
Review

Matteo Plebani* and Luca San Mauro

Computability theory as a philosophical
achievement

https://doi.org/10.1515/cclm-2022-0710
Received July 25, 2022; accepted July 26, 2022;
published online August 15, 2022

Abstract: Artificial intelligence plays an important role in
contemporary medicine. In this short note, we emphasize
that philosophyplayed a role in thedevelopment of artificial
intelligence. We argue that research in computability the-
ory, the theoretical foundation ofmodern computer science,
was motivated by a philosophical question: can we char-
acterize precisely the class of problems that can be solvedby
algorithms? We suggest that reflecting on the connection
between philosophy and artificial intelligence helps realize
that philosophical and scientific progress are connected.

Keywords: computability theory; conceptual engineering;
Rice’s theorem.

Introduction

To say that artificial intelligence is a scientific and tech-
nological achievement sounds like a platitude. In this note,
we want to draw attention to a less obvious way in which
artificial intelligence is a success story. We will argue that
computability theory, the theoretical underpinning of
artificial intelligence, is a significant philosophical enter-
prise and a prime example of successful philosophical
work. In “The philosophical significance of computability
theory” Section, we explain in which sense the work of the
founding figures of computability theory can be viewed as
an example of successful philosophical work. “Comput-
ability theory and the philosophy of language” Section
discusses one case study where results in computability
theory can be philosophically illuminating: Frege’s

distinction between the sense of a linguistic expression
and its reference.

The philosophical significance of
computability theory

Philosophers deal in concepts. They aim to deepen our un-
derstanding of the concept of justice, freedom, causation,
rationality, and so on. Computability theory is philosophi-
cally significant because it provides a precise mathematical
understanding of the concept of solvability, which corre-
sponds to the (abstract) potential of solving a certain prob-
lembyalgorithmicmeans.Algorithmsareubiquitous.When
we learned to do additions, multiplications, subtractions,
and divisions, we also learned a bunch of algorithms. These
are step-by-step procedures to solve a problem, where every
step consists of a purelymechanical operation, likewriting a
symbol, pressing a button, or moving a cursor to a definite
location. A broader definition of an algorithm is a collection
of instructions which enable to fulfill a certain task; hence,
cooking recipes, medical protocols, or driving directions all
qualify as examples of algorithms.

At first glance, it may seem that the problem of whether
a given task is (algorithmically) solvable is highly contex-
tual. So much so that, in most situations, the solution to a
solvability question would ultimately depend on the toolkit
that one is permitted to employ. For example, while one
needsapples andappropriate cooking tools to cookanapple
pie, considerably more sophisticated technology is required
to complete a space journey. Similar considerations apply to
mathematical tasks. On the one hand, it is child play to
multiply two given positive integers, and any diligent high
school student knows how to solve any given quadratic
equation. On the other hand, however, it is well known that.
(1) If one is only allowed to use a compass and a

straightedge, it is impossible to construct a square with
the same area as a given circle.

(2) There is no general formula for solving polynomial
equations of degree greater or equal than 5 which uses
only addition, subtraction, multiplication, division,
raising to integer powers, and the extraction of nth roots.

*Corresponding author: Matteo Plebani, Filosofia e Scienze
dell’Educazione, Universita degli Studi di Torino, Torino, Italy,
E-mail: matteo.plebani@unito.it. https://orcid.org/0000-0002-
4853-7865
Luca San Mauro, Universita degli Studi di Roma La Sapienza
Dipartimento di Matematica Guido Castelnuovo, Roma, Italy,
E-mail: luca.sanmauro@uniroma1.it

Clin Chem Lab Med 2022; 60(12): 1862–1866

Open Access. © 2022 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International
License.

https://doi.org/10.1515/cclm-2022-0710
mailto:matteo.plebani@unito.it
https://orcid.org/0000-0002-4853-7865
https://orcid.org/0000-0002-4853-7865
mailto:luca.sanmauro@uniroma1.it

