
Un-projectable Global Types for Multiparty Sessions
Franco Barbanera

University of Catania, Italy
franco.barbanera@unict.it

Mariangiola Dezani-Ciancaglini
University of Torino, Italy

dezani@di.unito.it

Ugo de’Liguoro
University of Torino, Italy
ugo.deliguoro@unito.it

ABSTRACT
A well-formed global type describes the interaction protocol of
multiple end-points via the projection to local specifications. Typed
sessions of processes enjoy good communication properties and
their overall behaviour is the one described by the global type. We
show that a projectable global type is bounded (also said “balanced”
in the literature) but also that projectability is not necessary for a
global type to be a sound description of well-behaved systems. By
revising the semantics of global types via a coinductively defined
LTS, we obtain a conservative extension of previous type systems
in case of simple sessions without channels and local types, which
we call Simple MultiParty Sessions, accommodating unbounded
and hence un-projectable global types. Such a system is sound
and encompasses infinite sessions that do not type-check for any
bounded and/or projectable global type.

CCS CONCEPTS
• Theory of computation→ Process calculi; Type theory.

KEYWORDS
Communication-centred programming, Process Calculi, Simple
Multiparty Sessions, Global Types
ACM Reference Format:
Franco Barbanera, Mariangiola Dezani-Ciancaglini, and Ugo de’Liguoro.
2024. Un-projectable Global Types for Multiparty Sessions. In 26th Inter-
national Symposium on Principles and Practice of Declarative Programming
(PPDP 2024), September 09–11, 2024, Milano, Italy. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3678232.3678245

1 INTRODUCTION
MultiParty Session Types (MPST), introduced in [26, 27], is a body
of choreographic formalisms where two distinct but related views
of concurrent systems coexist: (𝑎) the global view, a formal specifi-
cation via global types of the overall behaviour of a system; (𝑏) the
local view, namely the specification of the behaviours of the single
components, generalising binary local types [24, 25]. The relation
among these two layers is established via the notion of projection
which, given a global type, may produce a tuple of local types, one
for each component. Indeed the projection is a partial mapping
that is defined only if certain well-formedness conditions are met,
including the mergeability of projections to local end-points. Such
conditions are sufficient to guarantee that a network made of any

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
PPDP 2024, September 09–11, 2024, Milano, Italy
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0969-2/24/09.
https://doi.org/10.1145/3678232.3678245

tuple of processes (the third layer of the picture) communicating
via channels that are typable by the so obtained local types will
adhere to the protocol formalised by the projected global type and
will interact safely.

As observed in [33], the original approach, called the “classic”
MPST, suffers from some theoretical issues and limitations ruling
out very natural and harmless protocols. More precisely, some pro-
jectable global types do not ensure a consistency condition (which
generalises duality from binary local types) of the so-obtained local
types. In this case typed processes can reduce to untyped ones. On
the other hand, perfectly sound systems of local types (consisting
of typing contexts assigning local types to variables and channels)
are not the projection of any global type. In the same paper, it is
shown that attempts to overcome the difficulties by defining more
sophisticated merge functions and subtyping relations have led to
unsound systems. The way out proposed in [33] is to abandon the
idea of global types and of binary local type duality introducing a
two-layer system consisting of local types and processes that are
typable by them, where good behavioural properties are guaranteed
by corresponding properties at type-level.

The standpoint of the present contribution is that the elimina-
tion of global types from the MPST is a loss in practice that might
be unnecessary in theory. Indeed, without a global view of inter-
action, programmers will hardly understand whether processes
conforming to local protocols realise the system they have in mind
as a whole. From the theoretical point of view, the actual weakness
of the classic MPST depends on the notion of projectability. To
study the problem we then step back to simpler systems where
global types are directly assigned to sessions, namely sets of named
concurrent processes.

In [4] a two-layered MPST formalism with synchronous com-
munications has been introduced, which we dub Simple MultiParty
Sessions (SMPS). SMPS are based on the system for an asynchro-
nous calculus in [13], and they have been further studied in the
subsequent [2, 5, 6]. In particular, only the layers of global types
and processes are considered, disregarding local types and projec-
tions. Remarkably, conditions ensuring the relevant properties of
safety and liveness at the process level are embodied in the typing
rules. These conditions are weaker than the original projectability
conditions. We note that, albeit SMPS have no local types, processes
are abstract and essentially coincide with local types of a single
session, as e.g. in [22], where messages may have just ground types,
that in the present study are immaterial, and hence omitted.

In the SMPS approach, systems of communicating processes
are represented as multiparty sessions, i.e. parallel compositions of
named processes (the participants). Then the type system derives
global types for such sessions. To prove the soundness of the type
system both sessions and types are given semantics using two LTS
with the set of labels in common, each label representing an atomic
synchronous communication among two of the participants of the

https://doi.org/10.1145/3678232.3678245
https://doi.org/10.1145/3678232.3678245

PPDP 2024, September 09–11, 2024, Milano, Italy Franco Barbanera, Mariangiola Dezani-Ciancaglini, and Ugo de’Liguoro

session. The key properties are Subject Reduction and Session Fidelity.
Subject Reduction states that, if a typable session evolves along a
path of the session LTS, the same does its type in the respective
LTS leading to a new type that can be derived for the so-obtained
session. Session Fidelity states that, if a global type types a session
and it evolves along a path of its LTS, then the same does the session
in the respective LTS leading to a new session, which can be typed
by the so obtained global type. Moreover, the system ensures the
Padovani Lock-freedom property, in the words of [23]. Namely, any
participant of a session reachable from a typable one which is the
location of a non-terminated process will be involved in a transition
in at least an execution path out of the reached session [31].

However, such good properties of the type system come at the
price of a severe restriction of the global types that can occur in the
typing judgements, dubbed boundedness (corresponding to balanc-
ing [21, Definition 3.3]). Roughly, a global type is boundedwhenever
in any point of its (possibly infinite) syntax tree, if a participant
occurs in a branch out of this point, then it must occur in all the
other branches. Since operational semantics, for both types and
sessions, amounts to a set of traces in the corresponding LTS, the
restriction to bounded types amounts to selecting a set of paths in
the potential communications of a session and ruling out others.
This corresponds to a fairness notion that is much stronger than
Lock-freedom [23]. Worse than this, if the boundedness condition
is removed, while keeping the standard operational semantics as
e.g. in [4], Subject Reduction as formulated above fails.

In the present work we do not introduce new typing rules w.r.t.
the system in [4], but we change the global type semantics. A crucial
feature of the LTS of types is accounting for internal communica-
tions. Global types are hierarchical, as they are shaped as (possibly
infinite) trees and such that, but for the type of the terminated
sessions, there is a pair of participants associated with the root of
the type which is allowed to communicate before any other in the
type. Even if this does not necessarily implies that there is some
causal dependency among the respective transitions. On the con-
trary, the structure of a session is flat, and several transitions may
happen starting with the same session, involving disjoint pairs of
participants in arbitrary order. To cope with this mismatch, in the
standard LTS for global types [27], adopted in [4], also subexpres-
sions of a type can be reduced, provided that such a reduction does
not conflict with the transitions represented in the root of the type,
and that this is the case for any immediate subexpression of the
type.

The change we propose for the global type semantics consists in
a coinductive formulation of the rule of internal communication,
so allowing for a proper treatment of infinite global types, and of
the unbounded ones in particular. More importantly, it suffices to
establish all the relevant properties for the unrestricted system,
including Subject Reduction, Session Fidelity and Lock-freedom as
defined in [31]. Then we move on by adapting to global types the
definition of projection, which in the present setting is a partial
map that yields processes. We compare projectability to bound-
edness, showing that the former is equivalent to the latter when
paired with inhabitation (i.e. when a global type is derivable for
at least one session). As inhabited unbounded types do not break
Subject Reduction, Session Fidelity, and Lock-freedom when the
semantics of global types is coinductive, it follows that the new

system is sound and it is a proper and conservative extension of
the original one. Moreover, even protocols like the recursive two-
buyer protocol from [33] are representable by a (simple) session
that inhabits a global type in our system. As argued in [33], the
local types formalising the latter protocol are not the projection
of any global type, and indeed the corresponding session inhabits
only an unbounded global type in our system.
Structure of the paper. In Section 2 we recall the calculus of mul-
tiparty sessions. Section 3 is devoted to the definitions of global
types and of the type assignment system enabling to type sessions
with global types. The key definition of the coinductive LTS on
global types is in Section 4. In Section 5 we prove Subject Reduction,
Session Fidelity, and Lock-freedom for typable sessions. In Section 6
we formally define projectability and boundedness and investigate
the relationship between them. Simple examples are used through-
out the paper to illustrate the main notions and ideas. Moreover, in
Section 7 we study two further examples that are adopted from [33]
to illustrate the expressiveness of the system. Finally, in Section 8
we provide some final remarks and discuss our results with respect
to related works.

2 MULTIPARTY SESSIONS
We recall the (synchronous) calculus of SMPS, as defined in [4]. Such
a calculus is a further simplified version of the one used in [22],
which was first introduced in [17], as a synchronous and more
abstract version of the calculus in [26, 27] eliminating both session
channels and local types for communications inside sessions.

The following base sets and notation are used: labels, ranged
over by _, _′, . . . ; participant names, ranged over by p, q, r, s, . . .;
processes, ranged over by 𝑃 ,𝑄 , 𝑅, 𝑆 , . . . ; sessions, ranged over byM,
M′, N, N′, . . . ; integers, ranged over by 𝑖 , 𝑗 , 𝑙 , ℎ, 𝑘 , 𝑢, 𝑣 , . . . ; (finite)
integer sets, ranged over by 𝐼 , 𝐽 , 𝐿, 𝐻 , 𝐾 ,𝑈 , 𝑉 , . . .

Definition 2.1 (Processes). Processes are defined by:
𝑃 ::=𝜌 0 | p!{_𝑖 .𝑃𝑖 }𝑖∈𝐼 | p?{_𝑖 .𝑃𝑖 }𝑖∈𝐼

where 𝐼 ≠ ∅ is finite and _ℎ ≠ _𝑘 for ℎ, 𝑘 ∈ 𝐼 and ℎ ≠ 𝑘 . We restrict
the set of processes to the regular ones, i.e. terms having finitely many
distinct subterms.

The productions in the above definition are interpreted coin-
ductively, as indicated by the symbol ::=𝜌 . This means that the set
of processes is the greatest fixed point of the (monotonic) functor
over sets defined by the grammar, restricted however to the regular
processes. So, processes are possibly infinite. The regularity condi-
tion entails that we only consider processes which are solutions of
finite sets of equations, see [12]. The present formulation, however,
allows to avoid explicitly handling variables, thus simplifying a lot
the technical development. The same choice was first made in [9].
This enables us to adopt in proofs the coinduction style advocated
in [28] which promotes readability and conciseness, without any
loss of formal rigour.

Processes implement the behaviour of participants. The output
process p!{_𝑖 .𝑃𝑖 }𝑖∈𝐼 non-deterministically chooses one message _𝑘
for some 𝑘 ∈ 𝐼 , and sends it to the participant p, thereafter con-
tinuing as 𝑃𝑘 . Symmetrically, the input process p?{_𝑖 .𝑃𝑖 }𝑖∈𝐼 waits
for one of the messages _𝑖 from the participant p, then continues
as 𝑃𝑘 after receiving, say, _𝑘 . The symbol 0 is used to denote the

Un-projectable Global Types for Multiparty Sessions PPDP 2024, September 09–11, 2024, Milano, Italy

terminated process. We shall omit writing trailing 0’s in processes
and denote p!{_.𝑃} and p?{_.𝑃} by p!_.𝑃 and p?_.𝑃 , respectively.

In actual communicating systems, messages would carry val-
ues, that we avoid for the sake of simplicity. Hence no selection
operation over values is included in the syntax.

