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ABSTRACT
A broad class of models that routinely appear in several fields can be expressed as partially or fully discretized
Gaussian linear regressions. Besides including classical Gaussian response settings, this class also encom-
passes probit, multinomial probit and tobit regression, among others, thereby yielding one of the most
widely-implemented families of models in routine applications. The relevance of such representations has
stimulated decades of research in the Bayesian field, mostly motivated by the fact that, unlike for Gaussian
linear regression, the posterior distribution induced by such models does not seem to belong to a known
class, under the commonly assumed Gaussian priors for the coefficients. This has motivated several solutions
for posterior inference relying either on sampling-based strategies or on deterministic approximations that,
however, still experience computational and accuracy issues, especially in high dimensions. The scope of
this article is to review, unify and extend recent advances in Bayesian inference and computation for this
core class of models. To address such a goal, we prove that the likelihoods induced by these formulations
share a common analytical structure implying conjugacy with a broad class of distributions, namely the
unified skew-normal (SUN), that generalize Gaussians to include skewness. This result unifies and extends
recent conjugacy properties for specific models within the class analyzed, and opens new avenues for
improved posterior inference, under a broader class of formulations and priors, via novel closed-form
expressions, iid samplers from the exact SUN posteriors, and more accurate and scalable approximations
from variational Bayes and expectation-propagation. Such advantages are illustrated in simulations and are
expected to facilitate the routine-use of these core Bayesian models, while providing novel frameworks for
studying theoretical properties and developing future extensions. Supplementary materials for this article
are available online.
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1. Introduction

The scope of this contribution is to review, unify, compare and
extend both past and recent developments in Bayesian inference
for probit (Bliss 1934), multinomial probit (Hausman and Wise
1978; Tutz 1991; Stern 1992), and tobit (Tobin 1958) regression
models, along with related extensions to multivariate, skewed,
nonlinear, and dynamic contexts. Although such models are
core formulations in statistics (DeMaris 2004; Greene 2008;
Agresti 2013) and often appear as building-blocks in more
complex constructions (e.g., Chipman, George, and McCulloch
2010; Rodriguez and Dunson 2011), Bayesian inference under
the associated likelihoods still presents open challenges that
have motivated decades of active research in the field (Chopin
and Ridgway 2017). This is mainly due to the presence in the
likelihood of Gaussian cumulative distribution functions aris-
ing from a partial or full discretization of a set of continuous
latent utilities under a discrete choice perspective (Greene 2008),
thus hindering Gaussian conjugacy when combined with the
commonly-assumed multivariate normal priors for the coeffi-
cients in β .

CONTACT Daniele Durante daniele.durante@unibocconi.it Department of Decision Sciences and Bocconi Institute for Data Science and Analytics, Bocconi
University, Milan, Italy.

Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JASA.

This lack of conjugacy for such a routinely implemented class
of models motivates ongoing efforts to develop effective MCMC-
based sampling methods and accurate deterministic approxima-
tions of the posterior distribution to perform Bayesian inference
in probit (Albert and Chib 1993; Holmes and Held 2006; Con-
sonni and Marin 2007; Chopin and Ridgway 2017), tobit (Chib
1992; Chib, Greenberg, and Jeliazkov 2009; Loaiza-Maya et al.
2022), multinomial probit (Albert and Chib 1993; McCulloch
and Rossi 1994; Nobile 1998; McCulloch, Polson, and Rossi
2000; Albert and Chib 2001; Imai and Van Dyk 2005; Loaiza-
Maya and Nibbering 2022), and their multivariate, skewed,
dynamic and nonlinear generalizations (Chib and Greenberg
1998; Chen, Dey, and Shao 1999; Andrieu and Doucet 2002;
Sahu, Dey, and Branco 2003; Kuss, Rasmussen, and Herbrich
2005; Girolami and Rogers 2006; Bazán, Bolfarine, and Branco
2010; Talhouk, Doucet, and Murphy 2012; Soyer and Sung 2013;
Riihimäki, Jylänki, and Vehtari 2014). Although these methods
yield state-of-the-art implementations, there are still open ques-
tions on computational scalability, approximation accuracy and
mixing, especially in high dimensions (Chopin and Ridgway
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2017). Such issues, combined with the recent conjugacy results
for probit models in Durante (2019), have led to renewed interest
in closed-form solutions for Bayesian inference under these
formulations. In particular, Durante (2019) proved that the
posterior for the β coefficients in Bayesian probit regression
under Gaussian priors belongs to the class of unified skew-
normal (SUN) distributions (Arellano-Valle and Azzalini 2006)
and, more generally, that SUNs are conjugate to probit regres-
sion. The SUN class extends multivariate Gaussians to include
skewness, and its analytical properties have led to rapid exten-
sions of the original results in Durante (2019) to multinomial
probit (Fasano and Durante 2022), dynamic multivariate probit
(Fasano et al. 2021), Gaussian processes (Cao, Durante, and
Genton 2022), skewed Gaussian processes (Benavoli, Azzimonti,
and Piga 2020, 2021), skew-elliptical link functions (Zhang
et al. in press) and rounded data (Kowal 2022), while facilitat-
ing the development of more accurate approximations (Fasano,
Durante, and Zanella 2022).

