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1Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Turin, Italy,
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Organo-mineral fertilizers (OMFs) with low organic carbon (Corg) content

have been associated with higher mineral fraction nutrient use e�ciency.

However, the extraction of peat, which is typically used in these OMFs, from

endangered ecosystems causes long-time stored Corg to mineralize and to be

released back into the atmosphere as carbon dioxide (CO2). This study analyzes

the replacement of peat in OMFs with biowaste materials. These materials,

considered organic byproducts that microorganisms and other living things

can decompose through composting and aerobic or anaerobic digestion, o�er

a viable opportunity. This study investigated three stabilized biowastes—green

compost (GC) from pruning residues, municipal solid waste compost (MSWC),

and manure-based vermicompost (VC)—as the organic matrices for granular

OMFs. These matrices were impregnated with dissolved ammonium sulfate

and urea and used to coat diammonium phosphate granules. Each biowaste

OMF contained 7.5% Corg, 20% mineral N, and 10% mineral P2O5 (OMF20−10).

Fertilizers with high nutrient concentrations have the advantage of requiring low

application volumes, facilitating their application in the field. Biowaste OMFs

were compared with peat OMFs with the same Corg-N-P2O5 concentration.

Peat and MSWC were also used to create OMFs containing 7.5% Corg, 10%

mineral N, and 5%mineral P2O5 (OMF10−5). A 75-day tunnel trial was conducted

under semi-controlled conditions using tomato plants (Solanum lycopersicum

L.) fertilized to an equivalent of 81mgN kg−1 soil and 18mg P kg−1 soil. Controls

included no fertilization (N0P0) and mineral N and P fertilization (MFNP). The

Soil Plant Analysis Development (SPAD) chlorophyll meter and the BBCH (from

German Biologische Bundesanstalt, Bundessortenamt undCHemische Industrie)

scale as well as the number of shoots weremeasured over time, as berry and total

aboveground yield, N and P uptakes, and N and P use e�ciencies (NUE and PUE,

respectively) were calculated at harvest. All treatments outperformed the control

N0P0 in most indicators. Peat20−10 did not have more berry yield than other

OMF20−10; however, the higher number of shoots indicated a higher potential

yield in the event of prolonging the experiment. At the end of 75 days, VC20−10

and MSWC20−10 showed similar PUE to peat, suggesting that those materials

can be used as replacements. In the case of OMF10−5, MSWC10−5 had yield and

N and P uptakes like peat OMFs, confirming the potential use of MSWC as peat

replacement even at di�erent nutrient concentrations. This research provides

reassuring evidence of the e�ectiveness of biowaste OMFs, o�ering a positive

outlook for sustainable agriculture. However, their use is not recommendable

for short growing seasons.
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1 Introduction

Organo-mineral fertilizers (OMFs) refers to a combination of

an organic material with one or more mineral fertilizers (Smith

et al., 2020). The mixture is made to correct the nutrient ratio

of an organic material (Rady, 2012; Antille et al., 2013b; Anetor

and Omueti, 2014) or to use the organic material as a matrix for

the mineral nutrients (Florio et al., 2016). Generally, this second

type of OMF adopts low quantities of organic carbon (Corg), which

in Europe can be as low as 3 or 7.5% for liquid or solid OMFs,

respectively (EC, 2019), and their use has been reported to reduce

N losses, improve P availability, and enhance N and P use efficiency

(Richards et al., 1993; Antille et al., 2013b, 2014; Florio et al., 2016).

The proportion of the organic matrix in the OMF chemically

and physically influences the mineral fraction in close contact

with it. In OMFs with different organic material fractions, the

lower organic material fractions in the OMF decrease the fertilizer

density and increase the abrasion fragility and crushing strength

(Pare et al., 2010); physical differences in fertilizer granules can

create discrepancies in P release as they interact differently with

the soil. Moreover, it has been shown that a higher Corg content in

close contact with mineral nutrients increases the immobilization

of P (Sitzmann et al., 2024b), probably due to Ca-P bonds and a

pH effect.