Definition 2.2 (Multiparty Sessions). Multiparty sessions
(sessions for short) are defined by:

M = p1 [𝑃1] ∥ · · · ∥ p𝑛 [𝑃𝑛]
with pℎ ≠ p𝑘 for any ℎ ≠ 𝑘 . The set of participants of a sessionM,
prt(M), is defined as

prt(p1 [𝑃1] ∥ · · · ∥ p𝑛 [𝑃𝑛]) = {p𝑖 | 𝑃𝑖 ≠ 0 & 1 ≤ 𝑖 ≤ 𝑛}

Because of the condition pℎ ≠ p𝑘 for any ℎ ≠ 𝑘 , a session
is essentially a finite set of (not necessarily distinct) processes 𝑃𝑖
located at distinct participants p𝑖 . Tomake this formal, over sessions
we define the structural congruence relationM ≡ M′, which is the
least congruence according to which the parallel composition is
commutative and associative, and such that, for allM and fresh p,
we have p[0] ∥ M ≡ M. This implies that p[0] ≡ p[0] ∥ q[0] ≡
q[0] for all distinct p, q. In a sense, any session of the shape p[0]
represents the empty session.

The (synchronous) operational semantics of sessions is formally
defined by the following labelled transition system.

Definition 2.3 (Session LTS). A communication action is a
triple p_q, where p ≠ q. The labelled transition system (LTS) for
multiparty sessions, with communication actions as labels, is the
closure under structural congruence of the reduction specified by the
following axiom:

𝑘 ∈ 𝐼 ⊆ 𝐽
[S-Comm]

p[𝑃] ∥ q[𝑄] ∥ M
p_𝑘q−−−−→ p[𝑃𝑘] ∥ q[𝑄𝑘] ∥ M

where 𝑃 = q!{_𝑖 .𝑃𝑖 }𝑖∈𝐼 and 𝑄 = p?{_ 𝑗 .𝑄 𝑗 } 𝑗 ∈𝐽 .

Axiom [S-Comm] above is non-deterministic in the choice of mes-
sages and makes the communication possible: participant p sends
message _𝑘 to participant q. The sender can freely choose the mes-
sage, since the condition 𝐼 ⊆ 𝐽 (borrowed from [3, 7]) ensures
that the receiver must offer all sender messages and possibly more.
This makes it possible to distinguish between internal and external
choices in the operational semantics. This condition will always be
true in well-typed sessions.

We define traces as (possibly infinite) sequences of communica-
tion actions. Formally,

𝜎 ::=𝜌 𝜖 | Λ ·𝜎
where Λ ranges over communication actions and 𝜖 is the empty
sequence.
When 𝜎 = Λ1 · . . . ·Λ𝑛 (𝑛 ≥ 0) we writeM 𝜎−→ M′ as short for

M
Λ1−−→ M1 · · ·

Λ𝑛−−→ M𝑛 = M′

We use M
Λ∗
−−→ M to denote an arbitrary number of Λ-labelled

transitionsM
Λ−→ · · · Λ−→ M producing the same session.

We writeM
𝜎−→ andM ̸ 𝜎−→ with the standard meaning. Moreover,

we define prt(p_q) = {p, q} and prt(𝜎) as its obvious extension to
traces.

Example 2.4 (Lovers and Greetings). Alice (a) and Bob (b) are
steadily exchanging the message love until, possibly, deciding to
issue bye. In the meantime, Carl (c) is willing to greet Daisy (d) by
sending her the message hello. This session is formalised by
MLG = a[𝑃LG] ∥ b[𝑄LG] ∥ c[d ! hello] ∥ d[c ? hello]

where 𝑃LG = b ! {love.𝑃LG, bye}, and 𝑄LG = a ? {love.𝑄LG, bye}.
SinceMLG

a love b−−−−−−→ MLG there is a (potentially infinite) sequence of
transitions in which neither Carl nor Daisy are involved. However,
Carl and Daisy are never prevented from greeting each other:

MLG
(a love b)∗
−−−−−−−−−→ MLG

c hello d−−−−−−−→ a[𝑃LG] ∥ b[𝑄LG]
Besides, a[𝑃LG] ∥ b[𝑄LG] can always terminate by a transition
labelled by bye. ⋄

Example 2.5 (Buyer, Seller and Carrier). In this classic exam-
ple, a buyer (b) communicates to a seller (s) a list of arbitrarily many
goodies he is willing to purchase. This is achieved by repeatedly
sending the message item until he, possibly, decides to issue the
message buy. In case this happens, the seller instructs the carrier
(c) for the shipment of the goods by sending him the message ship:

Mbsc = b[𝑃bsc] ∥ s[𝑄bsc] ∥ c[s?ship]
where 𝑃bsc = s!{item.𝑃bsc, buy},𝑄bsc = b?{item.𝑄bsc, buy.c!ship}.
Similarly to the previous example, we haveMbsc

(b item s)∗
−−−−−−−−−→ Mbsc,

but the carrier will receive the message ship only after the seller
has received buy from the buyer. ⋄

A subsession of the shape p[q!{_𝑖 .𝑃𝑖 }𝑖∈𝐼] ∥ q[p?{_ 𝑗 .𝑄 𝑗 } 𝑗 ∈𝐽],
where 𝐼 ⊆ 𝐽 , is called a redex and any p[𝑃𝑘] ∥ q[𝑄𝑘] for 𝑘 ∈ 𝐼
is a contractum of the redex. Since 𝐼 may contain more than one
index 𝑘 , a redex can have several contracta. However, in a transition
labelled by p_q both the redex and the contractum are uniquely
determined.

Lemma 2.6. If M
p_q
−−−→ M′, then there exists a unique redex

p[q!{_𝑖 .𝑃𝑖 }𝑖∈𝐼] ∥ q[p?{_ 𝑗 .𝑄 𝑗 } 𝑗 ∈𝐽] such that

M ≡ p[q!{_𝑖 .𝑃𝑖 }𝑖∈𝐼] ∥ q[p?{_ 𝑗 .𝑄 𝑗 } 𝑗 ∈𝐽] ∥ N
and M′ ≡ p[𝑃𝑘] ∥ q[𝑄𝑘] ∥ N for some N, where 𝑘 ∈ 𝐼 ⊆ 𝐽 and
_ = _𝑘 .

Proof. Immediate by the definition of session LTS. □

The property of Lock-freedom for sessions is defined as in [31].
Roughly, there is always a continuation enabling a participant to
communicate whenever it is willing to do so. Lock-freedom entails
Deadlock-freedom, since it ensures progress for each participant.

Definition 2.7 (Lock-freedom). A session M is lock free if

M
𝜎−→ M′ with 𝜎 finite and p ∈ prt(M′) implyM′ 𝜎′ ·Λ−−−−→ for some

𝜎 ′ and Λ such that p ∈ prt(Λ).

3 TYPE SYSTEM
Global types are usually represented via `-expressions, as in [26, 27]
and in almost all papers on MPST. Here instead we define coinduc-
tive global types as possibly infinite regular terms. An extensive
discussion of formalisms for the representation of infinite (regular
and non-regular) types can be found in [20].

PPDP 2024, September 09–11, 2024, Milano, Italy Franco Barbanera, Mariangiola Dezani-Ciancaglini, and Ugo de’Liguoro

Definition 3.1 (Global types). Global types are defined by:
G ::=𝜌 End | p → q : {_i .Gi}i∈I

where 𝐼 ≠ ∅ and _𝑖 ≠ _ 𝑗 for 𝑖, 𝑗 ∈ 𝐼 and 𝑖 ≠ 𝑗 . We restrict the set of
global types to the regular ones.
Given a global type G, the set of its participants, prt(G), is defined
as the smallest set satisfying the following equations:

prt(End) = ∅ prt(p → q : {_i .Gi}i∈I) = {p, q} ∪ ⋃
i∈I prt(Gi)

Since the definition of G is coinductive, the definition of prt(G) is
such. As the syntactic tree of G is regular, prt(G) is well defined
and finite. In the following, trailing End’s will be omitted, and
p → q : {_.G} will be written as p → q : _.G.

Now we recall the SMPS type assignment system, as defined
in [4]. The (synchronous) calculus of SMPS, because of its simplicity,
enables to devise a type system where global types are directly
inferred for sessions. Double lines in the rules recall that they are
interpreted coinductively [32, Chapter 21].

Definition 3.2 (Type System). Judgements of the form G ⊢ M
are coinductively derived by the type system below, by considering
sessions up to structural congruence:

End ⊢ p[0] [T-End]

G𝑖 ⊢ p[𝑃𝑖] ∥ q[𝑄𝑖] ∥ N
prt(G𝑖) \ {p, q} = prt(N) ∀𝑖 ∈ 𝐼 ⊆ 𝐽

== [T-Comm]
p → q : {_𝑖 .G𝑖 }𝑖∈𝐼 ⊢ p[𝑃] ∥ q[𝑄] ∥ N

where 𝑃 = q!{_𝑖 .𝑃𝑖 }𝑖∈𝐼 and 𝑄 = p?{_ 𝑗 .𝑄 𝑗 } 𝑗 ∈𝐽 .

Rule [T-Comm] just adds simultaneous communications to global
types and to corresponding processes inside sessions. More inputs
than corresponding outputs are allowed by this rule, in agreement
with the condition in Rule [S-Comm] (Definition 2.3). It also allows
more branches in the input process than in the global type, so mim-
icking local type subtyping [14]. Instead, the number of branches
in the output process and in the global type must be the same.
This does not restrict typability, as shown in [7], while it improves
Session Fidelity. In fact, by allowing more branches in the global
type than in the output process (and less branches in the global
type than in the input process), we could not prove Session Fidelity
as formulated in Theorem 5.4. We could only prove its following
weaker version:

If G ⊢ M and G
p_q
−−−→, then there are _′ and G′ such that

M
p_′q
−−−−→ M′ and G′ ⊢ M′.

Unwanted effects of having possibly infinite derivations are
avoided by requiring that the global type and the session have
exactly the same set of participants, as expressed by the condition
prt(G𝑖) \ {p, q} = prt(N) for all 𝑖 ∈ 𝐼 . Otherwise, the following
judgement would be derivable for any 𝑅 ≠ 0:

p → q : _.G ⊢ p[q!_.𝑃] ∥ q[p?_.𝑄] ∥ r[𝑅]
where G = p → q : _.G, 𝑃 = q!_.𝑃 and 𝑄 = p?_.𝑄 .

The regularity of processes and global types ensures the decid-
ability of type checking.
We now illustrate the type system by deriving global types for the
sessions of Examples 2.4 and 2.5. In the derivations, we omit the
axiom/rule names as they are clear from the context. Moreover, we

do not write the conditions on the participants, which can be easily
checked.

Example 3.3. Consider the sessionMLG from Example 2.4. Then,
by setting

GLG = a → b : {love.GLG, bye.c → d : hello}
we have the derivation DLG:

DLG

End ⊢ c[0] ∥ d[0]
==
c → d : hello ⊢ c[d ! hello] ∥ d[c ? hello]

===
GLG ⊢ MLG

The non-recursive type c → d : hello is a subexpression of the re-
cursive typeGLG. Alternatively, letG′

LG = a → b : {love.G′
LG, bye}

and D ′
LG be the derivation:

D ′
LG End ⊢ a[0] ∥ b[0]

=============================
G′
LG ⊢ a[𝑃LG] ∥ b[𝑄LG]

Then, by “pushing” the recursion inside, we have that the type
c → d : hello.G′

LG can be derived forMLG as follows:
D ′

LG
============================
c → d : hello.G′

LG ⊢ MLG

as a[𝑃LG] ∥ b[𝑄LG] ∥ c[0] ∥ d[0] ≡ a[𝑃LG] ∥ b[𝑄LG]. ⋄
Example 3.4. Consider the sessionMbsc from Example 2.5, and

set
Gbsc = b → s : {item.Gbsc, buy.s → c : ship}

Then we have the following derivation Dbsc:

Dbsc

End ⊢ b[0] ∥ s[0] ∥ c[0]
==
s → c : ship ⊢ b[0] ∥ s[c!ship] ∥ c[s?ship]

===
Gbsc ⊢ Mbsc

Differently from the previous example, inGbsc the recursion cannot
be pushed into s → c : ship. ⋄

We use paths(G) to denote the set of paths in the syntactic tree of
G. More formally, paths(G) is the greatest set of traces (as defined
before Example 2.4) such that

paths(End) = ∅
paths(p → q : {_𝑖 .G𝑖 }𝑖∈𝐼) = {p_𝑖q · 𝜎𝑖 | 𝜎𝑖 ∈ paths(G𝑖)}𝑖∈𝐼

It is useful to check that the participants of a session and of its
global type are the same.

Lemma 3.5. If G ⊢ M, then prt(G) = prt(M).