These advancements provide yet unexplored opportunities
for Bayesian inference under such models via novel closed-
form expressions, tractable Monte Carlo methods based on
iid samples from the exact SUN posteriors, and more accu-
rate and scalable approximations from variational Bayes (VB)
(e.g., Blei, Kucukelbir, and McAuliffe 2017) and expectation-
propagation (EP) (e.g., Chopin and Ridgway 2017). However,
most of these new developments focus on specific sub-classes
of models within a potentially broader family of formulations
that rely on partially or fully discretized Gaussian latent utilities.
Therefore, there is still the lack of a unified framework which
would be practically and conceptually useful to derive general
conjugacy results along with broadly applicable closed-form
solutions, Monte Carlo methods and improved approximations
of the posterior distribution. For instance, conjugacy results
for tobit models (Tobin 1958) are yet missing in the literature,
however, as it will be clarified in Section 3, SUNs are conjugate
also to this class. Such a comprehensive treatment would also
help to clarify these advancements in the light of previously-
developed state-of-the-art MCMC methods and approxima-
tions, and would serve as a catalyst of applied, methodological
and theoretical research to further expand the set of solutions
for this broad class of models.

This article aims at covering the aforementioned gap to
boost the routine use of these core Bayesian models, and pro-
vide comprehensive frameworks for studying general theoreti-
cal properties and developing future extensions. As a first step
toward accomplishing this goal, Section 2 unifies probit, tobit,
multinomial probit and related extensions by reformulating the
associated likelihoods as special cases of a general form that
relies on the product between multivariate Gaussian densities
and cumulative distributions, both evaluated at a linear com-
bination of the coefficients β . Such a unified formulation is
crucial to prove a general result in Section 3 which states that
SUN distributions are conjugate priors for any model whose
likelihood can be expressed as a special case of the one defined
in Section 2. This result unifies available findings for probit
(Durante 2019), multinomial probit (Fasano and Durante 2022)
and dynamic multivariate probit (Fasano et al. 2021), among
others, while extending SUN conjugacy properties to a broader
class of Bayesian models for which similar results have not

appeared yet in the literature. Notable examples are tobit (Tobin
1958), and any extension of probit, tobit and multinomial probit
which replaces the Gaussian latent utilities with skew-normal
ones (Chen, Dey, and Shao 1999; Sahu, Dey, and Branco 2003;
Bazán, Bolfarine, and Branco 2010), among others; see Sec-
tion S1 in the supplementary materials.

As discussed in Section 4, this unified conjugacy result is
also practically relevant since it allows to inherit all the recent
methodological and computational developments for Bayesian
inference under SUN posteriors in probit and multinomial pro-
bit to the entire class of models presented in Section 2. These
advancements include novel closed-form expressions for rele-
vant posterior moments, marginal likelihoods and predictive
distributions, along with improved Monte Carlo methods and
deterministic approximations from VB and EP. These solutions
are presented in detail within Section 4 along with a careful
review of the previous state-of-the-art solutions recasted under
the proposed general framework. An excellent overview of these
previous strategies can be found in Chopin and Ridgway (2017),
but the focus is on univariate probit models. Due to this, the
present article will mostly consider the more recent develop-
ments relying on SUN conjugacy and on their discussion in the
light of previous solutions, when adapted to the broader class of
models and priors, beyond classical Bayesian probit regression.
Consistent with this scope, Section 6 concludes with a general
discussion that points toward several future research directions
motivated by the unified framework developed in this article.
Empirical studies illustrating the potentials of this unification
are provided in Section 5. The proofs of the theoretical results
in this article and an in-depth discussion of the computational
costs for the methods presented in Section 4 can be found in
the supplementary materials.R codes with tutorials to reproduce
the analyses in Section 5 are available at https://github.com/
niccoloanceschi/TobitSUN.

2. A Unified Likelihood Representation

As discussed in Section 1, probit regression (Bliss 1934), tobit
(Tobin 1958), multinomial probit (Hausman and Wise 1978;
Tutz 1991; Stern 1992) and their extensions are core formula-
tions within statistics, and, when viewed as specific examples
of a more general representation which also includes classical
Gaussian linear regression, arguably yield to one of the most
widely-implemented classes of models in routine applications
(DeMaris 2004; Greene 2008; Agresti 2013). In fact, all these
formulations share a common generative construction, in that
the corresponding responses can be defined as partially or fully
discretized versions of continuous ones from a set of underlying
Gaussian linear regressions (Chib 1992; Albert and Chib 1993;
Chib and Greenberg 1998). In particular, let zi ∈ R denote a
latent continuous response available for each unit i = 1, . . . , n,
and consider the standard linear regression model zi = xᵀ

i β +
εi, with iid noise εi ∼ N(0, σ 2), covariates’ vector xi =
(xi1, . . . , xip)ᵀ and coefficients β = (β1, . . . , βp)ᵀ. Starting from
this building-block formulation, general Gaussian linear regres-
sion models, probit models (Bliss 1934) and tobit regression
(Tobin 1958) can be obtained by letting yi = zi, yi = 1(zi > 0)

