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1 | INTRODUCTION

Vorticity and associated phenomena are among the most studied subjects in hydrodynamics (see,
e.g., Refs. [1-5] and the other papers® ). A number of approaches and different techniques have
been developed. Most of the studies of the blowups of vorticity have been performed for the ideal
incompressible fluid. The compressible case is considered as the much more complicated one (see,
e.g., Refs. [1-8]).

In the papers of Chefranov’ and Kuznetsov,'* it was observed that in the case of compressible
fluid the behavior of vorticity for the Euler equation is intimately connected with that of the
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homogeneous Euler equation (HEE)
u+u-vVu=0. 6]

without the constraint V - u = 0. In papers,”' an explicit integral-type formula for the vortic-
ity w = V X u for Equation (1) has been presented. Another type of formula for the vorticity has
been found in Kuznetsov’s studies.''? The blowup of vorticity as t — ¢, > 0 has been analyzed in
Kuznetsov and Ruban'*'* (see also Chefranov and Chefranov'® and Kuznetsov and Mikhailov'").

HEE (1) is the most simplified version of the basic equations of the hydrodynamics when
one can neglect all effects of pressure, viscosity, etc. Nevertheless, it has a number of applica-
tions in physics and represents itself as an excellent touchstone for an analysis of blowups of
vorticity.

In this paper, we present some results concerning the blowups of vorticity for the three- and
two-dimensional HEE (1). Our analysis is based in part on the previous study of the structure and
hierarchies of blowups of derivatives for the n-dimensional HEE.!%"

We consider the behavior of vorticity in two different regimes of approaching the blow-up points
at the blow-up hypersurface. The first regime is to approach such a point along the ¢ axis, that is,
t — t, while the coordinates u in the hodograph space remain fixed. It is shown that, in the generic
case, that is, for generic initial data for the three-dimensional (3D) HEE (1), the vorticity in this
regime may have singularities of three different degrees

w~t—t) ", t—t, m=1,23. )

Such blowups occur on the intersection of m branches of the blow-up hypersurface I'. The
existence of blowups of type (2) with m = 1, 2 has been observed earlier in Kuznetsov and Ruban.'?

In the second regime, the time ¢, is fixed while the coordinates u are varying. In this regime of
approaching the blow-up point for 3D HEE (1) generically, there may exist four levels of blowups
of the vorticity w with the behavior

m

W; ~E mHl m=1,2,3,4, 3)

where € ~ |6x| — 0. Blowups (3) occur on the subspaces I';, of the blow-up hypersurface I and
diml', =4-m,m=1,2,3,4.

It may happen also that the components of the vorticity w behave differently on certain sub-
spaces of I'. In particular, at the first level m = 1 there may exist one-dimensional subspace
I'; at which the component w; blows as /2 when ¢ — 0 while the components w; and w,
remain bounded.

In such a case, the direction of the vorticity & is a unit vector oriented along one axis, namely

@ =(0,0,1) . 4)

The calculations are performed both in the special coordinates introduced in Konopelchenko and
Ortenzi'” as well as in Cartesian coordinates x and u.

For the two-dimensional (2D) HEE (1), the vorticity blows up as in (2) and (3) with m taking
the values m = 1, 2 for (2) and m = 1, 2, 3 for (3), respectively. Three particular solutions of the 2D
HEE with different blow-up behavior are considered.
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It is noted that we analyze the behavior of vorticity at certain points on the blow-up hypersur-
face I" and at the time ¢, which can be negative or positive. The realizability of blowups of different
orders at positive time remains an open problem.

Similar results for the n-dimensional HEE are briefly discussed too.

The paper is organized as follows. Section 2 contains a brief exposition of the results
of Konopelchenko and Ortenzi'” for the 3D HEE. Blowups of vorticity in the first regime
t — t, are analyzed in Section 3. Blowups of vorticity for the 3D HEE in the regime with
fixed t are studied in Sections 4 and 5. Similar results for the 2D HEE are presented in
Section 6.

Three particular solutions of the 2D HEE with different blow-up behavior are described in detail
in Section 7. The n-dimensional n > 4 case is discussed in Section 8. Conclusion 9 contains some
indications on possible future developments.

2 | BLOWUPS OF DERIVATIVES

Here, for convenience, we report some results concerning the blowup of derivatives for the
3D HEE obtained in Konopelchenko and Ortenzi.'” We also slightly change the notations in order
to make the corresponding formulas more convenient for the further calculations.

The starting point of the analysis is the hodograph equations”!®1%19

x; =yt + fi(w), i=1,2,3 (5)

where f;(u) are arbitrary functions locally inverse to the initial data u;(t = 0,x). Any solution
u(x, t) of the system (5) is a solution of the 3D system HEE (1).
The matrix M with the elements
afi

Mij=t5ij+a_uj’ i,j=1,23, (6)

plays a central role in the analysis of blowups of derivatives and possible gradient catastrophes.
In particular,

auj 1 .

The blowups occur on the 3D hypersurface I' defined by the equation
det M(t;u) = 3 4+ a,(w)t? + a; (W)t + ay(u) =0, ®)

where a,(u), a;(u) are certain functions of u and ay(u) = det(M(t = 0,u)) # 0 for generic
initial data.

The blow-up hypersurface T' is the union of the branches ¢, = ¢,(u) corresponding to
real roots of the cubic equation (8). In the 3D case, the number of branches can be one or
three!’

