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Abstract: Mycotoxins are toxic metabolites of molds which can contaminate food and beverages.
Because of their acute and chronic toxicity, they can have harmful effects when ingested or inhaled,
posing severe risks to human health. Contemporary analytical methods have the sensitivity required
for contamination detection and quantification, but the direct application of these methods on real
samples is not straightforward because of matrix complexity, and clean-up and preconcentration
steps are needed, more and more requiring the application of highly selective solid-phase extraction
materials. Molecularly imprinted polymers (MIPs) are artificial receptors mimicking the natural
antibodies that are increasingly being used as a solid phase in extraction methods where selectivity
towards target analytes is mandatory. In this review, the state-of-the-art about molecularly imprinted
polymers as solid-phase extraction materials in mycotoxin contamination analysis will be discussed,
with particular attention paid to the use of mimic molecules in the synthesis of mycotoxin-imprinted
materials, to the application of these materials to food real samples, and to the development of
advanced extraction methods involving molecular imprinting technology.

Keywords: mycotoxin; molecularly imprinted polymer; mimic template; solid-phase extraction;
magnetic solid-phase extraction; stir bar sorptive extraction; food analysis

Key Contribution: Intelligent materials are increasingly used in contaminant analyses where selec-
tivity is mandatory. In this review, the state-of-the-art about molecularly imprinted polymers in
mycotoxin contamination analysis will be discussed.

1. Introduction

Mycotoxins are secondary metabolites produced by many fungal species. These
natural toxicants are of concern in terms of food contamination and have long been known
to be a significant source of food-borne illness posing severe risks to human health, not
only after a single massive exposure, but, more often, after continuous exposure to low
doses, and that such exposure can be related to several chronic diseases, including some
types of cancer and serious hormonal dysfunctions [1–3].

For mycotoxins, analytical methods characterized by a high sensitivity and selec-
tivity, rapidity of execution, low cost, and suitability for mass screening are required
worldwide [4,5]. Commercially available rapid mass screening assays based on the use of
immunoanalytical techniques are widely diffused [6,7], but very frequently, a mycotoxin-
contaminated sample must be confirmed by a separative analytical technique coupled with
a mass spectrometry detector [8,9]. These instrumental techniques are sufficiently sensitive
for the detection and quantification of mycotoxin contamination, but direct application
on real samples is difficult and a quantitative analysis can be performed only after ex-
tensive clean-up and preconcentration steps [10]. Moreover, concerning current sample
pre-treatment methods, they are based mostly on solid-phase extraction (SPE) techniques
that are fast and cheap but not selective, while methods based on immunoaffinity extraction
are very selective but expensive. Thus, economical, rapid, and target-focused extraction
and purification approaches based on innovative solid-phase supports are required [11–13].
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Molecularly imprinted polymers are synthetic materials whose main feature is the
presence of artificial binding sites which selectively recognize a target molecule [14–16].
These materials are obtained via polymerization around a template molecule of one or more
functional monomers selected according to their capacity to interact with the functional
groups of the template. The presence of a cross-linking agent in the pre-polymerization
mixture assures the formation of a stable three-dimensional network polymer contain-
ing binding sites with shape, size, and functional groups complementary to the template
molecule. Once the template is removed, the artificial binding sites show the same prop-
erties of antibodies, i.e., similar thermodynamic and kinetic behavior, reversible binding,
marked selectivity, and a high affinity constant.

Molecularly imprinted polymers represent good candidates for circumventing the
aforementioned defects [17]. In fact, in recent years, there has been a progressive increase
in the literature concerning the development and use of MIPs with molecular recognition
properties towards mycotoxins (Figure 1). In this review, after an overview of the ap-
proaches for efficiently developing MIPs’ sorbents towards mycotoxins, the state-of-the-art
about their application in the analysis of food contamination will be discussed.
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Figure 1. Works published annually about molecular imprinting of mycotoxins. Red bars: molecularly
imprinted solid phase extraction. Green bars: other related topics. Year 2023 limited to September
included (Web of Science, Retrieved 2 October 2023, https://www.webofscience.com/wos/woscc).

2. Drawbacks and Remedies in Mycotoxin Imprinting

Compared with other imprinting targets, mycotoxins are more difficult templates,
but it must be considered that such issues do not arise from a lack of functional groups
suitable for establishing non-covalent interactions during the imprinting process. In fact, the
molecular structures of mycotoxins present many polar groups suitable for hydrogen bonds
or ion–pair interactions with functional monomers, and they are fully compatible with the
reagents—i.e., solvents, functional monomers, cross-linkers, and radical initiators—used in
molecular imprinting technology [18]. Rather, due to the high toxicity of many mycotoxins
and the risk of long-term effects, it can be difficult to directly manipulate the amounts
of mycotoxins required to prepare a quantity of imprinted polymer suitable to set-up a
solid-phase extraction protocol. Another drawback concerns their commercial accessibility,
as, while companies selling analytical standards of mycotoxins are widespread, it is difficult
to purchase bulk amounts of the same toxins or related minor metabolites (e.g., ochratoxin
B, aflatoxin M1, and zearalenols) at an affordable price. Moreover, when MISPE protocols
for mycotoxins are developed, the main critical point concerns the template not being
removed completely from the imprinted polymer, thus slowly leaking during the following
load, wash, and elution steps of the solid-phase extraction protocol and releasing little
by little subsequently, interfering with the analysis process. Such template slow release
(“bleeding”) is frequently detected at trace levels during the elution step, is difficult to
eliminate completely, and represents a significant source of interference and systematic
error in trace analysis [19,20].

https://www.webofscience.com/wos/woscc
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The drawbacks reported here can make the development of a mycotoxin-imprinted
polymer difficult, but nevertheless, it is possible to use some approaches that make it
possible to avoid them. In particular, an accurate choice of the molecular structure of
the template in the “mimic template”, “fragmental template”, and “solid-phase polymer
synthesis” approaches has proven effective [21]. At present, despite there being numerous
examples of polymers being directly imprinted using the analytical targets as they are,
a significant number of mycotoxin-imprinted polymers have been obtained using such
approaches, which prove nearly equivalent in the case of ochratoxin A, zearalenone, and
patulin (Figure 2).
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Figure 2. Templates used to prepare mycotoxin-imprinted polymers. Red bars: mimic/fragmental
templates. Orange bars: polymers imprinted with target mycotoxins. AFL: aflatoxins; ALT: alternari-
ols; CIT: citrinin; DON: deoxynivalenol; FB: fumonisins; MON: moniliformin; OTA: ochratoxin A;
PAT: patulin; STE: sterigmatocystin; T2: T2-toxin; and ZEN: zearalenone; (Web of Science, Retrieved
2 October 2023, https://www.webofscience.com/wos/woscc). Molecular structures of mycotoxins
are reported in Figure S1.

