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Abstract

Dirichlet process mixtures are flexible non-parametric models, particularly suited to den-

sity estimation and probabilistic clustering. In this work we study the posterior distribution

induced by Dirichlet process mixtures as the sample size increases, and more specifically

focus on consistency for the unknown number of clusters when the observed data are gen-

erated from a finite mixture. Crucially, we consider the situation where a prior is placed

on the concentration parameter of the underlying Dirichlet process. Previous findings in

the literature suggest that Dirichlet process mixtures are typically not consistent for the

number of clusters if the concentration parameter is held fixed and data come from a finite

mixture. Here we show that consistency for the number of clusters can be achieved if the

concentration parameter is adapted in a fully Bayesian way, as commonly done in practice.

Our results are derived for data coming from a class of finite mixtures, with mild assump-

tions on the prior for the concentration parameter and for a variety of choices of likelihood

kernels for the mixture.

Key Words: Asymptotic; Bayesian nonparametric; Consistency; Clustering; Dirichlet pro-

cess mixture; Number of components.
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1 Introduction

Bayesian nonparametric methods have experienced a huge development in the last two

decades, often standing out for their flexibility and coherent probabilistic foundations; see

the monographs by Müller et al. (2017) and Ghosal and Van Der Vaart (2017) for recent

stimulating accounts. The cornerstone of Bayesian nonparametrics is the model based on

the Dirichlet process (Ferguson, 1973), which can be expressed as Xi | P̃
iid∼ P̃ and P̃ ∼

DP(α,Q0), where α > 0 is the concentration parameter and Q0 is the baseline distribution

over the sample space (X,X ). The success of the Dirichlet process in actual implementations

of the Bayesian approach to nonparametric problems is mostly due to its mathematical

tractability, which is highlighted by conjugacy, and flexibility, which is assessed in terms of

its large topological support.

Since P̃ is almost surely discrete, if one wishes to model continuous data one may

convolve it with a density kernel k parametrized by a latent variable θ that is drawn from

a Dirichlet process. This yields the popular Dirichlet process mixture (Lo, 1984), which

exhibits appealing asymptotic properties in the context of density estimation: in several

relevant cases, the posterior distribution concentrates at the true data-generating density

at the minimax-optimal rate, up to a logarithmic factor, as the sample size increases (Ghosal

et al., 1999; Ghosal and Van der Vaart, 2007). Such a model and mevery of its variants

are widely used across scientific areas, thanks also to the availability of a wide variety of

efficient computational methods to perform inference, see for instance Escobar and West

(1995, 1998); MacEachern and Müller (1998); Neal (2000); Blei and Jordan (2006).

Thanks to the discreteness of the Dirichlet process, the latent parameters θi’s exhibit ties

with positive probability. Hence, the Dirichlet process mixture model is also routinely used

to perform clustering since it partitions observations into groups based on whether their

corresponding latent parameters θi coincide or not. The ubiquitous use of Dirichlet process

mixtures for clustering motivates the interest in the asymptotic behaviour of the posterior

distribution of the underlying partition, and in particular in the inferred number of clus-

ters (i.e. subpopulations), as the number of observations increases. Nguyen (2013) showed

posterior consistency of the mixing distribution P̃ under general conditions. However, this

does not imply consistency for the number of clusters, due to the use of the Wasserstein

distance. Indeed, Miller and Harrison (2013) proved that Dirichlet process mixtures are

not consistent for the number of components when data are generated from a mixture with
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a single standard normal component. See also Miller and Harrison (2014) for extensions.

These results, however, are derived under the assumption that the concentration parameter

α is known and fixed. This is crucial because the clustering behaviour of Dirichlet process

mixtures is governed by the choice of α. Indeed, under the Dirichlet process mixture model,

the prior probability of observing ties is a function solely of α, since pr(θi = θj) = 1/(α+1).

In order to have a more flexible distribution on the clustering of the data, in most

implementations of the Dirichlet process mixture a prior π for α is specified, leading to a

mixing measure that is itself a mixture in the sense of Antoniak (1974). Here we show that

introducing such a prior has a major impact on the asymptotic behaviour of the number

of clusters, as Dirichlet process mixtures can be consistent for the number of clusters. We

provide consistency results under fairly general conditions on π and for a moderately large

class of kernels k, including uniform and truncated normal distributions. Following Miller

and Harrison (2013), we focus on data-generating mixtures with a single component. Our

results also extend to the more general case of finite mixtures with multiple components,

when a suitable separation assumption between the elements of the mixtures is fulfilled.

Crucially, we prove consistency for cases where using a non-random α yields inconsistency,

thus suggesting that a hyperprior may be beneficial even beyond the cases considered here.

We stress that the framework we study is arguably closer to the way Dirichlet process

mixtures are used in practice, compared to holding α fixed.

We note that studying an asymptotic regime where the data-generating truth is a mix-

ture with a finite and fixed number of components entails some degree of model misspec-

ification. Indeed, Dirichlet process mixtures are nonparametric models with an infinite

number of components or, in other words, a number of clusters growing with the size of the

dataset. Thus, our results can be interpreted as a form of robustness of the prior: if the

number of components of the data-generating is finite, it can still be recovered by adapting

appropriately the value of α, despite the prior is concentrated on mixtures with infinitely

mevery components. In particular we show that, under all the data generation mechanisms

we consider in the next sections, the posterior distribution of α converges to a point mass at

0 at a specific rate, which is crucial to ensure consistency. See Section 5 for more discussion

and some related literature.
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2 Dirichlet process mixtures and random partitions

Henceforth, we will be focusing on Dirichlet process mixture models with a prior on the

concentration parameter, namely

Xi|θi
ind∼ k(·|θi), θi | P̃

iid∼ P̃ , P̃ | α ∼ DP(α,Q0), α ∼ π, (1)

where k( · |θ) is some density function, for every θ. Since we are interested in the distribution

of the number of clusters, it is reasonable to rewrite (1) in terms of the distribution on

partitions, related to the so-called Chinese restaurant process. For every pair of natural

numbers (n, s) such that s ≤ n, denote with τs(n) the set of partitions of {1, . . . , n} into s

non empty subsets. Conditionally on α, the sequence (θi)i≥1 induces a prior distribution

on the space of partitions of N that, for every n ≥ 2, is characterized by

pr(A | α) =
αs

α(n)

s∏
j=1

(aj − 1)!, (A = {A1, . . . , As} ∈ τs(n), s ≤ n), (2)

where α(n) = α · · · (α + n − 1) is the ascending factorial and aj = |Aj | stands for the

cardinality of set Aj . Conditionally on the partition A, the probability distributions of the

data X1:n = (X1, . . . , Xn) and of the cluster-specific parameters θ̂1:s = (θ̂1, . . . , θ̂s) are

pr(X1:n | θ̂1:s, A) =

s∏
j=1

∏
i∈Aj

k(Xi | θ̂j), pr(θ̂1:s | A,α) = pr(θ̂1:s | A) =

s∏
j=1

q0(θ̂j). (3)

The number of clusters in a sample of size n is denoted by Kn and under (1) it has the

following prior distribution

pr(Kn = s) =

∫ ∑
A∈τs(n)

pr(A | α)π(dα).

Since we are concerned with the large sample properties of pr(Kn = s | X1:n), we focus on

the joint distribution of the vector (X1:n,Kn) which, for every x1:n = (x1, . . . , xn) ∈ Xn, is

given by

pr(X1:n = x1:n,Kn = s) =
∑

A∈τs(n)

pr(A)

s∏
j=1

m(xAj ), (4)
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where pr(A) =
∫

pr(A|α)π(dα) and m(xAj ) =
∫ ∏

i∈Aj k(xi | θ)q0(θ)dθ is the marginal

likelihood for the subset of observations identified by Aj , given that they are clustered

together. We study the asymptotic behaviour of the posterior induced by model (1) when

the observations are independent and identically distributed samples from a finite mixture,

that is we assume the following data generation mechanism

Xi
iid∼ P =

t∑
j=1

pjRj , (i = 1, 2, . . . ), (5)

where, for every t ≥ 1, the Rj ’s are distinct probability measures on X and the pj ’s are

probability weights, i.e. pj ∈ (0, 1) for every j and
∑

j pj = 1. We will let P (n) and P (∞)

be the product probability measures induced on Xn and X∞ respectively, and denote (5)

by X1:∞ ∼ P (∞). In the following, we will consider each Rj to be dominated by a suitable

measure and denote the resulting density by fj(·) := f(· | θ∗j ). We say that model in (1)

is well-specified for P if k(·|θ) = f(· | θ), that is if the data-generating distribution is a

mixture of kernels belonging to the same parametric family that defines (1).

We say that posterior consistency for the number of clusters holds if pr(Kn = t | X1:n)→

1 as n → ∞ in P (∞)-probability. Note that the conditional probability pr(Kn = t | X1:n)

is defined with respect to the model in (1), while the convergence in probability is with

respect to the data-generating process X1:∞ ∼ P (∞). Since pr(Kn = t | X1:n) lies between

0 and 1, convergence in P (∞)-probability is equivalent to convergence in L1 with respect to

P (∞) and thus we could equivalently define consistency in terms of L1 convergence.

3 Main consistency results

The investigation of the asymptotics of the number of clusters Kn, induced by the model

in (1), will rely on the following assumptions on the prior π of α

A1. Absolute continuity : π is absolutely continuous with respect to the Lebesgue measure

and its density is still denoted as π;

A2. Polynomial behaviour around the origin: ∃ ε, δ, β such that ∀α ∈ (0, ε) it holds

1
δα

β ≤ π(α) ≤ δαβ;

A3. Subfactorial moments: ∃D, ν, ρ > 0 such that
∫
αsπ(α) dα < Dρ−sΓ(ν + s + 1) for

every s ≥ 1.
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The first two assumptions are sufficient to study the posterior moments of α, conditional to

the number of groups Kn, as will be clarified in Proposition 3. Assumption A3, instead, will

be useful specifically for consistency purposes: the minimum value of ρ required to achieve

consistency depends on the problem at hand, that is on the specific choice of P in (5) and k

in (1), as will be stated in Theorems 2 and 3. Assumptions A1-A3 are satisfied by common

families of distributions, as displayed in the next lemma.

Lemma 1. The following choices of π satisfy assumptions A1, A2 and A3 (for a fixed

ρ > 0)

(1) every distribution with bounded support that satisfies assumptions A1 and A2, such

as the uniform distribution over (0, c), with c > 0;

(2) The Generalized Gamma distribution with density proportional to αd−1e−(αa )
p

, pro-

vided that p > 1;

(3) The Gamma distribution with shape ν and rate ρ.

Note that the rate parameter of the Gamma distribution corresponds to the quantity ρ

in assumption A3.

3.1 General consistency result for location families

with bounded support

For our general result we consider kernels of the form

k(x | θ) = g(x− θ) (x ∈ R), (6)

where c > 0 and θ ∈ R is a location parameter. Here g is a density function on the real line

satisfying the following assumptions

B1. g is strictly positive on some interval [a, b] and 0 elsewhere;

B2. g is differentiable with bounded derivative in (a, b);

B3. The base measure Q0 is absolutely continuous with respect to the Lebesgue measure,

and its density q0 is bounded.
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The above assumptions essentially require that the kernel is a location-family distribution

with positive density on a bounded support. The class is fairly general and it includes, as

relevant special cases, the uniform distribution and the truncated Gaussian distribution,

among others.