In the generic case, the rank r of the matrix M may assume two values r =2 and r = 1.
Equivalently, it means that there exists 3 — r vectors R (u;) and L(®(u,), « = 1,3 — r such that
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(u, €T)

ZMURE“) ,  i=123, a=13-r,

3
YLOMy=0,  j=123, a=13-r. ©)

The existence of such vectors suggests the introduction of new dependent and independent
variables v, 5, U3 and y;, ¥,, ¥3 defined by the relations'’

3—r
dus= Z R@sv,, + 2 R(5)505+3 = Z R@sv,,
a=1 p=1 a=
3—r 3
sx=Y P@sy, + Z PO8yg,5 = Y, P@éy,, (10)
a=1 B=1 a=1

where the vectors R®) are r vectors complementary to the set of 3 — r vectors R and vectors
P@_ PP are defined by the relation

3—r r
(@ @ 5B B) _ e
DPOLY+ Y POLY =8y, ,j=1,23 1)

a=1

where L) are r vectors complementary to the set of 3 — r vectors L(*). One also has

3
Syg=LP . 6x=) Egﬁ)Ml-j(ub)RE“)cSva +0(5v]Y), (12)
ij=1

where 2221731.(“)[15.“) = 5.
The use of variational consequences of the hodograph Equations (5) shows that derivatives

Z% (up,) behave differently in different subsectors of the independent and dependent variables.'®!”
B

For instance, for r = 2, on the first level of blowups, the derivatives

dv; dv; Juv; Ov, OJus

. 3. A 3. .. (13)
Y1

explode on the hypersurface I (8) while the derivatives

dv, dv, dv; OJvus

2. 2 3. [ (14)
9y, Oys 0y, 9ys

remain bounded. These blowups may happen both at a positive and negative time.
Itis noted that all vectors given above and the behavior of derivatives Zﬂ vary with the variation
V6

of the point u, belonging to the hypersurface I" (8).

85USD1 SUOLULLIOD BAIS1D 3|t |dde au Ag pausenoB afe sajole YO ‘8sn JO Sa|nJ o) Aig 1T 8UljUQ A8 ]I UO (SUOTIPLOD-PUR-SWLBILOY' A8 | 1M Aelq 1 euUuo//Sdny) SUORIPUOD pue SWid 1 84l 39S *[7202/T0/2T] Uo ARiqi auljuo 3|1 ‘oulo L 1d eIseAIuN Aq 8T9ZT Wdes/TTTT 0T/I0p/wiod A8 |1 Ae.qul|uo//sdny woly pepeojumod ‘T '#20¢ ‘065697 T



KONOPELCHENKO and ORTENZI | 9

On the first level of blowups, the derivatives explode as /2 g~ |6y| — 0 and the behavior of

derivatives at fixed time ¢, presented in (13) and (14) can be resumed in the formula

3
Svg ~ ) Capdys,  i=1,2,3, (15)
j=1
where
e 12y, e 2pp, ey,
C= 8_1/21/12 Voo V3 (16)
ey vy V33

and vy, I, j = 1,2, 3 are connected with the values of o (ub) and (ub) evaluated at the point
Ug

u, € I'; (see Konopelchenko and Ortenzi'”).

We emphasize that the formulae (16) represent the relations between the infinitesimal varia-
tions of the variables y; and v; around a point u, € I at fixed time ¢;,. Blow-up time ¢, can be
positive or negative. Blowup at t;, > 0 is referred to as the gradient catastrophe. In this paper, as
in Konopelchenko and Ortenzi,'” we will not discuss conditions that guarantee that ;, > 0.

It is also noted the domain D,, of variations of u constructed via Equation (5) and, consequently,
the domain of variations of variables u parameterizing the blow-up hypersurface I" (8),

D, ={u : detM(t,u) = 0}, 17)

coincides with the domain D, of variations of the initial values uy, since u(x, t) = uy(x — ut).

3 | BLOWUP OF VORTICITY

The formula (7) provides us with the explicit and useful expression for the vorticity vector in the
original Cartesian coordinates in terms of the components u;, i = 1, 2, 3 of the velocity. Namely,

1 .
2 Eljk Z El]k(M )kj m 2 £l]kMkj(t u) i=1,2,3 (18)
J.k=1 Jk=1

where M is the adjugate matrix.

We consider first the case rank(M(¢p, u;)) = 2. Let us fix the point u, on the blow-up hypersur-
face I' (8) and take the corresponding real ¢, that is, the real root of the cubic Equation (8), which
always exists for the 3D HEE.'® The formula (18) implies that (Konopelchenko and Ortenzi'®)

3 ~ -
35 i (Mgt w,) + €N (1, w) + OE) )

€Dy (tp,up) + 2Dy (ty,up) + €3

wi(t =ty +e)lr = , e=t—t, -0 (19)

where
_ ddet(M(t,u))

1= T |ty = 3t§ + 2a,(ap)ty + a;(up),

_ 0 det(M(t,w))

2= at2 |tb,llb = 3tb + aZ(ub)’ (20)
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_ dM(t, . -
and Ml’q.(tb,ub) = M’th w |¢,.u,- Generically for r = 2 Mj(t,,u;,) # 0 and D, (¢, up) # 0. Hence,

in the generic case, in the first regime the vorticity blows up on the full hypersurface I' as
w;(t,up) ~ oie”t = oyt — tb)_l, t>t,, =123 (21)

where o; = Zj.’k:lsijkMkj(tb,ub)/Dl(tb, uy) fori =1,2,3.

The existence of the higher order singularities is correlated with the structure of the blow-up
hypersurface T. If it has a single branch (single real root of Equation (8)) then M’(t;,u;) cannot
be zero. Hence, due to (19) and (20) in this case only the blowup of type (21) occurs.