2.1. The Template Mimic Approach

The “mimic template” approach was introduced for the first time more than twenty
years ago [22]. This approach potentially solves the template bleeding problem through
the involvement of a structural analogue related to the template molecule. The mimicking
structure must be similar to the target analyte in such a way to elicit imprinted binding
sites with good selectivity towards the latter, but it must also be structurally different in
order to be clearly discriminated from the target molecule during the analytical separation
performed after the extraction step. Thus, structural differences between the target analyte
and the mimic template should be minimal and far from the substituents directly involved
in non-covalent interactions with the binding sites.

In regard to mycotoxin imprinting, the mimic template approach has its main draw-
back in the difficulty in attaining some templates due to complexity of synthesis, high
costs, or non-availability on the market. Thus, it may be necessary to replace templates
with mimicking molecules with significant structural differences to the target analyte but
that are more easily obtainable, where their similarity remains confined to their overall
molecular shape and the preservation of substituents able to form non-covalent interactions
with the binding sites.

The oldest example of the mimic template approach in mycotoxin imprinting is for
ochratoxin A, where the substitution of the α-unsaturated lactone moiety with a naphtha-
lene structure was deemed necessary in order not to over-complicate the synthesis and
reduce its toxicity. The mimic template (N-(4-chloro-1-hydroxy-2-naphthoylamido)-(L)-
phenylalanine, CHNA-Phe, Figure 3) preserved the general molecular structure of the target
analyte, including the chirality of the L-phenylalanine substituent, the planarity of the
benzopiranic sub-structure, the amide bridge, and the phenolic hydroxyl. A computational
study showed an almost complete overlapping of ochratoxin A and CHNA-Phe, with a

https://www.webofscience.com/wos/woscc
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high level of molecular similarity in terms of solvent accessibility, electrostatic potential,
and lipophilic/hydrophilic surfaces [23]. It was later observed that the structure of the
mimic template fully determines the molecular recognition properties towards the target an-
alyte, as polymers synthetized with the same mimic template but with different functional
monomers presented the same recognition properties towards ochratoxin A [24–26].
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Figure 3. Molecular structures of OTA and its mimic, CHNA-Phe. In the insert: the superposition of
OTA (blue) with CHNA-Phe (cyan).

As in the case for ochratoxins, sterigmatocystin (STE) presents a molecular struc-
ture characterized by a rigid bicyclic skeleton with adjacent hydroxylic (phenol) and
carbonylic (quinone) substituents, suitable for hydrogen bond interactions with functional
monomers (Figure 4). Thus, a mimic template able to retain the anthraquinone sub-structure
was conceived, omitting the adjacent fused tetrahydrofuranic rings [27]. Chrisazin (1,8-
dihydroxyanthraquinone) was used as a commercially available template in the preparation
of an ormosil-based imprinted material, resulting in fluorescent microparticles with good
binding properties towards the target template.
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(blue) with chrisazin (cyan).

Aside from its toxicity, the direct use of zearalenone for the preparation of an imprinted
polymer was found to be problematic due to the poor binding capacity of the resulting ma-
terial, probably due to the covalent inclusion of the template in the polymer matrix induced
by the presence of a double bond [28]. This drawback was overcome by Urraca et al. by
using a mimic template (cyclododecanyl-2,4-dihydroxybenzoate, CDHB, Figure 5) coming
from the esterification of resorcilic acid with cyclododecanol [29,30]. The mimic template
was found to be easily synthesized in two steps, and its molecular structure preserved in
their proper positions the key features of the target analyte: the two phenol groups in the
meta position and the carbonyl group in ortho, while the 12-membered macrocyclic alcohol
preserved the shape of the 14-membered macrocycle. Afterwards, Gadzala-Kopciuch et al.,
through a full physicochemical characterization of this mimic template, including a detailed
crystallographic analysis and comparative molecular modelling, clarified that, although
the cyclodedecyl ester is structurally different from zearalenone, its great conformational
flexibility leads it to occupy the same space occupied by the latter, thus contributing with
the same steric hindrance to generating binding sites significantly complementary to the
target molecule. [31].
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As an alternative to the use of ad hoc designed templates, molecules of natural
origin have been used as template mimics of zearalenone. Quercetin was used in the
preparation of magnetic imprinted particles based on an Fe3O4@SiO2 core covered by a
layer of polystyrene with 4-vinylpyridine as a functional monomer through a multistep
swelling synthetic procedure. Despite significant structural differences between the target
analyte and mimic template, thanks to the presence of two phenol groups in the meta
position and the carbonyl group in ortho onto the benzopyrone skeleton, the latter has
been proven capable of generating 900 nm sized core-shell particles selective towards
zearalenone, zearalenone, and α-β-zearalenols, while mycotoxins with different molecular
structures (e.g., T2-toxin and deoxynivalenol) were not recognized [32,33].

