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Abstract

We provide a characterization result for the problem of centralized allocation of

indivisible objects in multiple markets. Each market may be interpreted either as a

different type of object or as a different period. We show that every allocation rule that

is strategy-proof, Pareto-effi cient and nonbossy is a sequential dictatorship. The result

holds for an arbitrary number of agents and for any preference domain that contains

the class of lexicographical preferences.
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1 Introduction

A central planner often faces the task of distributing indivisible objects to the agents. For

example, municipalities assign public houses to families, education departments allocate

students to public schools, and firms allocate projects among workers. The problem of

assigning indivisible objects to agents when monetary transfers are not allowed has been

widely studied from many different perspectives. Pápai (2000), in particular, shows that

the only way to implement a Pareto-effi cient allocation with a rule that is strategy-proof,
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nonbossy and reallocation-proof is through the use of a hierarchical exchange rule.1 Pycia and

Ünver (2011) further show that the only rules that are strategy-proof, nonbossy and Pareto-

effi cient are the trading cycles rules. Not only are these results of theoretical importance,

but they also provide important guidance for practitioners and policy makers.2

We study the centralized allocation problem that takes place in multiple markets, where

each market may be interpreted either as a different type of object or as a different period.

Indeed, in reality agents are often involved in more than one assignment problem at one

time; people who participate in the allocation of public housing, for example, might also

have their children enrolled in public schools. In the US there are more than one thousand

federally-funded benefit and assistance programs, many of which involve the assignment of

indivisible objects. Moreover, a single family may be eligible for many of these programs

at the same time.3 In Brazil there is a comprehensive social program called Bolsa Familia,

which is a conditional cash transfer program that benefits over 11 million families. The

Bolsa Familia unified several separate clearinghouses that were already in place. Precisely, it

unified the following existing social programs National School Allowance Program, the Food

Card Program, the Food Allowance Program, and the Child Labor Eradication Program.4

Additionally, our results apply to dynamic matching problems. One example of dynamic

matching previously studied in the literature is the allocation of new physicians in the United

Kingdom, where each young doctor applies for two successive positions: a medical post and

a surgical post (Roth, 1991; Irving, 1998). Another illustrative example is the allocation of

courses among the faculty of a department in which each professor teaches one undergraduate

and one graduate course. The important market design problem known as the school choice

problem might be studied as a dynamic matching problem if (i) student mobility is taken

1A hierarchical exchange rule is a generalization of the top trading cycles allocation rule and can be
described as follows. In the first stage, the planner distributes the objects to the agents; in particular,
some agents might receive multiple objects while others might receive none. Then, the top trading cycles
algorithm is applied, with each agent pointing to her preferred object and each object pointing to its owner.
The agents who form a cycle receive the objects they pointed to. The non allocated objects whose owners
left in the first stage are inherited by the remaining agents and the top trading cycles algorithm is applied
again. The procedure is repeated until all agents are assigned an object.

2For example, on April 16, 2012, it was announced that the New Orleans Recovery School District would
utilize a version of the top trading cycles allocation rule as the allocation rule for the centralized enrollment
of children in public schools (Vanacore, 2012).

3The website benefits.gov (formerly GovBenefits.gov) is a partnership of seventeen federal agencies as
well as other governmental agencies that provides a centralized source of information for many of these
assistance programs.

4More details can be obtained directly from the offi cial website:
http://www.planalto.gov.br/ccivil_03/_ato2004-2006/2004/lei/l10.836.htm
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into account, or (ii) sibling priorities are considered. Finally, Kennes et al. (2014) introduced

the dynamic matching problem of allocating young children to public day care centers.

In our model, there are n agents and two (or more) markets, and each agent must be

assigned at most one object from each market. Agents have preferences over the different

bundles, where a bundle is a vector consisting of one object per market. We restrict our

attention to the cases in which markets are independent, by which we mean that the set of

objects available in a particular market is exogenous and not affected by the other markets.

In environments with multiple markets, there might be scope for a mutually beneficial

trade between agents even if the allocation is Pareto-effi cient within each market. This raises

the question of our paper: how to implement a Pareto-effi cient outcome in a multiple-market

problem?

In our main result (Theorem 2) we show that the set of rules that are strategy-proof and

nonbossy and that implement a Pareto-effi cient allocation are the sequential dictatorships.

These rules generalize the serial dictatorship rule in that the order of the agents who choose

the objects might be a function of the choices made previously by the other agents.5 Despite

its wide use in the literature, we feel that it is important to justify the use of the nonbossyness

axiom in our formulation. First, a rule that fails this axiom is susceptible to coalitional

deviations, implying that it might be problematic for implementing it. In addition, from a

normative point of view, a bossy mechanism might be considered as unfair, since an agent

might be able to dictate others’allocations without changing her own allocation.

We first introduce a novel class of preferences, which we call (generalized) lexicographic

preferences. We then prove that our result holds for any preference domain that includes

the domain of lexicographic preferences. In particular, it holds for the class of separable

preferences, a widely used domain when agents demand more than one object. By using the

class of lexicographic preferences we are able to contrast our results more sharply with Pycia

and Ünver (2011)’s result on single market allocations. In our preference domain, all objects

from all markets are ranked for each individual under a single ranking. This means that

the cardinality of the set of preferences in our multi-market environment is slightly smaller

than the one in a single market case which pools the objects from all the markets. Thus, the

fact that our set of rules is much narrower than in the single market case is not due to the

increased cardinality of the domain of preferences, but it follows from the specific feature of

5In the single-market case, the sequential dictatorship rules are special cases of Pápai’s (2000) hierarchical
exchange rules.
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multiple markets that each individual demands more than one object. From the technical

perspective, we believe that the domain of lexicographical preferences will be useful in other

studies in which agents demand more than one objects, due to the tractability of this class

of preferences.

This paper is related to the literature on centralized allocation of multiple objects. Pápai

(2001), Ehlers and Klaus (2003), and Hatfield (2009) also obtain the same characterization

result as ours, but in different settings. Hatfield (2009) studies a model in which each agent

must be allocated an exact number of objects, which he refers to as fixed quotas, from one

pool of objects. Our model is related to Hatfield’s work in the sense that two markets in our

model might be interpreted as a quota of two goods for every individual. However, in our

setting any two objects that an individual can be allocated must be drawn from different

pool of objects. In addition, the smallest domain the above-mentioned studies consider is

the one of separable preferences. Our domain of lexicographical preferences is smaller than

that of separable preferences.

To the best of our knowledge, this is the first paper that provides a complete characteriza-

tion of centralized allocation in multiple markets without an endowment structure. Konishi

et al. (2001) considered the multi-type allocation problem,6 but in their work each agent is

initially endowed with one object—as in the economy proposed by Shapley and Scarf (1974).

Konishi et al. (2001) show that the core may be empty in these multi-type Shapley-Scarf

economies and also that there are no Pareto-effi cient, individually rational, and strategy-

proof rules. Here, since we do not assume an initial endowment structure, we do not impose

the individual rationality constraint, which plays a crucial role in their results.

Nguyen et al. (2014) work on a similar problem of allocating multiple objects—from dif-

ferent markets—to different agents. They provide a mechanism, which generalizes the Prob-

abilistic Serial mechanism (see Bogomolnaia and Moulin (2001)) by having the mechanism

return probability shares over the different bundles. They prove that their mechanism is

effi cient, envy-free and asymptotically strategy-proof. While their matching model is more

general than ours, their axioms are not the same as ours, in particular they focus on asymp-

totic strategy-proofness, for example.

This paper is organized as follows. In the following section we describe the model and

state its main assumptions. In Section 3, we describe and define an allocation rule and its

6See Klaus (2008) for further reference.
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main properties. In Section 4, we describe the sequential dictatorship. We prove our main

result (Theorem 2) in Section 5. Finally, we conclude the paper in Section 6. In the Appendix

we include the proof of the special case of two agents and two goods in each market as well

as the general proof of Theorem 2 for the case in which the number of agents is greater than

two.

2 Model

Let N = {1, · · · , n}, where n < ∞, be the set of agents. There are two types of indivisible
objects, A and B, which also stand for the respective sets of objects types. We refer to a

pair (a, b) ∈ A × B as a bundle. For convenience, we assume that an artificial null object,

0, is in both sets A and B. Throughout the paper, we assume that |A \ {0}| ≥ n and

|B \ {0}| ≥ n, i.e., there are enough A- and B-objects to distribute to the agents. An

allocation x = (x1, · · · , xn) is a list of the assignments for the n agents, where xi ∈ A × B.
If xi = (a, b), then agent i is assigned the bundle (a, b). We write xAi (x

B
i ) to denote the

A-object (B-object) that agent i obtains under allocation x. We refer to xA = (xAi )i∈N and

xB = (xBi )i∈N as the A- and B-allocation, respectively. An allocation x is feasible if no object

(except the null object) is assigned to more than one agent. Similarly, we define feasible A-

and B-allocations. Let X stand for the set of all feasible allocations. The notations XA and

XB stand for the sets of feasible A- and B -allocations, respectively.

Each agent i has a preference relation Ri over A×B, and R = (Ri)i∈N is the preference

profile of the agents. We use the conventional notation R−i to denote (Rj)j 6=i. Throughout

the paper we will maintain the following two assumptions on preferences:

Assumption 1 (Strictness). Each agent’s preference relation Ri is strict, i.e., the conditions

(a, b)Ri(â, b̂) and (â, b̂)Ri(a, b) together imply that (a, b) = (â, b̂).

Assumption 2 (Desirability). For any (a, b) 6= (0, 0) and i ∈ N , (a, b)Ri(0, 0).