In low-Corg OMFs, the organic matrix proportion can be

considered fixed, but the proportion of the mineral fertilizer can

be adjusted to adopt a desirable nutrient concentration (Sitzmann

et al., 2023). However, reaching a specific nutrient concentration

in OMFs will require using a mixture of mineral fertilizers that

can cause one type of mineral fertilizer preference over another,

e.g., urea for a high N concentration over ammonium sulfate.

Differences in concentration in OMFs—and therefore in mineral

fertilizers—will not only cause different interactions in soil and

plant nutrient uptake but could also interact differently based on

the organic fraction of the OMF.

Low-Corg OMFs can be produced from organic geogenic

materials such as peat, leonardite, or lignite (EC, 2019).

Traditionally, peat has been preferred over other materials because

of its high humic carbon (C) content (Alianiello et al., 1999;

Florio et al., 2016). This fraction has been linked to promoting

crop growth by influencing microbial and physicochemical soil

properties (Li et al., 2019), stimulating plant metabolism (Asli

and Neumann, 2010; Vujinović et al., 2020), and helping the

remediation of soil contaminants due to an increase in sorption

capacity (Piccolo, 2002; Conte et al., 2005). However, peatlands—

which account for 55,000 Mt C, corresponding to 27% of the soil

C stock in the world (Parish et al., 2008)—should be protected

from mining to avoid the volatilization of long-term stored C

as carbon dioxide (CO2) and the emissions of other greenhouse

gases (Saarikoski et al., 2019; Humpenöder et al., 2020). Therefore,

replacing organic geogenic materials with degraded and stabilized

renewable biowaste materials that are produced locally has been

proposed for improved circularity of carbon and other nutrients

(Schmilewski, 2008; Pare et al., 2010; Taparia et al., 2021).

Replacing a raw material with another in an industrial process

involves a series of challenges. The search process can be long and

expensive, and companies may face reluctance to change from the

market and the established industry (Alexander et al., 2008), as well

as establish a new production chain of quality-certified products.

For OMF manufacturing, any potential raw organic material needs

to be stable over time, homogeneous in larger volumes, and interact

foreseeably with mineral fertilizers (Sakurada et al., 2016; Bouhia

et al., 2022). Materials with high and easy availability on the market

are desirable for OMF production to provide them with circularity

through reutilization (Taparia et al., 2021). Low cost and certified

technological quality are also fundamental when selecting a suitable

organic material.

In a previous study from this research group, composted and

digested dry materials similar to peat with a particle size below

5mm, Corg content between 17 and 25%, and a humification

degree >50% were proposed as peat replacements for preparing

granular and pelletized low-Corg OMFs (Sitzmann et al., 2023). The

results identified three potential candidates: green compost (GC)

from pruning residues, municipal solid waste compost (MSWC),

and manure-based vermicompost (VC). GC and VC can be used

as organic fertilizers or soil amendments; on the other hand,

municipal solid waste is not recognized as a fertilizer by the

European Union (EU) regulation unless the organic fraction is

separated from any other residue (EC, 2019), which can pose

technical and economic challenges. However, when other potential

organic fractions, such as manure, are unavailable, MSWC can

serve as an alternative to traditional fertilizers in the future (Ros

et al., 2006). MSWC used in the research by Sitzmann et al.

(2023) is a physically separated organic source of municipal

waste, which is on the threshold of being considered an organic

fertilizer. The use of MSWC has been considered because its

contribution to heavy metals can be almost negligible in OMFs

with 7.5% Corg. The inclusion of MSWC among potential peat

replacements can be a reference for future revisions of the current

fertilizer regulations.

