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Abstract
Blowups of vorticity for the three- and two-dimensional
homogeneous Euler equations are studied. Two regimes
of approaching a blow-up point, respectively, with vari-
able or fixed time are analyzed. It is shown that in
the 𝑛-dimensional (𝑛 = 2, 3) generic case the blowups
of degrees 1,⋯, 𝑛 at the variable time regime and of
degrees 1∕2,⋯, (𝑛 + 1)∕(𝑛 + 2) at the fixed time regime
may exist. Particular situations when the vorticity blows
while the direction of the vorticity vector is concentrated
in one or two directions are realizable.
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1 INTRODUCTION

Vorticity and associated phenomena are among the most studied subjects in hydrodynamics (see,
e.g., Refs. [1–5] and the other papers6–15). A number of approaches and different techniques have
been developed. Most of the studies of the blowups of vorticity have been performed for the ideal
incompressible fluid. The compressible case is considered as themuchmore complicated one (see,
e.g., Refs. [1–8]).
In the papers of Chefranov9 and Kuznetsov,14 it was observed that in the case of compressible

fluid the behavior of vorticity for the Euler equation is intimately connected with that of the
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6 KONOPELCHENKO and ORTENZI

homogeneous Euler equation (HEE)

𝐮𝑡 + 𝐮 ⋅ ∇𝐮 = 0 . (1)

without the constraint ∇ ⋅ 𝐮 = 0. In papers,9,10 an explicit integral-type formula for the vortic-
ity 𝝎 = ∇ × 𝐮 for Equation (1) has been presented. Another type of formula for the vorticity has
been found in Kuznetsov’s studies.11,12 The blowup of vorticity as 𝑡 → 𝑡𝑐 > 0 has been analyzed in
Kuznetsov and Ruban12,14 (see also Chefranov and Chefranov10 and Kuznetsov and Mikhailov15).
HEE (1) is the most simplified version of the basic equations of the hydrodynamics when

one can neglect all effects of pressure, viscosity, etc. Nevertheless, it has a number of applica-
tions in physics and represents itself as an excellent touchstone for an analysis of blowups of
vorticity.
In this paper, we present some results concerning the blowups of vorticity for the three- and

two-dimensional HEE (1). Our analysis is based in part on the previous study of the structure and
hierarchies of blowups of derivatives for the 𝑛-dimensional HEE.16,17
We consider the behavior of vorticity in twodifferent regimes of approaching the blow-uppoints

at the blow-up hypersurface. The first regime is to approach such a point along the 𝑡 axis, that is,
𝑡 → 𝑡𝑏 while the coordinates𝐮 in the hodograph space remain fixed. It is shown that, in the generic
case, that is, for generic initial data for the three-dimensional (3D) HEE (1), the vorticity in this
regime may have singularities of three different degrees

𝜔𝑖 ∼ (𝑡 − 𝑡𝑏)
−𝑚

, 𝑡 → 𝑡𝑏, 𝑚 = 1, 2, 3 . (2)

Such blowups occur on the intersection of 𝑚 branches of the blow-up hypersurface Γ. The
existence of blowups of type (2)with𝑚 = 1, 2has been observed earlier inKuznetsov andRuban.12
In the second regime, the time 𝑡𝑏 is fixed while the coordinates 𝐮 are varying. In this regime of

approaching the blow-up point for 3D HEE (1) generically, there may exist four levels of blowups
of the vorticity 𝝎 with the behavior

𝜔𝑖 ∼ 𝜀
−

𝑚

𝑚+1 , 𝑚 = 1, 2, 3, 4 , (3)

where 𝜀 ∼ |𝛿𝐱| → 0. Blowups (3) occur on the subspaces Γ𝑚 of the blow-up hypersurface Γ and
dimΓ𝑚 = 4 − 𝑚,𝑚 = 1, 2, 3, 4.
It may happen also that the components of the vorticity 𝝎 behave differently on certain sub-

spaces of Γ. In particular, at the first level 𝑚 = 1 there may exist one-dimensional subspace
Γ1 at which the component 𝜔3 blows as 𝜀−1∕2 when 𝜀 → 0 while the components 𝜔1 and 𝜔2
remain bounded.
In such a case, the direction of the vorticity 𝝎 is a unit vector oriented along one axis, namely

𝝎 = (0, 0, 1) . (4)

The calculations are performed both in the special coordinates introduced in Konopelchenko and
Ortenzi17 as well as in Cartesian coordinates 𝐱 and 𝐮.
For the two-dimensional (2D) HEE (1), the vorticity blows up as in (2) and (3) with 𝑚 taking

the values𝑚 = 1, 2 for (2) and𝑚 = 1, 2, 3 for (3), respectively. Three particular solutions of the 2D
HEE with different blow-up behavior are considered.
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KONOPELCHENKO and ORTENZI 7

It is noted that we analyze the behavior of vorticity at certain points on the blow-up hypersur-
face Γ and at the time 𝑡𝑏 which can be negative or positive. The realizability of blowups of different
orders at positive time remains an open problem.
Similar results for the 𝑛-dimensional HEE are briefly discussed too.
The paper is organized as follows. Section 2 contains a brief exposition of the results

of Konopelchenko and Ortenzi17 for the 3D HEE. Blowups of vorticity in the first regime
𝑡 → 𝑡𝑏 are analyzed in Section 3. Blowups of vorticity for the 3D HEE in the regime with
fixed 𝑡 are studied in Sections 4 and 5. Similar results for the 2D HEE are presented in
Section 6.
Three particular solutions of the 2DHEEwith different blow-up behavior are described in detail

in Section 7. The 𝑛-dimensional 𝑛 ≥ 4 case is discussed in Section 8. Conclusion 9 contains some
indications on possible future developments.

2 BLOWUPS OF DERIVATIVES

Here, for convenience, we report some results concerning the blowup of derivatives for the
3DHEE obtained in Konopelchenko and Ortenzi.17 We also slightly change the notations in order
to make the corresponding formulas more convenient for the further calculations.
The starting point of the analysis is the hodograph equations9,16,18,19

𝑥𝑖 = 𝑢𝑖𝑡 + 𝑓𝑖(𝐮) , 𝑖 = 1, 2, 3 (5)

where 𝑓𝑖(𝐮) are arbitrary functions locally inverse to the initial data 𝑢𝑖(𝑡 = 0, 𝐱). Any solution
𝐮(𝐱, 𝑡) of the system (5) is a solution of the 3D system HEE (1).
The matrix𝑀 with the elements

𝑀ij = 𝑡𝛿ij +
𝜕𝑓𝑖
𝜕𝑢𝑗

, 𝑖, 𝑗 = 1, 2, 3 , (6)

plays a central role in the analysis of blowups of derivatives and possible gradient catastrophes.
In particular,

𝜕𝑢𝑗

𝜕𝑥𝑘
= (𝑀−1)jk , 𝑖, 𝑘 = 1, 2, 3 (7)

The blowups occur on the 3D hypersurface Γ defined by the equation

det𝑀(𝑡; 𝐮) = 𝑡3 + 𝑎2(𝐮)𝑡
2 + 𝑎1(𝐮)𝑡 + 𝑎0(𝐮) = 0 , (8)

where 𝑎2(𝐮), 𝑎1(𝐮) are certain functions of 𝐮 and 𝑎0(𝐮) = det(𝑀(𝑡 = 0, 𝐮)) ≠ 0 for generic
initial data.
The blow-up hypersurface Γ is the union of the branches 𝑡𝛼 = 𝜙𝛼(𝐮) corresponding to

real roots of the cubic equation (8). In the 3D case, the number of branches can be one or
three17
In the generic case, the rank 𝑟 of the matrix 𝑀 may assume two values 𝑟 = 2 and 𝑟 = 1.

Equivalently, it means that there exists 3 − 𝑟 vectors𝐑(𝛼)(𝐮𝑏) and 𝐋(𝛼)(𝐮𝑏), 𝛼 = 1, 3 − 𝑟 such that
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8 KONOPELCHENKO and ORTENZI

(𝐮𝑏 ∈ Γ)

3∑
𝑗=1

𝑀ij𝑅
(𝛼)
𝑗

= 0 , 𝑖 = 1, 2, 3 , 𝛼 = 1, 3 − 𝑟 ,

3∑
𝑖=1

𝐿
(𝛼)
𝑖
𝑀ij = 0 , 𝑗 = 1, 2, 3 , 𝛼 = 1, 3 − 𝑟 . (9)

The existence of such vectors suggests the introduction of new dependent and independent
variables 𝑣1, 𝑣2, 𝑣3 and 𝑦1, 𝑦2, 𝑦3 defined by the relations17

𝛿𝐮 ≡

3−𝑟∑
𝛼=1

𝐑(𝛼)𝛿𝑣𝛼 +

𝑟∑
𝛽=1

𝐑̃(𝛽)𝛿𝑣𝛽+3−𝑟 ≡

3∑
𝛼=1

(𝛼)𝛿𝑣𝛼 ,

𝛿𝐱 ≡

3−𝑟∑
𝛼=1

𝐏(𝛼)𝛿𝑦𝛼 +

𝑟∑
𝛽=1

𝐏̃(𝛽)𝛿𝑦𝛽+3−𝑟 ≡

3∑
𝛼=1

 (𝛼)𝛿𝑦𝛼 , (10)

where the vectors 𝐑̃(𝛽) are 𝑟 vectors complementary to the set of 3 − 𝑟 vectors 𝐑(𝛼) and vectors
𝑃(𝛼), 𝑃̃(𝛽) are defined by the relation

