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Abstract: This review summarizes body circumference-based anthropometrics that are in common 
use for research and in some cases clinical application. These include waist and hip circumfer-
ence-based central body indices to predict cardiometabolic risk: waist circumference, waist-to-hip 
ratio, waist-to-height ratio, waist-to-thigh ratio, body adiposity index, a body shape index (ABSI), 
hip index (HI), and body roundness index (BRI). Limb circumference measurements are most often 
used to assess sarcopenia and include: thigh circumference, calf circumference, and mid-arm cir-
cumference. Additionally, this review presents fascinating recent developments in optic-based 
imaging technologies that have elucidated changes over the last decades in average body size and 
shape in European populations. The classical apple and pear shape concepts of body shape dif-
ference remain useful, but novel and exciting 3-D optical “e-taper” measurements provide a po-
tentially powerful new future vista in anthropometrics.  
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1. Introduction 
Anthropometry is the study of the measurements and proportions of the human 

body. Weight, stature (standing height), length (e.g., limb lengths), skinfold thickness, 
breadth (e.g., shoulder, wrist, etc.), and circumference are examples of anthropometric 
measures widely adopted in daily medical practice for monitoring growth and aging as 
well as for the clinical management of patients.  

Circumference measurements can be extremely useful for the management of pa-
tients with endocrine and metabolic disorders including people who are overweight 
and/or obese. For example, waist circumference provides information beyond the body 
mass index that enables the assessment of (abdominal) obesity-related health risks [1]. 
Other circumference-based anthropometric indices (described in the next paragraph) can 
be useful to distinguish between different body-shape phenotypes that exist both among 
different disorders and between the two sexes. In fact, it is well-known that a visceral fat 
gradient exists for men (“apple-shaped” because of the larger visceral fat depot) and 
women (“pear-shaped” because of the larger subcutaneous fat depot). Circumference 
measurements can also be useful for the management of patients undergoing rehabilita-
tion treatments. For example, the assessment of the upper limb circumference is a com-
mon method to estimate the arm volume and quantify the upper limb volume changes in 
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breast cancer survivors with lymphedema [2]. Limb circumference can also provide in-
formation about the nutritional status and/or atrophy of one limb with respect to the 
contralateral limb.  

The aim of this review is to provide the main methodological and 
(patho-)physiological considerations for ensuring the accurate assessment and interpre-
tation of different circumference-based anthropometric indices currently used in research 
and clinical settings. A better understanding of these techniques, their uses, and their 
potential is helpful for the prediction, diagnosis, monitoring, and prognosis of multiple 
disorders and for the proper characterization of pathophysiological mechanisms under-
lying their sex-specific differences. Another purpose of this review is to present recent 
developments in imaging technologies and new experimental findings that provide cli-
nicians with tools and resources to easily collect electronic measurements (“e-tape”) with 
greater rapidity and volume than ever before. Combining the electronic modeling pro-
vided by electronic image-scanning with historical anthropometric data enables the 
generation of visual representations of average European males and females to more 
clearly highlight how body size and shape have changed over recent decades.  

2. Assessment of Waist and Hip Circumferences 
Waist circumference is a simple measurement that assesses the central (abdominal 

or android) adiposity. This parameter has emerged as a strong and independent factor 
for cardiovascular morbidity and for all-cause mortality [1]. Currently, no consensus ex-
ists on the optimal protocol for the measurement of this anthropometric variable: the 
protocols described by WHO [3] and the NIH guidelines [4] are the most commonly 
adopted in both research and clinical practice. According to the WHO protocol, waist 
circumference is measured midway between the highest point of the iliac crest and the 
bottom of the ribcage, while the NIH protocol recommends considering the superior 
border of the iliac crest to identify the proper measurement location. Absolute differences 
in waist circumference measurements obtained by the two different protocols are gener-
ally small for adult men but much larger for women [1].  