Situation is different when T has three real branches, that is, all roots of Equation (8) are real.
In this case, one has the formulae (19) and (20) and three different values of ¢, pa=123 for the
same value u,. Moreover, the condition

8 det(M(ty, )

3 0, (22)

that is, the condition that det(M(¢p, up)) has a double zero at t;, is now admissible.
Let the condition

Dy (tp,wp) = 317 + 2a,(wp)ty, + a;(up) = 0 (23)

be satisfied at one branch. It defines the 2D submanifold D,(f ) at D,. Atfixedu, € fo ) and at the
corresponding t, ,, the vorticity blows up as

wtuy) ~e2=(t—1t,) 0, totp. (24)

Moreover, condition (23) (cf. (20)) means that the root ¢, , is a double root, that is, coincides
with another root ¢, 5- S0, the branches o and §8 of the blow-up hypersurface I intersect along the

2D surface I', corresponding to values of u;, € D,(f ) and on I, the vorticity blows up as in (24).
Hence, in the particular case (23), the vorticity w blows up as (¢t — tb)_2 on the intersection of
two branches of I" and blows up as (t — tb)_1 on the third branch.
Finally if, in addition to (23), the condition

Dy(tp,up) = 3t + ay(up) =0, (25)

is satisfied, but Zj kzlsijkMkj(tb, u) # 0, with i = 1, 2, 3 then the vorticity w blows up as

wt,w)~e3=(t—t,) >, tot. (26)

The situation (26) happens on the curve I'; in D,, defined by the conditions (23) and (25). Since
such conditions mean that the root ¢, , is a triple root, the behavior (26) occurs at the intersection
of all three branches of the blow-up surface I'.

Other possible situations, for instance, the condition D, (¢, @ u,) =0 for all ¢ =1,2,3 are
equivalent to (25) and (26).
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The existence of the blowups of the types (21), (24), and (26) becomes rather obvious if one
rewrites the formula (8) as

det (M(t,w)) = (& — £ )& — L)t — Lp3) . 27

It is noted that one can treat the conditions (23) and (25) in a different manner, namely, to
consider them as the equations for the functions f;(u), f,(uw), f3(u). Within such a viewpoint,
Equation (23) defines those functions f;(u), i = 1,2, 3 for which two branches of the hypersurface
T identically coincide. All three branches of I coincide in the particular case of initial data such
that the functions f;(u), i = 1,2, 3 are solutions of the pair of Equations (23) and (25).

The formulae (21) and (24) reproduce the results previously obtained in Kuznetsov and Ruban'?
with the use of the Lagrangian analog of the formula (18). The behavior of type (26) was not present
in Kuznetsov and Ruban'? due to the particular geometry of the vortex lines considered there.

An analysis of the behavior of vorticity and its integral characteristics has also been performed
in Chefranov and Chefranov'® with the use of an explicit integral representation of the Lagrangian
type derived in Chefranov.’

The components w; behave according to (21), (24), and (26) in the general case when all o; # 0.
In this case, the direction of the vorticity vector (see, e.g., Constantin and Fefferman’)

"
D= — (28)
|eo]
is regular with components

~ 1

w = m(01,02,03), |G|2:U%+O’§+O—§. (29)
Let us assume now that one of o; vanishes, for example, o3, that is,
3

Z &3My(tp,up) = 0. (30)

k=1

This condition defines the 2D subspace D, C D,, in the hodograph space. At the points u € D,,
one has o; = 0 and, hence instead of (21), the vorticity vector direction blows up as as

w~ot—1) ", wy~oyt—t) ", wy~alt—t) T, m=1,2,3, (1)
where o] = Zj kzlaijkM]’q.(tb, u,) for i = 1,2, 3. Consequently, the vector @ is of the form
&= 1 (64,0,,0) (32)
- 7 1 192 .
o]

Generically, for m = 1 such a situation may occur on the 2D subsurface of the blow-up hypersur-
faceI'. For m = 2, it may happen along the curve belonging to the 2D intersection of two branches
of I'. For m = 3, it may occur at the point belonging to the curve of the intersection of the three
branches of T'.
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In the very particular case of two vanishing components of o;, for example, o1 = 0, = 0, one
has

w ~alt—t) " wy e~ —t) T, wy ot —t)T", m=1,2,3, (33)

and
@ =1(0,0,1). (34)

Generically, such behavior may exist only for m = 1, 2. For m = 1 it may happen along a curve on
I, while for m = 2 it may occur at the point belonging to the intersection of two branches of T'.

The behavior of vorticity described above corresponds to the case of rank r = 2 for the matrix
M evaluated on the blow-up hypersurface I'. It occurs on the whole blow-up hypersurface.'” In
contrast, the matrix M(t,,u,) may have rank 1 only on a set of points 'y on I'.'” Moreover, for
r = 1, the adjugate matrix M vanishes identically:

Mylr, =0,  1,j=1,2,3. (35)

On the other hand, generically, M l.’j|1~0 are different from zero. So, in such a situation the com-
ponents of vorticity remain bounded when ¢ is approaching ¢, which corresponds to a point uy
belonging to I'y,.

4 | BLOWUPS OF VORTICITY AT FIXED TIME

The formulae (21), (24), and (26) describe the behavior of the vorticity in the situation when time
t approaches the blow-up time ¢, along the ¢ axis with fixed coordinate u,,.

The approach presented in Konopelchenko and Ortenzi'’ and briefly reproduced in Section 2
looks more appropriate for the analysis of the blowups of vorticity in the regime when time ¢ is
fixed while the coordinates u are subject to variations.