We use the notation R = Πi∈NRi, where Ri stands for the set of all preference relations

for agent i that satisfy Assumptions 1 and 2.7 Clearly, R is a very big preference domain,

and we will later place some restrictions and concentrate on preference domains that are

7Although Ri is common for all the agents, we are using the notations Ri and R to keep them consistent
with the notations Ri and R.

5



subsets of R. Any domain R̄ we will consider will be assumed to be a Cartesian product of
agents’preference domains, i.e., R̄ satisfies that R̄ = Πi∈NR̄i where R̄i ⊆ Ri.

The following preference domain—that of separable preferences— is widely used in the

literature when agents demand more than one object.

Definition 1 (Separability). A preference relation, Ri, is separable if there exists a function

ui : A ∪B → R such that

(a, b)Ri(â, b̂) for some a, â ∈ A and b, b̂ ∈ B if and only if ui(a) + ui(b) ≥ ui(â) + ui(b̂).

The domain of separable preference profiles, denoted by RSP , consist of all the separable

preference profiles.

The domain of separable preferences rules out complementarity between A- and B-

objects. For any separable preference relation Ri ∈ RSP
i , one can define two (strict) prefer-

ence relations, RA
i and R

B
i . The A-preference relation R

A
i is defined over A, and aR

A
i a
′ holds

only if (a, b)Ri (a
′, b), for ∀b ∈ B. The B-preference relation RB

i is defined in a similar man-

ner. For any R̄ ⊆ RSP , we denote the corresponding sets of A- and B-preference relations

by R̄A and R̄B, respectively.

Although the domain of separable preferences has a very specific structure, it is signifi-

cantly larger than the domain of preferences over single objects in A∪B. We seek a domain
of preferences in which its each member is unambiguously defined by a list of objects in

A ∪B. Below we define the class of preferences that we will concentrate.

Definition 2 (Generalized lexicographical preference). A preference relation of agent i,

Ri, is a (generalized) lexicographical preference if there exists a bijection ηi : A ∪ B →
{1, 2, · · · , |A∪B|}, which we call a lexicographical ordering, such that whenever (a, b)Ri(ā, b̄)

for some (a, b), (ā, b̄) ∈ A×B, one of the following conditions is satisfied:
(i) min{ηi(a), ηi(b)} < min{ηi(ā), ηi(b̄)}; or
(ii) min{ηi(a), ηi(b)} = min{ηi(ā), ηi(b̄)}& max{ηi(a), ηi(b)} ≤ max{ηi(ā), ηi(b̄)}.

If the preference relation of agent i is lexicographical, then we use the notation Li to

denote i’s preference relation. The notation (a, b)Li(ā, b̄) means that either agent i (strictly)

prefers (a, b) to (ā, b̄) or (a, b) = (ā, b̄). When Li is a lexicographical preference relation

associated with ordering ηi, we usually write Li : η−1
i (1), η−1

i (2), · · · , η−1
i (|A ∪ B|). Each
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lexicographical preference relation can therefore be represented by a single list of objects

in A ∪ B, which is itself a huge simplification in that even separable preferences have to
be represented by a list of pairs in A × B. We use the notation L to denote the set of all
lexicographical preferences.

Before we move on, let us consider an example of lexicographical preferences. Let A =

{a1, a2, · · · , am} and B = {b1, b2, · · · , bm}. Consider Li : a1, b1, a2, b2, · · · , am, bm. Then

(a1, b1)Li(a1, b2)Li · · ·Li(a1, bm)Li

(a2, b1)Li(a3, b1)Li · · ·Li(am, b1)Li

(a2, b2)Li(a2, b3)Li · · ·Li(a2, bm)Li

(a3, b2)Li(a4, b2)Li · · ·Li(am, b2)Li
...

As we mentioned above, each list of objects on A ∪ B defines a unique lexicographical

preference relation. Consequently, the cardinality of lexicographical preference domain is

smaller than the domain of the preferences over objects in A ∪ B. Below we show that the
lexicographical preferences are also separable.

Lemma 1 (Separability). Any lexicographical preferences Li is separable.

Proof. Let ηi be an ordering associated with Li. For all c ∈ A ∪ B, set ui(c) = 2−ηi(c).

Consider any a, â ∈ A and b, b̂ ∈ B. One can easily verify that (a, b)Li(â, b̂) if and only if

ui(a) + ui(b) ≥ ui(â) + ui(b̂).

The domain of lexicographical preferences can be too narrow in applications, but we will

later show that our characterization result holds for all preference domains that contain all

lexicographical preferences. In this sense, we are also identifying a narrow domain in which

our main characterization result holds.

3 Allocation Rule and Its Properties

An allocation rule (or a direct mechanism) on domain R̄ = Πi∈NR̄i, denoted by ϕ =

(ϕA, ϕB), is a mapping from R̄ to the set of feasible allocations X. For a given alloca-

tion rule on domain R̄, the agents play a revelation game in which each agent’s strategy set
is R̄i.
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We now turn our attention to the properties of the allocation rules that we will consider in

this paper. First, we say that an allocation rule is effi cient if it returns an effi cient allocation

for each preference profile.

Definition 3 (Pareto Effi ciency). An allocation rule ϕ : R̄ → X is Pareto-effi cient if for

all R ∈ R̄, there does not exist an allocation x 6= ϕ(R) such that xiRiϕi(R), for all i ∈ N .

An allocation rule is strategy-proof if, in its associated revelation game, reporting one’s

true preferences is a weakly dominant strategy for every agent. Below we present the formal

definition of strategy-proofness.

Definition 4 (Strategy-Proofness). An allocation rule ϕ : R̄ → X is strategy-proof if, for

all i ∈ N , all R ∈ R̄, and all R̂i ∈ R̄i,

ϕi (R)Riϕi

(
R̂i, R−i

)
.

An allocation rule is nonbossy if no agent can change the others’ allocations without

changing her own allocation.

Definition 5 (Nonbossiness). An allocation rule ϕ : R̄ → X is nonbossy if, for all R ∈ R,
all i ∈ N, and all R̂i ∈ R̄i,

ϕi (Ri, R−i) = ϕi

(
R̂i, R−i

)
=⇒ ϕ (Ri, R−i) = ϕ

(
R̂i, R−i

)
.

Finally, an allocation rule ϕ : R̄ → X is an ϕ-monotonic allocation rule if it satisfies

following property: if each agent’s lower contour set of ϕ(R) expands (weakly) when going

from preference profile R to R1, then ϕ prescribes the same allocation for both R ∈ R̄ and
R1 ∈ R̄.

Definition 6 (Monotonicity). For a given allocation rule ϕ : R̄ → X, we say that a

preference profile R1 ∈ R̄ is an ϕ-monotonic change of R ∈ R̄ if, for each agent i, the

relative ranking of the allocation ϕi(R) weakly improves under R1, specifically,

{(a, b) ∈ A×B : ϕi(R)Ri(a, b)} ⊆
{

(a, b) ∈ A×B : ϕi(R)R1
i (a, b)

}
.

An allocation rule ϕ : R̄ → X is monotonic if, for each R ∈ R̄ and for any of its ϕ-

monotonic changes R1 ∈ R̄, ϕ yields the same allocation for both R and R1, i.e., ϕ(R1) =
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ϕ(R).

The next lemma, which is from Svensson (1999), establishes that each nonbossy and

strategy-proof allocation rule ϕ is monotonic.

Lemma 2 (Lemma 1 of Svensson (1999)). If an allocation rule ϕ is nonbossy and strategy-

proof, then ϕ is monotonic.

Recall that for any subdomain of separable preferences, R̄ ⊆ RSP , we defined the corre-

sponding domains of A- and B-preference relations, R̄A and R̄B. We now define two market

specific allocation rules that depend on the market specific preferences, fA : R̄A → XA

and fB : R̄B → XB. Furthermore, the market specific counterparts of Pareto effi ciency,

nonbossiness, and strategy-proofness can be defined for market specific allocation rules in a

similar manner to how these notions were defined for allocation rules.

Before we move on, we consider a class of allocation rules defined on a subdomain of

separable preferences such that the allocation in each market only depends on the market

specific preference relations.

Definition 7 (Market-Independent Rule). An allocation rule ϕ : R̄ → X, where R̄ ⊆ RSP ,

is market-independent if there exists two market-specific allocation rules fA : R̄A → XA and

fB : R̄B → XB such that

ϕA(R) = fA(RA), and

ϕB(R) = fB(RB) for all R ∈ R̄.

Market-independent allocation rules turn out to satisfy some interesting properties that

we note in the following remark.

Remark 1. Observe here that market-independent allocation rules that consist of two market-

specific strategy-proof rules is also strategy-proof in our multi-market setting. This differs

from the problems with multi-unit goods (see, for example, Pápai (2001), Ehlers and Klaus

(2003), and Hatfield (2009)). In that literature, it is shown that natural adaptations of al-

location rules that are strategy-proof in the single-object case might not be strategy-proof in

the multi-unit case. For concreteness, consider the HBS draft allocation rule described by

Budish and Cantillon (2012), in which the choosing order of the agents is reversed at every
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round. That allocation rule is not strategy-proof. Now consider a version of that allocation

rule in our setting: Agents choose in market A according to some exogenous ordering, but in

market B they choose according to the exact opposite ordering of market A. This allocation

rule is strategy-proof, but fails effi ciency. The same intuition applies to the setting of Manea

(2007), in which he shows that the serial dictatorship is manipulable.

Furthermore, observe here that the same thing can be said for nonbossiness. In this sense,

as long as the preferences are separable, achieving nonbossiness and strategy-proofness in

multiple-market settings is no more diffi cult than achieving them in single-market settings.

Below we present a simple example that demonstrates that an market-independent allo-

cation rule consisting of two market specific Pareto-effi cient rules might fail effi ciency when

we consider the joint-allocation problem. We will return to this example in the following

section.

