
Journal of Computational and Applied Mathematics 451 (2024) 116108

A
0
(

Contents lists available at ScienceDirect

Journal of Computational and Applied Mathematics

journal homepage: www.elsevier.com/locate/cam

Parameter tuning in the radial kernel-based partition of unity
method by Bayesian optimization
Roberto Cavoretto1, Alessandra De Rossi1, Sandro Lancellotti ∗,1, Federico Romaniello
Department of Mathematics ‘‘Giuseppe Peano’’, University of Torino, via Carlo Alberto 10, 10123 Torino, Italy

A R T I C L E I N F O

Keywords:
Partition of unity interpolation
Radial basis functions
Kernel-based methods
Hyperparameter search
Bayesian optimization

A B S T R A C T

In this paper, we employ Bayesian optimization to concurrently explore the optimal values for
both the shape parameter and the radius in the partition of unity interpolation using radial basis
functions. Bayesian optimization is a probabilistic, iterative approach that models the error
function through a progressively self-updated Gaussian process. Meanwhile, the partition of
unity approach harnesses a meshfree method, allowing us to significantly reduce computational
expenses, particularly when considering a substantial number of scattered data points. This
reduction in computational cost is achieved by decomposing the entire domain into several
smaller subdomains, each of them with a variable radius. We provide an estimation of the
complexity of our algorithm and carry out numerical experiments to illustrate the effectiveness
of our approach, dealing with test and real-world datasets.

1. Introduction

Over the past few decades, radial basis function (RBF) approximation and interpolation have emerged as a dynamic and
significant tool for advancing meshfree techniques in the solution of various types of scientific and engineering problems, see
e.g. [1–5]. They offer several advantageous features, such as straightforward implementation in higher dimensions, adaptability
to various geometric configurations, and reasonable convergence properties, to name a few [6]. However, they may lead to a full,
computationally expensive and ill-conditioned linear system. To overcome this drawback, in this work we focus on a meshfree
method, known as the RBF partition of unity method (RBF-PUM), which makes use of local RBF approximants accumulating all
the local contributions in a global partition of unity fit. A first version of PUM is introduced in [7] to reconstruct a function from
scattered data points. This approach hinges on the concept of localizing the approximation process by a decomposition of the original
big problem into several small subproblems, thus finding application in many fields of computational mathematics and scientific
computing [8–11]. Indeed, the PUM is used to efficiently split the data within smaller subdomains or balls. The first combination
of the PUM with the RBF interpolation goes back to [12], where an error analysis is also given for functions in the native space of
the underlying RBFs. The RBF-PUM proposed in this paper is obtained by a weighted sum of local RBF interpolants depending on
a shape (or scale) parameter 𝜀 and a variable radius 𝛿 in each subdomain.

Moreover, in this study we employ a well-studied statistical method known as Bayesian Optimization (BO) [13] to simultaneously
search for the optimal values of (𝜀, 𝛿) within each subdomain of RBF-PUM. The BO, originally developed in the field of machine
learning for optimizing complex or hard-to-assess functions, finds utility in hyperparameter tuning tasks by circumventing the need

∗ Corresponding author.
E-mail addresses: roberto.cavoretto@unito.it (R. Cavoretto), alessandra.derossi@unito.it (A. De Rossi), sandro.lancellotti@unito.it (S. Lancellotti),

federico.romaniello@unito.it (F. Romaniello).
1 Member of the INdAM Research group GNCS.
vailable online 22 June 2024
377-0427/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.cam.2024.116108
Received 11 October 2023; Received in revised form 3 May 2024

https://www.elsevier.com/locate/cam
https://www.elsevier.com/locate/cam
mailto:roberto.cavoretto@unito.it
mailto:alessandra.derossi@unito.it
mailto:sandro.lancellotti@unito.it
mailto:federico.romaniello@unito.it
https://doi.org/10.1016/j.cam.2024.116108
https://doi.org/10.1016/j.cam.2024.116108
http://creativecommons.org/licenses/by/4.0/

Journal of Computational and Applied Mathematics 451 (2024) 116108R. Cavoretto et al.

a
n
a

2

t

2

t
f
i

p

w

T
r

‖

2

d
o

l
c

to compute and evaluate the approximations for parameter combinations that are far from optimal. All the algorithms involved in
the main procedure are described and analyzed in detail in order to show how this approach leads to a substantial reduction in
terms of computational time. Numerical experiments on some benchmark test cases and real-world datasets such as Tonga Trench
and Franke’s glacier ones point out that also in applied contexts a good accuracy of the interpolant is preserved.

The paper is organized as follows. In Section 2, the RBF-PUM interpolation problem is stated. In Section 3, BO Gaussian processes
nd acquisition functions are presented. Section 4 contains a description of the algorithms and their complexity analysis. In Section 5
umerical experiments show the efficacy of our scheme by solving interpolation problems on some test examples and real-world
pplications. Section 6 concludes the paper.

. RBF-PUM interpolation

In this section, we introduce the interpolation problem and the basic theory on RBF-PUM, highlighting the reasons that inspired
his paper.

.1. The RBF method

Let 𝑋 = {𝒙𝑖, 𝑖 = 1,… , 𝑁} be a set of distinct data points or nodes arbitrarily distributed on a domain 𝛺 ⊆ R𝑑 . Associated with
his set is another collection 𝐹 = {𝑓𝑖 = 𝑓 (𝒙𝑖), 𝑖 = 1,… , 𝑁} representing data values obtained by sampling a potentially unknown
unction 𝑓 ∶ 𝛺 → R at the nodes 𝒙𝑖. The problem at hand is the scattered data interpolation problem, which entails discovering an
nterpolating function 𝑃𝑓 ∶ 𝛺 → R that exactly reproduces the measured values at their respective locations, i.e.

𝑃𝑓
(

𝒙𝑖
)

= 𝑓𝑖, 𝑖 = 1,… , 𝑁.

We now suppose to have a univariate function 𝜑 ∶ [0,∞) → R, known as RBF, which depends on a shape parameter 𝜀 > 0
roviding, for 𝒙, 𝒛 ∈ 𝛺, the real symmetric strictly positive definite kernel [14]

𝜅𝜀(𝒙, 𝒛) = 𝜑(𝜀‖𝒙 − 𝒛‖2) ∶= 𝜑(𝜀𝑟).

The kernel-based interpolant 𝑃𝑓 can be written as

𝑃𝑓 (𝒙) =
𝑁
∑

𝑘=1
𝑐𝑘𝜅𝜀

(

𝒙,𝒙𝑘
)

, 𝒙 ∈ 𝛺,

hose coefficients 𝑐𝑘 are the solution of the linear system

𝖪𝒄 = 𝒇 , (1)

where 𝒄 =
(

𝑐1,… , 𝑐𝑁
)⊺, 𝒇 =

(

𝑓1,… , 𝑓𝑁
)⊺, and 𝖪𝑖𝑘 = 𝜅𝜀

(

𝒙𝑖,𝒙𝑘
)

, 𝑖, 𝑘 = 1,… , 𝑁 . Since 𝜅𝜀 is a symmetric and strictly positive definite
kernel, the system (1) has exactly one solution [15]. Furthermore, the kernel 𝜅𝜀 gives rise to what is known as the native space.

his native space, denoted as 𝜅𝜀(𝛺), is a Hilbert space equipped with the inner product (⋅, ⋅)𝜅𝜀(𝛺). In this space, the kernel 𝜅𝜀 is
eproducing, i.e. for any 𝑓 ∈ 𝜅𝜀 (𝛺) the following identity holds: 𝑓 (𝒙) = (𝑓, 𝜅𝜀(⋅,𝒙))𝜅𝜀 (𝛺), with 𝒙 ∈ 𝛺. By introducing a pre-Hilbert

space 𝐻𝜅𝜀 (𝛺) = span{𝜅𝜀(⋅,𝒙), 𝒙 ∈ 𝛺}, with reproducing kernel 𝜅𝜀 and equipped with the bilinear form (⋅, ⋅)𝐻𝜅𝜀 (𝛺), the native space
𝜅𝜀 (𝛺) of 𝜅𝜀 coincides with its completion with respect to the norm ‖ ⋅ ‖𝐻𝜅𝜀 (𝛺) =

√

(⋅, ⋅)𝐻𝜅𝜀 (𝛺), and for all 𝑓 ∈ 𝐻𝜅𝜀 (𝛺) we have
𝑓‖𝜅𝜀 (𝛺) = ‖𝑓‖𝐻𝜅𝜀 (𝛺).