In a previous small pot trial with OMFs using GC, MSWC, VC,

and peat, with Corg, N, and P2O5 concentrations of 7.5, 10, and 5%,

respectively, peat and mineral control led to higher maize plant P

uptake and growth yield after 4 weeks compared to biowaste OMFs

(Sitzmann et al., 2024a). The reduced uptake in biowaste treatments

was attributed to a slow release of nutrients, bonds between metals

in the organic material and the phosphates from the mineral

fertilizer, or the shift of phosphates to unavailable forms caused by

the high pH of the organic material, which reduced the nutrient use

efficiency of GC, MSWC, and VCOMFs. Microbial immobilization

in soil caused by the organic matrix of OMFs was discarded in low-

Corg OMFs due to the limited Corg addition compared to mineral

controls (Sitzmann et al., 2024a). Considering the 1st days of plant

growth, an initial lower nutrient use efficiency based on the ratio

of absorbed nutrients to total applied nutrients was frequently

observed in OMFs due to slow chemical release (Bouhia et al., 2023;

de Morais et al., 2023) or initial nutrient immobilization (Mandal

et al., 2007; Mazeika et al., 2016; Carneiro et al., 2021; Llovet et al.,

2023), and both processes could increase nutrient availability in

more prolonged periods. While a previous study on GC, MSWC,

and VC granular OMFs focused on their performance over a

few weeks, further study is needed to determine if the nutrient

immobilization is temporary and if these OMFs will increase their

efficiency after 1 month; alternatively, it must be determined if the
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immobilization is permanent and if the addition of these organic

materials to mineral fertilizers is counterproductive.

This study aimed to evaluate the N and P use efficiencies (NUE

and PUE, respectively) of three new granulated biowaste-based

OMFs characterized by low-Corg content. They were compared

with peat OMFs and a mineral control in a pot experiment where

tomato plants (Solanum lycopersicum), as a medium-term growing

crop, were managed for 75 days. Additionally, it sought to evaluate

if the ratio between organic fraction and mineral nutrient can affect

the nutrient use efficiency and physiological development of the

plants; therefore, the MSWC and peat materials were used with

two different concentrations of mineral nutrients but with the same

Corg concentration.

We hypothesized the following:

1) differences in growing parameters would emerge in the initial

andmedium growth phases of tomato plants due to differences

in N and P release of OMFs compared to the mineral control;

2) granular OMFs made with GC, MSWC, and VC would have a

similar nutrient use efficiency compared to peat OMF and the

mineral control after 75 days; and

3) a lower concentration of minerals N and P in the OMF, which

results in higher Corg/N and Corg/P, would result in a higher

immobilization effect.

Compared to the study conducted by Sitzmann et al. (2024a),

this study contributes to a deeper understanding of the nutritional

dynamics derived from biowastes and peat-based OMFs over a

mid-term period that is more appropriate for a broader range

of commercial crops such as tomatoes. Additionally, this study

evaluates the significance of mineral nutrient concentration within

the OMF granules, serving as an indicator for fertilizer application

per unit soil area.

2 Materials and methods

This study was conducted through a plant growth trial with

tomato plants (Solanum lycopersicum L.). It involved two sets of

comparisons: (i) four OMFsmade from three different biowastes or

peat and (ii) four OMFs made from one biowaste or peat with two

different concentrations of the mineral nutrient. In the first trial,

four OMFs with a Corg-N-P2O5 content of 7.5-20-10 (4.2% of total

P) were created using peat (hereafter mentioned Peat20−10), green

compost (hereafter mentioned GC20−10), municipal solid waste

compost (hereafter mentioned MSWC20−10), and vermicompost

(hereafter mentioned VC20−10). Two control treatments were also

included: (1) no fertilization (N0P0) and (2) mineral fertilization

(MFNP), consisting of a blend of ammonium sulfate, urea, and triple

superphosphate (TSP) at an N:P ratio of 10-2.1. For the second

comparison, two additional OMFs were created using a Corg-N-

P2O5 content of 7.5-10-5 (2.1% of total P) using peat (Peat10−5)

andmunicipal solid waste compost (MSWC10−5). These treatments

were compared to Peat20−10 and MSWC20−10.

Therefore, for the given amount of N and P fertilization per kg

of soil, the 7.5-10-5 OMFs will provide twice the amount of Corg of

the 7.5-20-10 OMFs. Treatment details and amounts of fertilization

are described in Table 1.