3−𝑟∑
𝛼=1

𝑃
(𝛼)
𝑖
𝐿
(𝛼)
𝑗

+

𝑟∑
𝛽=1

𝑃̃
(𝛽)
𝑖
𝐿̃
(𝛽)
𝑗

= 𝛿ij , 𝑖, 𝑗 = 1, 2, 3 (11)

where 𝐋̃(𝛽) are 𝑟 vectors complementary to the set of 3 − 𝑟 vectors 𝐋(𝛼). One also has

𝛿𝑦𝛽 = (𝛽) ⋅ 𝛿𝐱 =

3∑
𝑖,𝑗=1


(𝛽)
𝑖
𝑀ij(𝐮𝑏)

(𝛼)
𝑗
𝛿𝑣𝛼 + 𝑂(|𝛿𝑣|2) , (12)

where
∑3

𝛼=1
(𝛼)
𝑖


(𝛼)
𝑗

= 𝛿ij.
The use of variational consequences of the hodograph Equations (5) shows that derivatives

𝜕𝑣𝛼

𝜕𝑦𝛽
(𝐮𝑏) behave differently in different subsectors of the independent and dependent variables.16,17

For instance, for 𝑟 = 2, on the first level of blowups, the derivatives

𝜕𝑣1
𝜕𝑦1

,
𝜕𝑣1
𝜕𝑦2

,
𝜕𝑣1
𝜕𝑦3

,
𝜕𝑣2
𝜕𝑦1

,
𝜕𝑣3
𝜕𝑦1

(13)

explode on the hypersurface Γ (8) while the derivatives

𝜕𝑣2
𝜕𝑦2

,
𝜕𝑣2
𝜕𝑦3

,
𝜕𝑣3
𝜕𝑦2

,
𝜕𝑣3
𝜕𝑦3

(14)

remain bounded. These blowups may happen both at a positive and negative time.
It is noted that all vectors given above and the behavior of derivatives 𝜕𝑣𝛼

𝜕𝑦𝛽
varywith the variation

of the point 𝐮𝑏 belonging to the hypersurface Γ (8).
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KONOPELCHENKO and ORTENZI 9

On the first level of blowups, the derivatives explode as 𝜀−1∕2, 𝜀 ∼ |𝛿𝑦| → 0 and the behavior of
derivatives at fixed time 𝑡𝑏 presented in (13) and (14) can be resumed in the formula

𝛿𝑣𝛼 ∼

3∑
𝑗=1

𝐶𝛼𝛽𝛿𝑦𝛽 , 𝑖 = 1, 2, 3 , (15)

where

𝐶 =
⎛⎜⎜⎝
𝜀−1∕2𝜈11 𝜀

−1∕2𝜈12 𝜀
−1∕2𝜈13

𝜀−1∕2𝜈12 𝜈22 𝜈23
𝜀−1∕2𝜈13 𝜈32 𝜈33

⎞⎟⎟⎠ (16)

and 𝜈ij, 𝑖, 𝑗 = 1, 2, 3 are connected with the values of 𝜕𝑓𝑖
𝜕𝑢𝑗

(𝐮𝑏) and
𝜕2𝑓𝑖

𝜕𝑢𝑗𝜕𝑢𝑘
(𝐮𝑏) evaluated at the point

𝐮𝑏 ∈ Γ1 (see Konopelchenko and Ortenzi17).
We emphasize that the formulae (16) represent the relations between the infinitesimal varia-

tions of the variables 𝑦𝑖 and 𝑣𝑖 around a point 𝐮𝑏 ∈ Γ at fixed time 𝑡𝑏. Blow-up time 𝑡𝑏 can be
positive or negative. Blowup at 𝑡𝑏 > 0 is referred to as the gradient catastrophe. In this paper, as
in Konopelchenko and Ortenzi,17 we will not discuss conditions that guarantee that 𝑡𝑏 > 0.
It is also noted the domain𝐮 of variations of𝐮 constructed via Equation (5) and, consequently,

the domain of variations of variables 𝐮 parameterizing the blow-up hypersurface Γ (8),

𝐮 ≡ {𝐮 ∶ det𝑀(𝑡, 𝐮) = 0} , (17)

coincides with the domain𝐮0 of variations of the initial values 𝐮0, since 𝐮(𝐱, 𝑡) = 𝐮0(𝐱 − 𝐮𝑡).

3 BLOWUP OF VORTICITY

The formula (7) provides us with the explicit and useful expression for the vorticity vector in the
original Cartesian coordinates in terms of the components 𝑢𝑖 , 𝑖 = 1, 2, 3 of the velocity. Namely,

𝜔𝑖 =

3∑
𝑗,𝑘=1

𝜀ijk
𝜕𝑢𝑘
𝜕𝑥𝑗

=

3∑
𝑗,𝑘=1

𝜀ijk(𝑀
−1)kj =

1

det(𝑀(𝑡, 𝐮))

3∑
𝑗,𝑘=1

𝜀ijk𝑀̃kj(𝑡, 𝐮) , 𝑖 = 1, 2, 3 (18)

where 𝑀̃ is the adjugate matrix.
We consider first the case rank(𝑀(𝑡𝑏, 𝐮𝑏)) = 2. Let us fix the point 𝐮𝑏 on the blow-up hypersur-

face Γ (8) and take the corresponding real 𝑡𝑏, that is, the real root of the cubic Equation (8), which
always exists for the 3D HEE.16 The formula (18) implies that (Konopelchenko and Ortenzi16)

𝜔𝑖(𝑡 = 𝑡𝑏 + 𝜀)|Γ =
∑3

𝑗,𝑘=1
𝜀ijk

(
𝑀̃kj(𝑡𝑏, 𝐮𝑏) + 𝜀𝑀̃′

kj(𝑡𝑏, 𝐮𝑏) + 𝑂(𝜀2)
)

𝜀𝐷1(𝑡𝑏, 𝐮𝑏) + 𝜀2𝐷2(𝑡𝑏, 𝐮𝑏) + 𝜀3
, 𝜀 ≡ 𝑡 − 𝑡𝑏 → 0 (19)

where

𝐷1 ≡
𝜕 det(𝑀(𝑡, 𝐮))

𝜕𝑡
|𝑡𝑏,𝐮𝑏 = 3𝑡2

𝑏
+ 2𝑎2(𝐮𝑏)𝑡𝑏 + 𝑎1(𝐮𝑏),

𝐷2 ≡
𝜕2 det(𝑀(𝑡, 𝐮))

𝜕𝑡2
|𝑡𝑏,𝐮𝑏 = 3𝑡𝑏 + 𝑎2(𝐮𝑏), (20)
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10 KONOPELCHENKO and ORTENZI

and 𝑀̃′
kj(𝑡𝑏, 𝐮𝑏) ≡

d𝑀kj(𝑡,𝐮)

d𝑡
|𝑡𝑏,𝐮𝑏 . Generically for 𝑟 = 2 𝑀̃jk(𝑡𝑏, 𝐮𝑏) ≠ 0 and 𝐷1(𝑡𝑏, 𝐮𝑏) ≠ 0. Hence,

in the generic case, in the first regime the vorticity blows up on the full hypersurface Γ as

𝜔𝑖(𝑡, 𝐮𝑏) ∼ 𝜎𝑖𝜀
−1 ≡ 𝜎𝑖(𝑡 − 𝑡𝑏)

−1
, 𝑡 → 𝑡𝑏 , 𝑖 = 1, 2, 3 (21)

where 𝜎𝑖 ≡
∑3

𝑗,𝑘=1𝜀ijk𝑀̃kj(𝑡𝑏, 𝐮𝑏)∕𝐷1(𝑡𝑏, 𝐮𝑏) for 𝑖 = 1, 2, 3.
The existence of the higher order singularities is correlated with the structure of the blow-up

hypersurface Γ. If it has a single branch (single real root of Equation (8)) then𝑀′(𝑡𝑏, 𝐮𝑏) cannot
be zero. Hence, due to (19) and (20) in this case only the blowup of type (21) occurs.
Situation is different when Γ has three real branches, that is, all roots of Equation (8) are real.