When considering a mixture of the kernels in (6) as data generation mechanism satisfying

B1–B3, with true parameters θ∗ = (θ∗1, . . . , θ
∗
t ), we say that θ∗ is completely separated if

|θ∗j − θ∗k| > b− a, for every j 6= k. This assumption is somewhat restrictive, but sufficient to

prove that the addition of a prior on α may solve the inconsistency issue. Indeed, we have

the following general consistency result.

Theorem 1. Suppose k and q0 satisfy assumptions B1–B3. If π satisfies assumptions A1–

A3 with ρ high enough then, for every P as in (5) with t ∈ {1, 2, . . . }, fj = k(·|θ∗j ), θ∗

completely separated and θ∗j belonging to the interior support of Q0 for every j, we have

pr(Kn = t | X1:n)→ 1

as n→∞ in P (∞)-probability. On the contrary, if π(α) = δα∗(α), with α∗ > 0, then

lim sup pr(Kn = t | X1:n) < 1

as n→∞ in P (∞)-probability.

As discussed above, the minimum value of ρ needed depends on the specific function g

and prior distribution Q0. Therefore, a prior on the concentration parameter yields consis-

tency when the true data generating distribution meets a condition of complete separability,

that informally amounts to having cluster locations sufficiently distinct. Note that this con-

dition is automatically satisfied when t = 1. We additionally show that, even under such

an assumption, the Dirichlet process mixture model with fixed α still fails to be consistent

at the number of clusters. Hence, a prior on α is crucial to overcome issues with learning

the true number of clusters as the sample size increases.

Moreover, the posterior mass on a smaller number of clusters than the truth vanishes, as

explained in the next proposition. The latter holds under mild assumptions on model (1),

satisfied either by bounded distributions as above or for instance by the Gaussian kernel.
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Proposition 1. Let P be as in (5), with true parameters θ∗1, . . . , θ
∗
t . Let θ∗j belong to the

support of Q0 for every j = 1, . . . , t and let k satisfy assumptions B1–B3 above or H1–H4

in the supplementary material. Then

pr(Kn < t | X1:n)→ 0 (7)

in P (∞)-probability as n→∞.

3.2 Consistency on specific examples

Theorem 1 requires ρ in assumption A3 to be high enough, depending on the specific

formulation of the model. In order to provide an example, we focus on the case of uniform

kernel and t = 1, that is

f = Unif(θ∗ − c, θ∗ + c), k(·|θ) = Unif(θ − c, θ + c), q0 = Unif(θ∗ − c, θ∗ + c), (8)

where θ∗ ∈ R is a fixed location parameter and c > 0. In this setting the marginal dis-

tribution is available and with a suitable application of Hölder’s inequality one can prove

consistency for specific values of ρ.

Theorem 2. Consider f , k and q0 as in (8), and assume π satisfies A1–A3 (with ρ ≥ 38).

Then

pr(Kn = 1 | X1:n)→ 1

as n→∞ in P (∞)-probability.

As a second example, we move beyond bounded kernels and consider a simple, yet

interesting, case. More precisely, we specialize model (1) to Gaussian kernels and assume

constant data, equal to some fixed real number θ∗, setting

f = δθ∗ , k(·|θ) = N(θ, 1), q0 = N(0, 1). (9)

Unlike the other examples, this case is not well-specified, as k(·|θ) 6= f(·) for every θ.

This makes the definition of true or data-generating number of clusters more delicate.

Nonetheless, being an example with constant data, one would hope the posterior of the

number of clusters to concentrate on one cluster. However, even in such a limiting case,
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Miller and Harrison (2013) show that under (1) with fixed concentration parameter pr(Kn =

1|X1:n) does not converge to 1 as n diverges.

Once again, placing a prior on α impacts the posterior asymptotic behaviour of Kn and

one achieves consistency, as detailed in the next theorem.

Theorem 3. Consider (f, k, q0) as in (9) and assume π satisfies A1–A3 (with ρ > 16).

Then

pr(Kn = 1 | X1:n)→ 1

P (∞)-almost surely as n→∞.

Finally, note that the previous consistency results are related to another property of

general interest, namely the posterior distribution of the concentration parameter converges

to a point mass at 0, if posterior consistency for the number of clusters holds.

Proposition 2. Let the data be generated as in (5) with t ∈ N and assume π satisfies A1

and A2. Then if pr(Kn = t | X1:n)→ 1 we have

π(α | X1:n)→ δ0

weakly, as n→∞, in P (∞)-probability.

Hence, under the conditions that ensure consistency for the number of clusters, the

posterior distribution of the concentration parameter converges to a degenerate distribution

at 0. This is not surprising since the Dirichlet process mixture model is concentrated on

mixtures with infinitely mevery components and one way to achieve consistency is to let α

tend to zero, which entails that the prior is swamped by the data.

4 Methodology and proof technique

4.1 The role of the prior on the concentration parameter

Our proofs of consistency in Theorems 1, 2 and 3 rely on the following lemma.

Lemma 2. The convergence pr(Kn = t | X1:n) → 1 as n → ∞ in P (∞)-probability holds
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true if and only if one has, in P (∞)-probability,

∑
s 6=t

pr(Kn = s | X1:n)

pr(Kn = t | X1:n)
→ 0 as n→∞ . (10)

Working with the ratios of conditional probabilities in (10) is beneficial, as the marginal

distribution of X1:n involved in the definition of pr(Kn = t | X1:n) cancels. Also, it is

convenient to write such ratios of probabilities as follows: first, recall from (2) and (4) that

pr(X1:n = x1:n,Kn = s) =

∫
αs

α(n)
π(α)dα

∑
A∈τs(n)

s∏
j=1

(aj − 1)!m(xAj )

for every s ≥ 1, which implies that

pr(Kn = s | X1:n)

pr(Kn = t | X1:n)
=

∫ αs

α(n)
π(α) dα∫ αt

α(n)
π(α) dα︸ ︷︷ ︸

C(n,t,s)

∑
A∈τs(n)

∏s
j=1(aj − 1)!

∏s
j=1m(XAj )∑

B∈τt(n)

∏t
j=1(bj − 1)!

∏t
j=1m(XBj )︸ ︷︷ ︸

R(n,t,s)

. (11)

The decomposition of (11) into the factors C(n, t, s) and R(n, t, s) is useful to understand

the role of the prior distribution over α, and to compare our results with the one of Miller

and Harrison (2013, 2014). In particular, the term R(n, t, s) does not depend on α and,

hence, on the choice of π. This is indeed the key term studied in Miller and Harrison (2014),

where it is shown that, under some assumptions, lim inf R(n, t, s) > 0 as n → ∞ in P (∞)-

probability, for t < s. On the contrary, C(n, t, s) incorporates information about α and

its prior distribution. In the fixed α case, which can be thought of as having a degenerate

prior π = δα for some α > 0, the term C(n, t, s) boils down to αs−t which is constant with

respect to n. This is sufficient for Miller and Harrison (2014) to deduce lack of consistency

for fixed α, which means that

lim sup pr(Kn = t | X1:n, α) < 1 (12)

as n→∞ in P (∞)-probability for every α > 0.

However, once a non-degenerate prior π is employed, C(n, t, s) depends on n and, as we

show in the next section, converges to 0 as n → ∞ under mild assumptions on π. Thus,

lim inf R(n, t, s) > 0 is not everymore sufficient to establish whether consistency holds true
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or not. Instead, one needs to compare the rate at which C(n, t, s) converges to 0 with the

behaviour of R(n, t, s), as done in the following sections. Note that further lower bounds for

R(n, t, s) for general values of s are given in Miller and Harrison (2014); Yang et al. (2019).

However, once combined with C(n, t, s), these are too loose to deduce either consistency

or lack thereof. Therefore, we need to exploit different techniques to determine the rate

of R(n, t, s). Since pr(Kn = t | X1:n) =
∫

pr(Kn = t | X1:n, α)π(α | X1:n) dα, by (12) we

deduce lim sup pr(Kn = t | X1:n, α) < 1 for every α > 0. This, however, does not imply

that lim sup pr(Kn = t | X1:n) < 1, as one first needs to ascertain whether limit and integral

can be interchanged. The main reason is that, in the asymptotic regime we are considering,

the posterior distribution π(α | X1:n) concentrates around 0 as n → ∞, see Proposition 2

above.

4.2 Asymptotic behaviour of the concentration parameter

We are now concerned with studying C(n, t, s) in (11). We prove that for priors π satisfying

assumptions A1–A3 C(n, t, s) converges to 0 at a logarithmic rate in n. The asymptotic

behaviour of C(n, t, s) is not specific to some kernel k and data generating distribution f

and thus can be useful to prove consistency, or lack thereof, for arbitrary Dirichlet process

mixture models with random concentration parameter. In order to facilitate the intuition,

the term C(n, t, s) can be interpreted as a moment of α, conditional on the n observations

being clustered in t groups. Indeed, under (1) it holds

π(α | Kn = t) ∝ αt

α(n)
π(α)

and thus C(n, t, t + s) =
∫
αsπ(α | Kn = t) dα = E(αs | Kn = t). Next proposition shows

its asymptotic behaviour.

Proposition 3. Suppose π satisfies A1–A2. Then there exist F,G > 0 such that for every

0 < s ≤ n− t

F
γ{t+ s+ β, εlog(n)}
{log(n) + 1}s

≤ C(n, t, t+ s) ≤ Gs

εs
E(αt+s−1)

γ{t+ s+ β, εlog(n)}
{logn/(1 + ε)}s

,

where γ(x, y) is the lower incomplete Gamma function and E(αs) =
∫
αsπ(α) dα.

Thus, for a fixed s that does not depend on n, C(n, t, t + s) decreases logarithmically
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as a function of n since γ(x, y) ≤ γ(x) for every x and y. Thus, by looking at the ratios

in (11), the addition of a prior favours a smaller number of clusters when n → ∞, with s

fixed.

The consistency results of the previous section are established by combining Proposi-

tion 3 with suitable upper bounds on R(n, t, s) to prove the convergence in (10), so that

E

{
n−t∑
s=1

pr(Kn = t+ s | X1:n)

pr(Kn = t | X1:n)

}
≤ 1

logn

n−t∑
s=1

h(s),

where h(s) is a function that depends on the specific kernel k and is such that lim sup∑n
s=1 h(s) < ∞ for every s. Indeed, instead of proving directly convergence in probability

of (10), we show the stronger L1 convergence. In this way we will avoid the study of the

specific partition at hand. The following lemma shows how the problem simplifies in this

case, when t = 1.

Lemma 3. Assume (X1, X2, . . . ) is an exchangeable sequence. Then for every n

E

 ∑
A∈τs(n)

∏s
j=1(aj − 1)!

(n− 1)!