2.1 Fertilizer production

Biowaste materials and peat for OMFs were collected from

industries across Italy. Biowaste materials were selected based on

their similarities to peat Corg content, Corg stability based on the

alkyl C/O alkyl C ratio and the humification degree, low heavy

metal contents, and processing facilities. The GC was produced

by combining vegetable waste with pruning residues composted

for 6 months and was manufactured by Roffino S.R.L. The VC

was produced from bovine manure that was composted for 6

months, which then undergoes a vermicomposting process, and

was manufactured by Conitalo S.p.A. ACEA Pinorelese Industriale

S.p.A. manufactured the MSWC by mechanically separating the

organic fraction of municipal household waste and stabilizing it

through integrated anaerobic digestion and aerobic composting

(Mainero, 2008). Details regarding MSWC production can be

found in the study conducted by Moretti et al. (2020). Organic

materials were fully characterized in the study of Sitzmann et al.

(2023).

The OMFs were manufactured by SCAM S.p.A. (Modena,

Italy). The OMF manufacturing process involved mixing the

organic material with ammonium sulfate, urea, diammonium

phosphate, and water in a granulator. The water dissolves the

mineral N, whereby impregnating the organic material with the

dissolved fertilizer, forming a cohesive dough. This cohesive mass

acts as a coating for the diammonium phosphate that acts as the

granule nucleus. After creating the OMF granules, they are dried

at 60◦C until they reach ∼4% moisture content. The mineral N

fertilizer is added slightly over the target concentration of OMF N,

accounting for volatilization of a partial N concentration during the

OMF drying. Finally, the granules are sieved, resulting in OMFs

with a diameter of 2–5mm (60% <3mm). For more details, see

Sitzmann et al. (2024a,b).

2.2 Experimental setup

A pot experiment was conducted in the summer of 2022 on

the campus of the Department of Agricultural, Forest, and Food

Sciences of the University of Turin in Grugliasco (NW, Italy)

under semi-controlled conditions in an open tunnel greenhouse

with a North-South orientation. The greenhouse was covered with

a transparent cloth to guarantee proper illumination for plant

development while preventing rainwater from entering. During the

growing period, theminimum andmaximum average temperatures

recorded were 18 and 33◦C, respectively. A tomato (Solanum

lycopersicum L.) cultivar H1301, suitable for industrial processing,

was used as a test plant. Twenty-day-old tomato plants grown in a

nursery were transplanted, one per pot, into pre-fertilized pots on

25th May.

The experiment was a randomized block design separated by

benches with four replicates for each treatment (the total number

of pots was 36). However, one block was discarded due to pest

development during the 2nd month of the tomato growth cycle.

Each pot was 20 cm in diameter at the top and slightly thinner at

the bottom, and it was placed on a plate that was used to provide

sub-irrigation. Each pot was filled with 12 kg of air-dried soil sieved

Frontiers in Sustainable FoodSystems 03 frontiersin.org

https://doi.org/10.3389/fsufs.2024.1385828
https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org


S
itz

m
a
n
n
e
t
a
l.

1
0
.3
3
8
9
/fsu

fs.2
0
2
4
.1
3
8
5
8
2
8

TABLE 1 Treatment description and contribution of nutrients from organic and mineral fractions.