Example 1 (Failure of Pareto Effi ciency). Let n = 2, A = {a1, a2}, and B = {b1, b2}.
Consider the preference profile L ∈ L such that

L1 :b2, a1, b1, a2 and

L2 :a1, b2, b1, a2.

The allocation ((a1, b1) , (a2, b2)) is Pareto-effi cient within each market, but it is clearly

Pareto-dominated by ((a2, b2), (a1, b1)).

In Remark 1, we concluded that one can design a strategy-proof or nonbossy allocation

rule on any subdomain of separable preferences by combining two market specific strategy-

proof and nonbossy rules. However, as the example above shows Pareto effi ciency is much

harder to achieve in a multiple-market setting than in a single-market setting. Therefore,

we conclude that effi ciency is the driving force for why the set of allocation rules that are

strategy-proof, nonbossy and Pareto-effi cient narrows in multiple-market settings.

4 Sequential Dictatorship

In this section, we define a sequential-dictatorship allocation rule, which was studied in

multi-unit allocation settings (see, for example, Pápai (2001), Ehlers and Klaus (2003), and

Hatfield (2009)). In this allocation rule, there is a first agent exogenously chosen who will be
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allocated her most preferred bundle from the set of all bundles. The first agent’s allocation

determines who will be the second agent, and this agent will be allocated her most preferred

bundle from the set of available bundles, which excludes the bundle allocated to the first

agent. Then the first two agents’allocations determine who will be the third agent. This

agent will be allocated her most preferred bundle from the set of bundles available, which

excludes the bundles allocated to the first and second agents. The process continues until

all agents are allocated to a bundle. Below we define the sequential-dictatorship algorithm

formally.

For any nonempty subsets Ā ⊆ A and B̄ ⊆ B and any preferences of agent i, Ri, we

define τ(Ri, Ā, B̄) as the most preferred bundle of agent i (under preferences Ri) in the set

Ā× B̄.
Let π : N → {1, · · · , n}, be a bijective function that defines an order over the agents,

where π (i) = j means that agent i is the jth agent in the order. To simplify notation, we

will denote by ij the agent i for whom π (i) = j.

For any given R ∈ R̄ and a given π we construct sets of A- and B-objects recursively as
follows. Let Aj (R, π) = A if j = 1 and

Aj (R, π) = Aj−1 (R, π) \
{
τA
(
Rij−1 , Aj−1 (R, π) , Bj−1 (R, π)

)}
, for all j > 1,

and Bj (R, π) = B for j = 1, while

Bj (R, π) = Bj−1 (R, π) \
{
τB
(
Rij−1 , Aj−1 (R, π) , Bj−1 (R, π)

)}
, for all j > 1.

Using this notation, and given an ordering π, the most preferred bundle of agent ij given

that the sets of available bundles are Aj (R, π) and Bj (R, π) is τ
(
Rij , Aj (R, π) , Bj (R, π)

)
.

We are now ready to define the sequential-dictatorship allocation rule.

Definition 8 (Sequential Dictatorship). An allocation rule ϕ : R̄ → X is a sequential-

dictatorship allocation rule on domain R̄ if for each R ∈ R̄, there is a bijective function
πR : N → {1, · · · , n}, such that:
1. If i = π−1

R (1) for some R ∈ R̄, then i = π−1
R′ (1) ∀R′ ∈ R̄.

2. For all j ∈ {1, 2, ..., n}, ϕij(R) = τ
(
Rij , Aj(R, π), Bj(R, π)

)
.

3. Consider any R,R′ ∈ R̄, if we have that ϕik(R) = ϕik(R
′) for all k ≤ j − 1, then it

must be true that π−1
R (j) = π−1

R′ (j).
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The first item in the definition above requires that there is only one agent who is always

allocated her most preferred bundle. The second item means that each agent must be

assigned to her most preferred bundle among the available bundles. The third item requires

that if there are two different preference profiles under which each of the first j − 1 agents

are allocated to the same bundles in either one of the profiles, then the jth agent who makes

a choice under each one of the two different profiles must be the same agent. To implement

a sequential dictatorship, we need a mechanism in which the same agent always makes the

first choice among all available bundles, this choice determines the second agent who then

makes her choice among the remaining bundles. The choices of these two agents determine

the third agent to make the choice and so on.

The standard serial-dictatorship allocation rule is a special case of a sequential dictator-

ship, in which πR is constant for all R ∈ R̄. That is, the order in which the agents make
their choices is the same, regardless of the preference profile.

Example 2 (Example 1 revisited). For preference profile L defined in example 1, the se-

quential dictatorship allocation rule yields the allocation ((a1, b2), (a2, b1)) if agent 1 is the

first to choose, and ((a2, b1), (a1, b2)) if agent 1 is the second to choose. Clearly, in both cases

the final allocation is effi cient.

Remark 2. In the example above, observe that for preference profile L, the sequential-

dictatorship allocation rule never yields the allocation ((a2, b2), (a1, b1)) which is also Pareto-

effi cient. This result, which has been obtained for the multi-unit setting by (Manea, 2007),

contrasts with the result in the allocation problem in single markets, in which all Pareto-

effi cient allocations are reached through some serial dictatorship (Abdulkadirŏglu and Sön-

mez, 1999).

The sequential-dictatorship rule is strategy-proof, nonbossy and Pareto-effi cient in the

multiple market allocation setting, as will be discussed in the next section. Moreover, from

example 1 above we conclude that the sequential dictatorship does not span the entire

set of Pareto-effi cient allocations in the joint problem. Therefore, a natural question is

whether there is any other rule that is strategy-proof, nonbossy and Pareto-effi cient. The

main contribution of our paper is to show that sequential dictatorships are the only rules

that satisfy strategy-proofness, nonbossiness and Pareto effi ciency on the preference domains

that contain the lexicographical preferences.
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5 Effi ciency, Nonbossiness and Strategy-Proofness

In this section, we characterize the allocation rules that are strategy-proof, nonbossy and

Pareto-effi cient. First, let us note that any sequential-dictatorship allocation rule is strategy-

proof, nonbossy and Pareto-effi cient, which we state as a theorem below.

Theorem 1. The sequential dictatorship allocation rules on any domain R̄ are strategy-

proof, nonbossy and Pareto-effi cient.

Nowwe turn our attention to the main result of the paper: only the sequential-dictatorship

allocation rules satisfy nonbossiness, strategy-proofness and Pareto-effi ciency on the domain

of lexicographical preferences.

We first state a pair of properties of the lexicographical preferences that are useful for

our main result. If one has lexicographical preferences, then it is easy to identify one’s most

preferred bundle in any given nonempty subset Ā× B̄ ⊆ A×B.

Lemma 3. Let Li be a lexicographical preference relation associated with ordering η. Then,

for any nonempty subsets Ā ⊆ A and B̄ ⊆ B,

τ(Li, Ā, B̄) =

(
arg min
a∈Ā

ηi(a), arg min
b∈B̄

ηi(b)

)
.

Proof. The proof follows directly from the definition of lexicographical preferences.

With lexicographical preferences it is also easy to determine whether a preference profile

is an ϕ-monotonic change of another.

Lemma 4. Consider an allocation rule ϕ : L → X and a lexicographical preference pro-

file L = (Li)i∈N associated with η = (ηi)i∈N . Let L̄ be a lexicographical preference profile

associated with η̄ = (η̄i)i∈N that satisfies the following three conditions:

(i) If η̄i(a) < η̄i(ϕ
A
i (L)) for any a ∈ A and i ∈ N , then ηi(a) < ηi(ϕ

A
i (L)).

(ii) If η̄i(b) < η̄i(ϕ
B
i (L)) for any b ∈ B and i ∈ N , then ηi(b) < ηi(ϕ

B
i (L)).

(iii) If η(ϕAi (L)) < η(ϕBi (L)) for any i, then η̄(ϕAi (L)) ≤ η̄(ϕBi (L)) + 1. Similarly, if

η(ϕBi (L)) < η(ϕAi (L)) for any i, then η(ϕBi (L)) ≤ η(ϕAi (L)) + 1.

Then L̄ is an ϕ-monotonic change of L.

13



Proof. The proof follows directly from the definitions of lexicographical preferences and ϕ-

monotonic change.

We are now ready to present the main result of our paper. We note here that the first

part of the proof is similar to the proof in Theorem 1 of Svensson (1999).

Theorem 2. If an allocation rule on the lexicographical preference domain is strategy-proof,

nonbossy and Pareto-effi cient then it must be a sequential dictatorship.

Proof. For now assume that n = 2.8

Claim 1. For any (a, b) ∈ A × B, there exists i ∈ N such that ϕi(L) = (a, b) for all L in

which (a, b) = τ(Li, A,B).

Proof of Claim 1. Without loss of generality let a = a1 and b = b1. Fix two lexicographical

preferences, L1
1 and L

1
2, such that

L1
1 :b1, a1, b2, a2, · · · and

L1
2 :b2, a1, b1, a2, · · · .

Because ϕ is effi cient, it must be true that either (1) ϕ(L1
1, L

2
1) = ((a1, b1), (a2, b2)), or (2)

ϕ(L1
1, L

1
2) = ((a2, b1), (a1, b2)).

Suppose that Case (1) occurs. We claim that if (a1, b1) = τ(L1, A,B) for some L1, then

ϕ1(L1, L2) = (a1, b1) for any L2. Consider two more lexicographical preferences, L2
1 and L

2
2,

such that

L2
1 :a1, b1, b2, a2, · · · and

L2
2 :a1, b2, b1, a2, · · · .