The formulas presented in Section 2 (see also Konopelchenko and Ortenzi'”) indicate that non-
Cartesian coordinates y; and v;, i = 1,2, 3, are rather convenient for the analysis of blowups of
the derivatives. In order to use such coordinates for the analysis of blowups of vorticity, one has
to consider its coordinate-independent definition as the differential two-form (see, e.g., Refs. [8,
20])

w=d6 = duAdx. (36)

where 6 = u - dx.
We will use such definition in the form

w(uy) = du A dx (37)

to study the behavior of vorticity at the point u,, of the blow-up hypersurface I
Using the formulae (10), one gets

3

@) = Y qugdua ASYg, (38)
a,f=1
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where
Qug =R@-PH . a,p=1,23. (39)

Then, due to the relation (15), at the blow-up point u; one obtains

3

wup) = Y, wap(p)dyq A Syg, (40)
a,f=1
where
3
1
waﬁ(ub) = E Z(Cyaqyﬁ - Cyﬁqya) > Ol,ﬁ =123. (41)
y=1

The components of the vorticity vector w in these coordinates are defined as usual as

3
Wo= ) Eapy@gy, By =1,2,3. (42)
By=1

At the first level of blowup and rank r = 2, the matrix C is of the form (16). Consequently, the
element of w.g, written in terms of the vorticity components w;, behaves as

0 W3 —wWy

co=% —w3 0 wp |, (43)
w, —w; 0
where
@y = e1/281(up) + Ty (),
@, = £ 1/28,(up) + Tr(up),
w3 = £ 1/285(up) + T3(wp), (44)
ase — 0and
Sy = (12913 — V13912, Ty = (V22423 — V23922 + V32433 — V33G32)
Sy = (11 (=q13) + V13q11 — V21923 — V31933) Ty = (V321 + v33931) s
S3 = (11912 — V12q11 + V21922 + V31932, T3 = (v — V32931) - (45)

So, generically, that is, when all S,, # 0, the vorticity w blows up as ¢~1/2, ¢ - 0 at the point u, of

the 3D blow-up hypersurface I'. In this case, the direction of the vorticity vector & is regular with
the components

1

& = 157 (S1(1). 52, S5(1p)) (46)

85USD1 SUOLULLIOD BAIS1D 3|t |dde au Ag pausenoB afe sajole YO ‘8sn JO Sa|nJ o) Aig 1T 8UljUQ A8 ]I UO (SUOTIPLOD-PUR-SWLBILOY' A8 | 1M Aelq 1 euUuo//Sdny) SUORIPUOD pue SWid 1 84l 39S *[7202/T0/2T] Uo ARiqi auljuo 3|1 ‘oulo L 1d eIseAIuN Aq 8T9ZT Wdes/TTTT 0T/I0p/wiod A8 |1 Ae.qul|uo//sdny woly pepeojumod ‘T '#20¢ ‘065697 T



14 | KONOPELCHENKO and ORTENZI

However, particular situations are also admissible. Indeed, if there exists a point u, € I' such
that S;(up) = 0 then at this point the components w; and w, of the vorticity blow up while the
component w; remains finite. The condition S;(u;) = 0 has a codimension one. So, such a situa-
tion is realizable, in principle, on the 2D subsurface of the blow-up hypersurface I" and & is of the
form

- % (S1(1p), S5(uy), 0) @)

Further, there may exist the points belonging to a certain curve on I' at which
Sy(up) = S,(up) =0. (48)

At these points, the components w; and w, remain bounded and only one component w; of the
vorticity blows up. Hence, the vorticity direction vector (28) assumes a particular form

& =(0,0,1) . (49)

Such a situation when the vorticity vector w becomes very large in modulus, but concentrated
in one direction looks rather special and of interest.
It may even happen at a certain point u, € I' that

S1(up) = Sy(up) = S3(up) = 0. (50)

In such a case, the vorticity w remains bounded at the point of the first-level blowups of derivatives.
Finally, in order to analyze the blowup of vorticity in the Cartesian coordinates, it is sufficient
to perform the change of coordinates y — x on the right-hand side of (40).
Performing the transformation (12) in (40), one obtains

3

w(uy) = ) w;(uy)dx; ASX; . (51)
i,j=1

As a result, the components w; = Z k= 1£le > of the vorticity vector w = V X u blow up on the

whole hypersurface ', namely
w; = e 28,(up) + Ti(up), i=1,2,3, €—0, (52)
where S; and T; are bounded functions obtained by a change of variables from (45).

The same result can be obtained directly, using the formulae (10), (15), and (12). Namely, one
gets

du du 9¥p R@9%% (@ @c @
2l ROC L Lk=1,23, (33)
axk Z ayﬁ axk oc,ﬁzzl : ayﬁ aﬁzl “

and, then, one obtains the formula (52).
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KONOPELCHENKO and ORTENZI 15

Again, it may happen that along certain curves I'; belonging to I', one has
S1(up) = S5(up) = 0. (54)

At the points on this curve, the components w; and w, remain bounded while the compo-
nents w; — oo and & = (0,0,1). Such a situation, when the vorticity vector w becomes very
large in modulus but concentrated in one direction, resembles somehow certain well-known
physical phenomena.

5 | BLOWUPS AT RANK 1 AND HIGHER LEVELS

In the case of rank r = 1, which occurs at a set of points u, € I' the matrix C is of the form (cf.
Konopelchenko and Ortenzi'”)

e 2y €7 Uy, 7 2y
C=|e 2y e Uy e Uy | (55)
e e Uy s

The components of the vorticity vector w again are of the form (45) or (52).