Several current definitions of metabolic syndrome include increased waist circum-
ference among the diagnostic criteria but use different cutoff points: the National Cho-
lesterol Education Program Adult Treatment Panel III definition uses the cutoff points of 
≥102 cm in men and ≥88 cm in women, while the International Diabetes Foundation 
definition uses the cutoff points of ≥94 cm in men and ≥80 cm in women [5].  

According to the WHO, the waist circumference absolute values can also be used to 
distinguish between the following three categories of cardiometabolic disease risk: (i) 
normal risk: ≤80 cm in females and ≤94 cm in males; (ii) increased risk: >80 cm in females 
and >94 cm in males; (iii) greatly increased risk: >88 cm in females and >102 cm in males 
[6].  

Despite several current definitions of cardiometabolic risk, including waist circum-
ference [5–7], this anthropometric parameter is not (yet) widely available in established 
clinical databases, largely due to the historical use of body mass index in clinical practice 
[8]. Therefore, Bozeman et al. [9] have previously proposed a model (Table 1, first row) 
for the waist circumference estimation (from body mass index and demographic covari-
ates such as sex, age, and ethnicity) that can be used to identify individuals at risk for 
cardiometabolic disease when waist circumference data are unavailable.  

Table 1. Equations for the prediction (from anthropometric and demographic data) of waist cir-
cumference, lean mass, fat mass, and muscle mass. 

PREDICTION EQUATIONS REFERENCE 
WC (female) = 28.81919 + (2.218007 × BMI) + (−3.688953 × AGE CLASS) + (0.125975 × AGE × AGE 
CLASS) + (−0.6570163 × BLACK) + (0.1818819 × HISPANIC) 
WC (male) = 22.61306 + (2.520738 × BMI) + (0.1583812 × AGE) + (−3.703501 × BLACK) + (−1.736731 × 

[9] 
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HISPANIC)  
Lean mass (female) = −10.683 + (−0.039 × AGE) + (0.186 × HEIGHT) + (0.383 × WEIGHT) + (−0.043 × WC) 
Lean mass (male) = 19.363 + (0.001 × AGE) + (0.064 × HEIGHT) + (0.756 × WEIGHT) + (−0.366 × WC) 

[10] 

Fat mass (female) = 11.817 + (0.041 × AGE) + (−0.199 × HEIGHT) + (0.610 × WEIGHT) + (0.044 × WC) 
Fat mass (male) = −18.592 + (−0.009 × AGE) + (−0.080 × HEIGHT) + (0.226 × WEIGHT) + (0.387 × WC) 

[10] 

Relative fat mass (female) = 64 − [20 × (HEIGHT/WC)] + 12 
Relative fat mass (male) = 64 − [20 × (HEIGHT/WC)]  

[11] 

SM (female) = 2.89 + (0.255 × WEIGHT) + (−0.175 × HC) + (−0.0384 × AGE) + (0.118 × HEIGHT) 
SM (male) = 39.5 + (0.665 × WEIGHT) + (−0.185 × WC) + (−0.418 × HC) + (−0.0805 × AGE)  

[12] 

SM (female) = (0.25 × WEIGHT) + (0.09 × HEIGHT) + (−0.111 × AGE) + (0.0005 × AGE2) + (−0.06 × WC) + 
(2.0 × RACE) − 4.5 
SM (male) = (0.47 × WEIGHT) + (0.03 × HEIGHT) + (0.012 × AGE) + (−0.001 × AGE2) + (−0.29 × WC) + (1.6 
× RACE) + 13.5 

[13] 

AGE (years); BMI (kg/m2): body mass index; HEIGHT (cm); HC (cm): hip circumference; SM (kg): 
skeletal muscle mass; WC (cm): waist circumference; WEIGHT (kg). HEIGHT and WC are ex-
pressed in meters in the equation by Woolcott and Bergman [11] for the relative fat mass estima-
tion. Coefficients for the equation by Bozeman et al. [9]: AGE CLASS (<35 years = 0, ≥35 years = 1); 
BLACK (no = 0, yes = 1); HISPANIC (no = 0, yes = 1). Coefficients for the equation by Heymsfield et 
al. [13]: RACE: non-Hispanic white = 0, non-Hispanic black = 1. 