∏s
j=1m(XAj )

m(X1:n)

 =
∑

a∈Fs(n)

n

s!
∏s
j=1 aj

E

{∏s
j=1m(XAa

j
)

m(X1:n)

}
,

where the sum runs over Fs(n) = {a ∈ {1, . . . , n}s :
∑s

j=1 aj = n} and Aa is an arbitrary

partition in τs(n) such that |Aa
j | = aj for j = 1, . . . , s.

5 Discussion

There are mevery avenues to extend our results and some of the tools we introduced here

may prove useful to accomplish such tasks. First of all, the separability assumption given

in Theorem 1 could be relaxed to prove consistency in the setting with a general number of

components. The main issue is that R(n, t, s) in (11) is harder to study, since it becomes the

ratio of sums over the space of partitions: in particular Lemma 3 is not easy to generalize

and this explains why the case t = 1 is simpler to address. Different mixture kernels present

similar difficulties, since they require to study R(n, t, s) for each specific case. Summarising,

the impact of the prior is fully understood, by Proposition 3 above, but a more general pos-

itive result would require finer bounds on the likelihood component than the ones available

here and in the literature.
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Another interesting question worth studying is whether consistency can also be attained

by estimating the concentration parameter through maximization of the marginal likelihood,

in an empirical Bayes fashion (Liu, 1996; McAuliffe et al., 2006). In this paper we preferred

to focus on the fully Bayesian approach because it is arguably the one most commonly

employed by practitioners using Dirichlet process mixtures. Moreover, the empirical Bayes

estimator of α may not be well defined on (0,∞) because the marginal likelihood can easily

have its maximum at both 0 or infinity, thus raising theoretical and practical issues.

It is also worth noticing that our consistency results require the kernel to be perfectly

specified: even a small amount of misspecification will probably lead the number of clusters

to diverge. Indeed, recovering the true density will require an increasing number of compo-

nents. This phenomenon has been formally studied in Cai et al. (2021) for finite mixture

models, when a prior on the number of components is placed.

We note that the asymptotic analysis of the posterior distribution of the number of

clusters for Dirichlet process mixtures has recently attracted considerable theoretical in-

terest (Yang et al., 2019; Ohn and Lin, 2022; Cai et al., 2021), and has motivated various

methodological developments (Miller and Harrison, 2018; Zeng and Duan, 2020). Ohn and

Lin (2022) showed that, if α is sent deterministically to 0 at appropriate rates as n → ∞,

the posterior distribution of the number of clusters concentrates on finite values when data

are generated from a finite mixture, which is a necessary condition for consistency. Such

results are similar in spirit to ours, although we consider the substantially different setting

where α is learned through a prior, which is arguably more natural in a Bayesian framework.

Finally, our results also provide an answer, at least partially, to the question of Yang et al.

(2019): “there exists a natural way to correct the problem instead of truncating the number

of clusters?”, by showing that placing a prior on α can be sufficient to recover consistency.

Supplementary material

Supplementary material includes all the proofs of the theoretical results.
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Summary

This document contains the proofs of all the results in the main document. In order to

follow the logical lines of the arguments, we present the proofs of Sections 4 and 3, in this

order.

S.1 Proof of Lemma 2

Proof. The result immediately follows upon noting that

pr(Kn = t | X1:n) =

1 +
∑
s 6=t

pr(Kn = s | X1:n)

pr(Kn = t | X1:n)


−1

.

�
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S.2 Proof of Proposition 3

By assumptions A1 and A2 there exist ε, δ, β > 0 such that

1

δ2

∫ ε
0
αt+s+β

α(n) dα∫ ε
0
αt+β

α(n) dα
≤
∫ ε

0
αt+s

α(n) π(α) dα∫ ε
0

αt

α(n)π(α) dα
≤ δ2

∫ ε
0
αt+s+β

α(n) dα∫ ε
0
αt+β

α(n) dα
. (S.1)

Notice that, if assumption A2 holds for ε ≥ 1, it holds also for ε < 1. Thus, without loss of

generality, we will assume ε < 1 and the main object of interest will be

En(αs) =

∫ ε

0
αspn(α)dα,

where En denotes the expected value with respect to the probability distribution with

density

pn(α) =
fn(α)∫ ε

0 fn(x) dx
, fn(x) =

xt+β

x(n)
1(0,ε)(x), (S.2)

where 1A stands for the indicator function of set A. We now provide three lemmas that

will be useful to prove Proposition 1.

Lemma S.1. Let f and g be two pdf’s on R such that g(x)/f(x) is non-decreasing in x.

Then
∫
h(x)f(x)dx ≤

∫
h(x)g(x)dx for every non-decreasing h : R→ R.

Proof. Let X ∼ f and Y ∼ g. Since g(x)/f(x) is non-decreasing we have g(x0)f(x1) ≤

g(x1)f(x0) for every x0 < x1. Thus we have

FY (x1)f(x1) =

∫ x1

−∞
g(x0)f(x1)dx0 ≤

∫ x1

−∞
g(x1)f(x0)dx0 = FX(x1)g(x1)

and

{1− FX(x0)}g(x0) =

∫ ∞
x0

g(x0)f(x1)dx1 ≤
∫ ∞
x0

g(x1)f(x0)dx1 = {1− FY (x0)}f(x0).

It follows

FY (x)

FX(x)
≤ g(x)

f(x)
≤ 1− FY (x)

1− FX(x)
,

S.2



for every x ∈ R, which implies

FY (x)

1− FY (x)
≤ FX(x)

1− FX(x)
.

Thus, Y stochastically dominates X, i.e. the corresponding cdf’s satisfy FY (x) ≤ FX(x)

for every x ∈ R, which implies that E{h(X)} ≤ E{h(Y )} for every non-decreasing h. �

Lemma S.2. Under assumptions A1 and A2, for every n− t > s ≥ 1 it holds

γ[t+ s+ β, ε{log(n) + 1}]
δ2γ[t+ β, ε{log(n) + 1}]

{log(n)+1}−s ≤
∫ ε

0
αt+s

α(n) π(α) dα∫ ε
0

αt

α(n)π(α) dα
≤ δ2γ{t+ s+ β, εlog(n)}

γ{t+ β, εlog(n)}
{log(n)/(1+ε)}−s,

where γ(x, y) is the lower incomplete Gamma function and we recall that ε, δ, β > 0 are

such that for every α ∈ (0, ε) it holds 1
δα

β ≤ π(α) ≤ δαβ.

Proof. By (S.1) it suffices to find suitable bounds of En(αs). For the upper inequality

we apply Lemma S.1 with f = pn, g(α) ∝ (cn)−ααt+β−1
1(α∈[0,ε]) with c = (1 + ε)−1 and

h(α) = αs. To verify that g(α)/pn(α) is non-decreasing for α ∈ (0, ε] we compute

d

dα
log

{
g(α)

pn(α)

}
=− log

(
n

1 + ε

)
+
n−1∑
i=1

1

α+ i

≥− log

(
n+ ε

1 + ε

)
+

n−1∑
i=1

1

i+ ε
≥ 0,

where the last inequality follows from

∫ k

1

1

x+ ε
dx <

k−1∑
i=1

1

i+ ε

for every k > 1. Thus, since h(α) = αs is non-decreasing in α it follows by Lemma S.1 that

En(αs) ≤
∫ ε

0 α
t+s+β−1(cn)−αdα∫ ε

0 α
t+β−1(cn)−α dα

=
{log(cn)}−s

∫ εlog(cn)
0 zt+s+β−1e−zdz∫ εlog(cn)

0 zt+β−1e−z dz

=
{log(cn)}−sγ{t+ s+ β, εlog(cn)}

γ{t+ β, εlog(cn)}
.

The lower bound again follows from Lemma S.1 with f(α) ∝ (en)−ααt+β−1
1(α∈[0,ε]), g(α) =

S.3



pn(α) and h(α) = αs. To verify that pn(α)/f(α) is non-decreasing for α ∈ (0, ε] we compute

d

dα
log

{
pn(α)

f(α)

}
=−

n−1∑
i=1

1

α+ i
+ log(n) + 1

≥−
n−1∑
i=1

1

i
+ log(n) + 1 ≥ 0,

where the last inequality follows from

k∑
i=1

1

i
≤ log(k) + 1

for every k ≥ 1. Thus, since h(α) = αs is non-decreasing in α, we have

En(αs) ≥
∫ ε

0 α
t+s+β−1(en)−αdα∫ ε

0 α
t+β−1(en)−α dα

=
{log(en)}−s

∫ εlog(en)
0 zt+s+β−1e−zdz∫ εlog(en)

0 zt+β−1e−z dz

=
{log(en)}−sγ{t+ s+ β, εlog(en)}

γ{t+ β, εlog(en)}
.

The proof is completed by combining the bounds with (S.1). �

Lemma S.3. For every ε > 0, there exists M > 0 such that, for every n ≥ 1, it holds

M

∫ ε

0

αt

α(n)
π(α) dα ≥

∫ ∞
ε

αt

α(n)
π(α) dα .

Proof. Define p =
∫∞
ε αtπ(α) dα∫ ε
2
0 αtπ(α) dα

. Then

∫ ε

0

αt

α(n)
π(α) dα−

∫ ∞
ε

αt

α(n)
π(α) dα =

∫ ε

0

αt

α(n)
π(α) dα−

∫ ε
2

0
p
αt

ε(n)
π(α) dα

≥
∫ ε

2

0

αt

α(n)
π(α) dα−

∫ ε
2

0
p
αt

ε(n)
π(α) dα.

Choose m such that
(
ε
2

)(m)
< ε(m)

p , which is always possible because
{
ε(m)

}−1 ( ε
2

)(m) → 0

as m→∞. Thus ∫ ε

0

αt

α(n)
π(α) dα ≥

∫ ∞
ε

αt

α(n)
π(α) dα, n ≥ m
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and it suffices to set M = max(P, 1) with

P = max
1≤i≤m

{∫∞
ε

αt

α(i) π(α) dα∫ ε
0

αt

α(i) π(α) dα

}
.

�

Proof of Proposition 3. We first prove the upper bound. We have

C(n, t, t+ s) ≤
∫∞

0
αt+s

α(n) π(α) dα∫ ε
0

αt

α(n)π(α) dα
=

∫ ε
0
αt+s

α(n) π(α) dα∫ ε
0

αt

α(n)π(α) dα
+

∫ ε
0
αt+s

α(n) π(α) dα∫ ε
0

αt

α(n)π(α) dα

∫∞
ε

αt+s

α(n) π(α) dα∫ ε
0
αt+s

α(n) π(α) dα
.

Moreover, it holds

∫∞
ε

αt+s

α(n) π(α) dα∫ ε
0
αt+s

α(n) π(α) dα
≤
∫∞
ε αt+s−1π(α) dα∫ ε
0 α

t+s−1π(α) dα
≤ δ

∫∞
ε αt+s−1π(α) dα∫ ε

0 α
t+s+β−1 dα

≤ δ E(αt+s−1)
t+ s+ β

εt+s+β
,

where the first inequality follows since α(n) ≥ ε(n) for α ∈ (ε,∞) and α(n) ≤ ε(n) for

α ∈ (0, ε), while the second one follows from assumption A2. Moreover, E stands for the

expected value with respect to π. Thus from Lemma S.2 it holds

C(n, t, t+ s) ≤
δ2
{

1 + E(αt+s−1) t+s+β
εt+s+β

}
γ{t+ s+ β, εlog(n)}

γ{t+ β, εlog(n)}
{log(n)/(1 + ε)}−s.