and yi = max{zi, 0} = zi1(zi > 0), respectively. The first

https://github.com/niccoloanceschi/TobitSUN
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two constructions correspond to the limiting cases in which zi is
either entirely observed or dichotomized, respectively, whereas
the third one represents the intermediate situation in which zi
is fully observed only if it exceeds value 0 (Chib 1992; Albert
and Chib 1993). Multinomial probit regression (Hausman and
Wise 1978; Tutz 1991; Stern 1992) for categorical responses yi ∈
{1, . . . , L} can be derived with a similar reasoning. For instance,
in the formulation proposed by Stern (1992), the observed cate-
gorical response yi is defined as yi = argmaxl{zi1, . . . , ziL} where
zi1, . . . , ziL are class-specific Gaussian latent utilities related to
the covariates via a system of linear regressions zil = xᵀ

i β l + εil
for each l = 1, . . . , L, with εi = (εi1, . . . , εiL)ᵀ ∼ NL(0, �).

As shown in Sections 2.1–2.4, these similarities in the gen-
erative models imply that the likelihoods induced by the above
formulations and their extensions are all specific examples of the
general form

p(y|β)= p(ȳ1|β)p(ȳ0|β)

∝ φn̄1(ȳ1 − X̄1β ; �̄1)�n̄0(ȳ0 + X̄0β ; �̄0), (1)

with φn̄1(ȳ1 − X̄1β ; �̄1) and �n̄0(ȳ0 + X̄0β ; �̄0) denoting
the density and the cumulative distribution function of the
multivariate Gaussians Nn̄1(0, �̄1) and Nn̄0(0, �̄0), evaluated
at ȳ1 − X̄1β and ȳ0 + X̄0β , respectively, where ȳ1 := ȳ1(y)

and ȳ0 := ȳ0(y) denote known response vectors obtained as
a function of y, whereas X̄1 := X̄1(y, X) and X̄0 := X̄0(y, X)

are suitable matrices which can be directly derived from the
original design matrix X — whose rows comprise the vectors
xᵀ

i , i = 1, . . . , n — and, possibly, the responses in y. Intuitively,
(1) states that the likelihood for y arises from a set of linear
regressions for n̄1 + n̄0 Gaussian responses of which n̄1 are fully
observed, thus contributing to the first factor in (1), whereas the
remaining n̄0 are dichotomized and hence are captured by the
second. For instance, the likelihood

∏n
i=1 �(xᵀ

i β)1(yi=1)[1 −
�(xᵀ

i β)]1(yi=0) under probit regression can be rewritten as∏n
i=1 �[(2yi − 1)xᵀ

i β] = �n(diag(2y − 1n)Xβ ; In), that coin-
cides with (1) after letting n̄1 = 0, n̄0 = n, ȳ0 = 0, X̄0 =
diag(2y − 1n)X and �̄0 = In. This example is a degenerate
case where n̄1 = 0, meaning that there are no fully observed
Gaussian responses and n̄0 = n dichotomized ones; refer to Sec-
tions 2.1–2.4 for additional examples which further clarify (1).
To simplify notation, in the following we write φ (·) and �(·) for
denoting, respectively, the density and cumulative distribution
function of a univariate standard Gaussian variable, with mean
0 and variance 1.

2.1. Linear Regression and Multivariate Linear Regression

Although the focus of this article is on models beyond the
classical Gaussian response setting, it is worth emphasizing that
also this class induces likelihoods which are special cases of (1).
For instance, Gaussian linear regression (yi|β) ∼ N(xᵀ

i β , σ 2),
independently for i = 1, . . . , n, is directly recovered after
noticing that the induced likelihood

p(y|β)= ∏n
i=1 φ(yi − xᵀ

i β ; σ 2)
= φn(y − Xβ ; σ 2In), (2)

coincides with (1), when letting n̄0 = 0, n̄1 = n, ȳ1 = y,
X̄1 = X and �̄1 = σ 2In. As a consequence, also heteroscedastic

and correlated versions can be incorporated by replacing σ 2In
with a general covariance matrix. Similarly, the likelihood asso-
ciated with multivariate Gaussian response data from (yi|β) ∼
Nm(Xiβ , �), independently for i = 1, . . . , n, can be written as

p(y|β) = ∏n
i=1 φm(yi − Xiβ ; �)

= φn·m(y − Xβ ; In ⊗ �), (3)

where y = (yᵀ
1 , . . . , yᵀ

n )ᵀ, X = (Xᵀ
1 , . . . , Xᵀ

n )ᵀ and ⊗ denotes
the Kronecker product. Setting n̄0 = 0, n̄1 = n · m, ȳ1 = y,
X̄1 = X and �̄1 = In ⊗ � in (1) yields directly to (3). Notice
that, unlike for the probit example introduced in Section 2, in
these cases n̄0 = 0, meaning that all the Gaussian responses are
fully observed and there are no dichotomized outcomes. This
translates into the fact that no contribution by the Gaussian
cumulative distribution function is present in likelihoods (2)–
(3), which, therefore, simplify to multivariate Gaussian densities.