We now show that

ϕ(L1
1, L

1
2) = ϕ(L2

1, L
1
2) = ϕ(L1

1, L
2
2) = ϕ(L2

1, L
2
2). (1)

Because (L2
1, L

1
2) is a ϕ-monotonic change of (L1

1, L
1
2) (Lemma 4), we obtain the first equality

above due to Lemma 2. Consider now ϕ(L1
1, L

2
2). Observe that ϕ2(L1

1, L
2
2) 6= (a1, b2); other-

8For the special case of two markets with two goods in each market and two agents, there is an alternative
proof that makes use of the Gibbard-Satterthwaite theorem (Gibbard, 1973; Satterthwaite, 1975) or (?) if
the preferences are separable. This alternative proof is shown in Appendix A.
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wise, ϕ2(L1
1, L

2
2)L1

2ϕ2(L1
1, L

1
2), which contradicts the strategy-proofness of ϕ. This combined

with the effi ciency of ϕ imply that ϕ2(L1
1, L

2
2) = (a2, b2). Now the effi ciency of ϕ implies

that ϕ(L1
1, L

2
2) = ϕ(L1

1, L
1
2), the second equality in (1). Consider now (L2

1, L
2
2), which is a

ϕ-monotonic change of (L1
1, L

2
2). Thus, ϕ(L2

1, L
2
2) = ϕ(L1

1, L
1
2), due to Lemma 2, the third

equality in (1).

Now consider lexicographical preference relation L3
2 such that:

L3
2 : a1, b1, b2, a2, · · · .

We now show that ϕ(L1
1, L

3
2) = ϕ(L1

1, L
2
2). Observe here that ϕA2 (L1

1, L
3
2) 6= a1; otherwise,

ϕ2(L1
1, L

3
2)L2

2ϕ2(L1
1, L

2
2), which is a contradiction with the strategy-proofness of ϕ. Then,

due to the effi ciency of ϕ, it must be the case that ϕ2(L1
1, L

3
2) is either (a2, b1) or (a2, b2).

If ϕ2(L1
1, L

3
2) = (a2, b1), then ((a2, b1), (a1, b2)) Pareto-dominates ϕ(L1

1, L
3
2) under (L1

1, L
3
2),

which is a contradiction. Hence, ϕ2(L1
1, L

3
2) = (a2, b2). Then the effi ciency of ϕ implies that

ϕ(L1
1, L

3
2) = ϕ(L1

1, L
1
2).

Consider any L2. We claim that ϕA2 (L1
1, L2) 6= a1. Suppose otherwise, i.e., suppose that

ϕ2(L1
1, L2) = (a1, b) for some b ∈ B. Then, ϕ2(L1

1, L2)L3
2ϕ2(L1

1, L
3
2), which contradicts the

strategy proofness of ϕ. Thus, ϕA2 (L1
1, L2) 6= a1. Similarly, we can show that ϕB2 (L1

1, L2) 6= b1.

Thus, by effi ciency, ϕ1(L1
1, L2) = (a1, b1).

Finally, consider any L1 in which (a1, b1) = τ(L1, A,B). Clearly, (L1, L2) is a ϕ-monotonic

change of (L1
1, L2). Thus, it must be true that ϕ1(L1, L2) = (a1, b1), thanks to Lemma 2. This

proves that if Case (1) occurs, then ϕ1(L) = (a1, b1) for all L in which (a1, b1) = τ(L1, A,B).

Suppose now that Case (2) occurs. We claim that if (a1, b1) = τ(L̄2, A,B) for some L̄2,

then ϕ2(L1, L̄2) = (a1, b1) for any L1.

For Case (2), a proof similar to that used in Case (1) implies that for all L2 with

τ(L2, A,B) = (a1, b2), it must be that ϕ2(L1, L2) = (a1, b2) for all L1. Fix any L̄2 in

which (a1, b2) = τ(L̄2, A,B). Then ϕ2(L1, L̄2) = (a1, b2) for all L1.

Now consider two lexicographical preferences, L̄1
1 and L̄

1
2, such that

L̄1
1 :b2, a1, b1, a2, · · · and

L̄1
2 :b1, a1, b2, a2, · · · .

By effi ciency, it must be the case that either (i) ϕ(L̄1
1, L̄

1
2) = ((a1, b2), (a2, b1)) or (ii)
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ϕ(L̄1
1, L̄

1
2) = ((a2, b2), (a1, b1)). In Case (i), using the same arguments made in Case (1),

we obtain the result that for all L1 in which (a1, b2) = τ(L1, A,B), it must be true that

ϕ1(L1, L2) = (a1, b2). Fix L̄1 such that (a1, b2) = τ(L̄1, A,B). Consider now (L̄1, L̄2).

Then the agents cannot both obtain (a1, b2) which means that Case (i) cannot occur. In

Case (ii), the arguments used in Case (1) yield that ϕ2(L) = (a1, b1) for all L in which

(a1, b1) = τ(L2, A,B). This completes the proof that if Case 2 occurs, then ϕ2(L) = (a1, b1)

for all L in which (a1, b1) = τ(L̄2, A,B).

This completes the proof of Claim 1.

Claim 2. There must exists an agent i such that ϕi(L) = τ(Li, A,B) for all L.

Proof of Claim 2. Fix any (a, b). By Claim 1 there exists an agent i such that ϕi(L) = (a, b)

for all L with τ(Li, A,B) = (a, b). Fix any (a, b̄). By Claim 1 there must exist j such that

ϕj(L) = (a, b̄) for all R with τ(Lj, A,B) = (a, b̄). If (a, b̄) = (a, b), then clearly i = j. If

(a, b̄) 6= (a, b), we need to show that i = j. If i 6= j, consider L̄ such that (a, b) = τ(L̄i, A,B)

and (a, b̄) = τ(L̄j, A,B). Then it must be the case that ϕAi (L̄) = ϕAj (L̄) = a, which is a

contradiction. Thus, i = j.

A similar proof shows that for any (ā, b̄), it must be true that ϕi(L) = (ā, b̄) for all L

with τ(Li, A,B) = (ā, b̄). Given that we picked arbitrary (a, b) and (ā, b̄), it must be the

case that ϕi(L) = τ(Li, A,B) for all L.

By combining Claim 2 with the fact that ϕ is Pareto effi cient, we complete the proof that

ϕ is a sequential dictatorship for the n = 2 cases. The proof for the n ≥ 3 cases are in the

Appendix.

In Theorem 2 we restricted our attention to the domain of lexicographic preferences. This

means that even if the preference domain is so small that each of its member is completely

determined by a single list of objects in A ∪ B, the requirements of strategy-proofness,
effi ciency and nonbossiness together lead to a very negative result. We next prove that the

characterization general result holds for any domain that contains lexicographic preferences.

In this proof, we use the following conventional notations: RS ≡ (Ri)i∈S and R−S ≡ (Ri)i/∈S,

for all S ⊂ N .

Proposition 1. Let R̄ ⊇ L. If an allocation rule ϕ : R̄ → X is strategy-proof, nonbossy

and effi cient then it must be a sequential dictatorship.
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Proof. From Theorem 2, we know that if we restrict our attention to the domain of lexico-

graphical preferences, then ϕ : L → X must be a sequential dictatorship.

Claim 1. Fix any L ∈ L. Without loss of generality, let i be the ith agent to make a choice
if the reported preference profile is L. Fix any S ⊆ N and let ī be the agent with the lowest

index in S. Then for any RS, it must be that

ϕi(RS, L−S) = τ
(
Li, A \ ∪j<iϕAj (RS, L−S), B \ ∪j<iϕBj (RS, L−S)

)
foralli < ī

and

ϕī(RS, L−S) = τ
(
Rī, A \ ∪j<īϕAj (RS, L−S), B \ ∪j<īϕBj (RS, L−S)

)
.

Proof of Claim 1. Let us prove the claim when |S| = 1. Let {i} = S. Here, obviously ī = i be-

cause S = {i}. Claim 1 for the i = 1 case is a consequence of the strategy-proofness of ϕ. Now

we prove Claim 1 for any random i assuming that Claim 1 is true for all j < ī. The strategy-

proofness of ϕ yields that i cannot obtain any of {ϕA1 (L), · · · , ϕAi−1(L), ϕB1 (L), · · · , ϕBi−1(L)}
as long as the others report L−i. Because ϕ is a sequential dictatorship mechanism on L, i
must be the ith agent to choose as long as she reports lexicographical preferences when the

others report L−i. Thus, i should be able to obtain τ
(
Ri, A \ ∪j<iϕAj (L), B \ ∪j<iϕBj (L)

)
by

reporting some L′i. Now due to the strategy-proofness of ϕ, it must be that

ϕi(Ri, L−i) = ϕi(L
′
i, L−i) = τ

(
Ri, A \ ∪j<iϕAj (L), B \ ∪j<iϕBj (L)

)
. (2)

Now the nonbossiness of ϕ yields that ϕ(Ri, L−i) = ϕ(L′i, L−i). Using ϕ is a sequential

dictatorship on L, we know that ϕj(L) = ϕj(L
′
i, L−i) for all j < i. This in turn gives that

ϕj(Ri, L−i) = ϕj(L) for all j < i, the first item of the claim. Combining this with (2), we

obtain the second item of the claim.

Now we prove the claim for any S with |S| > 1. We argue this by induction. Specifically,

we assume that the claim is true for all S̄ with size 1 < |S̄| < n. We now prove the claim

for any S with size |S| = |S̄|+ 1.

Fix any S with 2 ≤ |S| ≤ n and RS. If ī = 1, then the claim is a consequence of

the strategy proofness of ϕ, the induction assumption and the fact that ϕ is a sequential

dictatorship on L. Suppose now ī 6= 1. Let S̄ = S \ {̄i}. The induction assumption and
the fact that ϕ is a sequential dictatorship mechanism on L give that ī is the īth agent
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to choose her bundle if she reports some lexicographical preference by deviating from the

preference profile (RS, L−S). In such cases, the agents indexed below ī must pick their

allocation according to the order of their indices. Combining these properties with the

strategy proofness of ϕ, we obtain that

ϕī(RS, L−S) = τ(Ri, A \ ∪i<īϕAi (RS̄, L−S̄), B \ ∪i<īϕBi (RS̄, L−S̄)). (3)

Now consider the following preference of ī:

L′ī : ϕAī (RS, L−S), ϕBī (RS, L−S), · · · .

