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Abstract

Extracellular vesicles (EVs), membranous vesicles present in all body fluids, are considered important messengers, carrying their
information over long distance and modulating the gene expression profile of recipient cells. EVs collected in urine (uEVs) are
mainly originated from the apical part of urogenital tract, following the urine flow. Moreover, bacterial-derived EVs are present
within urine and may reflect the composition of microbiota. Consolidated evidence has established the involvement of uEVs in
renal physiology, being responsible for glomerular and tubular cross talk and among different tubular segments. uEVs may also
be involved in other physiological functions such as modulation of innate immunity, coagulation, or metabolic activities.
Furthermore, it has been recently remonstrated that age, sex, endurance excise, and lifestyle may influence uEV composition
and release, modifying their cargo. On the other hand, uEVs appear modulators of different urogenital pathological conditions,
triggering disease progression. uEVs sustain fibrosis and inflammation processes, both involved in acute and chronic kidney dis-
eases, aging, and stone formation. The molecular signature of uEVs collected from diseased patients can be of interest for
understanding kidney physiopathology and for identifying diagnostic and prognostic biomarkers.
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INTRODUCTION

Kidneys are in control of several fundamental functions of
our body as they maintain blood homeostasis, pressure, and
composition. In particular, they regulate ion balance and cal-
cium levels, pH, water excretion, clearance and reabsorption
of waste products and metabolites, as well as red blood cell
number. Kidneys produce �1–2 L of urine per day, in which
are collected waste products, cells of epithelial or blood origin,
viruses, bacteria, soluble molecules, and extracellular vesicles
(EVs) (1), small vesicles considered mediators of cell-to-cell
communication. Indeed, EVs present in urine appear to play
a role as messengers along nephron segments, following the
natural flow of preurine and urine. In this review, we will pro-
vide a focus on the modulation of EV release in urine and on
their role in renal physiology, including glomerular/tubular
and tubular/tubular cross talk, and in renal pathology, includ-
ing aging, stone formation, and disease progression.

EXTRACELLULAR VESICLES

EVs are a heterogeneous population of small vesicles
secreted by almost all cell types in the extracellular space
and present in almost all body fluids (2, 3). EVs are composed
by a core containing nucleic acids (mRNAs, miRNAs, and
other noncoding RNAs), proteins and lipids, derived from

the originating cells, surrounded by a lipid bilayer mem-
brane, with a protective function for the EV cargo (2). DNA
packaging into EVs has been mainly described in the oncol-
ogy field, showing EV-DNA uptake and incorporation into
the recipient genome (4). On the EV surface, there are sev-
eral different classes of transmembrane and external pro-
teins that regulate EV biodistribution and targeting ability.
When EVs are dispersed within a fluid, the close interaction
between EVs and soluble factors leads to the formation of an
additional layer, mainly composed by proteins, called pro-
tein corona (5). EVs, thanks to their round shape, small size,
and their specific fingerprint, appear ideal messengers to
deliver their cargo along body fluids, being suitable for thera-
peutic and diagnostic potential applications.

The different EV types can be classified into different subca-
tegories, considering size, density, biogenesis, or isolation
strategy, although there is the lack of a unique phenotype for
each of them (3). In addition, the different EV subtypes show
overlapping properties in terms of size, marker expression,
composition, and functions, and there are constant updates in
the nomenclature due to scientific advances. The site of bio-
genesis clearly distinguishes exosomes, arising from inward
budding of the endosomal membrane from ectosomes, origi-
nating from outward budding of the plasma membrane (3)
(Fig. 1). Moreover, there is general consensus in the scientific
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community to divide EVs based on their size, using small EVs
for those ranging from 50 to 150 nm and large EVs for those
ranging from 200 nm to around 5 lm; the latter including
both microvesicles, ranging from 200 to 1,000 nm, exopheres
and apoptotic bodies (with a diameter up to 5 lm) (6). EV sub-
types have been also classified by content (such as mitove-
sicles), function (such as migrasomes), and originating cell
(such as oncosomes) (Fig. 1) (3, 7). Furthermore, small particles
with a size of around 20–40 nm, called exomeres and super-
meres, have been recently identified, even though, in the ab-
sence of a double membrane, they do not fit in the EV
definition (Fig. 1) (7). Biogenesis and characteristics of the
most recently described particles are still under investigation
and further study will help to better understand their biology.

Both EV physical/chemical properties and surface markers
may affect EVs’ trafficking and uptake by downstream cells.
Several mechanisms may occur at the same time, including
phagocytosis, plasmatic, or endosomal fusion of membranes,
clathrin or caveolin-mediated endocytosis, and macro- and
micropinocytosis (8). These topics are nicely summarized in a
recent review (3).

