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A B S T R A C T

In this paper we study a modified HANDY model, describing interactions between nature
resources and human exploitation. It is a system of four ODEs, whose vector field is non
differentiable at certain points. The main novelty of our approach is the introduction of a
variable describing non renewable resources, whose equation contains both a consumption and
a replenishment term. We first establish the existence and positivity of solution for any time
𝑡 ≥ 0, and we get some results on the asymptotic behavior of x (population) and w (wealth).
Then we compute all the equilibrium points of the system, and we study their stability. We
find several stability and instability results, depending on the parameters of the system. Some
numerical simulations confirm the theoretical results, and give suggestions for future research.

. Introduction

The HANDY model (Human And Nature DYnamics) was introduced in 2014 (see [1]) as a theoretical model describing how
uman population interacts with the environment in ways that can lead to societal collapse. It is a system of four differential
quations relating population, wealth and natural resources. Building on previous studies (see the bibliography in the quoted
aper), the authors develop an original approach that includes wealth as a variable, and the partition of the population into two
roups (‘‘Commoners’’ and ‘‘Elites’’). The model has led to concerning conclusions about the future of human society, suggesting
hat overexploitation of natural resources, combined with strong inequalities in wealth distribution, could lead to societal collapse.
owever, the HANDY model also suggests that such collapses could be avoided through sustainable policies and equitable wealth
istribution. The HANDY model has been then further developed in several papers (see [2–8]). Of course, there are many other
ypes of models dedicated to the study of interactions between nature and society: see for example [9] and the references therein.

In this paper we introduce a modified HANDY model, by distinguishing renewable and non renewable resource. Indeed, in the
ANDY model the natural resources are lead by a modified logistic equation, so, in absence of human exploitation, they are pushed

o the carrying capacity of the environment. In the present paper we use for the renewable resources the same equation as in HANDY
odel, but we introduce a new variable, which we call 𝑧, for the non renewable resources. The equation for 𝑧′ is the following

𝑧′ = −𝛿𝑥𝑧 + 𝑘 𝑥𝑤
𝑥𝑤 + 1

𝑧 (1)

here 𝑥 is the population and 𝑤 is the wealth. The right-hand side in (1) is the sum of two terms, the first of which is a depletion
erm due to human exploitation. The second term tries to describe the replenishment of these resources due to investment, science
nd technology. In the study of population dynamics, a function of the form 𝐻(𝑡) = 𝑡∕(1+ 𝑡) is called a Holling II function (see [10],
.25 and passim) and it is used to model saturation effects. In our case, we use such a functional dependance in view of the long
tanding debate between different views, that we can summarize as ‘‘optimistic’’ and ‘‘pessimistic’’. For the pessimists, under human

∗ Corresponding author.
E-mail addresses: marino.badiale@unito.it (M. Badiale), isabella.cravero@unito.it (I. Cravero).
vailable online 25 January 2024
468-1218/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

ttps://doi.org/10.1016/j.nonrwa.2024.104071
eceived 4 August 2023; Received in revised form 9 January 2024; Accepted 12 January 2024

https://www.elsevier.com/locate/nonrwa
https://www.elsevier.com/locate/nonrwa
mailto:marino.badiale@unito.it
mailto:isabella.cravero@unito.it
https://doi.org/10.1016/j.nonrwa.2024.104071
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nonrwa.2024.104071&domain=pdf
https://doi.org/10.1016/j.nonrwa.2024.104071
http://creativecommons.org/licenses/by/4.0/


Nonlinear Analysis: Real World Applications 77 (2024) 104071M. Badiale and I. Cravero

d

exploitation, the non renewable resources must necessarily vanish, in the long run. For the optimists, science and technology will
always succeed in substituting depleted resources with new ones, in an unpredictable way. The second term in Eq. (1) expresses an
intermediate position between optimism and pessimism, because it says that the non renewable resources are indeed replenished
thanks to human ingenuity, but there is a saturation effect in the investment of human energy and wealth (which is given by 𝑥𝑤),
so in any case the rate of replenishment cannot be greater of a fixed factor 𝑘.

We introduce this equation in the HANDY model and, for the sake of simplicity, in this paper we drop the partition of population
in Commoners and Elites. We intend re-introduce this partition in future work.

To write down our model, we took particular inspiration from the work of A.Tonnelier [5], which is a careful and deep analysis
of several aspects of HANDY model. In particular, our model is linked to the analysis of Section 3 of Tonnelier’s paper, which is
devoted to the ‘‘Egalitarian society’’, that is, a society with no Elites. In the paper by Tonnelier the equations of the original HANDY
paper are simplified, allowing a better understanding of the model. Using the same simplifications, our model can be written as

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑥′(𝑡) = (𝛽 − 𝛼𝑚)𝑥 − 1
𝜌
(𝛼𝑀 − 𝛼𝑚)(𝜌𝑥 −𝑤)+

𝑦′(𝑡) = 𝛾𝑦(𝜆 − 𝑦) − 𝛿1𝑥𝑦

𝑧′(𝑡) = −𝛿2𝑥𝑧 + 𝑘1
𝛿3𝑥𝑤

𝛿3𝑥𝑤 + 𝑘2
𝑧

𝑤′(𝑡) = 𝛿1𝑥𝑦 + 𝛿2𝑥𝑧 − 𝛿3𝑥𝑤 − 𝑠
[

𝑥 − 1
𝜌
(𝜌𝑥 −𝑤)+

]

.

(2)

Here 𝛽 is the birth rate of the population assumed to be constant, while the death rate depend on wealth and is described by
the function

𝑓 (𝑥,𝑤) = 𝛼𝑚 + (𝛼𝑀 − 𝛼𝑚)
(𝑤𝑡ℎ −𝑤)+

𝑤𝑡ℎ
.

𝑥+ is the usual positive part function, 𝛼𝑀 > 𝛼𝑚 > 0 are two constant parameters giving respectively the maximum and minimum
eath rate. 𝑤𝑡ℎ is a threshold below which famine and deprivation begin and death rate grows, and is defined as 𝑤𝑡ℎ = 𝜌𝑥 with 𝜌 > 0

representing a minimum rate of consumption for individuals. The variable 𝑦 represents the renewable resources. The regeneration
of these resources is described by a logistic model with carrying capacity 𝜆 > 0 and a depletion term that is proportional to both
population and resources and is modulated by a parameter 𝛿1 > 0.
We have discussed above the equation for 𝑧, the non-renewable resources.

Accumulated wealth 𝑤 depends on the population’s work on natural resources (renewable and not) and such wealth decreases
due to consumption and investment for the replenishment of non renewable resources. The consumption is weighted by the function

𝑠 − 𝑠
(𝑤𝑡ℎ −𝑤)+

𝑤𝑡ℎ

where the parameter 𝑠 > 0 represents the subsistence wage per individual. The investment is given by 𝛿3𝑥𝑤.
We use some standard rescaling to set 𝜌 = 𝛿3 = 𝑘2 = 1. As to the parameters 𝛿1 and 𝛿2, they represent the rate of exploitation of

renewable and non-renewable resources, respectively. In this paper we want to pursue study of some relevant mathematical aspects
of this model, and we have no knowledge about the effective values of these parameters. It seems reasonable to guess that they are
not so different, at least for contemporary societies, for which both kinds of resources are relevant. So it seems acceptable to start
our study with a simplification and to assume 𝛿1 = 𝛿2. In Section 6 we have done simulations for some cases in which 𝛿1 ≠ 𝛿2. The
general case will be treated in the future steps of our research.

The system is then reduced to the following form

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑥′(𝑡) = (𝛽 − 𝛼𝑚)𝑥 − (𝛼𝑀 − 𝛼𝑚)(𝑥 −𝑤)+

𝑦′(𝑡) = 𝛾𝑦(𝜆 − 𝑦) − 𝛿𝑥𝑦

𝑧′(𝑡) = −𝛿𝑥𝑧 + 𝑘 𝑥𝑤
𝑥𝑤 + 1

𝑧

𝑤′(𝑡) = 𝛿𝑥𝑦 + 𝛿𝑥𝑧 − 𝑥𝑤 − 𝑠
[

𝑥 − (𝑥 −𝑤)+
]

,

(3)

This is the ODE system that will be studied in the following of the present paper.
The paper is organized as follows: after the introduction, in Section 2 we obtain general results of existence and positivity of

the solutions, and also some results on their asymptotic behavior. In particular, Propositions 3 and 4 states the it cannot happen
𝑥 → +∞ or 𝑤 → +∞ as 𝑡 → +∞.

In Sections 3 and 4 we compute the equilibrium points of system (3), and we study their stability properties. As it is clear from
the equations of the system, it will be convenient to distinguish the cases 𝑥 < 𝑤, 𝑥 = 𝑤, 𝑥 > 𝑤. In the first and third case we use
standard linearization techniques, while this is impossible when 𝑥 = 𝑤, because there the vector field is not differentiable and the
jacobian matrix is not defined. We will obtain several results of stability and instability, also in the non standard case 𝑥 = 𝑤 (see
in particular Propositions 15 and 16), however we are still far from a complete description of the situation. In Section 5 we give
some numerical simulation that may help to understand the evolution of the solutions, and also can spread light on the situations
for which we do not have theoretical results. In Section 6 we give a list of open problems and topics of future research.

We end this introduction by indicating, for the reader’s sake, some of the results obtained in the present paper.
2
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• In Section 2 we obtain that it cannot be 𝑥(𝑡) → +∞ or 𝑤(𝑡) → +∞ as 𝑡 → +∞. This does not necessarily mean that population
and wealth are bounded, but if they grow above a critical level, then they will start to oscillate. Of course, much more work
is needed to determine this critical level.

• The critical points with 𝑥 = 0 are all unstable, except a particular case described in Proposition 17.
• For some ranges of the parameters, there are asymptotically stable equilibrium points with positive values for populations and

wealth (see Section 4). For all these equilibria it holds 𝑥 > 𝑤.
• Numerical simulations seem to suggest that nearby some unstable equilibrium it is possible to find periodic solutions (see

Section 5).

2. Properties of the solutions

We are interested in non negative solutions, so we work the cone

 =
{

(𝑥, 𝑦, 𝑧, 𝑤) ∈ R4 ∣ 𝑥 > 0, 𝑦 > 0, 𝑧 > 0, 𝑤 > 0
}

or possibly in its closure

 =
{

(𝑥, 𝑦, 𝑧, 𝑤) ∈ R4 ∣ 𝑥 ≥ 0, 𝑦 ≥ 0, 𝑧 ≥ 0, 𝑤 ≥ 0
}

.

In all this paper it is implied that the initial conditions are in  or in . In this sections we will prove some results assuring that
also the trajectories stay there.

The system (3) can be written in the form 𝑋′ = 𝐹 (𝑋) with 𝑋 = 𝑋(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡), 𝑤(𝑡)) and 𝐹 (𝑋) = (𝑓1(𝑥,𝑤), 𝑓2(𝑥, 𝑦),
3(𝑥,𝑤, 𝑧), 𝑓4(𝑥, 𝑦, 𝑧, 𝑤)) with

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑓1(𝑥,𝑤) = (𝛽 − 𝛼𝑚)𝑥 − (𝛼𝑀 − 𝛼𝑚)(𝑥 −𝑤)+

𝑓2(𝑥, 𝑦) = 𝛾𝑦(𝜆 − 𝑦) − 𝛿𝑥𝑦

𝑓3(𝑥, 𝑧,𝑤) = −𝛿𝑥𝑧 + 𝑘 𝑥𝑤
𝑥𝑤 + 1

𝑧

𝑓4(𝑥, 𝑦, 𝑧, 𝑤) = 𝛿𝑥𝑦 + 𝛿𝑥𝑧 − 𝑥𝑤 − 𝑠
[

𝑥 − (𝑥 −𝑤)+
]

,

Setting 𝐷 =
{

(𝑥, 𝑦, 𝑧, 𝑤) ∈ R4 ∣ 𝑥𝑤 ≠ −1
}

, it is easy to verify that 𝐹 ∶ 𝐷 → R4 is locally Lipschitz because all of its components are,
and 𝐷 is an open set in R4 containing . Consequently

Proposition 1. The problem
{

𝑋′(𝑡) = 𝐹 (𝑋)

𝑋′(𝑡0) = 𝑋0
(4)

admits a unique local solution for any (𝑡0, 𝑋0) ∈ 𝐷.

We are interested in the case in which 𝑡0 = 0 and 𝑋0 = (𝑥0, 𝑦0, 𝑧0, 𝑤0) is such that 𝑥0 > 0, 𝑦0 > 0, 𝑧0 > 0, 𝑤0 ≥ 0. For any such
𝑋0 we consider the maximal solutions of (4), with maximal interval (𝑎, 𝑏) and of course 0 = 𝑡0 ∈ (𝑎, 𝑏). We will prove the following
roposition

roposition 2. Let 𝑋(𝑡) = (𝑥(𝑡), 𝑦(𝑦), 𝑧(𝑡), 𝑤(𝑡)) be a solution to problem (4) with 𝑡0 = 0 and 𝑋0 = (𝑥0, 𝑦0, 𝑧0, 𝑤0), where 𝑥0 > 0, 𝑦0 >
, 𝑧0 > 0, 𝑤0 ≥ 0. Let (𝑎, 𝑏) be the maximal interval. Then we have 𝑏 = +∞, so that the solution is defined in [0,+∞). Also we have 𝑋(𝑡) ∈ 
or all 𝑡 ∈ (0,+∞).

We will get the proof of Proposition 2 by several lemmas. First, in Lemmas 3, 4, 5, 6 we prove that 𝑋(𝑡) ∈  for all 𝑡 ∈ (0, 𝑏).
hen in Lemmas 7, 8 we prove that 𝑏 = +∞. In all these lemmas we assume the hypotheses of Proposition 2.

emma 3. Let 𝑋(𝑡) be a solution of the system with the hypotheses of Proposition 2. Then 𝑦(𝑡) > 0, ∀𝑡 ∈ [0, 𝑏).

roof. The function 𝑦(𝑡) satisfies the equation

𝑦′(𝑡) = 𝛾𝑦(𝜆 − 𝑦) − 𝛿𝑥𝑦.

onsidering 𝑥(𝑡) as a given 𝐶1 function, this is a one dimensional equation for which we have local uniqueness. Of course, it
dmits the constant �̄�(𝑡) = 0 as a solution. Therefore, no solution different from �̄� can intersect �̄�, thus if 𝑦0 > 0 it results
(𝑡) > 0, ∀𝑡 ∈ [0, 𝑏). □

emma 4. Let 𝑋(𝑡) be a solution of the system with the hypotheses of Proposition 2. Then 𝑧(𝑡) > 0, ∀𝑡 ∈ [0, 𝑏).

roof. As in the previous lemma, 𝑧(𝑡) is a solution of equation

𝑧′(𝑡) = −𝛿𝑥𝑧 + 𝑘 𝑥𝑤
𝑥𝑤 + 1

𝑧,

hich is a one dimensional equation if we consider 𝑥(𝑡), 𝑤(𝑡) as given 𝐶1 functions. But the constant �̄�(𝑡) = 0 is also a solution of
this equation, hence the solution 𝑧(𝑡) cannot intersect the constant �̄�(𝑡) = 0, so 𝑧(𝑡) > 0 for all 𝑡 ∈ [0, 𝑏). □
3
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Lemma 5. Let 𝑋(𝑡) be a solution of the system with the hypotheses of Proposition 2. Then 𝑥(𝑡) > 0 for all 𝑡 ∈ [0, 𝑏).