2.2. Probit, Multivariate Probit and Multinomial Probit

As discussed in Section 2, the classical probit regression model
(yi|β) ∼ Bern[�(xᵀ

i β)], independently for i = 1, . . . , n,
induces likelihoods which can be readily reframed within rep-
resentation (1). More specifically, recalling Durante (2019) and
denoting with 1n the (n × 1)-dimensional vector of all ones, the
probit likelihood can be expressed as

p(y|β)= ∏n
i=1 �[(2yi − 1)xᵀ

i β]
= �n(diag(2y − 1n)Xβ ; In), (4)

which is a special case of (1), with n̄1 = 0, n̄0 = n, ȳ0 = 0,
X̄0 = diag(2y − 1n)X and �̄0 = In. Replacing �̄0 = In with
�̄0 = σ 2In yields also probabilities of the form �(xᵀ

i β ; σ 2).
The above probit regression model further admits a num-

ber of routinely-used extensions which incorporate multivariate
binary outcomes (Chib and Greenberg 1998) and also multi-
nomial response data (Hausman and Wise 1978; Tutz 1991;
Stern 1992). As previously mentioned, both cases have their
roots in discrete choice models (e.g., Greene 2008), and can
be reframed within (1). To clarify this result, let us first focus
on multivariate probit models for the binary response vector
yi = (yi1, . . . , yim)ᵀ ∈ {0, 1}m. As discussed in Chib and
Greenberg (1998), these formulations can be interpreted as a
dichotomized version of the regression model for multivariate
Gaussian response data in Section 2.1. In fact, each yi is defined
as yi = [1(zi1 > 0), . . . ,1(zim > 0)]ᵀ = 111(zi > 0), where
(zi = (zi1, . . . , zim)ᵀ|β) ∼ Nm(Xiβ , �), independently for
every i = 1, . . . , n. This means that the contribution to the like-
lihood of each unit i is p(yi|β) = p(111(zi > 0)|β), which can be
also written as �m(BiXiβ ; Bi�Bi), following standard proper-
ties of multivariate Gaussian cumulative distribution functions,
where Bi = diag(2yi1 − 1, . . . , 2yim − 1). As a result, the joint
likelihood of multivariate probit is

p(y|β)= ∏n
i=1 �m(BiXiβ ; Bi�Bi)

= �n·m(BXβ ; B(In ⊗ �)B), (5)

where X = (Xᵀ
1 , . . . , Xᵀ

n )ᵀ, and B denotes an (n · m) × (n · m)

block-diagonal matrix with generic block B[i,i] = Bi, for each
i = 1, . . . , n. To reframe (5) within the general likelihood form
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in (1) it suffices to set n̄1 = 0, n̄0 = n · m, ȳ0 = 0, X̄0 = BX and
�̄0 = B(In ⊗ �)B.

As discussed in Fasano and Durante (2022), a similar con-
struction and derivations can be also considered for several
multinomial probit models (Hausman and Wise 1978; Tutz
1991; Stern 1992). All these formulations express the probabil-
ities of the L different categories {1, . . . , L} via a discrete choice
mechanism relying on correlated predictor-dependent Gaussian
latent utilities which facilitate improved flexibility and avoid
restrictive assumptions often found in multinomial logit, such as
the independence of irrelevant alternatives (Hausman and Wise
1978). For instance, in the formulation by Stern (1992), each
categorical response yi is defined as yi = argmaxl{zi1, . . . , ziL},
where zil = xᵀ

i β l + εil for l = 1, . . . , L, with εi =
(εi1, . . . , εiL)ᵀ ∼ NL(0, �), and βL = 0 for identifiability
purposes (Johndrow, Dunson, and Lum 2013). As a consequence
of this construction and recalling Section 2.2 in Fasano and
Durante (2022), it follows that pr(yi = l|β) = pr(zil >

zik, ∀k �= l), which can be also rewritten as pr(εik −εil < xᵀ
i β l −

xᵀ
i βk, ∀k �= l). Therefore, let vl denote the L-dimensional vector

with value 1 in position l and 0 elsewhere, for each l = 1, . . . , L,
and define xil = v̄l ⊗ xi, where v̄l is the (L − 1)-dimensional
vector obtained by removing the Lth entry in vl. Then, pr(yi =
l|β) = pr[(vk − vl)

ᵀεi < (xil − xik)
ᵀβ , ∀k �= l], where β =

(β
ᵀ
1 , . . . , βᵀ

L−1)
ᵀ. This expression can be also re-formulated in

the more compact form pr(V[−l]εi < Xi[−l]β), where V[−l] and
Xi[−l] correspond to suitable matrices whose rows are obtained
by stacking the vectors (vk − vl)

ᵀ and (xil − xik)
ᵀ, respectively,

for every k �= l, and < is intended elementwise. Therefore,
leveraging the standard properties of multivariate Gaussians,
it follows that pr(yi = l|β) = pr(V[−l]εi < Xi[−l]β) =
�L−1(Xi[−l]β ; V[−l]�Vᵀ