In this case, one has the formulae (19) and (20) and three different values of 𝑡𝑏𝛼, 𝛼 = 1, 2, 3 for the
same value 𝐮𝑏. Moreover, the condition

𝜕 det(𝑀(𝑡𝑏, 𝐮𝑏))

𝜕𝑡
= 0 , (22)

that is, the condition that det(𝑀(𝑡𝑏, 𝐮𝑏)) has a double zero at 𝑡𝑏 is now admissible.
Let the condition

𝐷1(𝑡𝑏, 𝐮𝑏) = 3𝑡2
𝑏
+ 2𝑎2(𝐮𝑏)𝑡𝑏 + 𝑎1(𝐮𝑏) = 0 (23)

be satisfied at one branch. It defines the 2D submanifold(2)
𝐮 at𝐮. At fixed 𝐮𝑏 ∈ 

(2)
𝐮 and at the

corresponding 𝑡𝑏𝛼, the vorticity blows up as

𝜔𝑖(𝑡, 𝐮𝑏) ∼ 𝜀−2 ≡ (𝑡 − 𝑡𝑏)
−2
, 𝑡 → 𝑡𝑏 . (24)

Moreover, condition (23) (cf. (20)) means that the root 𝑡𝑏𝛼 is a double root, that is, coincides
with another root 𝑡𝑏𝛽 . So, the branches 𝛼 and 𝛽 of the blow-up hypersurface Γ intersect along the

2D surface Γ2 corresponding to values of 𝐮𝑏 ∈ 
(2)
𝐮 and on Γ2 the vorticity blows up as in (24).

Hence, in the particular case (23), the vorticity 𝝎 blows up as (𝑡 − 𝑡𝑏)
−2 on the intersection of

two branches of Γ and blows up as (𝑡 − 𝑡𝑏)
−1 on the third branch.

Finally if, in addition to (23), the condition

𝐷2(𝑡𝑏, 𝐮𝑏) = 3𝑡𝑏 + 𝑎2(𝐮𝑏) = 0 , (25)

is satisfied, but
∑3

𝑗,𝑘=1
𝜀ijk𝑀̃kj(𝑡𝑏, 𝐮𝑏) ≠ 0, with 𝑖 = 1, 2, 3 then the vorticity 𝝎 blows up as

𝜔𝑖(𝑡, 𝐮𝑏) ∼ 𝜀−3 ≡ (𝑡 − 𝑡𝑏)
−3
, 𝑡 → 𝑡𝑏 . (26)

The situation (26) happens on the curve Γ3 in𝐮 defined by the conditions (23) and (25). Since
such conditions mean that the root 𝑡𝑏𝛼 is a triple root, the behavior (26) occurs at the intersection
of all three branches of the blow-up surface Γ.
Other possible situations, for instance, the condition 𝐷1(𝑡𝑏𝛼, 𝐮𝑏) = 0 for all 𝛼 = 1, 2, 3 are

equivalent to (25) and (26).
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KONOPELCHENKO and ORTENZI 11

The existence of the blowups of the types (21), (24), and (26) becomes rather obvious if one
rewrites the formula (8) as

det (𝑀(𝑡, 𝐮)) = (𝑡 − 𝑡𝑏1)(𝑡 − 𝑡𝑏2)(𝑡 − 𝑡𝑏3) . (27)

It is noted that one can treat the conditions (23) and (25) in a different manner, namely, to
consider them as the equations for the functions 𝑓1(𝐮), 𝑓2(𝐮), 𝑓3(𝐮). Within such a viewpoint,
Equation (23) defines those functions 𝑓𝑖(𝐮), 𝑖 = 1, 2, 3 for which two branches of the hypersurface
Γ identically coincide. All three branches of Γ coincide in the particular case of initial data such
that the functions 𝑓𝑖(𝐮), 𝑖 = 1, 2, 3 are solutions of the pair of Equations (23) and (25).
The formulae (21) and (24) reproduce the results previously obtained inKuznetsov andRuban12

with the use of the Lagrangian analog of the formula (18). The behavior of type (26)was not present
in Kuznetsov and Ruban12 due to the particular geometry of the vortex lines considered there.
An analysis of the behavior of vorticity and its integral characteristics has also been performed

inChefranov andChefranov10 with the use of an explicit integral representation of the Lagrangian
type derived in Chefranov.9
The components 𝜔𝑖 behave according to (21), (24), and (26) in the general case when all 𝜎𝑖 ≠ 0.

In this case, the direction of the vorticity vector (see, e.g., Constantin and Fefferman7)

𝝎 ≡
𝝎|𝝎| (28)

is regular with components

𝝎 =
1|𝜎| (𝜎1, 𝜎2, 𝜎3) , |𝜎|2 = 𝜎21 + 𝜎22 + 𝜎23 . (29)

Let us assume now that one of 𝜎𝑖 vanishes, for example, 𝜎3, that is,

3∑
𝑗,𝑘=1

𝜀3jk𝑀̃kj(𝑡𝑏, 𝐮𝑏) = 0 . (30)

This condition defines the 2D subspace 2 ⊂ 𝐮 in the hodograph space. At the points 𝐮 ∈ 2,
one has 𝜎3 = 0 and, hence instead of (21), the vorticity vector direction blows up as as

𝜔1 ∼ 𝜎1(𝑡 − 𝑡𝑏)
−𝑚

, 𝜔2 ∼ 𝜎2(𝑡 − 𝑡𝑏)
−𝑚

, 𝜔3 ∼ 𝜎′3(𝑡 − 𝑡𝑏)
−𝑚+1

, 𝑚 = 1, 2, 3 , (31)

where 𝜎′
𝑖
≡
∑3

𝑗,𝑘=1
𝜀ijk𝑀̃

′
kj(𝑡𝑏, 𝐮𝑏) for 𝑖 = 1, 2, 3. Consequently, the vector 𝝎 is of the form

𝝎 =
1|𝝈| (𝜎1, 𝜎2, 0) . (32)

Generically, for𝑚 = 1 such a situation may occur on the 2D subsurface of the blow-up hypersur-
face Γ. For𝑚 = 2, it may happen along the curve belonging to the 2D intersection of two branches
of Γ. For 𝑚 = 3, it may occur at the point belonging to the curve of the intersection of the three
branches of Γ.
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12 KONOPELCHENKO and ORTENZI

In the very particular case of two vanishing components of 𝜎𝑖 , for example, 𝜎1 = 𝜎2 = 0, one
has

𝜔1 ∼ 𝜎′1(𝑡 − 𝑡𝑏)
−𝑚+1

, 𝜔2 ∼ 𝜎′2(𝑡 − 𝑡𝑏)
−𝑚+1

, 𝜔2 ∼ 𝜎3(𝑡 − 𝑡𝑏)
−𝑚

, 𝑚 = 1, 2, 3 , (33)

and
𝝎 = (0, 0, 1) . (34)

Generically, such behavior may exist only for𝑚 = 1, 2. For𝑚 = 1 it may happen along a curve on
Γ, while for𝑚 = 2 it may occur at the point belonging to the intersection of two branches of Γ.
The behavior of vorticity described above corresponds to the case of rank 𝑟 = 2 for the matrix

𝑀 evaluated on the blow-up hypersurface Γ. It occurs on the whole blow-up hypersurface.17 In
contrast, the matrix 𝑀(𝑡𝑏, 𝐮𝑏) may have rank 1 only on a set of points Γ0 on Γ.17 Moreover, for
𝑟 = 1, the adjugate matrix 𝑀̃ vanishes identically:

𝑀̃ij|Γ0 = 0, 𝑖, 𝑗 = 1, 2, 3. (35)

On the other hand, generically, 𝑀̃′
ij|Γ0 are different from zero. So, in such a situation the com-

ponents of vorticity remain bounded when 𝑡 is approaching 𝑡𝑏 which corresponds to a point 𝐮𝑏
belonging to Γ0.

4 BLOWUPS OF VORTICITY AT FIXED TIME

The formulae (21), (24), and (26) describe the behavior of the vorticity in the situation when time
𝑡 approaches the blow-up time 𝑡𝑏 along the 𝑡 axis with fixed coordinate 𝐮𝑏.
The approach presented in Konopelchenko and Ortenzi17 and briefly reproduced in Section 2

looks more appropriate for the analysis of the blowups of vorticity in the regime when time 𝑡 is
fixed while the coordinates 𝐮 are subject to variations.
The formulas presented in Section 2 (see also Konopelchenko and Ortenzi17) indicate that non-

Cartesian coordinates 𝑦𝑖 and 𝑣𝑖 , 𝑖 = 1, 2, 3, are rather convenient for the analysis of blowups of
the derivatives. In order to use such coordinates for the analysis of blowups of vorticity, one has
to consider its coordinate-independent definition as the differential two-form (see, e.g., Refs. [8,
20])

𝜔 = d𝜃 = d𝐮 ∧ d𝐱 . (36)

where 𝜃 = 𝐮 ⋅ d𝐱.
We will use such definition in the form

𝜔(𝐮𝑏) = 𝛿𝐮 ∧ 𝛿𝐱 (37)

to study the behavior of vorticity at the point 𝐮𝑏 of the blow-up hypersurface Γ.
Using the formulae (10), one gets

𝜔(𝐮𝑏) ≡

3∑
𝛼,𝛽=1

𝑞𝛼𝛽𝛿𝑣𝛼 ∧ 𝛿𝑦𝛽 , (38)
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KONOPELCHENKO and ORTENZI 13

where
𝑞𝛼𝛽 ≡ (𝛼) ⋅  (𝛽) , 𝛼, 𝛽 = 1, 2, 3 . (39)