Generally, surface and luminal markers shared by EV types
are commonly used for EV characterization, including tetraspa-
nins (CD9, CD63, and CD81), surface proteins that organize
membrane microdomains and are involved in EV biogenesis
process, heat shock protein 70 (HSP70), a chaperone protein,
ALG-2-interacting protein X (Alix) and tumor susceptibility gene
101 (TSG101) [auxiliary proteins involved in the endosomal sort-
ing complexes required for transport (ESCRT) pathway] (9). EV
cargo was also extensively characterized by adopting bioinfor-
matic methods and reported in comprehensive databases such
as ExoCarta, EVpedia, andVesiclepedia that elucidatemolecular
content of EVs isolated in physiological or pathological condi-
tions (10). In addition, dedicated databases such as EVatlas or
exoRBase describe all the RNA species present in EVs (11).

EV characterization and biomarker identification are
affected by the isolation procedures used to collect EVs. This
is, at present, a critical point for both comprehensive EV
characterization and further clinical applications. In fact,
there is no standardized protocol and methodology to isolate
pure EV populations, as its choice depends on the down-
stream analyses and use. Several techniques are available
including serial ultracentrifugations, size exclusion chroma-
tography, filtration, precipitation, density-gradient centrifu-
gation, and immunoprecipitation/affinity capture (1).

ORIGIN OF URINARY EVs

EVs collected into the urine (uEVs) originate from all the
cells of the urogenital tract, with the majority of them of renal,
prostate, and bladder origin (1). In particular, it has been sug-
gested that the kidney is the main source of uEVs (12).
Recently, Barreiro and colleagues recapitulated the uEV com-
position by an in vitro approach, isolating EVs from proximal
tubular, mesangial, podocyte, and glomerular cells. miRNAs,
mRNAs, and proteins of uEVs isolated in vitro were compared
with those obtained in uEVs, confirming the kidney as major
source of uEVs and dissecting single cell-type contribution (13).

The passage of serum EVs into urine may occur through
peritubular capillaries, but this phenomenon in vivo has not
been clearly demonstrated yet. However, it has been reported
that exogenous intravenous administration of PKH67-labeled
EVs resulted in the urinary excretion of fluorescent EVs in an
experimental in vivo model of acute myocardial infarction
(14). It was reported that this phenomenonmay be influenced
by hormonal regulation, for example, by a vasopressin analog,
that increased the renal uptake of systemically injected fluo-
rescent EVs, labeled with cell tracker nanocrystals (15). These
results suggest the presence of an excretion into the urine of
not-urinary EVs; however, in physiological conditions, this
phenomenon has not been confirmed, and this trafficking is

Figure 1. Schematic representation of different EV sub-
types and their origin. Different processes of EV genera-
tion are schematized, including EV released by budding
of the plasma membrane (microvesicles, exopheres, and
mitovesicles), by retraction fibers of migrating cells
(migrasomes), or by membrane fusion of multivesicular
bodies (exosomes). The intracellular steps of endosome
maturation and multivesicular body formation and the
release of small particles (exomeres and supermeres)
are also shown. ILV, intraluminal vesicles; MVB, multive-
sicular body.
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still unclear (16). Using a microfluidic model composed by a
double layer of cells mimicking the glomerular barrier,
Bellucci et al. (17) recently demonstrated that EVs, engineered
with nonhuman cel-miR-39, were able to cross the glomerular
barrier and to transfer themiRNA to podocytes.

Helpful data on the origin of uEVs were generated by omics
analyses on lipid, protein, and RNA composition (1). The pro-
teomic analysis highlighted that 99.96% of proteins present in
uEVs mainly originate from the apical part of the urogenital
tract following the fluid flux. In fact, the expression of typical
apical membrane markers is predominant, even if basolateral
markers are also described (18, 19). The remaining fraction
(0.04%) of proteins is probably derived from infiltrated cells
or from contaminating cells present in the skin (16).

Recently, the contribution of kidney-derived EVs to the
entire urinary EV composition was nicely addressed by
Blijdorp et al. (12). For this purpose, uEVs isolated from blad-
der were compared by mass spectrometry to those isolated
from a nephrostomy drain. The majority of proteins were in
common among the two samples, while only three and 12
proteins were exclusively identified in the nephrostomy and
bladder samples, respectively (12). These results confirmed
the major contribution of the kidney to the release of uEVs,
however, modification of EVs after their release, during the
flow, may not be excluded.

Markers typically expressed by uEVs not only reflect the
proportion of originating cells but also are characteristic of all
the different segments of urogenital tract. The first reports,
performed using antibody-based techniques, highlighted the
presence of aquaporin (AQP)1, AQP2, cotransporter Na-K-Cl 2
(NKCC2), sodium-hydrogen exchanger 3 (NHE3), and sodium-
chloride cotransporter (NCC) (1, 16, 20). Subsequently, thanks
to omic approaches, uEVs were extensively characterized. The
presence of cubilin, megalin, and aminopeptidase confirmed
the release of EVs by proximal tubular cells. The identification
of nephrin, podocalyxin, and podocin suggested glomerular
and podocyte origins (21, 22). Moreover, bladder and prostate
derived-EVs have also been described (18, 23). Some stem cells
and regenerative markers such as Klotho, CD133, and stage-
specific embryonic antigen-4 (SSEA4) were reported (24–26).