[−l]), for every l = 1, . . . , L. This result
yields a joint likelihood for the categorical responses y =
(y1, . . . , yn)ᵀ which can be written as

p(y|β)= ∏n
i=1 �L−1(Xi[−yi]β ; V[−yi]�Vᵀ

[−yi])= �n·(L−1)(Xβ ; V(In ⊗ �)Vᵀ), (6)

where X = (Xᵀ
1[−y1], . . . , Xᵀ

n[−yn])ᵀ, and V is a block-diagonal
matrix with generic block V[i,i] = V[−yi], for each i = 1, . . . , n.
Setting n̄1 = 0, n̄0 = n · (L − 1), ȳ0 = 0, X̄0 = X and
�̄0 = V(In ⊗ �)Vᵀ in (1) leads to (6). Hence, the multinomial
probit model by Stern (1992) is again a special case of the general
form in (1). As shown in Sections 2.1 and 2.3 of Fasano and
Durante (2022), also the alternative formulations proposed by
Hausman and Wise (1978) and Tutz (1991) induce likelihoods
which can be expressed as cumulative distribution functions of
multivariate Gaussians evaluated at a suitable linear combina-
tion of the coefficients’ vector β ; see Propositions 1 and 3 in
Fasano and Durante (2022). This means that also such models
can be easily recasted within the general form in (1) with n̄1 = 0,
ȳ0 = 0, and suitably defined n̄0, X̄0 and �̄0.

2.3. Tobit Regression

Recalling Section 2, the classical tobit model (Tobin 1958) char-
acterizes the intermediate situation in which response data are
fully observed only if exceeding a certain threshold, often set to
0. This means that yi = zi1(zi > 0), with (zi|β) ∼ N(xᵀ

i β , σ 2),

independently for i = 1, . . . , n. Such a formulation yields the
joint likelihood

p(y|β)= ∏
i:yi>0φ(yi−xᵀ

i β ;σ 2)
∏

i:yi=0�(−xᵀ
i β ;σ 2)

= φn1(y1 − X1β ; σ 2In1)�n0(−X0β ; σ 2In0), (7)

where n1 and n0 denote the number of fully observed and cen-
sored units, respectively, whereas y1, X1, and X0 are the response
vector and design matrices associated with these two subsets of
units. This likelihood can be again expressed as a special example
of (1) by letting n̄1 = n1, n̄0 = n0, ȳ1 = y1, ȳ0 = 0, X̄1 = X1,
X̄0 = −X0, �̄1 = σ 2In1 , and �̄0 = σ 2In0 .

The above result also holds for several subsequent extensions
of the original tobit model (Tobin 1958), which include more
elaborated censoring mechanisms, possibly relying on multi-
variate Gaussian utilities. Such generalizations, often known in
the literature as type II, III, IV, and V tobit models, are care-
fully discussed in Amemiya (1984) and all induce likelihoods
which can be written as the product of Gaussian densities and
cumulative distribution functions evaluated at suitable linear
combinations of the coefficients β . This common structure
allows again to readily express such extensions as special cases
of the general form in (1). Inclusion of multivariate versions is
also straightforward under a similar reasoning considered in (3)
and (5).

2.4. Extensions to Skewed, Nonlinear and Dynamic Models

As discussed in Section S1 of the supplementary materials,
although the models discussed in Sections 2.1–2.3 cover the
most widely-implemented formulations in the literature, several
additional extensions of these representations to skewed (e.g.,
Chen, Dey, and Shao 1999; Sahu, Dey, and Branco 2003; Bazán,
Bolfarine, and Branco 2010; Hutton and Stanghellini 2011), non-
linear (e.g., Kuss, Rasmussen, and Herbrich 2005; De Oliveira
2005; Nickisch and Rasmussen 2008; Riihimäki, Jylänki, and
Vehtari 2014; Cao, Durante, and Genton 2022; Benavoli, Azzi-
monti, and Piga 2020), dynamic (e.g., Manrique and Shephard
1998; Andrieu and Doucet 2002; Naveau, Genton, and Shen
2005; Chib and Jeliazkov 2006; Soyer and Sung 2013; Fasano
et al. 2021) and other contexts admit likelihood forms as in (1).

3. Conjugacy via Unified Skew-Normals

Sections 3.1–3.2 unify Bayesian inference for the whole family
of models in Section 2 by proving that the likelihood in (1)
admits as conjugate priors the class of unified skew-normal
(SUN) distributions (Arellano-Valle and Azzalini 2006). Cru-
cially, these variables include as special cases the commonly-
assumed Gaussian priors for β in models (2)–(7), while extend-
ing such distributions in several directions. Hence, this review
not only unifies and extends a broad class of models within
a single likelihood representation, but also enlarges the class
of prior distributions which admit closed-form posteriors that
facilitate Bayesian inference.