Suppose that ī deviates from (RS, L−S) and reports L′ī. Now the induction assumption

and ϕ being a sequential dictatorship mechanism on L imply that

ϕi(RS̄, L
′
ī, L−S) = τ

(
Li, A \ ∪j<īϕAj (RS̄, L

′
ī, L−S), B \ ∪j<īϕBj (RS̄, L

′
ī, L−S)

)
∀ i < ī. (4)

and

ϕī(RS̄, L
′
ī, L−S) = τ

(
L′ī, A \ ∪j<īϕAj (RS̄, L

′
ī, L−S), B \ ∪j<īϕBj (RS̄, L

′
ī, L−S)

)
= ϕī(RS, L−S).

(5)

Combining this with the nonbossiness of ϕ it must be that

ϕ(RS̄, L
′
ī, L−S) = ϕ(RS, L−S). (6)

Finally, because each agent with a strictly lower index than ī has the same preferences

under both (RS̄, L
′
ī, L−S) and (RS, L−S), the proof is complete thanks to (4), (5) and (6).

Claim 1 and the fact that ϕ is a sequential dictatorship on L yield that there exists an
agent who obtains her most preferred bundle under each preference profile in R̄. Call this
agent i1. Once we fix a preference for i1, then there must exist some other agent, say i2, who

selects second under ϕ. In fact, due to the nonbossiness, i2 is the same agent as long as i1

selects the same bundle under different preferences. By continuing with the same argument,

we obtain that ϕ is a sequential dictatorship on R̄.

Given that the result holds for any domain that contains the lexicographic preferences,

it must also hold for separable preferences (Lemma 1).

18



Corollary 1. If any allocation rule ϕ : RSP → X is effi cient, strategy-proof and nonbossy

then ϕ is a sequential dictatorship.

Remark 3. For the two-agent case, effi ciency and bossiness are not compatible with each

other. To see this, observe that for each preference profile, if the allocation that one of the

agents receives is fixed then there is at most one Pareto effi cient allocation because the agents

have strict preferences. Consequently, no one agent should be able to change the other’s

allocation without changing her own allocation if the allocation rule is effi cient. However,

when there are more than two agents this result is not valid: in fact, later we present an

example in which the allocation rule is Pareto effi cient, strategy-proof and yet bossy.

Remark 4. Theorem 2 and Proposition 1 remains valid if there are more than 2 markets.

We provide the proof of these statements at an online appendix.

Remark 5. We always assumed that in each market there are enough objects. If this as-

sumption is violated, our main characterization result is not valid any more. To see this,

suppose that |A\0|+ |B\0| ≤ n. Then one can focus on rules in which each agent is assigned

at most one object. Once this restriction is in place, we can treat our multi-market allocation

problem as a standard house allocation problem in which each agent demands only one object

as long as our desirability assumption (Assumption 2) is satisfied. Given that the trading

cycles mechanism of Pycia and Ünver (2011) is effi cient, strategy-proof and nonbossy in the

standard house allocation problem, it will be also effi cient, strategy-proof and nonbossy in our

setting.

We now turn our attention to the question of whether any non-sequential-dictatorship

rule defined on some domain of preferences satisfies all of strategy-proofness, nonbossiness

and Pareto effi ciency. Due to Proposition 1, we know that any such rule cannot be defined on

a domain of preferences that contains the domain of lexicographical preferences. In Remark

1, we already noted that on the domain of separable preferences any market independent

rule consisting of two market specific strategy-proof and nonbossy rules is strategy-proof and

nonbossy. This suggests that non-sequential-dictatorship rule satisfying strategy-proofness,

nonbossiness and Pareto effi ciency can be found on a subdomain of separable preferences in

which (market specific) Pareto effi ciency in both markets is equivalent to Pareto effi ciency

in the entire market. We define a such domain below.
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Definition 9 (A-favored lexicographical preference). We say that a preference relation of

agent i, Li,∈ Li is market A favored if its lexicographical ordering ranks all the A-objects

ahead of B-objects. The notation L stands for the set of A-favored lexicographical preference
profiles.

We now show that on the domain of A-favored lexicographical preferences any market

independent rule consisting of two market specific Pareto effi cient rules is Pareto effi cient.

Lemma 5. Any market independent allocation rule ϕ : L → X consisting of two market

specific Pareto effi cient rules is Pareto effi cient.

Proof. In contradiction to the lemma, suppose that there exist L ∈ L and x 6= ϕ(L) such

that xiLiϕi(L) for all i ∈ N . Suppose first xA = ϕA(L). Then it must be that xB 6= ϕB(L).

In addition, because any lexicographical preference is separable, we must have xBi L
B
i ϕ

B(L)

for all i ∈ N . This is clearly a contradiction as ϕ consists of two market specific Pareto

effi cient rules. If xA 6= ϕA(L) then there must exist an agent i who strictly prefers ϕAi (L)

to xAi in terms of her A-preference relation L
A
i because ϕ consists of two market specific

Pareto effi cient rules. Thus, ϕAi (L) is ranked higher than xAi in i’s lexicographical ordering.

Moreover, recall that ϕAi (L) is ranked higher than and B-object in i’s lexicographical order-

ing. Consequently, i strictly prefers ϕ(i) to x. This contradicts that x Pareto dominates

ϕ(L).

Now by combining the lemma above and Remark 1, we obtain the following result.

Proposition 2. Any market independent allocation rule ϕ : L → X consisting of two

market specific strategy-proof, nonbossy and Pareto effi cient rules is strategy-proof, nonbossy

and Pareto effi cient.

Remark 6. This result has some implications for the school choice problem (Abdulkadirŏglu

and Sönmez, 2003). This problem has been modeled as a static matching problem, but it has

dynamic features if the schools have so called sibling priorities: each school gives a priority

to students with older siblings who attend that particular school.9 We interpret market A as

the first period and market B as the subsequent period, and for the expositional simplicity we

assume that there are n families with two children, one in market A and one in market B.

9See Dur (2011) for a recent working paper on this topic.
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Both children in each family has a preference relation over the schools, but here assume

that each family’s preferences over pairs of schools is A-favored lexicographical. This assump-

tion seems reasonable if the older sibling cares about her well-beings first and her sibling’s

well-beings next. Indeed in this case Proposition 2 means that any allocation rule which

is strategy-proof, nonbossy and effi cient rule in each period is strategy-proof, nonbossy and

effi cient.10

Remark 7. The results in the dynamic school choice problem are mostly negative if one

concentrate on general preference domain. For example, Kennes et al. (2014) show that

there are no strategy-proof and stable allocation rules and also that the top trading cycles

is neither Pareto-effi cient nor strategy-proof. Dur (2011) shows that there are no fair and

stable allocation rules in the dynamic school choice problem.

However, Proposition 2 implies that the top trading cycles rule achieves both strategy-

proofness and Pareto effi ciency in the school choice problem with sibling priorities if the fam-

ilies have A- or initial-period favored lexicographical preferences. In the exact same setting

Dur (2011) shows that the deferred acceptance allocation rule is not strategy-proof. The main

reason why the TTC is strategy-proof while the DA is manipulable is that the TTC is nonbossy

while the DA is not. Thus, TTC has an edge over DA in terms of non-manipulability.

Independence of Axioms

We conclude this section by showing that each of nonbossiness, strategy-proofness, and

Pareto effi ciency plays an indispensable role for Theorem 2.11 Below we present three exam-

ples in which a non-sequential dictatorship rule satisfies two of the three properties.

Example 3 (Allocation Rule that is Strategy-proof and Nonbossy but not Effi cient). Con-

sider a constant allocation rule, (i.e., a rule that does not depend on the preference profiles

of the agents). Clearly, this rule is both strategy-proof and nonbossy, but not necessarily

Pareto-effi cient.

Example 4 (Allocation Rule that is Effi cient and Nonbossy but not Strategy-proof). Recall

Example 1 and consider an allocation rule ϕ : L → X which differs from the serial dictator-
10In the school choice problem, the allocation rule for the older siblings is a function of their reported

preferences (and some exogenous priorities which we do not need to specify). On the other hand, the
allocation rule for the younger siblings is a function of the older siblings’allocations (which determine the
priorities of their younger siblings) and the younger siblings’reported preferences. Accommodating these
assumptions into our model does not affect Proposition 2.

11See Remark 3 for the special case of two agents.
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ship rule in which agent 1 is the first agent to select only in that ϕ(L) = ((a2, b2), (a1, b1)).

One can easily check that ϕ is both Pareto-effi cient and nonbossy, but it is not a serial

dictatorship rule. Thus, Theorem 2 implies that ϕ is not strategy-proof.

Example 5 (Allocation Rule that is Effi cient and Strategy-proof but not Nonbossy). Let

n ≥ 3 and consider the following allocation rule, ϕ, which is a slight modification of a

sequential dictatorship rule: agent 1 is the first agent to select, and agent 2 (agent 3) is the

second agent to make a selection only if agent 1’s second most preferred bundle contains a1

(a2 or a3). One can easily check that ϕ is both Pareto-effi cient and strategy-proof but not

nonbossy.

6 Conclusion

We have studied the problem of centralized assignment in multiple markets, which includes

the class of dynamic matching problems.12 In our main result, we showed that the set of

rules that are strategy-proof, nonbossy and implement a Pareto-effi cient allocation is the set

of sequential dictatorship rules.