Then, due to the relation (15), at the blow-up point 𝐮𝑏 one obtains

𝜔(𝐮𝑏) =

3∑
𝛼,𝛽=1

𝜔𝛼𝛽(𝐮𝑏)𝛿𝑦𝛼 ∧ 𝛿𝑦𝛽, (40)

where

𝜔𝛼𝛽(𝐮𝑏) ≡
1

2

3∑
𝛾=1

(𝐶𝛾𝛼𝑞𝛾𝛽 − 𝐶𝛾𝛽𝑞𝛾𝛼) , 𝛼, 𝛽 = 1, 2, 3 . (41)

The components of the vorticity vector 𝝎 in these coordinates are defined as usual as

𝜔𝛼 =

3∑
𝛽,𝛾=1

𝜀𝛼𝛽𝛾𝜔𝛽𝛾 , 𝛽, 𝛾 = 1, 2, 3 . (42)

At the first level of blowup and rank 𝑟 = 2, the matrix 𝐶 is of the form (16). Consequently, the
element of 𝜔𝛼𝛽 , written in terms of the vorticity components 𝜔𝑖 , behaves as

𝜔 =
1

2

⎛⎜⎜⎝
0 𝜔3 −𝜔2

−𝜔3 0 𝜔1
𝜔2 −𝜔1 0

⎞⎟⎟⎠ , (43)

where

𝜔1 = 𝜀−1∕2𝑆1(𝐮𝑏) + 𝑇1(𝐮𝑏) ,

𝜔2 = 𝜀−1∕2𝑆2(𝐮𝑏) + 𝑇2(𝐮𝑏) ,

𝜔3 = 𝜀−1∕2𝑆3(𝐮𝑏) + 𝑇3(𝐮𝑏) , (44)

as 𝜀 → 0 and

𝑆1 = (𝜈12𝑞13 − 𝜈13𝑞12) , 𝑇1 = (𝜈22𝑞23 − 𝜈23𝑞22 + 𝜈32𝑞33 − 𝜈33𝑞32) ,

𝑆2 = (𝜈11 (−𝑞13) + 𝜈13𝑞11 − 𝜈21𝑞23 − 𝜈31𝑞33) , 𝑇2 = (𝜈23𝑞21 + 𝜈33𝑞31) ,

𝑆3 = (𝜈11𝑞12 − 𝜈12𝑞11 + 𝜈21𝑞22 + 𝜈31𝑞32) , 𝑇3 = (−𝜈22𝑞21 − 𝜈32𝑞31) . (45)

So, generically, that is, when all 𝑆𝛼 ≠ 0, the vorticity 𝝎 blows up as 𝜀−1∕2, 𝜀 → 0 at the point 𝐮𝑏 of
the 3D blow-up hypersurface Γ. In this case, the direction of the vorticity vector 𝝎 is regular with
the components

𝝎 =
1|𝐒| (𝑆1(𝐮𝑏), 𝑆2(𝐮𝑏), 𝑆3(𝐮𝑏)) . (46)
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14 KONOPELCHENKO and ORTENZI

However, particular situations are also admissible. Indeed, if there exists a point 𝐮𝑏 ∈ Γ such
that 𝑆3(𝐮𝑏) = 0 then at this point the components 𝜔1 and 𝜔2 of the vorticity blow up while the
component 𝜔3 remains finite. The condition 𝑆3(𝐮𝑏) = 0 has a codimension one. So, such a situa-
tion is realizable, in principle, on the 2D subsurface of the blow-up hypersurface Γ and 𝝎 is of the
form

𝝎 =
1|𝐒| (𝑆1(𝐮𝑏), 𝑆2(𝐮𝑏), 0) . (47)

Further, there may exist the points belonging to a certain curve on Γ at which

𝑆1(𝐮𝑏) = 𝑆2(𝐮𝑏) = 0 . (48)

At these points, the components 𝜔1 and 𝜔2 remain bounded and only one component 𝜔3 of the
vorticity blows up. Hence, the vorticity direction vector (28) assumes a particular form

𝝎 = (0, 0, 1) . (49)

Such a situation when the vorticity vector 𝝎 becomes very large in modulus, but concentrated
in one direction looks rather special and of interest.
It may even happen at a certain point 𝐮𝑏 ∈ Γ that

𝑆1(𝐮𝑏) = 𝑆2(𝐮𝑏) = 𝑆3(𝐮𝑏) = 0 . (50)

In such a case, the vorticity𝝎 remains bounded at the point of the first-level blowups of derivatives.
Finally, in order to analyze the blowup of vorticity in the Cartesian coordinates, it is sufficient

to perform the change of coordinates 𝐲 → 𝐱 on the right-hand side of (40).
Performing the transformation (12) in (40), one obtains

𝜔(𝐮𝑏) =

3∑
𝑖,𝑗=1

𝜔ij(𝐮𝑏)𝛿𝑥𝑖 ∧ 𝛿𝑥𝑗 . (51)

As a result, the components 𝜔𝑖 =
∑3

𝑗,𝑘=1
𝜀ijk

𝜕𝑢𝑘

𝜕𝑥𝑗
of the vorticity vector 𝝎 = ∇ × 𝐮 blow up on the

whole hypersurface Γ, namely

𝜔𝑖 = 𝜀−1∕2𝑆𝑖(𝐮𝑏) + 𝑇̃𝑖(𝐮𝑏) , 𝑖 = 1, 2, 3 , 𝜀 → 0 , (52)

where 𝑆𝑖 and 𝑇̃𝑖 are bounded functions obtained by a change of variables from (45).
The same result can be obtained directly, using the formulae (10), (15), and (12). Namely, one

gets

𝜕𝑢𝑙
𝜕𝑥𝑘

=

3∑
𝛽=1

𝜕𝑢𝑙
𝜕𝑦𝛽

𝜕𝑦𝛽

𝜕𝑥𝑘
=

3∑
𝛼,𝛽=1


(𝛼)
𝑙

𝜕𝑣𝛼
𝜕𝑦𝛽


(𝛽)

𝑘
=

3∑
𝛼,𝛽=1


(𝛼)
𝑙
𝐶𝛼𝛽

(𝛽)

𝑘
, 𝑙, 𝑘 = 1, 2, 3 , (53)

and, then, one obtains the formula (52).
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KONOPELCHENKO and ORTENZI 15

Again, it may happen that along certain curves Γ1 belonging to Γ, one has

𝑆1(𝐮𝑏) = 𝑆2(𝐮𝑏) = 0 . (54)

At the points on this curve, the components 𝜔1 and 𝜔2 remain bounded while the compo-
nents 𝜔3 → ∞ and 𝝎 = (0, 0, 1). Such a situation, when the vorticity vector 𝝎 becomes very
large in modulus but concentrated in one direction, resembles somehow certain well-known
physical phenomena.

5 BLOWUPS AT RANK 1 ANDHIGHER LEVELS

In the case of rank 𝑟 = 1, which occurs at a set of points 𝐮𝑏 ∈ Γ the matrix 𝐶 is of the form (cf.
Konopelchenko and Ortenzi17)

𝐶 =
⎛⎜⎜⎝
𝜀−1∕2𝜇11 𝜀

−1∕2𝜇12 𝜀
−1∕2𝜇13

𝜀−1∕2𝜇12 𝜀
−1∕2𝜇22 𝜀

−1∕2𝜇23
𝜀−1∕2𝜇13 𝜀

−1∕2𝜇32 𝜇33

⎞⎟⎟⎠ . (55)

The components of the vorticity vector 𝝎 again are of the form (45) or (52).
However, in this case, one cannot impose any constraint of the type 𝑆3 = 0 or (48), if one con-

siders the situation with generic function 𝑓𝑖(𝐮) of initial data. Such constraints may be admissible
for particular special initial data. Blowups of the second, third, and fourth levels for 𝑟 = 2 occur
on certain subspaces of the 3D blow-up hypersurface Γ.17
One of the subsections of the second level of blowups (in the rank 2 case) is characterized by

the following behavior of derivatives17:

𝜕𝑣1
𝜕𝑦1

∼ 𝜀−2∕3 ,
𝜕𝑣1
𝜕𝑦2

,
𝜕𝑣2
𝜕𝑦1

,
𝜕𝑣1
𝜕𝑦3

,
𝜕𝑣3
𝜕𝑦1

∼ 𝜀−1∕2 ,
𝜕𝑣2
𝜕𝑦2

,
𝜕𝑣3
𝜕𝑦3

,
𝜕𝑣2
𝜕𝑦3

,
𝜕𝑣3
𝜕𝑦3

∼ 𝑂(1) , 𝜀 → 0 ,

(56)

which corresponds to a matrix 𝐶 given by

𝐶 =
⎛⎜⎜⎝
𝜀−2∕3𝜂11 𝜀

−1∕2𝜂12 𝜀
−1∕2𝜂13

𝜀−1∕2𝜂21 𝜂22 𝜂23
𝜀−1∕2𝜂31 𝜂32 𝜂33

⎞⎟⎟⎠ , (57)

where 𝜂ij are certain coefficients depending on
𝜕𝑓𝑖

𝜕𝑢𝑗
(𝐮𝑏) and

𝜕2𝑓𝑖

𝜕𝑢𝑗𝜕𝑢𝑘
(𝐮𝑏) evaluated at the point 𝐮𝑏.