Therefore, it would seem that the search for algorithms will
never end because whether a task can be solved or not
largely depends onwhichmethods are allowed; any job that
now appears to be insurmountable may one day be solved
with the right combination of intellect and technology. The
startling realization that this is not the case gave birth to
computability theory in the 1930s. Alan Turing, Alonso
Church, Stephen Kleene, Kurt Gödel, Emil Post, and others
demonstrated that there is a robust and mathematically
precise concept of solvability, which encompasses all
conceivable algorithms. (For a detailed historical recon-
struction of the birth of computability and its development,
see [1, 2]). A major evidence of this fact is that a plethora of
distinct models of computation – such as Turing machines,
register machines, partial recursive functions, λ-calculus,
flow diagrams, and more – are all equivalent, in the sense
that they provide the same answer to the question: “Which
arithmetical functions can be computed by an algorithm,
and which cannot?”. As Gödel noted [3, p. 84]: “With this
concept [computability] one has for the first time succeeded
in giving an absolute definition of an interesting epistemo-
logical notion”. It is impossible to overestimate the impor-
tance of such an achievement. For one, it launched the
Digital Age we live in, as everyday computers are nothing
else that the physical manifestations of Turing machines,
the simple devices – and yet as powerful as they could be
(see below) – first introduced in [4].

Why is this important to philosophy, one couldwonder.
Let’s talk about a few reasons. First, computability theory
opens the door to the possibility of showing that certain
problems are absolutely unsolvable. Note that, without a
precise characterization of solvability, it would be impos-
sible toprove that a problem is unsolvable by anyalgorithm.
This is because the failure of finding an algorithm could
always be explained with other factors, such as the lack of
ingenuity, rather than by the fact no such algorithm exists.

As is clear, knowing that a task is unsolvable allows to
save time and energy: oncewe know that a problem cannot
be solved algorithmically, looking for an algorithm to solve
it would be as pointless as looking for a pair of positive
integers m, n such that (m/n)2 is equal to 2.

The quintessential example of such absolute unsolv-
ability is given by the Halting Problem, i.e., the decision
problem which, for any arbitrary algorithm A and input x,
asks whether A halts on x, or runs forever. So, there is no
algorithm which is able to successfully predict for any other
algorithm if it will converge or diverge on a given input. As a
matter of fact, unsolvability arise in many different (mathe-
matical) areas: if a mathematical system allows to store and
process information in sufficiently complicatedways, then it
will be computationally universal, and therefore even simple

questions about these systems will be unsolvable. Examples
of unsolvability occur even outsidemathematics [5]. (For the
record, computability theory doesn’t stop after discovering
that some problems are unsolvable. Far from it. In fact, a
major thread of research within the theory has been to
develop robust hierarchies of unsolvability which allow one
to measure just how much unsolvable are certain problems.
In a nutshell, one says that a problem P1 is harder than a
problem P2 when there is an algorithm that converts any
solution toP1 into a solution toP2. For a rich presentation of
several hierarchies of unsolvability, see the textbook [6]).

So, unsolvable problems escape the capabilities of even
the most powerful computers of today. In fact, we say with
mathematical confidence that no future computer can ever
solve such tasks: anything that cannot be solved by a Turing
machine will always be outside the scope of algorithmic
solvability. Behold how strong these statements are, and
how they subvert a naive epistemological prejudice. Indeed,
it would be natural to assume that a claim of the form

No  computer  will  ever  be  able  to  accomplish  the  task P

(1)

would be essentially empirical and open to confirmation or
denial depending on, e.g., future hardware/software ad-
vancements. Contrarily, according to computability the-
ory, one can confidently justify numerous instances of (1)
by completely ignoring empirical features.

Another reason why having a mathematically precise
characterization of solvability is an important philosophical
achievement is that it would allow us to explain the notion
of problem that can be solved by an algorithm to an alien
intelligence capable of understanding basic arithmetical
notions, butwithout any experience of our paper-and-pencil
procedures to compute mathematical operations, or of
anything like our usual daily practices with algorithms [7].
imagines an alien intelligence who understands basic
arithmetical concepts by direct acquaintance rather then by
an algorithm. Such an alien doesn’t compute the result of a
sum – it sees the result. It might be controversial whether
understanding addition without relying on any algorithm is
really possible. However, the point is that even if we allow
for such a possibility, we might explain the distinction be-
tween the arithmetical functions that can be computed us-
ing an algorithm and those that cannot to a being who
grasps basic arithmetical notions by direct acquaintance,
i.e., in a way that is completely different from the way we
understand those notions.