Similar to the case of ochratoxin A, naphthalene was considered to be a suitable
scaffold for building a mimic template for citrinin (Figure 6). Two different mimic templates,
1,4-dihydroxy-2-naphtoic acid (2-DHNA) and 1-hydroxy-2-naphtoici acid (2-HNA), have
been reported in the literature separately [34,35]. Despite the absence of substituents that
differentiate them from the target analyte, in both cases, the mimic templates proved capable
of generating polymers with good molecular recognition capabilities towards the target
analyte. Density functional calculations on the electronic structures suggest that the leading
interaction driving the molecular recognition is based on the hydrogen bond between the
carboxylic substituent on the naphthalene ring, the phenolic hydroxyl in position 1, and the
2-dimethylaminoethylmethacrylate used as a functional monomer, and that the strength of
this interaction is nearly the same for both citrinin and the mimic templates.
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The identification of a suitable mimic template for the polyphenolic mycotoxin al-
ternariol (Figure 7) required the synthesis of four different molecules, each of these char-
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acterized by a different number of phenolic groups in various positions and a differ-
ent degree of O-methylation onto the dibenzo[b,d]pyran-6-one skeleton [36,37]. Differ-
ent imprinted polymers were prepared with the mimic templates by using a library of
basic, acidic, or neutral functional monomers, with divinylbenzene or ethyleneglycol
dimethacrylate as cross-linkers. The binding screening showed that an imprinted polymer
prepared with 3,8,9-trihydroxydibenzo[b,d]pyran-6-one (THDP) as a mimic template, N-(2-
aminoethyl)methacrylamide as a functional monomer, and ethylene glycol dimethacrylate
as a cross-linker was able to selectively bind the target analyte alternariol and its 9- and
7-monomethylether derivatives.
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The synthesis of a mimic template for patulin (Figure 8) presents significant difficulties,
as this mycotoxin is characterized by a particularly simple molecular structure, and there-
fore is not very suitable for modifications that do not alter its shape and properties; however,
this is accompanied by a notable electrophilic reactivity coinciding with the opening of the
lactone ring [38]. For this reason, many authors have chosen to use molecular structures
only weakly related to patulin, such as 2-hydroxynicotinic acid (2-HNA) [39–41] or oxindole
(OXI) [42–45], as template mimics. Despite their significant structural differences, these
mimic templates were shown to be able to originate polymers with good binding properties
towards the target molecule, and to be usable for solid-phase extraction applications.
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Moniliformin (Figure 9) is characterized by an exceptionally simple molecular struc-
ture if compared with all other known mycotoxins. In fact, it consists, in the anionic form, of
the deoxysquaric acid. For this reason, the design of a mimic template necessarily requires
the modification of a structure that is, in itself, very simple. Appell et al. solved the prob-
lem by using two commercially available structures, squaric acid and the corresponding
diethyl ester [46]. Both the mimic templates were shown to be able to originate polymers
with good binding properties towards moniliformin in organic polar solvents (acetonitrile,
dimethylformamide, ethanol, and methanol) and in an acetonitrile–water mixture.
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2.2. The Fragmental Template Approach

The selection of a mimic template requires a certain level of creativity, but suitable
structural modifications of the target molecule can be very difficult, expensive, or simply
the target molecule has a structure too complex or unstable to be modified. In these
cases, the mimic template strategy is brought to its extreme consequence in the fragmental
imprinting approach, introduced in 2004 [47]. In this approach, the template consists of
a structure markedly diverging from the target analyte as a whole, but similar to one of
the sub-structures that compose the target analyte. Therefore, molecular recognition is
guaranteed by the presence of appropriate functional groups positioned in the same way
both on the fragment and on the target analyte.

Aflatoxins represent an emblematic case of the use of the fragmental approach. These
mycotoxins, in addition to being significantly toxic and relatively expensive, have a peculiar
molecular structure, for which it is rather difficult to identify similar substances capable of
acting as mimic templates. Thus, in 2012, Wyszomirski and Prus proposed a computational
approach for aflatoxin B1 involving 5,7-dimethoxycoumarin as a fragmental template [48].
After a molecular dynamic simulation, it turned out that methacrylic acid was able to estab-
lish five hydrogen bonds in the same positions for the template and the target aflatoxin, with
nearly identical interaction energies. Afterwards, the validity of coumarins as fragmental
templates was confirmed by several authors not only for 5,7-dimethoxycoumarin [49–53],
but also for 7-acetoxy-3-methylcoumarin [54], 7-ethoxycoumarin [55], and ethylcoumarin-
3-carboxyate [56] (Figure 10). It worth nothing that all the coumarins reported as templates
preserve nearly the same structural motif characteristic of aflatoxins: the central coumarin-
like structure (rings C and D). In a different computational approach, a non-coumarinic
molecule, ethyl-2-oxocyclopentanecarboxylate, was identified as an optimal fragmental
template capable of forming an imprinted polymer with molecular recognition properties
towards aflatoxin B1 [57]. In this case, the fragmental template simulated only part of
aflatoxin’s rings, D and E, with the loss of the planar conformation typical of coumarin tem-
plates, but its molecular structure makes it probable that the hydrogen bond interactions
characteristic of coumarin templates are nevertheless fully preserved.

In addition to the use of templates coinciding with structural fragments of the target
molecule, in the case of aflatoxins, it must be noted that MIPs have also been successfully
prepared using non-conventional templates that are structurally very different from the
target. Song et al. reported the use of 6-phenyl-4-methyl-2-chromanone [58], where,
although the chromanone nucleus actually corresponds to an aflatoxin fragment coinciding
with the C-D rings, the presence of a phenyl group in position 6 constitutes a significant
deviation from the very concept of a fragmental template. Similarly, Palmieri et al. used
1-hydroxy-2-naphthoic acid (HNA) as a fragmental template [59], taking the concept of
the fragmental template itself to the limit, as HNA shares with the molecular structure of
aflatoxins almost only the flatness of the central rings, as can be seen from Figure 11.
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Figure 11. Non-conventional fragmental templates for aflatoxin imprinting. In the inserts: the
superposition of AFB1 (blue) with (cyan) 6-phenyl-4-methyl-2-chromanone and 1-hydroxy-2-
naphthoic acid.