Proof. Let us define 𝑡1 = sup {𝑡 ∈ (0, 𝑏) ∣ 𝑥(𝑠) > 0, ∀𝑠 ∈ [0, 𝑡)}. Due to continuity and because 𝑥0 > 0, we have that 𝑡1 ∈ (0, 𝑏] and
𝑥(𝑡) > 0, ∀𝑡 ∈ [0, 𝑡1). If 𝑡1 = 𝑏 then 𝑥(𝑡) > 0 in [0, 𝑏), and the lemma holds. Now we argue by contradiction and we assume 𝑡1 < 𝑏. By
continuity, it immediately follows that 𝑥(𝑡1) = 0 and therefore 𝑥′(𝑡1) ≤ 0. Now we notice that there exists an 𝜖 > 0 such that 𝑤(𝑡) > 0
in (0, 𝜖). Indeed, if 𝑤0 > 0, we obtain this by continuity, while if 𝑤0 = 0, the equation yields

𝑤′(0) = 𝛿𝑥0𝑦0 + 𝛿𝑥0𝑧0 > 0.

Now let us define 𝑡2 = sup {𝑡 ∈ (0, 𝑏) ∣ 𝑤(𝑠) > 0, ∀𝑠 ∈ [0, 𝑡)}. We have 𝑡2 ∈ (0, 𝑏] and 𝑤(𝑡) > 0 in (0, 𝑡2). We prove now that 𝑡2 < 𝑡1.
ndeed, if it were 𝑡2 ≥ 𝑡1, then we would have 𝑤(𝑡1) ≥ 0 and 𝑥(𝑡1) = 0. Let us define 𝑦1 = 𝑦(𝑡1), 𝑧1 = 𝑧(𝑡1), 𝑤1 = 𝑤(𝑡1), and
1 = (0, 𝑦1, 𝑧1, 𝑤1). Let 𝜑(𝑡) be the solution of the logistic equation

𝑦′(𝑡) = 𝛾𝑦(𝜆 − 𝑦) (5)

ith 𝜑(𝑡1) = 𝑦1, a solution that locally exists and is unique. It is then easy to verify that the function 𝑌 (𝑡) = (0, 𝜑(𝑡), 𝑧1, 𝑤1) is a local
olution of the Cauchy problem

{

𝑌 ′(𝑡) = 𝐹 (𝑌 )

𝑌 (𝑡1) = (0, 𝑦1, 𝑧1, 𝑤1).
(6)

e know that also 𝑋(𝑡1) = (0, 𝑦1, 𝑧1, 𝑤1), and of course 𝑋 satisfies 𝑋′ = 𝐹 (𝑋), hence 𝑋(𝑡) and 𝑌 (𝑡) are two different solutions of the
ame Cauchy problem (6). This is a contradiction, which derives from the assumption 𝑡2 ≥ 𝑡1. So we have proved that 𝑡2 < 𝑡1. From
he definition of 𝑡2 it is easy to obtain 𝑤(𝑡2) = 0, 𝑤′(𝑡2) ≤ 0. We also have 𝑥(𝑡2) > 0, 𝑦(𝑡2) > 0, 𝑧(𝑡2) > 0, so from the equation for 𝑤′

e obtain

𝑤′(𝑡2) = 𝛿𝑥(𝑡2)𝑦(𝑡2) + 𝛿𝑥(𝑡2)𝑧(𝑡2) > 0.

e have therefore arrived at a contradiction. It derives from the assumption 𝑡1 < 𝑏, hence 𝑡1 = 𝑏 and hence 𝑥(𝑡) > 0,∀𝑡 ∈ [0, 𝑏). □

emma 6. Let 𝑋(𝑡) be a solution of the system with the hypotheses of Proposition 2. Then 𝑤(𝑡) > 0 for all 𝑡 ∈ [0, 𝑏).

roof. Let us define 𝑡2 as in the previous lemma. We have to prove that 𝑡2 = 𝑏. If 𝑡2 < 𝑏, we can repeat the same argument of the
revious lemma, in the case 𝑡2 < 𝑡1, because now we know 𝑡1 = 𝑏. Hence we get a contradiction that proves 𝑡2 = 𝑏, so that 𝑤(𝑡) > 0
or all 𝑡 ∈ (0, 𝑏). □

Through the following lemmas we prove that 𝑏 = +∞, so that the solutions are defined in all the half-line [0,+∞).

emma 7. 𝑦(𝑡) is bounded in [0, 𝑏).

roof. Assume first 𝑦0 < 𝜆. and let us define

𝑡1 = sup {𝑡 ∈ (0, 𝑏) ∣ 𝑦(𝑠) < 𝜆, ∀𝑠 ∈ [0, 𝑡)} .

hen 𝑡1 > 0 and 𝑦(𝑠) < 𝜆 for all 𝑠 ∈ [0, 𝑡1). If 𝑡1 < 𝑏 it holds 𝑦(𝑡1) = 𝜆 and 𝑦′(𝑡1) ≥ 0. On the other hand, the equation for 𝑦 gives
′(𝑡1) < 0 because 𝑥(𝑡1) > 0, and the contradiction proves 𝑡1 = 𝑏, hence 𝑦(𝑡) < 𝜆 for all [0, 𝑏). Assume now 𝑦0 ≥ 𝜆. If 𝑦(𝑡) ≥ 𝜆 in all
0, 𝑏) then we deduce from the equation that 𝑦 in non increasing, so that 𝑦(𝑡) ≤ 𝑦0. If 𝑦(𝑡) < 𝜆 for some 𝑡, then there must be 𝑡1 ≥ 0
uch that 𝑦(𝑡) ≥ 𝜆 in [0, 𝑡1], 𝑦(𝑡) < 𝜆 in a right neighborhood of 𝑡1. It is then easy to repeat the argument used in the first case and
o obtain 𝑦(𝑡) < 𝜆 for all 𝑡 > 𝑡1. Hence again 𝑦(𝑡) ≤ 𝑦0 for all 𝑡 ∈ [0, 𝑏). Setting 𝑚0 = max{𝜆, 𝑦0}, we get 0 < 𝑦(𝑡) ≤ 𝑚0 for all 𝑡 ∈ [0, 𝑏),
nd the lemma is proved. □

Let us now prove that 𝑏 = +∞.

emma 8. It holds 𝑏 = +∞.

roof. We argue by contradiction, so we assume 𝑏 < +∞. We prove that in this case the functions 𝑥(𝑡), 𝑧(𝑡), 𝑤(𝑡) are bounded in
0, 𝑏). Indeed, from the equation we get that it holds, for all 𝑡,

𝑥′(𝑡) ≤ (𝛽0 − 𝛼𝑚)𝑥(𝑡),

nd it is easy to derive the thesis for 𝑥(𝑡) by an integration. In the same way the equation for 𝑧′ gives 𝑧′(𝑡) ≤ 𝑘𝑧 and the thesis for 𝑧(𝑡)
s easily deduced. The equation for 𝑤′ gives 𝑤′ ≤ 𝛿𝑥𝑦+𝛿𝑥𝑧. We already know that 𝑥, 𝑦, 𝑧 are bounded in [0, 𝑏), so 𝑤′(𝑡) ≤ 𝐾, ∀𝑡 ∈ [0, 𝑏),
nd also 𝑤 is bounded, if 𝑏 < +∞. So we have that the solution 𝑋(𝑡) is bounded on [0, 𝑏) if 𝑏 < +∞. From standard results on the
heory of maximal solutions for systems of ODE we know this is impossible, so we have a contradiction, and the thesis 𝑏 = +∞ is
roved. □

The proof of Proposition 2 is now complete.
Now we state and prove a general results about the behavior of 𝑥 and 𝑤 as 𝑡 → +∞.
4
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Proposition 9. Assume the hypotheses of Proposition 2. Then it cannot be lim𝑡→+∞ 𝑥(𝑡) = +∞.

To prove Proposition 9 we argue by contradiction. The proof will be obtained by some lemmas. In all these lemmas we assume
he hypotheses of Proposition 9, which are those of Proposition 2.

emma 10. If lim𝑡→+∞ 𝑥(𝑡) = +∞ holds, then lim𝑡→+∞ 𝑦(𝑡) = 0.

roof. We know that 𝑦 is bounded. The equation for 𝑦 is

𝑦′(𝑡) = 𝑦(𝜆𝛾 − 𝛾𝑦 − 𝛿𝑥)

nd since 𝑥 → +∞, there exists a 𝑇 > 0 such that for any 𝑡 > 𝑇 it holds 𝜆𝛾 − 𝛾𝑦 − 𝛿𝑥 < 0 and therefore 𝑦′(𝑡) < 0. Thus, for 𝑡 > 𝑇 ,
𝑦 is decreasing and bounded from below, 𝑦(𝑡) > 0 for any 𝑡 > 0 and therefore there exists the limit 𝓁+ ≥ 0. If it were 𝓁+ > 0, we
would have lim𝑡→+∞ 𝑦′(𝑡) = −∞, a contradiction with standard results on the asymptotic behavior of functions on the real line. The
contradiction proves that

𝓁+ = lim
𝑡→+∞

𝑦(𝑡) = 0. □

Lemma 11. If lim𝑡→+∞ 𝑥(𝑡) = +∞ holds, then lim𝑡→+∞ 𝑧(𝑡) = 0.

Proof. The reasoning is similar to the previous one. As

𝑧′(𝑡) = 𝑧
(

−𝛿𝑥 + 𝑘 𝑥𝑤
𝑥𝑤 + 1

)

nd 𝑥𝑤
𝑥𝑤+1 ≤ 1, then there exists 𝑇 > 0 such that for every 𝑡 > 𝑇 we have 𝑧′(𝑡) < 0 and thus for 𝑡 > 𝑇 , 𝑧(𝑡) is decreasing and bounded

rom below. Hence, it admits a limit 𝓁+ ≥ 0. If 𝓁+ > 0, we would have lim𝑡→+∞ 𝑧′(𝑡) = −∞, and, again, this is a contradiction. The
ontradiction proves that

𝓁+ = lim
𝑡→+∞

𝑧(𝑡) = 0. □

emma 12. If lim𝑡→+∞ 𝑥(𝑡) = +∞ holds, then lim𝑡→+∞ 𝑤(𝑡) = 0.

roof. We know that lim𝑡→+∞ 𝑦(𝑡) = lim𝑡→+∞ 𝑧(𝑡) = 0. Fix 𝜖 > 0 and let 𝑇𝜖 > 0 be such that

𝛿𝑦(𝑡) + 𝛿𝑧(𝑡) < 𝜖∕2, 𝑡 > 𝑇𝜖 .

From the equation for 𝑤′ we have that, for all 𝑡 ≥ 0, it holds

𝑤′(𝑡) ≤ 𝑥(𝛿𝑦 + 𝛿𝑧 −𝑤). (7)

We can then infer the following thesis: it cannot be 𝑤(𝑡) ≥ 𝜖 for every 𝑡 > 𝑇𝜖 . Indeed, if this were true, we would have

𝑤 > 𝛿𝑦 + 𝛿𝑧 ∀𝑡 > 𝑇𝜖

and therefore 𝑤′(𝑡) < 0 for any 𝑡 > 𝑇𝜖 . Thus, we would have 𝑤(𝑡) ≥ 𝜖 and 𝑤′(𝑡) < 0 for any 𝑡 > 𝑇𝜖 , hence there would exist
lim𝑡→+∞ 𝑤(𝑡) = 𝑤+ ≥ 𝜖. From (7) we then obtain lim𝑡→+∞ 𝑤′(𝑡) = −∞, contradicting standard results. Hence, we have proved the
hesis above.

Since it cannot be 𝑤(𝑡) ≥ 𝜖 ∀𝑡 > 𝑇𝜖 , there must exist 𝑡𝜖 > 𝑇𝜖 such that 𝑤(𝑡𝜖) < 𝜖. Let us show now that 𝑤(𝑡) ≤ 𝜖 for every 𝑡 ≥ 𝑡𝜖 . If
it were not true, there would exist 𝑠𝜖 > 𝑡𝜖 such that 𝑤(𝑠𝜖) > 𝜖. We then define 𝑠𝜖 = inf

{

𝑠 ∈ (𝑡𝜖 , 𝑠𝜖) ∣ 𝑤(𝑠) > 𝜖, ∀𝑠 ∈ (𝑠, 𝑠𝜖]
}

. Then we
have 𝑠𝜖 ∈ (𝑡𝜖 , 𝑠𝜖) and 𝑤(𝑠𝜖) = 𝜖, 𝑤(𝜎) > 𝜖 for 𝑠 ∈ (𝑠𝜖 , 𝑠𝜖). Then 𝑤′(𝑠𝜖) ≥ 0, but on the other hand

𝑤′(𝑠𝜖) ≤ 𝑥(𝑠𝜖)(𝛿𝑦(𝑠𝜖) + 𝛿𝑧(𝑠𝜖) −𝑤(𝑠𝜖)) < 0

The contradiction proves the thesis. We have then shown that

0 < 𝑤(𝑡) ≤ 𝜖, 𝑡 ≥ 𝑡𝜖 .

But this argument can be repeated for any 𝜖 > 0. That is to say, for any 𝜖 > 0 we can determine 𝑡𝜖 > 0 such that, for any 𝑡 > 𝑡𝜖 it
holds 0 < 𝑤(𝑡) ≤ 𝜖. Of course this means exactly that

lim
𝑡→+∞

𝑤(𝑡) = 0. □

We can now complete the proof of Proposition 9

Proof (End of Proof of Proposition 9). As 𝑥 → +∞ and 𝑤 → 0, there exists 𝑇 > 0 such that for every 𝑡 > 𝑇 , 𝑥 > 𝑤 holds, and therefore
the equation for 𝑥′ becomes

𝑥′(𝑡) = (𝛽 − 𝛼 )𝑥 + (𝛼 − 𝛼 )𝑤.
5

𝑀 𝑀 𝑚
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Since 𝑥 → +∞, 𝑤 → 0 and 𝛽 < 𝛼𝑀 , there exists 𝑇1 > 𝑇 such that 𝑥′(𝑡) < 0 for every 𝑡 ≥ 𝑇1. But then

𝑥(𝑡) ≤ 𝑥(𝑇1), 𝑡 > 𝑇1,

and therefore it cannot be 𝑥 → +∞. In the end, assuming 𝑥(𝑡) → +∞ we arrive at a contradiction, so Proposition 9 is proved. □

We now prove a similar result for 𝑤.

Proposition 13. Assume the hypotheses of Proposition 2. Then it cannot be lim𝑡→+∞ 𝑤(𝑡) = +∞.