Then choose G = 4δ2

εt+βγ(t+β,εlog2)
to obtain the upper bound. For the lower bound, apply

Lemma S.2 and Lemma S.3 to get

C(n, t, t+ s) ≥ 1

M + 1

∫ ε
0
αt+s

α(n) π(α) dα∫ ε
0

αt

α(n)π(α) dα
≥ 1

M + 1

γ[t+ s+ β, ε{log(n) + 1}]
δ2γ[t+ β, ε{log(n) + 1}]

{log(n) + 1}−s.

Then choose F = 1
(M+1)δ2γ(t+β)

. �

The following corollary of Proposition 3 will be useful.

Corollary S.1. Suppose π satisfies assumptions A1 and A2. Then G > 0 as in Proposition

3 is such that for every 0 < s < n and n ≥ 4 it holds

C(n, t, t+ s) ≤ GΓ(t+ β + 1)2ss

ε
E(αt+s−1)log{n/(1 + ε)}−1.
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Proof. By Proposition 3 we have

C(n, t, t+ s) ≤ Gs

εs
E(αt+s−1)

γ{t+ s+ β, εlog(n)}
log{n/(1 + ε)}s

.

Note that

γ{t+ s+ β, εlog(n)} =

∫ εlog(n)

0
xt+s+β−1e−x dx ≤ εs−1{log(n)}s−1Γ(t+ β + 1),

that implies

γ{t+ s+ β, εlog(n)}
εslogs{n/(1 + ε)}

≤ Γ(t+ β + 1)

ε

[
log(n)

log{n/(1 + ε)}

]s−1

log{n/(1 + ε)}−1.

Moreover, since ε < 1, we have log{n/(1 + ε)} ≥ 1
2 log(n) for every n ≥ 4. Combining the

inequalities above we obtain the desired result. �

S.3 Proof of Lemma 3

Proof. We need to study R(n, 1, s) as in (11). Taking the expectation with respect to the

data generating distribution we have

E{R(n, 1, s)} =
∑

A∈τs(n)

∏s
j=1(aj − 1)!

(n− 1)!
E

{∏s
j=1m(XAj )

m(X1:n)

}

=
∑

a∈Fs(n)

(
n

a1 · · · aj

)∏s
j=1(aj − 1)!

s!(n− 1)!
E

{∏s
j=1m(XAa

j
)

m(X1:n)

}

=
∑

a∈Fs(n)

n

s!
∏s
j=1 aj

E

{∏s
j=1m(XAa

j
)

m(X1:n)

}
.

�

S.4 Proof of Lemma 1

Proof. Assumptions A1 and A2 are immediately satisfied in all three cases discussed in the

statement of the lemma. We thus focus on proving that A3 is satisfied, considering each of

the three cases separately. Suppose first that the support of the density π is contained in

S.6



[0, c] with c > 0. Then ∫ ∞
0

αsπ(α) dα ≤ cs.

Thus in this case assumption A3 is satisfied for every ρ > 0 because cs < Dρ−sΓ(s+1) with

D = max
s∈N

(cρ)s

Γ(s+1) for every ρ > 0. Suppose now the prior is given by a Generalized Gamma

distribution, so that

∫ ∞
0

αsπ(α) dα =
p

adΓ
(
d
p

) ∫ ∞
0

αd+s−1e−(αa )
p

dα .

The condition p > 1 implies that, for every fixed ρ > 0 and a > 0, there exists k > 0 such

that ρα ≤
(
α
a

)p
for every α ≥ k. Thus

∫ ∞
0

αd+s−1e−(αa )
p

dα ≤
∫ k

0
αs+d−1e−(αa )

p

dα+

∫ ∞
k

αs+d−1e−ρα dα

≤ ks+d−1e−( ka)
p

+ ρ−d−sΓ(s+ d).

Also, ∫ ∞
0

αsπ(α) dα ≤ p

adΓ
(
d
p

)Γ(s+ d)

{
ks+d−1e−( ka)

p

Γ(s+ d)
+ ρ−d−s

}
≤

≤ Dρ−sΓ(s+ d),

with D = max
s∈N

p

adΓ
(
d
p

) {ks+d−1e
−( ka)

p
ρs

Γ(s+d) + ρ−d
}

, so that also in this case assumption A3 is

satisfied for every ρ > 0. Finally, in the case of Gamma distribution we get

∫ ∞
0

αsπ(α) dα =
Γ(ν + s)

Γ(ν)
ρ−s

and assumption A3 holds. �

S.5 Proof of Theorem 1

Through a linear rescaling, we may assume [a, b] = [−c, c] without loss of generality. We

rewrite the assumptions on g and Q0 as

T1. ∃m,M such that 0 < m ≤ g(x) ≤M <∞ for every x ∈ [−c, c];

T2. g is differentiable on (−c, c) and ∃R such that |g
′(x)
g(x) | ≤ R <∞ for every x ∈ (−c, c);

S.7



T3. ∃U > 0 such that h(y) = q0(y) + q0(−y) ≤ U for every y ∈ [0, 2c];

T4. ∃L > 0 such that q0(θ) ≥ L for every θ in a neighborhood of θ∗j , for every j.

Denote with f(x) =
∑t

j=1 pjk(x | θ∗j ) the density of the data generating P =
∑t

j=1 pjRj ,

with t ∈ N, pj ∈ (0, 1) and
∑t

j=1 pj = 1. Since θ∗ = (θ∗1, . . . , θ
∗
t ) is completely separated

and

X∞ ∼ P (∞), each point x has non-null density for at most one component of the mixture,

i.e.

x ∈ [θ∗i + a, θ∗i + b] ⇒ f(x) = pik(x | θ∗i ) = pig(x− θ∗i ).

Therefore we can define

Cj =
{
i ∈ {1, . . . , n} : xi ∈ [θ∗j + a, θ∗j + b]

}
, nj = |Cj |.

Notice that Ci ∩ Cj = ∅ for every i 6= j and {1, . . . , n} =
⋃t
j=1Cj , so that

∑t
j=1 nj = n.

Moreover, defining

C(n) = {nj > 0 for every j} ,

for every x1:n ∈ C(n) it holds

∑
A∈τs(n)

s∏
j=1

(aj − 1)!
s∏
j=1

m(xAj ) = 0 for every s < t,

∑
B∈τt(n)

t∏
j=1

(bj − 1)!
t∏

j=1

m(xBj ) =
t∏

j=1

(nj − 1)!
t∏

j=1

m(xCj ).

(S.3)

Since pj > 0 for every j = 1, . . . , s, we have P (n)(C(n))→ 1 as n→∞. We need a technical

lemma.

Lemma S.4. Let Ωn be a sequence of sets depending on X1:n, and let Zn be random variables

on the same probability space such that P (∞)(Ωn)→ 1 and

Zn1Ωn → 0

in P (∞)-probability as n→∞. Then Zn → 0 in P (∞)-probability as n→∞.

S.8



Proof. By assumption P (∞) (1ΩnZn > ε)→ 0 as n→∞. Thus, we have

P (∞) (Zn > ε) ≤ P (∞) {(Zn > ε) ∩ Ωn}+ P (∞) (Ωc
n)→ 0

as n→∞. �

Thus by Lemma S.4 it suffices to study

pr(Kn = s | X1:n)

pr(Kn = t | X1:n)
1C(n) =

∫ αs

α(n)
π(α) dα∫ αt

α(n)
π(α) dα

∑
A∈τs(n)

∏s
j=1(aj − 1)!

∏s
j=1m(XAj )∑

B∈τt(n)

∏t
j=1(bj − 1)!

∏t
j=1m(XBj )

1C(n) .

(S.4)

By (S.3), we have
pr(Kn = s | X1:n)

pr(Kn = t | X1:n)
1C(n) = 0

for every s < t. Let us now consider the case s > t. Again by complete separability, A ∈

τs(n) yields positive marginal density only if A is a refinement of the partition {C1, . . . , Ct},

i.e. if

A ∈ τ̃s(n) = {A ∈ τs(n) : ∀ i = 1, . . . , s there exists j ∈ {1, . . . , t} such that Ai ⊂ Cj} .

Therefore, if A ∈ τ̃s(n), we write the j-the element as Aj = (Aj1, . . . , A
j
sj ) with ajk = |Ajk|,

so that

∑
A∈τ̃s(n)

s∏
j=1

(aj − 1)!
s∏
j=1

m(XAj ) =
∑
s∈S

t∏
j=1

∑
Aj∈τsj (nj)

sj∏
k=1

(ajk − 1)!

sj∏
k=1

m(X
Ajk

),

where S =
{

(s1, . . . , st) : 1 ≤ sj ≤ nj , ∀j, and
∑t

j=1 sj = s
}

. By the above and (S.3) we

can rewrite (S.4) as

pr(Kn = s | X1:n)

pr(Kn = t | X1:n)
1C(n) = C(n, t, s)

∑
A∈τ̃s(n)

∏s
j=1(aj − 1)!

∏s
j=1m(XAj )∏t

j=1(nj − 1)!
∏t
j=1m(XCj )

1C(n)

= C(n, t, s)
∑
s

t∏
j=1

∑
Aj∈τsj (nj)

∏sj
k=1(ajk − 1)!

(nj − 1)!

∏sj
k=1m(X

Ajk
)

m(ACj )
1C(n) ,

(S.5)
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where

m(XCj ) =

∫
R

∏
i∈Cj

k(Xi | θj)Q0(dθj) =

∫
R

∏
i∈Cj

g(Xi − θj)Q0(dθj)

and

m(X
Ajh

) =

∫
R

∏
i∈Ajh

k(Xi | θh)Q0(dθh) =

∫
R

∏
i∈Ajh

g(Xi − θh)Q0(dθh),

with h = 1, . . . , sj . We divide and multiply by

n∏
i=1

f(Xi) =

t∏
j=1

∏
i∈Cj

pjk(Xi | θ∗j ) =

t∏
j=1

sj∏
h=1

∏
i∈Ajh

pjk(Xi | θ∗j ),

so that the sum on the right hand side of (S.5) becomes

∑
s

t∏
j=1

∑
Aj∈τsj (nj)

∏sj
k=1(ajk − 1)!

(nj − 1)!

∏sj
k=1

∫
R
∏
i∈Ajk

g(Xi−θk)
pjg(Xi−θ∗j ) Q0(dθk)∫

R
∏
i∈Cj

g(Xi−θj)
pjg(Xi−θ∗j ) Q0(dθj)

1C(n) , for s > t. (S.6)

We start with the denominator. The next lemma specifies the behaviour of the maximum

for each group, where Xj
(r) denotes the r-th order statistic of XCj .