With reference to the well-known CHNA-Phe mimic template, the fragmental ap-
proach was used to search for a template with the simplest possible molecular structure
able to raise an imprinted polymer with binding properties towards ochratoxin A [60].
The experimental results were found to be compatible with in silico simulations of the
complexation between the template molecules and the functional monomer methacrylic
acid, showing that the simplification of the amino acidic sub-structure (L-alanine or glycine
instead of L-phenylalanine) or elimination of the chlorine atom on the naphthalene ring
system did not affect the molecular recognition of ochratoxin A, while the presence of the
bulky naphthalene sub-structure in the template structure was necessary to preserve the
molecular recognition effect (Figure 12).

2.3. The Solid-Phase Polymer Synthesis Approach

The solid-phase polymer synthesis (SPPS) approach—illustrated in Scheme 1—is
relatively more recent, as it was introduced in 2013 [61,62]. It uses solid-support glass
beads covalently grafted with template molecules as a support for the polymerization
process taking place in the interstitial space between the non-porous beads. The growth
of cross-linked polymeric chains near the glass surface results in the imprinting of the
nascent nanoparticles onto the grafted template molecules, producing high-affinity im-
printed nanoparticles (nanoMIPs). Because of the strength of the non-covalent interactions
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between nanoparticles and template molecules, at the end of the polymerization process,
any residual monomers, polymerization by-products, and low-affinity polymers can be
easily removed by gentle washing, while high-affinity nanoMIPs can be recovered later by
washing with a solution capable of breaking the non-covalent molecular interactions.
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Figure 12. Molecular structures of fragmental mimics for ochratoxin A with measured α,
relative binding affinity for OTA. CHNA-Phe: N-(4-chloro-1-hydroxy-2-naphthoylamido)-(L)-
phenylalanine; CHNA-Ala: N-(4-chloro-1-hydroxy-2-naphthoylamido)-(L)-alanine; CHNA-Gly:
N-(4-chloro-1-hydroxy-2-naphthoylamido)-glycine; HNA-Phe: N-(1-hydroxy-2-naphthoylamido)-(L)-
phenylalanine; CSA-Phe: N-(4-chlorosalicylamido)-(L)-phenylalanine; and SA-Phe: N-salicylamido-
(L)-phenylalanine.

The SPPS approach has many advantages over traditional solution synthesis tech-
niques, which make it potentially very useful in the preparation of MIPs against mycotoxins
for analytical applications [63]. In fact, because the template molecules are covalently
grafted onto the glass beads, no residual template molecules are present in nanoMIPs,
avoiding the bleeding effect that affects other imprinted materials. Moreover, functional-
ized glass beads can be cleaned and reused many times, with an impact on the costs of
synthesis, as this allows for the use of expensive molecules, while, in the case of mycotoxins,
confinement on the glass surface eliminates any health risks from the residual template
during the recovery step of the imprinted nanomaterial.

Toxins 2024, 16, x FOR PEER REVIEW 10 of 23 
 

 

 
Scheme 1. Representation of the solid-phase synthesis method. Different colours are related to 
different stage of the process [64]. 

It must be noted that grafting the templates onto a solid support necessarily requires 
the use of a molecule modified with a spacer arm as a template. In fact, structural modifi-
cations are not needed to differentiate it from the target compound or avoid unwanted 
molecular characteristics (i.e., toxicity, costs, and so on), but mainly to achieve stable graft-
ing. This involves using the same strategies that are commonly used to prepare immuno-
gens through the covalent conjugation of carrier proteins and target molecules, appropri-
ately modified with a spacer arm. This approach has been reported for ochratoxin A, 
where it was possible to verify that, by positioning a spacer arm away from the function-
alities upon which molecular recognition depends, the p-position on the phenylalanine 
ring (OTAa) and the carboxyl of the ochratoxin-α fragment (OTAe), respectively (Figure 
13), the mimic template was able to induce the formation of nanoMIPs capable of effec-
tively binding ochratoxin A [65]. A similar result has been reported more recently, where 
it was shown that even a mimic template structurally different from ochratoxin A (i.e., 
CHNA-Phe) is capable of producing nanoMIPs with good molecular recognition proper-
ties, without requiring the ad hoc addition of a spacer arm [64]. 

 
Figure 13. Molecular structures of modified ochratoxin A for grafting on aminated solid supports. 
In red, the added spacer arm. 

The imprinting of fumonisins represents another interesting application of the SPPS 
approach to mycotoxins [66]. Because of their peculiar structure (Figure 14), no 
mimic/fragmental template has been reported in the literature to date; thus, fumonisin B1 
and B2 were conjugated to a glutaraldeyhde-functionalized solid support by direct cou-
pling via the amino function. The resulting nanoMIPs were used to develop MIP-based 
immunoassays, whose performance was found to be comparable with the corresponding 
antibody-based assays [67]. 

Scheme 1. Representation of the solid-phase synthesis method. Different colours are related to
different stage of the process [64].



Toxins 2024, 16, 47 10 of 22

It must be noted that grafting the templates onto a solid support necessarily requires
the use of a molecule modified with a spacer arm as a template. In fact, structural modi-
fications are not needed to differentiate it from the target compound or avoid unwanted
molecular characteristics (i.e., toxicity, costs, and so on), but mainly to achieve stable
grafting. This involves using the same strategies that are commonly used to prepare
immunogens through the covalent conjugation of carrier proteins and target molecules,
appropriately modified with a spacer arm. This approach has been reported for ochra-
toxin A, where it was possible to verify that, by positioning a spacer arm away from the
functionalities upon which molecular recognition depends, the p-position on the pheny-
lalanine ring (OTAa) and the carboxyl of the ochratoxin-α fragment (OTAe), respectively
(Figure 13), the mimic template was able to induce the formation of nanoMIPs capable of
effectively binding ochratoxin A [65]. A similar result has been reported more recently,
where it was shown that even a mimic template structurally different from ochratoxin
A (i.e., CHNA-Phe) is capable of producing nanoMIPs with good molecular recognition
properties, without requiring the ad hoc addition of a spacer arm [64].
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red, the added spacer arm.