Proof. We will prove that lim𝑡→+∞ 𝑤(𝑡) = +∞ implies lim𝑡→+∞ 𝑥(𝑡) = +∞. As we have already prove that this cannot be, of course
we obtain the desired result. So, let us assume lim𝑡→+∞ 𝑤(𝑡) = +∞. We want to prove that ∀𝑐 > 0 there exists 𝑇𝑐 > 0 such that 𝑡 > 𝑇𝑐
implies 𝑥(𝑡) > 𝑐. This means exactly that lim𝑡→+∞ 𝑥(𝑡) = +∞. Let us fix 𝑐 > 0. Since lim𝑡→+∞ 𝑤(𝑡) = +∞, there exists 𝑇𝑐 > 0 such
that 𝑤(𝑡) > 𝑐 for 𝑡 > 𝑇𝑐 . If 𝑥(𝑡) ≤ 𝑤(𝑡) for 𝑡 > 𝑇𝑐 then 𝑥′(𝑡) = (𝛽 − 𝛼𝑚)𝑥 in [𝑇𝑐 ,+∞). Therefore 𝑥(𝑡) = 𝑥(𝑇𝑐 )𝑒(𝛽−𝛼𝑚)(𝑡−𝑇𝑐 ) for 𝑡 ≥ 𝑇𝑐 and
lim𝑡→+∞ 𝑥(𝑡) = +∞, so we have concluded. Let us then assume that there is 𝑡0 > 𝑇𝑐 such that 𝑥(𝑡0) > 𝑤(𝑡0) > 𝑐. We then prove that

𝑥(𝑡) > 𝑐, ∀𝑡 ≥ 𝑡0.

Indeed, let 𝑡 > 𝑡0. If 𝑥(𝑡) ≥ 𝑤(𝑡) then obviously 𝑥(𝑡) > 𝑐 since 𝑤(𝑡) > 𝑐 for 𝑡 > 𝑡0 > 𝑇𝑐 . If instead 𝑥(𝑡) < 𝑤(𝑡) we define 𝑡1 = inf{𝜏 ∈
(𝑡0, 𝑡) ∣ 𝑥(𝑠) −𝑤(𝑠) < 0,∀𝑠 ∈ (𝜏, 𝑡)}. From the continuity of 𝑥 and 𝑤 we easily obtain that 𝑡1 ∈ (𝑡0, 𝑡), 𝑥(𝑡1) −𝑤(𝑡1) = 0, 𝑥(𝑠) −𝑤(𝑠) < 0,
or every 𝑠 ∈ (𝑡1, 𝑡). This means that, for 𝑠 ∈ (𝑡1, 𝑡) we have 𝑥′(𝑠) = (𝛽 − 𝛼𝑚)𝑥(𝑠) > 0, therefore 𝑥(𝑡) > 𝑥(𝑡1) = 𝑤(𝑡1) > 𝑐. We have then
roven that, for every 𝑡 > 𝑡0 it holds that 𝑥(𝑡) > 𝑐, and we have completed the proof. □

We now look for the equilibrium points of the system. We will determine all such points and we will study their stability. An
mportant remark about our study of stability is the following: we are interested to solution that stay in  and we look for equilibrium
oints in , so when we perturb the initial conditions to study stability, we use initial conditions that stay in  or in , and all our

results about stability of equilibria refer to such perturbations.
About the stability we will find several results, showing different interesting behaviors of the system, even if we are not able to

give a complete picture of the stability properties of all the equilibria. So, there are still some open problems, for which we will see
some numerical simulations that gives interesting suggestions.

To find the equilibrium points, we have to distinguish the cases 𝑥 ≤ 𝑤 and 𝑥 > 𝑤.

. Fixed points and stability: case 𝒙 ≤ 𝒘

In this subset of the state space, the system becomes:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑥′(𝑡) = (𝛽 − 𝛼𝑚)𝑥

𝑦′(𝑡) = 𝛾𝑦(𝜆 − 𝑦) − 𝛿𝑥𝑦

𝑧′(𝑡) = −𝛿𝑥𝑧 + 𝑘 𝑥𝑤
𝑥𝑤 + 1

𝑧

𝑤′(𝑡) = 𝛿𝑥𝑦 + 𝛿𝑥𝑧 − 𝑥𝑤 − 𝑠𝑥,

(8)

s 𝛽 > 𝛼𝑚, equilibrium points exist if and only if:
{

𝑥 = 0

𝛾𝑦(𝜆 − 𝑦) = 0
(9)

here are no conditions on 𝑧 and 𝑤. Then in ∩{𝑥 ≤ 𝑤}, the set of equilibrium points is given by points of the form 𝑄 = (0, 0, 𝑍,𝑊 ),
r 𝑅 = (0, 𝜆, 𝑍,𝑊 ) which represent two family of points varying with two parameters 𝑍, 𝑊 with 𝑍 ≥ 0,𝑊 ≥ 0.

Now that we have all the possible equilibria in the subset {𝑥 ≤ 𝑤}, we can study their stability. If 𝑊 > 0, the function 𝐹 is
ifferentiable in a neighborhood of the equilibrium point, so we can apply the standard linearization technique. On the other hand,
f 𝑊 = 0 we are on a point of non differentiability for 𝐹 , hence we have to find out some other ideas for the study of stability. We
istinguish several cases.

.1. Case 𝑊 > 0

roposition 14. If 𝑊 > 0 all the equilibrium points 𝑄,𝑅 are unstable.

roof. When 𝑤 > 𝑥 and 𝑥𝑤 ≠ −1, the Jacobian matrix of the system is given by:

𝐽 (𝑥, 𝑦, 𝑧, 𝑤) =

⎛

⎜

⎜

⎜

⎜

𝛽 − 𝛼𝑚 0 0 0
−𝛿𝑦 𝛾𝜆 − 2𝛾𝑦 − 𝛿𝑥 0 0

−𝛿𝑧 + 𝑘 𝑤𝑧
(𝑥𝑤 + 1)2

0 −𝛿𝑥 + 𝑘 𝑥𝑤
𝑥𝑤 + 1

𝑘 𝑥𝑧
(𝑥𝑤 + 1)2

⎞

⎟

⎟

⎟

⎟

6

⎝ 𝛿𝑦 + 𝛿𝑧 −𝑤 − 𝑠 𝛿𝑥 𝛿𝑥 −𝑥 ⎠
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Hence, if we calculate 𝐽 (𝑄) with 𝑊 > 0, we obtain:

𝐽 (𝑄) = 𝐽 (0, 0, 𝑍,𝑊 ) =

⎛

⎜

⎜

⎜

⎜

⎝

𝛽 − 𝛼𝑚 0 0 0
0 𝛾𝜆 0 0

−𝛿𝑍 + 𝑘𝑍𝑊 0 0 0
𝛿𝑍 −𝑊 − 𝑠 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

f we calculate 𝐽 (𝑅) we obtain:

𝐽 (𝑅) = 𝐽 (0, 𝜆, 𝑍,𝑊 ) =

⎛

⎜

⎜

⎜

⎜

⎝

𝛽 − 𝛼𝑚 0 0 0
−𝛿𝜆 −𝛾𝜆 0 0

−𝛿𝑍 + 𝑘𝑍 𝑊 0 0 0
𝛿𝜆 + 𝛿𝑍 −𝑊 − 𝑠 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

In both cases 𝛽 − 𝛼𝑚 > 0 is a strictly positive eigenvalue, so all these equilibria are unstable. □

3.2. Case W=0 and equilibrium point Q= (0,0,Z,0)

In this case, as we said above, we cannot apply the standard linearization technique.

Proposition 15. If 𝑊 = 0 the equilibrium points 𝑄 = (0, 0, 𝑍, 0) (with 𝑍 ≥ 0) are unstable.

roof. We recall that the equation for 𝑦′ is given by 𝑦′(𝑡) = 𝑦(𝑡)(𝛾𝜆 − 𝛾𝑦 − 𝛿𝑥). Let 𝜖 > 0 such that 𝜖 < 𝛾𝜆
2(𝛾+𝛿) and let 𝐵𝜖(𝑄) be the

ball centered at 𝑄 with radius 𝜖. Let 𝑃𝜖 = (𝑥𝜖 , 𝑦𝜖 , 𝑧𝜖 , 𝑤𝜖) be any point in 𝐵𝜖(𝑄) with 𝑦𝜖 > 0, and let 𝑢(𝑡) = 𝑢(𝑡, 𝑃𝜖) be the trajectory
starting from 𝑃𝜖 , that is, 𝑢(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡), 𝑤(𝑡)) solves the system and 𝑢(0) = 𝑃𝜖 . If 𝑢(𝑡) ∈ 𝐵𝜖(𝑄) it must be that |𝑥(𝑡)| < 𝜖, |𝑦(𝑡)| < 𝜖
and thus

𝛾𝜆 − 𝛾𝑦(𝑡) − 𝛿𝑥(𝑡) ≥ 𝛾𝜆 − 𝜖(𝛾 + 𝛿) ≥ 𝛾𝜆 −
𝛾𝜆

2(𝛾 + 𝛿)
(𝛾 + 𝛿) = 1

2
𝛾𝜆.

Obviously, 𝑢(𝑡) ∈ 𝐵𝜖(𝑄) at least in a neighborhood of 𝑡 = 0. If 𝑢(𝑡) ∈ 𝐵𝜖(𝑄) for any 𝑡 ≥ 0, we would have 𝛾𝜆−𝛾𝑦(𝑡)−𝛿𝑥(𝑡) ≥ 1
2 𝛾𝜆 for any

≥ 0, from which we get 𝑦′(𝑡) ≥ 1
2 𝛾𝜆𝑦(𝑡) and therefore 𝑦(𝑡) ≥ 𝑦𝜖𝑒

1
2 𝛾𝜆𝑡 for every 𝑡 ≥ 0. As 𝑦𝜖 > 0 this implies 𝑦(𝑡) → +∞ which is absurd

s we are assuming that 𝑢(𝑡) ∈ 𝐵𝜖(𝑄), ∀𝑡 ≥ 0. This means that if 𝑃𝜖 = (𝑥𝜖 , 𝑦𝜖 , 𝑧𝜖 , 𝑤𝜖) ∈ 𝐵𝜖(𝑄) and 𝑦𝜖 > 0, 𝑢(𝑡, 𝑃𝜖) ∈ 𝐵𝜖(𝑄), ∀𝑡 ≥ 0
cannot be true, and therefore there exists a 𝑡 > 0 such that 𝑢(𝑡, 𝑃𝜖) ∉ 𝐵𝜖(𝑄). This implies that for any 𝛿 ∈ (0, 𝜖), the neighborhood
𝐵𝛿(𝑄) contains points 𝑃𝜖 such that the trajectory 𝑢(𝑡, 𝑃𝜖) exits from 𝐵𝜖(𝑄) and this is indeed the definition of instability. □

3.3. Case W=0 and equilibrium point R= (0, 𝜆,Z,0)

In this case we have different results, depending on the parameters. To simplify the formulas we put

𝛼 =
𝛼𝑀 − 𝛽
𝛼𝑀 − 𝛼𝑚

∈ (0, 1)

𝜁 = 𝛼𝑀 − 𝛼𝑚 > 0,

so that 𝛼𝑀 − 𝛽 = 𝛼(𝛼𝑀 − 𝛼𝑚) = 𝛼𝜁 > 0 and 𝛽 − 𝛼𝑚 = 𝜁 (1 − 𝛼) > 0.
For the stability of these equilibria, a crucial point seems to be the sign of 𝛿(𝜆 +𝑍) − 𝛼𝑠.

Proposition 16. If 𝛿(𝜆 +𝑍) > 𝛼𝑠, the critical points 𝑅 = (0, 𝜆, 𝑍, 0) are unstable.

Proof. From the first and fourth equations in (3) we have

𝑠𝑥′(𝑡) = 𝑠𝜁 (1 − 𝛼)𝑥 − 𝑠𝜁(𝑥 −𝑤)+

𝜁𝑤′(𝑡) = 𝛿𝜁𝑥𝑦 + 𝛿𝜁𝑥𝑧 − 𝜁𝑥𝑤 − 𝑠𝜁𝑥 + 𝑠𝜁(𝑥 −𝑤)+,

hence

𝑠𝑥′(𝑡) + 𝜁𝑤′(𝑡) = 𝑥[𝑠𝜁(1 − 𝛼) + 𝛿𝜁𝑦 + 𝛿𝜁𝑧 − 𝜁𝑤 − 𝑠𝜁] = 𝜁𝑥[−𝛼𝑠 + 𝛿(𝑦 + 𝑧) −𝑤]

From the hypothesis we can determine 𝜖 such that 𝛿(𝜆 + 𝑍 − 2𝜖) > 𝛼𝑠 + 2𝜖. Let 𝐵𝜖(𝑅) be the ball of center 𝑅 and radius 𝜖. If 𝑅 is
stable, there must exist 𝜂 ∈ (0, 𝜖) such that for any 𝑃 ∈ 𝐵𝜂(𝑅), the trajectory 𝑢(𝑡) = 𝑢(𝑡, 𝑃 ) stays in 𝐵𝜖(𝑅). Let us now see that this
leads to a contradiction. Let 𝑢(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡), 𝑤(𝑡)) be the trajectory that starts from 𝑃 and solves the system. Assume also that
the 𝑥 and the 𝑤 coordinate of 𝑃 are strictly positive. If 𝑢(𝑡) ∈ 𝐵𝜖(𝑅) then |𝑥(𝑡)| < 𝜖, |𝑦(𝑡) − 𝜆| < 𝜖, |𝑧(𝑡) −𝑍| < 𝜖, and |𝑤(𝑡)| < 𝜖.
Therefore, for any 𝑡 ≥ 0 we have

−𝛼𝑠 + 𝛿(𝑦 + 𝑧) −𝑤 > −𝛼𝑠 + 𝛿(𝜆 − 𝜖 +𝑍 − 𝜖) − 𝜖 > 𝜖.
7
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Then 𝑠𝑥′(𝑡) + 𝜁𝑤′(𝑡) > 𝜖𝜁𝑥 > 0 for every 𝑡 ≥ 0. The function 𝑔(𝑡) = 𝑠𝑥(𝑡) + 𝜁𝑤(𝑡) is therefore strictly increasing and, being bounded,
dmits limit 𝓁 > 0 i.e.,

𝓁 = lim
𝑡→+∞

(𝑠𝑥(𝑡) + 𝜁𝑤(𝑡)) > 0

et now 𝑇 > 0 be such that 𝑔(𝑡) > 𝓁∕2 > 0 for every 𝑡 ≥ 𝑇 . We prove that there exists 𝑡0 ≥ 𝑇 such that

𝑥(𝑡) > 𝓁
2(𝑠 + 𝜁 )

, for any 𝑡 ≥ 𝑡0. (10)