Lemma S.5. For every j = 1, . . . , t it holds

Y j
nj := min

[
1, nj(log(n))

1
2t {c+ θ∗j −X

j
(nj)
}
]
→ 1

in P (∞)-probability as n→∞.

Proof. First, notice that nj →∞ P (∞)-almost surely as n→∞. By definition Y j
nj ≤ 1, so

we have to prove that ∀ε > 0

P (∞)
(

1− Y j
nj > ε

)
→ 0

as nj →∞, where pr is evaluated with respect to P (∞). Without loss of generality assume

S.10



θ∗j = 0. Thus, by definition we have

P (∞)(1− Y j
nj > ε) = P (∞)

[
nj(log(n))

1
2t {c−Xj

(n)} ≤ 1− ε
]

= P (∞)

{
Xj

(n) ≥ c−
1− ε

nj(log(n))
1
2t

}

= 1−

1−
∫ c

c− 1−ε

nj(log(n))
1
2t

g(x) dx


n

.

Thus, by T1 we have that
∫ c
c− 1−ε

nj(log(n))
1
2t

g(x) dx ≤ M(1−ε)
nj(log(n))

1
2t

, so that

P (∞)(1− Y j
nj > ε) ≤ 1−

{
1− M(1− ε)

nj(log(n))
1
2t

}n
= 1− e

− M(1−ε)

(log(n))
1
2t

+nj o

(
1

nj(log(n))
1
2t

)
→ 0,

as n→∞, by the Taylor expansion of the logarithmic function. �

Lemma S.6. For every j = 1, . . . , t it holds

∏
i∈Cj

g(xi − θj)
g(xi)

≥ e−R1[0, 1
nj

](|θj − θ
∗
j |)1[xj

(nj)
−c,xj

(1)
+c]

(θj − θ∗j ).

with R defined in T2 and xj(r) denotes the r-th order statistic of xCj .

Proof. Without loss of generality assume θ∗j = 0. Define p(x) := logg(x), with x ∈ [−c, c],

so that p′(x) = g′(x)
g(x) . By T2 and the Fundamental Theorem of Integral Calculus

|p(y)− p(x)| =
∣∣∣∣∫ y

x
p′(t) dt

∣∣∣∣ ≤ ∫ y

x

∣∣∣∣g′(t)g(t)

∣∣∣∣dt ≤ R|y − x|, −c < x ≤ y < c.

Thus, we have

g(x− θj)
g(x)

= ep(x−θj)−p(x) = e−{p(x)−p(x−θj)} ≥ e−R|θj |, x ∈ [−c, c].

Finally, we get

∏
i∈Cj

g(xi − θj)
g(xi)

≥ e−Rnj |θj |1
[xj

(nj)
−c,xj

(1)
+c]

(θj) ≥ e−Rn|θj |1[0, 1
nj

](|θj |)1[xj
(nj)
−c,xj

(1)
+c]

(θj)

≥ e−R1[0, 1
nj

](|θj |)1[xj
(nj)
−c,xj

(1)
+c]

(θj).

�
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Lemma S.7. For every j = 1, . . . , t there exists K > 0 and Nj ∈ N such that for all

nj ≥ Nj it holds ∫
R

∏
i∈Cj

g(Xi − θj)
g(Xi − θ∗j )

q0(θj) dθj ≥
K

1
t Y j

nj

nj(log(n))
1
2t

,

with Y j
nj defined in Lemma S.5.

Proof. Without loss of generality assume θ∗j = 0. Notice that, by T4, there exists Nj ∈ N

such that q0(θ) ≥ L for every θ ∈
[
− 1
Nj
, 0
]
. Thus, applying Lemma S.6 and considering

nj ≥ Nj , we get

∫
R

∏
i∈Cj

g(Xi − θj)
g(Xi)

q0(θj) dθj ≥ e−R
∫
R
1[0, 1

nj
](|θj |)1[Xj

(nj)
−c,xj

(1)
+c]

(θj) q0(θj) dθj

≥ e−R
∫ 0

− 1
nj

1{Xj
(nj)
≤θj+c} q0(θj) dθj ≥ Le−R min

{
1

nj
, c−Xj

(nj)

}
,

with L defined in T4. Thus, multiplying both the numerator and the denominator by

nj(log(n))
1
2t , with n ≥ N , we have

∫
R

∏
i∈Cj

g(Xi − θj)
g(Xi)

q0(θj) dθj ≥ 2Le−R min

{
1

nj
, c−Xj

(nj)

}

≥
K

1
t min

[
1, nj(log(n))

1
2t {c−X(n)}

]
nj(log(n))

1
2t

=
K

1
2tYn

nj(log(n))
1
2t

,

with K = (2Le−R)t. �

Define the event

Ωn =
{

for every j = 1, . . . , t it holds: nj ≥ Nj , Y
j
nj ∈ [1/2, 1]

}
, (S.7)

such that P (n)(Ωn) → 1 thanks to Lemma S.5 and Lemma S.7. Thus, an upper bound of

(S.6) with Ωn in place of C(n) is given by

T (n) :=
2t
√

log(n)

K

∑
s

t∏
j=1

∑
Aj∈τsj (nj)

nj

∏sj
k=1(ajk − 1)!

(nj − 1)!

sj∏
h=1

∫
R

∏
i∈Ajh

g(Xi − θh)

g(Xi − θ∗j )
Q0(dθh)1Ωn ,

(S.8)

for s > t. Now we apply the expected value with respect to the values of each group, as

shown in the next lemma.
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Lemma S.8. Under X1:n ∼ P (n), for every j = 1, . . . , t, sj ≥ 1 and (θ1, . . . , θsj ) ∈ Rsj , we

have

E


sj∏
h=1

∫
Rsj

∏
i∈Ajh

g(Xi − θh)

g(Xi − θ∗j )
q0(θh) dθh

 ≤
(
U

m

)sj sj∏
h=1

1

ajh + 1
,

with m and U defined in T1 and T3.

Proof. Without loss of generality assume θ∗j = 0. Taking the expectation under P (n) we

have

E


∫
Rsj

sj∏
h=1

∏
i∈Ajh

g(Xi − θh)

g(Xi)
q0(θh) dθh

 =

∫
Rsj

∫
[−c,c]nj

sj∏
h=1

∏
i∈Ajh

g(xi − θh)q0(θh) dxi dθh,

(S.9)

By the change of variables z = x− θh, we have

∫ c

−c
g(x− θh)1[θh−c,θh+c](x) dx =

∫ c−θh

−c−θh
g(z)1[−c,c](z) dz.

If θh > 0, then

∫ c−θh

−c−θh
g(z)1[−c,c](z) dz = 1[0,2c](θh)

∫ c−θh

−c
g(z) dz

= 1[0,2c](θh)

(
1−

∫ c

c−θh
g(z) dz

)
≤ 1[0,2c](|θh|) (1−m|θh|) .

Similarly, if θh < 0 we get

∫ c−θh

−c−θh
g(z)1[−c,c](z) dz = 1[−2c,0](θh)

∫ c

−c−θh
g(z) dz

= 1[−2c,0](θh)

(
1−

∫ −c−θh
−c

g(z) dz

)
≤ 1[0,2c](|θh|) (1−m|θh|) .

Thus

∫ c

−c
g(x− θh)1[θh−c,θh+c](x) dx ≤ 1[0,2c](|θh|) (1−m|θh|) , h = 1, . . . , sj ,

which implies

sj∏
h=1

∏
i∈Ajh

∫ c

−c
g(x− θh)1[θh−c,θh+c](x) dx ≤

sj∏
h=1

1[0,2c](|θh|) (1−m|θh|) .
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Considering h defined as in T3, we have

∫
R
1[0,2c](|θh|) (1−m|θh|) q0(θh) dθh =

∫ 2c

0
(1−m|θh|)h(θh) dθh, h = 1, . . . , sj .

Combining the above with (S.9) we get

E


∫
Rsj

sj∏
h=1

∏
i∈Ajh

g(Xi − θh)

g(Xi)
q0(θh) dθh

 =

∫
Rsj

∫
[−c,c]nj

sj∏
h=1

∏
i∈Ajh

g(xi − θh)q0(θh) dxi dθh

≤
sj∏
h=1

∫ 2c

0
(1−m|θh|)h(θh) dθh.

(S.10)

With U defined as in T3, we have

∫ 2c

0
(1−my)a

j
hh(y) dy ≤ U

∫ 2c

0
(1−my)a

j
h dy.

Now consider the change of variables u = 1−my and compute

∫ 2c

0
(1−my)a

j
h dy =

1

m

∫ 1

1−2mc
ua

j
h du =

1− (1− 2mc)a
j
h+1

m(ajh + 1)
≤ 1

m(ajh + 1)
.

Finally, through (S.10), we have

E


∫
Rsj

sj∏
h=1

∏
i∈Ajh

g(Xi − θh)

g(Xi)
q0(θh) dθh

 ≤
sj∏
h=1

∫ 2c

0
(1−m|θh|)h(θh) dθh

≤
(
U

m

)sj sj∏
h=1

1

ajh + 1
,

as desired. �

S.5.1 Proof of Theorem 1

We have the next two technical lemmas.

Lemma S.9. Let p∗ = minj∈{1,...,t} pj ∈ (0, 1). It holds

∑
s∈S

s!∏t
j=1 sj !

=
∑
s

(
s

s1, . . . , st

)
≤ (p∗)−s,
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where S =
{

(s1, . . . , st) : sj ≤ nj and
∑t

j=1 sj = s
}

.

Proof. The result follows immediately from

∑
s∈S

(
s

s1, . . . , st

)
≤ (p∗)−s

∑
s∈S

(
s

s1, . . . , st

) t∏
j=1

p
sj
j

≤ (p∗)−s
∑
s∈Rt

(
s

s1, . . . , st

) t∏
j=1

p
sj
j = (p∗)−s,

where Rt =
{

(s1, . . . , st) :
∑t

j=1 sj = s
}

, since the sum on the right-hand side is the sum of

the probabilities over all the possible values of a multinomial distribution with parameters

(s, p1, . . . , pt). �

Lemma S.10. For every p > 1 and for every integers s ≥ 2 and n ≥ s it holds

∑
a∈Fs(n)

(
n∏s
j=1 aj

)p
< Cs−1

p ,

where Fs(n) =
{
a ∈ {1, . . . , n}s :

∑s
j=1 aj = n

}
and Cp = 2pζ(p), with ζ(p) =

∑∞
a=1

1
ap <

∞.