The estimated and measured values of the waist circumference are also useful for 
the anthropometric prediction of lean, fat [10,11], and muscle mass [12,13]. Table 1 also 
reports recently published equations [10–13] for the anthropometric prediction (from 
waist circumference, weight, height, sex, age, and ethnicity) of lean mass, fat mass, and 
muscle mass: these equations are practical to apply in clinical settings and should be 
systematically incorporated into the routine management of patients with different 
health risks or conditions.  

Although the waist circumference is a simple measure of abdominal obesity, it as-
sumes that people with the same waist circumference have the same cardiovascular risk 
regardless of differences in other variables, such as height and fat distribution. However, 
this assumption is invalid, as body fat distribution is a better predictor of the health 
hazards of obesity than the absolute amount of body fat and the absolute value of waist 
circumference. Consistently, individuals with a more android than gynoid body shape 
tend to have a more adverse metabolic profile and an increased risk for type 2 diabetes 
and cardiovascular disease. To overcome the limitation of the waist circumference to 
fully capture cardiometabolic risk, it has previously been proposed to normalize its ab-
solute value to several anthropometric measurements (“appendicular” as well as “central 
body” anthropometrics). Moreover, given statistical independence information from size 
and shape (which are both important), the waist and hip circumference-derived anthro-
pometric indices can also be combined to increase the association of basic measures with 
outcomes of interest. 

The waist-to-hip ratio is the dimensionless ratio of the circumference of the waist to 
that of the hips (i.e., the largest circumference at the buttocks) that is considered a simple 
measure of peripheral (gluteofemoral or gynoid) adiposity. This anthropometric param-
eter is considered a valid proxy for central obesity that, according to WHO, should be 
defined as possessing a waist-to-hip ratio above 0.90 for males and above 0.85 for females 
[6]. 

The waist-to-height ratio is calculated as the waist circumference divided by height: 
this ratio is also independent of units of measurement, provided that the same units are 
used to measure both the waist circumference and the height. This anthropometric pa-
rameter is considered a valid proxy for central adiposity. A boundary value of 0.5 was 
previously suggested as a risk assessment tool: this translated into the simple message 
“keep your waist to less than half your height” [14]. The following three risk categories 
for cardiometabolic disease can be identified (without sex-specific differences) on the 
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basis of the waist-to-height ratio: (i) no increased risk: ratio < 0.5; (ii) increased risk: ratio ≥ 
0.5 and <0.6; and (iii) greatly increased risk: ≥0.6 [14]. Previous meta-analyses showed 
that this anthropometric variable is superior to the body mass index as well as to a matrix 
using a combination of body mass index and waist circumference for discriminating 
among different categories of obesity-related cardiometabolic risk [15,16].  

Similar to the waist-to-height ratio, an index based on hip circumference and height, 
namely the “body adiposity index”—BAI = {[hip circumference (cm)/height (m)½] − 
18}—was also proposed to estimate the body fat percentage for adult men and women of 
different ethnicities, without numerical correction and without measuring body mass, 
which can be problematic in certain clinical settings or in locations with limited access to 
reliable scales [17]. However, Freedman et al. [18] showed that the use of BAI has no 
advantage over the use of either waist or hip circumference because it can produce biased 
estimates of body fat percentage (especially in women and in individuals of both sexes 
presenting body fat percentages greater than 30%).  