3.1. Unified Skew-Normal Prior

Classical Bayesian implementations of the models in Sec-
tions 2.1–2.4 often assume multivariate Gaussian priors for β ,
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which are natural choices in Bayesian regression and, under the
models presented in Sections 2.1–2.4, are further motivated by
the Gaussian form of the underlying latent utilities (e.g., Chib
1992; Albert and Chib 1993; McCulloch and Rossi 1994; Nobile
1998; Chib and Greenberg 1998; McCulloch, Polson, and Rossi
2000; Albert and Chib 2001; Imai and Van Dyk 2005; Kuss, Ras-
mussen, and Herbrich 2005; Holmes and Held 2006; Riihimäki,
Jylänki, and Vehtari 2014; Chopin and Ridgway 2017). Interest-
ingly, these priors are special cases of more general distributions
which induce asymmetric shapes in multivariate Gaussians by
modifying the density of such variables through a skewness-
inducing mechanism driven by the cumulative distribution
function of another Gaussian. Key examples include multivari-
ate skew-normals (Azzalini and Dalla Valle 1996; Azzalini and
Capitanio 1999), extended multivariate skew-normals (Arnold
and Beaver 2000; Arnold et al. 2002) and closed skew-normals
(González-Farias, Dominguez-Molina, and Gupta 2004; Gupta,
González-Farias, and Dominguez-Molina 2004), which have all
been subsequently unified by Arellano-Valle and Azzalini (2006)
in a single general class, namely the unified skew-normal (SUN)
distribution. Recalling Arellano-Valle and Azzalini (2006), the
vector β ∈ Rp̄ has SUNp̄,n̄(ξ , �, �, γ , 	) prior if its density p(β)

is equal to

φp̄(β − ξ ; �)
�n̄(γ + �ᵀ�̄

−1
ω−1(β − ξ); 	 − �ᵀ�̄

−1
�)

�n̄(γ ; 	)
,

(8)

with �̄ denoting the p̄ × p̄ correlation matrix associated with
the covariance matrix � which, in turn, can be expressed as
� = ω�̄ω, where ω = (� � Ip̄)

1/2, and � refers to the
element-wise Hadamard product. According to (8), skewness
is induced in φp̄(β − ξ ; �) by multiplying such a density with
the cumulative distribution function of a Nn̄(0, 	 − �ᵀ�̄−1�),
evaluated at γ + �ᵀ�̄−1ω−1(β − ξ), whereas �n̄(γ ; 	) cor-
responds to the normalizing constant. Notice that when all the
entries in the p̄ × n̄ skewness matrix � are 0, the numerator in
(8) reduces to �n̄(γ ; 	), thereby allowing to obtain the classical
Gaussian prior density φp̄(β − ξ ; �) as a special case of (8). The
quantities p̄ and n̄ denote instead the dimensions of the density
and the cumulative distribution function, respectively. Within
the general class of formulations discussed in Sections 2.1–2.4,
p̄ refers to the dimension of β and, hence, can vary depending
on the model considered. While in most cases p̄ is equal to
the number of predictors p, under specific constructions the
two dimensions might differ. For instance, in the multinomial
probit model in (6), p̄ coincides with p · (L − 1). Conversely,
n̄ defines the dimension of the multivariate Gaussian cumula-
tive distribution function responsible for the skewness-inducing
mechanism in the prior density. For example, setting n̄ = 0
yields the classical Gaussian prior for β , whereas assuming
independent skew-normals for each βj, j = 1, . . . , p̄, would
imply n̄ = p̄.

Recalling Arellano-Valle and Azzalini (2006), the above SUN
distribution also admits a generative construction which further
clarifies the role of the parameters ξ , �, �, γ , and 	, and
provides key intuitions on the conjugacy properties of SUN
priors under likelihood (1). In particular, let β̃ ∈ Rp̄ and z̃ ∈ Rn̄

denote two vectors jointly distributed as a Np̄+n̄(0, �∗), where

�∗ is a (p̄+n̄)×(p̄+n̄) correlation matrix with blocks �∗[11] = �̄,
�∗[22] = 	 and �∗[21] = �

∗ᵀ
[12] = �ᵀ, then β̄ = (β̃|z̃ + γ > 0)

is distributed as a SUNp̄,n̄(0, �̄, �, γ , 	), while β = ξ + ωβ̄ ∼
SUNp̄,n̄(ξ , �, �, γ , 	) with density as in (8). Consistent with this
generative representation, the parameters ξ and ω control the
location and the scale of the prior, whereas �̄, 	, and � regulate
the dependence within β̃ , z̃ and between these two random
vectors, respectively. The term γ denotes instead the truncation
threshold in the conditioning mechanism. Besides clarifying
the role of the prior parameters, this representation offers intu-
itions on the SUN conjugacy formalized in Section 3.2. In fact,
according to such a construction, SUNs arise as conditional
distributions in a generative mechanism that relies on partially-
observed Gaussian latent variables z̃. This has direct connec-
tions with the posterior distribution for β under the models
in Section 2, which is also defined, through Bayes rule, via a
conditioning operation relying on partially or fully observed
Gaussian utilities.

