be transferred far into the circulatory system producing toxicity, which has been linked
to several diseases [43]. In this regard, a high-fat diet has also been shown to temporarily
increase blood levels of LPS in healthy individuals [44]. Furthermore, a study in vitro using
human-colon-derived polarized epithelial cell monolayers (Caco-2) demonstrated that
species-specific LPS can differentially modulate TLR4-induced inflammation and intestinal
epithelial permeability, providing a new concept of serotype-specific epithelial injury
and maintenance of the epithelial barrier function in the “leaky gut” [45]. Concerning
the methodologies used for the detection of LPS in blood, they have shown, in some
cases, inaccurate and contradictory data [46]. In fact, LPS levels have been found to
vary considerably according to the method adopted and individuals [47]. Plasma LPS
levels should, therefore, be interpreted prudently when attempting to measure a disrupted
intestinal barrier, and their combination with other indicators of IP is recommended. As
the measurement and interpretation of LPS are complicated, LPS-binding protein (LBP)
has become interesting as a marker of the immune reaction to LPS and, thus, as an indirect
endotoxemia marker. LBP, an acute-phase protein, is produced by hepatocytes, adipose
tissue, and intestinal cells and released in the bloodstream [48]. LBP binds to the external
membrane of Gram-negative bacteria and is recognized as a marker of endotoxemia and
a biomarker of IP [49]. Moreover, a study aiming to validate six potential biomarkers
of intestinal permeability (albumin, calprotectin, and zonulin measured in feces, as well
as intestinal fatty-acid-binding protein, LBP, and zonulin measured in plasma) versus
the established LAMA test showed plasma LBP as a promising biomarker of intestinal
permeability in adults and fecal zonulin as a potential biomarker in overweight and obese
individuals [13].

Fatty-acid-binding intestinal proteins (FABPs) are cytosolic proteins of approximately
15 kDa that bind and transport fatty acids and are released into the intestinal lumen upon
injury [50]. There are several types of FABPs with different functions depending on the
tissue in which they are found. In intestinal enterocytes, mainly both liver-type (L-FABP
and FABP1) and intestinal-type (I-FABP and FABP2) fatty-acid-binding proteins are ex-
pressed [51]. In addition, ileal lipid- or bile-acid-binding protein (ILBP or BABP and FABP6)
is present in the distal ileum, where it has a high affinity for bile acid binding in contrast to
the other FABPs present in the intestine [51]. L-FABP and I-FABP exhibit a strong attraction
to long-chain fatty acids, suggesting their involvement in intestinal lipid metabolism [52].
A study conducted on humans revealed an association between elevated levels of I-FABP
in patients with diarrhea-predominant IBD and an increased small intestinal permeability,
which was evaluated through the urine lactulose/mannitol ratio [53]. Therefore, I-FABP
appears to be a potential biomarker of intestinal barrier dysfunction.

Citrulline is a non-protein amino acid produced primarily by small intestinal ente-
rocytes with glutamine as a precursor [54]. Serum citrulline has emerged as a valuable
biomarker for assessing the mass and surface area of the small intestine. A systematic
review showed that there is a negative correlation between citrulline levels and the severity
of intestinal disease, such as celiac disease and Crohn’s disease [55]. This suggests that a
decrease in small intestinal epithelial mass contributes to increased intestinal permeability.
Notably, patients undergoing haemopoietic stem cell transplantation due to mucositis in
the oral and gastrointestinal regions exhibited a decline in circulating citrulline levels due to
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the loss of epithelial mass [56]. Another study compared the citrulline assay to the in vivo
multiple sugars assay and found that the former demonstrated higher specificity and sensi-
tivity in evaluating small bowel permeability among patients undergoing myeloablative
therapy [57]. It is important to note that citrulline, being a non-protein amino acid, is influ-
enced by food absorption [58]. However, although watermelon contains a small amount
of citrulline (1 g citrulline/780 g), increasing watermelon intake over a three-week period
did not result in an increase in plasma citrulline concentration [59]. Therefore, caution is
necessary when interpreting citrulline levels as an indicator of intestinal permeability.

Soluble CD14 (sCD14) is considered a marker of monocyte activation. The binding of
LPS to CD14 has been shown to activate the innate immune system [60]. Importantly, in
a case-control study including 74 subjects who died, 120 of whom developed cardiovas-
cular disease and 81 of whom developed acquired immunodeficiency syndrome during
the Strategies for Management of Anti-Retroviral Therapy study with matched control
subjects, it was shown that sCD14 was an independent predictor of mortality in human
immunodeficiency virus infection [61].

Glucagon-like peptide (GLP)-2 is a cleavage product of glucagon located mainly
in the gastrointestinal tract and central nervous system [62]. GLP-2 is involved in the
maintenance of growth [63] and in intestinal mucosal integrity, gastric motility, and nutrient
absorption [64]. In a study in obese mice fed with a prebiotic diet, changes in the microbiota
and increases in endogenous GLP-2 production were observed [65]. In particular, there
was an increase in bifidobacterium and lactobacillus species and a reduction in plasma
LPS levels and, consequently, an improvement in intestinal barrier functions via a GLP-2-
dependent mechanism.