The imprinting of fumonisins represents another interesting application of the SPPS ap-
proach to mycotoxins [66]. Because of their peculiar structure (Figure 14), no mimic/fragmental
template has been reported in the literature to date; thus, fumonisin B1 and B2 were
conjugated to a glutaraldeyhde-functionalized solid support by direct coupling via the
amino function. The resulting nanoMIPs were used to develop MIP-based immunoassays,
whose performance was found to be comparable with the corresponding antibody-based
assays [67].
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It is therefore possible to conclude that, although no extraction methods based on
nanoMIPs have been published at the moment, the clear advantages of this approach make
it a potential valid alternative to the use of mimic templates.

3. Use of MIPs in Sample Preparation for Mycotoxin Detection

Depending on the analytical task, the advantages offered by MIPs can combine the
selective separation and preconcentration of the target mycotoxin from the bulk matrix.
They have been applied mainly in food matrices using different polymerization techniques,
supporting substrates, selectivity, and analytical applicability. As described in detail in the
following sections, MIPs have been used to develop several extraction methods, including



Toxins 2024, 16, 47 11 of 22

off-line and on-line SPE (Solid-Phase Extraction), MSPE (Magnetic Solid-Phase Extraction),
and SBSE (Stir Bar Sorptive Extraction).

3.1. Solid-Phase Extraction with Commercial MIPs

At present, despite extensive matrix cleanup and target analyte preconcentration
before analysis frequently being necessary, non-selective SPE sorbents (e.g., reverse-phase
and ion-exchange, etc.) are still largely used in mycotoxin analysis because they are more
easily accessible at lower prices [18]. In any case, commercial MIP cartridges for several
mycotoxins are available on the market [68,69], and, in this context, examples of selective
MISPE (molecularly imprinted solid-phase extraction) are reported in the literature for
fumonisins B1-B3 in wheat and maize [70], ochratoxin A in ginger [71], grape juice, red
wine and beer [72,73], roasted coffee [73], chili [73], and cocoa beans [74], patulin in apple
juice, puree, and jam [75], and zearalenone in wheat and maize [76], vegetal oils [77] and
beer [78] (Table S1).

It must be considered that some key features of these commercial polymers, such
as their composition, synthesis method, and the potential use of a mimic template, are
information that is undisclosed by the manufacturers, but, as their physical appearance is
that of a homogeneous powder, it is reasonable to assume that these polymers are produced
through a scalable technique, probably emulsion or precipitation polymerization, and not
through a bulk process. As for the nature of the template, obvious considerations for the
cost of the production of the materials and the absence of any trace of target analytes in
blank matrices suggest the use of mimic templates.

All reported cases show that HPLC methods preceded by a clean-up and pre-concentration
step performed on MISPE cartridges present analytical performances comparable to, if
not better than, those obtained with non-selective or immunoextraction supports. As
significant examples, a study published in 2013 compared MISPE cartridges for ochratoxin
A with other commercial solid-phase extraction media, such as immunoaffinity columns
(IAC), Mycosep™ 229, Mycospin™, and Oasis® HLB [73]. A total of 120 samples (30 wines,
30 beers, 30 roasted coffees, and 30 chili) were analyzed, and analytical recovery, repro-
ducibility, limit of detection, and limit of quantification were evaluated. All the supports
demonstrated suitability for OTA analysis, meeting the requirements specified in the EU
regulations, with a moderate prevalence of IAC for wine and beer with an analytical
recovery of >90%, as well as Mycosep™ for wine and chili, but MISPE was the most
appropriate for coffee. In a more recent study [79], commercial MIPs for ochratoxin A
and zearalenone mixed with a home-made citrinin-imprinted bulk material were used
to prepare multi-target analyte MISPE cartridges. A comparison in terms of analytical
recovery and cleanup efficiency with cartridges packed with several synthetic nano- and
microfibers, graphene-doped composites, and restricted access materials showed that, in
the extraction of mycotoxin from oat and rice milk MISPE, poly-caprolactone nanofibers
and C18-restricted access cartridges performed better than the other solid phases in terms
of cleanup efficiency, linearity, accuracy, and repeatability, with quantitative analytical
recoveries for MISPE and poly-caprolactone nanofibers.

3.2. Solid-Phase Extraction with Home-Made MIPs

Despite the progress made in the last twenty years in terms of synthetic approaches to
MIPs with the aim of improving both their structural and morphological characteristics
and bonding properties [80,81], the older technique of bulk onto polymerization still seems
to prevail for home-made MIPs towards mycotoxins, with some relevant exceptions con-
cerning miniemulsion polymerization for aflatoxin B1 [82], precipitation polymerization
for citrinin [83], and surface grafting for aflatoxins [53,54,58,84,85], ochratoxin A [86], pat-
ulin [87], and zearalenone [88–90]. In almost all cases, polymers are prepared using mimic
templates, with some notable exceptions in the cases of fumonisins [91] and T-2 toxin [92],
for which, as previously underlined, no mimic templates are known in the literature.
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The number of mycotoxins and the type of real matrices for which the development
of extraction procedures based on home-made MIPs is reported in the literature is wider
than that relating to commercially available MISPE cartridges, which demonstrates the
continuing interest of the scientific community in this topic (Table S2). Aflatoxins B1, B2,
G1, and G2 have been extracted from soy sauce and vinegar [53], wheat and corn [54,84,85],
peanuts [54,58,82,85,93], rice [54,84,85], soybeans [54,84], medicinal herbs and spices [59],
barley, beer and peanut oil [82], figs, hazelnuts, and red pepper [94]. Alternariol and
alternariol 9-monomethylether have been extracted from tomato [36,37], tomato juice and
sesame oil [37], maize, sunflower, and olive oils [95]. Citrinin has been extracted from
rice [34,83], maize [35,83], and rye [83]. Fumonisins have been extracted from bell pepper,
corn flakes, and rice [91]. Ochratoxin A has been extracted from soybeans [86] and red
wine [95,96]. Patulin has been extracted mainly from apple juice [39,41,42,87,97], but also
from apple, hawthorn, red wine, and tomato [95]. T-2 toxin has been extracted from barley,
maize, and oat [92]. Zearalenone has been extracted from barley and rye [29], rice [29,89],
wheat [29,88,89], corn [30,89,90], oats [88], maize, and sunflower and olive oils [95].

