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A regularized-entropy estimator to enhance
cluster interpretability in Bayesian
nonparametric
Uno stimatore a entropia regolarizzata per migliorare
l’interpretabilità dei cluster in Bayesiana nonparametrica

Beatrice Franzolini, Giovanni Rebaudo

Abstract Bayesian nonparametric mixture models are widely used to cluster obser-
vations. However, one of the major drawbacks of the approach is that the estimated
partition often presents only few dominating clusters and a large number of sparsely-
populated ones. This feature translates into results that are uninterpretable unless we
accept to ignore a relevant number of observations and clusters. Here, we provide an
explanation of this phenomenon through the study of the cost functions involved in
the estimation of the partition. Moreover, we propose a post-processing procedure
to reduce the number of sparsely-populated clusters. The procedure takes the form
of entropy-regularization of posterior cluster allocations. While being computation-
ally convenient with respect to alternative strategies, it is also theoretically justified
as a correction to the Bayesian loss function used for point estimation and, as such,
can be applied to any posterior distribution of clusters, regardless of the specific
Bayesian model used.
Abstract I modelli Bayesiani nonparametrici con misture sono ampiemente utiliz-
zati per effettuare cluster analysis. Tuttavia, uno dei principali limiti è il fatto che
spesso identifichino un ampio numero di cluster poco popolati. Questa caratteris-
tica si traduce in risultati di difficile interpretazione a meno che non si accetti di
ignorare un numero di osservazioni e cluster. In questo lavoro, presentiamo una sp-
iegazione di questo fenomeno attraverso lo studio delle funzioni di costo coinvolte
nella stima della partizione. Inoltre, proponiamo una procedura di post-processing
volta a ridurre il numero di cluster scarsamente popolati. La procedura prende la
forma di una regolarizzazione dell’entropia della allocazione in cluster. La pro-
posta appare computazionalmente conveniente rispetto a strategie alternative e
trova giusticazione teorica in quanto correzione della funzione di perdita Bayesiana
impiegata nella stima puntuale, e, proprio per questa ragione, può essere adottata
a prescindere dallo specifico modello utilizzato.
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1 Introduction

Clustering methods detect patterns assigning observations to different clusters, so
that (accordingly to a certain definition of similarity) observations are more similar
within the same cluster than across clusters. Clustering has been proved useful in a
large variety of fields including but not limited to image processing, bio-medicine,
marketing, and natural language processing. Clustering methods are used not only
to detect sub-groups of subjects, but also for dimensionality reduction (Blei et al.,
2003; Petrone et al., 2009), outliers-detection (Shotwell and Slate, 2011; Ngan et al.,
2015; Franzolini et al., 2022), and data pre-processing (Zhang et al., 2006). Among
clustering techniques, we can distinguish two main classes: model-based and non
model-based. Contrary to other popular clustering techniques, like k-means, model-
based clustering is based on the assumption that the data (y1, . . .yn) are generated
by a mixture model

yi
iid∼

K

∑
h=1

wh k(·;θh) i = 1,. . . , n (1)

where the mixture components k(·;θh) are probability kernels to be interpret as dis-
tributions of distinct clusters, (wh, θh)

K
h=1 are unknown parameters that determine

the relative proportion and the shape of the clusters in the whole population, and K
is the total number of clusters in the population. K can be either a fixed value or
an unknown parameter. However, the main goal of clustering techniques is to es-
timate a partition of the observed sample, more than the distribution in (1) of the
whole population. The partition that one wants to estimate can be encoded using
a sequence of subject-specific labels (c1, . . . ,cn) taking value in the set of natural
numbers such that ci = c j = c if and only if yi and y j belong to the same cluster and

follow the same mixture component k(·;θc), i.e. yi | ci
ind∼ k(·;θci) for i = 1, . . . ,n.

The indicators (c1, . . . ,cn), as just defined, are affected by the label switching prob-
lem (see, for instance, Stephens, 2000; McLachlan et al., 2019; Gil-Leyva et al.,
2020). To overcome the issue, in the following, we assume them to be encoded in
order of appearance. The likelihood for ccc = (c1, . . . ,cn) and θθθ = (θ1, . . . ,θKn) is

L (ccc,θθθ ;yyy) =
Kn

∏
c=1

∏
i:ci=c

k(yi;θc) (2)

An important and typically unknown parameter is the number of clusters Kn ob-
served in the sample. Obviously, Kn ≤ K. For this reason, finite fixed values for K
are usually to be avoided and K is either fixed to +∞ (e.g. in Dirichlet process mix-
tures, see Ferguson, 1983; Lo, 1984) or it is estimated from the data (e.g. mixtures
of finite mixtures, see Miller and Harrison, 2018; Argiento and De Iorio, 2019).