Proof. The proof is by cases on the last applied axiom/rule in
the derivation of G ⊢ M. The case of the axiom is trivial.
For Rule [T-Comm] we haveM ≡ p[𝑃] ∥ q[𝑄] ∥ N and

G𝑖 ⊢ p[𝑃𝑖] ∥ q[𝑄𝑖] ∥ N
prt(G𝑖) \ {p, q} = prt(N) ∀𝑖 ∈ 𝐼 ⊆ 𝐽

==
p → q : {_𝑖 .G𝑖 }𝑖∈𝐼 ⊢ p[𝑃] ∥ q[𝑄] ∥ N

where 𝑃 = q!{_𝑖 .𝑃𝑖 }𝑖∈𝐼 and 𝑄 = p?{_ 𝑗 .𝑄 𝑗 } 𝑗 ∈𝐽 . Then
prt(G) = {p, q} ∪⋃

𝑖∈𝐼 prt(G𝑖) = {p, q} ∪ prt(N) = prt(M)
where the second equality is justified by the condition

prt(G𝑖) \ {p, q} = prt(N) □

Un-projectable Global Types for Multiparty Sessions PPDP 2024, September 09–11, 2024, Milano, Italy

4 THE COINDUCTIVE LTS
In SMPS if a session M has a global type G, then to get a global
type for a session obtained by reducing M we need to reduce G.
As a matter of fact, such a type reduction is a way to define the
type semantics. In [4], by adapting a similar notion from [27], we
considered the following LTS for global types.

Definition 4.1 (Inductive LTS for global types).
𝑗 ∈ 𝐼

p → q : {_𝑖 .G𝑖 }𝑖∈𝐼
p_ 𝑗q−−−−→ G𝑗

G𝑖
p_q
−−−→ G′

𝑖 ∀𝑖 ∈ 𝐼 {p, q} ∩ {r, s} = ∅

r → s : {_𝑖 .G𝑖 }𝑖∈𝐼
p_q
−−−→ r → s : {_𝑖 .G′

𝑖 }𝑖∈𝐼

The axiom is called external transition, since the action p_ 𝑗q is
among the communications between the participants p and q in the
prefix p → q. However, this is not sufficient to match all possible
reductions in a sessionM when G ⊢ M. Let G = r → s : {_𝑖 .G𝑖 }𝑖∈𝐼 .
In M several redexes can occur, involving participants p and q,
which can be distinct from r and s, and hence typed by some (subex-
pression of) G𝑖 . Since such redexes can be independently reduced
inM, the second rule, called internal transition, allows the reduction
of all the G𝑖 ’s, provided that the same reduction is permitted for
all of them. So that, for all 𝑖 ∈ 𝐼 , in any trace of G including r_′s
either p_q will precede r_′s or vice versa. In fact, the set of traces
of a global type G can be obtained from paths(G) by “swapping”
(possibly infinite times) independent communication actions.

Now, if we take the judgement GLG ⊢ MLG from Example 3.3 we
see that

MLG
c hello d−−−−−−−→ but GLG

c hello d−−−−−−−↛
as the internal reduction rule does not apply, hence breaking Subject
Reduction in the formulation given in Theorem 5.2. For this reason,
types like GLG are ruled out in [4] by the boundedness condition
(see Definition 6.5). In a nutshell, a type G is bounded whenever,
if p ∈ prt(G′) for a type G′ which is a subexpression of G, then
the search for an interaction of the shape p_q or q_p along all
paths in G′ terminates. As global types are finitary trees, this will
happen within a number of steps which is bounded above by a
single natural number, hence the name.

StillMLG is typable in the system in [4] by the type G′
LG, which

is bounded and both G′
LG

c hello d−−−−−−−→ (by an external reduction step)

and G′
LG

a love b−−−−−−→ (by an internal one). However, also the type
Gbsc in Example 3.4 is unbounded, butMbsc cannot be typed with
a bounded global type, as there exist infinitely many traces out
of it deferring the transition labelled by s ship c an unbounded
number of times. This motivates the search for a different LTS. In
fact, we redefine the semantics of global types via a coinductive
formal system.

In the next section we show in fact that – using the coinductive
semantics of global types – Subject Reduction, Session Fidelity and
Lock-freedom properties hold for sessions which are typable in
the type system of Definition 3.2, without recurring to any further
condition on global types, but regularity. This will enable to infer
Lock-freedom for the Buyer-Seller-Carrier session of Example 2.5

from its typability (Example 3.3), a thing that would not be possible
in systems allowing only bounded global types. Since boundedness
and inhabitation imply projectability, as shown in Theorem 6.15,
we get that the Buyer-Seller-Carrier session cannot be typed in
systems which use projections.

It is handy to associate to global types sets of communication
actions which could (but not necessarily can, see the example after
Lemma 5.1) label their transitions. We dub them capabilities of
global types.

Definition 4.2 (Capabilities). Let G be a type. The set cap(G)
of the capabilities of G is the smallest set satisfying the following
equations:

cap(End) = ∅

cap(p → q : {_𝑖 .G𝑖 }𝑖∈𝐼) = {p_𝑖q | 𝑖 ∈ 𝐼 } ∪⋃
𝑖∈𝐼 cap(G𝑖)

By regularity, the set cap(G) is finite for all G.

Definition 4.3 (Coinductive LTS for global types).
𝑗 ∈ 𝐼

================================= [E-Comm]
p → q : {_𝑖 .G𝑖 }𝑖∈𝐼

p_ 𝑗q−−−−→ G𝑗

G𝑖
p_q
−−−→ G′

𝑖
∀𝑖 ∈ 𝐼

{p, q} ∩ {r, s} = ∅ p_q ∈ ⋂
𝑖∈𝐼 cap(G𝑖)

=== [I-Comm]
r → s : {_𝑖 .G𝑖 }𝑖∈𝐼

p_q
−−−→ r → s : {_𝑖 .G′

𝑖 }𝑖∈𝐼

The condition p_q ∈ ⋂
𝑖∈𝐼 cap(G𝑖) in Rule [I-Comm] is needed,

since otherwise we could get G
p_q
−−−→ G for G = r → s : _′.G.

The coinductive LTS allows more reductions of global types than
the inductive one, as shown by the following example.

Example 4.4. Continuing Example 3.3, recall that
GLG = a → b : {love.GLG, bye.c → d : hello}

Since cap(c → d : hello) = {c hello d}, by definition we have

cap(GLG) = {a love b, a bye b} ∪ {c hello d} ∪ cap(GLG)
= {a love b, a bye b, c hello d}

From this, we have both

GLG
a love b−−−−−−−→ GLG and GLG

a bye b
−−−−−−→ (c → d : hello)

by Rule [E-Comm] and, since cap(GLG) ∩ cap(c → d : hello) =
{c hello d}, by Rule [I-Comm] we have

GLG
c hello d−−−−−−−−→ G′

LG

where G′
LG = a → b : {love.G′

LG, bye} is the type of
a[𝑃LG] ∥ b[𝑄LG]

Example 3.3 contains a derivation of G′
LG ⊢ a[𝑃LG] ∥ b[𝑄LG]. ⋄

It is interesting to notice that in the typing Rule [T-Comm] the
session in the conclusion reduces to all the sessions in the premises
using Rule [S-Comm] and the global type in the conclusion reduces
to all the global types in the premises using Axiom [E-Comm].

PPDP 2024, September 09–11, 2024, Milano, Italy Franco Barbanera, Mariangiola Dezani-Ciancaglini, and Ugo de’Liguoro

5 SUBJECT REDUCTION, SESSION FIDELITY
AND LOCK-FREEDOM

We begin this section with a technical lemma relating capabilities
and possible reductions of a global type. It will be handy to prove
the main results of the section.

Lemma 5.1. If G
p_q
−−−→ G′, then p_q ∈ cap(G).

Proof. By cases on the applied axiom/rule justifyingG
p_q
−−−→ G′.

If this is [E-Comm], then G = p → q : {_𝑖 .G𝑖 }𝑖∈𝐼
p_ 𝑗q−−−−→ G𝑗 for

some 𝑗 ∈ 𝐼 such that _ = _ 𝑗 and p_q ∈ cap(p → q : {_𝑖 .G𝑖 }𝑖∈𝐼).
Otherwise, G = r → s : {_𝑖 .G𝑖 }𝑖∈𝐼 and G′ = r → s : {_𝑖 .G′

𝑖
}𝑖∈𝐼

by Rule [I-Comm], where G𝑖
p_q
−−−→ G′

𝑖
for all 𝑖 ∈ 𝐼 , {p, q} ∩

{r, s} = ∅ and p_q ∈ ⋂
𝑖∈𝐼 cap(G𝑖). This implies p_q ∈ cap(G),

since
⋃
𝑖∈𝐼 cap(G𝑖) ⊆ cap(G) by Definition 4.2. □

The vice versa of the above lemma does not hold. It is immediate
to check that, for G = p → q : {_1 .r → s : _1, _2 .r → s : _2}, we
have that r_1s ∈ cap(G), but G r_1s−−−↛ .

Now, we establish the main features of our type system.We begin
with Subject Reduction, the property ensuring that the transitions
of typable sessions are mimicked by those of their global types.

Theorem 5.2 (Subject Reduction). If G ⊢ M andM
p_q
−−−→ M′,

then G
p_q
−−−→ G′ and G′ ⊢ M′ for some G′.

Proof. By coinduction on the derivation of G ⊢ M. By Lemma

2.6, ifM
p_q
−−−→ M′, then there exists a unique redex
R = p[q!{_𝑖 .𝑃𝑖 }𝑖∈𝐼] ∥ q[p?{_ 𝑗 .𝑄 𝑗 } 𝑗 ∈𝐽]

such thatM ≡ R ∥ N andM′ ≡ p[𝑃𝑘] ∥ q[𝑄𝑘] ∥ N for some N,
where 𝑘 ∈ 𝐼 ⊆ 𝐽 and _ = _𝑘 . By the hypothesis that G ⊢ M we
know that G . End and two cases of the last rule of this typing
derivation are possible.

Case G ≡ p → q : {_𝑖 .G𝑖 }𝑖∈𝐼 and the derivation ends by
G𝑖 ⊢ p[𝑃𝑖] ∥ q[𝑄𝑖] ∥ N

prt(G𝑖) \ {p, q} = prt(N) ∀𝑖 ∈ 𝐼 ⊆ 𝐽
==
p → q : {_𝑖 .G𝑖 }𝑖∈𝐼 ⊢ p[q!{_𝑖 .𝑃𝑖 }𝑖∈𝐼] ∥ q[p?{_ 𝑗 .𝑄 𝑗 } 𝑗 ∈𝐽] ∥ N

It immediately follows that G
p_𝑘q−−−−→ G𝑘 by Axiom [E-Comm],

and G𝑘 ⊢ M′.
Case G ≡ r → s : {_′𝑢 .G𝑢 }𝑢∈𝑈 and {p, q} ∩ {r, s} = ∅, and the

derivation ends by
G𝑢 ⊢ r[𝑅𝑢] ∥ s[𝑆𝑢] ∥ N′ ∥ R

prt(G𝑢) \ {r, s} = prt(N′ ∥ R) ∀𝑢 ∈ 𝑈 ⊆ 𝑉
===

r → s : {_′𝑢 .G𝑢 }𝑢∈𝑈 ⊢ N ∥ R
where N ≡ r[s!{_′𝑢 .𝑅𝑢 }𝑢∈𝑈] ∥ s[r?{_′𝑣 .𝑆𝑣}𝑣∈𝑉] ∥ N′ and

prt(N′ ∥ R) = prt(N′) ∪ {p, q}
Now, for all 𝑢 ∈ 𝑈 ,

N𝑢 ∥ N′ ∥ R
p_q
−−−→ N𝑢 ∥ N′ ∥ p[𝑃𝑘] ∥ q[𝑄𝑘]

where N𝑢 = r[𝑅𝑢] ∥ s[𝑆𝑢], by contracting R. By the coinduction
hypothesis, we have G′

𝑢 ⊢ N𝑢 ∥ N′ ∥ p[𝑃𝑘] ∥ q[𝑄𝑘] for some G′
𝑢

such that G𝑢
p_q
−−−→ G′

𝑢 and for all 𝑢 ∈ 𝑈 . Now by Lemma 5.1 we
conclude that p_q ∈ cap(G𝑢) for all 𝑢 ∈ 𝑈 , hence taking