.2. The PUM scheme

It is a widely recognized fact that performing the inversion of the kernel interpolation matrix in (1) can become computationally
emanding as the amount of data significantly grows. To address this challenge effectively, a practical approach is to divide the
pen and bounded domain 𝛺 into 𝑚 overlapping subdomains denoted as 𝛺𝑗 , with the property that 𝛺 ⊆

⋃𝑚
𝑗=1 𝛺𝑗 . Consequently,

this allows for the problem of interpolation to be split independently within each of these subdomains.
The PU covering consists of overlapping balls of radius 𝛿 whose centers are the grid poimts 𝑃 = {𝒙̃𝑘, 𝑘 = 1,… , 𝑚}. In [3] it is

shown that when the nodes are nearly uniformed distributed, 𝑚 is a suitable number of PU subdomains on 𝛺 if 𝑁∕𝑚 ≈ 2𝑑 . Then,
the covering property is satisfied by taking the radius 𝛿 such that

𝛿 ≥ 1
𝑚1∕𝑑

.

The PUM solves a local interpolation problem on each subdomain and constructs the global approximant by gluing together the
ocal contributions using weights. To achieve that, we need those weights to be a family of compactly supported, non-negative,
ontinuous functions 𝑤𝑗 , with supp

(

𝑤𝑗
)

⊆ 𝛺𝑗 , such that
𝑚
∑

𝑤𝑗 (𝒙) = 1, 𝒙 ∈ 𝛺.
2

𝑗=1

Journal of Computational and Applied Mathematics 451 (2024) 116108R. Cavoretto et al.

i

w

e

Once we choose the partition of unity {𝑤𝑗}𝑚𝑗=1, the global interpolant is formed by the weighted sum of 𝑚 local approximants 𝑃 𝑗
𝑓 ,

.e.

𝑃𝑓 (𝒙) =
𝑚
∑

𝑗=1
𝑃 𝑗
𝑓 (𝒙)𝑤𝑗 (𝒙) =

𝑚
∑

𝑗=1

⎛

⎜

⎜

⎝

𝑁𝑗
∑

𝑘=1
𝑐𝑗𝑘𝜅𝜀,𝛿(𝒙,𝒙

𝑗
𝑘)
⎞

⎟

⎟

⎠

𝑤𝑗 (𝒙) , 𝒙 ∈ 𝛺,

where 𝒙𝑗𝑘 ∈ 𝑋𝑗 = 𝑋 ∩ 𝛺𝑗 and 𝑁𝑗 = |𝑋𝑗 |, with 𝑘 = 1,… , 𝑁𝑗 . We will use the following and well-known Shepard weights in the
implementation of our algorithms:

𝑤𝑗 (𝑥) =
𝜑𝑗 (𝑥)

∑𝑚
𝑘=1 𝜑𝑘(𝑥)

𝑗 = 1,… , 𝑚, (2)

here 𝜑𝑘(𝑥) is a compactly supported function with support on 𝛺𝑗 , see [7,16].
It is worth noting that the accuracy of the fit strongly depends on the choices of the shape parameter and the radius, see

.g. [17–23].
An advantage of this scheme is the use of a continuous search in the parameters space  = 𝐼 × 𝐽 = (0, 𝜀𝑚𝑎𝑥] × [𝛿𝑚𝑖𝑛, 2𝛿𝑚𝑖𝑛] to

obtain a better approximation of (𝜀, 𝛿)∗𝑗 , in each subdomain 𝛺𝑗 .

3. Bayesian optimization

When seeking to locate a global maximizer for an unknown or challenging-to-assess function 𝑔 within a bounded set 𝑋, Bayesian
optimization offers an effective approach [24]. Highly regarded in the realm of machine learning, BO is an iterative methodology
that optimally utilizes available resources. It entails constructing a probabilistic model of 𝑔, often referred to as a surrogate model,
and employing it to guide the selection of sampling points within the set 𝑋 using an acquisition function. These selected points
are located in the area in which the target function will be assessed. After each iteration, the distribution is updated to reflect the
acquired information and is subsequently utilized in the next iteration. While some computational effort is required to determine
the next point for evaluation, this cost is justifiable when the evaluations of 𝑔 are computationally expensive. This is because such
computations are driven by the goal of reaching the maximum value in a limited number of iterations, which is particularly important
in scenarios like optimizing the error function of resource-intensive machine learning algorithms in multi-layer neural networks.

Hereinafter, we briefly review the BO technique [25]. A Gaussian Process (GP) is a collection of random variables such that any
subsets of these have a joint Gaussian distribution. Then GPs are completely specified by a mean function 𝚖 ∶  → R and a positive
definite covariance function 𝑘 ∶  ×  → R (see [26]). Further, they are the most common choice for the surrogate model for BO
due to the low evaluation cost and the ability to incorporate prior beliefs about the objective function. When modeling the target
function with a GP as 𝑔(𝐱) ∼ 

(

𝚖(𝐱), 𝑘(𝐱, 𝐱′)
)

, we impose that

E
[

𝑔(𝐱)
]

= 𝚖(𝐱), E
[(

𝑔(𝐱) − 𝚖(𝐱)
)(

𝑔(𝐱′) − 𝚖(𝐱′)
)]

= 𝑘(𝐱, 𝐱′).

In the matter of making a prediction given by some observations, the assumption of joint Gaussianity allows retrieving the prediction
using the standard formula for mean and variance of a conditional normal distribution. Hence, suppose to have 𝑠 observation
𝒈 = (𝑔(𝐱1),… , 𝑔(𝐱𝑠))⊺ on 𝐗 = (𝐱1,… , 𝐱𝑠)⊺ and a new point 𝐱̄ on which we are interested in having a prediction of 𝑔̄ = 𝑔(𝐱̄). The
previous observations 𝒈 and the predicted value 𝑔(𝐱̄) are jointly normally distributed:

𝑃𝑟

([

𝒈

𝑔(𝐱̄)

])

= 

[[

𝜇(𝐗)
𝜇(𝐱̄)

]

,

[

𝐾(𝐗,𝐗) 𝐾(𝐗, 𝐱̄)
𝐾(𝐗, 𝐱̄)⊺ 𝑘(𝐱̄, 𝐱̄)

]]

,

where 𝐾(𝐗,𝐗) is the 𝑠 × 𝑠 matrix with (𝑖, 𝑗)-element 𝑘(𝐱𝑖, 𝐱𝑗), and 𝐾(𝐗, 𝐱̄) is a 𝑠 × 1 vector whose 𝑖th element is given by 𝑘(𝐱𝑖, 𝐱̄),
see [26]. Since 𝑃𝑟(𝑓 (𝐱̄)|𝒈) must also be normal, it is also possible to estimate the distribution, the mean and the covariance, for any
point in the domain. When data points and data values retrieved by the evaluation of the target function are fed to the model, they
induce a posterior distribution over functions which is used for the next iteration as a prior. It is worth noting that in the case of
modeling a function with a GP, when we observe a value, we are essentially observing the random variable associated with that
specific point.