When Kn is unknown, the clustering labels in (2) cannot be estimated with a
fully frequentist approach. In fact, if the maximum likelihood estimator (MLE) for
(2) exists and is unique, it identifies a number of clusters equal to the number of dis-
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tinct observed values, so that actually no information on clusters can ever be gained
through MLE and overfitting is unavoidable. In this regards, notice that maximizing
(2) is not the same as computing the nonparametric maximum likelihood estimator
(Lindsay, 1995; Polyanskiy and Wu, 2020; Saha and Guntuboyina, 2020) for the
mixture model in (1).

Differently, Bayesian models, and in particular Bayesian nonparametric (BNP)
models, are largely used for model-based clustering, due to the fact that priors act
as penalties shrinking the number of distinct clusters.

The structure of the paper is as follow. Section 2 presents the study of the cost
functions involved in BNP clustering models and provide an explanation for the
presence of sparsely populated clusters, typically observed in the posterior estimates
of these models. Then, a computationally convenient and theoretically justified so-
lution to reduce the number of sparsely populated clusters is presented in Section 3
and showcased on simulated data and real data, respectively in Section 4 and 5.

2 Implied costs functions in Bayesian nonparametric clustering

The vast majority of Bayesian models for clustering relies on a prior for ccc and Kn
defined through an exchangeable partition probability function (EPPF) (see, Pit-
man, 1996) and, independently, a prior P is used for the unique values (θ1, . . . ,θKn).
Therefore, the corresponding posterior distribution is

p(Kn,ccc,θθθ | yyy) ∝

Kn

∏
c=1

∏
i:ci=c

k(yi;θc)×EPPF(n1, . . . ,nKn)×P(dθθθ) (3)

and the maximum a posteriori (MAP) estimates is obtained minimizing the cost
function − log(p(Kn,ccc,θθθ | yyy)), i.e.

C(Kn,ccc,θθθ ;yyy) =Clik(Kn,ccc,θθθ ;yyy)+ Cpart(Kn,ccc;α)+ Cbase(Kn,θθθ)

which is the sum of three terms, that in the following are named respectively likeli-
hood cost, partition cost, and base cost. As already mentioned, the minimum likeli-
hood cost

Clik(Kn,ccc,θθθ ;yyy) =−
Kn

∑
c=1

n

∑
i:ci=c

log k(yi;θc) (4)

corresponds to Kn at least equal to the number of distinct observed values, that, if
data comes from a non-atomic distribution, means Kn

a.s.
= n.

The remaining two costs are those defined by the prior of the model. A lot of
attention in the literature have been posed on the choice of the EPPF and many al-
ternatives are available (see, for example, Lijoi et al., 2007, 2010; De Blasi et al.,
2013), while, except for few cases (Petralia et al., 2012; Quinlan et al., 2018, 2021),
the role of the base cost appears partially overlooked within the Bayesian methodol-
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ogy literature. However, when BNP clustering methods are applied in practice, the
choice of an appropriate base distribution is known to be crucial. The most common
choice is to use an independent prior on the unique values so that θc

iid∼ P0. Firstly
notice that, when atoms are i.i.d., the resulting base cost

Cbase(Kn,θθθ) =−
Kn

∑
c=1

logP0(dθc) (5)

does not depend on the frequencies (n1, . . . ,nKn) and the incremental base cost for
a new cluster, minθ (Cbase(Kn +1,θθθ))−minθ (Cbase(Kn,θθθ)) = −maxθ log(P0(dθ))
is constant in Kn. For example, when P0 is set to be a univariate normal distribution
centered in 0 and with variance σ2, we have

Cbase(Kn,θθθ) =
Kn

2
log(2π)+

Kn

2
logσ

2 +
1
2

Kn

∑
c=1

θ 2
c

σ2

and the incremental base cost for a new cluster is

−max
θ

log(P0(dθ)) =
1
2

log(2π)+
1
2

logσ
2

from which it is clear that higher values of σ2 result in a smaller number of clusters
(cfr., e.g. Gelman et al., 2014, p. 535). In practice, P0 is usually set to be a continuous
mixture distribution, where the mixed density is conjugate to the kernel k and guar-
antees computational convenience, while the mixing distribution, usually placed on
the scale parameter of the mixed, provides further sparsity on cluster locations. See
Zhang et al. (2012) for a comprehensive account of scale mixtures and sparsity.