Remarkably, the precise characterization of the notion
of solvability is the output of conceptual work. For
example, Turing came up with the definition of Turing

Plebani and San Mauro: Computability theory as a philosophical achievement 1863

machines by stripping inessentials from the process of
computation as experienced by an (idealized) human be-
ing. Philosophers debate whether this work on concepts is
best seen as an analysis revealing what those concepts are
or rather as a sharpening of our pre-theoretical notions that
makes them more precise than they originally were [8, 9].
We can remain neutral on the issue of whether the precise
characterization of solvability offered by computability
theory should be seen as an analysis or a sharpening. The
point is that the work of Turing and others shows that
putting our own concepts under philosophical lenses can
have a huge impact, both on the theoretical and at the
practical level.

Finally, showing that there are tasks that algorithms
cannot perform raised the question whether the human
mind’s capacities exceeds those of a computer. Since the
(in)famous [10], the issue has been a controversial topic. It
is fair to say that the arguments of those arguing for the
superiority of the human mind over machines has been
generally received as flawed or unconvincing (see [11, 12]
for a survey of the relevant literature.) However, one might
still interpret the results of computability theory as sup-
porting a disjunctive claim [13]: either the humanmind can
solve problems that no machine can solve, or there are
problems that the human mind cannot solve. Hence, it is
safe to say that computability theory provided a model to
which the humanmind can be fruitfully compared and that
learning about the limits of computation prompted the
inquiry about the limits of human knowledge and
understanding.

Computability theory and the
philosophy of language

In this section, wewill highlight that the kind of conceptual
clarity that computability theory brought on can be fruit-
fully applied also to philosophical questions apparently
unrelated to the subject of computation.

“How do computers work?” and “How do words refer to
things out there in the world?” might strike many as two
completely unrelated questions, the first belonging to the field
of engineering and the second to the philosophy of language.
Computability theory provides a way to connect them.

Let us start with the question of how words refer to
things. The philosopher and mathematician Gottlob Frege
introduced a distinction that has become standard in the
philosophy of language, the distinction between the sense of
a linguistic expression and its referent. The two numerical
expressions “7 + 1” and “4 × 2” denote the same number,

eight, and hence have the same referent in Frege’s termi-
nology, but they have different senses, because they present
the number eight in two different ways: as the sum of 7 and 1
and as the product of 4 and 2, respectively.

Frege did not offer a precise definition of the notion of
sense. He speaks of the sense of an expression that refers to
an object as a way of presenting that object. The idea is that
two expressions might stand for the same object but char-
acterize/describe it in different ways. A standard non-
mathematical example is the pair of expressions “the
morning star” and “the evening star”,whichboth refer to the
same celestial body, but present it in two different ways.

There is a passage in Frege’s classic paper [14] where
he says that:

The sense of a proper name is grasped by everybody who is
sufficiently familiar with the language or totality of designations
to which it belongs; but this serves to illuminate only a single
aspect of the referent, supposing it to exist. Comprehensive
knowledge of the referent would require us to be able to say
immediately whether every given sense belongs to it. To such
knowledge we never attain [14, pp. 210–1]

This canbeparaphrasedbysaying that there isnoalgorithmto
determine whether two given senses are associated to the
same object: an extremely interesting philosophical claim.
However, it looks impossible to establish it or refute it without
aprecisedefinition sense. Computability theory canbeused to
offer a precise reformulation of Frege’s claim, a reformulation
that can actually be proved.

Let ‘f ’ and ‘g’ be two symbols that stand for numerical
functions. Let the sense of ‘f ’ be the algorithm associated
with ‘f ’, i.e., the procedure that we follow to calculate f(n)
given n. The reference of ‘f ’, on the other hand, is a set of
ordered pairs of natural numbers, where (m, n) belongs to
such a set if and only if f(m)=n. Similarly for ‘g ’. (See [15] for
the idea to take Fregean senses to be algorithms.). The two
expressions ‘f ’ and ‘g ’ might have different senses but the
same reference, if the algorithms associated with them are
different but extensionally equivalent, in the sense that they
always return the same output for a given input. However,
there is not algorithm to determine whether different algo-
rithms are extensionally equivalent, on account of Rice’s
theorem, a fundamental result in computability theory
[16, Corollary 1.6.14]. (For another philosophical application
of Rice’s theorem, see [17]).