An acquisition function 𝑎 ∶  → R serves as a tool for determining the subsequent point at which the objective function will
be assessed. The goal is to choose a point that maximizes this acquisition function, and the result of evaluating the objective
function at this chosen point is utilized to update the surrogate model. The design of an acquisition function is specifically crafted
so that a high acquisition score corresponds to the likelihood of encountering high values of the objective function. When the
decision is made regarding which acquisition function to use, a trade-off arises between exploration and exploitation. Exploration
involves the selection of points characterized by high levels of uncertainty, typically those located at a considerable distance from
previously examined points. Conversely, exploitation involves the selection of points in close proximity to those already assessed
by the objective function. The most common acquisition functions are:

• Probability of Improvement, which maximizes the probability of improvement over the best current value;
• Expected Improvement, which maximizes the expected improvement over the current best;
3

Journal of Computational and Applied Mathematics 451 (2024) 116108R. Cavoretto et al.

w
r

C

• GP Upper Confidence Bound, which minimizes the cumulative regret.2

The ‘‘Expected Improvement’’ [27] acquisition function not only considers the probability of improvement of the candidate point
with respect to the previous maximum, but also the magnitude of this improvement. Suppose that after a number of iterations the
current maximum of the objective function is 𝑔(𝐱̂). Given a new point 𝐱, the Expected Improvement acquisition function computes
the expectation of improvement 𝑔(𝐱) − 𝑔(𝐱̂) over the part of the normal distribution that is above the current maximum:

𝐸𝐼(𝐱) = ∫

∞

𝑔(𝐱̂)

(

𝑔∗(𝐱) − 𝑔(𝐱̂)
) 1
√

2𝜋𝜎(𝐱)
𝑒−

1
2 [(𝑔

∗(𝐱)−𝜇(𝐱))∕𝜎(𝐱)]2𝑑𝑔∗(𝐱), (3)

here 𝑔∗(𝐱), 𝜇(𝐱) and 𝜎(𝐱) represent the predicted value by the surrogate model, the expected value and the variance of 𝐱,
espectively. Solving integral (3) leads to the following closed form for the evaluation of the Expected Improvement:

𝐸𝐼(𝐱) =
⎧

⎪

⎨

⎪

⎩

(𝜇(𝐱) − 𝑔(𝐱̂))𝛷(𝑍) + 𝜎(𝐱)𝜙(𝑍), if 𝜎(𝐱) > 0,

0, if 𝜎(𝐱) = 0,

where 𝑍 = 𝜇(𝐱)−𝑔(𝐱̂)
𝜎(𝐱) , while 𝜙 and 𝛷 are the Probability Density Function and Cumulative Distribution Function of the standard

normal distribution  (0, 1), respectively.
To perform the experiments we used an extension of , proposed in [28], that also trades off exploration and expectation by

means of a non-negative parameter 𝜉:

𝐸𝐼(𝐱) =
⎧

⎪

⎨

⎪

⎩

(𝜇(𝐱) − 𝑔(𝐱̂) − 𝜉)𝛷(𝑍) + 𝜎(𝐱)𝜙(𝑍), if 𝜎(𝐱) > 0,

0, if 𝜎(𝐱) = 0,
(4)

where 𝑍 = 𝜇(𝐱)−𝑔(𝐱̂)−𝜉
𝜎(𝐱) .

4. Algorithms and their computational cost

In this section, we first describe in Section 4.1 the algorithms for interpolation processes with Bayesian optimization. In
Section 4.2 their computational cost is analyzed.

4.1. Algorithms

Let 𝑋 be a set of points for which we know the associated set of data values 𝐹 , and let 𝑋̄ = {𝒙̄𝑖, 𝑖 = 1,… , 𝑛̄} be a set of points on
which we want to evaluate some approximate solutions. The whole process is handled by Algorithm 1, which invokes the Bayesian
optimization (Algorithm 3) for the parameters search and the partition of unity (Algorithm 5) for the evaluation of the approximant.
In detail, Algorithm 1 builds the approximant on 𝑋̄ with the best shape parameters 𝜺 and radii 𝜹 found by means of the Bayesian
optimization. With the aim of doing that, the algorithm starts by retrieving 𝑁 , the number of points in 𝑋, and the dimension 𝑑 of
the space. Using these values, it evaluates the number 𝑚 of partition of unity centers and generates them as an equally spaced grid
in 𝛺. For the sake of clarity, hereinafter, without loss of generality we consider the special case of 𝛺 = [0, 1]𝑑 . We remark that a
suitable number of subdomains is ⌊

𝑁
2𝑑 ⌋, see [3]. After that, it evaluates the distance tree of 𝑋, the function KDTree of the package

scipy.spatial and its method are used to build and perform the points search on it. Next, in each subdomain the value for the radius
that ensures the minimum density is found by Algorithm 2. This value 𝜹𝑠𝑡𝑎𝑟𝑡 will be used when applying a Bayesian optimization
(Algorithm 3) to enhance the shape parameter and the radius in each subdomain. The last step is to train the RBF-PUM approximant
(Algorithm 4) with the found parameters and return the approximated value of the function on the set of points 𝑋̄.

The core of the process is accomplished by Algorithm 3, which is a remodeling of the BayesianOptimization Python’s library [29].
oncretely, it traces the optimization process provided by the optimization method of the BayesianOptimisation class, which in

sequence uses the methods fit and predict of the function GaussianProcessRegressor of the sklearn.gaussian_process package [30].
Further details about the implementation of GaussianProcessRegressor are available at [26, Algorithm 2.1].

To measure the goodness of the approximant, we introduce the Maximum Absolute Error (MAE), the Relative Maximum Absolute
Error (RMAE) and the Relative Root Mean Squared Error (RRMSE) defined as follows:

MAE(𝑋,𝐹 ,𝐏𝒇) = MAE𝑋,𝐹 (𝐏𝒇) = max
𝒙𝑖∈𝑋,𝑓𝑖∈𝐹

|𝑃𝑓 (𝒙𝑖) − 𝑓𝑖|,

RMAE(𝑋,𝐹 ,𝐏𝒇) = RMAE𝑋,𝐹 (𝐏𝒇) = max
𝒙𝑖∈𝑋,𝑓𝑖∈𝐹

|𝑃𝑓 (𝒙𝑖) − 𝑓𝑖|
𝑓𝑖

,

2 Regret is a performance metric commonly used in Reinforcement Learning. In a maximization setting of a function 𝑔 it represents the loss in rewards due
∗ ∗
4

to not knowing 𝑔’s maximum points beforehand. If 𝑥 = argmax 𝑔(𝑥), the regret for a point 𝑥 is 𝑔(𝑥) − 𝑔(𝑥) over the course of the optimization.

Journal of Computational and Applied Mathematics 451 (2024) 116108R. Cavoretto et al.

i
e
o
f
o
f
s
v
p

a

Algorithm 1 BO-PUM
Input:
𝑋: data points, 𝐹 : data values, 𝑋̄: evaluation points, 𝐼 : 𝜀 search interval, 𝑎: acquisition function, 𝜉: exploration–exploitation
parameter, 𝑛𝑠𝑡𝑎𝑟𝑡: number of starting points, 𝑛𝑖𝑡𝑒𝑟: number of Bayesian iterations, 𝑚𝑖𝑛𝑝𝑡𝑠: minimum number of points in a
subdomain, 𝜏: tolerance of the error during the parameters search, 𝑤: weight function.