However, in this case, one cannot impose any constraint of the type S; = 0 or (48), if one con-
siders the situation with generic function f;(u) of initial data. Such constraints may be admissible
for particular special initial data. Blowups of the second, third, and fourth levels for » = 2 occur
on certain subspaces of the 3D blow-up hypersurface I."’

One of the subsections of the second level of blowups (in the rank 2 case) is characterized by
the following behavior of derivatives'’:

Qo gaps, OV1 00 O OUs | yyp o OB 003 0V OUs gy
A ’ dy,’ dy,’ dys’ oy ' dy,’ dys’ dys’ dys ’ ’
(56)
which corresponds to a matrix C given by
e 23 e V2, e 25
C=|enm 1, M3 |» (57)

V203 s 733

. 2¢.
where 7); are certain coefficients depending on %(ub) and =L (up) evaluated at the point uy,.
Uuj Uy

61/!}6
Consequently, the components w; of the vorticity have the following behavior at the blow-up point
of the second level:

w; = ¢ 1/285, (up) + T1(up),
wy =7 23Y(wp) + e71/28,5(wy) + To(wy),

w; = 23Y;(mp) + € /285(up) + T3(uy), €0, (58)
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16 | KONOPELCHENKO and ORTENZI

where Y;, S;, and T; are certain bounded functions of u,, € T. In this case, the direction of vorticity
vector (28) is

o= % (0,Y,(up), Y(uy)) . (59)

where |Y|2 = Yz(ub)2 + Y3(ub)2.

So, in contrast to the first level (45), the components of the vorticity vector generically blow up
in a different manner. Such realization occurs in the 2D subspace of the blow-up hypersurface I'."”
So, one can impose at most two constraints.

Under the constraint

$i(up) =0, (60)
one has the following behavior:
w~ (0(1),e72/3,e72/3), g€ — 0. (61)
If instead

Yy(up) =0 (62)

then
w~ (e71/2,e71/2 72/3) g€ —0. (63)

and
& =(0,0,1) . (64)

The situations (60) and (62) may happen on curves belonging to I',.
Imposing two constraints, one may have essentially two different situations. Indeed if

Y, (up) = Y3(up) =0 (65)
all components of vorticity blow up in the same manner, namely,
w~ (e71/2,71/2 ¢1/2) g€ — 0. (66)
and the vorticity direction vector is a generic one. On the other hand, if it happens that
Si(up) = Y, (w,) =0, (67)
then the components of vorticity behave quite differently since

w~ (0(1),e71/2,e72/3), g 0. (68)
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KONOPELCHENKO and ORTENZI 17

In this case, the vorticity direction vector & is oriented along the third axis, namely
@ = (0,0,1) . (69)

Such a situation is realizable in principle at the points of intersection of the curves defined by (62)
and (60).
One observes similar behaviors of vorticity in other subsectors of the second level of blowups.

The third level of blowups is realizable on a curve belonging to I'. Derivatives g& behave
Vg
similarly to (56) except that

aUl —3/4
Iy

and, as a consequence, one has the behavior of the type (58) with the substitution e=2/3 — ¢=3/4
in the Y; terms. In this case, one can impose, generically, only one constraint. For instance, if
Y;(up) = 0 one has the following behavior of component of vorticity:

w= (/2 ¢g3/4 71/2), €—0. (71)

and
& =(0,1,0) . (72)

Finally, the fourth level may occur at a point on I" and this point (see also Konopelchenko and
Ortenzi'?)

o, g4/5, £ — 0. (73)
oy

Again, one has formula (58) with the substitution e~/ — ¢~#/5 in the first term on the right-hand
side, and, generically, no constraints are allowed.

6 | VORTICITY FOR 2D HEE

For the 2D HEE, an analog of the formula (18) for the vorticity w; = g%j - % is given by
oh _ %k
@slt W) = 5 tr(j\fo)t juéet (M)’ ")
where My = M(t = 0,u) is the matrix with components (MO)ij = %, i, j =1,2. The quadratic

J
equation t? + tr(M)t + det(M,) = 0, defining the blow-up surface T','® may have, obviously,

either two real roots or no one, depending on the sign of the discriminant

2 2
A(u)=<%+%> _4<%%_%%>=<%_%> +4%Z—£i. (75)

aul 5u2 aul auz 5u2 5u1 5u1 6u2
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18 | KONOPELCHENKO and ORTENZI

So, in contrast to the 3D HEE, in two dimensions there are solutions with blowups free vorticity
(cf. Konopelchenko and Ortenzi'®).
It is natural to consider subdomains Dy c D, and D, C D, defined as follows:

(u1,uy) € D, if A(uj,uy) >0,
(uy,uy) € Dy, if A(up,uy) <0,
(uy,u,) € DY, if  A(up,uy) =0, (76)
then
D, =D uDguDl, (77)

and the curve D is the boundary between D and Dy . In the case D,, = Dy, one has the blow-up
free situation.

In the rest of this section, we will assume that the subdomain D, is not empty and hence the
blow-up surface has two branchesI', and I'_.