Finally, let us comment also on the partition cost Cpart. Its behavior is less
straightforward and we consider here only two important and widely used cases:
Dirichlet process mixtures (DPM) and Pitman-Yor process mixtures (PYPM, Pit-
man and Yor, 1997) . With a DPM model, we have

Cpart(Kn,ccc;α) =−Kn log α−
Kn

∑
c=1

logΓ (nc).

where α is the concentration parameter of the Dirichlet Process. The DPM partition
cost tends to favor parsimonious values of Kn. However, contrary to the base cost, it
depends also on the cluster allocations.

Figure 1 (a) showcases the partition cost of DPM for different values of entropy
of the frequencies (n1, . . . ,nKn), i.e.

S(n1, . . . ,nKn) =−
Kn

∑
c=1

nc

n
logKn

nc

n
(6)

Overall the EPPF acts favoring frequencies (n1, . . . ,nKn) with low entropy. How-
ever, this feature can be interpreted as resulting into two distinct effects: one acting
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(a) (b)

Fig. 1: Partition cost as function of the entropy in a DPM model with α = 1 (panel
a) and in a PYPM model with α = 1 and σ = 0.5 (panel b). Values are computed
for n = 100 observations clustered into 2 (blue line), 3 (red line), and 4 (greeen line)
clusters.

on the total number of occupied clusters Kn and another acting on the skewness
of the clusters’ distribution (n1, . . . ,nKn). Even though theoretically these two fea-
tures both coincides with a reduced entropy in (6), they coincide with very different
scenarios in terms of estimated clustering structure, especially from an applied and
practical point of view. Penalizing the number of clusters is typically desirable, be-
cause an elevated number of clusters maybe difficult to interpret, however a partition
with few dominating clusters and many sparsely populated clusters is highly unde-
sirable, because it is hard to interpret, unless one decide to ignore all the information
contained in the small clusters and focus only on the dominating ones.

In case of a PYPM the partition cost equals

Cpart(Kn,ccc;α,σ) =−
Kn

∑
c=1

log(α +σ(c−1))−
Kn

∑
c=1

logΓ (nc−σ)+Kn logΓ (1−σ)

Despite the EPPFs are different, Figure 1 shows for both processes a closely similar
behavior in terms of entropy penalization.

3 Regularized-entropy estimator

Once a posterior distribution P(ccc | y1:n) over the possible partitions is obtained,
typically thanks to a Markov Chain Monte Carlo algorithm, a point estimate ĉcc of the
partition is obtained minimizing the expected value of a loss function L(ccc, ĉcc) with
respect to the posterior, i.e.

ccc∗ = argmin
ĉcc

E[L(ccc, ĉcc) | y1:n] = argmin
ĉcc

∑
ĉcc

L(ccc, ĉcc)P(ccc | y1:n)
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Algorithm 1 Entropy-regularized estimates
Input: MCMC chain of partitions {cccm,m = 1, . . . ,M}, λ

Output: point estimate ccc∗

1: Compute S(cccm) for m = 1, . . . ,M
2: Compute wm = exp{λS(cccm)} for m = 1, . . . ,M
3: w̄m← wm/∑m wm for m = 1, . . . ,M
4: Generate {c̃ccm,m = 1, . . . ,M}, sampling with replacement from {ccc1, . . . ,cccM} with prob.
{w̄m,m = 1, . . . ,M}

5: ccc∗← argmin∑
M
m=1 ∑ĉcc L(c̃ccm, ĉcc)

Even though in the previous section we focused our attention on the MAP estimator
and, thus, adopt a 0-1 loss function, rarely in Bayesian clustering models the MAP
estimator is employed due to the large support of the posterior and the fact that the
0-1 loss function does not take into account the distance between two partitions (see,
Wade and Ghahramani, 2018). A widely used alternative is for instance the Binder
loss.

We already stressed how a large presence of noisy clusters is undesirable in prac-
tice and our claim is that this aspect should be reflected in the loss function used
for point estimation, so that the loss of each partition is proportional to its entropy.
To make this point even clearer: the idea is that wrongly estimating a low entropy
partition with a high entropy partition is preferable wrt to wrongly estimating a high
entropy partition with a low entropy partition.