Of interest, novel organelle-containing structures have
been described in urine. These membranous structures are
released by mechanisms different from conventional exocy-
tosis by proximal tubular cells (27). The extruded vesicles
show a size of �5 lm, contain entire organelles, and may be
found in the EV pellet. In this study, gold nanoparticles were
injected into healthy and injured mice and were eliminated
by tubular cells through balloon-like extrusions, detected in
the urine in a month (27). This phenomenon may have im-
portant implications in the elimination of nonbiodegradable
nanoparticles and in the self-renew of intracellular organ-
elles for the maintenance of cell homeostasis (27).

Furthermore, uEVs may contain EVs of nonhuman ori-
gin such as bacterial or viral EVs. Viruses and EVs have
many common characteristics including several mecha-
nisms of action and, in some cases, shape and size (28).
Increasing evidences demonstrate that viruses use the ma-
chinery of EV packaging and release to deliver viral com-
ponents (29). Recently, bacterial-derived EVs within uEVs
have been reported to approximately reflect the composition
of microbiota (30). The five most abundant bacterial phyla are

Bacteroidetes, Proteobacteria, Actinobacteria, Verrucomicrobia,
and Firmicutes and their relative EVs have been found abun-
dant both in urine and serum (30). Interestingly, the composi-
tion of bacterial EVs within urine may vary based on subjects’
disease status and may be considered a novel source of bio-
markers (30–32). In particular, the signature of bacterial EVs
present in urine has been analyzed for patients suffering from
colorectal cancer and allergic airway diseases observing differ-
ent patterns for healthy and disease ones (30, 32). Finally, the
composition of bacterial EVs in urine of pregnant women, com-
pared with not-pregnant urinary EVs, varies significantly, sug-
gesting a potential role of host-microbe communication and,
possibly, of bacterial EVs in pregnancy (33).

MODULATION OF uEV CARGO AND
RELEASE BY PHYSIOLOGICAL AND
EXOGENOUS FACTORS

Urine is a fluid that may reflect alterations of not only the
urogenital tract but also the entire organism, and, in fact, it
has been proposed as source of biomarkers for the prognosis
and diagnosis of a wide variety of disorders, including, for
example, brain and systemic diseases (34).

It is well known that urine proteome and metabolome can
be affected by classical physiological conditions such as hor-
mone status, diet, exercise, daily rhythms, lifestyle, and envi-
ronments (35). These changes may be reflected in the uEV
cargo. Of importance, demographic factors such as age, sex,
and ethnicity could also influence EV composition. However,
the effects of these factors are, at present, only partially inves-
tigated although they are of particular importance for the reli-
ability of the use of uEVs as biomarkers, for further translation
into the clinical practice.

A recent study investigated the stability of urinary EV pro-
tein content between healthy subjects over a period of 6 mo.
Even if the study involved few subjects (8 healthy individuals),
results are informative and comprehensive, due to the use of a
highly reproducible next-generation proteomic approach (36).
The majority of identified proteins displayed high correlation
among all samples, presenting 40% of the proteome identified
in every sample (36). The study confirms the intra- and inter-
individual stability of EV proteome (36). This result is in line
with previous studies, focused on lower protein numbers,
describing a low grade of variability among samples and the
presence of a stable protein core (37, 38).

Moreover, the study of Erozenci et al. highlighted a sex-
specific signature in uEV proteome. In particular, some
proteins [Kallikrein-related peptidase 3 (KLK3)/prostate-
specific antigen (PSA), transglutaminase 4 (TGM4), and
prostatic acid phosphatase (ACPP)] related to prostate
antigens were enriched in man uEVs, whereas Serpin pep-
tidase inhibitor member 3 (SERPINB3) and fatty acid-bind-
ing protein 5 (FABP5), associated with cervix and vagina, were
increased in female uEVs. Similarly, proteins involved in
androgen and spermatogenesis pathways were overrepre-
sented in males. uEVs from females were enriched of proteins
involved in hypoxia, coagulation, and angiogenesis, suggest-
ing a connection with the reproductive system (36) (Fig. 2).

Another recent study reported that uEVs excretion is
influenced by nephron mass and, consequently, also by sex
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(12). Specifically, authors found that uEV release correlates
with the total kidney volume and since the volume is lower
in females than in males, this affects uEV excretion. In
particular, the authors collected and analyzed samples of
19 patients before and after a donor nephrectomy and
reported a 49% reduction in uEV release in women com-
pared with men. Interestingly, in graft donors undergoing
nephrectomy, nephron reduction did not statistically alter
uEV levels, probably as a consequence of compensatory
hypertrophy. Of interest, a specific reduction of the CD9-
positive uEVs was reported (12).