One interesting question that remains to be answered is the characterization of Pareto-

effi cient and strategy-proof rules. This problem seems to be much more challenging than

ours, since Pareto-effi cient and strategy-proof rules are not necessarily monotonic —the key

property that allowed us to divide the preference profiles to classes such that each class

is “big” and the same allocation is prescribed to each preference within a class. To il-

lustrate, consider the simple case of three players, two markets and three goods in each

market. In this example, there are 1440 possible preference rankings for each agent, to-

taling 2,985,984,000 possible preference profiles. Thus, even in this rather simple example,

computing the strategy-proof and Pareto-effi cient rules is a daunting task. Nevertheless, we

conjecture that the class of Pareto-effi cient and strategy-proof rules is only a slight general-

ization of the sequential dictatorships in which the order of selection is determined by the

reported preferences of the previous agent in the order. However, we were not able to prove

this result.

Another interesting open question is to characterize the smallest preference domain for

which our characterization result holds. We have proved that it holds for any preference do-

12Our main theorem, which is proved for the cases with two markets, can be generalized for the cases
with more than 2 markets. The proof can be provided upon request.
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main that contains lexicographic preferences and we have also constructed a domain smaller

than the lexicographic domain in which Pycia and Ünver (2011)’s result on single market

allocations holds for the multiple market framework as well. It remains to be proven a

suffi cient condition on the domain for our result to hold.

One implication of our result is that when considering the allocation of several markets

together, there is a trade-offbetween Pareto effi ciency and fairness. Given that the sequential

dictatorship is usually considered to be an “unfair”allocation rule, we conclude by suggesting

that a possible direction for future research might be to work with a solution concept other

than Pareto effi ciency. As we have argued in the text, many well-known allocation rules that

are strategy-proof and nonbossy in single markets remain strategy-proof and nonbossy in the

multiple-markets case if applied separately and independently to each different market. In

this sense, Pareto effi ciency seems to be a very demanding concept for the class of multiple-

market problems.
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7 Appendix

7.1 Appendix A: The 2x2 Cases and the Gibbard-Satterthwaite

Theorem

In this section, we present an alternative proof for our main result, when we restrict attention

to the specific case of two markets, two objects in each market and two agents only. That is,

A = {a1, a2}, B = {b1, b2} and N = 2. The proof of this result in this specific environment

follows from the Gibbard-Satterthwaite theorem (Gibbard, 1973; Satterthwaite, 1975) or ?.

The key aspect here is that the allocation of one agent fully determines the allocation of

the other agent. For example, when the allocation of agent 1 is x1 = (a1, b1), the allocation

of agent 2 must be x2 = (a2, b2) and so on.13 The strict preference ordering of each agent

over the set of her own final allocations induces a strict ordering over the set of agent 1’s

allocations. In this newly interpreted setting, an allocation rule maps the agents’preferences

to agent 1’s allocations. Perhaps the most important observation here is that in the reinter-

preted setting, an allocation rule is a social choice function as used in the implementation

literature. Now, using the Gibbard-Satterthwaite theorem (Gibbard, 1973; Satterthwaite,

1975), one obtains that if the allocation rule is strategy-proof and effi cient, then it must be a

dictatorship, or in our setting a sequential dictatorship allocation rule (which is also a serial

dictatorship as there are only 2 objects of each type and 2 agents).

Theorem 3. Any strategy-proof, nonbossy and Pareto effi cient allocation rule for the |N | =
|A| = |B| = 2 case is a sequential dictatorship.

Proof. Fix an effi cient and strategy-proof allocation rule ϕ, where, recall, ϕ : R1×R2 → X.

Let us use the following notations: t1 = (a1, b1), t2 = (a1, b2), t3 = (a2, b1), t4 = (a2, b2)

and let T = {t1, t2, t3, t4}. First let us show that ϕ1 is an onto function. Fix any t = (a, b) ∈
A × B. Consider R1 ∈ R1 and R2 ∈ R2 such that (a, b) is agent 1’s most preferred bundle

in A × B while the remaining pair in A × B is agent 2’s top choice. Because ϕ is effi cient,

ϕ1(R) = (a, b). This means that ϕ1 is an onto function. Now we will show that ϕ1 : R → T
must be dictatorial.

We will view ϕ1 : R → T as a social choice function that assigns agent 1 some object
t. Specifically, t ∈ T stands for the objects that agent 1 obtains. On the other hand, if

13The same is not true if there are more than 2 goods even when there are only 2 agents or if there are
(strictly) more than 2 agents.
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agent 1 is assigned t1/t2/t3/t4 then agent 2 is assigned t4/t3/t2/t1 by feasibility. Agent 1’s

preferences rank alternatives assuming that these are the alternatives she would obtain, while

agent 2’s preferences rank alternatives based on what is left after agent 1 is allocated some

alternative. With this relabeling, one can view ϕ1 : R → T as a social choice function. Then
the Gibbard-Satterthwaite theorem yields the desired result (Gibbard, 1973; Satterthwaite,

1975).14

7.2 Appendix B: Proof of Theorem 2 for N > 2.

Proof of Theorem 2. Let n ≥ 2, |A| ≥ n and |B| ≥ n. Without loss of generality we assume

that |B| ≥ |A|. First we will prove that for each effi cient, nonbossy and strategy-proof allo-
cation rule ϕ there exists an agent i such that ϕi(L) = τ(Li, A,B) for all L ∈ L. Because
we have proved this for the n = 2 case (in the main text of the paper), our proof will be by

induction:

Induction Assumption: For each multi-market allocation problem in which 2 ≤ n ≤
m− 1, |A| ≥ n, and |B| ≥ n and for each effi cient, strategy-proof, and nonbossy allocation

rule of this market, there exists an agent who is assigned her most preferred bundle for each

preference profile.

Fix any multi-market allocation problem in which n = m and |B| ≥ |A| ≥ n. Fix any

effi cient, strategy-proof, and nonbossy allocation rule ϕ for this market. We will now show

that there exists an agent i such that ϕi(L) = τ(Li, A,B) for all L ∈ L.
The proof is completed in several steps.

Claim 1. Consider any nonempty and (strict) subset S ⊂ N and any preference profile

L ∈ L. Let AS = {a ∈ A : ϕAi (L) = a forsomei ∈ S}. Similarly, define BS. Then there

must exist an agent i /∈ S such that ϕi(L) = τ(Li, A \ AS, B \BS).

Proof of Claim 1. To the contrary of Claim 2, suppose that ϕi(L) 6= τ(Li, A \ AS, B \ BS)

for all i /∈ S. Let L1 be a ϕ-monotonic change of L satisfying the following two conditions:

1. if j ∈ S, then τ(L1
j , A,B) = ϕj(L).

2. if i /∈ S, then i’s preferences satisfy that
14The precise statement of the Gibbard-Satterthwaite theorem is the following: In any environments with

at least three social alternatives, any strategy-proof and onto social choice function is a dictatorship (The
proof is well-known and can be found, for example, in Mas-Colell et al. (1995), Proposition 23.C.3).
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(a) the lexicographical ordering of i ranks all objects in A \AS ∪B \BS ahead of the

objects in AS ∪BS.

(b) the relative lexicographical ordering of the objects in A \ AS ∪ B \ BS (and in

AS ∪BS) under L1
i is the same as under L.

By construction, ϕi(L) ∈ A\AS×B \BS for all i /∈ S. By Lemma 4, L1 is a ϕ-monotonic

change of L. Consequently, Lemma 2 gives that ϕ(L1) = ϕ(L). Thus, the claim is proved

once we show that there is an agent i /∈ S such that ϕi(L1) = τ(L1
i , A \ AS, B \ BS). With

this in mind, consider the class of preferences LS(L) such that each L′ ∈ LS(L) satisfies the

following conditions:

1. If j ∈ S, then τ(L′j, A,B) = ϕj(L).

2. If i /∈ S, then i’s preferences satisfy that

(a) the lexicographical ordering of i ranks all objects in A \AS ∪B \BS ahead of the

objects in AS ∪BS.

Observe that L1 ∈ LS(L). For each preference profile in LS(L), each agent j ∈ S must ob-
tain ϕi(L) due to the effi ciency of ϕ. Consequently, for LS(L), we can treat ϕ as the allocation

rule that allocates A\AS×B\BS among the agents in N \S. Then by the induction assump-
tion, there must exist an agent i ∈ N \S such that ϕi(L̄) = τ(L̄i, A \AS, B \BS) for all L̄ ∈
RS(R). Consequently, because L1 ∈ LS(L), it must be that ϕi(L

1) = τ (L1
i , A \ AS, B \BS),

reaching a contradiction.

In fact, we can strengthen Claim 1 as follows:

Claim 2. Consider any nonempty and (strict) subset S ⊂ N and consider the set of prefer-

ence profiles LS such that ϕi(L) = ϕi(L̄) for all i ∈ S and L, L̄ ∈ LS. Then there must exist
an agent j /∈ S such that ϕj(L) = τ(Lj, A \ AS, B \BS) for all L ∈ LS.
Proof of Claim 2. Recall that how LS(L) is defined in the proof of Claim 1. Observe here

that LS(L) = LS(L̄) for all L, L̄ ∈ LS. This and the proof of Claim 1 complete the proof of

Claim 2.
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In the next 3 claims (3-5), we prove that for any (a, b) ∈ A× B, there exists an agent i
such that ϕi(L) = (a, b) whenever τ(Li, A,B) = (a, b). Without loss of generality, let us set

a = a1 and b = b1.

Claim 3. Let L be a lexicographical preference profile in which each agent’s lexicographical

ordering of the objects is the same and as follows:

Li : a1, b1, a2, b2, · · · , a|A|, b|A|, b|A|+1, · · · , b|B|.