To do so, consider any possible loss function L(ccc, ĉcc) one would like to use to
derive the estimate, we can define a new loss function, that we named entropy-
regularized, as

L̄(ccc, ĉcc) = exp{λS(ccc)}L(ccc, ĉcc)

where, with a little abuse of notation wrt the previous section, S(ccc) is the entropy of
the partition identified by ccc and λ ∈R. Recall that the base of the logarithm involved
in the computation of S(ccc) changes with the argument ccc and it is equal to the number
of unique values in ccc, so that S(ccc) = 1 can be obtained for any number of clusters
Kn ≥ 2. Clearly, when λ is positive, for any candidate estimate ĉ, the loss function
associates higher loss to partitions ccc with low entropy, as desired. Minimizing the
expected entropy-regularized loss function L̄(ccc, ĉcc) with respect to the posterior is
equivalent to minimizing the original loss function L(ccc, ĉcc) with respect to a entropy-
regularized version P̄[ccc | y1:n] of posterior distribution, i.e.

P̄[ccc | y1:n] ∝ exp{λ S(ccc)}P[ccc | y1:n].

This results, while immediate to prove, is highly desirable, because it allows to im-
plement the entropy-correction in a very straightforward and computationally feasi-
ble way which is described in Algorithm 1.
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Fig. 2: Percentage of observations in sparsely-populated clusters before entropy-
regularization

(a) Percentage of observations in
sparsely-populated clusters after entropy-
regularization with λ = 10

(b) Percentage of observations in
sparsely-populated clusters after entropy-
regularization with λ = 20

4 Simulation study

We provide here a simulation study, where n = 1000 observations are sampled from
3 univariate normally distributed clusters, we employ a normal-normal DPM and
we compare the posterior estimates obtained minimizing the Binder loss function
and the entropy-regularized Binder loss function. We set the concentration parame-
ter α = 1, we perform 20 000 MCMC simulations, and use the first 5000 as burnin.
Defining as sparsely populated clusters those clusters containing 10% or less of
observations, we found that in almost a third (4755 out 15 000) of the MCMC itera-
tions, 10% of more of the observations are allocated into sparsely populated clusters,
while in almost two third (9306 out of 15 000) of MCMC iterations, 5% of more
of the observations are allocated into sparsely populated clusters, see Figure 2. The
same counts after entropy-regularization of the posterior (as described in the previ-
ous section) are, with λ = 10, 3981 and 7825 out 15 000, see Figure 3a, and, with
λ = 20, 1393 and 3366 out 15 000, see Figure 3b.



8 Beatrice Franzolini, Giovanni Rebaudo

(a) (b) (c) (d)

Fig. 4: estimated clustering

(a) Clusters’ estimated frequen-
cies without entropy regular-
ization

(b) Clusters’ estimated fre-
quencies with entropy regular-
ization for λ = 10

(c) Clusters’ estimated frequen-
cies with entropy regularization
for λ = 20

Fig. 5: estimated clusters

Finally, Figure 4 shows the true and the estimated clustering with and without
entropy regularization. While Figure 5 shows the cluster frequencies for the three
point estimates.

5 Results for the wine dataset

We test the performace of our estimator also on the wine dataset available on R,
where data are the results of a chemical analysis of wines grown in the same region
in Italy but derived from three different cultivars. The analysis determined the quan-
tities of 13 constituents found in each of the three types of wines. We use the 13
constituents to estimate a Dirichlet process mixture model with multivariate Gaus-
sian kernel, and we try to recover the three groups of types of wine through the
estimated clustering. After running the MCMC for 10000 iterations and using the
first 2000 as burnin, the Binder loss function identifies a partition of seven clusters,
while our estimator for λ = 20 identifies three clusters. See Figure 6 and Figure 7.
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(a) Estimated partition without
entropy-regularization

(b) Estimated partition after entropy-
regularization

Fig. 6: Estimated partitions for the wine dataset, dark squares denote couples of
observations clustered together, observations are ordered based on co-clustering.

(a) Clusters’ estimated frequencies without
entropy-regularization

(b) Clusters’ estimated frequencies after
entropy-regularization

Fig. 7

(a) (b) (c)

Fig. 8: estimated clustering



10 Beatrice Franzolini, Giovanni Rebaudo

References

Argiento, R. and M. De Iorio (2019). Is infinity that far? a bayesian nonparametric
perspective of finite mixture models. arXiv preprint arXiv:1904.09733.

Blei, D. M., A. Y. Ng, and M. I. Jordan (2003). Latent dirichlet allocation. Journal
of machine Learning research 3(Jan), 993–1022.