Thigh circumference (measured at the level of the midpoint on the lateral surface of 
the thigh, midway between the greater trochanter and the lateral border of the head of 
the tibia) has long been recognized as a relevant anthropometric measure that identifies 
individuals with increased risk of premature morbidity and mortality for cardiovascular 
diseases [19]. This measurement provides an indirect assessment of the amount of sub-
cutaneous fat as well as muscle mass. Hence, the combination of the thigh and waist 
circumferences could provide information about these two very relevant body sites: for 
example, an increase in the waist-to-thigh ratio may reflect a relative abundance of cen-
tral fat, decreased peripheral fat or muscle, or both. The waist-to-thigh ratio has consist-
ently shown a close association with intra-abdominal fat and cardiovascular risk factors 
[20,21] and was subsequently more associated with type 2 diabetes than other anthro-
pometric parameters [22,23]. Although the waist-to-thigh ratio is an anthropometric in-
dex that is simple and practical to apply, its users should recognize that the sex-specific 
distributions of this ratio may differ depending on the anthropometric protocols used to 
identify the waist and thigh circumferences, while optimal cutoff points may also vary 
according to sex and ethnic group. The standardization of methods and sites for meas-
uring waist and thigh circumferences is therefore needed and sex- and ethnic-specific 
normative values should be identified in future studies. 

A body shape index (ABSI) is a measure of the risk associated with waist circum-
ference proposed by Krakauer [24]. It assesses the waist circumference normalized to a 
standard height and weight and is defined as:  

ABSI = waist circumference (m)/[BMI (kg/m2)2/3 × height (m)½] 

This parameter was able to better predict mortality than waist circumference and 
body mass index in the Unites States Nutritional Health and Nutrition Examination 
Survey (NHANES) population [24]. Similarly, the hip index (HI) was proposed by Kra-
kauer [25] as the hip circumference (HC) normalized to a standard height and weight.  

It was defined as:  

HI (cm) = HC (cm) × (height (cm)/[H])0.310 × (weight (kg)/[W])0.482 

where [H] = 166 cm and [W] = 73 kg, which are average height and weight values. Similar 
to the body mass index, which compares the body mass among individuals with the 
same height, ABSI and HI compare the waist and hip circumference, respectively, among 
individuals with the same body height and weight. Cardiometabolic risk factors and 
various cancers (including several cancers that are not obesity-related) have been posi-
tively associated with ABSI and negatively associated with HI [24,26,27]. Christakoudi et 
al. [28] have also recently proposed to combine ABSI and HI to define four different 
body-shape phenotypes: (i) small-ABSI-small-HI individuals (“slim”); (ii) 
large-ABSI-large-HI individuals (“large”); (iii) large-ABSI-small-HI individuals (“ap-
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ple”); (iv) small-ABSI-large-HI individuals (“pear”). These different phenotypes were 
associated with body composition measurements of lean and fat (visceral and abdominal 
subcutaneous) mass. Moreover, associations between the “apple” phenotype and colon 
cancer risk were observed in men. 

The body roundness index (BRI) was proposed by Thomas et al. [29] as another 
shape measure that enables the quantification of body shape in a height-independent 
manner. It can be obtained with the following equation:  

BRI = 364.2 − 365.5 × {1 − [(0.5 × waist circumference/π)2/(0.5 × height)2]}0.5 
where waist circumference and height are expressed in meters (a simple web-based cal-
culator is available at the following website: 
https://www.pbrc.edu/research-and-faculty/calculators/body-roundness/ accessed on 29 
April 2022). This index serves as a proxy for total and visceral body fat [29]. It shows 
good discriminatory power for metabolic syndrome in adults of both sexes from diverse 
populations [30] and is superior to other anthropometric measures for determining the 
presence of cardiovascular disease risk factors [31]. Moreover, BRI also provides a 
method to visually compare individual body types and identify the body type location 
relative to a healthy reference range: briefly, it can be applied as a visual tool for health 
status evaluations [29]. 