Then ϕ allocates each (ak, bk) where k ≤ n to some agent under L.

Proof of Claim 3. Since n ≥ 3 there must exist an agent i for whom ϕAi (L) 6= a1 and ϕBi (L) 6=
b1. Set S = {i}, and observe that (a1, b1) ∈ A \ AS × B \ BS. Then by Claim 2, there must

exist an agent i1 /∈ S for whom ϕi1(L) = (a1, b1) because (a1, b1) = τ(Lj, A\AS, B\BS) for all

j ∈ N\S, due to Lemma 3. Now set S1 = i1 and observe that (a2, b2) = τ(Lj, A\AS1 , B\BS1)

for all j ∈ N \S1, due to Lemma 3. Then by Claim 2, there exists an agent i2 /∈ S1 for whom

ϕi2(L) = (a2, b2). Next set S2 = {i1, i2}. Using a similar argument as before we obtain that
there exists an agent i3 /∈ S2 for whom ϕi3(L) = (a3, b3). We complete the proof of this claim

by applying the same argument repeatedly.

Without loss of generality, let us assume ϕi(L) = (ai, bi).

Claim 4. Consider any lexicographical preference profile in which all agents’lexicographical

ordering of the objects is the same and starts by listing a1 and b1 and then alternates the

remaining elements of A and B. Then for this lexicographical preference profile ϕ must

assign (a1, b1) to agent 1.

Proof of Claim 4. To prove this claim it suffi ces to prove the following claim.

Consider a lexicographical preference profile L̂ in which each agent’s lexicographical or-

dering of the objects is the same and that this is obtained from L (considered in Claim 4)

by reversing the lexicographical orderings of only two neighboring B-objects (except b1), i.e.,

each agent’s lexicographical ordering of the objects is:

L̂i : a1, b1, a2, b2, · · · , aj−1, bj−1, aj,bj+1, aj+1,bj, aj+2, bj+2, aj+3, bj+3, · · · , b|B|,

where j ≥ 2. Then for each i < j, ϕi(L̂) = ϕi(L) and ϕj(L̂) = (aj, bj+1).
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If j > n, then L̂ is a ϕ-monotonic change of L (Lemma 4). Hence, Lemma 2 yields the

statement above. Thus, let us concentrate on the j ≤ n cases.

Fix any j such that j ≤ n, and consider a lexicographical preference profile L1 such that
L1
i : a1, b1, · · · , ai, bi, aj,bj, ai+1, bi+1, · · · , a|A|, b|A|, · · · , b|B| if i < j

L1
j : a1, b1, · · · , aj, bj, bj+1, aj+1, aj+2, bj+2, · · · , a|A|, b|A|, · · · , b|B|

L1
i : aj, a1, b1, · · · , aj−1, bj−1, bj, aj+1, bj+1, · · · , a|A|, b|A|, · · · , b|B| if i > j.
Clearly L1 is a ϕ-monotonic change of L. Hence, ϕ(L) = ϕ(L1). Now let L2 be the lexi-

cographical preference obtained from L1 by changing only agent j’s lexicographical ordering

of the objects as follows:

L2
j : a1, b1, · · · , aj,bj+1,bj, aj+1, aj+2, bj+2, · · · , a|A|, b|A|, · · · , b|B|.

Observe here that there is only one bundle, (aj, bj+1), such that j prefers it to ϕj(L
1) =

(aj, bj) under L2
j but not under L

1
j . As ϕ is strategy-proof, ϕj(L

2) is either (aj, bj) or (aj, bj+1).

In the former case, thanks to nonbossiness, ϕ(L2) = ϕ(L1). But by Claim 2, it must be that

ϕj(L
2) = τ(L2

j , A \ {a1, · · · , aj−1}, B \ {b1, · · · , bj−1}) = (aj, bj+1), a contradiction. Hence,

ϕj(L
2) = (aj, bj+1). Because (a1, b1) = τ(L2

i , A \ {aj}, B \ {bj+1}) for all i 6= j, some agent

other than j must obtain (a1, b1) under ϕ(L2) by Claim 1. In addition, when j > 2, because

(a2, b2) = τ(L2
i , A \ {aj, a1}, B \ {bj+1, b1}), some agent other than j must obtain (a2, b2)

under ϕ(L2) by Claim 1. A similar logic yields that each of the {(a1, b1), · · · , (aj−1, bj−1)} is
allocated to some agent under ϕ(L2). However, observe that (a1, b1) cannot be allocated to

any agent i > j (if such i exists) under ϕ(L2). Otherwise, by swapping their allocations agents

j and i Pareto improve. Similarly, we obtain that none of the {(a1, b1), · · · , (aj−1, bj−1)} are
allocated to agents {j+1, · · · , n} under ϕ(L2). Now let us show that agent 1 obtains (a1, b1)

under ϕ(L2). Otherwise, she obtains one of the {(a2, b2), · · · , (aj−1, bj−1)}. But then agents
1 and j can swap their allocations and Pareto improve. Then agent 2 must obtain (a2, b2)

under ϕ(L2); otherwise agents 2 and j can swap their allocations and Pareto improve. A

similar logic yields that all agents i ≤ j − 1, ϕi(L
2) = (ai, bi) and ϕj(L

2) = (ai, bj+1).

If j = n, then observe that L̂ is a ϕ-monotonic change of L1. Thus, we obtain the desired

result, due to Lemma 2. Let j < n. We now need to show that ϕi(L
1) = ϕi(L̂) for all

i = 1, · · · , j. To prove this, we need some extra steps. First, observe that by Claim 1 there

exists an agent k > j for whom ϕk(L
2) = τ(L2

k, A \ {a1, · · · , aj}, B \ {b1, · · · , bj−1, bj+1}) =

(aj+1, bj). Also, due to Claim 2, each of the {(aj+2, bj+2), (aj+3, bj+3), · · · , (a|A|, b|B|)} is
allocated to some agent i 6= k (i > j). Now consider a lexicographical preference L3 such
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that L3
k = L2

k and L
3
i = L̂i, for all i 6= k. Observe that L3 is a ϕ-monotonic change of L2,

hence ϕ(L3) = ϕ(L2).

Consider a lexicographical preference profile L4 in which
L4
i : a1, b1, · · · , ai, bi, aj+1,bj+1, ai+1, bi+1, · · · , a|A|, b|A|, · · · , b|B| if i < j

L4
j : a1, b1, · · · , aj,bj+1, aj+1,bj, aj+2, bj+2, · · · , a|A|, b|A|, · · · , b|B|

L4
k : a1, b1, · · · , aj, bj, bj+1, aj+1, aj+2, bj+2, · · · , a|A|, b|A|, · · · , b|B|

L4
i : aj+1, a1, b1, · · · , aj, bj, bj+1, aj+2, bj+2, · · · , a|A|, b|A|, · · · , b|B| if i 6= k& i > j.

Clearly, L4 is a ϕ-monotonic change of L3. Hence, ϕ(L4) = ϕ(L3). Now let L5 be a

lexicographical preference obtained from L4 by changing agent k’s order of the objects as

follows:

L5
k : a1, b1, · · · , aj,bj+1,bj, aj+1, aj+2, bj+2, · · · , a|A|, b|A|, · · · , b|B|.

Going from L4 to L5 only the relative ranking of (aj+1, bj+1) improves with respect

to ϕk(L
4) = (aj+1, bj) for agent k. As ϕ is strategy-proof, ϕj(L

5) is either (aj+1, bj) or

(aj+1, bj+1). Now we rule out the latter case. Suppose the latter case occurs. Using the

same steps as we used to prove that {(a1, b1), · · · , (aj−1, bj−1)} is allocated among the agents
{1, · · · , j− 1} under L2, we obtain that {(a1, b1), · · · , (aj, bj)} is allocated among the agents
{1, · · · , j}. If agent 1 does not obtain (a1, b1), by swapping the allocations of 1 and k, we can

Pareto improve. Similarly, each agent i ≤ j − 1 must obtain (ai, bi). Therefore, agent j ob-

tains (aj, bj). But this contradicts Claim 2 because j is not obtaining her most preferred bun-

dle in A\{a1, · · · , aj−1}×B\{b1, · · · , bj−1}) under L5. Hence, ϕk(L
5) = ϕk(L

4) = (aj+1, bj).

Now the nonbossiness of ϕ yields that ϕ(L5) = ϕ(L4). Finally, observe that L̂ is an ϕ-

monotonic change of L5. Thus, ϕ(L̂) = ϕ(L5). This completes the proof of Claim 4.

We now show that ϕ1(L) = (a1, b1) for all L in which (a1, b1) = τ(L1, A,B).

Claim 5. For any preference profile L∗ in which (a1, b1) = τ(L∗1, A,B) it must be that

ϕ1(L∗) = (a1, b1).

Proof of Claim 5. Pick any preference profile L∗ such that τ(L∗1, A,B) = (a1, b1). Now let

us construct a lexicographical preference Ln in n iterative rounds.

Round 1. Set i1 = 1. Pick any lexicographical preference L1 in which everyone’s order of

the objects is the same and starts with (a1, b1) and alternates the remaining A and B-objects.

Set I1 = {i1} and A1 = A \ {a1} and B1 = B \ {b1}. Observe that ϕi1(L1) = (a1, b1) by

Claim 4.
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Round 2. Let i2 ∈ N \ I1 be the agent for whom ϕi2(L
1) = τ(L1

i2
, A1, B1). This is

always feasible thanks to Claim 1.15 Set I2 = I1 ∪ {i2}. Let τ(L∗i2 , A1, B1) := (â2, b̂2). Set

A2 = A1\{â2} and B2 = B1\{b̂2}. Pick a lexicographical preference L2 in which the order of

the objects is the same for everyone, starts with (a1, b1, â2, b̂2), and alternates the remaining

A and B-objects. Observe that ϕi1(L
2) = (a1, b1) and ϕi2(L

2) = (â2, b̂2).