Consequently, the components𝜔𝑖 of the vorticity have the following behavior at the blow-up point
of the second level:

𝜔1 = 𝜀−1∕2𝑆1(𝐮𝑏) + 𝑇̃1(𝐮𝑏) ,

𝜔2 = 𝜀−2∕3𝑌2(𝐮𝑏) + 𝜀−1∕2𝑆2(𝐮𝑏) + 𝑇̃2(𝐮𝑏) ,

𝜔3 = 𝜀−2∕3𝑌3(𝐮𝑏) + 𝜀−1∕2𝑆3(𝐮𝑏) + 𝑇̃3(𝐮𝑏) , 𝜀 → 0, (58)
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16 KONOPELCHENKO and ORTENZI

where𝑌𝑖, 𝑆𝑖 , and 𝑇̃𝑖 are certain bounded functions of 𝐮𝑏 ∈ Γ. In this case, the direction of vorticity
vector (28) is

𝝎 =
1|𝐘| (0, 𝑌2(𝐮𝑏), 𝑌3(𝐮𝑏)) , (59)

where |𝐘|2 = 𝑌2(𝐮𝑏)
2
+ 𝑌3(𝐮𝑏)

2.
So, in contrast to the first level (45), the components of the vorticity vector generically blow up

in a different manner. Such realization occurs in the 2D subspace of the blow-up hypersurface Γ.17
So, one can impose at most two constraints.
Under the constraint

𝑆1(𝐮𝑏) = 0, (60)

one has the following behavior:

𝝎 ∼ (𝑂(1), 𝜀−2∕3, 𝜀−2∕3) , 𝜀 → 0. (61)

If instead

𝑌2(𝐮𝑏) = 0 (62)

then

𝝎 ∼ (𝜀−1∕2, 𝜀−1∕2, 𝜀−2∕3) , 𝜀 → 0. (63)

and

𝝎 = (0, 0, 1) . (64)

The situations (60) and (62) may happen on curves belonging to Γ2.
Imposing two constraints, one may have essentially two different situations. Indeed if

𝑌2(𝐮𝑏) = 𝑌3(𝐮𝑏) = 0 (65)

all components of vorticity blow up in the same manner, namely,

𝝎 ∼ (𝜀−1∕2, 𝜀−1∕2, 𝜀−1∕2) , 𝜀 → 0. (66)

and the vorticity direction vector is a generic one. On the other hand, if it happens that

𝑆1(𝐮𝑏) = 𝑌2(𝐮𝑏) = 0 , (67)

then the components of vorticity behave quite differently since

𝝎 ∼ (𝑂(1), 𝜀−1∕2, 𝜀−2∕3) , 𝜀 → 0. (68)
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KONOPELCHENKO and ORTENZI 17

In this case, the vorticity direction vector 𝝎 is oriented along the third axis, namely

𝝎 = (0, 0, 1) . (69)

Such a situation is realizable in principle at the points of intersection of the curves defined by (62)
and (60).
One observes similar behaviors of vorticity in other subsectors of the second level of blowups.
The third level of blowups is realizable on a curve belonging to Γ. Derivatives 𝜕𝑣𝛼

𝜕𝑦𝛽
behave

similarly to (56) except that
𝜕𝑣1
𝜕𝑦1

∼ 𝜀−3∕4 , (70)

and, as a consequence, one has the behavior of the type (58) with the substitution 𝜀−2∕3 → 𝜀−3∕4

in the 𝑌𝑖 terms. In this case, one can impose, generically, only one constraint. For instance, if
𝑌3(𝐮𝑏) = 0 one has the following behavior of component of vorticity:

𝝎 = (𝜀−1∕2, 𝜀−3∕4, 𝜀−1∕2) , 𝜀 → 0 . (71)

and
𝝎 = (0, 1, 0) . (72)

Finally, the fourth level may occur at a point on Γ and this point (see also Konopelchenko and
Ortenzi17)

𝜕𝑣1
𝜕𝑦1

∼ 𝜀−4∕5 , 𝜀 → 0. (73)

Again, one has formula (58) with the substitution 𝜀−2∕3 → 𝜀−4∕5 in the first term on the right-hand
side, and, generically, no constraints are allowed.

6 VORTICITY FOR 2D HEE

For the 2D HEE, an analog of the formula (18) for the vorticity 𝜔3 =
𝜕𝑢2

𝜕𝑥1
−

𝜕𝑢1

𝜕𝑥2
is given by

𝜔3(𝑡, 𝐮) =

𝜕𝑓1

𝜕𝑢2
−

𝜕𝑓2

𝜕𝑢1

𝑡2 + tr(𝑀0)𝑡 + det (𝑀0)
, (74)

where 𝑀0 ≡ 𝑀(𝑡 = 0, 𝐮) is the matrix with components (𝑀0)ij =
𝜕𝑓𝑖

𝜕𝑢𝑗
, 𝑖, 𝑗 = 1, 2. The quadratic

equation 𝑡2 + tr(𝑀0)𝑡 + det(𝑀0) = 0, defining the blow-up surface Γ,16 may have, obviously,
either two real roots or no one, depending on the sign of the discriminant

Δ(𝐮) =

(
𝜕𝑓1
𝜕𝑢1

+
𝜕𝑓2
𝜕𝑢2

)2

− 4

(
𝜕𝑓1
𝜕𝑢1

𝜕𝑓2
𝜕𝑢2

−
𝜕𝑓1
𝜕𝑢2

𝜕𝑓2
𝜕𝑢1

)
=

(
𝜕𝑓1
𝜕𝑢1

−
𝜕𝑓2
𝜕𝑢2

)2

+ 4
𝜕𝑓1
𝜕𝑢2

𝜕𝑓2
𝜕𝑢1

. (75)
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18 KONOPELCHENKO and ORTENZI

So, in contrast to the 3D HEE, in two dimensions there are solutions with blowups free vorticity
(cf. Konopelchenko and Ortenzi16).
It is natural to consider subdomains+

𝐮 ⊂ 𝐮, and−
𝐮 ⊂ 𝐮 defined as follows:

(𝑢1, 𝑢2) ∈ +
𝐮 , if Δ(𝑢1, 𝑢2) > 0 ,

(𝑢1, 𝑢2) ∈ −
𝐮 , if Δ(𝑢1, 𝑢2) < 0 ,

(𝑢1, 𝑢2) ∈ 0
𝐮 , if Δ(𝑢1, 𝑢2) = 0 , (76)

then
𝐮 = +

𝐮 ∪−
𝐮 ∪0

𝐮, (77)

and the curve0 is the boundary between+
𝐮 and−

𝐮 . In the case𝐮 = −
𝐮 , one has the blow-up

free situation.
In the rest of this section, we will assume that the subdomain +

𝐮 is not empty and hence the
blow-up surface has two branches Γ+ and Γ−.
Let 𝐮𝑏 a point at +

𝐮 and 𝑡𝑏 be the corresponding value of time 𝑡 on the first or the second
branches of Γ. In the first regime, that is, when 𝑡 → 𝑡𝑏 with fixed 𝐮𝑏, one has

𝜔3(𝑡𝑏 + 𝜀, 𝐮𝑏) ∼

𝜕𝑓1

𝜕𝑢2
(𝐮𝑏) −

𝜕𝑓2

𝜕𝑢1
(𝐮𝑏) + 𝑂(𝜀)(

2𝑡𝑏 +
𝜕𝑓1

𝜕𝑢1
(𝐮𝑏) +

𝜕𝑓2

𝜕𝑢2
(𝐮𝑏)

)
𝜀 + 𝜀2

, 𝜀 → 0 . (78)

So, if

2𝑡𝑏 +
𝜕𝑓1
𝜕𝑢1

(𝐮𝑏) +
𝜕𝑓2
𝜕𝑢2

(𝐮𝑏) =
√
Δ(𝐮)|𝐮=𝐮𝑏 ≠ 0, (79)

the vorticity 𝜔3 blows up as

𝜔3(𝑡, 𝐮𝑏) ∼ 𝜀−1 ≡ (𝑡 − 𝑡𝑏)
−1
, 𝑡 → 𝑡𝑏 . (80)

This happens at each point of the blow-up surface Γ.
If instead

2𝑡𝑏 +
𝜕𝑓1
𝜕𝑢1

(𝐮𝑏) +
𝜕𝑓2
𝜕𝑢2

(𝐮𝑏) =
√
Δ(𝐮)|𝐮=𝐮𝑏 = 0, (81)

the vorticity 𝜔3 blows up as

𝜔3(𝑡, 𝐮𝑏) ∼ 𝜀−2 ≡ (𝑡 − 𝑡𝑏)
−2
, 𝑡 → 𝑡𝑏 . (82)

Such a behavior occurs on the curve defined by the condition (81).
It is the condition of a coincidence for the values 𝑡𝑏± =

1

2

𝑡𝑏± =
−tr𝑀0 ±

√
Δ

2
(83)
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KONOPELCHENKO and ORTENZI 19

of the branches Γ±, that is, 𝑡𝑏+ = 𝑡𝑏−. Hence, the blowup of the type (82) occurs along the curve
of the intersection of two branches of the blow-up surface Γ. The corresponding curve (81) in the
hodograph space can be the border curve between two subdomains+