To prove (10) we observe that it cannot be 𝑥(𝑡) ≤ 𝑤(𝑡),∀𝑡 ≥ 𝑇 . In fact in this case we would have 𝑥′(𝑡) = 𝜁 (1−𝛼)𝑥,∀𝑡 ≥ 𝑇 and therefore
𝑥(𝑡) → +∞ which is impossible. Then there exists 𝑡0 ≥ 𝑇 such that 𝑥(𝑡0) > 𝑤(𝑡0). This implies 𝑥(𝑡0)(𝑠 + 𝜁 ) ≥ 𝑠𝑥(𝑡0) + 𝜁𝑤(𝑡0) > 𝓁∕2
nd therefore 𝑥(𝑡0) > 𝓁

2(𝑠+𝜁 ) . If it were 𝑥(𝑡) ≥ 𝑤(𝑡),∀𝑡 ≥ 𝑡0 we would have, in the same way 𝑥(𝑡) > 𝓁
2(𝑠+𝜁 ) ,∀𝑡 ≥ 𝑡0 and (10) would

be proven. Let then 𝑡1 > 𝑡0 be a value such that 𝑥(𝑡1) < 𝑤(𝑡1). Let 𝑡2 = inf{𝑡 ∈ (𝑡0, 𝑡1) ∣ 𝑥(𝑠) < 𝑤(𝑠),∀𝑠 ∈ (𝑡, 𝑡1)}. By continuity we
ave 𝑡2 ∈ (𝑡0, 𝑡1), 𝑥(𝑡2) = 𝑤(𝑡2), 𝑥(𝑠) < 𝑤(𝑠), ∀𝑠 ∈ (𝑡2, 𝑡1]. Then 𝑥′(𝑠) = 𝜁 (1 − 𝛼)𝑥(𝑠) > 0 in (𝑡2, 𝑡1] therefore 𝑥(𝑡1) > 𝑥(𝑡2) = 𝑤(𝑡2)
nd it follows 𝑥(𝑡2) > 𝓁

2(𝑠+𝜁 ) . Then (10) is verified. However we have seen that 𝑠𝑥′(𝑡) + 𝜁𝑤′(𝑡) > 𝜖𝜁𝑥 for every 𝑡 ≥ 0 therefore
𝑥′(𝑡)+ 𝜁𝑤′(𝑡) > 𝓁𝜖𝜁

2(𝑠+𝜁 ) ,∀𝑡 ≥ 𝑡0 which obviously implies that 𝑠𝑥(𝑡)+ 𝜁𝑤(𝑡) → +∞ for 𝑡 → +∞ and this contradicts that 𝑢(𝑡) ∈ 𝐵𝜖(𝑅). We
ave then proven that for any 𝑃 ∈ 𝐵𝜖(𝑅), with strictly positive 𝑥 and 𝑤 coordinate of 𝑃 , it cannot be 𝑢(𝑡, 𝑃 ) ∈ 𝐵𝜖(𝑅) for all 𝑡 ≥ 0.

This proves that 𝑅 is unstable. □

We now consider the case 𝛿(𝜆 + 𝑍) < 𝛼𝑠. In this case we do not have a complete answer about the stability of the equilibria
𝑅 = (0, 𝜆, 𝑍, 0), but we are able to study the asymptotic behavior of the components 𝑥, 𝑦,𝑤 of the trajectories, see Proposition 17
below for a precise statement. We underline here that this Proposition says, roughly speaking, that there is indeed some kind of
stability for what concerns the components 𝑥, 𝑦,𝑤 of the trajectories, and it is asymptotic stability for 𝑥,𝑤: that is, if a trajectory
starts in  near enough the critical point 𝑅, then the components 𝑥, 𝑦,𝑤 stay near the correspondent values of 𝑅, and 𝑥,𝑤 tend
to those values as 𝑡 → +∞. However, we cannot state a standard stability result because we do not control the behavior of the 𝑧
component: we only know it is decreasing.

In the proof of Proposition 17, to make some arguments a little bit simpler, it will be helpful to use ‘‘rectangular’’ neighborhoods
of 𝑅 of the following form

𝐼𝜖(𝑅) = (−𝜖, 𝜖) × (𝜆 − 𝜖, 𝜆 + 𝜖) × (𝑍 − 𝜖, 𝑍 + 𝜖) × (−𝜖, 𝜖),

As we assume 𝛿(𝜆+𝑍) < 𝛼𝑠, we can fix 𝜖1 > 0 such that ∀𝜖 ∈ (0, 𝜖1) it holds that 𝛿(𝜆+𝑍 +2𝜖) < 𝛼𝑠− 𝜖. Also, let 𝜖2 =
𝛿
2𝑘 and 𝜖3 = 𝛿𝜆.

We are now ready to state and prove Proposition 17.

Proposition 17. Assume 𝛿(𝜆 + 𝑍) < 𝛼𝑠, and let 𝑅 = (0, 𝜆, 𝑍, 0) be an equilibrium point, with 𝜆 > 0 and 𝑍 ≥ 0. For any positive
𝜖 < min{𝜖1, 𝜖2, 𝜖3} there is 𝜂 ∈ (0, 𝜖) such that for any 𝑃 ∈ 𝐼𝜂(𝑅), where 𝑃 = (𝑥𝑝, 𝑦𝑝, 𝑧𝑝, 𝑤𝑝) with 𝑥𝑝 > 0, 𝑦𝑝 > 0, 𝑧𝑝 > 0, 𝑤𝑝 ≥ 0, if
𝑢(𝑡, 𝑃 ) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡), 𝑤(𝑡)) is the trajectory starting from 𝑃 , then it holds:

(i) 0 < 𝑥(𝑡) < 𝜖, |𝑦(𝑡) − 𝜆| < 𝜖, 0 < 𝑤(𝑡) < 𝜖, 0 < 𝑧(𝑡) < 𝑍 + 𝜖 for all 𝑡 ≥ 0.
(ii) lim𝑡→+∞ 𝑥(𝑡) = 0, lim𝑡→+∞ 𝑤(𝑡) = 0.
(iii) 𝑧(𝑡) is decreasing.

The proof of Proposition 17 will be obtained by the following Lemmas 18, 20 and Corollary 19. Firstly, we notice that we will
have to work also in R3, because we want to study the behavior of (𝑥(𝑡), 𝑦(𝑡), 𝑤(𝑡)). Hence we introduce suitable neighborhoods in
R3, that is, for any 𝜂 > 0 we define

𝐽𝜂 = {(𝑥, 𝑦,𝑤) ∈ R3 ∣ |𝑥| < 𝜂, |𝑦 − 𝜆| < 𝜂, |𝑤| < 𝜂}.

Also we define 𝑢0(𝑡, 𝑃 ) be the function in R3 obtained by taking the components 𝑥, 𝑦,𝑤 of 𝑢(𝑡, 𝑃 ) i.e., 𝑢0(𝑡, 𝑃 ) = (𝑥(𝑡), 𝑦(𝑡), 𝑤(𝑡)).

emma 18. Take 𝜖 as in Proposition 17. There exists 0 < �̄� < 𝜖 such that for any 𝜂 ∈ (0, �̄�) and any 𝑃 ∈ 𝐼𝜂(𝑅), with the assumptions on
of Proposition 17, we obtain 𝑢0(𝑡, 𝑃 ) ∈ 𝐽𝜖 for any 𝑡 ≥ 0.

roof. The value �̄� will be fixed at the end of the proof. Let us start by fixing 0 < �̄� < 𝜖. So, if 𝜂 < �̄� and 𝑃 ∈ 𝐼𝜂(𝑅), we have
𝑥𝑝, 𝑦𝑝, 𝑤𝑝) ∈ 𝐽𝜖 and therefore, by continuity, 𝑢0(𝑡, 𝑃 ) ∈ 𝐽𝜖 in a right neighborhood of 𝑡 = 0. We then define 𝑡1 = sup{𝑡 > 0 ∣ 𝑢0(𝑠, 𝑃 ) ∈
𝜖 ,∀𝑠 ∈ [0, 𝑡)}. We have 𝑢(𝑠, 𝑃 ) ∈ 𝐽𝜖 for any 𝑠 ∈ [0, 𝑡1). If 𝑡1 = +∞ we have concluded. We then argue by contradiction and we suppose
< 𝑡1 < +∞. Thanks to the hypotheses, from 0 < 𝑡1 < +∞ we deduce that 𝑢0(𝑡1, 𝑃 ) ∈ 𝜕𝐽𝜖 while, as stated above, 𝑢0(𝑠, 𝑃 ) ∈ 𝐽𝜖 for

ny 𝑠 ∈ [0, 𝑡1).
Let us then study 𝑢0(𝑡, 𝑃 ) in [0, 𝑡1). From the first equation in (3) we obtain, as already seen,

𝑠𝑥′(𝑡) + 𝜁𝑤′(𝑡) = 𝜁𝑥[−𝛼𝑠 + 𝛿(𝑦 + 𝑧) −𝑤]

n the other hand, if 𝑢0(𝑡, 𝑃 ) ∈ 𝐽𝜖 we have 𝑤 < 𝜖, therefore 𝑘𝑤 < 𝑘𝜖 < 1
2 𝛿 hence

−𝛿 + 𝑘 𝑤 < −𝛿 + 𝑘𝑤 < −𝛿 + 𝛿 < − 𝛿
8

𝑥𝑤 + 1 2 2



Nonlinear Analysis: Real World Applications 77 (2024) 104071M. Badiale and I. Cravero

T
w

W

W
t

t

W

S
o

i

and therefore

𝑧′(𝑡) = 𝑥𝑧
(

−𝛿 + 𝑘𝑤
𝑥𝑤 + 1

)

< − 𝛿
2
𝑥𝑧 < 0

herefore, 𝑧 is decreasing in [0, 𝑡1). Since 𝑧(0) = 𝑧𝑝 < 𝑍 + 𝜖 we obtain 𝑧(𝑡) < 𝑍 + 𝜖 in [0, 𝑡1). From this, using 𝑦(𝑡) < 𝜆 + 𝜖 and 𝜖 < 𝜖1,
e obtain

𝑠𝑥′(𝑡) + 𝜁𝑤′(𝑡) < 𝜁𝑥[−𝛼𝑠 + 𝛿(𝜆 + 𝜖 +𝑍 + 𝜖)] < −𝜖𝜁𝑥 < 0.

e then have that the function 𝑡 → 𝑠𝑥(𝑡)+𝜁𝑤(𝑡) is decreasing in [0, 𝑡1). Therefore, for any 𝑡 ∈ [0, 𝑡1) we have 𝑠𝑥(𝑡)+𝜁𝑤(𝑡) < 𝑠𝑥𝑝+𝜁𝑤𝑝 <
(𝑠 + 𝜁 )𝜂 as 𝑃 ∈ 𝐼𝜂(𝑅). We then get

𝑥(𝑡) = 1
𝑠
𝑠𝑥(𝑡) < 1

𝑠
(𝑠𝑥(𝑡) + 𝜁𝑤(𝑡)) <

𝑠 + 𝜁
𝑠

𝜂,

so that

𝑥(𝑡) <
𝑠 + 𝜁
𝑠

𝜂 ∀𝑡 ∈ [0, 𝑡1),

and similarly

𝑤(𝑡) <
𝑠 + 𝜁
𝜁

𝜂 ∀𝑡 ∈ [0, 𝑡1).

e can then assume that 𝑠 + 𝜁
𝑠

�̄� < 𝜖
2

and 𝑠 + 𝜁
𝜁

�̄� < 𝜖
2

. In this way we have 0 < 𝑥(𝑡) < 𝜖
2 and 0 < 𝑤(𝑡) < 𝜖

2 for any 𝑡 ∈ [0, 𝑡1) and
herefore 0 ≤ 𝑥(𝑡1) ≤

𝜖
2 and 0 ≤ 𝑤(𝑡1) ≤

𝜖
2 .

Let us now study 𝑦(𝑡). We know that 𝜆 − 𝜂 < 𝑦𝑝 < 𝜆 + 𝜂, where 𝜂 < �̄�. We notice that the hypotheses above on �̄� imply �̄� < 𝜖
2 .

From the equation for 𝑦

𝑦′(𝑡) = 𝛾𝑦(𝜆 − 𝑦) − 𝛿𝑥𝑦

we have already obtained that for any 𝑡 ≥ 0 it holds 𝑦(𝑡) ≤ max{𝑦𝑝, 𝜆} and therefore, in our case,

𝑦(𝑡) < 𝜆 + 𝜂 < 𝜆 + 𝜖
2
.

We now want to obtain an inequality in the opposite sense. For this, remembering that in [0, 𝑡1) it is 𝑥(𝑡) <
𝑠 + 𝜁
𝑠

𝜂, we can assume
hat

𝛿
𝛾
𝑠 + 𝜁
𝑠

�̄� < 𝜖
2
.

Then −𝛿𝑥𝑦 > −𝛿
𝑠 + 𝜁
𝑠

𝜂 𝑦 and therefore

𝑦′(𝑡) > 𝛾𝑦(𝜆 − 𝑦) − 𝛿
𝑠 + 𝜁
𝑠

𝜂 𝑦 = 𝛾𝑦
(

𝜆 − 𝑦 − 𝛿
𝛾
𝑠 + 𝜁
𝑠

𝜂
)

> 𝛾𝑦
(

𝜆 − 𝜖
2
− 𝑦

)

.

e now fix 𝜎 ∈ (0, 𝑦𝑝) and let 𝑣𝜎 be the solution of

⎧

⎪

⎨

⎪

⎩

𝑣′𝜎 (𝑡) = 𝛾𝑣𝜎 (𝑡)
(

𝜆 − 𝜖
2
− 𝑣𝜎 (𝑡)

)

𝑣𝜎 (0) = 𝑦𝑝 − 𝜎.

By the comparison principle we have

𝑦(𝑡) ≥ 𝑣𝜎 (𝑡), ∀𝑡 ∈ [0, 𝑡1).

But 𝑣𝜎 (𝑡) is the solution of a usual logistic equation and therefore

𝑣𝜎 (𝑡) ≥ min
{

𝑣𝜎 (0), 𝜆 − 𝜖
2

}

= min
{

𝑦𝑞 − 𝜎, 𝜆 − 𝜖
2

}

.

ince 𝑦𝑝 > 𝜆 − 𝜂 > 𝜆 − 𝜖
2 we can choose 𝜎 such that 𝑦𝑝 − 𝜎 > 𝜆 − 𝜖

2 so that 𝑣𝜎 (𝑡) ≥ 𝜆 − 𝜖
2 , hence 𝑦(𝑡) ≥ 𝜆 − 𝜖

2 in [0, 𝑡1). We have then
btained

𝜆 − 𝜖
2
≤ 𝑦(𝑡) ≤ 𝜆 + 𝜖

2
n [0, 𝑡1) and therefore also

𝜆 − 𝜖
2
≤ 𝑦(𝑡1) ≤ 𝜆 + 𝜖

2
.