As in the case of MISPE developed on commercial cartridges, all those developed on
home-made materials present analytical performances comparable to those obtained with
non-selective or immunoextraction supports. For example, a bulk polymer imprinted with
the T-2 mycotoxin was used to develop MISPE methods for maize, barley, and oat before
HPLS-MS analysis [92]. A comparison with extraction protocols based on Oasis® HLB
or immunoaffinity chromatography (IAC) cartridges showed that, although the highest
analytical recoveries were obtained with the Oasis® HLB sorbent (74–104% vs. 60–73%
for MISPE and 60–85% for IAC, respectively), MISPE and IAC were superior regarding
selectivity, cross-reactivity, and the matrix effect. Limits of detection (LOD) and limits of
quantification (LOQ) resulted in being lower for MISPE (LOD: 0.4–0.6 ng/kg and LOQ:
1.4–1.9 ng/g) in comparison with Oasis® HLB (LOD: 0.9–3.5 ng/g and LOQ: 3.1–11.7 ng/g)
and IAC (LOD: 0.3–2.3 ng/g and LOQ: 1.0–7.7 ng/g). Interestingly, no template bleeding
was observed, making the use of a hypothetical mimic template unnecessary.

3.3. On-Line Solid-Phase Extraction

A drawback of off-line SPE is that it can be time-consuming, frequently requiring
many steps before the HPLC analysis. On the contrary, on-line SPE (Scheme 2) offers
several advantages, reducing the sample preparation time and thus increasing the sample
throughput. Moreover, analytical precision and accuracy increase due to the absence of a
sample evaporation step before injection in the analytical column. A higher sensitivity is
also achieved in on-line SPE due to the analysis of the full extracted sample in contrast to
off-line SPE, where only a fraction of the extract is injected into the analytical column [98]. It
is therefore no coincidence that this approach has been successfully used for the extraction
of several mycotoxins before HPLC analysis (Table S3).
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Ochratoxin A is a target analyte towards which numerous examples of on-line SPE
have been reported. In this case, the typology of the imprinted stationary phases ap-
pears to be quite varied and includes stainless steel frits grafted with a thin layer of
electropolymerized polypyrrole [100–102] and an imprinted monolith prepared in a bare
fused-silica capillary [103] or a HPLC microcolumn [104], but also traditional HPLC pre-
columns packed with an MIP prepared via bulk polymerization [104,105]. In all these cases
(except [105], where ochratoxin A is directly quantified without any further separative
step), as the extraction step is followed by separation on an HPLC analytical column, the
critical step for a successful method consists of the use of a desorption eluent compat-
ible with the analytical eluent used in the HPLC column. This step therefore involves
methanol/triethylamine as the desorption element and methanol/ammonium buffer as
the analytical eluent [100–102], methanol/acetic acid as both the desorption and analytical
eluent [103], methanol/acetic acid as the desorption element, and acetonitrile/water/acetic
acid as the analytical eluent [104–106]. The on-line extraction of beer [103], wheat ex-
tracts [105,106], and red wine [100–102] resulted in being selective for the target analyte
and allowed for the quantification of the contamination levels in these matrices being
well below the legal limits established by the health authorities. Aside from ochratoxin
A, on-line SPE in a packed microcolumn has been reported for citrinin in red yeast rice
extracts [107] and patulin in apple juice [108,109]. It must be noted that, in the latter paper,
the authors compared off-line and on-line SPE methods on the same imprinted polymer of
commercial origin, concluding that, although on-line SPE leads to significant time savings,
fewer human errors, and requires no handling of toxic solvents, it showed a worse LOD
(15 versus 6 ng/mL), worse analytical recovery values (68.3–123.5 versus 81.2–109.9%),
and a worse efficiency throughout the entire clean-up process in comparison with the
off-line SPE.

3.4. Dispersive Solid-Phase Microextraction

In dispersive solid-phase microextraction (DSPME), the solution containing the target
analytes is not percolated through a cartridge containing the sorbent, as in the case for
SPE, but it is the sorbent that is added into the sample solution and stirred for a specified
time until the adsorption of the target analytes reaches its equilibrium. Then, the mixture
is centrifuged or filtered to separate the sorbent, and the sample solution is discarded. A
desorption solvent is finally added to the sorbent and a small volume of it is injected into
the detection system for the determination of the target analytes [109]. In comparison with
the similar Solid-Phase Microextraction (SPME), DSPME presents several advantages due
to the absence of the fiber supporting the solid phase, including drawbacks due to the
necessity of covalently grafting the sorbent onto the fibers, the fiber mechanical fragility,
and the need to have the appropriate desorption apparatus connected to the analytical
instrument [110].