G′ = r → s : {_′𝑢 .G′
𝑢 }𝑢∈𝑈

we have that G
p_q
−−−→ G′ by Rule [I-Comm]. By Lemma 3.5
G′
𝑢 ⊢ N𝑢 ∥ N′ ∥ p[𝑃𝑘] ∥ q[𝑄𝑘]

implies that prt(G′
𝑢) = prt(N𝑢 ∥ N′ ∥ p[𝑃𝑘] ∥ q[𝑄𝑘]), hence

prt(G′
𝑢) \ {r, s} = prt(N′ ∥ p[𝑃𝑘] ∥ q[𝑄𝑘]). Therefore Rule [T-

Comm] applies, namely
G′
𝑢 ⊢ N𝑢 ∥ N′ ∥ p[𝑃𝑘] ∥ q[𝑄𝑘]

prt(G′
𝑢) \ {r, s} = prt(N′ ∥ p[𝑃𝑘] ∥ q[𝑄𝑘]) ∀𝑢 ∈ 𝑈 ⊆ 𝑉

==
r → s : {_′𝑢 .G′

𝑢 }𝑢∈𝑈 ⊢ N ∥ p[𝑃𝑘] ∥ q[𝑄𝑘]
We conclude by observing that the case G ≡ r → s : {_′𝑢 .G𝑢 }𝑢∈𝑈
with either r = p and s ≠ q or s = q and r ≠ p is impossible. □

Example 5.3. In Example 2.4 we have seen that

MLG
c hello d−−−−−−−→ a[𝑃LG] ∥ b[𝑄LG]

and, from Example 3.3, we know that GLG ⊢ MLG where
GLG = a → b : {love.GLG, bye.c → d : hello}

Now, from Example 4.4 we have seen that

GLG
c hello d−−−−−−−−→ G′

LG

where G′
LG = a → b : {love.G′

LG, bye}, and from Example 3.3 we
know that G′

LG ⊢ a[𝑃LG] ∥ b[𝑄LG], as expected by the theorem
proved above. ⋄

The property dubbed Session Fidelity implies that any reduction
out of a global type G is also a reduction of any session typable
with G.

Theorem 5.4 (Session Fidelity). If G ⊢ M and G
p_q
−−−→ G′,

thenM
p_q
−−−→ M′ and G′ ⊢ M′ for someM′.

Proof. By coinduction over the derivation of G
p_q
−−−→ G′.

We distinguish two cases according to the axiom/rule justifying

G
p_q
−−−→ G′.
Axiom [E-Comm]: then G = p → q : {_𝑖 .G𝑖 }𝑖∈𝐼

p_q
−−−→ G𝑘 and

_ = _𝑘 for some 𝑘 ∈ 𝐼 . Since G ≠ End, the last rule in the derivation
of G ⊢ M must be [T-Comm], which implies that

M ≡ p[q!{_𝑖 .𝑃𝑖 }𝑖∈𝐼] ∥ q[p?{_ 𝑗 .𝑄 𝑗 } 𝑗 ∈𝐽] ∥ N
for some N, and

G𝑖 ⊢ p[𝑃𝑖] ∥ q[𝑄𝑖] ∥ N

for all 𝑖 ∈ 𝐼 ⊆ 𝐽 . In this casewe haveM
p_𝑘q−−−−→ p[𝑃𝑘] ∥ q[𝑄𝑘] ∥ N

by Rule [S-Comm] and G𝑘 ⊢ p[𝑃𝑘] ∥ q[𝑄𝑘] ∥ N, since 𝑘 ∈ 𝐼 ⊆ 𝐽 .
Rule [I-Comm]: then

G = r → s : {_′𝑢 .G𝑢 }𝑢∈𝑈
p_q
−−−→ r → s : {_′𝑢 .G′

𝑢 }𝑢∈𝑈

with {p, q} ∩ {r, s} = ∅, and p_q ∈ cap(G𝑢) and G𝑢
p_q
−−−→ G′

𝑢 for
all 𝑢 ∈ 𝑈 . Since the last rule in the derivation of G ⊢ M must be
[T-Comm], it follows that

• M ≡ r[s!{_′𝑢 .𝑅𝑢 }𝑢∈𝑈] ∥ s[r?{_′𝑣 .𝑆𝑣}𝑣∈𝑉] ∥ N for some N
with𝑈 ⊆ 𝑉

Un-projectable Global Types for Multiparty Sessions PPDP 2024, September 09–11, 2024, Milano, Italy

• G𝑢 ⊢ r[𝑅𝑢] ∥ s[𝑆𝑢] ∥ N with prt(G𝑢) \ {r, s} = prt(N) for
all 𝑢 ∈ 𝑈 .

By the coinduction hypothesis, we know that there existsM𝑢 such
that

r[𝑅𝑢] ∥ s[𝑆𝑢] ∥ N
p_q
−−−→ M𝑢 and G′

𝑢 ⊢ M𝑢
for all 𝑢 ∈ 𝑈 . Notice that, being the label p_q the same for all these
reductions, by Lemma 2.6 there exists a unique redex

p[q!{_𝑖 .𝑃𝑖 }𝑖∈𝐼] ∥ q[p?{_ 𝑗 .𝑄 𝑗 } 𝑗 ∈𝐽]
with contractum p[𝑃𝑘] ∥ q[𝑄𝑘] (assuming _ = _𝑘) in all theM𝑢 .

On the other hand, since we know that p, q are distinct from r, s,
it must be the case that M𝑢 ≡ r[𝑅𝑢] ∥ s[𝑆𝑢] ∥ N′ for some N′

such that N
p_q
−−−→ N′ so that
r[s!{_′𝑢 .𝑅𝑢 }𝑢∈𝑈] ∥ s[r?{_′𝑣 .𝑆𝑣}𝑣∈𝑉] ∥ N

p_q
−−−→

r[s!{_′𝑢 .𝑅𝑢 }𝑢∈𝑈] ∥ s[r?{_′𝑣 .𝑆𝑣}𝑣∈𝑉] ∥ N′

Then we can setM′ = r[s!{_′𝑢 .𝑅𝑢 }𝑢∈𝑈] ∥ s[r?{_′𝑣 .𝑆𝑣}𝑣∈𝑉] ∥ N′.
By Lemma 3.5 G′

𝑢 ⊢ r[𝑅𝑢] ∥ s[𝑆𝑢] ∥ N′ implies
prt(G′

𝑢) = prt(r[𝑅𝑢] ∥ s[𝑆𝑢] ∥ N′)
and then prt(G′

𝑢) \ {r, s} = prt(N′) for all 𝑢 ∈ 𝑈 . We conclude that
there exists a derivation ending by the following application of Rule
[T-Comm]

G′
𝑢 ⊢ r[𝑅𝑢] ∥ s[𝑆𝑢] ∥ N′

prt(G′
𝑢) \ {r, s} = prt(N′) ∀𝑢 ∈ 𝑈 ⊆ 𝑉

==
r → s : {_𝑢 .G′

𝑢 }𝑢∈𝑈 ⊢ M′
□

Remark 5.5. Since transitions of sessions and global types are
both labelled by communication actions, they can be merged into a
unique LTS. Then an immediate consequence of Theorems 5.2 and
5.4 is that, if G ⊢ M, then G andM are bisimilar, roughly meaning
that they have the same computational content. The above implies
that if both G and G′ type the sameM, then they are bisimilar to
each other. ⋄
Toward establishing the property that typable sessions are lock free,
we first prove the following lemma. In words, if p ∈ prt(G), then it
must occur somewhere in its syntactic tree, hence there is a trace
𝜎 · Λ out of G, consisting just of external communications, which
corresponds to a path in the tree ending by the first communication
action Λ involving p.

Lemma 5.6. If p ∈ prt(G), then there exist 𝜎 , Λ and G′ such that

G
𝜎 ·Λ−−−−→ G′

where p ∉ prt(𝜎) and p ∈ prt(Λ).

Proof. The proof is by coinduction on G. Since p ∈ prt(G)
we have that G ≠ End, so that G = r → s : {_𝑖 .G𝑖 }𝑖∈𝐼 . Now, if
p ∈ {r, s} then, taking Λ = r_𝑖s for any 𝑖 ∈ 𝐼 , we immediately have
thatG

Λ−−→ G′ by Axiom [E-Comm], and the thesis trivially follows
by taking𝜎 = Y. Otherwise, since p ∈ prt(G) = {r, s}∪⋃𝑖∈𝐼 prt(G𝑖),
we have that p ∉ {r, s} implies p ∈ prt(G𝑘) for some 𝑘 ∈ 𝐼 . By
coinduction hypothesis, we have that there are a 𝜎 ′ and a Λ such

that G𝑘
𝜎′ ·Λ−−−−−→ G′, p ∉ prt(𝜎 ′) and p ∈ prt(Λ). Then the thesis

follows by setting 𝜎 = r_𝑘s · 𝜎 ′, since G
r_𝑘 s−−−→ G𝑘 by Axiom [E-

Comm] and G𝑘
𝜎′ ·Λ−−−−→ G′. □

Observe that the last lemma is a sort of inverse implication w.r.t.
Lemma 5.1, since it shows that the existence of a capability which
is an actual communication of a global type G follows by the fact
that one of the involved participants is in prt(G).

We are now in place to prove that typable sessions are lock free.

Theorem 5.7. If M is typable, thenM is lock free.

Proof. By Theorem 5.2 and an easy induction over the length
of 𝜎 we have that G ⊢ M and M

𝜎−→ M′ imply that G
𝜎−→ G′ for

someG′ such thatG′ ⊢ M′. Hence it suffices to show Lock-freedom
(Definition 2.7) simply for the case when 𝜎 = Y and M′ = M and
G′ = G.

Let p ∈ prt(M), then p ∈ prt(G) by Lemma 3.5. On the other
hand, from the fact that p ∈ prt(G) and by Lemma 5.6 it follows
that G

𝜎 ·Λ−−−−→ G′ for some 𝜎 and Λ with p ∉ prt(𝜎) and p ∈ prt(Λ).
Now the thesis follows by Session Fidelity (Theorem 5.4). □

Example 5.8. From Example 3.4 we know that
Gbsc ⊢ Mbsc

From the previous result, we get thatMbsc is lock free. ⋄

6 PROJECTABILITY AND BOUNDEDNESS
We focus now on two important properties of global types that have
been investigated in the literature. The “classical” one is projectabil-
ity. Its relevance is based on the fact that, by projecting a global
type G, we get local types that must be derivable for the processes
implementing the protocol represented by G, see [26, 27, 35]. Pro-
jectability is not required when the global types are directly derived
for the sessions, as in [4, 6, 13] and in the present paper. In all the
works using the last mentioned approach to global types for ses-
sions, global types are required to be bounded (a notion equivalent
to that of balancing used in [21]).

The type system of the previous section is the first one which
requires neither projectability nor boundedness of global types.

The main results of the present section concern the relationship
between the above properties. In particular we show that

• projectability implies boundedness and inhabitation (Theo-
rem 6.14 below);

• boundedness and inhabitation imply projectability (Theo-
rem 6.15 below),

where G is inhabited if there exists a sessionM such that G ⊢ M.
We start by straightforwardly adapting the classical projection

to the present case where we consider directly processes instead of
local types.

Definition 6.1 (Projections). Given a global type G and a
participant p, the process G↾p, called the projection of G at p, is
coinductively defined by:

PPDP 2024, September 09–11, 2024, Milano, Italy Franco Barbanera, Mariangiola Dezani-Ciancaglini, and Ugo de’Liguoro

G↾p = 0 if p ∉ prt(G)

(r → s : {_𝑖 .G𝑖 }𝑖∈𝐼)↾p =

s!{_𝑖 .(G𝑖↾p)}𝑖∈𝐼 if p = r
r?{_𝑖 .(G𝑖↾p)}𝑖∈𝐼 if p = s.
𝑖∈𝐼 (G𝑖↾p) if p ∈ prt(G)

and
p ∉ {r, s}

where the (full) merge 𝑃 ⊓ 𝑄 is the partial operation corecursively
defined by

0 ⊓ 0 = 0

q!{_𝑖 .𝑃𝑖 }𝑖∈𝐼 ⊓ q!{_𝑖 .𝑄𝑖 }𝑖∈𝐼 = q!{_𝑖 .𝑃𝑖 ⊓ 𝑄𝑖 }𝑖∈𝐼
q?{_𝑖 .𝑃𝑖 }𝑖∈𝐼 ⊓ q?{_𝑖 .𝑄 𝑗 }𝑖∈𝐽 = q?{_𝑘 .𝑅𝑘 }𝑘∈𝐼∪𝐽

and the 𝑅𝑘 are defined by

𝑅𝑘 =

𝑃𝑘 ⊓ 𝑄𝑘 if 𝑘 ∈ 𝐼 ∩ 𝐽

𝑃𝑘 if 𝑘 ∈ 𝐼 \ 𝐽
𝑄𝑘 if 𝑘 ∈ 𝐽 \ 𝐼

We say that G is projectable if G↾p is defined for all p ∈ prt(G).