𝑁 → number of points in 𝑋
𝑑 → space dimension of 𝑋
𝑚 → ⌊

𝑁
2𝑑 ⌋

𝑐𝑒𝑛𝑡𝑒𝑟𝑠 → grid of 𝑚 points in 𝛺 = [0, 1]𝑑

𝜺 → 0-vector of length 𝑚
𝜹 → 0-vector of length 𝑚
𝐷𝑇𝑋 → distance tree of 𝑋
𝜹𝑠𝑡𝑎𝑟𝑡 → FIND-MIN-RADIUS(𝑋, 𝑐𝑒𝑛𝑡𝑒𝑟𝑠, 𝑚, 𝑑, 𝑚𝑖𝑛𝑝𝑡𝑠, 𝐷𝑇𝑋)
for 𝑖 = 1 ∶ |𝑐𝑒𝑛𝑡𝑒𝑟𝑠| do

𝐽 → [𝜹𝑠𝑡𝑎𝑟𝑡[𝑖], 2𝜹𝑠𝑡𝑎𝑟𝑡[𝑖]]
[𝜀, 𝛿] → BO(𝑋,𝐹 , 𝐼, 𝐽 , 𝑎, 𝜉, 𝑛𝑠𝑡𝑎𝑟𝑡, 𝑛𝑖𝑡𝑒𝑟,𝐷𝑇𝑋 , 𝑐𝑒𝑛𝑡𝑒𝑟𝑠[𝑖], 𝜏)
𝜺[𝑖] → 𝜀
𝝈[𝑖] → 𝜎

end for
P𝒇 → PUM(𝑋,𝐹 , 𝑋̄, 𝑐𝑒𝑛𝑡𝑒𝑟𝑠,𝐷𝑇𝑋 , 𝑤, 𝜺, 𝜹)
Output:
P𝒇 : evaluation of the interpolated solution on 𝑋̄

Algorithm 2 FIND-MIN-RADIUS
Input:
𝑋: data points, 𝑐𝑒𝑛𝑡𝑒𝑟𝑠: PU centers, 𝑚: number of centers, 𝑑: space dimension, 𝑚𝑖𝑛𝑝𝑡𝑠: minimum number of points in a
subdomain, 𝐷𝑇𝑋 : distance tree of 𝑋.

𝜹𝑠𝑡𝑎𝑟𝑡 →
√

𝑑

2𝑚
1
𝑑
× 1-vector of length |𝑐𝑒𝑛𝑡𝑒𝑟𝑠|

for 𝑖 = 1 ∶ 𝑚 do
𝑋𝑠𝑢𝑏 → retrieve the subset of 𝑋 within distance 𝜹𝑠𝑡𝑎𝑟𝑡[𝑖] from 𝑐𝑒𝑛𝑡𝑒𝑟𝑠[𝑖] using 𝐷𝑇𝑋
while |𝑋𝑠𝑢𝑏| < 𝑚𝑖𝑛𝑝𝑡𝑠 do

𝜹𝑠𝑡𝑎𝑟𝑡[𝑖] → 𝜹𝑠𝑡𝑎𝑟𝑡[𝑖] +
1
8

√

𝑑
2𝑚

𝑋𝑠𝑢𝑏 → retrieve the subset of 𝑋 within distance 𝜹𝑠𝑡𝑎𝑟𝑡[𝑖] from 𝑐𝑒𝑛𝑡𝑒𝑟𝑠[𝑖] using 𝐷𝑇𝑋
end while

end for
Output:
𝜹𝑠𝑡𝑎𝑟𝑡: vector of subdomain radii that ensure the minimum densities.

RRMSE(𝑋,𝐹 ,𝐏𝒇) = RRMSE𝑋,𝐹 (𝐏𝒇) =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1

(𝑃𝑓 (𝒙𝑖) − 𝑓𝑖
𝑓𝑖

)2
,

where 𝑋 and 𝐹 are the given sets of data points and data values and 𝐏𝒇 = (𝑃𝑓 (𝒙1),…𝑃𝑓 (𝒙𝑁)), with 𝑁 = |𝑋|. The first step is to
nitialize the function 𝑔 to optimize, defined as the negative MAE𝑋𝑣𝑎𝑙 ,𝐹𝑣𝑎𝑙 (⋅) between the known values 𝐹𝑣𝑎𝑙 and the approximation
valuated by Algorithm 4 for the points 𝑋𝑣𝑎𝑙 for a specific value of 𝜃, and the search space  . We remark that 𝑋𝑣𝑎𝑙 , 𝐹𝑣𝑎𝑙 are subsets
f 𝑋 used for the BO search. Then, until the number of iterations is reached or the error drops below a certain prescribed tolerance,
or the first 𝑛𝑠𝑡𝑎𝑟𝑡 iteration the algorithm randomly samples 𝜃̂ = (𝜀̂, 𝛿) in the search domain  , otherwise the chosen point 𝜃̂ is the
ne that maximizes the acquisition function (4) evaluated on a random set (the acquisition function exploits the Gaussian process
itted in the previous iteration). At this point the algorithm retrieves the subsets 𝑋𝑗 ⊂ 𝑋 and 𝑋̃𝑗 ⊂ 𝑋̃ that are contained in the related
ubdomain 𝛺𝑗 , splits them into training and validation subsets and fits an approximant applying Algorithm 4. At each iteration the
alues of 𝜃̂ and the error obtained fitting the interpolant with the parameter 𝜃̂ are stored in the vectors 𝜽 and 𝒈 and a Gaussian
rocess on (𝜽, 𝒈) is fitted. The last step consists of determining 𝜃∗, the parameter that maximizes the vector 𝒈.

The fundamental component of the scheme is represented by Algorithm 4, which solves the interpolation system, and finds the
pproximated values of the function on 𝑋̄.
5

Journal of Computational and Applied Mathematics 451 (2024) 116108R. Cavoretto et al.
Algorithm 3 BO
Input:
𝑋: data points, 𝐹 : data values, 𝐼 : parameter search interval for 𝜀, 𝐽 : parameter search interval for 𝛿, 𝑎: acquisition function,
𝜉: exploration–exploitation parameter, 𝑛𝑠𝑡𝑎𝑟𝑡: number of starting points, 𝑛𝑖𝑡𝑒𝑟: number of Bayesian iterations, 𝐷𝑇𝑋 : distance
tree of 𝑋, 𝑐𝑒𝑛𝑡𝑒𝑟: subdomain center, 𝜏: tolerance.

Set 𝑔 → −MAE𝑋𝑣𝑎𝑙 ,𝐹𝑣𝑎𝑙 (⋅)
 → 𝐼 × 𝐽
𝒈 → (⋅) (empty vector)
𝜽 → (⋅) (empty vector)
while 𝑖 ≤ 𝑛𝑠𝑡𝑎𝑟𝑡 + 𝑛𝑖𝑡𝑒𝑟 or |max(𝒈)| > 𝜏 do

if 𝑖 ≤ 𝑛𝑠𝑡𝑎𝑟𝑡 then
𝜃̂ → random sample in  (note that 𝜃̂ = (𝜀̂, 𝛿))

else
Evaluate 𝑎 on a set of random points in 
Select the point 𝜃̂ that maximizes 𝑎

end if
𝑋𝑠𝑢𝑏 → retrieve the subset of 𝑋 within distance 𝛿 from 𝑐𝑒𝑛𝑡𝑒𝑟 using 𝐷𝑇𝑋
Split 𝑋𝑠𝑢𝑏, 𝐹𝑠𝑢𝑏 in 𝑋𝑡𝑟𝑎𝑖𝑛, 𝑋𝑣𝑎𝑙 , 𝐹𝑡𝑟𝑎𝑖𝑛, 𝐹𝑣𝑎𝑙
P𝒇 𝜃̂

→ RBF(𝑋𝑡𝑟𝑎𝑖𝑛, 𝐹𝑡𝑟𝑎𝑖𝑛, 𝑋𝑣𝑎𝑙 , 𝜀̂) (call to Algorithm 4)
𝜽 → 𝜽 ∪ 𝜃̂
𝒈 → 𝒈 ∪ 𝑔(P𝒇 𝜃̂

))
Fit the Gaussian process on (𝜽, 𝒈)
𝑖 → 𝑖 + 1

end while
𝜃∗ → argmax 𝒈
Output:
𝜃∗: best parameters.