Proof. We prove the result by induction. Consider the base case s = 2. By the strict

convexity of x 7→ xp for p > 1 we have

∑
a∈F2(n)

(
n

a1a2

)p
=

n−1∑
a=1

{
n

a(n− a)

}p
= 2p

n−1∑
a=1

(
1

2

1

a
+

1

2

1

n− a

)p
< 2p

n−1∑
a=1

1

ap
< Cp,

for every n ≥ 2. For the induction step, assume that for some s ≥ 3 we have

∑
a∈Fs−1(n)

(
n∏s−1
j=1 aj

)2

< Cs−2
p

for all n ≥ s− 1. Then

∑
a∈Fs(n)

(
n∏s
j=1 aj

)p
=

n−s+1∑
as=1

∑
(a1,...,as−1)∈Fs−1(n−as)

(
n∏s
j=1 aj

)p

=

n−s+1∑
as=1

{
n

(n− as)as

}p ∑
(a1,...,as−1)∈Fs−1(n−as)

(
n− as∏s−1
j=1 aj

)p

S.15



≤ Cs−2
p

n−s+1∑
as=1

{
n

(n− as)as

}p
< Cs−1

p

and thus the thesis follows by induction. �

In the following we will drop the subscript in Cp when the value of p is clear from the

context, thus denoting C = Cp.

Lemma S.11. Consider the setting of (1) with (f, k, q0) as in Theorem 1. Moreover,

assume π(α) satisfies assumptions A1, A2, and A3. Then, under X1:∞ ∼ P (∞) we have

E

{
1Ωn

n−t∑
s=1

pr(Kn = t+ s |X1:n)

pr(Kn = t |X1:n)

}
→ 0

as n→∞, with Ωn as in (S.7).

Proof. Applying Lemma S.8 we can upper bound the expected value of T (n) in (S.8) as

follows

E
{
T (n)

}
≤

2t
√

log(n)

K

(
U

m

)s∑
s

t∏
j=1

∑
Aj∈τsj (nj)

nj

(nj − 1)!
∏sj
k=1(ajk + 1)

≤
2t
√

log(n)

K

(
U

m

)s∑
s

t∏
j=1

1

sj !

∑
aj∈Fsj (nj)

(
nj∏sj
k=1 a

j
k

)2

,

where the last inequality follows from Lemma 3. Moreover, from Lemma S.10 we have

∑
aj∈Fsj (nj)

(
nj∏sj
k=1 a

j
k

)2

< Csj ,

with constant C < 7. Thus

E
{
T (n)

}
≤

2t
√

log(n)

K

(
UC

m

)s∑
s

t∏
j=1

1

sj !
. (S.11)

Moreover, from Corollary S.1 and A3 we have

C(n, t, t+ s) ≤ GΓ(t+ β + 1)2ss

ε
E(αt+s−)log{n/(1 + ε)}−1

≤ DGΓ(t+ β + 1)2ss

ε
ρ−(t+s−1)Γ(ν + t+ s)log{n/(1 + ε)}−1, n ≥ 4 .

(S.12)
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By (S.11), combined with Lemma S.9, and (S.12) we finally have

E

{
1Ωn

n−t∑
s=1

pr(Kn = s+ t|X1:n)

pr(Kn = t|X1:n)

}
=

n−t∑
s=1

C(n, t, t+ s)E{1ΩnR(n, t, t+ s)}

≤
2tρ1−t(U/m)tDGΓ(t+ β + 1)

√
log(n)

Kεlog{n/(1 + ε)}

n−1∑
s=1

s(2CUp∗/m)sρ−sΓ(ν + t+ s)

(s+ 1)!︸ ︷︷ ︸
<∞

→ 0,

as n→∞, where finiteness follows by taking ρ sufficiently large. �

Proof of Theorem 1. First of all, assume π(·) satisfies A1−A3. By Lemma S.11 it holds

1Ωn

n−t∑
s=1

pr(Kn = t+ s |X1:n)

pr(Kn = t |X1:n)
→ 0

in P (∞)–probability as n → ∞. The desired result then follows from Lemma S.4 with

Zn =
∑n−t

s=1
pr(Kn=t+s |X1:n)

pr(Kn=t |X1:n) and Ωn as in (S.7).

Assume instead π(α) = δα∗(α) with α∗ > 0. By (S.5) we have

p(Kn = t+ 1 | X1:n)

p(Kn = t | X1:n)
≥ α∗

∑
s∈S

t∏
j=1

∑
Aj∈τsj (nj)

∏sj
k=1(ajk − 1)!

(nj − 1)!

∏sj
k=1m(X

Ajk
)

m(ACj )
.

Notice that, with n high enough, n1 > 1 almost surely. Then, denoting i ∈ C1, we consider

the special case

s = (2, 1, . . . , 1), A1
1 = {i}, A1

2 = AC1\{i},

and Aj = {ACj} for every j ≥ 2. Thus we can write

p(Kn = t+ 1 | X1:n)

p(Kn = t | X1:n)
≥ α∗

∑
i∈C1

1

n1 − 1

m(Xi)m
(
XC1\i

)
m
(
XCj

) . (S.13)

By T1 we have

m
(
XCj

)
=

∫
R

∏
j∈C1

g(Xj − θ)q0(θ) dθ

≤M
∫
R

∏
j∈C1\i

g(Xj − θ)q0(θ) dθ = Mm
(
XC1\i

)
.
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Moreover, by T4 there exists ε > 0 such that

m(Xi) =

∫
R
g(Xi − θ)q0(θ)dθ ≥ m

∫ θ∗1+ε

θ∗1−ε
q0(θ)dθ ≥ 2mLε.

Therefore, (S.13) becomes

p(Kn = t+ 1 | X1:n)

p(Kn = t | X1:n)
≥ 2α∗mLε

M

∑
i∈C1

1

n1 − 1
=

2α∗mLε

M

n1

n1 − 1
,

and

lim inf
n→∞

∑
s 6=t

p(Kn = s | X1:n)

p(Kn = t | X1:n)
≥ lim inf

n→∞

p(Kn = t+ 1 | X1:n)

p(Kn = t | X1:n)
≥ α∗mLε

M
> 0.

Then

lim sup
n→∞

pr(Kn = t | X1:n) = lim sup
n→∞

1 +
∑
s 6=t

pr(Kn = s | X1:n)

pr(Kn = t | X1:n)


−1

=
1

1 + lim infn→∞
∑

s 6=t
p(Kn=s|X1:n)
p(Kn=t|X1:n)

> 0,

which completes the proof. �

S.6 Proof of Proposition 1

We adapt the proof of Theorem 2.1 in Cai et al. (2021). Denote by

Ψ = {k(· | θ) : θ ∈ Θ ⊆ Rp}

the family of kernels, dominated by µ, either Lebesgue or counting measure, and with

common domain X ⊆ Rq. Denote with Bx(ε) the closed ball of center x ∈ X and radius

ε > 0. Let Θ̄ be the closure of Θ and define the set

B :=

{
θ̄ ∈ Θ̄\Θ : lim

θ→θ̄

{
sup
x
k(x | θ)

}
=∞

}
.

Let Gs be the set of mixtures of exactly s elements in Ψ, that is

f ∈ Gs ⇔ f =
s∑
j=1

qjk(· | θj),
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with qj > 0 for every j,
∑s

j=1 qj = 1 and θi 6= θh for every i 6= h. Let P(G) be the set

of probability measures on a generic space G; with a slight abuse of notation we will say

f ∈ P(G) when f is the density of a probability measure P ∈ P(G). Therefore, given

P ∈ Gt, with weights {pj}tj=1 and parameters {θ∗j}tj=1, we define the Kullback-Leibler

neighborhoods of P as

KLε(P ) :=

{
h ∈ P(X) :

∫
log

{∑t
j=1 pjk(x | θ∗j )

h(x)

}
P (dx) < ε

}
, (S.14)

for ε > 0. We make the following assumptions:

H1. For every θ̄ ∈ Θ\B, for µ-almost every x ∈ X there exists A := A(θ̄, x) ⊂ Θ\B

neighborhood of θ̄ so that the mapping θ ∈ A → k(x | θ) is continuous. Moreover B

is closed;

H2. Let {θi}∞i=1 ⊂ Θ. If ||θi|| → ∞ as i→∞, then for every compact set K ⊂ X,∫
K k(x | θi)µ(dx) → 0, as i → ∞. If θi → θ̄ ∈ B, then there exists x∗ ∈ X such that

k(· | θi)→ δx∗(·) weakly as i→∞;

H3. If f ∈ Gt, then there exist no f ′ ∈ Gs, with s < t, such that f(x) = f ′(x) µ-almost

surely;

H4. For every P ∈ Gt, t ≥ 1, with θ∗1, . . . , θ
∗
t belonging to the support of Q0, we have

pr(h ∈ Kε(P )) > 0 for every ε > 0, where h follows the prior distribution in (1).

Assumption H2 says that, when θ diverges or converges to elements in B, the kernel k de-

generates: it is satisfied for instance when the elements of θ are location or scale parameters.

H3 instead implies that the clustering problem is not ill-posed, in the sense that different

numbers of components always lead to different distribution. H4 finally requires that the

finite mixtures of the kernel k(· | θ) belongs to the Kullback-Leibler support of the prior.

They are all weak requirements, satisfied by the most common kernels. Next Lemma shows

that they are satisfied under assumptions B1−B3.

Lemma S.12. Suppose the kernel k(x | θ) satisfies assumptions B1−B3. Then H1−H4

are fulfilled.

Proof. Assumption H3 can be easily deduced from B1 and (6). As regards H1, since
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supθ∈Θ,x∈X k(x | θ) <∞, we have B = ∅. Moreover, fix θ̄ ∈ R. If x > θ + b, choose

A(θ̄, x) =

(
θ̄ − x− θ̄ − b

2
, θ̄ +

x− θ̄ − b
2

)
,

so that x > θ + b that implies k(x | θ) = 0 for every θ ∈ A(θ̄, x). Similarly, if x < θ + a,

choose

A(θ̄, x) =

(
θ̄ − θ̄ + a− x

2
, θ̄ +

θ̄ + a− x
2

)
.

Finally, if x ∈ (θ̄ + a, θ̄ + b), denoting d = min{θ̄ + b− x, x− θ̄ − a}, choose

A(θ̄, x) =

(
θ̄ − d

2
, θ̄ +

d

2

)
.

Then k(x | θ) = g(x−θ) for every θ ∈ A(θ̄, x) and g is continuous on (a, b), by B2. Thus we

can find the required neighborhood A(θ̄, x) for every x 6∈ {θ̄+ a, θ̄+ b}, that is for µ-almost

every x, since µ is the Lebesgue measure. Therefore H1 is satisfied.

H2 follows since θ is a location parameter and Θ̄ = Θ. We are left to show that H4 is

satisfied: we prove the case t = 1 and the general setting follows similarly.

Recall that assumptions B1−B3 can be rewritten as T1− T4 in the proof of Theorem

1 and let f(x) = k(x | θ∗) be the density function of P . Fix δ > 0, ε > 0 and denote

r = 1− exp(ε/4). Define the set

F(δ, r) :=

{
p(x) =

∞∑
j=1

qjk(x | θj) : q1 ∈ [1− r, 1], q2 ∈ [r/2, 1],

0 ≤ θ∗ − θ1 ≤ δ, 0 ≤ θ2 − θ∗ ≤ δ
}
.

(S.15)

We denote [aj , bj ] := [a + θj , b + θj ], with j ≥ 1, and similarly [a∗, b∗] := [a + θ∗, b + θ∗].