Let u, a point at D} and t; be the corresponding value of time ¢ on the first or the second
branches of I'. In the first regime, that is, when ¢ — t; with fixed u;, one has

9f1 9/
6—112(111;) - E(ub) +0(¢)

w3(tp + €,up) ~ 5 5 , £—0. (78)
21 2J2 2
<2tb + 50, (up) + ™ (ub)> e+e
So, if
of of
2+ 5 =(Wp) + =2 (Up) = VAW)lucy, # 0, (79)
ouy ou,
the vorticity w; blows up as
wit,wy) ~e L =(t—ty), =t (80)
This happens at each point of the blow-up surface I'.
If instead
of of
2ty + 3 W) + S22 W) = VAW, =0, (81)
u; auz
the vorticity w; blows up as
Oyt w) ~ e —1) T, E— . (82)
Such a behavior occurs on the curve defined by the condition (81).
It is the condition of a coincidence for the values ¢, , = >
—trtMy + VA
be=—5 —— (83)
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KONOPELCHENKO and ORTENZI | 19

of the branches T',, that is, t,, = t;,_. Hence, the blowup of the type (82) occurs along the curve
of the intersection of two branches of the blow-up surface I'. The corresponding curve (81) in the
hodograph space can be the border curve between two subdomains D} or D when D = D,, or
D, = D, respectively.

Similar to the 3D case, one can view the conditions (81) as the equation which defines those
functions f;(u) and f,(u) for which two branches of I coincide.

In order to analyze the behavior of the vorticity ws at fixed time t;,, similar to (10), one introduces

the variables y and v (see also Konopelchenko and Ortenzi'’)
2 2
Su= Y R@su,, Sx= )y P@Wsy,. (84)

a=1 a=1

At the first level of blowups, one has the following behavior of derivatives'”:

g%, g% g—;j ~g 12, g—;i ~0(1). (85)
So, one has the relation
2
vg = ) Cogdys,  a=1.2, (86)
g=1
with the matrix
-1/2 -1/2
C= (i_ljzzz ‘ V/;”> : (87)

In the 2D case, the vorticity is the differential two-form
w(up) = w18y A8y, (88)
where
wip(Wp) = e2S(up) + T(wp), €0 (89)

and S(up) and T(uy) are certain combinations of v,g and R* - PP (see in analogy the 3D case of
the (39) and (40) relations).

In the Cartesian coordinates, the vorticity % — j% also is of the form (89). Along the curve
defined by the condition ' ’

S(up) =0, (90)

the vorticity is bounded.
Blowups of the second level occur on the curve contained in I' and on this curve (see
Konopelchenko and Ortenzi'”)

0L 23 ou 112 02 112 o o(1), e—0, ()

k] k] k]

oy 9y I 9y,
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20 | KONOPELCHENKO and ORTENZI

and, consequently, the vorticity blows up as
wi, =€ 23Y(wp) + € 1/28(up) + T(uy). (92)

Finally, at the third level which may occur at a point on I, one has gﬂ ~ ¢73/% and, hence, the
V1

vorticity blows up as w;, = £3/4.

7 | EXAMPLES IN TWO DIMENSIONS

Here we will present three characteristic examples of the 2D HEE.

7.1 | Blow-up free solutions

Let the functions f; and f, be of the form

ow ow
=—, =—, 93
h=% =% (©3)
where the real function W(u,, u,) obeys the Laplace equation
’w  *w
. - =0. (94)
ou; ou;
It is easy to see that in this case
2
’w ’w
ty = ———F— A ith A=-— <0 95
b= G T VA W ( ou? > ©>

for any function W except a linear one. So, the corresponding solutions u; and u, of the 2D HEE
have no blowups.
The vorticity (74) is given by

Wy =—2 ! (96)

2 9
2
2w 2w 2w
242 t+ (—) + >
duq0u, duq0u, ouj

and it is blowup free too.
The particular choice

1
2 (22
W= o (u; —uj) (97)
or f1 = ;2 fo= —;1 corresponds to initial velocities u; = —ax, and u, = ax; where « is an

arbitrary real constant. Such an initial condition gives

_alaxt = x;) _alaxt +x;)

) Uy = ) 98
a’t2 +1 : a’t2 +1 (%8)
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and
2a

. 99
a’t? +1 ©9)

CO3:

It is the rotational type vortex solution of the 2D HEE with the initial strength 2a and a~! as the
characteristic decaying time.

It is worth to note that the subclass of solutions of the 2D HEE corresponding to the choice (93)
has a simple description in terms of complex coordinates'®

Z=x1+ix2, V=u1+iu2, F=f1+lf2 (100)
Indeed, in these variables, the conditions (93) and (94) are given by

ow

F=2i— (101)
and i
% =0. (102)
Since
WV, V)=W(V)+ W), (103)

where W(V) is an arbitrary analytic function (note that (93) implies that W is real-valued), then

OW(V)
F=2 . 104
i (104)
For such function F, the hodograph equation assumes the form
Z—-Vt=F(). (105)
Solutions of the hodograph Equation (105) obey the equation
ov ov
9 v . 1
3 + 37 0 (106)
In the complex variables, the vorticity (96) is given by
m (57)
[t+ —|?
av

For the solution (98) F = —iV/a. For the generic analytic function F(V). the corresponding solu-
tion V(Z,t) of Equation (106) and its vorticity are blow-up free. In the trivial particular case
F = BV, where f is an arbitrary real constant, the solution V(Z,t) = % of Equation (106) and

its derivative exhibit the blowup at t = —f while the vorticity w; = 0. In this case, the 2D HEE is
decomposed into two one-dimensional Burgers—Hopf equations.
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The fact that for the generic analytic solutions of the 2D HEE, the derivatives are blowups free
has been noted in Konopelchenko and Ortenzi'® (Section 5). Indeed, in the complex variables
(100) the full 2D HEE assumes the form

oV . oV  _av _

VItV =0, (108)

and the blow-up surface is defined by

oF oF OF , _
<6V+t> <av+t> 557 =0 (109)

For the analytic solutions (8V /8Z = 0, dF/3V = 0), 2D HEE (108) is reduced to (106) and the
blow-up surface is defined by the equation (Konopelchenko and Ortenzi,'® Section 5)

OF oF
detM = <W +t> <a—V +t> =0. (110)

This equation has no real roots except the trivial case F = SV, mentioned above. Consequently,
in nontrivial cases, the derivative 6V /0Z does not exhibit blowups for real-time ¢t (negative or
positive) in contrast to the classical one-dimensional case (real Z).