Algorithm 4 RBF
Input:
𝑋: data points, 𝐹 : data values, 𝑋̄: evaluation points, 𝜀: shape parameter.

P𝒇 → Solve the linear system of the form (1)
Output:
P𝒇 : evaluation of the interpolated solution on 𝑋̄.

Algorithm 5, given the values of 𝜀 and 𝛿 for each subdomain, deals with determining local solutions and summing them up to
construct a global one. In detail, it determines the Shepard weights in (2) for the subdomains and the approximate evaluation array
on 𝑋̄ is initialized with all zeros.

It is worth remarking that the algorithms presented in this section can be extended to manage the approximation settings by
selecting a subset of 𝑋 as the set of centers for the RBFs and solving a linear system of the form (1) in the least squares setting, as
done in [31]. This approach is particularly compelling in scenarios with a high volume of data points or when the dataset is noisy.
In such cases, opting for an approximation technique over interpolation is preferable to avoid interpolating the noise. We refer the
reader to [15] for further details.

4.2. Computational analysis of algorithms

In this section we discuss the complexity of the Algorithm 1 by first analyzing its constituent components. We remark here that
logarithms are taken base 2. Without explicitly declaring the shape parameter and the subdomain radius, we will show that the total
expense required to build a global interpolant is (𝑁

2𝑑+1
𝑑 +𝑁(𝑛𝑠𝑡𝑎𝑟𝑡+𝑛𝑖𝑡𝑒𝑟)(𝑁+𝑁3

𝑗 +(𝑛𝑠𝑡𝑎𝑟𝑡+𝑛𝑖𝑡𝑒𝑟)3)), where 𝑁 = |𝑋|, 𝑑 is the space
dimension, 𝑁𝑗 is the maximum among the number of points in the subdomains (note that 𝑁𝑗 ≪ 𝑁), and 𝑛𝑠𝑡𝑎𝑟𝑡 and 𝑛𝑖𝑡𝑒𝑟 are the
initialization and the Bayesian steps of the optimization. We will need to consider the cost of construction and search in a kdtree,
(𝑁 log(𝑁)) and (𝑁), respectively. We use a kdtree implementation by scipy [32] that provides, for a balanced dataset, a balanced
tree by applying a median-based splitting strategy in (𝑁 log(𝑁)). We want to highlight that hardly ever and very uncommon in
practice, the computational expenses for the construction could be (𝑁2) in the worst case. A different discussion can be addressed
in the case of search, where we face three different scenarios: the best-case scenario, where for balanced tree, the search cost log(𝑁);
6

Journal of Computational and Applied Mathematics 451 (2024) 116108R. Cavoretto et al.

a
o
o

f
a
n

a
o
t

c

Algorithm 5 PUM
Input:
𝑋: data points, 𝐹 : data values, 𝑋̄: evaluation points, 𝑐𝑒𝑛𝑡𝑒𝑟𝑠: subdomain centers, 𝐷𝑇𝑋 : distance tree of 𝑋, 𝑤: weight function,
𝜺: vector of shape parameters, 𝜹: vector of subdomain radius.

sw→ retrieve Shepard weights from 𝑤
P𝒇 → 0-vector of length |𝑋̄|

𝐷𝑇𝑋̄ → distance tree of 𝑋̄
for 𝑗 = 1 ∶ |𝑐𝑒𝑛𝑡𝑒𝑟𝑠| do

𝑛𝑗 → indices of points of 𝑋 at distance 𝜹[𝑗] from 𝑐𝑒𝑛𝑡𝑒𝑟𝑠[𝑗] using 𝐷𝑇𝑋
if |𝑛𝑗 | ≠ 0 then

𝑠𝑗 → points of 𝑋̄ at distance 𝜹[𝑗] from 𝑐𝑒𝑛𝑡𝑒𝑟𝑠[𝑗] using 𝐷𝑇𝑋̄
if (|𝑠𝑗 | ≠ 0) then

P′𝒇 sj
→ RBF(𝑋𝑗 , 𝐹𝑗 , 𝑋̄𝑠𝑗 , 𝜀𝑗)

P𝒇 sj → P𝒇 sj + P
′
𝒇 sj

∗ swsj
end if

end if
end for
Output:
P𝒇 : evaluation of the interpolated solution on 𝑋̄.

the average-case, where the kdtree is reasonably balanced and the search cost is (𝑁 +𝐾) where 𝐾 is the number of points found
in the search distance; the worst-case, where the tree is unbalanced and the computational cost is (𝑁).

FIND-MIN-RADIUS: Suppose that the initial radius for a subdomain is equal to 0. In this case, the maximum number of
ugmenting steps inside the 𝑤ℎ𝑖𝑙𝑒 loop is bounded by the length of the diagonal of the 𝑑-dimensional hypercube over the weight
f the extent. Hence it is bounded with 16𝑚

1
𝑑 ≃ 8𝑁

1
𝑑 . Taking into account that the search has a cost of 𝑁 , we can estimate the cost

f the whole radius search in Algorithm 2 as:

(𝑚 + 𝑚[𝑁 + 16𝑚
1
𝑑 𝑁]) ≃ (𝑚[𝑁 + 16𝑚

1
𝑑 𝑁])

≃ (𝑚
𝑑+1
𝑑 𝑁)

≃ (𝑁
2𝑑+1
𝑑).

RBF: Algorithm 4 simply involves the solution of a linear system. With an input of 𝑁 nodes the computational expense is (𝑁3).
PUM: Overlooking the cost of the computation of the Shepard weights and some initialization that has cost linearly dependent

rom 𝑁 , we have a 𝑓𝑜𝑟 loop of length 𝑚 where for each iteration we have three point search of cost 𝑁 , a call of Algorithm 4 with
variable input dimension and an update of a 𝑁-length vector. Let 𝑁̃ = max𝑗 𝑁𝑗 = max𝑗 |𝑋𝑗 | be, i.e. it is the maximum among the
umber of points in the subdomain. We have that the complexity of Algorithm 5 is:

(𝑚[𝑁 + 𝑁̃3]) ≃ (𝑁[𝑁 + 𝑁̃3])

≃ (𝑁2 +𝑁𝑁̃3).

BO: Algorithm 3 is made by a 𝑤ℎ𝑖𝑙𝑒 loop of length less than 𝑛𝑠𝑡𝑎𝑟𝑡+𝑛𝑖𝑡𝑒𝑟 iteration. For each iteration the cost can be summarized
s follows: computation of order 𝑁 for selecting the next parameter to evaluate, 2 points search, a splitting of cost 𝑁 , an invocation
f Algorithm 4 of cost 𝑁̃3 and the fitting of the Gaussian process that in the worst case cost (𝑛𝑠𝑡𝑎𝑟𝑡 + 𝑛𝑖𝑡𝑒𝑟)3. The total expense for
he Bayesian optimization is:

((𝑛𝑠𝑡𝑎𝑟𝑡 + 𝑛𝑖𝑡𝑒𝑟)(𝑁 + 𝑁̃ + (𝑛𝑠𝑡𝑎𝑟𝑡 + 𝑛𝑖𝑡𝑒𝑟)3)).

BO-PUM: In conclusion, summing up the previous results, and taking into account that the construction of the kdtrees requires
omputation of order 𝑁 log(𝑁), we can retrieve the computational expense for Algorithm 1 as follows:

(𝑁 +𝑁 log(𝑁) +𝑁
2𝑑+1
𝑑 + 𝑚(𝑠𝑡𝑎𝑟𝑡 + 𝑛𝑖𝑡𝑒𝑟)(𝑁 + 𝑁̃3 + (𝑛𝑠𝑡𝑎𝑟𝑡 + 𝑛𝑖𝑡𝑒𝑟)3) +𝑁2 +𝑁𝑁̃3)

≃ 𝑁
2𝑑+1
𝑑 +𝑁(𝑠𝑡𝑎𝑟𝑡 + 𝑛𝑖𝑡𝑒𝑟)(𝑁 + 𝑁̃3 + (𝑛𝑠𝑡𝑎𝑟𝑡 + 𝑛𝑖𝑡𝑒𝑟)3)

≃ (𝑁
2𝑑+1
𝑑 +𝑁2(𝑠𝑡𝑎𝑟𝑡 + 𝑛𝑖𝑡𝑒𝑟) +𝑁𝑁̃3(𝑠𝑡𝑎𝑟𝑡 + 𝑛𝑖𝑡𝑒𝑟) +𝑁(𝑛𝑠𝑡𝑎𝑟𝑡 + 𝑛𝑖𝑡𝑒𝑟)4).