In the literature there are various definitions of merge. We use
the more permissive one as defined in [16] and called full merge
in [33].

Example 6.2. By taking
Gbsc = b → s : {item.Gbsc, buy.s → c : ship}

as defined in Example 3.4, we get Gbsc↾b = s!{item.𝑃bsc, buy}
and Gbsc↾s = b?{item.𝑄bsc, buy.c!ship}, i.e. Gbsc↾b = 𝑃bsc and
Gbsc↾s = 𝑄bsc as defined in Example 2.5. Instead Gbsc↾c is unde-
fined, as shown after Theorem 6.15. ⋄

The definition of projection implies that, if p → q : {_𝑖 .G𝑖 }𝑖∈𝐼 is
projectable, then prt(G𝑖) \ {p, q} = prt(G𝑗) \ {p, q} for all 𝑖, 𝑗 ∈ 𝐼 .
The same condition is required by the typing Rule [T-Comm]. The
vice versa does not hold, i.e. if G = p → q : {_𝑖 .G𝑖 }𝑖∈𝐼 , then
prt(G𝑖)\{p, q} = prt(G𝑗)\{p, q} for all 𝑖, 𝑗 ∈ 𝐼 does not imply
projectability of G. This is illustrated in the next example.

Example 6.3. In
G = p → q : {_.r → p : _, _′}

the immediate subexpressions are r → p : _ and End. Then we get
prt(r → p : _) \ {p, q} = {r} ≠ ∅ = prt(End) \ {p, q}. Hence G is
un-projectable. Instead in

G′ = p → q : {_1 .r → s : _, _2 .s → r : _}
the immediate subexpressions have the very same participants, but
G′ is un-projectable. In fact we get G′↾r = s!_ ⊓ s?_, which is
undefined. ⋄

We now proceed by recalling the boundedness property (Defini-
tions 6.1 and 6.5 below). To define boundedness it is handy to take
N ∪ {∞} as the set ordered by 𝑛 ≤ 𝑚 for 𝑛,𝑚 ∈ N in the ordinary
sense, plus 𝑛 < ∞ for all 𝑛 ∈ N. For any path 𝜎 we define |𝜎 | as
its length if it is finite, and |𝜎 | = ∞ otherwise. Also, if 𝑛 ∈ N and
1 ≤ 𝑛 ≤ |𝜎 |, then 𝜎 [𝑛] denotes the 𝑛-th communication action in
𝜎 .

Definition 6.4 (Depth). LetG be a global type. For 𝜎 ∈ paths(G)
we define

𝑑𝑒𝑝𝑡ℎ(𝜎, p) = inf{𝑛 ∈ N | 1 ≤ 𝑛 ≤ |𝜎 | & p ∈ prt(𝜎 [𝑛])}

where inf ∅ = ∞.
We also define 𝑑𝑒𝑝𝑡ℎ(G, p), the depth of p in G, as follows:

𝑑𝑒𝑝𝑡ℎ(G, p) =
{
sup{𝑑𝑒𝑝𝑡ℎ(𝜎, p) | 𝜎 ∈ paths(G)} if p ∈ prt(G)
0 otherwise

Definition 6.5 (Boundedness). A global type G is bounded if
𝑑𝑒𝑝𝑡ℎ(G′, p) is finite for all participants p ∈ prt(G′) and all subex-
pressions G′of G which are global types.

Example 6.6. The type End is trivially bounded, since prt(End) =
∅. Types G0 = p → q : _ and G1 = p → q : _.G1 are immediately
seen to be bounded. The type

Gsca = s → c :

{
login.c → a : pwd. a → s : auth
cancel.c → a : quit

of the authentication protocol in Section 7 is finite and bounded.
However, not any finite type is bounded: take

G2 = r → s : {_1, _2 : r → p : _3}.
Then p ∈ prt(G2), but 𝑑𝑒𝑝𝑡ℎ(r_1s, p) = ∞.

Type G′
LG in Example 3.3 is infinite and bounded, while GLG in

the same example and Gbsc in Example 3.4 are unbounded. ⋄
As a first step towards the proof of the main results of this

section we show now two simple lemmas. The first lemma deals
with projections. The second lemma relates the depth of a global
type to the depths of its branches.

Lemma 6.7.
(1) If G = r → s : {_𝑖 .G𝑖 }𝑖∈𝐼 is projectable, then G𝑖 is projectable

for each 𝑖 ∈ 𝐼 .
(2) If p ∈ prt(G) and G↾p is defined, then G↾p ≠ 0.

Proof. (1). Easy, since G↾p is defined using G𝑖↾p for each 𝑖 ∈ 𝐼 .
(2). Immediate from the definition of G↾p and the fact that 0 is

mergeable only with itself. □

Lemma 6.8. If G = q → r : {_𝑖 .G𝑖 }𝑖∈𝐼 , p ∈ prt(G) and p ∉ {q, r},
then 𝑑𝑒𝑝𝑡ℎ(G, p) = 1 + sup{𝑑𝑒𝑝𝑡ℎ(G𝑖 , p) | 𝑖 ∈ 𝐼 }.

Proof. It is enough to observe that 𝜎 ∈ paths(G) implies 𝜎 =

p_𝑖q · 𝜎 ′ for some 𝜎 ′ ∈ paths(G𝑖) and 𝑖 ∈ 𝐼 . □

It is handy to define a preorder on processes, 𝑃 ⩽ 𝑄 , meaning,
roughly, that process 𝑃 can be used where we expect process 𝑄 , More
precisely, 𝑃 ⩽ 𝑄 if either 𝑃 is equal to 𝑄 , or we are in one of two
situations: either both 𝑃 and 𝑄 are output processes, sending the
same labels to the same participant, and after the send 𝑃 continues
with a process that can be used when we expect the corresponding
one in 𝑄 ; or they are both input processes receiving labels from
the same participant, and 𝑃 may receive more labels than 𝑄 (and
thus has more behaviours) but, whenever it receives the same label
as 𝑄 , it continues with a process that can be used when we expect
the corresponding one in 𝑄 . The rules in the definition below are
interpreted coinductively, since the processes may be infinite. How-
ever, this preorder is decidable, since processes have finitely many
distinct subprocesses.

Definition 6.9. The preorder ⩽ between processes is coinductively
defined by

Un-projectable Global Types for Multiparty Sessions PPDP 2024, September 09–11, 2024, Milano, Italy

0 ⩽ 0 [sub-0]
𝑃𝑖 ⩽ 𝑄𝑖 ∀𝑖 ∈ 𝐼

============================== [sub-Out]
q!{_𝑖 .𝑃𝑖 }𝑖∈𝐼 ⩽ q!{_𝑖 .𝑄𝑖 }𝑖∈𝐼

𝑃𝑖 ⩽ 𝑄𝑖 ∀𝑖 ∈ 𝐼
================================= [sub-In]
q?{_𝑖 .𝑃𝑖 }𝑖∈𝐼∪𝐽 ⩽ q?{_𝑖 .𝑄𝑖 }𝑖∈𝐼

This relation can be seen as a restricted version of the subtyping
relation defined in [14]. Such a restriction does pair with the re-
quirement in Rule [T-Comm] of the type system, where the set of
indexes for the branches of the output process is the same as that
for the branches in the global type, whereas the input process can
have more branches.

The meaning of the preorder on processes is exploited in the
following lemma.

Lemma 6.10. If G ⊢ p[𝑄] ∥ M and 𝑃 ⩽ 𝑄 , then G ⊢ p[𝑃] ∥ M.

Proof. We proceed by coinduction over the derivation of
G ⊢ p[𝑄] ∥ M

We distinguish two cases according to the last applied axiom/rule.
Axiom [T-End]. Immediate.
Rule [T-Comm]. In this case the last applied rule has the shape

G𝑖 ⊢ r[𝑅𝑖] ∥ s[𝑆𝑖] ∥ p[𝑄] ∥ N
prt(G𝑖) \ {r, s} = prt(p[𝑄] ∥ N) ∀𝑖 ∈ 𝐼 ⊆ 𝐽

===
G ⊢ r[s!{_𝑖 .𝑅𝑖 }𝑖∈𝐼] ∥ s[r?{_ 𝑗 .𝑆 𝑗 } 𝑗 ∈𝐽] ∥ p[𝑄] ∥ N

where G = r → s : {_𝑖 .G𝑖 }𝑖∈𝐼 . Notice that prt(p[𝑄] ∥ N′) =

prt(p[𝑃] ∥ N′) for any N′ by definition of ⩽, since 0 is related
only with itself. We have that G𝑖 ⊢ r[𝑅𝑖] ∥ s[𝑆𝑖] ∥ p[𝑃] ∥ N for
each 𝑖 ∈ 𝐼 by coinduction. For the cases p ∉ {r, s} and p = r, we get
the thesis easily by applying Rule [T-Comm]. In case p = s we have
that 𝑄 = r?{_ 𝑗 .𝑄 𝑗 } 𝑗 ∈𝐽 and, by definition of ⩽, 𝑃 = r?{_ℎ .𝑃ℎ}ℎ∈𝐻
with 𝐽 ⊆ 𝐻 and 𝑃 𝑗 ⩽ 𝑄 𝑗 for each 𝑗 ∈ 𝐽 . By coinduction we get
that G𝑖 ⊢ r[𝑅𝑖] ∥ s[𝑄𝑖] ∥ N implies G𝑖 ⊢ r[𝑅𝑖] ∥ s[𝑃𝑖] ∥ N for
each 𝑖 ∈ 𝐼 . Being 𝐼 ⊆ 𝐻 we can get the thesis by applying Rule
[T-Comm]. □

The following two lemmas establish connections between the
preorder on processes and process merge.

Lemma 6.11. Let 𝑃 , 𝑉 and𝑊 be such that 𝑃 ⩽ 𝑉 and 𝑃 ⩽ 𝑊 .
Then 𝑉 ⊓𝑊 is defined and 𝑃 ⩽ 𝑉 ⊓𝑊 .

Proof. By coinduction on 𝑃 . We distinguish among the different
shapes of 𝑃 .
• 𝑃 = 0. In such a case the thesis follows immediately.
• 𝑃 = q!{_𝑖 .𝑃𝑖 }𝑖∈𝐼 . By definition of ⩽ we have necessarily that

𝑉 = q!{_𝑖 .𝑉𝑖 }𝑖∈𝐼 𝑊 = q!{_𝑖 .𝑊𝑖 }𝑖∈𝐼
and, for all 𝑖 ∈ 𝐼 ,

𝑃𝑖 ⩽ 𝑉𝑖 𝑃𝑖 ⩽𝑊𝑖

Now, we can recur to coinduction to get that, for all 𝑖 ∈ 𝐼 ,
𝑉𝑖 ⊓𝑊𝑖 is defined and 𝑃𝑖 ⩽ 𝑉𝑖 ⊓𝑊𝑖

By definition of ⊓, we have that
𝑉 ⊓𝑊 = q!{_𝑖 .𝑉𝑖 ⊓𝑊𝑖 }𝑖∈𝐼

So,𝑉 ⊓𝑊 is defined and, by definition of ⩽, we can infer 𝑃 ⩽ 𝑉 ⊓𝑊 .
• 𝑃 = q?{_𝑖 .𝑃𝑖 }𝑖∈𝐼 . By definition of ⩽ we have necessarily that

𝑉 = q?{_ℎ .𝑉ℎ}ℎ∈𝐻 𝑊 = q?{_𝑘 .𝑊𝑘 }𝑘∈𝐾 𝐻 ⊆ 𝐼 𝐾 ⊆ 𝐼

and, for each 𝑖 ∈ 𝐻 ∩ 𝐾 ,
𝑃𝑖 ⩽ 𝑉𝑖 𝑃𝑖 ⩽𝑊𝑖

Now, we can recur to coinduction to get that, for each 𝑖 ∈ 𝐻 ∩ 𝐾 ,
𝑉𝑖 ⊓𝑊𝑖 is defined and 𝑃𝑖 ⩽ 𝑉𝑖 ⊓𝑊𝑖

By definition of ⊓, we have that
𝑉 ⊓𝑊 = q?{_ 𝑗 .𝑍 𝑗 } 𝑗 ∈𝐻∪𝐾

where 𝑍 𝑗 = 𝑉𝑗 ⊓𝑊𝑗 if 𝑗 ∈ 𝐻 ∩𝐾 , 𝑍 𝑗 = 𝑉𝑗 if 𝑗 ∈ 𝐻 \𝐾 and 𝑍 𝑗 =𝑊𝑗

if 𝑗 ∈ 𝐾 \ 𝐻 . So, 𝑉 ⊓𝑊 is defined and, since 𝐻 ∪ 𝐾 ⊆ 𝐼 , we have
also 𝑃 ⩽ 𝑉 ⊓𝑊 by definition of ⩽. □

Lemma 6.12. Let 𝑃 and 𝑄 be such that 𝑃 ⊓ 𝑄 is defined. Then
𝑃 ⊓𝑄 ⩽ 𝑃 .