Treatments OMF details Organic
matrix Corg

Organic
matrix N

Organic
matrix P

Mineral N Mineral P

Organic material Mineral fertilizers Corg-N-P2O5
concentration

mg pot−1 mg pot−1 mg pot−1 mg pot−1 mg pot−1

N0P0 No organic material No mineral fertilizers 0.00 0.00 0.00 0.00 0.00

MFNP No organic material Ammonium sulfate; urea; and

triple superphosphate

0-20-10 0.00 0.00 0.00 971 212

Peat20−10 Peat Ammonium sulfate; urea; and

diammonium phosphate

7.5-20-10 364 22 5 971 212

GC20−10 Green compost from pruning

residues

Ammonium sulfate; urea; and

diammonium phosphate

7.5-20-10 364 21 8 971 212

MSWC20−10 Municipal solid waste compost Ammonium sulfate; urea; and

diammonium phosphate

7.5-20-10 364 40 14 971 212

VC20−10 Manure-based vermicompost Ammonium sulfate; urea; and

diammonium phosphate

7.5-20-10 364 27 16 971 212

Peat10−5 Peat Ammonium sulfate; urea; and

diammonium phosphate

7.5-10-5 728 44 10 971 212

MSWC10−5 Municipal solid waste compost Ammonium sulfate; urea; and

diammonium phosphate

7.5-10-5 728 79 29 971 212

The OMF treatments had two different concentrations of Corg , mineral N, and mineral P2O5 : (i) a concentration of 7.5% Corg , 20% N, and 10% P2O5 (OMF20−10); and (ii) a concentration of 7.5% Corg , 10% N, and 5% P2O5 (OMF10−5). Organic materials used to

create OMF20−10 were green compost from pruning residues (GC20−10), municipal solid waste compost (MSWC20−10), manure-based vermicompost (VC20−10), and peat (Peat20−10). For OMF10−5 , municipal solid waste compost (MSWC10−5) and peat (Peat10−5)

served as the organic matrices. Each OMF was mixed with ammonium sulfate, urea, and diammonium phosphate to obtain the ideal Corg-N-P205 concentration. A mineral control (MFNP) was used to replicate the mineral composition of OMF20−10 . Additionally, a

control without fertilization was used (N0P0).
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FIGURE 1

Growing parameters of tomatoes between weeks 5 and 11 for OMF20−10, mineral control (MFNP), and unfertilized control (N0P0). The parameters are

average and standard error SPAD index (A), number of shoots (B), and median BBCH (C). Di�erences between treatment (Tr) and day are calculated

as the average values of the multiple sampling events. The letters indicate di�erences between treatments during each specific sampling day. No

di�erences were calculated for BBCH because the values are expressed on a scale with disjoint intervals.

to 5mm at a density of 1.40 g cm−3, resulting in a soil depth of

30 cm. The soil used in the experiment has a loam texture, a neutral

pH in water (7.2), 8.4 g kg−1 organic C, and 1.1 g kg−1 total N. The

total carbonate content was 4.4 g kg−1. The exchangeable K was low

(0.1 meq g−1), while the exchangeable Ca and Mg were 7.1 and 0.9

meq g−1, respectively, giving a low cation exchange capacity of 110.

The Olsen P-value was 13.5 mg kg−1.

To simulate fertilizer incorporation, fertilization was carried

out by removing soil of∼2 cm depth, then dispersing the fertilizers

homogeneously, and later covering again with the previously

removed soil. Except for N0P0, each treatment received 81mg N

kg−1 soil (equivalent to 170 kg N ha−1 for 15 cm soil depth) and

18mg P kg−1 soil in pre-planting (Table 1). OMFs with a Corg-N-

P2O5 concentration of 7.5-20-10 and 7.5-10-5 kg 100 kg−1 OMF

received ∼4.9 and 9.8 g OMF pot−1, respectively. For mineral

control, MFNP, urea, and ammonium sulfate were combined so that

75% of the N was supplied in the form of ammonium and 25% in

the form of urea to emulate the N forms of OMF. Supplemental

fertilization was carried out using with potassium chloride (KCl

60%), adding 79mg K kg−1 soil to all pots to avoid potential

K deficiencies.

During the 1st month, pots were watered daily with 1 L of water

and then with 2 L daily until harvesting. Water was added to the

bottom plate to avoid nutrient leaching.

Tomato plants received lambda-cyhalothrin (KarateZeon
R©
,

Seneffe, Belgium; 17th June), deltamethrin (Decis
R©

Evo,

Villefranche, France; 1st July), and copper oxide (Fenicrit
R©
,

Bologna, Italy; 6th June and 4th July) as insecticides and fungicides.