𝐮 or−
𝐮 when+

𝐮 = 𝐮 or
−
𝐮 = 𝐮 respectively.
Similar to the 3D case, one can view the conditions (81) as the equation which defines those

functions 𝑓1(𝐮) and 𝑓2(𝐮) for which two branches of Γ coincide.
In order to analyze the behavior of the vorticity𝜔3 at fixed time 𝑡𝑏, similar to (10), one introduces

the variables 𝐲 and 𝐯 (see also Konopelchenko and Ortenzi17)

𝛿𝐮 =

2∑
𝛼=1

(𝛼)𝛿𝑣𝛼 , 𝛿𝐱 =

2∑
𝛼=1

 (𝛼)𝛿𝑦𝛼 . (84)

At the first level of blowups, one has the following behavior of derivatives17:

𝜕𝑣1
𝜕𝑦1

,
𝜕𝑣1
𝜕𝑦2

,
𝜕𝑣2
𝜕𝑦1

∼ 𝜀−1∕2 ,
𝜕𝑣2
𝜕𝑦2

∼ 𝑂(1) . (85)

So, one has the relation

𝛿𝑣𝛼 =

2∑
𝛽=1

𝐶𝛼𝛽𝛿𝑦𝛽 , 𝛼 = 1, 2, (86)

with the matrix

𝐶 =

(
𝜀−1∕2𝜈11 𝜀

−1∕2𝜈12
𝜀−1∕2𝜈21 𝜈22

)
. (87)

In the 2D case, the vorticity is the differential two-form

𝜔(𝐮𝑏) = 𝜔12𝛿𝑦1 ∧ 𝛿𝑦2 , (88)

where

𝜔12(𝐮𝑏) = 𝜀−1∕2𝑆(𝐮𝑏) + 𝑇(𝐮𝑏) , 𝜀 → 0 (89)

and 𝑆(𝐮𝑏) and 𝑇(𝐮𝑏) are certain combinations of 𝜈𝛼𝛽 and𝛼 ⋅ 𝛽 (see in analogy the 3D case of
the (39) and (40) relations).
In the Cartesian coordinates, the vorticity 𝜕𝑢2

𝜕𝑥1
−

𝜕𝑢1

𝜕𝑥2
also is of the form (89). Along the curve

defined by the condition

𝑆(𝐮𝑏) = 0, (90)

the vorticity is bounded.
Blowups of the second level occur on the curve contained in Γ and on this curve (see

Konopelchenko and Ortenzi17)

𝜕𝑣1
𝜕𝑦1

∼ 𝜀−2∕3 ,
𝜕𝑣1
𝜕𝑦2

∼ 𝜀−1∕2 ,
𝜕𝑣2
𝜕𝑦1

∼ 𝜀−1∕2 ,
𝜕𝑣2
𝜕𝑦2

∼ 𝑂(1) , 𝜀 → 0, (91)
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20 KONOPELCHENKO and ORTENZI

and, consequently, the vorticity blows up as

𝜔12 = 𝜀−2∕3𝑌(𝐮𝑏) + 𝜀−1∕2𝑆(𝐮𝑏) + 𝑇(𝐮𝑏) . (92)

Finally, at the third level which may occur at a point on Γ, one has 𝜕𝑣1

𝜕𝑦1
∼ 𝜀−3∕4 and, hence, the

vorticity blows up as 𝜔12 = 𝜀−3∕4.

7 EXAMPLES IN TWO DIMENSIONS

Here we will present three characteristic examples of the 2D HEE.

7.1 Blow-up free solutions

Let the functions 𝑓1 and 𝑓2 be of the form

𝑓1 =
𝜕𝑊

𝜕𝑢2
, 𝑓2 =

𝜕𝑊

𝜕𝑢1
, (93)

where the real function𝑊(𝑢1, 𝑢2) obeys the Laplace equation

𝜕2𝑊

𝜕𝑢21
+
𝜕2𝑊

𝜕𝑢22
= 0 . (94)

It is easy to see that in this case

𝑡𝑏 = −
𝜕2𝑊

𝜕𝑢1𝜕𝑢2
±
√
Δ with Δ = −

(
𝜕2𝑊

𝜕𝑢21

)2

< 0 (95)

for any function𝑊 except a linear one. So, the corresponding solutions 𝑢1 and 𝑢2 of the 2D HEE
have no blowups.
The vorticity (74) is given by

𝜔3 = −2

𝜕2𝑊

𝜕𝑢2
1

𝑡2 + 2
𝜕2𝑊

𝜕𝑢1𝜕𝑢2
𝑡 +

(
𝜕2𝑊

𝜕𝑢1𝜕𝑢2

)2
+

(
𝜕2𝑊

𝜕𝑢2
1

)2
, (96)

and it is blowup free too.
The particular choice

𝑊 =
1

2𝛼

(
𝑢22 − 𝑢21

)
(97)

or 𝑓1 =
𝑢2

𝛼
, 𝑓2 = −

𝑢1

𝛼
corresponds to initial velocities 𝑢1 = −𝛼𝑥2 and 𝑢2 = 𝛼𝑥1 where 𝛼 is an

arbitrary real constant. Such an initial condition gives

𝑢1 =
𝛼(𝛼𝑥1𝑡 − 𝑥2)

𝛼2𝑡2 + 1
, 𝑢2 =

𝛼(𝛼𝑥2𝑡 + 𝑥1)

𝛼2𝑡2 + 1
, (98)
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KONOPELCHENKO and ORTENZI 21

and

𝜔3 =
2𝛼

𝛼2𝑡2 + 1
. (99)

It is the rotational type vortex solution of the 2D HEE with the initial strength 2𝛼 and 𝛼−1 as the
characteristic decaying time.
It is worth to note that the subclass of solutions of the 2DHEE corresponding to the choice (93)

has a simple description in terms of complex coordinates16

𝑍 = 𝑥1 + 𝑖𝑥2 , 𝑉 = 𝑢1 + 𝑖𝑢2 , 𝐹 = 𝑓1 + 𝑖𝑓2 . (100)

Indeed, in these variables, the conditions (93) and (94) are given by

𝐹 = 2𝑖
𝜕𝑊

𝜕𝑉
(101)

and
𝜕2𝑊(𝑉, 𝑉̄)

𝜕𝑉𝜕𝑉̄
= 0 . (102)

Since

𝑊(𝑉, 𝑉̄) = (𝑉) + ̄(𝑉̄), (103)

where(𝑉) is an arbitrary analytic function (note that (93) implies that𝑊 is real-valued), then

𝐹 = 2𝑖
𝜕(𝑉)

𝜕𝑉
. (104)

For such function 𝐹, the hodograph equation assumes the form

𝑍 − Vt = 𝐹(𝑉) . (105)

Solutions of the hodograph Equation (105) obey the equation

𝜕𝑉

𝜕𝑡
+ 𝑉

𝜕𝑉

𝜕𝑍
= 0 . (106)

In the complex variables, the vorticity (96) is given by

𝜔3 = −2
Im

(
𝜕𝐹

𝜕𝑉

)
|𝑡 + 𝜕𝐹

𝜕𝑉
|2 . (107)

For the solution (98) 𝐹 = −iV∕𝛼. For the generic analytic function 𝐹(𝑉). the corresponding solu-
tion 𝑉(𝑍, 𝑡) of Equation (106) and its vorticity are blow-up free. In the trivial particular case
𝐹 = 𝛽𝑉, where 𝛽 is an arbitrary real constant, the solution 𝑉(𝑍, 𝑡) = 𝑍

𝑡+𝛽
of Equation (106) and

its derivative exhibit the blowup at 𝑡 = −𝛽 while the vorticity 𝜔3 = 0. In this case, the 2D HEE is
decomposed into two one-dimensional Burgers–Hopf equations.
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22 KONOPELCHENKO and ORTENZI

The fact that for the generic analytic solutions of the 2D HEE, the derivatives are blowups free
has been noted in Konopelchenko and Ortenzi16 (Section 5). Indeed, in the complex variables
(100) the full 2D HEE assumes the form

𝜕𝑉

𝜕𝑡
+ 𝑉

𝜕𝑉

𝜕𝑍
+ 𝑉̄

𝜕𝑉

𝜕𝑍̄
= 0 , (108)

and the blow-up surface is defined by(
𝜕𝐹

𝜕𝑉
+ 𝑡

)(
𝜕𝐹̄

𝜕𝑉̄
+ 𝑡

)
− | 𝜕𝐹

𝜕𝑉̄
|2 = 0 . (109)

For the analytic solutions (𝜕𝑉∕𝜕𝑍̄ = 0, 𝜕𝐹∕𝜕𝑉̄ = 0), 2D HEE (108) is reduced to (106) and the
blow-up surface is defined by the equation (Konopelchenko and Ortenzi,16 Section 5)

det𝑀 =

(
𝜕𝐹

𝜕𝑉
+ 𝑡

)(
𝜕𝐹̄

𝜕𝑉̄
+ 𝑡

)
= 0 . (110)