Proof. By coinduction on 𝑃 . We distinguish among the different
shapes of 𝑃 .
• 𝑃 = 0. In such a case the thesis follows immediately.
• 𝑃 = p!{_𝑖 .𝑃𝑖 }𝑖∈𝐼 . In such a case, necessarily𝑄 = p!{_𝑖 .𝑄𝑖 }𝑖∈𝐼 and
𝑃 ⊓𝑄 = p!{_𝑖 .𝑃𝑖 ⊓𝑄𝑖 }𝑖∈𝐼 . The thesis hence follows by coinduction
and definition of ⩽.
• 𝑃 = p?{_𝑖 .𝑃𝑖 }𝑖∈𝐼 . In such a case, necessarily 𝑄 = p?{_ 𝑗 .𝑄 𝑗 } 𝑗 ∈𝐽
and 𝑃 ⊓ 𝑄 = p?{_ℎ .𝑍ℎ}ℎ∈𝐼∪𝐽 where 𝑍ℎ = 𝑃ℎ ⊓ 𝑄ℎ if ℎ ∈ 𝐻 ∩ 𝐽 ,
𝑍ℎ = 𝑃ℎ if ℎ ∈ 𝐼 \ 𝐽 and 𝑍ℎ = 𝑄ℎ if ℎ ∈ 𝐽 \ 𝐼 . The thesis hence
follows by coinduction and definition of ⩽. □

By Lemmas 6.11 and 6.12, the merge 𝑃 ⊓ 𝑄 , when defined, is
the meet of 𝑃 and 𝑄 w.r.t. ⩽.

The relation ⩽ between processes is useful to relate the processes
in a typable session with the projection of the global type on the
corresponding participants, see the following lemma.

Lemma 6.13. If G ⊢ M and G↾p is defined, thenM ≡ p[𝑃] ∥ N
and 𝑃 ⩽ G↾p.

Proof. By coinduction on the derivation of G ⊢ M. We distin-
guish two case according to the possible last applied axiom/rule.

Axiom [T-End]. Immediate.
Rule [T-Comm]. In this case the last applied rule has the shape

G𝑖 ⊢ r[𝑅𝑖] ∥ s[𝑆𝑖] ∥ p[𝑃] ∥ N
prt(G𝑖) \ {r, s} = prt(p[𝑃] ∥ N) ∀𝑖 ∈ 𝐼 ⊆ 𝐽

==
G ⊢ r[s!{_𝑖 .𝑅𝑖 }𝑖∈𝐼] ∥ s[r?{_ 𝑗 .𝑆 𝑗 } 𝑗 ∈𝐽] ∥ p[𝑃] ∥ N

where G = r → s : {_𝑖 .G𝑖 }𝑖∈𝐼 . By definition of projection G𝑖↾p is
defined for all 𝑖 ∈ 𝐼 . By coinduction we have that 𝑃𝑖 ⩽ G𝑖↾p for all
𝑖 ∈ 𝐼 . If p = r, by definition of projection, G↾p = s!{_𝑖 .G𝑖↾p}𝑖∈𝐼 . If
p = s, by definition of projection, G↾p = r?{_𝑖 .G𝑖↾p}𝑖∈𝐼 . In both
cases the thesis follows by definition of ⩽. If p ∉ {r, s}, by definition
of projection G↾p =

.
𝑖∈𝐼 G𝑖↾p. We hence can get the thesis by

Lemma 6.11. □

We are ready now for proving the main results of this section.

Theorem 6.14. Projectability implies boundedness and inhabita-
tion.

Proof. Let G be a projectable global type. We prove bounded-
ness and inhabitation separately.
G is bounded. The proof is by coinduction over G. If G = End, then

PPDP 2024, September 09–11, 2024, Milano, Italy Franco Barbanera, Mariangiola Dezani-Ciancaglini, and Ugo de’Liguoro

the thesis is trivial. If G = r → s : {_𝑖 .G𝑖 }𝑖∈𝐼 , then from the hypoth-
esis that G is projectable, it follows that all the G𝑖 ’s are projectable
by Lemma 6.7(1). Then, by coinduction we have that all the G𝑖 ’s
are bounded.

If p ∉ prt(G), then 𝑑𝑒𝑝𝑡ℎ(G, p) = 0. Let p ∈ prt(G). If p ∈ {r, s},
then 𝑑𝑒𝑝𝑡ℎ(G, p) = 1. Otherwise

𝑑𝑒𝑝𝑡ℎ(G, p) = 1 + sup{𝑑𝑒𝑝𝑡ℎ(G𝑖 , p) | 𝑖 ∈ 𝐼 }
by Lemma 6.8. So, in both cases 𝑑𝑒𝑝𝑡ℎ(G, p) is finite. Moreover, a
proper subexpression G′ of G is a subexpression of G𝑗 for some
𝑗 ∈ 𝐼 . Then the boundedness of G𝑗 implies that 𝑑𝑒𝑝𝑡ℎ(G′, p) is
finite. We hence conclude that G is bounded.
G is inhabited. IfG = End, thenG ⊢ M for allM ≡ p[0]. Otherwise,
we first define G↾ as the session with prt(G) as set of participants
and with the projections of G on the participants in prt(G) as
processes. That is

G↾ = ∥p∈prt(G)p[G↾p]
Hence we proceed to show that G ⊢ G↾ by coinduction on G. We
observe that
(p → q : {_𝑖 .G𝑖 }𝑖∈𝐼)↾ =
p[q!{_𝑖 .G𝑖↾p}𝑖∈𝐼] ∥ q[p?{_𝑖 .G𝑖↾q}𝑖∈𝐼] ∥r∈prt(G)\{p,q}r[G↾r]
where, by the assumption that G is projectable and by definition of
projection, for each r ∈ prt(G) \ {p, q},

G↾r =
.
𝑖∈𝐼 G𝑖↾r

By coinduction we have that, for all 𝑖 ∈ 𝐼 , G𝑖 ⊢ G𝑖↾, where by
definition,

G𝑖↾ ≡ p[G𝑖↾p] ∥ q[G𝑖↾q] ∥r∈prt(G𝑖)\{p,q}r[G𝑖↾r]
Now, by Lemma 6.12 we have that, for all 𝑖 ∈ 𝐼 ,

G↾r =
.
𝑖∈𝐼 G𝑖↾r ⩽ G𝑖↾r

We can hence recur to Lemma 6.10 in order to obtain that, for all
𝑖 ∈ 𝐼 ,

G𝑖 ⊢ p[G𝑖↾p] ∥ q[G𝑖↾q] ∥r∈prt(G𝑖)\{p,q}r[G↾r]
By Lemma 3.5

prt(G𝑖) = prt(p[G𝑖↾p] ∥ q[G𝑖↾q] ∥r∈prt(G𝑖)\{p,q}r[G↾r])
which implies prt(G𝑖) \ {p, q} = prt(∥r∈prt(G𝑖)\{p,q}r[G↾r]) for
all 𝑖 ∈ 𝐼 . It is now possible to use Rule [T-Comm] in order to get
G ⊢ G↾. □

The proof of this theorem justifies our choice of taking (in all our
examples) as processes the projections of the global types shown
for the corresponding sessions, whenever these projections are
defined.

Theorem 6.15. Boundedness and inhabitation imply projectabil-
ity.

Proof. Let G be a bounded global type such that G ⊢ M. To
show that G is projectable, let consider p ∈ prt(G) in order to
get G↾p defined. We proceed by coinduction on the derivation of
G ⊢ M.

Axiom [T-End]. Immediate.
Rule [T-Comm]. In this case the last applied rule has the shape

G𝑖 ⊢ r[𝑅𝑖] ∥ s[𝑆𝑖] ∥ p[𝑃] ∥ N
prt(G𝑖) \ {r, s} = prt(p[𝑃] ∥ N) ∀𝑖 ∈ 𝐼 ⊆ 𝐽

==
G ⊢ r[s!{_𝑖 .𝑅𝑖 }𝑖∈𝐼] ∥ s[r?{_ 𝑗 .𝑆 𝑗 } 𝑗 ∈𝐽] ∥ p[𝑃] ∥ N

where G = r → s : {_𝑖 .G𝑖 }𝑖∈𝐼 . By definition of boundedness we
have that, for each 𝑖 ∈ 𝐼 , G𝑖 is bounded. Moreover, by coinduction,
G𝑖↾p is defined for each 𝑖 ∈ 𝐼 . If p = r, by definition of projection we
have that G↾p = s!{_𝑖 .G𝑖↾p}𝑖∈𝐼 . If p = s, by definition of projection
we have thatG↾p = r?{_𝑖 .G𝑖↾p}𝑖∈𝐼 . So in both casesG↾p is defined.
If p ∉ {r, s}, by Lemma 6.13, 𝑃 ⩽ G𝑖↾p for each 𝑖 ∈ 𝐼 . We can hence
recur to Lemma 6.11 to conclude that

.
𝑖∈𝐼 G𝑖↾p is defined. The

thesis now follows by definition of projection, since in the present
case G↾p =

.
𝑖∈𝐼 G𝑖↾p. □

The global type Gbsc defined in Example 3.4 types the session
Mbsc defined in Example 2.5. It is unbounded, since𝑑𝑒𝑝𝑡ℎ(Gbsc, c) =
∞. By previous theorem Gbsc is un-projectable, and, since the pro-
jections on b and s are defined (see Example 6.2), the projection on
c is undefined.

We observe that the finite global type G′ of Example 6.3 is
bounded, but it is un-projectable, as shown in that example. Hence,
by the previous theorem, it is not inhabited. The global typeG in the
same example cannot be inhabited, since Rule [T-Comm] requires
that the participants different from p, q of the two branches are the
same. So, by Theorem 6.14, G is un-projectable. Another reason for
the non projectability of G is given in Example 6.3. Moreover, by
Theorem 6.15 G is not bounded (in fact participant r occurs only in
one of the two paths from the root to the leaves).

7 FURTHER EXAMPLES
In this section we show how two relevant examples from [33] can
be rephrased with our approach into typable sessions. This is not
possible in general since the process language we are working with
lacks channels, so that we cannot represent interleaved sessions
and delegation. Also, there is a basic mismatch among the two
systems, since the one in [33] gets rid of global types, which are
kept only for the sake of comparison with the “classical” MPST and
its extensions. The authors of [33] recover the desired properties of
typable processes by parameterising to safety properties of contexts
of local types that can be seen as systems of local specifications.
These properties include Lock-freedom. A crucial property is con-
sistency, which in our framework means that each pair of session
participants have dual input/output communications.