5. Numerical experiments and applications

In this section, we will illustrate how algorithms presented in Section 4 work efficiently both on test and real-world datasets.
7

Journal of Computational and Applied Mathematics 451 (2024) 116108R. Cavoretto et al.

o

T
a

d
o
s
m
r

t

Before going into details, we remark that all the code was developed in Python 3.9 and the library used to perform the
ptimization is BayesianOptimization [29] in which the default kernel used for the Gaussian process is the Matérn 5∕2. Moreover, we

set the parameters 𝜉 = 0.15 and 𝑚𝑖𝑛𝑝𝑡𝑠= 15. To apply BO in the search for optimal parameters (𝜀, 𝛿), we assume that the objective
function to be maximized is the Maximum Absolute Error (MAE) of the RBF interpolant, with the sign inverted. This is because
BO is a maximization process, as explained in Section 3. We vary the number of points in the training set while keeping the test
set fixed at 1000 points. During the BO process, for each subdomain, after identifying the points within it, we further divide them
into sub-training and sub-validation sets to enable the evaluation of the training error. After determining the best parameter pairs
for each subdomain, we train a PUM interpolant on the training set for each optimizer using the identified parameters. For each
subdomain, the search space is  = (0, 20] × [𝛿𝑚𝑖𝑛, 2𝛿𝑚𝑖𝑛], where 𝛿𝑚𝑖𝑛 is the radius value that ensures a minimum density in the
subdomain. BO performs 5 random steps plus at most 25 Bayesian steps in the search space. The iterative process stops when the
desired tolerance 𝜏 is reached. Notice that setting the tolerance to the machine precision is equivalent to forcing the algorithm to
exhaust all iterations.

5.1. Numerical experiments

We perform the experiments on four different sizes of random data in the domain 𝛺 = [0, 1]2 using three RBFs of different
smoothness, i.e.,

𝜑1(𝜀𝑟) = 𝑒−𝜀
2𝑟2 (Gaussian 𝐶∞),

𝜑2(𝜀𝑟) = 𝑒−𝜀𝑟(1 + 3𝜀𝑟 + 𝜀2𝑟2) (Matérn 𝐶4),

𝜑3(𝜀𝑟) = (35𝜀2𝑟2 + 18𝜀𝑟 + 3)|1 − 𝜀𝑟|6+ (Wendland 𝐶4),

and the following test functions [33,34]:

𝑓1(𝑥1, 𝑥2) = 0.75 exp
[

−
(9𝑥1 − 2)2

4
−

(9𝑥2 − 2)2

4

]

+ 0.75 exp
[

−
(9𝑥1 − 2)2

49
−

9𝑥2 + 1
10

]

+ 0.5 exp
[

−
(9𝑥1 − 7)2

4
−

(9𝑥2 − 3)2

4

]

− 0.2 exp
[

−(9𝑥1 − 4)2 − (9𝑥2 − 7)2
]

,

𝑓2(𝑥1, 𝑥2) = 2 cos(10𝑥1) sin(10𝑥2) + sin(10𝑥1𝑥2).

Results are shown in Tables 1–3. It is worth noting that as the number of points increases, the execution time of the BO decreases.
his is due to the high density of the space when a greater number of points is considered. In particular, when this happens, there
re denser subdomains, and thus better accuracy and fewer BO iterations are needed to satisfy the tolerance 𝜏.

To test the goodness of the prediction, we conduct a Mann–Whitney U test [35], where the null hypothesis is that the probability
istribution of a randomly drawn observation from one group is the same as the probability distribution of a randomly drawn
bservation from the other group, against the alternative hypothesis that these distributions are not equal. In our case, the first
ample is made by test data, while the second is made by the approximated values. To perform the test we used the function
annwhitneyu of the library scipy [32] obtaining, for all the experiments, a 𝑝-value greater than 0.05, indicating that we cannot

eject the null hypothesis. Therefore, we conclude that the samples belong to the same distribution.
To highlight the importance of the search phase for the parameters we report in Table 4 the results obtained by picking 𝜀 = 10,

hat is midpoint of the search interval for 𝜀, and 𝛿 =
√

2∕𝑁 , namely the minimum radius that ensures the covering property. As
shown by the results, choosing parameters without a criterion leads to unsatisfactory results.

Remark 1. As an example we compute the local condition numbers for each subdomain after the optimization on 𝑁 = 5000
points with the function 𝑓2 and the kernel 𝜑2, obtaining an average and maximum condition number of 5.15e + 14 and 3.44e + 17,
respectively. To handle large condition numbers, we may suggest a few normalization techniques such as the truncated SVD and
the Tikhonov regularization and randomized GSVD in [36–38].

All tests are carried out on a MacBook Air (2020), 1.2 GHz Quad-Core Intel Core i7 processor, 16 GB 3733 MHz LPDDR4X RAM,
via Python 3.9.12.

5.2. Real data applications

In this subsection we show the behavior of our framework PUM-BO applied on two different real data examples showing the
performance of the algorithm when the measurements are taken with regular intervals, similar to grid points, and on contour lines,
similar to random measurements.

Tonga Trench Dataset: The Tonga Trench, situated within the vast expanse of the Pacific Ocean, descends to an astonishing
depth of 10,882 meters (35,702 ft) at its lowest point, aptly named Horizon Deep. This trench, accompanied by an adjacent volcanic
island arc, constitutes an active subduction zone nestled between two tectonic plates within Earth’s lithosphere.

In our example we consider a dataset consisting of 8113 points. We split it in a training and test set of 7000 and 1113 random
samples without repetition, shuffling the indices and selecting the first 7000 for the training set and the remainder for the test set
8

(see Fig. 1) (see Table 5).

Journal of Computational and Applied Mathematics 451 (2024) 116108R. Cavoretto et al.

T

8
i
f
e
d
s

6

u
t
t
a
p
s

Table 1
Computational time and MAE using BO optimizer for Gaussian and Matérn kernels and different number 𝑁 of random points in 𝛺 = [0, 1]2 using 𝑓1 test function.
Two tolerances 𝜏 for the training error are used.
𝑁 𝜏 Gaussian kernel (𝜑1) Matérn kernel (𝜑2)

Time (s) MAE Time (s) MAE

2000 1e−04 1.02e+01 8.16e−05 5.56e+01 2.15e−04
1e−05 6.92e+01 1.00e−05 3.13e+02 1.66e−04

4000 1e−04 4.35e+00 2.68e−05 1.83e+01 6.81e−05
1e−05 2.43e+01 5.50e−06 4.49e+02 4.36e−05

8000 1e−04 2.87e+00 9.14e−06 5.21e+00 3.28e−05
1e−05 1.01e+01 5.49e−06 3.59e+02 3.00e−05

16000 1e−04 5.54e+00 1.25e−06 6.16e+00 3.59e−05
1e−05 6.31e+00 1.07e−06 1.07e+02 2.07e−05

Table 2
Computational time and MAE using BO optimizer for Gaussian and Matérn kernels and different number 𝑁 of random points in 𝛺 = [0, 1]2 using 𝑓2 test function.
Two tolerances 𝜏 for the training error are used.
𝑁 𝜏 Gaussian kernel (𝜑1) Matérn kernel (𝜑2)