Frege never said that the sense of a term for a numer-
ical function is an algorithm and some of his writing sug-
gest that he might have rejected the identification of the
referent of a functional term with a set (of pairs of natural
numbers). However, the proposed reinterpretation of
Frege’s claim still aligns with many aspects of Frege’s

1864 Plebani and San Mauro: Computability theory as a philosophical achievement

distinction between sense and reference. The referent of a
functional term is a function, i.e., a mapping of (sequences
of) natural numbers with natural numbers. An algorithm
that computes a function is a way of presenting that
mapping, a path, a recipe that can be followed to find the
value of a function for a given input. Hence the algorithm
associatedwith a functional term is a way of presenting the
referent of that functional term. Hence, Rice’s theorem can
be paraphrased as a vindication of a version of Frege’s
claim, in this way: “Complete knowledge of the referent of
a functional term, i.e., a function, would require us to be
able to say whether every given algorithm computes that
function. To such knowledge we never attain”.

Conclusions

The connection between artificial intelligence and engi-
neering is obvious. In this paper, we have emphasized the
connection between artificial intelligence and conceptual
engineering, aka philosophy. (On conceptual engineering,
see [18–20].) This reminds us of an important point: phi-
losophy can have an impact outside academia.

Casati R. [21] discusses several examples of philo-
sophical debates where the participants were not profes-
sional philosophers and the context of the debate was non-
academic. One example is the discussion of what counts as
art that took place during a trial. Defining “art” was
important in that context for a legal reason: artworks were
exempted from certain forms of taxation, whereas other
artifacts were not. Another example discussed by Casati is
the debate about how to define “family” that took place
during the writing of the Italian Constitution. Which
conception of family a state adopts is not a purely theo-
retical issue: it has a huge impact on the lives of its citizens.

Our previous discussion suggests yet another example
of a philosophical debate that had repercussions outside
the seminar room: the way we defined the notion of solv-
ability had a huge impact on the world we are living in.

Artificial intelligence plays an important role in
contemporary medicine. Philosophy played a role in the
development of artificial intelligence. The general lesson is
that philosophical and scientific progress are connected.
Philosophical progress is achieved when we improve our
concepts, and working with better concepts leads to scien-
tific progress. Keep this inmind the next time you encounter
a philosopher of medice working on the notion of “health”.

Research funding: Matteo Plebani acknowledges that the
research activity that led to the realization of this paperwas

carried out within the Department of Excellence Project of
the Department of Philosophy and Education Sciences of
the University of Turin (ex L. 232/2016). Other relevant
projects: Proyecto (FFI2017-82534-P) from FEDER/
Ministerio de Ciencia, Innovación y Universidades-
Agencia Estatal de Investigación and PID2020-115482GB-
I00 from Ministerio de Ciencia e Innovación/Agencia
nacional de Investigación.
Author contributions: All authors have accepted
responsibility for the entire content of this manuscript
and approved its submission.
Competing interest: Authors state no conflict of interest.
Informed consent: Not applicable.
Ethical approval: Not applicable.

References

1. Soare RI. The history and concept of computability. In: Griffor E,
editor. Handbook of computability theory; 1999, vol 140:3–36 pp.

2. Sieg W. On computability. In: Irvine A, editor. Handbook of
philosophy of science. Philosophy of mathematics. Citeseer;
2009:549–630 pp.

3. Gödel K. Remarks before the princeton bicentennial conference
on problems in mathematics. In: Feferman S, Dawson J, Kleene S,
editors. Kurt gödel: collected works vol. II. Oxford: Oxford
University Press; 1946:150–3 pp.

4. Turing A. On computable numbers, with an application to the
entscheidungsproblem. Proc Lond Math Soc 1936;42:230–65.

5. Cubitt T, Perez-Garcia D, Wolf MM. Undecidability of the spectral
gap. Forum of Mathematics Pi 2022;e14:1–102.

6. Odifreddi P. Classical recursion theory: the theory of functions
andsets of natural numbers. Amsterdam,NorthHolland: Elsevier;
1989.

7. McGee V.Why study computability? Available from: ocw.mit.edu/
courses/24-242-logic-ii-spring-2004/resources/why_study_
comptt.

8. Incurvati L. Conceptions of set and the foundations of
mathematics. Cambridge: Cambridge University Press; 2020.

9. Shapiro S. Computability, proof, and open-texture. In:
Olszewski A, Wolenski J, Janusz R, editors. Church’s thesis after
70 years. Berlin, Boston: De Gruyter; 2013:420–455 pp.

10. Lucas JR. Minds, machines and gödel. Philosophy 1961;36:
112–27.

11. Franzén T. Gödel’s theorem: an incomplete guide to its use and
abuse. Wellesley, MA: AK Peters/CRC Press; 2005.

12. McGee V. In: Fitting M, Rayman B, editors. Gödel, lucas, and the
soul-searching selfie. Cham: Springer International Publishing;
2017:147–63 pp.