Then we can choose δ small enough such that

[a1, b1] ∪ [a2, b2] ⊇ [a∗, b∗],

for every θ1 and θ2 as in (S.15). Moreover, for every x ∈ S1 := [a1, b1] ∩ [a∗, b∗] we have

log

{
g(x− θ∗)
q1g(x− θ1)

}
= −log(q1) + log

{
g(x− θ∗)
g(x− θ1)

}
≤ ε/4 + log

{
g(x− θ∗)
g(x− θ1)

}
≤ ε/4 +R|θ∗ − θ1|
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with R > 0 as in T2. Therefore we can choose δ small enough so that

log

{
g(x− θ∗)
q1g(x− θ1)

}
<
ε

2
(S.16)

for every x ∈ S1. Similarly, we can choose δ small enough so that for every x ∈ S2 :=

[a∗, b∗] \ [a1, b1] we have

∫
S2

g(x− θ∗)log

{
g(x− θ∗)
q2g(x− θ2)

}
dx <

ε

2
. (S.17)

Indeed, since g(x− θ∗) ≤M and m ≤ g(x− θ2) for every x in S2, with m and M as in T1,

we have

g(x− θ∗)log

{
g(x− θ∗)
q2g(x− θ2)

}
< M log{2M/(mr)},

and S2 has arbitrarily small length with δ small enough. For every p ∈ F(δ, r), by applying

(S.16) and (S.17), we have

∫ b∗

a∗
g(x− θ∗)log

{
g(x− θ∗)∑∞

j=1 qjg(x− θj)

}
dx =∫

S1

g(x− θ∗)log

{
g(x− θ∗)∑∞

j=1 qjg(x− θj)

}
dx+

∫
S2

g(x− θ∗)log

{
g(x− θ∗)∑∞

j=1 qjg(x− θj)

}
dx ≤∫

S1

g(x− θ∗)log

{
g(x− θ∗)
q1g(x− θ1)

}
dx+

∫
S2

g(x− θ∗)log

{
g(x− θ∗)
q2g(x− θ2)

}
dx ≤ ε.

Thus, F(δ, r) ⊆ Kε(P ) for δ small enough. Moreover, since θ∗ belongs to the support of Q0

and the Dirichlet process prior has full weak support on the space of probability weights

{qj}j , we have that

pr{h ∈ Kε(P )} ≥ pr{h ∈ F(δ, r)} > 0,

as desired. �

The proof of Proposition 1 will rely on the following Lemma.

Lemma S.13. Let assumption H4 be satisfied and let P ∈ Gt with parameters θ∗1, . . . , θ
∗
t

belonging to the support of Q0. Assume there exists U weak neighborhood of P such that

U ∩Gs = ∅ for every s < t. Then

pr (Kn < t | X1:n)→ 0,
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in P (∞)-probability as n→∞.

Proof. By assumption H4, the posterior distribution is consistent at P under the weak

topology, in virtue of Schwartz theorem (see e.g.Theorem 6.16 and Example 6.20 in Ghosal

and Van Der Vaart (2017)), so that

pr(h ∈ Uc | X1:n)→ 0, (S.18)

in P (∞)-probability as n→∞. Moreover, we have

pr(h ∈ Uc | X1:n) ≥ pr(h ∈ Uc | X1:n,Kn < t)pr (Kn < t | X1:n) .

Notice that, conditional on Kn < t, the domain of the posterior distribution is a subset of

∪s<tGs. Thus we have pr(h ∈ Uc | X1:n,Kn < t) = 1 and

pr(h ∈ Uc | X1:n) ≥ pr (Kn < t | X1:n) .

The result follows from (S.18). �

We need two technical Lemmas.

Lemma S.14. Assume a sequence {fi}∞i=1 ⊂ ∪s<tGs is such that fi → f ∈ P(X) weakly as

i → ∞. Then there exist s′ < t and a sequence {f ′i}∞i=1 ⊂ Gs′ such that f ′i → f weakly as

i→∞.

Proof. Define

as := sup{i ≥ 1 : fi ∈ Gs}

with s < t. By construction, there exists s′ such that as′ =∞ and {f ′i} is the subsequence

of elements of {fi} that belong to Gs′ . �

Lemma S.15. Let
{
fi =

∑s
j=1 qj,ik(· | θj,i)

}∞
i=1
⊂ Gs be such that fi → f ∈ P(X) weakly

as i → ∞. Then there exist s′ ≤ s and a sequence {f ′i}∞i=1 ⊂ Gs′ such that f ′i → f weakly

as

i→∞ and

lim inf
i
q′j,i > 0

for every j = 1, . . . , s′.
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Proof. If lim infi qj,i = 0 for every j = 1, . . . , s, the statement is true by taking s := s′ and

f ′i := fi for every i ≥ 1. Then assume there exists l such that lim infi ql,i = 0. Consider a

subsequence {f̃i}∞i=1, with weights {q̃j,i}i and parameters {θ̃j,i}i, such that limi q̃l,i = 0 and

define

f ′i(x) =
∑
j 6=l

q̃j,i∑
r 6=l q̃r,i

k(x | θ̃j,i),

where
∑

r 6=l q̃r,i → 1, by construction. Let A ⊂ X, then

∣∣∣∣∫
A
f̃i(x)µ(dx)−

∫
A
f ′i(x)µ(dx)

∣∣∣∣ =
∑
j 6=l

(
q̃j,i∑
r 6=l q̃r,i

− q̃j,i

)∫
A
k(x | θ̃j,i)µ(dx)

+ q̃l,i

∫
A
k(x | θ̃l,i)µ(dx) ≤

∑
j 6=l

(
q̃j,i∑
r 6=l q̃r,i

− q̃j,i

)
+ q̃l,i → 0,

as i → ∞. Therefore, since A is arbitrary and {f̃i} converges to f , also {f ′i} converges

weakly to f and {f ′i}∞i=1 ∈ Gs−1. The result follows by applying recursively the above

procedure for every l satisfying lim infi ql,i = 0. �

Proof of Proposition 1. By Lemma S.12 we can assume H1 − H4 and by Lemma S.13, it

suffices to prove the existence of a weak neighborhood U of P such that U ∩ Gs = ∅, for

every s < t. Assume by contradiction that no such U exists. Then, there exists a sequence

{fi} ∈ ∩s<tGs such that fi → f weakly, as i→∞, where f is the density of P . By Lemmas

S.14 and S.15 we can assume without loss of generality that {fi} ∈ Gs, with s < t, and

lim infi qj,i > 0 for every j = 1, . . . , s. We will consider three scenarios, of which at least one

must hold: (i) there exists l ∈ {1, . . . , s} such that lim supi ||θl,i|| = ∞, (ii) the sequences

{θj,i}∞i=1, with j = 1, . . . , s, belong to a compact set C ⊂ Θ\B for i large enough, (iii) the

sequences {θj,i}∞i=1, with j = 1, . . . , s, belong to a compact set C ⊂ Θ and there exists

l ∈ {1, . . . , s} such that lim infi infθ∈B ||θl,i − θ|| = 0.

First consider case (i) and assume there exists 1 ≤ l ≤ s such that ||θl,r(i)|| → ∞ as

i→∞ for a suitable subsequence r(i). Fix 0 < ε < lim infi ql,i and choose K ⊂ X compact

set such that P (K) > 1− ε/4. By assumption H2 we have

∫
Kc

fr(i)(x)µ(dx) > ql,r(i)

∫
Kc

k(x | θl,r(i))µ(dx) >
ε

2
,

for i large enough, which contradicts the weak convergence of {fi}∞i=1 to f .
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Second, assume to be in case (ii) and there exists a compact set C ⊂ Θ\B such that

θi,j ∈ C for every i ≥ 1 and j = 1, . . . , s. Define the set

Ds :=

ν(dθ) =
s∑
j=1

qjδθj (dθ) : θj ∈ C, qj > 0,
s∑
j=1

qj = 1

 ⊂ P(Θ).

Since C is compact, we have that Ds is tight. By Prokhorov’s Theorem Ds is also relatively

compact, so that there exists a subsequence r(i) such that

νr(i) =

s∑
j=1

qj,r(i)δθj,r(i) → ν ∈ P(Θ)

weakly as i→∞. By Lemma 4.1 in Cai et al. (2021) we have ν ∈ Ds, so that ν =
∑s

j=1 q̃jδθ̃j

for some q̃j ∈ (0, 1),
∑s

j=1 q̃j = 1 and θ̃j ∈ C, for j = 1, . . . , s. By H1 and C ⊂ Θ\B, for

µ-almost every x ∈ X, we can find Cj := Cj(x, θ̃j), with j = 1, . . . , s, closed neighborhood of

θ̃j , so that k(x | θ) is continuous as a function of θ, with θ ∈ Cj . Define D :=
{⋃s

j=1Cj

}
∩C

compact set: notice that D 6= ∅, since θ̃j ∈ C ∩ Cj , with j = 1, . . . , s. Moreover, by

construction, the mapping θ ∈ D → k(x | θ) is continuous and therefore bounded, since D

is compact. Since νi → ν weakly, as i → ∞, there exists I such that for every i ≥ I we

have θj,r(i) ∈ D, for every j = 1, . . . , s. Thus, by definition of weak convergence we have

s∑
j=1

qj,r(i)k(x | θj,r(i)) =

∫
k(x | θ)νr(i)(dθ)→

∫
k(x | θ)ν(dθ) =

s∑
j=1

q̃jk(x | θ̃j),

as i → ∞. Since almost sure pointwise convergence of densities implies weak convergence,

we have

fr(i) → f̃ =

s∑
j=1

q̃jk(· | θ̃j)

weakly as i→∞. By uniqueness of the weak limit, f̃(x) = f(x) for µ-almost every x, that

contradicts H3.

Third, consider case (iii). Since θj,i ∈ C ⊂ Θ compact set, for every j = 1, . . . , s and

i ≥ 1, there exists a suitable subsequence r(i) such that θl,r(i) → θ̄. Since B is closed by H1,

we have that θ̄ ∈ B. By definition of B, this is not possible if µ is the counting measure,

since k(x | θ) ≤ 1, for every x ∈ X and θ ∈ Θ. Thus, let µ be the Lebesgue measure. Then
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we can fix ε > 0 such that

P (Bx∗(ε)) <
lim infi ql,i

4
,

with x∗ as in H2. Then by H2 we have

∫
Bx∗ (ε)

fr(i)(x)µ(dx) > ql,r(i)

∫
Bx∗ (ε)

k(x | θl,r(i))µ(dx) >
lim infi ql,i

2
,

for i large enough, that again contradicts the weak convergence of {fi}∞i=1 to f . �

S.7 Proof of Theorem 2

The marginal distribution is available and given by the following lemma.

Lemma S.16. Consider k and q0 as in (8). Then it holds

m(x1:n) =
2c− {max(x1:n, θ

∗)−min(x1:n, θ
∗)}

(2c)n+1
, (x1:n ∈ [θ∗ − c, θ∗ + c]n).