The above discussion further suggests that different forms
of prior information can be included via (8). Since multivari-
ate normal distributions are special cases of SUNs, all non-
informative, weakly informative and informative priors relying
on Gaussians (e.g., Zellner 1986; Gelman et al. 2008; Chopin
and Ridgway 2017) can be employed by letting n̄ = 0, and
suitably specifying ξ and �. The possibility to include skewness
further allows the incorporation of additional prior information
by letting n̄ > 0 and choosing appropriate values for the
parameters �, γ , and 	, keeping in mind the corresponding role
in the generative process that leads to the prior density in (8).
Key examples of priors of potential interest in this context, which
belong to the SUN family, are univariate skew-normals (Azzalini
1985) for each coefficient βj, j = 1, . . . , p̄, or multivariate skew-
normals (Azzalini and Dalla Valle 1996; Azzalini and Capitanio
1999), extended multivariate skew-normals (Arnold and Beaver
2000; Arnold et al. 2002) and closed skew-normals (González-
Farias, Dominguez-Molina, and Gupta 2004; Gupta, González-
Farias, and Dominguez-Molina 2004) for the entire vector β .
Among such options, independent univariate skew-normals are
a convenient choice that easily allows to elicit skewness infor-
mation for each βj, j = 1, . . . , p̄ via a single and interpretable
parameter.

As clarified in Section 3.2, the SUNs’ properties are also
beneficial for posterior inference. Recalling Arellano-Valle and
Azzalini (2006), Azzalini and Bacchieri (2010), Azzalini and
Capitanio (2013), and Arellano-Valle and Azzalini (2021) SUNs
have a number of properties in common with multivariate
Gaussians. These include closure under marginalization, linear
combinations and conditioning, along with the availability of
closed-form expressions for the moment generating function,
and additive representations via linear combinations of multi-
variate Gaussians and truncated normals. Due to the SUN con-
jugacy proved in Theorem 1, all these properties can facilitate
point estimation, uncertainty quantification, model selection
and prediction under the SUN posterior associated with the
general likelihood in (1) which encompasses the models in
Sections 2.1–2.4. This provides important advancements for a
broad class of models, under a similarly wide family of priors
beyond Gaussians.
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3.2. Unified Skew-Normal Posterior and its Properties

Theorem 1 unifies and extends recent model-specific deriva-
tions by proving SUN conjugacy for any statistical model whose
likelihood can be expressed as in (1). The proof of Theorem 1
combines original results on SUN conjugacy in probit models
(Durante 2019, Corollary 4) with Lemma 1, which shows that
SUN priors are also conjugate to Gaussian linear regression; see
Section S2 in the supplementary materials for detailed proofs of
Lemma 1 and Theorem 1.

Lemma 1. Let p(ȳ1|β) = φn̄1(ȳ1 − X̄1β ; �̄1) and assume that
β has SUNp̄,n̄(ξ , �, �, γ , 	) prior with density p(β) as in (8).
Then, (β|ȳ1) ∼ SUNp̄,n̄(ξ 1, �1, �1, γ 1, 	1) where

ξ 1 = (�−1 + X̄ᵀ
1 �̄−1

1 X̄1)
−1(�−1ξ + X̄ᵀ

1 �̄−1
1 ȳ1),

�1 = (�−1 + X̄ᵀ
1 �̄−1

1 X̄1)
−1 = ω1�̄1ω1,

�1 = �̄1ω1ω
−1�̄−1�s−1

1 ,
γ 1 = s−1

1 [γ + �ᵀ�̄−1ω−1(ξ 1 − ξ)],
	1 = s−1

1 [	 + �ᵀ(�̄−1ω−1�1ω−1�̄−1 − �̄−1)�]s−1
1 ,

with s1 = ([	+�ᵀ(�̄
−1

ω−1�1ω
−1�̄

−1− �̄
−1

)�] � In̄)1/2.

Note that in Lemma 1 the rescaling operated by s1 is required to
ensure that the matrix �∗

1 with blocks �∗
1[11] = �̄1, �∗

1[22] = 	1
and �∗

1[21] = �
∗ᵀ
1[12] = �

ᵀ
1 is a correlation matrix, as in the orig-

inal formulation (Arellano-Valle and Azzalini 2006). Although
this constraint is useful to avoid identifiability issues in fre-
quentist contexts, such problems are less of a concern in our
Bayesian setting since the parameters of the SUN posterior are
known functions of the observed data and of the pre-specified
prior hyperparameters, and thus do not need to be estimated.
However, maintaining this constraint is still useful to inherit
results of the original SUN and to avoid identifiability issues in
prior elicitation.

Leveraging Lemma 1 above, and adapting Corollary 4 in
Durante (2019), it is now possible to state the general SUN
conjugacy result in Theorem 1.

Theorem 1. Consider the likelihood

p(y|β) ∝ φn̄1(ȳ1 − X̄1β ; �̄1)�n̄0(ȳ0 + X̄0β ; �̄0)

defined in (1), and assume that β has a SUNp̄,n̄(ξ , �, �, γ , 	)

prior with density as in (8). Then

(β|y) ∼ SUNp̄,n̄+n̄0(ξpost, �post, �post, γ post, 	post)

with posterior parameters

ξpost = ξ 1, �post = �1, �post = (�1, �̄1ω1X̄ᵀ
0 s−1

0 ),
γ post = (γ

ᵀ
1 , (ȳ0 + X̄0ξ 1)

ᵀs−1
0 )ᵀ,

and 	post denoting a full-rank (n̄ + n̄0) × (n̄ + n̄0) correlation
matrix with blocks

	post[11] = 	1, 	post[22] = s−1
0 (X̄0�1X̄ᵀ

0 + �̄0)s−1
0 ,

	post[21] = 	
ᵀ
post[12] = s−1

0 X̄0ω1�1,

where s0 = [(X̄0�1X̄ᵀ
0 + �̄0) � In̄0]1/2, while ξ 1, �1, �1, γ 1,

and 	1 are defined as in Lemma 1.