Concerning mycotoxin analysis (Table S4), Fan et al. used bulk polymerization in
the presence of 7-ethoxycoumarin to set-up the DSPME of aflatoxin B1 in peanut sam-
ples with detection via post-extraction Surface-Enhanced Raman Spectroscopy (SERS)
with an LOD of 0.1 ng/mL [55]. Jayasinghe et al. used DSPME to extract aflatoxins B1,
B2, G1, G2, and M1 from fish samples using a mimic-imprinted bulk material before
an HPLC-MS/MS analysis [111]. Despite a strong matrix effect requiring the applica-
tion of a standard addition method for aflatoxins G1 and M1, the extraction method
was found to be simple, rapid, and highly selective, with analytical recoveries in the
range of 80–100% and a good LOD (B1: 0.11 ± 0.03 ng/mL, B2: 0.20 ± 0.06 ng/mL, G1:
0.12 ± 0.03 ng/mL, G2: 0.20 ± 0.06 ng/mL, and M1: 0.10 ± 0.03 ng/mL, respectively)
and LOQ (B1: 0.37 ± 0.11 ng/mL, B2: 0.67 ± 0.20 ng/mL, G1: 0.40 ± 0.12 ng/mL, G2:
0.68 ± 0.20 ng/mL, and M1: 0.32 ± 0.06 ng/mL, respectively). The same approach has
been very recently reported by Thati et al. for the HPLC analysis of four aflatoxins (B1, B2,
G1, and G2) in a large variety of food samples such as cereal grains, dry nuts, spices, oil
seeds, vegetables, mushrooms, pulses, milk, and bread [112]. The extraction method proved
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to be compatible with a wide range of different matrices, highly selective, and reusable,
with analytical recoveries in the range of 79.1–109.4% and a good LOD (B1: 0.193 ng/mL,
B2: 0.087 ng/mL, G1: 0.208 ng/mL, and G2: 0.059 ng/mL, respectively) and LOQ (B1:
0.644 ng/mL, B2: 0.292 ng/mL, G1: 0.694 ng/mL, and G2: 0.197 ng/mL, respectively).

With the aim of increasing adsorption capacity, Yang et al. used a hollow-structured
microporous organic network (HMON, Scheme 3) as a nanostructured scaffold to support
and facilitate the imprinting of polymeric nanoparticles with mimic templates for aflatoxin
B1 and sterigmatocystin [113]. The HMON@MIPs resulted in being characterized by a
significantly increased imprinted binding site density and binding affinity for the target
compounds. They were used for the extraction of mycotoxins from rice, maize, and soybean
samples in DMSPE mode, resulting in being selective with analytical recoveries in the range
of 81.2–95.1% and a very low LOD (4.4 and 6.7 pg/mL) and LOQ (14.6 and 23 pg/mL) for
aflatoxin B1 and sterigmatocystin, respectively.
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Scheme 3. Schematic protocol of the integration of hollow-structured HMON@MIPs as adsorbents
for DMSPE and highly sensitive determination of mycotoxins in food samples [113].

Related to DSPME is the micro-solid-phase extraction method described by Lee et al.
for the extraction of ochratoxin A from coffee and grape juice [114]. The authors packed an
MIP prepared in bulk within a sealed polypropylene porous membrane, and the envelope
was put into a vial containing the sample to be extracted (Scheme 4). After the extraction
step, the ochratoxin was desorbed and analyzed via HPLC with analytical recoveries
ranging from 90.6% to 101.5% and an LOD (0.06, 0.02, and 0.02 ng/mL) and LOQ (0.19,
0.06, and 0.08 ng/mL) comparable with those obtained via MISPE. The same approach was
described by Chmangui et al. for the extraction of aflatoxins B1 and B2 from seed-derived
beverages (soya, rice, almond, coconut, oat, and tigernut) [52]. Despite a marked matrix
effect, aflatoxins were determined via HPLC-MS/MS with analytical recoveries in the range
of 91–104% and limits of detection within the 0.085–0.207 ng/mL range.
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3.5. Magnetic Solid-Phase Extraction and Stir Bar Sorptive Extraction

MSPE is based on the dispersion of paramagnetic nano- or microparticles coated with
a sorbent layer in a sample solution. Once the retention process of the target analytes is
concluded, the paramagnetic particles are separated from the solution by the application
of an external magnet and the supernatant is then discarded. Subsequently, the elution
process is carried out through the addition of an appropriate solvent to ensure the an-
alytes’ desorption [115,116]. In addition to its operational simplicity, MSPE is efficient,
economical, and does not need additional steps, such as centrifugation, precipitation, or
filtration, thus avoiding the loss of analytes. Moreover, the ability of limited amounts
of particles—typically tens of mg—to extract target analytes from large-volume samples
allows for easily obtaining high preconcentration factors, greatly amplifying the analytical
sensitivity of the methods.

In regard to the analysis of mycotoxins (Table S5), if compared to off- and on-line
SPE, the examples of MSPE reported in the literature are relatively more recent, no older
than about ten years ago and concerning a smaller number of target analytes and real
matrices. Aflatoxins B1, B2, and G2 have been extracted jointly from corn [56], B1 and
B2 from corn and peanut oil [117], and B1 alone from barley and beer [118] and bovine
liver [119]. Using deoxynivalenol as a template, fusarotoxins (fusarenon-X, deoxynivalenol,
3-acetyldeoxynivalenol, 15-acetyldeoxynivalenol, T-2 toxin, and HT-2 toxin) have been
extracted from rice [120]. Ochratoxins A, B, and C have been extracted from rice and
wine [121]. Patulin has been extracted from several fruit juices [44,122]. Sterigmatocystin
has been extracted from wheat [123]. To conclude, zearalenone has been extracted from
a wider variety of matrices: buckwheat [32], corn [124–126], corn oil [127], flour [124],
maize [32,128], millet [126], rice [32,123,124], and wheat [32,125,129]. In all these cases,
MSPE methods present analytical performances in terms of limits of detection and quan-
tification, analytical recovery, and matrix clean-up comparable to, if not better than, those
obtained with cartridge-based MISPE methods. As a relevant example, the MSPE for fusaro-
toxins reported by Pan et al. [120] shows, for T2-toxin, a limit of detection of 5 pg/g and a
limit of quantification of 20 pg/g with HPLC-MS/MS detection, while the off-line MISPE
for the T2-toxin reported by De Smet et al. [92] shows limits of detection and quantification
higher than two orders of magnitude, 0.4–0.6 ng/g and 1.4–1.9 ng/g, respectively.