In different contexts, Equation (106) has been considered earlier”' >3

7.2 | Nongeneric blowup

Let us choose

uf 2 5 u3
fl = —?—§u1u2+2u2, f2 =—— —ZUU; —U;. (111)

The corresponding initial data are

x% 2 x; 1 2.3 1 4
ul(x17x270) ==Xy — ﬁ - gxlxz + E + ﬁx1x2 + mxl_xz + e,
3 5
Xy x5 1 X1 1 1
uy (X1, x5,0) =5 -%- ﬁxzxf ~ 288 mx%xi - %x;‘xl 4o (112)

In this case, the matrix M is

1
M(t,u) = , (113)

2 1 - 2
—guluz -1 t- <5u1 +u2)

2 4
t— <u2 + gu§> 2-uu,

and the blow-up surface I' is defined by the equation

4 1 1 2
2 — <§u%+§u§> t+§u‘1‘+§ufu§+§u‘2‘+2:0. (114)
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FIGURE 1 In the gray D{, region, the discriminant A(u;, u,) (115) is positive and, therefore, blowups are
possible. In the complementary region Dy, the discriminant A(u,, u,) is negative and, therefore, no blowups are
possible.

The discriminant A(u;, u,) is
A(uy, up) = 4uf + 28usus +uj — 72. (115)
So the subdomains D{, and Dy in D, are separated by the quartic curve
Auy, up) = 4ut + 28usul +uj — 72 =0. (116)

The subdomain Dy is located around the origin u; = u, = 0 as shown in Figure 1.
The blow-up surface I" has two branches

1
-l <4u§ 450 2 A+ 2820 + ik — 72) . (a)

with u € D{. It is easy to see that for both branches ¢, > t_ > 0 (see Figure 2).
The time of the gradient catastrophe is ¢ = 1.62019 at the point u; = £1.59562, u, =

—min
+1.17844.
The vorticity is equal to
3-— %uluz
=— 118
s detM (118)

In the first regime of approaching of generic blow-up point (u;, u,) € D, the vorticity behaves
as

2uuy — 9
co3(t,ub)~i 12 N t— tb =

\/4u‘11 +28udu + uj — 72(t — tp)

1 2 2 4 2.2 4
3 <4u1 —5u; £+ \/4u1 +28uyuy +u; —72 ) .

(119)
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FIGURE 2 Blow-up I region
(117) related to hodograph
mappings (111). At the black curve
(120), the vorticity behavior is

. -2
nongeneric w ~ (At) ".

TABLE 1 The local inverses of the initial data (122).

X1 20x, 20 X1 20x, <0 X1 <0x, 20 X1 <0x,<0

1 U, 1 Uy 1 u, 1 Uy

X1 = fl(u) E 10g u—13 ; lOg E — ; lOg E — E 10g E
x, = f,(w) ! log & -/ log & ! log & -/ log =
2 U, 2 U, 2 Uy 2 Uy

Approaching the points
2,,59
by, = 3 + gU A(uy,uy) =0, (120)

which belongs to the curve of the intersection of two branches ¢, and ¢_, the vorticity blows up as

2 2 4
ig\/iul\/—%‘l - \/g\/Sul +3-3 16u‘1‘
w ~

. toty=—11ul -5
(t — tp)° 3

+2. (12

In this case, the curve A(uy, u,) = 0 is the boundary line between the subdomains D and Dj.

7.3 | Gaussian initial data
Finally, we consider a solution of the HEE with the initial data
—x2—x2 —x2—3x2
u(x,0) =e 172, Uy(%,0) = exp 1772, (122)

Such initial values admit four different open sets of invertibility shown in Table 1. Where
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fi,i =1,2isthelocal inverse of (122). The hodograph Equations (5) assume the form of the system
of four equations

=

X1 =ut+a ln<”—§> ,a(x; —ut) >0
Gup : " , a=+,b==x+. (123)

x2=u2t+b ln<%>, b(xZ—uzt)>0
1

=

Each pair of Equations (123) define a solution u,,(x, t) in the corresponding subdomain. So, the
solution of the 2D HEE with the initial data (122) is a union

ux, ) =u,  (x,H)vu,_xHuu_,(xH)uu__(x,t). (124)
In other words,
u, . (x,1t), at x; —u;(x,t) >0, x;—uy(xt)>0,
u(x, t) = u,_(x,1t), at x; —u;(x,t) >0, x;—uy(xt)<0, (125)
u_,(x,t), at x; —u;(x,t) <0, x,—uy,(x,t)>0,
u__(x,t), at x; —u(x,t) <0, x,—uy,(x,t)<0.