Aging is another factor that may alter uEV content, in line
with changes in metabolism and cell activity of the whole
body. The overall EV number resulted inversely proportional
to age, with a specific decrease of uEVs derived from juxtaglo-
merular cells and podocytes (39). For instance, the level of
miR-21, a miRNA involved in profibrotic and aging signaling
pathways, resulted upregulated in uEVs from old rats, as com-
pared with those of young rats (10). Interestingly, caloric
restriction prevented this upregulation (10). uEV composition
may also be modulated by external factors. Besides demo-
graphic parameters, environmental factors and lifestyle, such
as hydration status, diet, and exercise, can modulate EV com-
position and concentration in body fluids (40) (Fig. 2). In
human setting, it was reported that miRNA profile of uEVs
significantly changes between patients with obesity and
healthy subjects and that weight reduction altered uEV
miRNA profiles of patients with obesity (41). On the same
line, a dietary potassium chloride supplementation affected
the uEV level of NCC, proposing uEVs as a tool to assess NCC
abundance and activity (42). At variance, levels of Na trans-
porters (NCC and epithelial Na- channel), increased in distal
tubular cells due to low Na intake, were found unchanged in
uEVs (43). On the contrary, during low-Na diet, the exosomal

proteins Alix and CD9 were described significantly increased,
without variations in EV number and size (43).

Of interest, several papers highlighted that high-intensity
endurance exercise causes an increase of EVs released in blood
flow (44–47), while less is known about uEV modulation. In a
recent study, Park et al. (48) evaluated the possible effect of
high-intensity exercise on uEV release, analyzing uEV samples
of healthy men at different time points before and after a run
test. uEV concentration was significantly enhanced immedi-
ately after the effort, reflecting the increased level of blood-cir-
culating EVs previously observed, but it was rapidly restored
to normal values 1 h after rest. Interestingly, uEVs isolated
from samples collected immediately after exercise showed sig-
nificantly increased levels of all three tetraspanins CD9, CD63,
and CD81, while 1 h after rest, only CD9-positive uEV subpopu-
lation was maintained at a higher level compared with the ba-
sal one (48). Finally, authors performed a miRNA-sequencing
analysis aiming to investigate a potential alteration of the uEV
miRNA content. Nine miRNAs were modulated by exercise,
being involved in MAPK, PI3K-AKT pathways, or related to in-
sulin sensitivity (Fig. 2) (48). Another very recent paper high-
lights differences in several uEV parameters isolated from
inactive subjects and triathlon athletes, studying chronic
adaptations of endurance practice (49). uEVs isolated from tri-
athletes resulted in smaller and lower roughness; moreover,
miRNAs associated with skeletal muscle activity and meta-
bolic pathways as well as guanosine were differentially
expressed by uEVs from the two cohorts of enrolled subjects
(49). The study of uEVmodulation by sports exercise seems to
be of interest by the scientific community with further impli-
cations in training, diet of professional athletes, and also in
relationship with drugs and doping.

Among additional external factors, cigarette smoke
may also alter uEV composition. The effects of exposure

Figure 2. Physiological and exogenous factors that influ-
ence uEV cargo and release. Graphical representation of
demographic parameters such as sex, nephron mass,
and aging that affect uEV composition. Sport endurance,
food intake, and smoke are some of the habits that mod-
ify uEV cargo. ACPP, prostatic acid phosphatase; EPCAM,
epithelial cell adhesion molecule; FABP5, fatty acid-bind-
ing protein 5; KLK3/PSA, prostate specific antigen; MAPK,
mitogen-activated protein kinase; PI3K, phosphoinositide
3-kinases; SERPINB3, serpin peptidase inhibitor member
3; TGM4, transglutaminase 4; uEV, urinary extracellular
vesicle. Created with BioRender.com.
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to cigarette smoke on EVs present in biofluids such as
bronchoalveolar, blood, and urine, were analyzed in a
murine model (50). Interestingly, it was reported an alter-
ation in uEV number, size, and epithelial cell adhesion
molecule (EPCAM)-positive uEVs by exposure to cigarette
smoke (50).

These findings highlight the numerous factors that may
impact the uEV signature, including demographic condi-
tions (age, sex, or ethnicity) and personal habits; indeed,
further dedicated studies on different factors that may
influence uEV number and composition are required to
extend findings to the broader population in view of bio-
marker identification.