Hence, if we assume

�̄� < min
{

𝜖, 𝑠 𝜖 ,
𝜁 𝜖 ,

𝛾 𝑠 𝜖
}

9
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𝑥

and 𝜂 < �̄�, we obtain 0 ≤ 𝑥(𝑡1) ≤
𝜖
2 , 0 ≤ 𝑤(𝑡1) ≤

𝜖
2 ; 𝜆 − 𝜖

2 ≤ 𝑦(𝑡1) ≤ 𝜆 + 𝜖
2 . This means (𝑥(𝑡1), 𝑦(𝑡1), 𝑤(𝑡1)) ∈ 𝐽𝜖 that is 𝑢0(𝑡1, 𝑃 ) ∈ 𝐽𝜖 ,

hich contradicts 𝑢0(𝑡1, 𝑃 ) ∈ 𝜕𝐽𝜖 . The contradiction follows from the assumption 𝑡1 < +∞. Hence 𝑡1 = +∞ and the proposition is
roven. □

Within the previous proof it was also proved the following corollary:

orollary 19. 𝑧(𝑡) is decreasing in [0,+∞).

Now let us obtain the asymptotic properties of 𝑥 and 𝑤.

emma 20. In the hypotheses of Proposition 17, we have 𝑥(𝑡) → 0, 𝑤(𝑡) → 0 for 𝑡 → +∞.

roof. Arguing as in Lemma 18 we obtain that 𝑠𝑥+𝜁𝑤 is decreasing in [0,+∞). As the functions 𝑥,𝑤 are positive, there exists 𝓁 ≥ 0
uch that 𝓁 = lim𝑡→+∞(𝑠𝑥 + 𝜁𝑤). We prove now that 𝓁 = 0, arguing by contradiction. If we suppose 𝓁 > 0 we can repeat the same
rguments in the proof of Proposition 16, and we obtain that there exists 𝑡0 > 0 such that, for any 𝑡 > 𝑡0 it holds

𝑥(𝑡) > 𝓁
2(𝑠 + 𝜁 )

.

ut then

𝑠𝑥′ + 𝜁𝑤′ < − 𝜖𝓁
2(𝑠 + 𝜁 )

or any 𝑡 ≥ 𝑡0. Therefore, it would be 𝑠𝑥+ 𝜁𝑤 → −∞ which is absurd. Then 𝑠𝑥+ 𝜁𝑤 → 0 for 𝑡 → +∞ and therefore 𝑥(𝑡) → 0, 𝑤(𝑡) → 0
for 𝑡 → +∞. □

Remark 1 (A Comparison with the HANDY Model). It is possible to compare these results with those obtained in [5], Section 3, for
he egalitarian society in the original HANDY model. In that paper there are three equilibrium points: the ‘‘desert state’’ with 𝑥 = 0
nd 𝑦 = 0, the ‘‘nature state’’ with 𝑥 = 0 and 𝑦 = 𝜆 = 100, and the ‘‘sustainable state’’ with 𝑥 ≠ 0 and 𝑦 ≠ 0. In [5] the desert state is
nstable because the logistic term in the equation for 𝑦 implies that nature recovers. This is the same that happens in the present
apers for the family of equilibrium points of type 𝑄, which correspond to desert state. On the other hand, in [5] the nature state
s stable for 𝛿 < 1∕30. In the present paper the nature states are the equilibrium points of the type 𝑅. We have obtained a sort of
tability when 𝛿(𝜆 + 𝑍) < 𝛼𝑠, and instability when 𝛿(𝜆 + 𝑍) > 𝛼𝑠. In [5] it is 𝜆 = 100, 𝑠 = 5, and a straightforward computation

gives 𝛼 = 2∕3. Hence, if 𝑍 = 0, the condition 𝛿(𝜆 + 𝑍) < 𝛼𝑠 becomes 100 𝛿 < 10∕3 that is 𝛿 < 1∕30, the same condition of [5]. So
ur results recover in part those of [5], and in particular they show that the presence of non renewable resources (𝑍 ≠ 0) makes
maller the range of 𝛿’s for which there is stability, hence non renewable resources tend to create instability of the nature state.

As to the ‘‘sustainable state’’ of [5], Section 3, we find equilibrium points of this type when 𝑥 > 𝑤, hence in the next section.
owever, it seems that here the situation is more complicated: there can be many sustainable states or none, depending on the
arameters, so a direct comparison with the result of [5] seems difficult and we will not try any.

. Fixed points and stability: case 𝒙 > 𝒘

In the open set {𝑥 > 𝑤}, the system has the following form

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑥′(𝑡) = (𝛽 − 𝛼𝑀 )𝑥 + (𝛼𝑀 − 𝛼𝑚)𝑤

𝑦′(𝑡) = 𝑦(𝛾𝜆 − 𝛾𝑦 − 𝛿𝑥)

𝑧′(𝑡) = 𝑥𝑧
(

−𝛿 + 𝑘 𝑤
𝑥𝑤 + 1

)

𝑤′(𝑡) = 𝛿𝑥𝑦 + 𝛿𝑥𝑧 − 𝑥𝑤 − 𝑠𝑤.

(11)

It is then easy (recalling that now 𝑥 > 𝑤 ≥ 0) to see that the equilibrium points are given by

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑤 =
𝛼𝑀 − 𝛽
𝛼𝑀 − 𝛼𝑚

𝑥 = 𝛼𝑥

𝑦 = 0 or 𝑦 = − 𝛿
𝛾
𝑥 + 𝜆

𝑧 = 0 or 𝑥1,2 =
𝛼𝑘 ±

√

𝛼2𝑘2 − 4𝛼𝛿2
2𝛼𝛿

𝛿𝑥𝑦 + 𝛿𝑥𝑧 − 𝑥𝑤 − 𝑠𝑤 = 0.

(12)

Of course, to get real values for 𝑥1,2 in the third equation we have to assume 𝛼𝑘2 ≥ 4𝛿2. From the last equation, it can be
oticed that it is not possible to have both 𝑦 = 𝑧 = 0 Indeed, in this case we would obtain either 𝑥 = −𝑠, which is impossible since
10

> 0 and 𝑠 > 0, or we would get 𝑤 = 0, which impossible because from the first equation we would get also 𝑥 = 0, while we are
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now working in the set {𝑥 > 𝑤}. Therefore, if 𝑧 = 0, we must necessarily have 𝑦 = − 𝛿
𝛾
𝑥 + 𝜆, and thus we obtain from the fourth

equation

𝑥 = 𝛾 𝜆𝛿 − 𝑠𝛼
𝛿2 + 𝛼𝛾

. (13)

Since 𝑥 > 0, we have the additional constraint 𝜆𝛿 > 𝑠𝛼. Substituting (13) into the expressions for 𝑦 and 𝑤, we obtain the critical
point 𝑃0 with coordinates

𝑃0 =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑥0 = 𝛾 𝜆𝛿 − 𝑠𝛼
𝛿2 + 𝛼𝛾

𝑦0 = 𝛼
𝑠𝛿 + 𝛾𝜆
𝛿2 + 𝛼𝛾

𝑧0 = 0

𝑤0 = 𝛼𝛾 𝜆𝛿 − 𝑠𝛼
𝛿2 + 𝛼𝛾

= 𝛼𝑥0,

(14)

with 𝜆𝛿 > 𝑠𝛼.
If 𝑧 ≠ 0 and 𝑦 = 0, solving for 𝑧 in the fourth equation, we obtain the two critical points 𝑃𝑗 , 𝑗 = 1, 2

𝑃𝑗 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑥𝑗 =
𝛼𝑘 ±

√

𝛼2𝑘2 − 4𝛼𝛿2
2𝛼𝛿

𝑦𝑗 = 0

𝑧𝑗 =
𝛼
𝛿
𝑥𝑗 +

𝛼𝑠
𝛿

= 𝛼
𝛿
(𝑥𝑗 + 𝑠)

𝑤𝑗 = 𝛼𝑥𝑗 ,

𝑗 = 1, 2 (15)

ith 𝛼𝑘2 ≥ 4𝛿2.
Finally, if 𝑧 ≠ 0 and 𝑦 ≠ 0, solving for 𝑧 in the fourth equation, we obtain the two critical points 𝑃𝑗 , 𝑗 = 3, 4

𝑃𝑗 =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑥𝑗 =
𝛼𝑘 ±

√

𝛼2𝑘2 − 4𝛼𝛿2
2𝛼𝛿

𝑦𝑗 = − 𝛿
𝛾
𝑥𝑗 + 𝜆

𝑧𝑗 =
𝛼𝛾 + 𝛿2

𝛿𝛾
𝑥𝑗 +

𝛼𝑠
𝛿

− 𝜆 = 𝛼
𝛿
(𝑥𝑗 + 𝑠) − 𝑦𝑗

𝑤𝑗 = 𝛼𝑥𝑗 ,

𝑗 = 3, 4 (16)

with 𝛼𝑘2 ≥ 4𝛿2 and 𝑥𝑗 ≤
𝜆𝛾
𝛿 .

These are all the critical points of the system in {𝑥 > 𝑤}. We notice that, when 𝜆𝛿 ≤ 𝑠𝛼 and 𝛼𝑘2 < 4𝛿2, there are no fixed points
in the set  ∩ {𝑥 > 𝑤}. Numerical simulations (see Section 5, Fig. 9) support the guess that at least some of the trajectories starting
n  ∩ {𝑥 > 𝑤} converge to stable equilibria in {𝑥 ≤ 𝑤}, but we have no theoretical results on the global behavior of the solutions

in {𝑥 > 𝑤}. To get such a result is an open problem for future research.
We want now to study their stability. We will use the standard linearization technique, as in the case {𝑥 < 𝑤}. Unfortunately,

he study of the Jacobian matrix is now much more difficult, and in some cases, that we will see below, the problem of the stability
emains open. We will try to obtain sufficient conditions for stability or instability, at least for some ranges of the parameters, but,
s far as we know, the conditions we find are not always necessary.

As first thing, we compute the Jacobian matrix at the generic point 𝑃 = (𝑥, 𝑦, 𝑧, 𝑤), when 𝑥 > 𝑤 ≥ 0, and we find that it is given
y

𝐽 (𝑥, 𝑦, 𝑧, 𝑤) =

⎛

⎜

⎜

⎜

⎜

⎝

−𝛼𝜁 0 0 𝜁
−𝛿𝑦 𝛾𝜆 − 2𝛾𝑦 − 𝛿𝑥 0 0

−𝛿𝑧 + 𝑘 𝑧𝑤
(𝑥𝑤 + 1)2

0 −𝛿𝑥 + 𝑘 𝑥𝑤
𝑥𝑤 + 1

𝑘 𝑥𝑧
(𝑥𝑤 + 1)2

𝛿𝑦 + 𝛿𝑧 −𝑤 𝛿𝑥 𝛿𝑥 −𝑥 − 𝑠

⎞

⎟

⎟

⎟

⎟

⎠

.

.1. Stability for 𝑃0

Let us initially study the stability at the point 𝑃0 with coordinates given by (14). In this case, the Jacobian matrix is

𝐽 (𝑃0) =

⎛

⎜

⎜

⎜

⎜

−𝛼𝜁 0 0 𝜁
−𝛿𝑦0 −𝛾𝑦0 0 0
0 0 𝑛0 0

⎞

⎟

⎟

⎟

⎟

11

⎝

𝛿𝑦0 − 𝛼𝑥0 𝛿𝑥0 𝛿𝑥0 −𝑥0 − 𝑠
⎠
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where

𝑛0 = −
𝑥0

𝛼𝑥20 + 1
(𝛼𝛿𝑥20 − 𝑘𝛼𝑥0 + 𝛿). (17)

It is easy to compute that the characteristic polynomial of 𝐽 (𝑃0) is given by (𝜌 − 𝑛0)(𝑎0𝜌3 + 𝑎1𝜌2 + 𝑎2𝜌 + 𝑎3) with

𝑎0 = 1

𝑎1 = 𝑥0 + 𝑠 + 𝛼𝜁 + 𝛾𝑦0
𝑎2 = (𝑥0 + 𝑠)(𝛼𝜁 + 𝛾𝑦0) + 𝛼𝛾𝜁𝑦𝑜 − 𝛿𝜁𝑦0 + 𝛼𝜁𝑥0
𝑎3 = (𝑥0 + 𝑠)𝛼𝛾𝜁𝑦0 − 𝜁𝑦0(−𝛿2𝑥0 + 𝛼𝛾𝑠).

Hence, 𝑛0 is an eigenvalue of 𝐽 (𝑃0), so if 𝑛0 > 0, 𝑃0 is unstable. If 𝑛0 < 0, we apply the Routh–Hurwitz criterion (see [11]) to the
olynomial 𝜌3 + 𝑎1𝜌2 + 𝑎2𝜌 + 𝑎3. The Routh–Hurwitz conditions for stability in this case are given by

𝑎1 > 0

𝑎1𝑎2 > 𝑎3 > 0.
(18)

learly, 𝑎1 > 0 as sum of positive quantities, while

𝑎3 = 𝜁𝑦0(𝛼𝛾𝑥0 + 𝛼𝛾𝑠 + 𝛿2𝑥0 − 𝛼𝛾𝑠) = 𝜁𝑥0𝑦0(𝛼𝛾 + 𝛿2) > 0.

inally, 𝑎1𝑎2 > 𝑎3 leads to

(𝑥0 + 𝑠)2(𝛼𝜁 + 𝛾𝑦0) + (𝑥0 + 𝑠)𝛼𝜁 (𝛾𝑦0 + 𝑥0)+

(𝑥0 + 𝑠)(𝛼𝜁 + 𝛾𝑦0)2 + (𝛼𝜁 + 𝛾𝑦0)𝛼𝛾𝜁𝑦0 + 𝛼2𝜁2𝑥0 >

𝛿𝜁𝑦0(𝑥0 + 𝑠) + 𝛿𝜁𝑦0(𝛼𝜁 + 𝛾𝑦0) + 𝛿2𝜁𝑥0𝑦0.

(19)

Hence we got that, if 𝑛0 < 0, the inequality (19) gives a necessary and sufficient condition for the asymptotic stability of 𝑃0.
However, (19) is clearly not easy to be dealt with, so we now look for sufficient conditions for this inequality to be true. With some
computations, it is not difficult to verify that (19) holds if the following inequalities are satisfied

{

(𝑥0 + 𝑠)(𝛼𝜁 + 𝛾𝑦0) > 𝛿𝜁𝑦0.

(𝑥0 + 𝑠)𝛼𝜁 (𝛾𝑦0 + 𝑥0) + (𝛼𝜁 + 𝛾𝑦0)𝛼𝛾𝜁𝑦0 + 𝛼2𝜁2𝑥0 > 𝛿2𝜁𝑥0𝑦0.