3. Assessment of Limb Circumferences 
Limb circumference measurements are frequently used in clinical practice for an 

indirect evaluation of muscle growth or atrophy (e.g., to assess the effectiveness of 
strength training or the impact of disuse). For example, the above-mentioned thigh cir-
cumference [19], as well as the calf circumference, are considered proxies for muscle mass 
[32]. Cutoff values for moderately and severely low values of calf circumference were 
identified as 34 cm and 32 cm in males and 33 cm and 31 cm in females, respectively [33]. 
Therefore, it has been proposed to include the calf circumference in different sarcopenia 
screening tools such as the Ishii test [34] and the SARC-CalF questionnaire [35]. 

Previous studies performed on adult and elderly subjects also show that the calf 
circumference of the dominant leg can be larger than that of the non-dominant leg [36] 
and that the asymmetry in lower extremity lean mass is associated with functional mo-
bility [37]. To our knowledge, no normative data exist to distinguish between low (i.e., 
physiological) and high (i.e., pathological) circumference asymmetry for different limb 
portions (e.g., thigh, leg). Moreover, calf asymmetry can result not only from muscle 
disorders but also from soft tissue disorders. In fact, Stein et al. [38] reported that an 
asymmetry of the calves ≥ 1 cm may raise suspicion of deep venous thrombosis. 

Mid-arm and calf circumferences have also been shown to reflect the nutritional 
status and predict performance and survival in older adults [39–41]. Consistently, the full 
18-item version of the widely used Mini Nutritional Assessment includes both circum-
ference measurements that are considered normal for mid-arm values >22 cm and calf 
values ≥31 cm [42,43]. 

Limb circumference-based approaches, also known as “circumferential methods”, 
are extensively used in different clinical settings to obtain estimations of limb volume 
that are useful for the detection and/or follow-up of peripheral edema [2]. The frustum 
sign model method and the disc model method represent the most frequently adopted 
indirect methods. The first approach is based on only two measurements taken at oppo-
site sides of the measured region: the limb volume is approximated by a truncated cone 
(frustum sign) between the two measurements. The latter approach divides the measured 
region into several equidistant discs: the limb volume is computed as the sum of the in-
dividual disc volumes [2,44,45]. The main advantage of circumferential methods is that 
they enable a quick estimation of the limb volume and can also be adopted when other 
methods (such as water displacement or imaging methods) cannot be used [2]. 
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4. Digital Anthropometry 
Because tape-based body measurements may not be culturally or socially acceptable 

and also exhibit poor reliability, especially in overweight and obese subjects [46–48], 
there was the need for the development and validation of accessible, valid, reproducible, 
and cost-effective technologies that are capable of providing robust measurements of 
lengths and circumferences and body composition estimates [49]. Digital anthropometry 
by three-dimensional optical imaging systems has recently been shown to provide 
non-invasive, accurate, and precise measurements of body circumference [49,50]. Multi-
ple three-dimensional optical scanning systems are already marketed to the sports and 
clothes fitting markets [51–53]. Although different implementations of three-dimensional 
optical technology exist, all commercially available body scanners follow the same 
three-step process of data acquisition, processing, and anatomical measurements [49]. 
Data acquisition occurs through either structured light scanning or time-of-flight scan-
ning: briefly, the structured light scanners evaluate light deformation patterns over sub-
jects in view of the cameras, while the time-of-flight scanners measure the round-trip 
time for reflected photons to travel from the subject in the field of view to the image 
sensor. Following data acquisition, the raw information is used to create a 
three-dimensional point cloud that is adopted to obtain an avatar mesh of the human 
body. Finally, anatomical measurements can be obtained from the avatar using land-
marking procedures. In other words, automatic landmark identification allows an 
“e-tape” measure to be obtained, extracting multiple anatomical measurements 
[49,50,54–56].  