Nonetheless, we can still formulate in our system at least two
relevant examples from [33] by proceeding as follows. First, we
observe that, when there is a unique session (which is the case for
all the examples in Figure 4 of [33]), local types are akin to our
processes. We just lose the typing of messages, which is irrelevant
since in a unique session only expressions of ground types can be
exchanged. Then, we reconstruct the global type of the so-obtained
session (in our terms).
Service, client and authentication protocol. In the example in
the Introduction of [33], further detailed in Figure 4(1) of the same
paper, the service s sends to the client c either a request to login
or cancel. If login is issued, then c sends a password pwd to the
authorisation server a and then s receives from a the authorisation
auth. In case c receives cancel from s the interaction with a is

Un-projectable Global Types for Multiparty Sessions PPDP 2024, September 09–11, 2024, Milano, Italy

End ⊢ s[0] ∥ c[0] ∥ a[0]
prt(End) \ {a, s} = ∅ = prt(c[0])

==
a → s : auth ⊢ s[a?auth] ∥ c[0] ∥ a[s!auth]

prt(a → s : auth) \ {c, a} = {s} = prt(s[a?auth])
==

G′
sca ⊢ s[a?auth] ∥ c[a!pwd] ∥ a[𝑅sca]

End ⊢ s[0] ∥ c[0] ∥ a[0]
prt(End) \ {a, s} = ∅ = prt(c[0])

===
c → a : quit ⊢ s[0] ∥ c[a!quit] ∥ a[𝑅sca]

prt(G′
sca) \ {s, c} = prt(c → a : quit) \ {s, c} = {a} = prt(a[𝑅sca])

===
Gsca ⊢ Msca

Figure 1: A derivation of Gsca ⊢ Msca.

D
==
s → a : pri.G′

asb ⊢ a[s?pri. 𝑃 ′asb] ∥ s[a!pri. a?{buy, no}] ∥ b[𝑅asb]
==

Gasb ⊢ Masb
where D is the derivation

End ⊢ a[0] ∥ s[0] ∥ b[0]
==
Gyes ⊢ a[s!buy] ∥ s[a?{buy, no}] ∥ b[0] D
===

b → a : {yes.Gyes, no.G′
asb} ⊢ M

′
asb

End ⊢ a[0] ∥ s[0] ∥ b[0]
==
a → s : no ⊢ a[s!no] ∥ s[a?{buy, no}] ∥ b[0]

==
G′
asb ⊢ a[𝑃 ′asb] ∥ s[a?{buy, no}] ∥ b[𝑅asb]

and M′
asb = a[b?{yes. s!buy, no. 𝑃 ′asb}] ∥ s[a?{buy, no}] ∥ b[a!{yes, no. 𝑅asb}]

Figure 2: A derivation of Gasb ⊢ Masb.

aborted by c sending quit to a. This session is represented by
Msca = s[𝑃sca] ∥ c[𝑄sca] ∥ a[𝑅sca]

where the processes are
𝑃sca = c!{login.a?auth, cancel}
𝑄sca = s?{login.a!pwd, cancel.a!quit}
𝑅sca = c?{pwd.s!auth, quit}

Then we derive Gsca ⊢ Msca where
Gsca = s → c : {login.G′

sca, cancel.c → a : quit}
G′
sca = c → a : pwd. a → s : auth

as shown in Figure 1.
We observe that Gsca is exactly the global type derived for this

session in [33]. In that paper it is shown thatGsca is projectable, but
the set of processes Gsca↾s = 𝑃sca, Gsca↾c = 𝑄sca, Gsca↾a = 𝑅sca
is inconsistent since 𝑃sca and 𝑅sca are inconsistent. The problem
is that the input/output behaviours between s and a depend on
inputs/outputs of them with c. More precisely, s and a exchange the
message auth only when c sends login to s. Hence this example
is ruled out by the classical MPST system in [15, 26, 27]. In this
case, it seems that our system surrogates this inconsistency by
directly embodying in Rule [T-Comm] what guarantees that any
implementation of the protocolMsca will be well behaved and lock
free.
Recursive two-buyer protocol. This is the example in Figure
4(2) of [33]. After querying the store s for the price of some good,
Alice, represented by role a, asks Bob, represented by b, to split
the price. If Bob replies by issuing yes, then Alice sends buy to s;
otherwise she insists by asking Bob for a different splitting (the fact
that the subsequent proposals by Alice are actually different is not
explicitly represented neither in the protocol below nor in the type

of a in [33]). At any time, Alice might quit the protocol, sending
esc to Bob and no to the store.

The protocol is encoded by the session
Masb = a[𝑃asb] ∥ s[𝑄asb] ∥ b[𝑅asb]

where the processes are
𝑃asb = s!que. s?pri. 𝑃 ′asb

𝑃 ′asb = b!
{
spl. b?{yes. s!buy, no. 𝑃 ′asb}
esc. s!no

𝑄asb = a?que. a!pri. a?{buy, no}

𝑅asb = a?

{
spl. a!{yes, no. 𝑅asb}
esc

The sessionMasb can be typed by
Gasb = a → s : que.s → a : pri.G′

asb
where

G′
asb = a → b :

{
spl.b → a : {yes.Gyes, no.G′

asb},
esc.a → s : no

Gyes = a → s : buy
as shown in Figure 2. In that figure we omit the conditions on
participants, which can be easily verified.

This example is interesting for two reasons. In [33] it is argued
that the typing context corresponding toMasb cannot be obtained
by projecting any global type, no matter whether one uses plain
or full merging (see Definition 3.3 in Figure 3 of [33]). Instead in
our type system we can typeMasb with the un-projectable global
type Gasb. The other reason is that Gasb is a good example of an
unbounded global type which is inhabited.

PPDP 2024, September 09–11, 2024, Milano, Italy Franco Barbanera, Mariangiola Dezani-Ciancaglini, and Ugo de’Liguoro

8 RELATEDWORKS AND CONCLUDING
REMARKS

Local types have been initially conceived for describing binary
protocols in the 𝜋-calculus [25, 34]. Later, local types have been
extended to multiparty protocols [26, 27], and embedded into a
range of functional, concurrent, and object-oriented programming
languages [1].

When coming to multiparty sessions, central in this approach is
the concept of global type, modelling a choreography coordinating
several protocols of local end-points, which in classical MPST are
recovered by projecting the global type to a context of (multiparty)
local types. As reported in the Introduction, some weaknesses of
the approach has led in [33] to a system which, although more
general, abandons global types. To reply to subsequent criticisms,
in [36] the notion of association of a global type with a typing
context has been proposed. This association is proved to be sound
and complete w.r.t. the respective LTS semantics. However, the
LTS of global types is the inductive one (see Figure 5 of [36]), and
the definition of association (ibidem, Definition 9) makes essential
use of projections. Therefore, although the authentication protocol
from [33] is associated with its global type and hence provably
sound in the system, the recursive two-buyer protocol from [33], as
well as the buyer, seller and carrier protocol of Example 2.5, cannot
be associated with any (projectable and hence bounded) global type.
With the present type system, instead, both the recursive two-buyer
protocol and the buyer, seller and carrier protocol have global types,
as shown in Section 7 and in Example 3.4.

With respect to [4, 6], the essential novelty of the present paper
is the operational semantics of global types, in particular the coin-
ductive rule for internal communication in Definition 4.2. As shown
in Section 5, the adoption of the coinductive LTS (more precisely
Rule [I-Comm] in Definition 4.3) makes our type system safe even
when using unbounded global types, and more powerful, as shown
by many examples.
A (slightly different) coinductive rule for internal communication
appeared in [35, Definition 7] and in [22, Definition 3.18]. The
typing rules in [35, Table 5] require projectability of global types,
and the projection is defined recursively (ibidem, Definition 5),
so that the coinductive semantics of global types does not allow
to type more sessions than with the simpler inductive semantics.
Moreover, in [22, Definition 3.3] global types are “balanced”, namely
bounded in our terminology. Then both systems in [35] and in [22]
do not allow sessions in which the starvation of some participants
is due to the choices of other participants. So these systems are
less expressive than ours. For instance, the session of Example 2.5
(which is typed by the global type in Example 3.4) has no type in
the systems of [22, 35]. Anyway, the goals of those papers are not
to enlarge typability: in [22] the subtyping relation of [14] is shown
to be sound and complete, whereas [35] is a simple introduction to
MPST.
A more permissive coinductive rule for internal communication
is considered in [11, Table 8] and projections are coinductively
defined (ibidem, Table 7). In [11, Definition 4.9] there is a notion
of “boundedness” of local types, which ensures that well-typed
sessions terminate when the participants choose in a fair way. For
instance, the carrier can receive ship and the session ends if the

buyer fairly chooses between item and buy in the session of Ex-
ample 2.5. A global type like G1 in Example 6.6 (inhabited in our
system), even if coinductively projectable, is not “bounded” in [11].
The boundedness condition of [11] is different from the one recalled
in the present paper, since there the focus is on sessions in which
the progress of one participant depends on the choices performed
by other participants.

A criticism against adopting the SMPS approach [4] we have
taken here is that the process syntax is poor, and hence insufficiently
expressive. Indeed, as observed e.g. in [33], such a non-classic type
system is single-session and first-order, namely without channel
passing. To make this apparent we observe that our processes are
essentially local types, akin to those used e.g. in [22]. Let us observe
in passing that all the examples in Figure 4 of [33] are single-session,
and the types of messages are ground, that is immaterial w.r.t. the
issue of deriving local from global types. Now, while it is true
that the original formulation of the typing systems for SMPS is
subsumed by the system in [33], this is not anymore the case with
the present one, which is a proper (and conservative) extension of
the original system, as shown by Examples 2.5 and 3.4. Moreover,
since we can derive a global type for sessions like the recursive
two-buyer protocol, but we do not model delegation, our system is
essentially incomparable with the ones in [33, 36].

The preorder on processes we define in Section 6 plays the same
role as the subtyping relation on local types in other works. In
the original standard subtyping of [19] a better type has more
outputs and less inputs, while in the subtyping of [14] a better
type has fewer outputs and more inputs. The subtyping of [19]
allows channel substitution, while the subtyping of [14] allows
process substitution, as observed in [18]. This justifies our structural
preorder on processes, which is akin to a restriction of the subtyping
of [14]. The advantage of this restriction is a strong version of
Session Fidelity, see Theorem 5.4. On the other hand, as shown
in [7], such a restriction does not change the class of sessions that
can be typed by standard global types (but may change the types
assigned to them). The proof in [7] can be easily adapted to the
present type system.

From another perspective, our processes – equipped with their
synchronous operational semantics – could be interpreted as a
representation of synchronous versions of Communicating Finite
State Machines (CFSM) [8]. The properties of Subject Reduction
and Session Fidelity do correspond (in our synchronous setting) to
implementability in [30]. In [29, 30], the projection of a global type
on all of its participants produces a system of (asynchronous) CF-
SMs. Such projection has an automata-theoretic basis and works on
a general set of global types allowing for multiple receiver choices.
However, because of the automata-theoretic approach to projec-
tions in [29, 30] – as well as the asynchronous model of commu-
nication adopted there – the comparison with our work is not
immediate and deserves further investigation, which we leave as
future work.

More expressive global types are proposed in [10, 30], the main
novelty being the possibility of having multiple senders and re-
ceivers. This is realised in [30] by generalising projections, while
in [10] by using a richer syntax of global types. We plan to study a
coinductive semantics for global types allowing multiple senders

Un-projectable Global Types for Multiparty Sessions PPDP 2024, September 09–11, 2024, Milano, Italy

and receivers for both synchronous and asynchronous communica-
tions.

ACKNOWLEDGMENTS
We are grateful to Luca Padovani for enlightening discussions on
the coinductive semantics of global types, and to the referees for
their careful reading and the useful suggestions to improve our
paper.

The first author was partially supported by Project “National
Center for HPC, Big Data e Quantum Computing", Programma
M4C2, Investimento 1.3 – Next Generation EU. The third author
has been partially supported by INdAM – GNCS 2024 project “Fon-
damenti di Informatica e Sistemi Informatici”.

REFERENCES
[1] Davide Ancona, Viviana Bono, Mario Bravetti, Joana Campos, Giuseppe Castagna,

Pierre-Malo Deniélou, Simon J. Gay, Nils Gesbert, Elena Giachino, Raymond Hu,
Einar Broch Johnsen, Francisco Martins, Viviana Mascardi, Fabrizio Montesi,
Rumyana Neykova, Nicholas Ng, Luca Padovani, Vasco T. Vasconcelos, and
Nobuko Yoshida. 2016. Behavioral types in programming languages. Foundations
and Trends in Programming Languages 3, 2-3 (2016), 95–230. https://doi.org/10.
1561/2500000031

[2] Franco Barbanera and Mariangiola Dezani-Ciancaglini. 2023. Partially typed
multiparty sessions. In ICE (EPTCS, Vol. 383), Clément Aubert, Cinzia Di Giusto,
Simon Fowler, and Larisa Safina (Eds.). Open Publishing Association, Waterloo,
15–34. https://doi.org/10.4204/EPTCS.383.2

[3] Franco Barbanera, Mariangiola Dezani-Ciancaglini, and Ugo de’Liguoro. 2016.
Reversible client/server interactions. Formal Aspects of Computing 28, 4 (2016),
697–722. https://doi.org/10.1007/s00165-016-0358-2

[4] Franco Barbanera, Mariangiola Dezani-Ciancaglini, and Ugo de’Liguoro.
2022. Open compliance in multiparty sessions. In FACS (LNCS, Vol. 13712),
S. Lizeth Tapia Tarifa and José Proença (Eds.). Springer, Berlin, 222–243. https:
//doi.org/10.1007/978-3-031-20872-0_13

[5] Franco Barbanera, Mariangiola Dezani-Ciancaglini, and Ugo de’Liguoro. 2023.
Partial typing for asynchronous multiparty sessions. In DCM. Open Publishing
Association, Waterloo, 1–19. invited paper, to appear, http://www.di.unito.it/
~dezani/papers/bdl23.pdf.