2.3 Plant analyses on nutritional status and
yield production

During the 2nd and 3rd months of tomato growth, phenology

development, the number of stems, and leaf chlorophyll content

were measured weekly. Phenological stage measurements were

performed using the BBCH scale, focusing on the growth stage

coding system for Solanaceae, provided by the Federal Biological

Research Center for Agriculture and Forestry (Meier, 2001). The

BBCH index was measured by considering the emergence of

inflorescences, flowering, and fruit development, while the number

of stems and fruits was counted manually. All shoots and branches

with at least one visible node and a first genuine well-extended leaf

were considered lateral stems. The measurements were taken on

the same dates as the phenological stage survey. Leaf chlorophyll

content was measured on a 6-mm2 area using the SPAD-502

Portable Chlorophyll Meter (Konica Minolta Camera Co. Ltd.,
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Tokyo, Japan). The tomato was harvested on 8th August, 75 days

after the transplant. Tomato fruits were collected manually, and

shoot mass was harvested at the soil level. The soil contained in

the pot was divided into two sections (top and bottom) of 15 cm in

height each, and from each section, roots were manually collected

and hand-washed with the help of sieves. Dry matter (DM) biomass

was measured separately for fruits, shoots, and top and bottom

roots after drying samples at 60◦C for 72 h. The total epigean

biomass (fruit and shoot mass) was ground to 0.5mm. Total N

concentration in tissue was measured in an elemental analyzer

(Thermo Scientific FlashEA 1112, Thermoquest). Similarly, total

P concentration in tissue samples was analyzed through digestion

with sulfuric and perchloric acid, followed by a spectrophotometer

analysis using green malachite (Ohno and Zibilske, 1991).

The epigean biomass N and P uptake was calculated as the

product between the N and P concentration and the total

epigean biomass.

The N use efficiency (NUE) and the P use efficiency (PUE) were

used as indicators for the fertilizer’s efficiency. The nutrient use

efficiency was calculated as follows:

NUE or PUE (%) =
N or P uptake

(

g
)

− N or P uptake N0P0

(

g
)

N or P added with the fertilizer
(

g
) ∗ 100

2.4 Statistical analyses

Data analysis was performed using R statistical software

(version 4.2.2). For each crop, two sets of comparisons were made:

(a) treatments N0P0, MFNP, GC20−10, MSWC20−10, Peat20−10, and

VC20−10 were analyzed using treatments and block as independent

values to determine differences between controls and organic

materials in OMFs and (b) treatments MSWC20−10, MSWC10−5,

Peat20−10, and Peat10−5 were analyzed using Corg to mineral

fertilizer ratios and block as independent variables. Values were

tested for normality and homogeneity and transformed into a

log or square scale when needed. A general linear model (GLM)

with two or three factors was performed to compare treatments.

The SPAD index and the number of stems were analyzed,

including the day after transplanting, as independent variables

and also independently for each sampling date. In contrast,

biomass production, nutrient uptake, and efficiency were analyzed

only once.

3 Results and discussion

3.1 Plant growth parameters

The chlorophyll content in leaves was analyzed based

on the SPAD index, which is associated with the N content

in tomato leaves (Wood et al., 1993) and fruits (Jiang et al.,

2017). The SPAD index decreased by an average of 8% between

23rd June and 4th August (Figure 1A), indicating a lower

chlorophyll concentration over time. Fertilized treatments

had a significantly higher SPAD index overall than the T
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FIGURE 2

Growing parameters of tomatoes between weeks 5 and 11 for OMF10−5 and OMF20−10. Treatments Peat20−10 and MSWC20−10 are the same as those

shown in Figure 1. Parameters are SPAD index (A), number of shoots (B), and BBCH (C). Di�erences between treatment (Tr) and day are calculated as

the average values of the multiple sampling events. The letters above indicate di�erences between treatments during each specific sampling day. No

di�erences were calculated for BBCH because the values are expressed on a scale with disjoint intervals.

control N0P0. However, when the data were analyzed for

each day separately, there were no significant differences

between treatments.