Explicitly stating the values of 𝑥0 and 𝑦0 and carrying out the calculations, the first inequality is equivalent to

2𝛼𝛿2𝛾2𝜆𝑠 + 𝛼𝛿𝛾3𝜆2 + 𝛼𝛿3𝛾𝑠2 > 0

hich is always verified. The last inequality leads to

𝛼𝛾𝜁𝑥0𝑦0 + 𝛼𝜁𝑥20 + 𝛼𝛾𝜁𝑠𝑦0 + 𝛼𝜁𝑠𝑥0 + 𝛼2𝛾𝜁2𝑦0 + 𝛼𝛾2𝜁𝑦20 + 𝛼2𝜁𝑥0 > 𝛿2𝜁𝑥0𝑦0.

onsidering the quadratic form

𝛼𝑥20 + (𝛼𝛾 − 𝛿2)𝑥0𝑦0 + 𝛼𝛾2𝑦20 > 0

e have that it is positive definite if and only if

𝛼2𝛾2 − 1
4
(𝛼𝛾 − 𝛿2)2 > 0 ⟺ 𝛿4 − 2𝛼𝛾𝛿2 − 3𝛼2𝛾2 < 0 ⟺ 𝛿2 < 3𝛼𝛾.

Hence 𝛿2 < 3𝛼𝛾 is a sufficient condition for 𝑎1𝑎2 > 𝑎3.
Another condition can be obtained considering the inequality

𝛼𝜁𝑠𝑥0 + 𝛼𝜁𝑥20 > 𝛿2𝜁𝑥0𝑦0 ⟺ 𝛼(𝑠 + 𝑥0) > 𝛿2𝑦0

which, inserting the values of 𝑥0 and 𝑦0, leads to the condition 𝛿 < 1.
We have then proved Proposition 21, that collects all the above results about the equilibrium point 𝑃0. In the statement we will

se the reverse of inequality (19), that is the following

(𝑥0 + 𝑠)2(𝛼𝜁 + 𝛾𝑦0) + (𝑥0 + 𝑠)𝛼𝜁 (𝛾𝑦0 + 𝑥0)+

(𝑥0 + 𝑠)(𝛼𝜁 + 𝛾𝑦0)2 + (𝛼𝜁 + 𝛾𝑦0)𝛼𝛾𝜁𝑦0 + 𝛼2𝜁2𝑥0 <

𝛿𝜁𝑦0(𝑥0 + 𝑠) + 𝛿𝜁𝑦0(𝛼𝜁 + 𝛾𝑦0) + 𝛿2𝜁𝑥0𝑦0.

(20)

Proposition 21. Assume 𝜆𝛿 > 𝑠𝛼. Let 𝑛0 defined as (17). Then

(i) If either 𝑛0 > 0 or the inequality (20) holds, then 𝑃0 is unstable.
(ii) If 𝑛0 < 0 and the inequality (19) holds, then the equilibrium point 𝑃0 is asymptotically stable. A sufficient condition for (19) is

𝛿 < max{1,
√

3𝛼𝛾}.
12
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𝛼

4.2. Some remarks about 𝑃1, 𝑃2, 𝑃3 and 𝑃4

The expression for 𝑥𝑗 , 𝑗 = 1, 2, 3, 4 in (15) and (16), was derived from the third equation of the system, which gives 𝛿 = 𝑘𝑤
𝑥𝑤+1 .

We will often use, for the following discussions, the identity

𝛿 =
𝑘 𝛼 𝑥𝑗
𝛼𝑥2𝑗 + 1

, 𝑗 = 1, 2, 3, 4.

We note that the points 𝑃1,2 differ from the points 𝑃3,4 only in the expression of their 𝑦𝑗 and hence of their 𝑧𝑗 . Moreover, when
𝑘2 − 4𝛿2 > 0, it holds for 𝑗 = 1, 3,

𝑥2𝑗 <
1
𝛼
, 𝑗 = 1, 3. (21)

Indeed, recalling that of course 𝛿 > 0, we have
(

𝛼𝑘 −
√

𝛼2𝑘2 − 4𝛼𝛿2
2𝛼𝛿

)2

< 1
𝛼
⟺ 2𝛼𝑘

√

𝛼2𝑘2 − 4𝛼𝛿2 > 2𝛼2𝑘2 − 8𝛼𝛿2 ⟺

𝛼𝑘2(𝛼𝑘2 − 4𝛿2) > (𝛼𝑘2 − 4𝛿2)2 ⟺ 𝛼𝑘2 > 𝛼𝑘2 − 4𝛿2 ⟺ 𝛿2 > 0.

On the other hand, for 𝑗 = 2, 4 it holds

𝑥2𝑗 >
1
𝛼
, 𝑗 = 2, 4. (22)

Indeed this means
(

𝛼𝑘 +
√

𝛼2𝑘2 − 4𝛼𝛿2
2𝛼𝛿

)2

> 1
𝛼
⟺ 𝑘

√

𝛼2𝑘2 − 4𝛼𝛿2 > 4𝛿2 − 𝛼𝑘2

which is verified when 4𝛿2 − 𝛼𝑘2 < 0. Recall that 4𝛿2 − 𝛼𝑘2 ≤ 0 is the condition for the existence of the critical points we are dealing
with, and that 4𝛿2 − 𝛼𝑘2 = 0 implies 𝑃1 = 𝑃2 and 𝑃3 = 𝑃4.

For the following analysis, let us now compute some of the entries of the Jacobian (𝐽𝑖,𝑗 )4𝑖,𝑗=1 in the equilibrium points. We first
study the value of the elements 𝐽3,1(𝑃𝑗 ), 𝐽3,3(𝑃𝑗 ) and 𝐽3,4(𝑃𝑗 ) for 𝑗 = 1, 2, 3, 4. For these entries the variable 𝑦𝑗 does not appear and
we do not explicit the 𝑧𝑗 .

𝐽3,1(𝑃𝑗 ) = −𝛿𝑧𝑗 + 𝑘
𝑤𝑗𝑧𝑗

(𝑥𝑗𝑤𝑗 + 1)2
= −𝛿𝑧𝑗 +

𝑘𝛼𝑥𝑗
𝛼𝑥2𝑗 + 1

𝑧𝑗
𝛼𝑥2𝑗 + 1

= −𝛿𝑧𝑗 +
𝛿𝑧𝑗

𝛼𝑥2𝑗 + 1
= −

𝛼𝛿𝑥2𝑗𝑧𝑗
𝛼𝑥2𝑗 + 1

= −
𝛿2𝑥𝑗𝑧𝑗

𝑘

𝐽3,3(𝑃𝑗 ) = −𝛿𝑥𝑗 + 𝑘
𝑥𝑗𝑤𝑗

(𝑥𝑗𝑤𝑗 + 1)
= −𝛿𝑥𝑗 +

𝑘𝛼𝑥2𝑗
𝛼𝑥2𝑗 + 1

= −𝛿𝑥𝑗 + 𝛿𝑥𝑗 = 0

𝐽3,4(𝑃𝑗 ) =
𝑘𝑥𝑗𝑧𝑗

(𝛼𝑥2𝑗 + 1)2
=

𝑧𝑗
𝛼2𝑘𝑥𝑗

𝑘2𝑥2𝑗𝛼
2

(𝛼𝑥2𝑗 + 1)2
=

𝛿2𝑧𝑗
𝛼2𝑘𝑥𝑗

.

4.3. Stability for 𝑃1 and 𝑃2

To study the stability of 𝑃1 and 𝑃2, we go on with the computations of the entries of the Jacobian. We compute 𝐽4,1(𝑃𝑗 ) (with
𝑗 = 1, 2). We obtain:

𝐽4,1(𝑃𝑗 ) = 𝛿𝑦𝑗 + 𝛿𝑧𝑗 −𝑤𝑗 = 𝛿
(𝛼
𝛿
𝑥𝑗 +

𝛼𝑠
𝛿

)

− 𝛼𝑥𝑗 = 𝛼𝑠.

Hence, the Jacobian at the points 𝑃𝑗 , 𝑗 = 1, 2 is given by

𝐽 (𝑃𝑗 ) = 𝐴 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−𝛼𝜁 0 0 𝜁
0 𝛾𝜆 − 𝛿𝑥𝑗 0 0

−
𝛿2𝑥𝑗𝑧𝑗

𝑘
0 0

𝛿2𝑧𝑗
𝛼2𝑘𝑥𝑗

𝛼𝑠 𝛿𝑥𝑗 𝛿𝑥𝑗 −𝑥𝑗 − 𝑠

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

The characteristic polynomial is

det(𝜌𝐼 − 𝐴) = (𝜌 − 𝛾𝜆 + 𝛿𝑥𝑗 )

|

|

|

|

|

|

|

|

𝜌 + 𝛼𝜁 0 −𝜁
𝛿2𝑥𝑗𝑧𝑗

𝑘
𝜌 −

𝛿2𝑧𝑗
𝛼2𝑘𝑥𝑗

|

|

|

|

|

|

|

|

.

13

|

|

−𝛼𝑠 −𝛿𝑥𝑗 𝜌 + 𝑥𝑗 + 𝑠|
|



Nonlinear Analysis: Real World Applications 77 (2024) 104071M. Badiale and I. Cravero

F

W

P

1

s

So we have an eigenvalue

𝜌1 = 𝛾𝜆 − 𝛿𝑥1,2.

rom the expression of 𝑥1,2 in (15) we have

𝑥1,2 <
𝛼𝑘 +

√

𝛼2𝑘2
2𝛼𝛿

= 𝑘
𝛿

so

𝜌1 = 𝛾𝜆 − 𝛿𝑥1,2 > 𝛾𝜆 − 𝑘.

e then get a first result

roposition 22. If 𝛾𝜆 − 𝑘 ≥ 0, the critical points 𝑃1 and 𝑃2 are unstable.

In the following part of this subsection, we will assume 𝛾𝜆 − 𝑘 < 0. We then study the third order equation
|

|

|

|

|

|

|

|

|

|

𝜌 + 𝛼𝜁 0 −𝜁
𝛿2𝑥𝑗𝑧𝑗

𝑘
𝜌 −

𝛿2𝑧𝑗
𝛼2𝑘𝑥𝑗

−𝛼𝑠 −𝛿𝑥𝑗 𝜌 + 𝑥𝑗 + 𝑠

|

|

|

|

|

|

|

|

|

|

= 0,

that is

𝜌3 + (𝑥𝑗 + 𝑠 + 𝛼𝜁 )𝜌2 +

(

−
𝛿3𝑧𝑗
𝛼2𝑘

+ 𝛼𝜁𝑥𝑗

)

𝜌 +
𝛿3𝑧𝑗
𝑘

𝜁
(

− 1
𝛼
+ 𝑥2𝑗

)

= 0. (23)

. First we deal with the point 𝑃1 = (𝑥1, 𝑦1, 𝑧1, 𝑤1) namely

𝑃1 =

(

𝛼𝑘 −
√

𝛼2𝑘2 − 4𝛼𝛿2
2𝛼𝛿

, 0, 𝛼
𝛿
𝑥1 +

𝛼𝑠
𝛿
, 𝛼𝑥1

)

(24)

in the case 𝛼𝑘2 − 4𝛿2 > 0.
The value of the characteristic polynomial for 𝜌 = 0 is given by

𝛿3𝑧1
𝑘

𝜁
(

− 1
𝛼
+ 𝑥21

)

< 0

o there is a positive root, that is a positive eigenvalue. The equilibrium point 𝑃1 is then unstable, and we have obtained the following
proposition.

Proposition 23. If 𝛼𝑘2 > 4𝛿2 then the equilibrium point 𝑃1 is unstable.

2. Now we deal with the point 𝑃2 = (𝑥2, 𝑦2, 𝑧2, 𝑤2) given by

𝑃2 =

(

𝛼𝑘 +
√

𝛼2𝑘2 − 4𝛼𝛿2
2𝛼𝛿

, 0, 𝛼
𝛿
𝑥2 +

𝛼𝑠
𝛿
, 𝛼𝑥2

)

(25)

when 𝛼𝑘2 − 4𝛿2 > 0. In this case we have not a general result, but we will show that 𝑃2 can be stable or unstable at least for some
ranges of parameter values. Our results are stated in the following Propositions 24, 25, 26.

We will apply the Hurwitz technique to the polynomial in (23), which we write as 𝑎0𝜌3 + 𝑎1𝜌2 + 𝑎2𝜌 + 𝑎3, so that

𝑎0 = 1

𝑎1 = 𝑥2 + 𝑠 + 𝛼𝜁

𝑎2 = 𝛼𝜁𝑥2 −
𝛿3𝑧2
𝛼2𝑘

𝑎3 =
𝛿3𝜁𝑧2
𝑘

(

𝑥22 −
1
𝛼

)

and to have roots with strictly negative real part, the condition (18) must hold. The condition 𝑎1 > 0 is obviously verified. The
condition 𝑎3 > 0 leads us to 𝑥22 > 1

𝛼 , which is always verified as we have seen above (see (22)). Now, we analyze the condition
𝑎1𝑎2 > 𝑎3. It leads to

𝛼𝜁𝑥2 + 𝛼𝜁𝑠𝑥 + 𝛼2𝜁2𝑥 >
𝛿3𝑥2𝑧2 +

𝛿3𝑠𝑧2 +
𝛿3𝜁𝑥22𝑧2 .
14
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Explicitly stating 𝑧2 and 𝑥22 remembering that 𝑥22 =
𝑘
𝛿
𝑥2 −

1
𝛼

and 𝑧2 =
𝛼
𝛿
𝑥2 +

𝛼𝑠
𝛿

we obtain

(

𝛼𝜁𝑘
𝛿

+ 𝛼𝜁𝑠 + 𝛼2𝜁2 +
𝛿2𝜁
𝑘

)

𝑥2 +
𝛿2

𝛼2𝑘
+ 𝛿𝜁 +

𝛿2𝜁𝑠
𝑘

>
(

𝛿
𝛼
+ 2 𝛿

2𝑠
𝛼𝑘

+ 𝛼𝜁𝑘 + 𝛼𝛿𝜁𝑠
)

𝑥2 + 𝜁 + 𝛿2𝑠2

𝛼𝑘

(26)

where, multiplying both sides by 𝛿2 we get
(

𝛼𝜁𝑘 + 𝛼𝛿𝜁𝑠 + 𝛼2𝛿𝜁2 +
𝛿3𝜁
𝑘

)

𝛿𝑥2 + 𝛿4
(

1
𝛼2𝑘

+
𝜁𝑠
𝑘

)

+ 𝛿3𝜁 >
(

𝛿2

𝛼
+ 2 𝛿

3𝑠
𝛼𝑘

+ 𝛼𝛿𝜁𝑘 + 𝛼𝛿2𝜁𝑠
)

𝛿𝑥2 + 𝛿2𝜁 + 𝛿4𝑠2

𝛼𝑘
.

(27)

Note that

𝛿𝑥2 =
𝑘
2

(

1 +
√

1 − 4𝛿2
𝛼𝑘2

)

o 𝛿𝑥2 → 𝑘 as 𝛿 → 0+. If in (27) we take the limit for both sides as 𝛿 → 0+ we get 𝛼𝜁𝑘 > 0 which is always verified. Also we get
𝜌1(𝛿) → 𝛾𝜆 − 𝑘 < 0 as 𝛿 → 0+. We can therefore state the following proposition.

roposition 24. If 𝛼𝑘2 > 4𝛿2 then 𝑃2 is an equilibrium point. If 𝛾𝜆 < 𝑘 then there exists 𝛿∗ > 0 such that for any 𝛿 ∈ (0, 𝛿∗) the
quilibrium point 𝑃2 is asymptotically stable.