PHYSIOLOGICAL FUNCTIONS OF uEVs

Role of uEVs in the Intra Nephron Communication

uEVs are not only accumulated as waste in the urine but
also have an active role in intranephron communication,
connecting nephron segments at long distances, following
the natural flow of urine (Fig. 3). uEVs secreted by upper seg-
ments can be uptaken by downstream cells transferring their
message and providing proximal-to-distal signaling and glo-
merular-to-tubular cross talk. At present, the in vivo demon-
stration of the uEV-based communication mechanism is still
lacking. However, in vitro experiments provide some evi-
dence in support. The first report described the transfer of
active and functional AQP2 by EVs released by murine kid-
ney collecting duct cells to recipient cells. Synthetic vaso-
pressin stimulus induced the upregulation of AQP2 within
EVs (51). Moreover, a vasopressin analog upregulated EV
uptake in tubular cells, while the use of an antagonist
reduced this phenomenon (15), suggesting the presence of a

regulated mechanism of uEV trafficking. Similar findings
showed that EVs released by proximal tubular cells, engi-
neered to express fluorescent exosomal-specific markers
CD63 or CD9, could be transferred to different cell lines of
the distal tubule and collecting ducts (52). These results sup-
port the hypothesis of uEVs’ involvement in the regulation
of water and ions transport. Furthermore, stimulation of
proximal tubular cells with dopamine agonist induced and
increased the production of EVs with an anti-inflammatory
activity, reducing levels of reactive oxygen species (ROS) in
recipient distal cells (52). Another important aspect in which
uEVs may play a role is the intraluminal renin-angiotensin
system, being uEV cargo abundant of angiotensin-convert-
ing enzyme (53).

However, the in vivo physiological situation appears
extremely more complex and can be influenced by the urine
composition during physiopathological processes. The pres-
ence of flow may modify cell-uEV interaction and the num-
ber of particles present in urine may not correspond to the
dose used in the in vitro experiments (16). Moreover, the
uEV uptake mechanisms in vivo could possibly be modu-
lated by proteins in the uEV corona or by their trapping due
to highly abundant proteins such as Tamm-Horsfall (54).
Several groups are currently trying to understand the spe-
cific mechanisms behind EV uptake and release, modifying
or blocking them (55–57). For example, uEVs express, at a
high level, CD24 molecule, a small glycosylphosphatidylino-
sitol-anchored protein, which may have a role in EV adhe-
sion to target downstream cells (58). Furthermore, in in vitro
experiments, polycystin-1 and polycystin-2 have been pro-
posed to modulate uEV binding of primary cilia of recipient
cells (59). Taken together, there are still many open ques-
tions regarding the mechanism of EV trafficking within the
nephron (60).

Figure 3. Physiological and pathological roles of uEVs.
Graphical representation of different physiological and
pathological conditions in which uEVs have been involved
in the context of kidney pathophysiology. ADPKD, autoso-
mal dominant polycystic kidney disease; AKI, acute kidney
injury; APC, activated protein C; CKD, chronic kidney dis-
ease; TFPI, tissue factor pathway inhibitor; uEV, urinary
extracellular vesicle. Created with BioRender.com.
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uEVs and Innate Immunity

Of interest, there are evidences of the involvement of
uEVs in innate immunity, having bacteriostatic and bacteri-
cidal properties (Fig. 3). The anatomic structure of urinary
system induces a constant exposure to bacterial infection.
uEVs are enriched in molecules implied in host defense and
carry proteins that may recognize and bind bacterial exter-
nal molecules (61). Moreover, it has been described that the
presence of uEVs drastically inhibits bacterial growth, favor-
ing their lysis (61). The first involvement of EVs in innate
defense was described for airway epithelial cell derived-EVs
that expressed surface mucins able to link sialic acid, dis-
playing a neutralizing effect on human influenza virus (62).
Interestingly, using a murine model of urinary tract infec-
tion, it has recently been described that uEVs are enriched of
the iron-binding glycoprotein lactoferrin, mainly released by
bladder epithelial cells. Therapeutic administration of EVs
containing human lactoferrin significantly reduced bladder
bacterial infection and neutrophil infiltration, suggesting an
active response by EVs after infection (63). The involvement
of uEVs in immunity was recently confirmed by an in-depth
proteomic analysis highlighting the presence of about 50%
of proteins involved in the glycolytic pathway and in the
inflammatory network, known to be the initiator of immune
cell response (36).

uEVs and Coagulation

Another aspect in which uEVs may have a role is in the
coagulation process (Fig. 3). The involvement of EVs and, in
particular, of plasma-derived EVs in coagulation, is one of
the first described roles for EVs, supporting thrombin gener-
ation (64). It has also been reported that phosphatidylserine
species are present in uEVs and may be supportive of the
coagulation process (65). Recently, Saraswat et al. demon-
strated the presence in uEVs of several coagulation factors,
such as FII, VII, VIII, IX, X, XI, XIII, tissue factor (TF), and
fibrinogen. uEVs also express anticoagulant factors, like TF
pathway inhibitor, antithrombin, and activated protein C
(66). Authors showed an enhancement of thrombin genera-
tion by combining uEVs and human plasma, in vitro (66).
However, the physiological involvement of uEVs in this pro-
cess should be further investigated.