Round k ≤ n. Let ik ∈ N \ Ik−1 be the agent for whom ϕik(L
k−1) = τ(Lk−1

ik
, Ak−1, Bk−1).

Set Ik = Ik−1 ∪ {ik}. Let τ(L∗ik , Ak−1, Bk−1) := (âk, b̂k). Set Ak = Ak−1 \ {âk} and
Bk = Bk−1 \ {b̂k}. Pick a lexicographical preference Lk in which the order of the objects
is the same, starts with (a1, b1, â2, b̂2, · · · , âk, b̂k), and then alternates the remaining A and

B-objects. Observe that ϕi1(L
k) = (a1, b1) and ϕij(L

k) = (âj, b̂j) where j ≤ k.

Consider Ln and we now show that L∗ is a ϕ-monotonic change of Ln. In other words,

we need to show that ϕi(L
n)L∗i (a, b) for each i and (a, b) ∈ A×B satisfying ϕi(L

n)Lni (a, b).

Clearly, this is true for i = i1 because ϕi1(L
n) = (a1, b1) = τ(L∗i1 , A,B) = τ(Lni1 , A,B). Con-

sider now the i = i2 case. Fix any (a, b) ∈ A×B such that ϕi2(L
n) = (â2, b̂2)Li2(a, b). Then

the definition of lexicographical preferences and the construction of Ln yield that a 6= a1

and b 6= b1. Recall that (â2, b̂2) = τ(L∗i2 , A \ {a1}, B \ {b1}). Thus, in the lexicographical
ordering under L∗i2 , â2 must be ranked ahead of a (if â2 6= a) and b̂2 ahead of b (if b̂2 6= b).

Thus, (â2, b̂2)L∗i2(a, b), our desired result. A similar proof applies for all i = ik where k ≤ n.

Thus, L∗ is a ϕ-monotonic change of Ln. Consequently, by Lemma 2, ϕ(L∗) = ϕ(Ln) and

ϕi1(L
∗) = (a1, b1).

Claim 6. There exists an agent such that ϕi(L) = τ(Li, A,B) for all L.

Proof of Claim 6. This proof is the replica of the proof of Claim 2 for the n = 2 case.

Claim 7. Any strategy-proof, Pareto-effi cient allocation rule ϕ is a sequential serial dicta-

torship.

Proof of Claim 7. This claim is a consequence of Claims 2 and 6.

15In fact, this agent is the second agent.
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Appendix: Proof upon Request

Now we extend our model to m market cases. Here Ol denotes the set of objects in lth

market. We use all the notations and concepts used in the two-market case in the m market

case. We use ϕl denotes the allocation in lth market.

Proposition 3. Let there be m separate markets. Then any allocation rule ϕ : L → X

which is strategy-proof, nonbossy and effi cient must be a sequential dictatorship.

Proof. Let L2 be a domain of lexicographical preferences such that for any L ∈ L2, no two

agents have the same top-ranked object in all markets except two.

Claim 1. Fix any L ∈ L2. Let α and β be the markets in which agents do not necessarily

have different top-ranked object. Then the allocation rule ϕ restricted to the domain of

lexicographical preference profiles in which the relative rankings of objects in each market

γ 6= α, β stay the same as under L is a sequential dictatorship.

Proof of Claim 1. Given that lexicographical preferences are separable and ϕ is effi cient,

each agent must get her top ranked object in each market γ 6= α, β under ϕ(L). We now

can vary lexicographical preferences by only changing the relative rankings of the objects in

markets α and β. Now following the proof of the main theorem in two markets, we obtain

that there must be an agent who obtains her top-ranked object in both markets α and β

as long as the relative-rankings of objects in each of the remaining market stay the same as

under L.

Claim 2. ϕ : L2 → X is a sequential dictatorship.

Proof of Claim 2. Consider any two preference profiles L ∈ L2 and L′ ∈ L2. Then we can

find a sequence of profiles {L1, L2, · · · , Lh} such that

• L1 = L and Lk = L′;

• any two neighboring profiles Lk and Lk+1 satisfies the following condition: For Lk and

Lk+1 there exist three markets α, β and γ such that:

1. each agent has a different top-ranked object in each market δ 6= α, β under Lk;

2. each agent has a different top-ranked object in each market δ 6= α, γ under Lk+1;

3. each agent’s top-ranked object in each market δ 6= αβ, γ is the same under Lk

and Lk+1.
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Now we show that for any Lk and Lk+1 there exists an agent who always obtains her

most preferred bundle under ϕ. Suppose otherwise, and let agents i and j be the agents

who obtain their most preferred bundles under Lk and Lk+1, respectively. Then consider a

profile L∗ such that

1. each agent has the same top-ranked object in market α under L∗;

2. each agent’s top-ranked object in each market β is the same under Lk and L∗;

3. each agent’s top-ranked object in each market β is the same under Lk+1 and L∗;

4. each agent’s top-ranked object in each market δ 6= αβ, γ is the same under Lk, Lk+1

and L∗.

Under both Lk and L∗, imust be the agent who obtains her most preferred bundle. Under

both Lk+1 and L∗, j must be the agent who obtains her most preferred bundle. However,

observe that the most preferred bundle of i and j under L∗ contains the top ranked object

in market α. Thus, we reach a contradiction.

This and the fact that L,L′ ∈ L2 are selected randomly prove that there exists one agent

who obtains her most preferred bundle under ϕ : L2 → X. Once this agent’s most preferred

bundle is fixed, using similar arguments we can find another agent who obtains her most

preferred bundle under ϕ : L2 → X. Continuing in this fashion, we prove Claim 2.

Claim 3. Fix any L ∈ L2. Without loss of generality let i be the ith agent to make a choice

if the reported preference profile is L. Let L′i such that (L′i, L−i) /∈ L2. Then

ϕi(Ri, L−i) = τ
(
L′i, O1 \ ∪j<iϕ1

j(L), O2 \ ∪j<iϕ2
j(L)

)
· · · , Om \ ∪j<iϕmj (L),

and

ϕj(L
′
i, L−i) = ϕj(L), for all j < i.

Proof of Claim 3. Claim 1 when i = 1 is a consequence of the strategy-proofness of ϕ.

Now we prove Claim 3 for any random i assuming that Claim 3 is true for all j < i. The

strategy-proofness of ϕ yields that i cannot obtain any of

{ϕ1
1(L), · · · , ϕ1

i−1(L), ϕ2
1(L), · · · , ϕ2

i−1(L), · · ·ϕm1 (L), · · · , ϕmi−1(L)},
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as long as the others report L−i. Because agent i is the ith one to choose as long as she

reports lexicographical preferences when the others report L−i. Thus, i should be able

to obtain τ
(
L′i, O1 \ ∪j<iϕ1

j(L), O2 \ ∪j<iϕ2
j(L) · · · , Om \ ∪j<iϕ2

j(L)
)
by reporting some L′i.

Now due to the strategy-proofness of ϕ, it must be that

ϕi(L
′
i, L−i) = ϕi(L

′
i, L−i) = τ

(
L′i, A \ ∪j<iO1 \ ∪j<iϕ1

j(L), O2 \ ∪j<iϕ2
j(L) · · · , Om \ ∪j<iϕ2

j(L)
)
.

This is the first item in Claim 3 for agent i. Now the nonbossiness of ϕ yields that

ϕ(L′i, L−i) = ϕ(L′i, L−i). Using ϕ : L → X is a sequential dictatorship, we know that

ϕj(L) = ϕj(L
′
i, L−i) for all j < i. This in turn gives that ϕj(L

′
i, L−i) = ϕj(L) for all j < i.

Claim 4. Fix any L′ ∈ L. Consider the lexicographical preference profile, L ∈ L2, such that

Li : ϕ1
i (L

′), ϕ2
i (L

′), · · ·ϕmi (L′) · · · for all i.

If i is the ith agent to choose her bundle when the reported preference profile is L then

ϕi(L
′) = τ

(
L′i, O1 \ {∪j<iϕ1

j(L
′)}, O2 \ {∪j<iϕ2

1(L′), · · · , Om \ {∪j<iϕm1 (L′)}
)
.

Proof of Claim 2. Clearly, L is a ϕ-monotonic transformation of L′. Thus, ϕ(L) = ϕ(L′). In

addition, (L′i, L−i) where i ∈ N is a ϕ-monotonic transformation of L′. Consequently,

ϕ(L′i, L
2
−i) = ϕ(L′). (7)

We now prove the claim for agent 1. Because agent 1 is the first one to select when any

lexicographical preference profile in L2 is reported, Claim 3 gives that

ϕ1(L′1, L−1) = τ(L′1, O1, · · ·Om). (8)

Combining (7) and (8) we obtain that

ϕ1(L′) = τ(L′1, O1, · · · , Om).

Fix any agent i, and suppose that Claim 4 is true for all j < i. Now we prove the claim for

agent i. Given that agent i is the ith one to select when the agents report a lexicographical
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preference profile in L2 in which each j < i reports Lj, Claim 3 gives that

ϕi(L
′
i, L−i) = τ

(
L′i, O1 \ {∪j<iϕ1

j(L)}, O2 \ {∪j<iϕ2
1(L) · · · , Om \ {∪j<iϕm1 (L)}

)
. (9)

Combining this with (7) and the assumption that Claim 2 is true for j < i, we obtain that

ϕi(L
′) = τ

(
L′i, O1 \ {∪j<iϕ1

j(L
′)}, O2 \ {∪j<iϕ2

1(L′), · · · , Om \ {∪j<iϕm1 (L′)}
)
.

Claim 4 and the fact that ϕ is a sequential dictatorship on L2 complete the proof.
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