Figure 1 shows representative avatars obtained by a commercially available body 
scanner that utilizes the structured light scanning technology to investigate a healthy 
male subject (left panel), a male person with obesity (middle panel), and a rehabilitation 
patient following the long-term unilateral immobilization of the upper and lower left 
limbs (right panel). The healthy subject shows standard circumference measurements 
(continuous black lines) provided by the software of the body scanner. The two patients 
are presented to show the usefulness of the avatars to quantify the increase in waist cir-
cumference (obese patient) and inter-limb circumference asymmetry (rehabilitation pa-
tient). We suggest that the systematic incorporation of these “e-tape” measurements into 
routine patient examinations can be useful for identifying subjects at risk for cardiomet-
abolic and neuromuscular impairment-related comorbidities and for evaluating the ef-
fectiveness of pharmacological and rehabilitative interventions. 
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Figure 1. Representative avatars as provided by the software of the Fit3D ProScanner device 
(hardware version 5.0.6; software version 5.5.0—Fit3D Inc., San Mateo, CA, USA). Left panel: a 
healthy male subject with standard circumference measurements (continuous black lines) provided 
by the software. NECK: circumference at mid-point of the neck (over the larynx). CHEST (in 
males): circumference at inner point of shoulder blades (BUST circumference in females is taken at 
the forwardmost protruding point above the waist). WAIST: circumference at the small of the back 
between the lower rib and top of the iliac crest. HIPS: circumference at the rearmost protruding 
point below the waist. BICEPS: max circumference of the arm between shoulder and elbow. 
FOREARM: max circumference of the arm between elbow and wrist. THIGH: max circumference of 
the leg between crotch and knee. CALF: max circumference of the leg between knee and ankle. 
Middle panel: a male subject with obesity (body mass index: 34.2 kg/m2) presenting increased 
waist circumference (123 cm). Right panel: male patient with congenital inter-limb circumference 
asymmetries exacerbated following long-term unilateral immobilization of the upper and lower 
left limbs: right–left biceps: 39.3–33.7 cm; right–left forearm: 31.7–28.3 cm; right–left thigh: 63.1–57.8 
cm; right–left calf: 40.9–36.3 cm. 

5. European Phenotypic Variations throughout the Decades 
A recent study by Wong et al. [57] generated anthropometric measurements in hu-

manoid avatars generated on the basis of body mass, height, age, and waist circumfer-
ence data from nine NHANES surveys spaced over several decades between 1960 and 
1962 and 2015 and 2018. The resulting images show how drastically the average Ameri-
can’s body size and shape have changed over the last 40 years. These findings are con-
sistent with previous studies showing that over the last decades the waist circumference 
values have increased beyond those expected from the increase in body mass index 
[58,59].  

Changes in body size and shape have also occurred within European populations, as 
indicated by the results of several epidemiological studies performed in different Euro-
pean countries [60–66]. We report in Figure 2 the time course of the waist circumference 
obtained during the last three decades from young and adult men and women of the 
Health Survey for England (HSE) population [67]. The biannual rate of change of the 
waist circumference was higher in women (0.61 cm/2 years, which corresponds to ~3 
cm/decade) compared to men (0.54 cm/2 years, which corresponds to ~2.7 cm/decade).  



J. Pers. Med. 2022, 12, 906 8 of 13 
 

 

 
Figure 2. Biannual (triennial only for years 2017–2019) averages of the waist circumference values 
for young and adult (16–90 years old) men (black squares) and women (grey circles) of the Health 
Survey for England (HSE) population (between 1993 and 2019—missing data for 1995 and 1996). 
Data are fit with linear regression lines. 

In order to provide a visual characterization of the European phenotypic variations 
(i.e., body shape changes induced by body size changes) throughout the decades, we 
used anthropometric data obtained from the HSE population (period 1: years 1993–1994; 
period 2: years 2005–2007; period 3: years 2017–2019) [67] and from the Italian cohort of 
the European Prospective Investigation into Cancer and Nutrition (EPIC-Italy—period 1: 
years 1993–1998; period 2: 2005–2013) [60,66] to develop the avatar series reported in 
Figure 3.  