The chlorophyll content in leaves indicates no differences

in N availability in soil between OMFs and mineral control,

contradicting other reports that observed a slower N release

into the N solution (Richards et al., 1993; Antille et al., 2013a,

2014; Florio et al., 2016). However, in previous reports from

our study, we did not find significant differences in N release

or NUE between OMFs and mineral controls in short-term

ryegrass or maize pot experiments (Sitzmann et al., 2024a,b),

where the interactions of the OMF organic fraction were mostly

with P.

Morphological parameters such as the number of stems, or

branch number, in tomatoes can be used as a reference for

potential yield, as more stems can lead to increased branching

and potentially more fruit-bearing sites, influencing overall yield

and plant health (Ece and Darakci, 2009). In general, the

number of shoots was significantly higher in Peat20−10, the

mineral control MFNP, and MSWC20−10 than in the N0P0 control

and VC20−10, with intermediate values for GC20−10 (Figure 1B).

Differences in the number of shoots occurred between the third,

fourth, and fifth sampling dates, and the trend followed was

higher values for Peat20−10 and MFNP and lower values for

N0P0 and VC.

The earlier entrance into the reproductive stage on week

7 for N0P0 was expected compared to the OMFs and the

mineral control MFNP (Figure 1C), as an earlier entrance to

a reproductive phenological stage can indicate a nutritional

deficiency in plants (Gaj et al., 2020). Peat20−10, MSWC20−10,

and VC20−10 had the latest entrance to the reproductive stage

(week 9). The results for VC20−10 are opposite to the number

of shoots; however, as with Peat20−10 and MSWC20−10, those

treatments are correlated to a higher P uptake. In the formerly

mentioned study, Sitzmann et al. (2024a) found that peat had

the same initial P availability as the mineral control. At the

same time, a vermicompost OMF—as well as the other biowaste

materials—immobilized a fraction of the mineral P. This initial

lower P availability could explain why VC20−10 initially had fewer

stems than Peat20−10, limiting their counting for the rest of

the experiment.

The hypothesis of differences in growing parameters between

OMFs and mineral control has not been confirmed. However, the

results show that peat OMFs tend to outperform biowaste OMFs in
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terms of early growth, but no significant differences were observed

after 75 days.

3.2 Nutrient use e�ciency of OMFs

Addingmineral fertilizers alone or throughOMFs increased the

dry matter production in the shoots and top roots of the tomato

plants compared to the control N0P0 (Table 2). Differences between

treatments were observed only in the first 15 cm of the soil, which

had, on average, six times higher root dry matter than the bottom

15 cm; the root DM was significantly higher in fertilized treatments

than in the control N0P0. The shoot DM was significantly higher

in fertilized treatments than in the N0P0 control; among the

fertilized treatments, GC20−10 had a considerably lower DM than

Peat20−10, with other fertilized treatments being between these

two. The highest total—berries, shoots, and roots—DM production

was found in Peat20−10 and the mineral control, while GC20−10,

MSWC20−10, and VC20−10 had intermediate values between the

mineral control and N0P0.

Total plant N uptake at the end of the growing season was

correlated to the SPAD index measured on the harvest day by a

Pearson value of r= 0.5 (p-value< 0.01), as all fertilized treatments

were significantly higher than the control N0P0 (Table 3). OMFs did

not present significant differences in NUE compared to the mineral

control MFNP.

As mentioned above, biowaste OMFs made with the same

materials as the one used in this experiment had a lower content

of plant-available P in the soil after 10 days of incubation than a

peat OMF and mineral control, which caused a lower P uptake

in maize plants after 30 days (Sitzmann et al., 2024a). The lower

P availability caused by the biowaste OMF partially remained

after 75 days, especially for GC20−10, which demonstrated a lower

P uptake and PUE than Peat20−10 at harvest (Table 3). Other

biowaste materials mitigated the immobilization effects, showing

intermediate values for P uptake, and did not differ from Peat20−10.