A variant of the MSPE is the SBSE, where, instead of paramagnetic nano- or micropar-
ticles, a solid magnetic stir bar grafted with a layer of sorbent material is used to extract
the target analytes [130]. In regard to mycotoxin analysis, an interesting example of SBSE
concerns the development of magnetic stir bars composed of a monolithic MIP embedding
paramagnetic Fe3O4 microparticles through a bulk polymerization process (Scheme 5).
When imprinted with a mimic for aflatoxins [50], the stir bar was able to extract aflatoxin
M1 from milk powder for baby food with an analytical recovery of 60% (LOD: 1.0 ng/kg
and LOQ: 0.3 ng/kg) and aflatoxins B1, B2, G1, and G2 in cereal-based baby foods with
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analytical recoveries of 43, 40, 44, and 39%, respectively (LOD: 0.9, 0.7, 1.0, and 1.7 ng/kg
and LOQ: 3.0, 2.3, 3.5, and 5.8 ng/kg). Concerning patulin [43], it was extracted from apple
with recoveries of 60–70% (LOD: 10 ng/g and LOQ: 50 ng/g).
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[119]. Using deoxynivalenol as a template, fusarotoxins (fusarenon-X, deoxynivalenol, 3-
acetyldeoxynivalenol, 15-acetyldeoxynivalenol, T-2 toxin, and HT-2 toxin) have been ex-
tracted from rice [120]. Ochratoxins A, B, and C have been extracted from rice and wine 
[121]. Patulin has been extracted from several fruit juices [44,122]. Sterigmatocystin has 
been extracted from wheat [123]. To conclude, zearalenone has been extracted from a 
wider variety of matrices: buckwheat [32], corn [124–126], corn oil [127], flour [124], maize 
[32,128], millet [126], rice [32,123,124], and wheat [32,125,129]. In all these cases, MSPE 
methods present analytical performances in terms of limits of detection and quantifica-
tion, analytical recovery, and matrix clean-up comparable to, if not better than, those ob-
tained with cartridge-based MISPE methods. As a relevant example, the MSPE for fusaro-
toxins reported by Pan et al. [120] shows, for T2-toxin, a limit of detection of 5 pg/g and a 
limit of quantification of 20 pg/g with HPLC-MS/MS detection, while the off-line MISPE 
for the T2-toxin reported by De Smet et al. [92] shows limits of detection and quantification 
higher than two orders of magnitude, 0.4–0.6 ng/g and 1.4–1.9 ng/g, respectively.  

A variant of the MSPE is the SBSE, where, instead of paramagnetic nano- or micro-
particles, a solid magnetic stir bar grafted with a layer of sorbent material is used to extract 
the target analytes [130]. In regard to mycotoxin analysis, an interesting example of SBSE 
concerns the development of magnetic stir bars composed of a monolithic MIP embedding 
paramagnetic Fe3O4 microparticles through a bulk polymerization process (Scheme 5). 
When imprinted with a mimic for aflatoxins [50], the stir bar was able to extract aflatoxin 
M1 from milk powder for baby food with an analytical recovery of 60% (LOD: 1.0 ng/kg 
and LOQ: 0.3 ng/kg) and aflatoxins B1, B2, G1, and G2 in cereal-based baby foods with 
analytical recoveries of 43, 40, 44, and 39%, respectively (LOD: 0.9, 0.7, 1.0, and 1.7 ng/kg 
and LOQ: 3.0, 2.3, 3.5, and 5.8 ng/kg). Concerning patulin [43], it was extracted from apple 
with recoveries of 60–70% (LOD: 10 ng/g and LOQ: 50 ng/g).  

 
Scheme 5. Preparation and use of magnetic molecularly imprinted stir-bars [50]. Scheme 5. Preparation and use of magnetic molecularly imprinted stir-bars [50].

4. Conclusions

As shown in this review, in the last fifteen years, the use of molecular imprinting
technology to prepare efficient and selective sorbents for the clean-up and preconcentration
of mycotoxins in complex samples has expanded significantly, both in terms of target
analytes and extraction methods. One of the main issues that hindered the development
of MIP-based sorbents, i.e., the difficulty of directly using target mycotoxins as templates,
is currently largely resolved—except perhaps for fusarotoxins—thanks to the extensive
use of easy to achieve, safer, and less expensive mimic templates. The appearance on the
market of commercial products has demonstrated that molecular imprinting technology
is mature, and that the MIP-based sorbents can compete effectively with traditional solid-
phase extraction materials in terms of selectivity and with immunoaffinity extraction in
terms of stability and the low cost of their preparation.

Nevertheless, focusing the attention on its main competitor technique, i.e., immunoaffin-
ity extraction, there are far less papers concerning the MISPE of mycotoxins. There are
some reasons for this apparent lack of interest. First of all, immunoaffinity extraction is an
extremely valid competitor: it has the ability to clean-up heavily contaminated samples and
it efficiently removes interfering substances because of the innate high binding selectivity of
natural antibodies. As a consequence of this, over many years, immunoaffinity extraction
has become a robust technique in mycotoxin analysis. Thus, even if imprinted materials
are potentially competitive with immunoaffinity-based materials, the acceptance of this
technology remains low. Generally speaking, the acceptance of new technology meets resis-
tance, if not distrust, from users of older, consolidated methods (if this approach works well,
why change?), and this has immediate consequences on the diffusion of MISPE methods.

However, it is our opinion that the continuous evolution of molecular imprinting
technology, which is currently moving towards nanostructured materials with properties
becoming increasingly close to those of natural antibodies, makes it likely that, in the
coming years, extraction techniques based on MIPs will be able to evolve further, both in
terms of improving techniques (increased selectivity, multiple targets, and a reduction in
matrix effects) and in terms of analytical targets not yet taken into consideration (emerging
and masked mycotoxins).

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/toxins16010047/s1, Table S1: SPE of mycotoxins on commercial MIP
cartridges; Table S2: SPE of mycotoxins on home-made MIP cartridges; Table S3: on-line SPE of
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mycotoxins; Table S4: DSPME of mycotoxins; Table S5: MSPE/SBSE of mycotoxins; and Figure S1:
molecular structures of all the micotoxins considered in this paper.
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