The function (125) is continuous on R?>x R through the boundary x —ut = 0. Note that
u__(x,t) = u, (—x,—1), u_,(x,t) = u,_(—x,—t). Moreover, the domain D, is the square 0 <
u; (%, 1), uy(x,t) < 1. Using the standard formulae u(x, t) = uy(§;, &) with §; = x; —u;t, i = 1,2,
one can view the piecewise solution (125) as

ug,(x, 1) = ug(ay, bsy), aé; >0, b&>0. (126)

Then four corresponding matrices M are of the form

3 1
t—a a

Zﬁul\/log(uul—%) Z\ﬁuz\/log<;1—23>

M@t v) = , a,b=x, (127)
1 1

b——————  t—-bh—
2v2u, log<z—;> 2ﬁu21/10g<2—;>

and the corresponding branches of the blow-up surface are defined by the equation

detM = t* — 3 + b
2\/5u1,/10g<uu—123> 2\/5“21”053(%)
ab
t+ =0, ab=+. (128)

4u1u2\/log (:—;) log (Z—i)
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The values of the vorticity w; for the branches (a, b) are given by

1 a b

Cl)3 = —
det M, (¢,
et Mpq(t, ) 2\/§u2, /log<uu—213> 2\/§u1 log<Z—j>

The discriminant A of Equation (128) is positive for all values of a and b since

2
Agp(w) = > + b - ab
2o o (2) 2B ()] o (2o (2)
2
_ 3a _ b N ab .
2\/51,11 10g<%> 2\/§u21/log<2—:) 2u1u2\/log<%>log<:—l>

So, for the solution (125) the blow-up surface I" has two branches for all values of u € D,

(), = a + : + VB
2\/51411 [log (;—;) 2\/5u21 /log (Z—l)
It is easy to see that for the (a, b) = (+, +) piece
(t),, >0, (), >@),,,
while
(b)) <0, () __>()__,
For the pieces (a, b) = (+,—) and (a,b) = (—, +), one has
(t),_ >0,  (t2),_<0,
and
(t+)_+ >0, (t-)_, <0.
Minimal values of ¢, , for the positive pieces are
(t-) 4y |min = 0.642593,  (£4), |min = 1.16582,  (t3)_, |min = 0.673088..

(129)

(130)

(131)

(132)

(133)

(134)

(135)

(136)
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FIGURE 3 The time evolution of the vorticity depending on u with initial data given by (122). From left to
right, the times are t = 0, t = 0.85¢,, t = 0.999¢,, where ¢, = 0.642593 is the catastrophe time. Remark the change
in the vertical scale in the last plot.

FIGURE 4 The time evolution of the vorticity depending on x with initial data given by (122). From left to
right, the times are t = 0, t = 0.85¢,, t = 0.999¢,, where t. = 0.642593 is the catastrophe time. The dashed vertical
line indicates the catastrophe direction of the vorticity in the catastrophe place x..

Thus, the gradient catastrophe occurs at

te=(t),, lmin = 0.642593,  u, = (0.803494,0.584021),  x, = (0.759774,0.77468).
(137)
As expected, the behavior of the vorticity at u = wu, in the first regime is

0.270466
w(t,u.) = . —1
c

—0.0747002 + 0.0206315(t, — t) + -+ . (138)
The time evolution of the vorticity w(¢, u) is shown in Figure 3.

In Figure 4, it is shown the time evolution of the vorticity with respect to space variables, numer-
ically computed using Mathematica. The behavior is in agreement with the analytical predictions
(137).

Since A,y () # 0 for all u € Dy, two branches (131) do not intersect. So, the blowup of the type
w~ (t, — £)? is absent in this case.

8 | BLOWUPS FOR n-DIMENSIONAL CASE

An extension of the results presented in this paper to the n-dimensional HEE is quite straightfor-
ward. Indeed, the components w;; of the vorticity two-form (36) in Cartesian coordinates are given
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by

Mji(t’ u) - MU([,u)
det(M(¢t,w))

w(t,w) = (M—l)ﬁ(t, u) — (M_l)ij(t,u) = i,j=1,--,n. (139)

In the n-dimensional case, det(M(t,w)) is a polynomial in ¢ of degree n,'® that is

detM(t,w) = [ ]t - 1) (140)
k=1

So, in the first regime of approaching the blow-up point w; may have the following behavior:
wUN(t_tb)_ma t—)tb, mz]—"“)”' (141)

As far as the second regime is concerned, it was shown in Konopelchenko and Ortenzi'’ that the

derivatives du; /dx; may have singularities of the type |6x| m+1, withm = 1,---,n + 1. Hence, in
this regime, the vorticity two-form may blow up as

w;j ~ |8X| i, |6x| = 0, m=1,-,n+1. (142)

Similar to the results described in Konopelchenko and Ortenzi,'” blowups of the vorticity exhibit
a rather rich fine structure.

The formulae (141) and (142) imply certain behavior of the characteristics of vorticity in different
dimensions discussed in Arnold and Khesin.?’

One obtains analogous results for the stress tensor

s = 2w % = MY, + (M _ My + M; Lj=1,-n (143)
l ax, i i detpny T

which is another important quantity in the theory of continuous media.'~*

9 | CONCLUSIONS

The results presented in this note are in part the consequences of those obtained in
Konopelchenko and Ortenzi.'” As in Konopelchenko and Ortenzi,'” we are dealing with the most
simplified version of the Navier-Stokes equation, namely with HEE (1) and do not discuss the
possibility of blowups of vorticity of type (3) for positive values of time.

All that indicates at least two possible directions for further study. The first is the verifica-
tion of the realizability of hierarchy of blowups (3) for positive times that is of most interest in
physical applications.

An extension of such a type of analysis for more physical systems would be the second direction.
In particular, it may be applicable to those hydrodynamical systems which are obtainable as the
constraints of the multidimensional HEE.**
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