Note that, to verify the conditions required by the proposition, it must be 𝛿∗ < 𝑘
√

𝛼∕2. When 𝛿 takes on the maximum value,

hat is 𝛿 = 𝛿𝑐 = 𝑘
√

𝛼∕2, we obtain 𝑃1 ≡ 𝑃2 =
(

1
√

𝛼
, 0, 2𝑘 (1 + 𝑠

√

𝛼),
√

𝛼
)

and the coefficients of the characteristic polynomial are

𝑎0 = 1

𝑎1 = 𝑥0 + 𝑠 + 𝛼𝜁 = 1
√

𝛼
+ 𝑠 + 𝛼𝜁

𝑎2 =
√

𝛼𝜁 − 𝑘
4
√

𝛼
(1 + 𝑠

√

𝛼)

𝑎3 = 0

so that the characteristic polynomial is

𝜌(𝜌2 + 𝑎1𝜌 + 𝑎2).

Since 𝑎1 > 0, if 𝑎2 < 0 then the polynomial will have a positive real root and therefore the system is unstable. We have 𝑎2 < 0 if
𝛼𝜁 < 𝑘(1 + 𝑠

√

𝛼). Since all 𝑎𝑖 depend continuously on 𝛿, we easily get the following proposition:

Proposition 25. Let 4𝛼𝜁 < 𝑘(1 + 𝑠
√

𝛼) and let 𝛿𝑐 =
𝑘
2

√

𝛼. Then there exists 𝛿∗ < 𝛿𝑐 such that for any 𝛿 ∈ (𝛿∗, 𝛿𝑐 ] the critical point 𝑃2 is
unstable.

In a similar way we can prove that if 4𝛼𝜁 > 𝑘(1 + 𝑠
√

𝛼) the equilibrium 𝑃2 is stable.

Proposition 26. Assume 4𝛼𝜁 > 𝑘(1 + 𝑠
√

𝛼) and 𝛾𝜆 < 𝑘∕2. Let 𝛿𝑐 = 𝑘
2

√

𝛼. Then there exists 𝛿∗ < 𝛿𝑐 such that for any 𝛿 ∈ (𝛿∗, 𝛿𝑐 ) the
equilibrium point 𝑃2 is asymptotically stable.

Proof. As first thing we notice that 𝜌1(𝛿𝑐 ) = 𝛾𝜆−𝑘∕2 < 0, by assumption, so obviously 𝜌1(𝛿) < 0 when 𝛿 is near 𝛿𝑐 . Then we observe
that

𝑥2 =
𝛼𝑘 +

√

𝛼2𝑘2 − 4𝛼𝛿2
2𝛼𝛿

= 𝑘
2𝛿

+ 1
2𝛼

√

𝛼2𝑘2

𝛿2
− 4𝛼

is decreasing in 𝛿 so if 𝛿 < 𝛿𝑐 then 𝑥2(𝛿) > 𝑥2(𝛿𝑐 ) =
1
√

𝛼
. Hence for 𝛿 < 𝛿𝑐 we have 𝑥22 −

1
𝛼 > 0 i.e. 𝑎3(𝛿) > 0 while 𝑎3(𝛿𝑐 ) = 0. Since

4𝛼𝜁 > 𝑘(1 + 𝑠
√

𝛼), we have 𝑎2(𝛿𝑐 ) > 0 and 𝑎1(𝛿𝑐 )𝑎2(𝛿𝑐 ) > 𝑎3(𝛿𝑐 ) = 0. Therefore, by continuity, there exists 𝛿∗ ∈ (0, 𝛿𝑐 ) such that for
any 𝛿 ∈ (𝛿∗, 𝛿𝑐 ) it holds 𝑎1(𝛿)𝑎2(𝛿) > 𝑎3(𝛿) > 0 and by Routh–Hurwitz theorem the proposition is proven. □

Notice that in the last case we do not know what happens when 𝛿 = 𝛿 .
15

𝑐
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4.4. Stability for 𝑃3 and 𝑃4

Now let us study the equilibrium points 𝑃3 and 𝑃4 in (16). As first thing we notice that we are now dealing with 𝑦𝑗 > 0, hence
e must have 𝛾𝜆 > 𝛿𝑥𝑗 . It is easy to verify that it is always 𝛿𝑥𝑗 < 𝑘, while lim𝛿→0+ 𝛿𝑥4 = 𝑘, so a reasonable sufficient condition to
ave is the inequality 𝛾𝜆 > 𝑘, and it will be assumed throughout this subsection.

We start our study by computing, for 𝑗 = 3, 4:

𝐽2,2(𝑃𝑗 ) = 𝛾𝜆 − 2𝛾𝑦𝑗 − 𝛿𝑥𝑗 = 𝛾𝜆 − 2𝛾𝑦𝑗 + 𝛿
(

𝑦𝑗 − 𝜆
) 𝛾
𝛿
= −𝛾𝑦𝑗

and

𝐽4,1(𝑃𝑗 ) = 𝛿𝑦𝑗 + 𝛿𝑧𝑗 −𝑤𝑗 = 𝛿𝑦𝑗 +
1
𝑥 𝑗

(𝑥𝑗𝑤𝑗 + 𝑠𝑤𝑗 − 𝛿𝑥𝑗𝑦𝑗 ) −𝑤𝑗

= 𝛿𝑦𝑗 +𝑤𝑗 +
𝑠𝑤𝑗

𝑥𝑗
− 𝛿𝑦𝑗 −𝑤𝑗 = 𝑠𝛼.

The Jacobian matrix at points 𝑃𝑗 , 𝑗 = 3, 4, is then given by

𝐽 (𝑃𝑗 ) = 𝐴 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−𝛼𝜁 0 0 𝜁

−𝛿𝑦𝑗 −𝛾𝑦𝑗 0 0

− 𝛿2𝑥𝑗𝑧𝑗
𝑘 0 0 𝛿2𝑧𝑗

𝛼2𝑘𝑥𝑗

𝛼𝑠 𝛿𝑥𝑗 𝛿𝑥𝑗 −𝑥𝑗 − 𝑠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

The characteristic equation is

|

|

|

|

|

|

|

|

|

|

|

|

𝜌 + 𝛼𝜁 0 0 −𝜁

+𝛿𝑦𝑗 𝜌 + 𝛾𝑦𝑗 0 0
𝛿2𝑥𝑗𝑧𝑗

𝑘 0 𝜌 − 𝛿2𝑧𝑗
𝛼2𝑘𝑥𝑗

−𝛼𝑠 −𝛿𝑥𝑗 −𝛿𝑥𝑗 𝜌 + 𝑥𝑗 + 𝑠

|

|

|

|

|

|

|

|

|

|

|

|

= 0

and the characteristic polynomial is

𝜌4 + (𝑥𝑗 + 𝑠 + 𝛾𝑦𝑗 + 𝛼𝜁 )𝜌3+
[

−
𝛿3𝑧𝑗
𝛼2𝑘

+ (𝛾𝑦𝑗 + 𝛼𝜁 )(𝑥𝑗 + 𝑠) + 𝛼𝛾𝜁𝑦𝑗 − 𝛼𝑠𝜁

]

𝜌2+

[

−(𝛼𝜁 + 𝛾𝑦𝑗 )
𝛿3𝑧𝑗
𝛼2𝑘

+ 𝛼𝛾𝜁 (𝑥𝑗 + 𝑠)𝑦𝑗 + 𝛿2𝜁𝑥𝑗𝑦𝑗 +
𝛿3𝜁𝑥2𝑗𝑧𝑗

𝑘
− 𝛼𝑠𝛾𝜁𝑦𝑗

]

𝜌+

−
𝛿3𝛾𝜁𝑦𝑗𝑧𝑗

𝛼𝑘
+

𝛿3𝛾𝜁
𝑘

𝑥2𝑗𝑦𝑗𝑧𝑗 .

(28)

We write it in the standard way as 𝑎0𝜌4 + 𝑎1𝜌3 + 𝑎2𝜌2 + 𝑎3𝜌𝑎0, where the 𝑎𝑖’s are given by (28). As we have seen in the study of
𝑃1, it holds 𝑎3 < 0 when 𝑥2𝑗 <

1
𝛼 , and this happens in the equilibrium 𝑃3.

Hence we have

roposition 27. If 𝛼𝑘2 > 4𝛿2 then 𝑃3 is an unstable equilibrium point.

Let us now look at the point 𝑃4. As in the case of the equilibrium 𝑃2, we will not get a general results, but we have several results
or different ranges of the parameters. Applying Routh–Hurwitz criterion, the necessary and sufficient conditions for all roots of (28)
o have a strictly negative real part are the following

⎧

⎪

⎨

⎪

⎩

𝑎𝑖 > 0 𝑖 = 0,… , 4

𝑎1𝑎2 − 𝑎0𝑎3 > 0

𝑎1𝑎2𝑎3 − 𝑎21𝑎4 − 𝑎0𝑎
2
3 > 0.

(29)

We want to study what happens for 𝛿 → 0+, so we look at the asymptotic behavior of the 𝑎𝑖’s. We start noticing that

𝛿𝑥 (𝛿) = 𝑘 + 1 √

𝛼2𝑘2 − 4𝛼𝛿2
16

4 2 2𝛼
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from which lim𝛿→0+ 𝛿𝑥4(𝛿) = 𝑘 and therefore 𝑥4(𝛿) =
𝑘
𝛿 + 𝑜(𝛿−1). Also we have 𝑦4(𝛿) = − 1

𝛾 𝛿𝑥4(𝛿) + 𝜆, hence lim𝛿→0+ 𝑦4(𝛿) = − 𝑘
𝛾 + 𝜆. As

to 𝑧4 we have 𝑧4(𝛿) =
𝛼
𝛿 𝑥4(𝛿) +

𝛼𝑠
𝛿 − 𝑦4(𝛿) =

𝛼𝑘
𝛿2

+ 𝛼𝑠
𝛿 + 𝑜(𝛿−1). Up to know we have obtained

𝑥4(𝛿) =
𝑘
𝛿
+ 𝑜(𝛿−1)

𝑦4(𝛿) = −𝑘
𝛾
+ 𝜆 + 𝑜(1)

𝑧4(𝛿) =
𝛼𝑘
𝛿2

+ 𝛼𝑠
𝛿

+ 𝑜(𝛿−1)

𝑤4 =
𝛼𝑘
𝛿

+ 𝑜(𝛿−1).

(30)

Now let us examine the 𝑎𝑖.

𝑎0 = 1 > 0

𝑎1 = 𝑥𝑗 + 𝑠 + 𝛾𝑦𝑗 + 𝛼𝜁 = 𝑘
𝛿
+ 𝑜(𝛿−1) > 0

𝑎2 = −
𝛿3𝑧𝑗
𝛼2𝑘

+ 𝛾𝑦𝑗 (𝑥𝑗 + 𝑠) + 𝛼𝛾𝜁𝑦𝑗 + 𝛼𝑥𝑗𝜁 =
(𝛼𝜁 + 𝛾𝜆 − 𝑘)𝑘

𝛿
+ 𝑜(𝛿−1)

𝑎3 = −(𝛼𝜁 + 𝛾𝑦𝑗 )
𝛿3𝑧𝑗
𝛼2𝑘

+ 𝛼𝛾𝜁 (𝑥𝑗 + 𝑠)𝑦𝑗 + 𝛿2𝜁𝑥𝑗𝑦𝑗

+
𝛿3𝜁𝑥2𝑗𝑧𝑗

𝑘
− 𝛼𝑠𝛾𝜁𝑦𝑗 =

𝛼𝛾𝜁𝜆𝑘
𝛿

+ 𝑜(𝛿−1)

𝑎4 =
𝛿3𝛾𝜁
𝑘

𝑦4𝑧4(𝑥24 −
1
𝛼
) =

𝛼𝜁𝑘2

𝛿
(−𝑘 + 𝛾𝜆) + 𝑜(𝛿−1) > 0.

(31)

Obviously 𝑎0 > 0 and 𝑎1 > 0. As for 𝑎4 we know that 𝑎4 = 𝛿3𝛾𝜁
𝑘 𝑦4𝑧4(𝑥24 −

1
𝛼 ) > 0. We note also that 𝑎3 = 𝛼𝛾𝜁𝜆𝑘

𝛿 + 𝑜(𝛿−1) and thus it
tends to +∞ for 𝛿 → 0+. As for 𝑎2, it is 𝑎2 = (𝛼𝜁+𝛾𝜆−𝑘)𝑘

𝛿 + 𝑜(𝛿−1). We are assuming 𝛾𝜆 > 𝑘, so of course it is for 𝛼𝜁 + 𝛾𝜆 > 𝑘, hence
𝑎2 → +∞ as 𝛿 → 0+. We conclude that there is 𝛿∗ > 0 such that 𝑎𝑖 > 0, ∀𝛿 ∈ (0, 𝛿∗), 𝑖 = 0, 1, 2, 3, 4.

We study the condition 𝑎1𝑎2 − 𝑎0𝑎3 > 0. From (31) we see that

𝑎1𝑎2 − 𝑎0𝑎3 =
(𝛼𝜁 + 𝛾𝜆 − 𝑘)𝑘2

𝛿2
+ 𝑜(𝛿−2) > 0

o, as above, the assumption 𝛾𝜆 > 𝑘 gives 𝑎1𝑎2 − 𝑎0𝑎3 > 0 for small 𝛿’s.
Let us now study the inequality 𝑎1𝑎2𝑎3 − 𝑎21𝑎4 − 𝑎0𝑎23 > 0 We have

𝑎1𝑎2𝑎3 − 𝑎21𝑎4 − 𝑎0𝑎
2
3 =

(𝛼𝜁 + 𝛾𝜆 − 𝑘)𝛼𝛾𝜆𝜁𝑘3

𝛿3
−

𝑘4𝛼𝜁 (𝛾𝜆 − 𝑘)
𝛿3

+ 𝑜(𝛿−3)

=
𝛼𝜁𝑘3

𝛿3
(𝛼𝛾𝜆𝜁 + 𝛾2𝜆2 + 𝑘2 − 2𝛾𝜆𝑘) + 𝑜(𝛿−3)

=
𝛼𝜁𝑘3

𝛿3
[

𝛼𝛾𝜆𝜁 + (𝛾𝜆 − 𝑘)2
]

+ 𝑜(𝛿−3) > 0

for small 𝛿’s. Using the Routh–Hurwitz criterion, we can conclude that we have proven the following proposition.

Proposition 28. If 𝛼𝑘2 > 4𝛿2 and 𝛾𝜆 > 𝑘 then 𝑃4 is an equilibrium point and there exists 𝛿∗ > 0 such that, for any 𝛿 ∈ (0, 𝛿∗), 𝑃4 is
asymptotically stable.