The organic material influence on the P availability of low-Corg

OMFs has been associated with chemical interactions between both

fractions rather than microbial immobilization (Sitzmann et al.,

2024a). The Ca-P bonds in the OMF and the organic matrix pH

have a higher influence on reducing P availability. However, as

OMFs contained large fractions of ammonium sulfate and urea, it

was expected that the nitrification process would reduce the pH in

the fertilizer hotspot (Bouman et al., 1995; Dal Molin et al., 2020),

and therefore, it could increase the P availability. However, this

effect was not observed. The OMF granules were not concentrated

in one unique hotspot, and hence, the buffer capacity of the soil, one

with a high pH, could have readily adsorbed the H ions released

during the nitrification, thereby reducing the impact of potential

soil acidification on P availability.

Our second hypothesis considered that, despite

differences during plant growth, after 75 days, tomato

plants would have the same yield and nutrient use

efficiency across OMF treatments. The second hypothesis

has been confirmed for MSWC20−10 and VC20−10 but not

for GC20−10.
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3.3 E�ects of Corg and mineral fertilizer
ratios in OMFs

Differences in the mineral composition of the OMFs were

expected to cause differences in N uptake between treatments.

However, no differences were observed between OMF20−10 and

OMF10−5 during the growth (Figure 2) and final yield (Table 2)

of tomatoes. To fertilize at a ratio of 81mg N kg−1, OMF10−5

treatments used twice the amount of organic material. During the

fertilization process, adding supplementary organic material will

result in an increase of 4% N and 6% P for MSWC10−5 compared

toMSWC20−10. Furthermore, there will be an increase of 2%N and

2% P for Peat10−5 compared to Peat20−10 (Table 1). In addition,

as urea is a richer source of N than ammonium sulfate, it will

be in higher proportion in OMFs with 20% N (OMF20−10). It

can be considered that the OMF10−5 treatment, which contains

a higher content of ammonium sulfate, received an additional S

fertilization because the soil used in the experiment did not receive

a supplementary S fertilization. A synergism between S and N was

reported as S fertilization increases the NUE by promoting a higher

N uptake (Jackson, 2000; Salvagiotti et al., 2009; Rietra et al., 2017).

However, a higher ratio of Corg to mineral nutrients could

have promoted a higher degree of immobilization in soil, which

would reduce the benefits of the additional organic N, humic C,

and mineral S fertilization. Based on the characterization of the

organic fraction discussed in the study conducted by Sitzmann et al.

(2023), the immobilization would be more relevant for P than for

N since pH and Ca values of MSWC (9.0, 47mg g−1 DM) and peat

(8.0, 41mg g−1 DM) can enhance Ca-P bonds between the organic

fraction and themineral fertilizer and between themineral fertilizer

and the surrounding soil (Sica et al., 2023). The low soil P-values at

the beginning of the experiment, associated with a lower release in

OMF10−5 treatments, can be the reason for the lack of differences

between the treatments, as P resulted in a limiting nutrient for a

higher N and S uptake (Robertson and Vitousek, 2009; Vitousek

et al., 2010).

Although the results showed no differences between using

different concentrations of mineral fertilizers in OMFs, the results

were inconclusive. Therefore, it is not possible to accept or reject

the original hypothesis.

4 Conclusion

This study investigated the influence of organic materials in

the impact of OMFs on nutrient availability and the performance

of tomato plants. Materials such as vermicompost (VC20−10) and

municipal solid waste compost (MSWC20−10) had a similar final

PUE compared to that of a peat OMF (Peat20−10) and a mineral

control (MFNP), suggesting that these materials could be used to

replace peat in OMFs designed to be used for crops with medium

to long growing cycles. Green compost (GC20−10) had a lower PUE

and overall growing parameters compared to Peat20−10, indicating

that not all organic materials are suitable to replace peat, even when

the OMFs are used in crops that grow over several months.

The lack of differences between treatments with different

mineral concentration implies that, in low-Corg OMFs, the organic

fraction has a limited effect on performance, allowing flexibility

in adjusting the mineral fraction based on specific market

requirements. Although the OMF used in this study, with its

low-Corg content, supplies low amounts of organic C to the

soil through fertilization, lower concentrations of the mineral

component imply that more significant amounts of the organic

materials are distributed for the same fertilization target. Therefore,

this type of OMF could contribute to recycling biowaste materials.
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