uEVs and Metabolic Activities

Recent proteomic analysis confirmed the presence of met-
abolic clusters, in particular, glycolytic proteins in uEVs (Fig.
3) (36). These results confirm previous data showing the
enrichment in metabolic pathways linked to oxygen con-
sumption and aerobic glucose metabolism (67). Moreover,
uEVs were reported to perform oxidative phosphorylation,
being able to synthesize ATP and to consume oxygen (68).
At present, the real role of these uEVs is still missing and
single EV approaches should be performed to better char-
acterize this subpopulation. Authors excluded a potential
direct mitochondrial contamination and suggested the
presence of mitochondrial inner membrane proteins in
the multivesicular bodies, deriving from fusion among
mitochondria and endoplasmic reticulum (68). Distinct
EV subpopulations, such as small EVs or exomeres should
also be assessed (36, 69).

ROLE OF EVs IN KIDNEY DISEASES

uEVs, thanks to their ability to transport their cargo at long
distance, have a central role in the amplification of renal dam-
age (Fig. 3). uEVs contribute in the glomerular-tubular cross
talk promoting tubular and glomerular injuries. Moreover,
uEVs have been involved in the progression of inflammation
and fibrosis, triggering both acute kidney injury (AKI) and
chronic kidney disease (CKD) (70).

uEVs in the Amplification of Acute and Chronic Kidney
Injury

AKI is a serious and worldwide renal disorder character-
ized by a sudden and dramatic loss of kidney function that
can eventually progress to chronic injury and to organ failure
(70). In the context of tubulointerstitial cross talk, EVs
released by the injured epithelium were shown to attract
inflammatory cells and stimulate fibroblast-to-myofibroblast
differentiation, proliferation, and interstitial matrix deposi-
tion, contributing to the extent and persistence of damage
and progression toward CKD (71).

EVs released by tubular epithelial cells (TECs) under a
proteinuric state expressed the chemokine CCL2 mRNA,
which can be internalized by macrophages, leading to
increased macrophage migration potential (72). In a subse-
quent study, it was shown that miR-19b-3p was increased
in uEVs from LPS-induced AKI mice, adriamycin-induced
CKD mice, and albumin-injured TECs (Table 1). The EV-
associated miR-19b-3p might amplify the inflammatory
response by promoting M1 macrophage polarization and
activating NF-κB signaling (73). Moreover, increased levels
of miR-19b-3p were also found in uEVs collected from
samples of patients with diabetic nephropathy (73). In a
similar way, Li et al. demonstrated that EVs released by
TECs maintained under hypoxic conditions increased
miRNA-23a expression (74). Like miR-19b-3p, miRNA-23a
may induce macrophage switch to M1 phenotype modulat-
ing the NF-κB cascade (Table 1). The proinflammatory effect
of EVs secreted by hypoxic TECs was confirmed in vivo, as
their injection in the renal parenchyma of mice increased the
number of inflammatory cells and induced proinflammatory
cytokines such as TNF-a, IL-1b, and monocyte chemoattrac-
tant protein 1 (MCP-1) clearly suggesting that TEC-derived
EVs have a crucial role in the pathogenesis of tubulointersti-
tial inflammation (74) (Table 1).

Several reports also investigated the profibrotic effect of
TEC-released EVs and the possible mechanisms of action. In
ischemia-reperfusion-induced AKI mouse model, miRNA
profiling of hypoxic proximal TEC-released EVs revealed
miR-150 upregulation. In parallel, ischemia-injured mice
treated with miR-150-carrying EVs exhibited more pro-
nounced renal fibrosis (Table 1) (75). The presence of miR-
150-5p in EVs released by hypoxic TECs and their in vivo
profibrotic effect was also demonstrated in unilateral ische-
mia-reperfusion injury mice (76). On the same line, EVs
released by hypoxia-stimulated TECs showed increased level
of TGF-b1 mRNA, possibly responsible for fibroblast prolifer-
ation and activation (81). In a recent study using CKDmouse
models, EVs released by injured TECs were reported to
express osteopontin, which through binding of CD44 recep-
tor also promotes interstitial fibroblast activation (82). In
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parallel studies, TECs isolated from unilateral ureteral
obstruction, ischemia-reperfusion injury, or partial nephrec-
tomy in vivomodels increased their production of EV-encap-
sulated Sonic hedgehog proteins that caused activation of
interstitial fibroblasts and matrix production. Blockade of
EV biogenesis and inhibition of Sonic Hedgehog signaling
attenuated renal fibrosis after kidney injury (83). Meanwhile,
miRNA sequencing of EVs from TGF-b1-stimulated TECs dis-
played miR-21 enrichment, that in turn aggravated matrix
deposition in unilateral ureteral obstruction mice by modu-
lating the phosphatase and tensin homolog (PTEN)/AKT
pathway (Table 1) (77).