Images were generated following the approach outlined by Wong et al. [57]. Briefly, 
a sex-specific principal component (PC) analysis of the Shape Up! Adults dataset [68–70] 
was performed to derive shape models. Manifold regression analysis utilized the PC 
shape models to generate a matrix that included the target features for avatar generation. 
After the conversion of the PC matrix back to the Cartesian space, the weighted 
sex-specific population mean values of features from the European datasets (HSE and 
EPIC-Italy) including height, weight, and waist circumference (average values are re-
ported in the caption of Figure 3) were used to generate manifold images for each time 
period. Manifold regression analysis was performed with the R software (version 
4.0.2—R Core Team, 2020: https://www.r-project.org/ accessed on 29 April 2022). 
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Figure 3. Representative humanoid avatars of average European men (top row) and women (bot-
tom row) at three time points between 1993 and 2019 as defined by mean population height, 
weight, and waist circumference. Mean anthropometric data were obtained from the following two 
cohorts: (i) the Italian cohort of the European Prospective Investigation into Cancer and Nutrition 
(EPIC-Italy); (ii) Health Survey for England (HSE). Time points: (A) Average data from EPIC-Italy 
1993–1998 (n = 13,886 men and 31,998 women) and HSE 1993–1994 (n = 12,971 men and 14,677 
women) for height, weight, and waist circumference in men (1.73 m, 78.8 kg, 93.5 cm) and women 
(1.60 m, 65.6 kg, 81.2 cm). (B) Average data from EPIC-Italy 2005–2013 (n= 7834 men and 16,892 
women) and HSE 2005–2007 (n = 10,041 men and 12,093 women) for height, weight, and waist 
circumference in men (1.73 m, 81.2 kg, 98.2 cm) and women (1.60 m, 67.8 kg, 86.9 cm). (C) Average 
data from HSE 2017–2019 (n = 6348 men and 8035 women) for height, weight, and waist circum-
ference in men (1.75 m, 86.5 kg, 99.5 cm) and women (1.62 m, 72.8 kg, 90.0 cm). 

The application of American shape models to European data represents a prelimi-
nary analysis that requires the further investigation and expansion of modeling datasets. 
Still, the body shape changes (i.e., increased “apple-shaped” phenotype in both men and 
women due to a body weight “shift” from the lower to the upper body, especially to the 
waist) observed in European adult data resemble those observed in American adults. As 
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properly highlighted by Wong et al. [57], these body shape changes cannot be appreci-
ated when numerical descriptors (such as weight, waist circumference, and body mass 
index) are considered alone. Therefore, we suggest that this visual analysis of the body 
shape should be adopted in routine patient management as a counseling tool to increase 
patient awareness and improve adherence to medication, diet, and physical activity. As 
recently highlighted by Wells [71], this counseling tool could connect patients and clini-
cians in new and valuable ways. In fact, people are inherently more interested in how 
they look to the eye than in the numerical descriptors of their body size and composition. 

6. Conclusions 
Different circumference-based anthropometric indices are currently used in both 

research and clinical settings for the investigation and management of different disor-
ders. Limb circumference assessments provide an indirect evaluation of muscle size, limb 
volume, and nutritional status, while several waist and hip circumference-derived indi-
ces enable estimations of cardiometabolic disease risk. 

The combination of different anthropometric indices and recent technological ad-
vances allows for the quantification of body-shape phenotypes that differ between men 
and women. Moreover, the recent study by Wong et al. [57] and our original findings in-
cluded above show that body shape phenotypes have changed significantly over the last 
decades in both American and European people, with this shift reflecting an increased 
population-wide risk for cardiometabolic disease.  

The well-known differences between the body shapes of “apple-shaped” men and 
“pear-shaped” women remain in use, but a rapid and exciting transformation is taking 
place that moves anthropometry to the modern age with the introduction of new and 
interesting biomarkers (“e-tape” measurements) that enable the precise characterization 
of health status not only at a population level but also at an individual level. 
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