This equation has no real roots except the trivial case 𝐹 = 𝛽𝑉, mentioned above. Consequently,
in nontrivial cases, the derivative 𝜕𝑉∕𝜕𝑍 does not exhibit blowups for real-time 𝑡 (negative or
positive) in contrast to the classical one-dimensional case (real 𝑍).
In different contexts, Equation (106) has been considered earlier21–23

7.2 Nongeneric blowup

Let us choose

𝑓1 = −
𝑢31
3
−
2

3
𝑢1𝑢

2
2 + 2𝑢2 , 𝑓2 = −

𝑢32
3
−
1

3
𝑢21𝑢2 − 𝑢1 . (111)

The corresponding initial data are

𝑢1(𝑥1, 𝑥2, 0) = − 𝑥2 −
𝑥31
24

−
1

6
𝑥1𝑥

2
2 +

𝑥52
18

+
1

72
𝑥21𝑥

3
2 +

1

144
𝑥41𝑥2 +⋯ ,

𝑢2(𝑥1, 𝑥2, 0) =
𝑥1
2
−
𝑥32
6
−

1

12
𝑥2𝑥

2
1 −

𝑥51
288

−
1

144
𝑥22𝑥

3
1 −

1

36
𝑥42𝑥1 +⋯ . (112)

In this case, the matrix𝑀 is

𝑀(𝑡, 𝐮) =

⎛⎜⎜⎜⎝
𝑡 −

(
𝑢21 +

2

3
𝑢22

)
2 −

4

3
𝑢1𝑢2

−
2

3
𝑢1𝑢2 − 1 𝑡 −

(
1

3
𝑢21 + 𝑢22

)
⎞⎟⎟⎟⎠ , (113)

and the blow-up surface Γ is defined by the equation

𝑡2 −

(
4

3
𝑢21 +

5

3
𝑢22

)
𝑡 +

1

3
𝑢41 +

1

3
𝑢21𝑢

2
2 +

2

3
𝑢42 + 2 = 0 . (114)
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KONOPELCHENKO and ORTENZI 23

F IGURE 1 In the gray+
𝐮 region, the discriminant Δ(𝑢1, 𝑢2) (115) is positive and, therefore, blowups are

possible. In the complementary region−
𝐮 , the discriminant Δ(𝑢1, 𝑢2) is negative and, therefore, no blowups are

possible.

The discriminant Δ(𝑢1, 𝑢2) is

Δ(𝑢1, 𝑢2) ≡ 4𝑢41 + 28𝑢22𝑢
2
1 + 𝑢42 − 72 . (115)

So the subdomains+
𝐮 and−

𝐮 in𝐮 are separated by the quartic curve

Δ(𝑢1, 𝑢2) = 4𝑢41 + 28𝑢22𝑢
2
1 + 𝑢42 − 72 = 0 . (116)

The subdomain−
𝐮 is located around the origin 𝑢1 = 𝑢2 = 0 as shown in Figure 1.

The blow-up surface Γ has two branches

𝑡± =
1

6

(
4𝑢21 + 5𝑢22 ±

√
4𝑢41 + 28𝑢22𝑢

2
1 + 𝑢42 − 72

)
. (117)

with 𝐮 ∈ +
𝐮 . It is easy to see that for both branches 𝑡+ ≥ 𝑡− > 0 (see Figure 2).

The time of the gradient catastrophe is 𝑡−min = 1.62019 at the point 𝑢1 = ±1.59562, 𝑢2 =
±1.17844.
The vorticity is equal to

𝜔3 =
3 −

2

3
𝑢1𝑢2

det𝑀
. (118)

In the first regime of approaching of generic blow-up point (𝑢1, 𝑢2) ∈ +
𝐮 , the vorticity behaves

as

𝜔3(𝑡, 𝐮𝑏) ∼ ±
2𝑢1𝑢2 − 9√

4𝑢41 + 28𝑢22𝑢
2
1 + 𝑢42 − 72 (𝑡 − 𝑡𝑏)

, 𝑡 → 𝑡𝑏 =
1

6

(
4𝑢21 − 5𝑢22 ±

√
4𝑢41 + 28𝑢22𝑢

2
1 + 𝑢42 − 72

)
.

(119)
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24 KONOPELCHENKO and ORTENZI

F IGURE 2 Blow-up Γ region
(117) related to hodograph
mappings (111). At the black curve
(120), the vorticity behavior is
nongeneric 𝜔 ∼ (Δ𝑡)

−2.

TABLE 1 The local inverses of the initial data (122).

𝑥1 ≥ 0𝑥2 ≥ 0 𝑥1 ≥ 0𝑥2 < 0 𝑥1 < 0𝑥2 ≥ 0 𝑥1 < 0𝑥2 < 0

𝑥1 = 𝑓1(𝐮)

√
1

2
log

𝑢2

𝑢1
3

√
1

2
log

𝑢2

𝑢1
3

−

√
1

2
log

𝑢2

𝑢1
3

−

√
1

2
log

𝑢2

𝑢1
3

𝑥2 = 𝑓2(𝐮)

√
1

2
log

𝑢1

𝑢2
−

√
1

2
log

𝑢1

𝑢2

√
1

2
log

𝑢1

𝑢2
−

√
1

2
log

𝑢1

𝑢2

Approaching the points

𝑡±𝑏 =
2

3
𝑢21 +

5

6
𝑢22 , Δ(𝑢1, 𝑢2) = 0 , (120)

which belongs to the curve of the intersection of two branches 𝑡+ and 𝑡−, the vorticity blows up as

𝜔 ∼

±
2

3

√
2𝑢1

√
−7𝑢21 −

√
6
√
8𝑢41 + 3 − 3

(𝑡 − 𝑡𝑏)
2

, 𝑡 → 𝑡𝑏 = −11𝑢21 − 5

√
16𝑢41
3

+ 2 . (121)

In this case, the curve Δ(𝑢1, 𝑢2) = 0 is the boundary line between the subdomains+
𝐮 and−

𝐮 .

7.3 Gaussian initial data

Finally, we consider a solution of the HEE with the initial data

𝑢1(𝐱, 0) = 𝑒−𝑥
2
1
−𝑥2

2 , 𝑢2(𝐱, 0) = exp−𝑥
2
1
−3𝑥2

2 . (122)

Such initial values admit four different open sets of invertibility shown in Table 1. Where
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KONOPELCHENKO and ORTENZI 25

𝑓𝑖 , 𝑖 = 1, 2 is the local inverse of (122). The hodograph Equations (5) assume the form of the system
of four equations

𝐺𝑎,𝑏 ∶

⎧⎪⎪⎨⎪⎪⎩
𝑥1 = 𝑢1𝑡 + 𝑎

√
1

2
ln

(
𝑢2

𝑢3
1

)
, 𝑎(𝑥1 − 𝑢1𝑡) > 0

𝑥2 = 𝑢2𝑡 + 𝑏

√
1

2
ln

(
𝑢2

𝑢1

)
, 𝑏(𝑥2 − 𝑢2𝑡) > 0

, 𝑎 = ± , 𝑏 = ± . (123)

Each pair of Equations (123) define a solution 𝐮ab(𝐱, 𝑡) in the corresponding subdomain. So, the
solution of the 2D HEE with the initial data (122) is a union

𝐮(𝐱, 𝑡) = 𝐮++(𝐱, 𝑡) ∪ 𝐮+−(𝐱, 𝑡) ∪ 𝐮−+(𝐱, 𝑡) ∪ 𝐮−−(𝐱, 𝑡) . (124)

In other words,

𝐮(𝐱, 𝑡) =

⎧⎪⎪⎨⎪⎪⎩
𝐮++(𝐱, 𝑡) , at 𝑥1 − 𝑢1(𝐱, 𝑡) > 0 , 𝑥2 − 𝑢2(𝐱, 𝑡) > 0 ,

𝐮+−(𝐱, 𝑡) , at 𝑥1 − 𝑢1(𝐱, 𝑡) > 0 , 𝑥2 − 𝑢2(𝐱, 𝑡) < 0 ,

𝐮−+(𝐱, 𝑡) , at 𝑥1 − 𝑢1(𝐱, 𝑡) < 0 , 𝑥2 − 𝑢2(𝐱, 𝑡) > 0 ,

𝐮−−(𝐱, 𝑡) , at 𝑥1 − 𝑢1(𝐱, 𝑡) < 0 , 𝑥2 − 𝑢2(𝐱, 𝑡) < 0 .