Time (s) MAE Time (s) MAE

2000 1e−04 3.79e+01 7.14e−05 3.98e+02 1.84e−02
1e−05 2.39e+02 3.62e−04 3.97e+02 1.02e−02

4000 1e−04 1.35e+01 3.16e−05 6.73e+02 2.29e−03
1e−05 1.32e+02 8.83e−06 7.55e+02 1.53e−03

8000 1e−04 6.18e+00 9.40e−05 6.43e+02 8.56e−04
1e−05 5.47e+01 9.63e−06 1.46e+03 8.84e−04

16000 1e−04 5.65e+00 1.09e−05 1.36e+02 8.06e−05
1e−05 1.87e+01 5.41e−06 2.78e+03 1.22e−04

Table 3
Computational time and MAE using BO optimizer for Wendland kernel 𝜑3 and different number 𝑁 of random points in 𝛺 = [0, 1]2 using 𝑓1 and 𝑓2 test functions.

wo tolerances 𝜏 for the training error are used.
𝑁 𝜏 𝑓1 𝑓2

Time (s) MAE Time (s) MAE

2000 1e−04 2.26e+02 1.35e−03 4.57e+02 1.07e−02
1e−05 4.06e+02 1.57e−02 4.52e+02 3.11e−02

4000 1e−04 2.47e+02 3.49e−03 8.55e+02 2.81e−03
1e−05 7.14e+02 7.10e−04 8.92e+02 3.95e−03

8000 1e−04 2.70e+02 4.15e−04 1.25e+03 1.27e−02
1e−05 1.05e+03 1.23e−03 1.74e+03 2.41e−03

16000 1e−04 3.25e+02 1.59e−04 1.26e+03 8.06e−04
1e−05 1.22e+03 1.15e−04 3.37e+03 7.25e−04

Franke’s Glacier Dataset: This dataset previously used in [39] for interpolation of scattered data for surface fitting, consists of
338 measurements of altitude of a glacier. Unfortunately we cannot find any background on where these data were collected or
ndeed even the location of this glacier. More details on this dataset can be found at https://search.r-project.org/CRAN/refmans/
ields/html/glacier.html. However, it is an interesting dataset in which it appears that the elevations are reported along lines of
qual elevation, i.e. contours, perhaps from a digitization of a topographic map or survey. In our example we consider the whole
ataset consisting of 8338 points and we split it in a training and test set of 7000 and 1338 random samples without repetition,
huffling the indices and selecting the first 7000 for the training set and the remainder for the test set (see Fig. 2) (see Table 6).

. Conclusions

In this paper, we employed BO for the simultaneous search of the subdomain radius and RBF shape parameter in the partition of
nity algorithm. As a statistical technique, it effectively guides parameter selection towards those values that ensure a predetermined
olerance. Across all presented examples, BO consistently achieves the required accuracy. The differentiating factor lies in the search
imes, which, in some cases, decrease with an increasing number of points considered. This occurs because a larger number of points
nd denser distribution within each subdomain lead to reaching the required tolerance in fewer iterations, thus resulting in reduced
rocessing time. Given the strong interest coming from the research community, in a future work we plan to extend the method to
9

olving partial differential equations, also analyzing related computational and implementation details.

https://search.r-project.org/CRAN/refmans/fields/html/glacier.html
https://search.r-project.org/CRAN/refmans/fields/html/glacier.html
https://search.r-project.org/CRAN/refmans/fields/html/glacier.html

Journal of Computational and Applied Mathematics 451 (2024) 116108R. Cavoretto et al.
Fig. 1. Tonga Trench dataset: plain projection (left), 3D view (center), interpolating surface constructed on a 100 × 100 point grid in [0, 1]2.

Table 4
Computational time and MAE for 𝑓1 and 𝑓2 test functions with Gaussian and Matérn kernels on different number 𝑁 of random
points in 𝛺 = [0, 1]2, applying the PUM without the Bayesian Optimization search. The shape parameter 𝜀 is set equal to 10,
while the subdomain radius 𝛿 is set equal to

√

2∕𝑁 .

𝑁 Test function Kernel Time (s) MAE

2000
𝑓1

𝜑1 3.19e−05 1.18e+00
𝜑2 2.41e−05 1.18e+00

𝑓2
𝜑1 2.88e−05 1.94e+00
𝜑2 2.48e−05 1.94e+00

4000
𝑓1

𝜑1 1.98e−05 9.86e−02
𝜑2 2.88e−05 9.57e−02

𝑓2
𝜑1 2.72e−05 3.50e−01
𝜑2 2.50e−05 3.38e−01

8000
𝑓1

𝜑1 2.19e−05 7.65e−01
𝜑2 3.19e−05 7.64e−01

𝑓2
𝜑1 2.69e−05 2.65e+00
𝜑2 2.79e−05 2.65e+00

16000
𝑓1

𝜑1 2.31e−05 4.84e−01
𝜑2 7.30e−05 4.84e−01

𝑓2
𝜑1 5.01e−05 2.33e+00
𝜑2 6.39e−05 2.33e+00

Table 5
Computational time, RMAE and RRMSE using BO optimizer for Gaussian and Matérn kernels, 𝜑1 and 𝜑2, using Tonga dataset. Two tolerances 𝜏 for the training
error are used.
𝜏 Gaussian kernel (𝜑1) Matérn kernel (𝜑2)

Time (s) RMAE RRMSE Time (s) RMAE RRMSE

1e−04 1.59e+03 6.99e−01 5.68e−02 1.34e+03 6.29e−01 5.45e−02
1e−05 1.57e+03 6.60e−01 6.14e−02 1.33e+03 6.16e−01 5.62e−02

Table 6
Computational time, RMAE and RRMSE using BO optimizer for Gaussian and Matérn kernels, 𝜑1 and 𝜑2, using glacier dataset. Two tolerances 𝜏 for the training
error are used.
𝜏 Gaussian kernel (𝜑1) Matérn kernel (𝜑2)

Time (s) RMAE RRMSE Time (s) RMAE RRMSE

1e−04 1.82e+03 9.25e−03 1.15e−03 1.62e+03 9.26e−03 8.74e−04
1e−05 1.83e+03 3.48e−02 1.49e−03 1.63e+03 9.33e−03 8.57e−04
10

Journal of Computational and Applied Mathematics 451 (2024) 116108R. Cavoretto et al.
Fig. 2. Franke’s glacier dataset: plain projection (left), 3D view (center), interpolating surface constructed on a 100 × 100 point grid in [0, 1]2.

Data availability

Data will be made available on request.

Acknowledgments

The authors sincerely thank the reviewers for their constructive and valuable comments that enabled to improve the paper.
This research has been accomplished within the RITA ‘‘Research ITalian network on Approximation’’ and the UMI Group TAA
‘‘Approximation Theory and Applications’’. This work has been supported by the INdAM–GNCS 2022 Project ‘‘Computational
methods for kernel-based approximation and its applications’’, code CUP_E55F22000270001, and by the Spoke ‘‘Future HPC &
BigData’’ of the ICSC–National Research Center in ‘‘High-Performance Computing, Big Data and Quantum Computing’’, funded by
European Union – NextGenerationEU. Moreover, the work has been supported by the Fondazione CRT, Italy, project 2022 ‘‘Modelli
matematici e algoritmi predittivi di intelligenza artificiale per la mobilità sostenibile’’.