Glycoprotein VI (GPVI), the platelet receptor for the immunoreceptor tyrosine acti-
vator motif for collagen, plays a prominent role in vascular integrity in animal models of
inflammation and sepsis [66]. Using an in vivo model of autoimmune arthritis, the pres-
ence of endothelial gaps in the inflamed synovial membrane was confirmed. Surprisingly,
patency in inflamed joints was abrogated if platelets were absent [67]. Indeed, GPVI has
been implicated in the recruitment of platelets and leukocytes to the inflamed vascular wall,
the regulation of vascular permeability and leukocyte activation, and in the prevention of
inflammatory hemorrhage [66].

Calprotectin, lactoferrin, and elastase are neutrophil-derived proteins present in feces,
with calprotectin being the most detectable due to its resistance to proteolytic degradation
and its stability in feces stored at room temperature for at least seven days [13]. In fact, fecal
calprotectin is nowadays used in clinical practice to assess disease activity in the follow-up
of patients treated for active IBD. In a case-control study (28 controls and 34 patients with
Parkinson’s disease (PD)), calprotectin, alpha-1-antitrypsin, and zonulin were found to
be significantly elevated in PD patients compared to age-matched controls [68]. Other
proposed markers of intestinal permeability include secretory IgA used in celiac disease or
defensins mainly analyzed in IBD patients as markers of intestinal permeability [69].

Similarly, when the intestinal barrier is damaged, albumin can pass from the blood
vessels into the interstitial space and finally into the intestinal lumen. Therefore, it has been
suggested that fecal albumin is a biomarker of intestinal permeability [70]. Alpha(α)-1-
antitrypsin (AAT) is a highly abundant serine protease inhibitor found in the bloodstream.
Although primarily synthesized in the liver, it is also secreted by different cell types,
including macrophages, enterocytes, and Paneth cells [71]. AAT plays a crucial role in
protecting tissues against the proteolytic actions of immune cells, especially neutrophils [72].
In addition, AAT levels have been found to correlate with Crohn’s disease activity, and
feces may serve as an indicator of disease severity in IBD [73].

Other markers of intestinal inflammation that could be assessed to complement AAT
measurements and other in vivo permeability markers include fecal or serum lipocalin-2
(LCN2) and serum amyloid A [74]. LCN2 is produced by various cell types, including
myeloid and intestinal epithelial cells, and is elevated in response to a wide variety of
pro-inflammatory stimuli [74]. In this regard, in a cohort of 132 patients with IBD, the
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mucosal LCN2 expressions remained elevated in the rectum of ulcerative colitis and the
ileum of Crohn’s disease patients [74]. Similarly, acute-phase protein amyloid A has also
been investigated in IBD [75]. It is an acute-phase lipoprotein, which may play an important
role in binding and removing cholesterol from inflammation areas [66]. Moreover, it has
been shown that T-cell signaling pathways modulated by serum amyloid A proteins may
be attractive targets for anti-inflammatory therapies [76].

Finally, short-chain fatty acids (SCFAs), such as acetate, propionate, and butyrate,
are the main end products of intestinal microbial fermentation. SCFAs have been shown
to improve intestinal epithelial barrier function, restoring damaged epithelium [77]. For
example, butyrate has been shown to have anti-inflammatory and regenerative properties,
providing symptomatic relief when administered orally to patients suffering from various
diseases of the colon [78]. In a cohort of 127 patients with ulcerative colitis, a reduction
in butyrate-producing bacteria (R hominis and F prausnitzii) was observed compared
to healthy individuals [79]. Both species showed an inverse correlation with disease
activity. The absence of butyrate can, therefore, be considered an indirect indication that
the intestinal barrier function is compromised.

Overall, ongoing research on the novel biomarkers of intestinal permeability holds
significant potential for advances in the field of gut health. Biomarkers related to intestinal
permeability might play a key role in assessing the efficacy of therapeutic interventions.
The development of non-invasive techniques for biomarker detection, such as blood, urine,
or stool tests, together with molecular insights, lifestyle modifications, and dietary inter-
ventions, could lead to early diagnosis and continuous monitoring of intestinal disorders
and conditions associated with impaired permeability.

5. Conclusions

Although several gastrointestinal and non-gastrointestinal disorders result in a leaky
gut, it is uncertain whether a cause–effect relationship exists between increased intestinal
permeability and disease onset and progression; nevertheless, the possibility to evaluate
intestinal barrier integrity is crucial to improve patients’ clinical management. Indeed,
intestinal barrier healing has been proposed as a potential therapeutic endpoint associated
with a favorable prognosis [80].

To date, several different non-invasive tests show promising results, although some
analytical limitations still need to be solved. Likely, a composite assay able to simultane-
ously investigate biomarkers with different biological roles, such as TJ structural proteins,
in association with proteins involved in TJ regulation, pro-inflammatory cytokines, and bac-
terial translocation markers might provide a reliable tool to accurately evaluate intestinal
barrier integrity.
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