De Blasi, P., S. Favaro, A. Lijoi, R. H. Mena, I. Prünster, and M. Ruggiero (2013).
Are gibbs-type priors the most natural generalization of the dirichlet process?
IEEE transactions on pattern analysis and machine intelligence 37(2), 212–229.

Ferguson, T. S. (1983). Bayesian density estimation by mixtures of normal distri-
butions. In Recent advances in statistics, pp. 287–302. Elsevier.

Franzolini, B., A. Lijoi, and I. Prünster (2022). Model selection for maternal hyper-
tensive disorders with symmetric hierarchical Dirichlet processes. The Annals of
Applied Statistics, forthcoming.

Gelman, A., J. Carlin, H. Stern, D. Dunson, A. Vehtari, and D. Rubin (2014).
Bayesian data analysis. vol. 2 CRC press.

Gil-Leyva, M. F., R. H. Mena, and T. Nicoleris (2020). Beta-binomial stick-breaking
non-parametric prior. Electronic Journal of Statistics 14(1), 1479–1507.

Lijoi, A., R. H. Mena, and I. Prünster (2007). Controlling the reinforcement in
bayesian non-parametric mixture models. Journal of the Royal Statistical Society:
Series B (Statistical Methodology) 69(4), 715–740.

Lijoi, A., I. Prünster, et al. (2010). Models beyond the dirichlet process. Bayesian
nonparametrics 28(80), 342.

Lindsay, B. G. (1995). Mixture models: theory, geometry, and applications. Ims.
Lo, A. Y. (1984). On a class of bayesian nonparametric estimates: I. density esti-

mates. The annals of statistics, 351–357.
McLachlan, G. J., S. X. Lee, and S. I. Rathnayake (2019). Finite mixture models.

Annual review of statistics and its application 6, 355–378.
Miller, J. W. and M. T. Harrison (2018). Mixture models with a prior on the number

of components. Journal of the American Statistical Association 113(521), 340–
356.

Ngan, H. Y., N. H. Yung, and A. G. Yeh (2015). Outlier detection in traffic data
based on the dirichlet process mixture model. IET intelligent transport sys-
tems 9(7), 773–781.

Petralia, F., V. Rao, and D. Dunson (2012). Repulsive mixtures. Advances in neural
information processing systems 25.

Petrone, S., M. Guindani, and A. E. Gelfand (2009). Hybrid dirichlet mixture mod-
els for functional data. Journal of the Royal Statistical Society: Series B (Statis-
tical Methodology) 71(4), 755–782.

Pitman, J. (1996). Some developments of the blackwell-macqueen urn scheme.
Lecture Notes-Monograph Series, 245–267.

Pitman, J. and M. Yor (1997). The two-parameter poisson-dirichlet distribution
derived from a stable subordinator. The Annals of Probability, 855–900.

Polyanskiy, Y. and Y. Wu (2020). Self-regularizing property of nonparametric max-
imum likelihood estimator in mixture models. arXiv preprint arXiv:2008.08244.



A regularized-entropy estimator for clustering 11

Quinlan, J. J., G. L. Page, and F. A. Quintana (2018). Density regression using
repulsive distributions. Journal of Statistical Computation and Simulation 88(15),
2931–2947.

Quinlan, J. J., F. A. Quintana, and G. L. Page (2021). On a class of repulsive mixture
models. TEST 30(2), 445–461.

Saha, S. and A. Guntuboyina (2020). On the nonparametric maximum likelihood
estimator for gaussian location mixture densities with application to gaussian de-
noising. The Annals of Statistics 48(2), 738–762.

Shotwell, M. S. and E. H. Slate (2011). Bayesian outlier detection with dirichlet
process mixtures. Bayesian Analysis 6(4), 665–690.

Stephens, M. (2000). Dealing with label switching in mixture models. Journal of
the Royal Statistical Society: Series B (Statistical Methodology) 62(4), 795–809.

Wade, S. and Z. Ghahramani (2018). Bayesian cluster analysis: Point estimation
and credible balls (with discussion). Bayesian Analysis 13(2), 559–626.

Zhang, C., Y. Qin, X. Zhu, J. Zhang, and S. Zhang (2006). Clustering-based missing
value imputation for data preprocessing. In 2006 4th IEEE International Confer-
ence on Industrial Informatics, pp. 1081–1086. IEEE.

Zhang, Z., S. Wang, D. Liu, M. I. Jordan, and N. Lawrence (2012). Ep-gig pri-
ors and applications in bayesian sparse learning. Journal of Machine Learning
Research 13(6).