References

[1] M.E. Biancolini, Fast Radial Basis Functions for Engineering Applications, Springer Cham, 2018.
[2] R. Cavoretto, A. De Rossi, S. Lancellotti, F. Romaniello, Node-bound communities for partition of unity interpolation on graphs, Appl. Math. Comput. 467

(2024) 128502.
[3] G.E. Fasshauer, Meshfree Approximation Methods with MATLAB, World Scientific, Singapore, 2007.
[4] E. Francomano, M. Paliaga, Highlighting numerical insights of an efficient SPH method, Appl. Math. Comput. 339 (2018) 899–915.
[5] R. Schaback, Small errors imply large evaluation instabilities, Adv. Comput. Math. 49 (2023) 25.
[6] H. Wendland, Scattered Data Approximation, in: Cambridge Monogr. Appl. Comput. Math., vol. 17, Cambridge Univ. Press, Cambridge, 2005.
[7] D. Shepard, A two-dimensional interpolation function for irregularly-spaced data, in: Proceedings of the 23rd National Conference ACM, 1968, pp. 517–523.
[8] I. Babuška, J.M. Melenk, The partition of unity method, Internat. J. Numer. Methods Engrg. 40 (4) (1997) 727–758.
[9] R. Cavoretto, Adaptive radial basis function partition of unity interpolation: A bivariate algorithm for unstructured data, J. Sci. Comput. 87 (2021) 41.

[10] R. Cavoretto, A. De Rossi, W. Erb, Partition of unity methods for signal processing on graphs, J. Fourier Anal. Appl. 27 (2021) 66.
[11] R. Cavoretto, A. De Rossi, S. Lancellotti, E. Perracchione, Software implementation of the partition of unity method, Dolomites Res. Notes Approx. 15

(2022) 35–46.
[12] H. Wendland, Fast evaluation of radial basis functions: methods based on partition of unity, in: Approximation Theory X: Wavelets, Splines and Applications,

Vanderbilt University Press, Nashville, 2002, pp. 473–483.
[13] J. Snoek, H. Larochelle, R.P. Adams, Practical Bayesian optimization of machine learning algorithms, Adv. Neural Inf. Process. Syst. 25 (2012) 2960–2968.
[14] A. Iske, Scattered data approximation by positive definite kernel functions, Rend. Semin. Mat. Univ. Politec. Torino 69 (2011) 217–246.
[15] G.E. Fasshauer, M.J. McCourt, Kernel-Based Approximation Methods using MATLAB, World Scientific, Singapore, 2015.
[16] G. Allasia, R. Cavoretto, A. De Rossi, Hermite-Birkhoff interpolation on scattered data on the sphere and other manifolds, Appl. Math. Comput. 318 (2018)

35–50.
[17] R. Cavoretto, A. De Rossi, M.S. Mukhametzhanov, Ya. D. Sergeyev, On the search of the shape parameter in radial basis functions using univariate global

optimization methods, J. Global Optim. 79 (2021) 305–327.
[18] R. Cavoretto, A. De Rossi, A. Sommariva, M. Vianello, RBFCUB: A numerical package for near-optimal meshless cubature on general polygons, Appl. Math.

Lett. 125 (2022) 107704.
[19] C.-S. Chen, A. Noorizadegan, D.L. Young, C.S. Chen, On the selection of a better radial basis function and its shape parameter in interpolation problems,

Appl. Math. Comput. 442 (2023) 127713.
[20] B. Fornberg, G. Wright, Stable computation of multiquadrics interpolants for all values of the shape parameter, Comput. Math. Appl. 47 (2004) 497–523.
[21] E. Larsson, B. Fornberg, Theoretical and computational aspects of multivariate interpolation with increasingly flat radial basis functions, Comput. Math.

Appl. 49 (2005) 103–130.
[22] E. Larsson, R. Schaback, Scaling of radial basis functions, IMA J. Numer. Anal. (2023) drad035, http://dx.doi.org/10.1093/imanum/drad035.
[23] L. Ling, F. Marchetti, A stochastic extended Rippa’s algorithm for LOOCV, Appl. Math. Lett. 129 (2022) 107955.
[24] J. Mockus, V. Tiesis, A. Zilinskas, The application of Bayesian methods for seeking the extremum, Towards Global Optim. 2 (1978) 117–129.
11

http://refhub.elsevier.com/S0377-0427(24)00357-1/sb1
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb2
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb2
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb2
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb3
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb4
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb5
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb6
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb7
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb8
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb9
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb10
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb11
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb11
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb11
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb12
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb12
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb12
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb13
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb14
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb15
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb16
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb16
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb16
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb17
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb17
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb17
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb18
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb18
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb18
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb19
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb19
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb19
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb20
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb21
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb21
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb21
http://dx.doi.org/10.1093/imanum/drad035
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb23
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb24

Journal of Computational and Applied Mathematics 451 (2024) 116108R. Cavoretto et al.
[25] E. Brochu, V.M. Cora, N. De Freitas, A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and
hierarchical reinforcement learning, 2010, arXiv:1012.2599.

[26] C.E. Rasmussen, C. Williams, Gaussian Processes for Machine Learning, MIT Press, 2006.
[27] D.R. Jones, M. Schonlau, W.J. Welch, Efficient global optimization of expensive black-box functions, J. Global Optim. 13 (1998) 455–492.
[28] D. Lizotte, Practical Bayesian Optimization (Ph.D. thesis), University of Alberta, Edmonton, Alberta, Canada, 2008.
[29] F. Nogueira, Bayesian optimization: Open source constrained global optimization tool for Python, https://github.com/fmfn/BayesianOptimization.
[30] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.

Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: Machine learning in Python, J. Mach. Learn. Res. 12 (2011) 2825–2830.
[31] R. Cavoretto, A. De Rossi, S. Lancellotti, Bayesian approach for radial kernel parameter tuning, J. Comput. Appl. Math. 441 (2024) 115716.
[32] P. Virtanen, R. Gommers, T.E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, et al., SciPy 1.0: Fundamental algorithms for scientific computing in

Python, Nat. Methods 17 (2020) 261–272.
[33] D. Lazzaro, L. Montefusco, Radial basis functions for the multivariate interpolation of large scattered data sets, J. Comput. Appl. Math. 140 (2002) 521–536.
[34] R. Renka, R. Brown, Algorithm 792: Accuracy tests of ACM algorithms for interpolation of scattered data in the plane, ACM Trans. Math. Software 25

(1999) 78–94.
[35] H.B. Mann, D.R. Whitney, On a test of whether one of two random variables is stochastically larger than the other, Ann. Math. Stat. 18 (1947) 50–60.
[36] Z.C. Li, H.T. Huang, Y. Wei, Ill-conditioning of the truncation singular value decomposition and the Tikhonov regularization and their application to

numerical partial differential equations, Numer. Linear Algebra Appl. 18 (2011) 205–221.
[37] A. Noorizadegan, C.-S. Chen, R. Cavoretto, A. De Rossi, Efficient truncated randomized SVD for mesh-free kernel methods, Comput. Math. Appl. 164

(2024) 12–20.
[38] Y. Wei, P. Xie, L.P. Zhang, Tikhonov regularization and randomized GSVD, SIAM J. Matrix Anal. Appl. 37 (2016) 649–675.
[39] O. Davydov, F. Zeilfelder, Scattered data fitting by direct extension of local polynomials to bivariate splines, Adv. Comput. Math. 21 (2004) 223–271.
12

http://arxiv.org/abs/1012.2599
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb26
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb27
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb28
https://github.com/fmfn/BayesianOptimization
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb30
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb30
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb30
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb31
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb32
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb32
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb32
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb33
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb34
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb34
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb34
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb35
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb36
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb36
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb36
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb37
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb37
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb37
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb38
http://refhub.elsevier.com/S0377-0427(24)00357-1/sb39

	Parameter tuning in the radial kernel-based partition of unity method by Bayesian optimization
	Introduction
	RBF-PUM Interpolation
	The RBF Method
	The PUM Scheme

	Bayesian Optimization
	Algorithms and Their Computational Cost
	Algorithms
	Computational Analysis of Algorithms

	Numerical Experiments and Applications
	Numerical Experiments
	Real Data Applications

	Conclusions
	Data availability
	Acknowledgments
	References