13. Horsten L, Welch P. Godel’s disjunction: the scope and limits of
mathematical knowledge. Oxford, England: Oxford University
Press UK; 2016.

14. Frege G. Sense and reference. Phil Rev 1948;57:209–30.
15. Moschovakis YN. Sense and denotation as algorithm and value.

In Oikkonen J, Vaananen J, editors. Lecture notes in logic.
Berlin: Springer; 1994, vol 2:210–49 pp.

Plebani and San Mauro: Computability theory as a philosophical achievement 1865

http://ocw%20http://ocw.mit.edu/courses/24-242-logic-ii-spring-2004/resources/why_study_comptt
http://ocw%20http://ocw.mit.edu/courses/24-242-logic-ii-spring-2004/resources/why_study_comptt
http://ocw%20http://ocw.mit.edu/courses/24-242-logic-ii-spring-2004/resources/why_study_comptt

16. Soare RI. Turing computability. Theory and applications of
computability. Berlin, Heidelberg: Springer; 2016.

17. Plebani M, San Mauro L, Venturi G. Thin objects are not
transparent. Theoria 2021;1–12. https://doi.org/10.1111/theo.
12373.

18. Cappelen H. Fixing language: an essay on conceptual
engineering. Oxford: Oxford University Press; 2018.

19. Haslanger S. Gender and race: (what) are they? (What) dowewant
them to Be? Noûs 2000;34:31–55.

20. Plunkett D, Cappelen H. A guided tour of conceptual engineering
and conceptual ethics. In: Cappelen H, Plunkett D, Burgess A,
editors. Conceptual engineering and conceptual ethics. Oxford:
Oxford University Press; 2020:1–26 pp.

21. Casati R. Prima lezione di filosofia. Roma-Bari: Laterza; 2011.

1866 Plebani and San Mauro: Computability theory as a philosophical achievement

https://doi.org/10.1111/theo.12373
https://doi.org/10.1111/theo.12373

	Computability theory as a philosophical achievement
	Introduction
	The philosophical significance of computability theory
	Computability theory and the philosophy of language
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Euroscale Coated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 35
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1000
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.10000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /DEU <FEFF00280073006500650020006700650072006d0061006e002000620065006c006f00770029000d005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f002000700072006f006400750063006500200063006f006e00740065006e00740020007000720069006e00740069006e0067002000660069006c006500730020006100630063006f007200640069006e006700200074006f002000740068006500200064006100740061002000640065006c0069007600650072007900200072006500710075006900720065006d0065006e007400730020006f00660020004400650020004700720075007900740065007200200028004a006f00750072006e0061006c002000500072006f00640075006300740069006f006e002900200044006100740065003a002000300033002f00300031002f0032003000310035002e0020005400720061006e00730070006100720065006e0063006900650073002000610072006500200072006500640075006300650064002c002000520047004200200069006d0061006700650073002000610072006500200063006f006e00760065007200740065006400200069006e0074006f002000490053004f00200043006f0061007400650064002000760032002e002000410020005000440046002f0058002d0031006100200069007300200063007200650061007400650064002e000d005f000d000d00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e002c00200075006d00200044007200750063006b0076006f0072006c006100670065006e0020006600fc0072002000640065006e00200049006e00680061006c0074002000670065006d00e400df002000640065006e00200044006100740065006e0061006e006c006900650066006500720075006e0067007300620065007300740069006d006d0075006e00670065006e00200076006f006e0020004400450020004700520055005900540045005200200028004a006f00750072006e0061006c002000500072006f00640075006300740069006f006e00290020005300740061006e0064003a002000300031002e00300033002e00320030003100350020007a0075002000650072007a0065007500670065006e002e0020005400720061006e00730070006100720065006e007a0065006e002000770065007200640065006e00200072006500640075007a0069006500720074002c0020005200470042002d00420069006c006400650072002000770065007200640065006e00200069006e002000490053004f00200043006f00610074006500640020007600320020006b006f006e00760065007200740069006500720074002e00200045007300200077006900720064002000650069006e00650020005000440046002f0058002d00310061002000650072007a0065007500670074002e>
 /ENU ()
 /ENN ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (ISO Coated v2 \(ECI\))
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName <FEFF005B0048006F006800650020004100750066006C00F600730075006E0067005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 8.503940
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.276 841.890]
>> setpagedevice