[6] Franco Barbanera, Mariangiola Dezani-Ciancaglini, Lorenzo Gheri, and Nobuko
Yoshida. 2023. Multicompatibility for multiparty-session composition. In PPDP,
Santiago Escobar and Vasco Vasconcelos (Eds.). ACM Press, New York, 2:1–2:15.
https://doi.org/10.1145/3610612.3610614

[7] Franco Barbanera, Mariangiola Dezani-Ciancaglini, Ivan Lanese, and Emilio
Tuosto. 2021. Composition and decomposition of multiparty sessions. Journal of
Logic and Algebraic Methods in Programming 119 (2021), 100620. https://doi.org/
10.1016/j.jlamp.2020.100620

[8] Daniel Brand and Pitro Zafiropulo. 1983. On communicating finite-state machines.
Journal of ACM 30, 2 (1983), 323–342. https://doi.org/10.1145/322374.322380

[9] Giuseppe Castagna, Nils Gesbert, and Luca Padovani. 2009. A theory of contracts
for Web services. ACM Transaction on Programming Languages and Systems 31, 5
(2009), 19:1–19:61. https://doi.org/10.1145/1538917.1538920

[10] Ilaria Castellani, Mariangiola Dezani-Ciancaglini, and Paola Giannini. 2021.
Global types and event structure semantics for asynchronous multiparty sessions.
CoRR abs/2102.00865 (2021), 1–72. arXiv:2102.00865 https://arxiv.org/abs/2102.
00865

[11] Luca Ciccone, Francesco Dagnino, and Luca Padovani. 2024. Fair termination of
multiparty sessions. Journal of Logical and Algebraic Methods in Programming
139 (2024), 100964. https://doi.org/10.1016/j.jlamp.2024.100964

[12] Bruno Courcelle. 1983. Fundamental properties of infinite trees. Theoretical
Computer Science 25 (1983), 95–169. https://doi.org/10.1016/0304-3975(83)90059-2

[13] Francesco Dagnino, Paola Giannini, and Mariangiola Dezani-Ciancaglini. 2023.
Deconfined global types for asynchronous sessions. Logical Methods in Computer
Science 19, 1 (2023), 1–41. https://doi.org/10.46298/lmcs-19(1:3)2023

[14] Romain Demangeon and Kohei Honda. 2011. Full abstraction in a subtyped
pi-calculus with linear types. In CONCUR (LNCS, Vol. 6901), Joost-Pieter Katoen
and Barbara König (Eds.). Springer, Berlin, 280–296. https://doi.org/10.1007/978-
3-642-23217-6_19

[15] Pierre-Malo Deniélou and Nobuko Yoshida. 2011. Dynamic multirole session
types. In POPL, Thomas Ball and Mooly Sagiv (Eds.). ACM Press, New York,
435–446.

[16] Pierre-Malo Deniélou, Nobuko Yoshida, Andi Bejleri, and Raymond Hu. 2012.
Parameterised multiparty session types. Logical Methods in Computer Science 8,
4 (2012), 1–46. https://doi.org/10.2168/LMCS-8(4:6)2012

[17] Mariangiola Dezani-Ciancaglini, Silvia Ghilezan, Svetlana Jaksic, Jovanka Pan-
tovic, and Nobuko Yoshida. 2015. Precise subtyping for synchronous multiparty
sessions. In PLACES (EPTCS, Vol. 203), Simon Gay and Jade Alglave (Eds.). Open
Publishing Association, Waterloo, 29–43. https://doi.org/10.4204/EPTCS.203.3

[18] Simon Gay. 2016. Subtyping supports safe session substitution. In A List of
Successes That Can Change the World - Essays Dedicated to Philip Wadler on the
Occasion of His 60th Birthday (LNCS, Vol. 9600), Sam Lindley, Conor McBride,
Philip W. Trinder, and Donald Sannella (Eds.). Springer, Berlin, 95–108. https:
//doi.org/10.1007/978-3-319-30936-1_5

[19] Simon Gay andMalcolmHole. 2005. Subtyping for session types in the pi-calculus.
Acta Informatica 42, 2/3 (2005), 191–225. https://doi.org/10.1007/s00236-005-
0177-z

[20] Simon J. Gay, Diogo Poças, and Vasco T. Vasconcelos. 2022. The different shades
of infinite session types. In FOSSACS (LNCS, Vol. 13242), Patricia Bouyer and Lutz
Schröder (Eds.). Springer, Berlin, 347–367. https://doi.org/10.1007/978-3-030-
99253-8_18

[21] Silvia Ghilezan, Svetlana Jaksic, Jovanka Pantovic, Alceste Scalas, and Nobuko
Yoshida. 2019. Precise subtyping for synchronous multiparty sessions. Journal
of Logic and Algebraic Methods in Programamming 104 (2019), 127–173. https:
//doi.org/10.1016/J.JLAMP.2018.12.002

[22] Silvia Ghilezan, Jovanka Pantovic, Ivan Prokic, Alceste Scalas, and Nobuko
Yoshida. 2021. Precise subtyping for asynchronous multiparty sessions. PACMPL
5, POPL (2021), 1–28. https://doi.org/10.1145/3434297

[23] Rob van Glabbeek, Peter Höfner, and Ross Horne. 2021. Assuming just enough
fairness to make session types complete for lock-freedom. In LICS, Leonid Libkin
(Ed.). ACM Press, New York, 1–13. https://doi.org/10.1109/LICS52264.2021.
9470531

[24] Kohei Honda. 1993. Types for Dyadic Interaction. In CONCUR (LNCS, Vol. 715),
Eike Best (Ed.). Springer, Berlin, 509–523.

[25] Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. 1998. Language primitives
and type discipline for structured communication-based programming. In ESOP
(LNCS, Vol. 1381), Chris Hankin (Ed.). Springer, Berlin, 122–138. https://doi.org/
10.1007/BFb0053567

[26] Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2008. Multiparty asynchro-
nous session types. In POPL, George C. Necula and Philip Wadler (Eds.). ACM
Press, New York, 273–284. https://doi.org/10.1145/1328897.1328472

[27] Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2016. Multiparty asyn-
chronous session types. Journal of the ACM 63, 1 (2016), 9:1–9:67. https:
//doi.org/10.1145/2827695

[28] Dexter Kozen and Alexandra Silva. 2017. Practical coinduction. Mathematical
Structures in Computer Science 27, 7 (2017), 1132–1152. https://doi.org/10.1017/
S0960129515000493

[29] Elaine Li, Felix Stutz, Thomas Wies, and Damien Zufferey. 2023. Complete
multiparty session type projection with automata. In CAV (LNCS, Vol. 13966),
Constantin Enea and Akash Lal (Eds.). Springer, Berlin, 350–373. https://doi.org/
10.1007/978-3-031-37709-9_17

[30] Rupak Majumdar, Madhavan Mukund, Felix Stutz, and Damien Zufferey. 2021.
Generalising projection in asynchronous multiparty session types. In CONCUR
(LIPIcs, Vol. 203), Serge Haddad and Daniele Varacca (Eds.). Leibniz-Zentrum
für Informatik, Schloss Dagstuhl, 35:1–35:24. https://doi.org/10.4230/LIPICS.
CONCUR.2021.35

[31] Luca Padovani. 2014. Deadlock and lock freedom in the linear 𝜋 -calculus. In
CSL-LICS, Thomas A. Henzinger and Dale Miller (Eds.). ACM Press, New York,
72:1–72:10. https://doi.org/10.1007/978-3-662-43376-8_10

[32] Benjamin C. Pierce. 2002. Types and Programming Languages. MIT Press, Cam-
bridge, Massachusetts. I–XXI, 1–623 pages.

[33] Alceste Scalas and Nobuko Yoshida. 2019. Less is more: multiparty session types
revisited. PACMPL 3, POPL (2019), 30:1–30:29.

[34] Kaku Takeuchi, Kohei Honda, and Makoto Kubo. 1994. An interaction-based
language and its typing system. In PARLE (LNCS, Vol. 817), Chris Hankin (Ed.).
Springer, Berlin, 122–138. https://doi.org/10.1007/BFb0053567

[35] Nobuko Yoshida and Lorenzo Gheri. 2020. A very gentle introduction to multi-
party session types. In ICDCIT (LNCS, Vol. 11969), Dang Van Hung andMeenakshi
D’Souza (Eds.). Springer, Berlin, 73–93. https://doi.org/10.1007/978-3-030-36987-
3_5

[36] Nobuko Yoshida and Ping Hou. 2024. Less is more revisited: association with
global multiparty session types. CoRR abs/2402.16741 (2024), 1–41. https:
//doi.org/10.48550/ARXIV.2402.16741

https://doi.org/10.1561/2500000031
https://doi.org/10.1561/2500000031
https://doi.org/10.4204/EPTCS.383.2
https://doi.org/10.1007/s00165-016-0358-2
https://doi.org/10.1007/978-3-031-20872-0_13
https://doi.org/10.1007/978-3-031-20872-0_13
http://www.di.unito.it/~dezani/papers/bdl23.pdf
http://www.di.unito.it/~dezani/papers/bdl23.pdf
https://doi.org/10.1145/3610612.3610614
https://doi.org/10.1016/j.jlamp.2020.100620
https://doi.org/10.1016/j.jlamp.2020.100620
https://doi.org/10.1145/322374.322380
https://doi.org/10.1145/1538917.1538920
https://arxiv.org/abs/2102.00865
https://arxiv.org/abs/2102.00865
https://doi.org/10.1016/j.jlamp.2024.100964
https://doi.org/10.1016/0304-3975(83)90059-2
https://doi.org/10.46298/lmcs-19(1:3)2023
https://doi.org/10.1007/978-3-642-23217-6_19
https://doi.org/10.1007/978-3-642-23217-6_19
https://doi.org/10.2168/LMCS-8(4:6)2012
https://doi.org/10.4204/EPTCS.203.3
https://doi.org/10.1007/978-3-319-30936-1_5
https://doi.org/10.1007/978-3-319-30936-1_5
https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.1007/978-3-030-99253-8_18
https://doi.org/10.1007/978-3-030-99253-8_18
https://doi.org/10.1016/J.JLAMP.2018.12.002
https://doi.org/10.1016/J.JLAMP.2018.12.002
https://doi.org/10.1145/3434297
https://doi.org/10.1109/LICS52264.2021.9470531
https://doi.org/10.1109/LICS52264.2021.9470531
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1145/1328897.1328472
https://doi.org/10.1145/2827695
https://doi.org/10.1145/2827695
https://doi.org/10.1017/S0960129515000493
https://doi.org/10.1017/S0960129515000493
https://doi.org/10.1007/978-3-031-37709-9_17
https://doi.org/10.1007/978-3-031-37709-9_17
https://doi.org/10.4230/LIPICS.CONCUR.2021.35
https://doi.org/10.4230/LIPICS.CONCUR.2021.35
https://doi.org/10.1007/978-3-662-43376-8_10
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/978-3-030-36987-3_5
https://doi.org/10.1007/978-3-030-36987-3_5
https://doi.org/10.48550/ARXIV.2402.16741
https://doi.org/10.48550/ARXIV.2402.16741

	Abstract
	1 Introduction
	2 Multiparty Sessions
	3 Type System
	4 The Coinductive LTS
	5 Subject Reduction, Session Fidelity and Lock-Freedom
	6 Projectability and Boundedness
	7 Further Examples
	8 Related Works and Concluding Remarks
	Acknowledgments
	References