Proof. Note that xi ∈ (θ − c, θ + c) for all i ∈ {1, . . . , n} if and only if θ ∈ (max(x1:n) −

c,min(x1:n) + c). Thus

m(x1:n) =
1

(2c)n+1

∫
Θ

n∏
i=1

1(θ−c,θ+c)(xi)1(θ∗−c,θ∗+c)(θ)dθ

=
1

(2c)n+1

∫
Θ
1(max(x1:n)−c,min(x1:n)+c)(θ)1(θ∗−c,θ∗+c)(θ)dθ

=
2c− {max(x1:n, θ

∗)−min(x1:n, θ
∗)}

(2c)n+1
.

�

Define Range(XA) = maxi∈A (Xi)−mini∈A (Xi). Lemma S.16 has an important corol-

lary, that is stated after a technical lemma.

Lemma S.17. Let A ⊂ {1, . . . , n} such that |A| = a, Then it holds:

2c− {max(XA, θ
∗)−min(XA, θ

∗)}
(2c)a+1

≤ 2c− Range(XA)

(2c)a+1
.

Proof. The result follows immediately from max(XA, θ
∗) ≥ max(XA) and min(XA, θ

∗) ≤

min(XA). �
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Corollary S.2. In the setting of (1) with (f, k, q0) as in (8), define

Ωn = {x ∈ X∞ : max(x1:n) ≥ θ∗ and min(x1:n) ≤ θ∗}. Then

∏s+1
j=1m(XAj )

m(X1:n)
1Ωn(X1:∞) ≤

∏s+1
j=1{2c− Range(XAj )}

(2c)s{2c− Range(X1:n)}
, (S.19)

for every A ∈ τs+1(n) .

Proof. As regards the numerator, apply firstly Lemma S.16 and then Lemma S.17 to get

m(XAj ) =
2c− {max(XAj , θ

∗)−min(XAj , θ
∗)}

(2c)aj+1 ≤
2c− Range(XAj )

(2c)aj+1 , j = 1, . . . , s+ 1 .

Apply Lemma S.16 to m(x1:n) for every x ∈ Ωn, to get

m(X1:n)1Ωn(X1:∞) =
2c− {max(X1:n, θ

∗)−min(X1:n, θ
∗)}

(2c)n+1
1Ωn(X1:∞)

=
2c− {max(X1:n)−min(X1:n)}

(2c)n+1
1Ωn(X1:∞),

as desired. �

The lemma below shows that, in order to prove Theorem 2, it is sufficient to show

1Ωn(X1:∞)
∑n−1

s=1
pr(Kn=s+1|X1:n)

pr(Kn=1|X1:n) → 0 in P (∞)-probability.

Lemma S.18. Consider f as in (8) and define Ωn = {x ∈ X∞ : max(x1:n) ≥ θ∗ and min(x1:n) ≤ θ∗}.

Let {Yn} be a sequence of positive random variables. Thus, Yn1Ωn(X1:∞) → 0 in P (∞)-

probability implies Yn → 0 in P (∞)-probability.

Proof. First of all, by definition of f we have

max(X1:n)→ θ∗ + c, min(X1:n)→ θ∗ − c

almost surely with respect to P (∞) as n → ∞. Then P (∞)(Ωn) → 1, as n → ∞, by

definition of Ωn. Thus, fix ε > 0 and notice that

P (∞) (Yn > ε) = P (∞) {(Yn > ε) ∩ Ωn}+ P (∞) {(Yn > ε) ∩ Ωc
n} .

The first term on the right-hand side goes to 0, since Yn1Ωn(X1:∞)→ 0 in P (∞)-probability,

while the second vanishes because P (∞)(Ωc
n)→ 0, both as n→∞. �
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Combining Corollary S.2 and Lemma S.18 we are ready to prove Theorem 2.

Proof of Theorem 2. For every s ≥ 1 and A ∈ τs(n), from Corollary S.2 we have

∏s
j=1m(XAj )

m(X1:n)
1Ωn(X1:∞) ≤

∏s
j=1{2c− Range(XAj )}

(2c)s−1{2c− Range(X1:n)}
.

Note that {2c−Range(XAj )}/(2c) ∼ Beta(2, aj − 1) independently for j = 1, . . . , s. More-

over, recall that if Z ∼ Beta(α, β) then for p > −α

E(Zp) =
Γ(α+ p)Γ(α+ β)

Γ(α+ p+ β)Γ(α)
.

Thus, by Hölder’s inequality with exponents 3 and 3/2 we get

E

{∏s
j=1m(XAj )

m(X1:n)

}
≤ E


s∏
j=1

m(XAj )
3


1/3

E
{
m(X1:n)−3/2

}2/3

=

{
Γ(5)

Γ(2)

}s/3{Γ(1/2)

Γ(2)

}2/3{ s∏
j=1

Γ(1 + aj)

Γ(aj + 4)

}1/3{ Γ(1 + n)

Γ(n− 1/2)

}2/3

.

By the recursive definition of the Gamma function and recalling that Γ(1/2) = π1/2, the

upper bound above becomes

E

{∏s
j=1m(XAj )

m(X1:n)

}
≤ 24s/3π1/3

{ s∏
j=1

Γ(1 + aj)

Γ(aj + 4)

}1/3{ Γ(1 + n)

Γ(n− 1/2)

}2/3

= 24s/3π1/3

{ s∏
j=1

1

(aj + 3)(aj + 2)(aj + 1)

}1/3{(n− 1/2)Γ(1 + n)

Γ(n+ 1/2)

}2/3

.

Moreover, exploiting again the recursive definition of the Gamma function, Gautschi’s In-

equality, i.e. Γ(1+n)
Γ(n+1/2) ≤ (n+ 1)1/2, and (n+ 1)/(aj + 1) < n/aj , we have

E

{∏s
j=1m(XAj )

m(X1:n)

}
≤ 24s/3K

{ s∏
j=1

(n+ 1)3

(aj + 1)3

}1/3

≤ 24s/3K

(
n3∏s
j=1 a

3
i

)1/3

= 24s/3K
n∏s
j=1 aj

.

Thus, applying Lemma 3 and Lemma S.10 with p = 2 and C = 4ζ(2) < 7 we get

E{R(n, 1, s)} ≤ 24s/3K

s!

∑
a∈Fs(n)

(
n∏s
j=1 aj

)2

<
Cs−124s/3K

s!
,
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where R(n, 1, s) is defined as in (11). From Corollary S.1 we have

C(n, 1, s+ 1) ≤ GΓ(2 + β)2ss

ε
E(αs)log{n/(1 + ε)}−1, n ≥ 4 .

Thus, combining the inequalities above with (11) and assumption A3 we have

E

{
1Ωn(X1:∞)

n−1∑
s=1

pr(Kn = s+ 1|X1:n)

pr(Kn = 1|X1:n)

}
=

n−1∑
s=1

C(n, 1, s+ 1)E{1Ωn(X1:∞)R(n, 1, s+ 1)}

≤ 241/3DGKΓ(2 + β)

εlog{n/(1 + ε)}

n−1∑
s=1

s(2C241/3)sρ−sΓ(ν + s+ 1)

(s+ 1)!︸ ︷︷ ︸
<∞

→ 0 as n→∞ ,

where finiteness follows from ρ ≥ 38 > 241/3 × 2C. This implies that

n−1∑
s=1

pr(Kn = s+ 1|X1:n)

pr(Kn = 1|X1:n)
→ 0

in L1 and thus in P (∞)-probability as n→∞. Lemma S.18 with Yn =
∑n−1

s=1
pr(Kn=s+1|X1:n)

pr(Kn=1|X1:n)

concludes the proof. �

S.8 Proof of Theorem 3

We first need the following result.

Lemma S.19. Let k and q0 be as in (9) and x1 = · · · = xn = θ∗ for some θ∗ ∈ R. Then

∏s
j=1m(xAj )

m(x1:n)
=

{
n+ 1∏s

j=1(aj + 1)

}1/2

exp

{
θ∗2

2

(
− n2

n+ 1
+

s∑
j=1

a2
j

aj + 1

)}
<

(
n∏s
j=1 aj

)1/2

,

for every s = 1, . . . , n and every partition A = {A1, . . . , As} ∈ τs(n).

Proof. Since the marginal likelihood can be rewritten as

m(xAj ) = (aj + 1)−1/2q0(θ∗)aj exp

{
θ∗2

2

a2
j

aj + 1

}
,
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the first equality is obtained. The inequality follows from

− n2

n+ 1
+

s∑
j=1

a2
j

aj + 1
= n− n2

n+ 1
+

s∑
j=1

(
a2
j

aj + 1
− aj

)
=

n

n+ 1
−

s∑
j=1

aj
aj + 1

=

=
s∑
j=1

aj

(
1

n+ 1
− 1

aj + 1

)
≤ 0

and
n+ 1∏s

j=1(aj + 1)
≤ n∏s

j=1 aj
,

which easily follows from aj ≤ n, for every j = 1, . . . , s. �

Proof of Theorem 3. First, we study R(n, 1, s) as defined in (11). Since all the observations

are almost surely equal, we have

R(n, 1, s) =
∑

a∈Fs(n)

n

s!
∏s
j=1 aj

∏s
j=1m(XAa

j
)

m(X1:n)
,

where Aa is an arbitrary partition in τs(n) such that |Aa
j | = aj for j = 1, . . . , s. By

application of Lemma S.19 and Lemma S.10 with p = 3/2, it turns out that the constant

C = 2
3
2 ζ
(

3
2

)
< 8 is such that

R(n, 1, s) <
1

s!

∑
a∈Fs(n)

(
n∏s
j=1 aj

)3/2

<
Cs−1

s!
.

From Corollary S.1 we have

C(n, 1, s+ 1) ≤ GΓ(2 + β)2ss

ε
E(αs)log{n/(1 + ε)}−1, n ≥ 4 . (S.20)

Thus, combining the inequalities above with (11) and assumption A3 we have

n−1∑
s=1

pr(Kn = s+ 1|X1:n)

pr(Kn = 1|X1:n)
=

n−1∑
s=1

C(n, 1, s+ 1)R(n, 1, s+ 1)

≤ DGΓ(2 + β)

εlog{n/(1 + ε)}

n−1∑
s=1

s(2C)sρ−sΓ(ν + s+ 1)

(s+ 1)!︸ ︷︷ ︸
<∞

→ 0 as n→∞ ,

(S.21)

where the finiteness follows from ρ > 16 > 2C. Then we conclude applying a variation of
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Lemma 2 with equalities and limits in probability replaced by almost sure equalities and

limits (the proof of Lemma 2 extends trivially to that case). �

S.9 Proof of Proposition 2

Proof. Under (1), for every ε > 0 we have

pr(α < ε | X1:n) =

n∑
s=1

pr(α < ε | Kn = s) pr(Kn = s | X1:n) =

≥ pr(α < ε | Kn = t) pr(Kn = t | X1:n).

By assumption, pr(Kn = t | X1:n) → 1 in P (∞)-probability as n → ∞. Moreover, by

Proposition 3 with s = 1 we get

E(α | Kn = t) = C(n, t, t+ 1)→ 0,

as n→∞. It follows pr(α < ε | Kn = t)→ 1 in P (∞)-probability as n→∞, as desired. �
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