The range of parameter 𝛿 for the existence of the equilibrium points we are dealing with is (0, 𝑘
√

𝛼∕2). As we have studied what
happens as 𝛿 → 0+, it would be interesting to see what happens as 𝛿 → 𝛿−𝑐 , where 𝛿𝑐 = 𝑘

√

𝛼∕2. We have not a general result in
this case, but it is possible to analyze some particular examples, as we see in what follows. Here we fix arbitrary values for all
the parameters except 𝛿 and 𝛼, and we see what happens as 𝛼 → 0+ or 𝛼 → 1−. The proof are simple computations using the

outh–Hurwitz criterion, so we skip them.

xample 1. Fix 𝜁 = 3, 𝛾 = 1∕2, 𝜆 = 10, 𝑠 = 5, 𝑘 = 1 (so that 𝛾𝜆 > 𝑘 and 𝛿𝑐 =
√

𝛼∕2). Then there are 𝛼∗ ∈ (0, 1) and 𝛿∗ ∈ (0, 𝛿𝑐 ) such
that for all 𝛼 ∈ (𝛼∗, 1) and 𝛿 ∈ (𝛿∗, 𝛿𝑐 ) the equilibrium point 𝑃4 is asymptotically stable.

Example 2. Fix 𝜁 = 3, 𝛾 = 1∕2, 𝜆 = 3, 𝑠 = 5, 𝑘 = 2 (so that 𝛾𝜆 < 𝑘 and 𝛿𝑐 =
√

𝛼). As before, we get that there are 𝛼∗ ∈ (0, 1) and
∗ ∈ (0, 𝛿𝑐 ) such that for all 𝛼 ∈ (𝛼∗, 1) and 𝛿 ∈ (𝛿∗, 𝛿𝑐 ) the equilibrium point 𝑃4 is asymptotically stable. Let us see a last example
or the case 𝛼 → 0+.

xample 3. Let us fix the parameters as in Example 2. If 𝛿 = 𝛿𝑐 a short computation gives 𝑥4 = 1∕
√

𝛼, 𝑦4 = 𝜆−𝑘∕2𝛾, 𝑧4 =
√

𝛼. Using
hese values we easily get 𝑎2 → −∞ as 𝛼 → 0+, hence we can conclude that there is 𝛼∗ ∈ (0, 1) such that for all 𝛼 ∈ (0, 𝛼∗) there is
∗ = 𝛿∗(𝛼) ∈ (0, 𝛿 ) such that for all 𝛿 ∈ (𝛿∗, 𝛿 ) the equilibrium point 𝑃 = 𝑃 (𝛼, 𝛿) is unstable.
17
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Fig. 1. On the left: situation near 𝑄 = (0, 0, 𝑍,𝑊 ), with 𝑍 = 5, 𝑊 = 10. On the right: situation near 𝑅 = (0, 𝜆, 𝑍, 0), with 𝜆 = 100 and 𝑍 = 5.

Fig. 2. Scenario around the equilibrium point 𝑃0. On the left: a situation of stability. On the right: a situation of instability with a non-periodic solution.

5. Simulation results

We now introduce the results obtained through simulations carried out using the Matlab solver ode45 that implements an explicit
adaptive Runge–Kutta. In all the figures, the evolution of the variables are plotted in different colors, specifically the population in
magenta, the renewable resources in green, the non-renewable resources in black, and the accumulated wealth in blue. The dashed
lines represent the coordinate of the equilibrium point under study, and have the same colors for the same components (that is,
magenta for the population, and so on).

We have tested the theoretical studies by uniformly perturbing the data from the previously calculated critical points, varying
the parameters, and analyzing the evolution of the scenario. In all the tests carried out, we kept the values of some parameters
fixed, and in particular, we considered, as seen in [5], 𝛾 = 0.5, 𝑠 = 5, 𝜁 = 3 and 𝛽 − 𝛼𝑚 = 1, the latter almost everywhere except in
cases where we wanted to test the behavior of the parameter 𝛼.

We first consider the case where 𝑥 ≤ 𝑤, that is when the wealth is greater than the current population. The critical points are
given by two families of points indicated with 𝑄 and 𝑅 (see Section 3). These critical points can be stable or unstable, depending
on the parameters. Here, we choose values for which our theoretical results give instability, and this is confirmed by simulations.
In Fig. 1 we reported on the left the test made on the 𝑄 type points with 𝑍 = 5 and 𝑊 = 10, on the right that on the 𝑅 points in
the particular case where 𝑥 = 𝑤 = 0 with 𝑍 = 5. In both cases we set 𝜆 = 100, 𝑘 = 1, 𝛼 = 2∕3, 𝛿 = 0.6.

We note that after some time, both critical points converge to the point 𝑃0 = (40.8654, 50.9615, 0, 27.2436) which, with these
parameters, is a stable critical point. In particular, it is the only additional critical point present in this scenario since 𝛼𝑘2 −4𝛿2 < 0.

We have then some simulations for the case 𝑥 > 𝑤, starting from the 𝑃0 type points. In Fig. 2 we set 𝜆 = 10. On the left, we
chose 𝛿 = 3 and 𝑘 = 1 obtaining 𝑃0 = (1.4286, 1.4286, 0, 0.9524). We are in the situation where 𝑃0 is a stable critical point as 𝑛0 < 0
and the condition (19) is satisfied.

On the right, we set 𝛿 = 4 and 𝑘 = 10 obtaining 𝑃0 = (1.1224, 1.0204, 0, 0.7483). Neither of the two conditions for stability is
satisfied; in fact we have 𝑛0 = 0.0752 > 0 and the stability condition (19) is not satisfied. In this figure, a precise periodicity does
not appear, but rather a sequence of oscillations without a precise pattern. This leads us to think of a chaotic trend, which will be
an interesting subject for future research.

The simulations in Fig. 3 seem to suggest the existence of periodic solutions, for which we have no theoretical result. In this
case we have 𝑘 = 1, 𝜆 = 10 and 𝛿 = 4. In both the left and right simulations we start with a small perturbation with respect to 𝑃0. In
this case it is an unstable equilibrium point because the stability condition (19) is not satisfied (while 𝑛0 < 0). In particular, on the
left we set 𝛽 − 𝛼𝑚 = 2.7 and consequently 𝛼 = 0.1. On the right, we set 𝛽 − 𝛼𝑚 = 1 with 𝛼 = 2∕3. We have numerically analyzed the
behavior of the eigenvalues of the Jacobian matrix calculated at the fixed point 𝑃0 as the 𝛿 parameter varies. We tested multiple
values of the parameter and found that, in all cases, the Jacobian matrix presents two negative real eigenvalues and two conjugate
complex eigenvalues with a real part that changes sign as 𝛿 varies. Since we have continuity with respect to the parameters, this
18
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Fig. 3. Periodic solutions near 𝑃0.

Fig. 4. Numerical analysis of eigenvalues. On the left: eigenvalues of the Jacobian matrix computed in the fixed point 𝑃0 as the 𝛿 parameter varies in the
situation of periodic solutions of Fig. 3 on the left. On the right: eigenvalues of the Jacobian matrix computed in the fixed point 𝑃0 as the 𝛿 parameter varies
in the situation of periodic solutions of Fig. 3 on the right.

Fig. 5. Case 𝛾𝜆 − 𝑘 ≥ 0 for 𝑃1 and 𝑃2. On the left: situation near 𝑃1. On the right: situation near 𝑃2.

behavior suggests that we might be in the presence of a Hopf bifurcation of periodic solutions. In Fig. 4, we have reported the value
of these eigenvalues for two different values of 𝛿. We can observe that the real eigenvalues are always negative as 𝛿 varies, while
the conjugate complex eigenvalues exhibit a change of sign in the real part.

In Figs. 5 and 6, we have studied the behavior near the points 𝑃1 and 𝑃2. As for Fig. 5, in both cases we set 𝜆 = 100, 𝑘 = 1,
𝛼 = 2∕3, and 𝛿 = 0.3. In this situation we have 𝛿𝑐 = 0.4082 and 𝛾𝛿 − 𝑘 > 0. With these data, both 𝑃1 = (0.5363, 0, 12.3028, 0.3575) and
𝑃2 = (2.7971, 0, 17.3268, 1.8647) are unstable critical points. From the two graphs, we can notice a convergence to a point, and we
have verified that this point is 𝑃0, which with these parameters is an asymptotically stable equilibrium point.

In Fig. 6, we present the results obtained for 𝑃2 under the stability conditions of Proposition 24. We set 𝜆 = 10, 𝑘 = 10, and, as
usual, 𝛾 = 0.5 and 𝛼 = 2∕3, so that 𝛾𝜆−𝑘 < 0 and 𝛿𝑐 = 4.0825. From numerical experiments, we believe it holds 𝛿∗ ∼ 1.1. We verified
this assertion by varying 𝛿 and we reported on the left the graph obtained for 𝛿 values lower than 1.1, specifically 𝛿 = 0.9. The
numerical simulation suggests stability of 𝑃2, in this case. On the right, we set 𝛿 = 1.1. The simulation seems to indicate a situation
of instability. Considering that with these parameters the condition 4𝛼𝜁 −𝑘(1+ 𝑠

√

𝛼) = −42.8248 is satisfied, this result is compatible
with Proposition 25, with 𝛿∗ ≤ 1.1.

In Fig. 7, we used the parameters 𝜆 = 10, 𝛿 = 0.2, 𝑘 = 1 with 𝛿𝑐 = 0.4082 to test the behavior near the points 𝑃3 and 𝑃4. We recall
that 𝑃3 is always an unstable equilibrium point while 𝑃4, with the chosen data, is stable for small values of 𝛿 (Proposition 28). We
can notice that, after a short time interval, the solution obtained starting from the perturbed data of 𝑃 converges to the point 𝑃 .
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Fig. 6. Situation near 𝑃2 in the case 𝛾𝜆 < 𝑘. On the left: small 𝛿. On the right: large 𝛿 and 4𝛼𝜁 − 𝑘(1 + 𝑠
√

𝛼) = −42.8248.

Fig. 7. On the left: situation near 𝑃3. The solution tends to 𝑃4 that satisfied stability conditions. On the right: situation near 𝑃4.

Fig. 8. Situation near 𝑃4. Case 𝛾𝜆 < 𝑘. On the left: large 𝛼. On the right: small 𝛼.

Then, in Fig. 8, we wanted to verify the behavior of the solution starting from perturbed data related to 𝑃4 in cases where
𝛾𝜆 − 𝑘 < 0 with 𝛿 close to 𝛿𝑐 , cases in which we do not have a precise theoretical result. The parameters used are those indicated
in Examples 2 and 3 at the end of Section 4. On the left, we analyzed the behavior in the case where 𝛼 is large and specifically we
set 𝛽 − 𝛼𝑚 = 0.1 in order to obtain 𝛼 = 0.9667 and 𝛿 = 0.9 close to 𝛿𝑐 = 0.9832.

On the right, we instead set 𝛽−𝛼𝑚 = 2.7 in order to obtain a small 𝛼, 𝛼 = 0.1, and 𝛿 = 0.3 close to 𝛿𝑐 = 0.3162. The behaviors seem
to follow the analyses made in Examples 2 and 3, and in particular for 𝛾𝜆 − 𝑘 < 0 and 𝛿 → 𝛿𝑐 we have instability for small 𝛼 and
stability for large 𝛼. Specifically, we verified that the solution in the left figure converges to the point 𝑃0, which is asymptotically
stable, with the data taken into consideration.

In Fig. 9, we wanted to analyze the case when the parameters do not meet the required conditions 𝛼𝑘2 ≥ 4𝛿2 and 𝜆𝛿 ≥ 𝑠𝛼, so
there no fixed points in 𝑥 > 𝑤. We test with 𝜆 = 1, 𝑠 = 5, 𝑘 = 0.5, 𝛿 = 0.3, 𝛼 = 2∕3. We have reported the results of two numerical
tests with different initial points and in both cases the solution converges to the fixed point 𝑅 = (0, 𝜆, 𝑍, 0) under stability conditions
𝛿(𝜆 +𝑍) < 𝛼𝑠.

Finally, in Figs. 10 and 11, we wanted to revisit the scenarios proposed in Fig. 2 on the left, related to a stability situation of
point 𝑃0, and Fig. 5 on the right, related to an instability situation for point 𝑃2, in the case where 𝛿1 ≠ 𝛿2. From this and other similar
simulations, it seems to us that different choices for these parameters do not influence too much the results we have obtained.
20



Nonlinear Analysis: Real World Applications 77 (2024) 104071M. Badiale and I. Cravero
Fig. 9. 𝛼𝑘2 < 4𝛿2 and 𝜆𝛿 < 𝑠𝛼. No fixed points in {𝑥 > 𝑤}. On the left: initial point 𝑃 = [2, 1, 1, 1]. On the right: initial point 𝑃 = [5, 5, 5, 1]..

Fig. 10. Study of the influences of the parameters. Case 𝛿1 ≠ 𝛿2. Scenario around the equilibrium point 𝑃0 in the situation of stability of Fig. 2 (case on the
left). On the left: 𝛿1 = 3, 𝛿2 = 7. On the right: 𝛿1 = 3, 𝛿2 = 1.

Fig. 11. Study of the influences of the parameters. Case 𝛿1 ≠ 𝛿2. Scenario around the equilibrium point 𝑃2 in the situation of non stability of Fig. 5 (case on
the right). On the left: 𝛿1 = 0.3, 𝛿2 = 0.8. On the right: 𝛿1 = 0.3, 𝛿2 = 0.1.

6. Open problems and future research

The work we have done in this paper can be pursued in several directions, as in the following suggestions:

• A first step would be to divide the population in Commoners and Elites, as in the original HANDY model.
• Another interesting problem would be the search for general stability results for all of the equilibria, This analysis could start

with some hypotheses suggested by the results obtained above. For example, Propositions 25 and 26 suggest the guess that
the equilibrium 𝑃2 is stable when 4𝛼𝜁 > 𝑘(1 + 𝑠

√

𝛼), while, if 4𝛼𝜁 < 𝑘(1 + 𝑠
√

𝛼), there exists 𝛿1 ∈ (0, 𝛿𝑐 ) such that 𝑃2 is stable
if 𝛿 ∈ (0, 𝛿1), unstable if 𝛿 ∈ (𝛿1, 𝛿𝑐 ). Some similar guess could be done for 𝑃4, starting from the examples in the last part of
Section 4: one could try to prove that 𝑃4 is always stable for large 𝛼’s and 𝛿’s, unstable for small 𝛼’s and large 𝛿’s.

• When we have a result of unstability of an equilibrium point, it would be interesting to know what is the asymptotic behavior
of the single components of trajectories, in particular population and wealth. In the present paper, we were able to do this
just in some particular cases.

• Another interesting research line would be to change the equation for 𝑧′, inserting some more pessimistic hypotheses, for
example a term like 𝑥𝑤 instead of 𝑥𝑤 .
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• The numerical simulations (figure 3) suggest the existence of periodical solutions, and the numerical computations of the
complex eigenvalues show a change of sign of real parts. This facts point to the possibility of a Hopf bifurcation. It would be
interesting to prove it rigorously.

• Fig. 2 seems to suggest the onset of chaotic dynamics, the study of which should be developed.
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