Interestingly, EV-mediated progression of renal fibrosis
could be due to glomerulo-tubular communication through
podocyte EV interaction with TECs. Indeed, EVs from puro-
mycin-injured podocytes have been found to promote apopto-
sis and synthesis of extracellular matrix proteins (fibronectin
and collagen type IV) in cultured TECs through the activation
of p38/extracellular signal-regulated kinase (ERK) signaling
(84). Similarly, EVs from cultured podocytes could upregulate
fibronectin and collagen type IV production of TECs via p38/
TGF-b signaling. However, it should be noted that in this
study, EVs were derived from untreated podocytes, not from
the injured ones (85). These data highlight that injured renal
cell-derived EVs are loaded with signaling molecules that can
activate profibrotic pathways that promote the initiation and
progression of renal fibrosis and CKD.

Interestingly, EVs may also be involved in mechanisms of
renal recovery mediated by tubular progenitor cells, a popu-
lation able to proliferate and promote tissue repair after
injury (86). In particular, Zou et al. (87) demonstrated that
scattered tubular cell-derived EVs, once uptaken by injured
TECs, exerted a beneficial and protective effect and pro-
moted tissue andmitochondrial restoration.

Roles of uEVs in diabetic kidney disease.
As for tubular damage, intercellular communication between
glomerular cells, i.e., endothelial cells (GECs), podocytes, and
mesangial cells, might amplify cell damage and promote fibro-
sis (Fig. 3). Under high glucose treatment, GECs undergoing
endothelial-to-mesenchymal transition secreted EVs rich in
TGF-b1 mRNA able to activate the canonical wingless-related
integration site (Wnt)/b-catenin signaling in podocytes (88).
Such EVs, enriched in TGF-b1 mRNAs, could also be internal-
ized by glomerular mesangial cells, promoting mesangial
expansion and matrix overproduction via the TGF-b1/mothers
against decapentaplegic homolog 3 (SMAD3) signaling (89).
Under high glucose treatment, GEC-derived EVs also con-
tained differentially expressed circRNAs that may limit mes-
angial cell proliferative ability and promote epithelial-to-
mesenchymal transition (EMT). Specifically, downregulated
exosomal circRNF169 and circSTRN3 favored the increased
expression of the mesenchymal and profibrotic marker a-SMA
(90). High glucose-treated glomerular mesangial cells also
released TGF-b1-enriched EVs able to induce podocyte apopto-
sis, reduce matrix adhesion, and downregulate podocyte
expression of nephrin, podocin, and Wilms’ tumor-1 (WT1) via
PI3K/AKT signaling (91). Finally, EVs originating from high
glucose-incubated podocytes have been found to contain ele-
vated levels of miR-221, promoting dedifferentiation of proxi-
mal TECs (Table 1). Mechanistically, EV-contained miR-221

directly targets Dickkopf-related protein 2 (DKK2), a suppres-
sor of Wnt/b-catenin signaling, which leads to the acquisition
of a dedifferentiated state that is crucial in tubulointerstitial fi-
brosis (78). Under TGF-b1 stimulation, podocytes, cultured in a
millifluidic system with GECs, released EVs enriched of the
profibrotic miR-145. On the contrary, EVs shed by GECs were
associated with a relevant reduction in the proangiogenic
miR-126 (Table 1) (80).

Moreover, EVs released by TECs in the context of diabetes
may also mediate tubulointerstitial cross talk, favoring the
fibrotic process. In fact, EVs from diabeticmice or high-glucose-
treated TECs were potent in inducing the proliferation and acti-
vation of fibroblasts. Analyses of the content of proximal TEC-
derived EVs suggest that exosomal Enolase 1 could be involved
in renal interstitial fibrosis and diabetes manifestations (92). In
a different study, EVs from high glucose-stimulated TECs acti-
vated the EMT program of neighbor cells in an autocrine man-
ner. Fibulin-1, a glycoprotein known to participate in integrin
signaling and in turn triggering EMT, was identified as a possi-
ble mechanism (93). On the same line, renal progenitors were
also affected by high glucose and albumin treatment, decreas-
ing CD133 levels both in cells and derived EVs (94).

In addition, there were lines of evidence supporting the
role of EVs released bymacrophages in diabetic nephropathy.
In one study, high glucose-induced macrophages were found
to shed TGF-b1 mRNA in EVs (95). Another study reported
that M2 macrophage-derived EVs containing miR-25-3p
prompted a beneficial effect on podocytes by impeding apo-
ptosis and EMT, by inhibiting dual-specificity protein phos-
phatase 1 (DUSP1) expression and stimulating autophagy (79).
Furthermore, in the context of macrophage-macrophage
interaction, high glucose-stimulated EVs contained higher
levels of IL-1b and inducible nitric oxide synthase (iNOS),
leading to the macrophages activation and promoting the
expression of inflammatory and profibrotic mediators via the
NF-κB signaling pathway (96).