(125)

The function (125) is continuous on ℝ2 × ℝ through the boundary 𝐱 − 𝐮𝑡 = 0. Note that
𝐮−−(𝐱, 𝑡) = 𝐮++(−𝐱,−𝑡), 𝐮−+(𝐱, 𝑡) = 𝐮+−(−𝐱,−𝑡). Moreover, the domain 𝐮 is the square 0 <
𝑢1(𝐱, 𝑡), 𝑢2(𝐱, 𝑡) ≤ 1. Using the standard formulae 𝐮(𝑥, 𝑡) = 𝐮0(𝜉1, 𝜉2) with 𝜉𝑖 = 𝑥𝑖 − 𝑢𝑖𝑡, 𝑖 = 1, 2,
one can view the piecewise solution (125) as

𝐮ab(𝑥, 𝑡) = 𝐮0(𝑎𝜉1, 𝑏𝜉2) , 𝑎𝜉1 > 0 , 𝑏𝜉2 > 0 . (126)

Then four corresponding matrices𝑀 are of the form

𝑀(ab)(𝑡, 𝐮) =

⎛⎜⎜⎜⎜⎜⎜⎝

𝑡 − 𝑎
3

2
√
2𝑢1

√
log

(
𝑢2
𝑢1
3

) 𝑎
1

2
√
2𝑢2

√
log

(
𝑢2
𝑢1
3

)

𝑏
1

2
√
2𝑢1

√
log

(
𝑢1
𝑢2

) 𝑡 − 𝑏
1

2
√
2𝑢2

√
log

(
𝑢1
𝑢2

)

⎞⎟⎟⎟⎟⎟⎟⎠
, 𝑎, 𝑏 = ±, (127)

and the corresponding branches of the blow-up surface are defined by the equation

det𝑀 = 𝑡2 −

⎛⎜⎜⎜⎜⎝
3𝑎

2
√
2𝑢1

√
log

(
𝑢2

𝑢1
3

) +
𝑏

2
√
2𝑢2

√
log

(
𝑢1

𝑢2

)
⎞⎟⎟⎟⎟⎠

𝑡 +
ab

4𝑢1𝑢2

√
log

(
𝑢2

𝑢1
3

)
log

(
𝑢1

𝑢2

) = 0 , 𝑎, 𝑏 = ±. (128)
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26 KONOPELCHENKO and ORTENZI

The values of the vorticity 𝜔3 for the branches (𝑎, 𝑏) are given by

𝜔3 =
1

det𝑀pq(𝑡, 𝐮)

⎛⎜⎜⎜⎜⎝
𝑎

2
√
2𝑢2

√
log

(
𝑢1

𝑢2
3

) −
𝑏

2
√
2𝑢1

√
log

(
𝑢2

𝑢1

)
⎞⎟⎟⎟⎟⎠
. (129)

The discriminant Δ of Equation (128) is positive for all values of 𝑎 and 𝑏 since

Δab(𝐮) =

⎛⎜⎜⎜⎜⎝
3𝑎

2
√
2𝑢1

√
log

(
𝑢2

𝑢1
3

) +
𝑏

2
√
2𝑢2

√
log

(
𝑢1

𝑢2

)
⎞⎟⎟⎟⎟⎠

2

−
ab

𝑢1𝑢2

√
log

(
𝑢2

𝑢1
3

)
log

(
𝑢1

𝑢2

)

=

⎛⎜⎜⎜⎜⎝
3𝑎

2
√
2𝑢1

√
log

(
𝑢2

𝑢1
3

) −
𝑏

2
√
2𝑢2

√
log

(
𝑢1

𝑢2

)
⎞⎟⎟⎟⎟⎠

2

+
ab

2𝑢1𝑢2

√
log

(
𝑢2

𝑢1
3

)
log

(
𝑢1

𝑢2

) . (130)

So, for the solution (125) the blow-up surface Γ has two branches for all values of 𝐮 ∈ 𝐮

(𝑡±)ab =
3𝑎

2
√
2𝑢1

√
log

(
𝑢2

𝑢1
3

) +
𝑏

2
√
2𝑢2

√
log

(
𝑢1

𝑢2

) ±
√
Δab . (131)

It is easy to see that for the (𝑎, 𝑏) = (+,+) piece

(𝑡±)++ > 0 , (𝑡+)++ > (𝑡−)++ , (132)

while

(𝑡±)−− < 0 , (𝑡+)−− > (𝑡−)−− , (133)

For the pieces (𝑎, 𝑏) = (+,−) and (𝑎, 𝑏) = (−,+), one has

(𝑡+)+− > 0 , (𝑡−)+− < 0 , (134)

and

(𝑡+)−+ > 0 , (𝑡−)−+ < 0 . (135)

Minimal values of 𝑡±ab for the positive pieces are

(𝑡−)++|min = 0.642593 , (𝑡+)+−|min = 1.16582 , (𝑡+)−+|min = 0.673088 . (136)
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KONOPELCHENKO and ORTENZI 27

F IGURE 3 The time evolution of the vorticity depending on 𝐮 with initial data given by (122). From left to
right, the times are 𝑡 = 0, 𝑡 = 0.85𝑡𝑐 , 𝑡 = 0.999𝑡𝑐 , where 𝑡𝑐 = 0.642593 is the catastrophe time. Remark the change
in the vertical scale in the last plot.

F IGURE 4 The time evolution of the vorticity depending on 𝐱 with initial data given by (122). From left to
right, the times are 𝑡 = 0, 𝑡 = 0.85𝑡𝑐 , 𝑡 = 0.999𝑡𝑐 , where 𝑡𝑐 = 0.642593 is the catastrophe time. The dashed vertical
line indicates the catastrophe direction of the vorticity in the catastrophe place 𝐱𝑐 .

Thus, the gradient catastrophe occurs at

𝑡𝑐 ≡ (𝑡−)++|min = 0.642593 , 𝐮𝑐 = (0.803494, 0.584021) , 𝐱𝑐 = (0.759774, 0.77468) .

(137)
As expected, the behavior of the vorticity at 𝐮 = 𝐮𝑐 in the first regime is

𝜔(𝑡, 𝐮𝑐) =
0.270466

𝑡𝑐 − 𝑡
− 0.0747002 + 0.0206315(𝑡𝑐 − 𝑡) +⋯ . (138)

The time evolution of the vorticity 𝜔(𝑡, 𝐮) is shown in Figure 3.
In Figure 4, it is shown the time evolution of the vorticitywith respect to space variables, numer-

ically computed usingMathematica. The behavior is in agreement with the analytical predictions
(137).
Since Δab(𝐮) ≠ 0 for all 𝐮 ∈ 𝐮, two branches (131) do not intersect. So, the blowup of the type

𝜔 ∼ (𝑡𝑐 − 𝑡)
−2 is absent in this case.

8 BLOWUPS FOR n-DIMENSIONAL CASE

An extension of the results presented in this paper to the 𝑛-dimensional HEE is quite straightfor-
ward. Indeed, the components𝜔ij of the vorticity two-form (36) in Cartesian coordinates are given
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28 KONOPELCHENKO and ORTENZI

by

𝜔ij(𝑡, 𝐮) = (𝑀−1)ji(𝑡, 𝐮) − (𝑀−1)ij(𝑡, 𝐮) =
𝑀̃ji(𝑡, 𝐮) − 𝑀̃ij(𝑡, 𝐮)

det(𝑀(𝑡, 𝐮))
, 𝑖, 𝑗 = 1,⋯, 𝑛. (139)

In the 𝑛-dimensional case, det(𝑀(𝑡, 𝐮)) is a polynomial in 𝑡 of degree 𝑛,16 that is

det(𝑀(𝑡, 𝐮)) =

𝑛∏
𝑘=1

(𝑡 − 𝑡𝑏𝑘) . (140)

So, in the first regime of approaching the blow-up point 𝜔ij may have the following behavior:

𝜔ij ∼ (𝑡 − 𝑡𝑏)
−𝑚

, 𝑡 → 𝑡𝑏 , 𝑚 = 1,⋯, 𝑛 . (141)

As far as the second regime is concerned, it was shown in Konopelchenko and Ortenzi17 that the
derivatives 𝜕𝑢𝑖∕𝜕𝑥𝑗 may have singularities of the type |𝛿𝐱|− 𝑚

𝑚+1 , with𝑚 = 1,⋯, 𝑛 + 1. Hence, in
this regime, the vorticity two-form may blow up as

𝜔ij ∼ |𝛿𝐱|− 𝑚

𝑚+1 , |𝛿𝐱| → 0 , 𝑚 = 1,⋯, 𝑛 + 1 . (142)

Similar to the results described in Konopelchenko and Ortenzi,17 blowups of the vorticity exhibit
a rather rich fine structure.
The formulae (141) and (142) imply certain behavior of the characteristics of vorticity in different

dimensions discussed in Arnold and Khesin.20
One obtains analogous results for the stress tensor

ij ≡
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
= (𝑀−1)ij + (𝑀−1)ji =

𝑀̃ij + 𝑀̃ji

det(𝑀)
, 𝑖, 𝑗 = 1,⋯, 𝑛, (143)

which is another important quantity in the theory of continuous media.1–3

9 CONCLUSIONS

The results presented in this note are in part the consequences of those obtained in
Konopelchenko and Ortenzi.17 As in Konopelchenko and Ortenzi,17 we are dealing with the most
simplified version of the Navier–Stokes equation, namely with HEE (1) and do not discuss the
possibility of blowups of vorticity of type (3) for positive values of time.
All that indicates at least two possible directions for further study. The first is the verifica-

tion of the realizability of hierarchy of blowups (3) for positive times that is of most interest in
physical applications.
An extension of such a type of analysis formore physical systemswould be the second direction.

In particular, it may be applicable to those hydrodynamical systems which are obtainable as the
constraints of the multidimensional HEE.24
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