Altogether, these studies corroborate the concept of cross
talk among kidney resident cells, wherein EVs are being used
as cargo of signaling molecules that can contribute to the
establishment and development of diabetic nephropathy.

Role of uEVs in Kidney Stones

Renal calcification is a complex process that involves the
deposition of calcium and phosphate in the renal tissue, lead-
ing to the formation of calcified nodules. uEVs have been iden-
tified as themediators of calcification by carrying the calcium-
binding S100 family proteins (Fig. 3) (97). Moreover, EVs
derived from calcium oxalate-exposed macrophages influ-
enced TECs, by enhancing IL-8 production, as well as activated
neutrophil migration and enhanced crystal invasion through
extracellular matrix (98). On the other hand, EVs derived from
TECs directly treated with calcium oxalate increased oxidative
stress and osteogenic changes via MAPK/P-38 pathway (99). Of
interest, an in vitro study showed that EVs released by renal
tubular brush border membrane allowed faster calcium oxa-
late nucleation and crystal formation in artificial urine solu-
tion (100). This effect was supported by the study of Khan et
al. (101) who further demonstrated that crystal deposition in
renal papillae might have begun with membrane vesicle-
induced nucleation.uEVs also carry dysregulated miRNAs in
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calcium oxalate stone-forming patients, indicating enrich-
ment of oxidative stress via MAPK signaling pathway and
cell adhesion processes via advanced glycation endprod-
ucts-receptor for advanced glycation endproducts (AGE-
RAGE) signaling pathway (99). These results illustrate the
role of uEVs in both initiation of kidney stone formation
and induction of proinflammatory and profibrotic proc-
esses, which can lead to CKD (102).

Role of uEVs in Autosomal Dominant Polycystic Kidney
Disease

Autosomal dominant polycystic kidney disease (ADPKD)
is an inherited cystic pathology consequent to mutations in
the multipass transmembrane proteins polycistin-1 and pol-
ycistin-2, encoded respectively by Pkd-1 and Pkd-2 genes
(103, 104). Recent studies suggest that primary cilia-derived
EVs have a crucial role in ADPKD (Fig. 3) (105). Specifically,
cystic cell-derived EVs and uEVs from patients with ADPKD
promoted cyst growth in three-dimensional cultures in vitro
and in vivo in amurinemodel of Pkd-1mutant kidneys (105).
Moreover, EVs from cystic cells were reported to display a
faster uptake by healthy cells and a prolonged half-life, con-
firming their involvement in cystogenesis occurring in
ADPKD (106). In particular, loss of Pkd-1 promoted cell
release of EVs and significantly altered their f-potential. This
charge difference on EV surface may modify the way EVs
interact and bind to target cells, as Pkd-1-disrupted cell-
derived EVs showed a significantly increased uptake by the
kidney (106). Interestingly, Carotti et al. (107) demonstrated
a link between Pkd-1 knockout, increased EV production,
and upregulation of ceramide biosynthesis in ADPKD. In
particular, reduced levels of polycistin-1 increased ceramides
and upregulated ATP signaling, which in turn modulated EV
release and favored ADPKD progression.

CONCLUSIONS AND FUTURE PERSPECTIVES

As discussed earlier, there are several lines of evidence that
highlight the relevance of EVs in renal physiology as well as
in the progression and amplification of renal inflammation
and fibrosis. Cells along the nephron release EVs that may
influence downstream recipient cells, carrying their message.
Due to their complex cargo, composed by a mixture of pro-
teins, lipids, and different RNA species, uEVs are powerful
entities that can modulate the behavior of cells or trigger dis-
ease progression, both in neighbor cells or at long distances.
As reported earlier, several factors including nephron num-
ber, sex, aging, and lifestyle modulate EV release and cargo
and could be of interest for better understanding kidney phys-
iology. However, the field has several open questions that
deserve further investigations.

On the other side, uEVs appear as an ideal source for bio-
markers of renal and urinary tract pathologies and display
potential applications, even in systemic diseases. They have
the potential to be used in diagnostic procedures with a high
level of specificity and sensitivity. The international research
community reported recommendations for improving rigor,
reproducibility, and best methodological practices to be taken
into consideration for preclinical and clinical studies on bio-
marker discovery (1, 9, 108). In particular, normalization

methods and preanalytical procedures should be carefully
selected to consolidate data interpretation and results.
Altogether, the uEV field has great potential to better under-
stand disease progression and for biomarker discovery.
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