Theorem 1 encompasses all available conjugacy results for
SUN distributions under specific models within the broader
family analyzed, while extending such findings to other key
formulations. For example, setting p̄ = p, n̄1 = 0, n̄0 = n, ȳ0 =
0, X̄0 = diag(2y − 1n)X and �̄0 = In as in (4), and substituting
these quantities within the expressions in Theorem 1, would
yield a SUNp,n̄+n(ξpost, �post, �post, γ post, 	post) posterior with
parameters as in Corollary 4 by Durante (2019). Theorem 1
in Durante (2019) is instead recovered under the additional
constraint n̄ = 0, which implies a Gaussian prior. Note that
when n̄1 = 0 the associated quantities ȳ1, X̄1, and �̄1 are not
defined and simply need to be removed from the formulas in
Theorem 1. The same reasoning holds for ȳ0, X̄0, and �̄0 when
n̄0 = 0, and for �, γ and 	 if n̄ = 0. For instance, setting n̄0 = 0
in Theorem 1 leads to Lemma 1. Similarly, the SUN conju-
gacy results for multinomial probit (Fasano and Durante 2022),
dynamic multivariate probit (Fasano et al. 2021), Gaussian pro-
cesses (Cao, Durante, and Genton 2022), and skewed Gaussian
processes under linear models, affine probit and combinations
of these two formulations (Benavoli, Azzimonti, and Piga 2020,
2021) can be readily obtained from Theorem 1 under the settings
in Sections 2.1–2.4 for the quantities defining the likelihood in
(1). Interestingly, also results outside of the regression context,
such as those proved by Canale, Pagui, and Scarpa (2016) for
multivariate skew-normal likelihoods with Gaussian or skew-
normal priors on the shape parameter, can be recasted within
Theorem 1. Besides encompassing already available findings,
Theorem 1 provides novel conjugacy results also in previously-
unexplored settings, such as in tobit regression and in models
relying on skewed utilities.

As discussed in Section 3.1, the availability of a SUN posterior
in Theorem 1 facilitates Bayesian inference for the whole class of
models in Sections 2.1–2.4, by leveraging known properties of
SUNs (Azzalini and Capitanio 2013; Arellano-Valle and Azza-
lini 2021). For instance, recalling Arellano-Valle and Azzalini
(2006), the moment generating function of the posterior is

M(t) = eξ
ᵀ
postt+0.5tᵀ�postt �n̄+n̄0(γ post + �

ᵀ
postωpostt; 	post)

�n̄+n̄0(γ post; 	post)
,(9)

for t ∈ Rp̄, and, therefore, closed-form expressions for relevant
moments can be obtained from (9). In particular, applying the
derivations in Azzalini and Bacchieri (2010) and Arellano-Valle
and Azzalini (2021) to the SUN posterior in Theorem 1, yields
the following expressions for E(β|y) and var(β|y)

E(β|y) = ξpost + ωpost�postψ ,
var(β|y) = �post + ωpost�post(� − ψψᵀ)�

ᵀ
postωpost,

(10)
where ψ is a vector of dimensions (n̄ + n̄0) × 1, with entries
ψi = φ(γpost,i)�n̄+n̄0−1(γ post,−i − 	post,−iγpost,i; 	post,−i,−i −
	post,−i	

ᵀ
post,−i)/�n̄+n̄0(γ post; 	post) for i = 1, . . . , n̄ + n̄0,

where γpost,i and γ post,−i correspond to the ith element of γ post
and the (n̄ + n̄0 − 1) × 1 vector obtained by removing entry i
in γ post, respectively, whereas 	post,−i and 	post,−i,−i are the ith
column of 	post without entry i and the sub-matrix obtained by
removing the ith row and column from 	post, respectively. Anal-
ogously, � is a (n̄+n̄0)×(n̄+n̄0) symmetric matrix involving the
second-order derivatives of the cumulative distribution function
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term in (9); refer to Arellano-Valle and Azzalini (2021) for the
exact expression of � and of higher-order moments of the SUN.
These quantities can be also estimated via Monte Carlo since

(β|y)
d= ξpost + ωpost(U0 + �post	

−1
postU1), (11)

with d= meaning equality in distribution, and

U0 ∼ Np̄(0, �̄post − �post	
−1
post�

ᵀ
post),

U1 ∼ TNn̄+n̄0(−γ post; 0, 	post),

where TNn̄+n̄0(−γ post; 0, 	post) denotes an (n̄ + n̄0)-variate
Gaussian having mean 0, covariance matrix 	post and trunca-
tion below −γ post. This additive construction has been first
derived in Arellano-Valle and Azzalini (2006) and allows to
generate independent and identically distributed values from
the exact posterior via linear combinations of samples from p̄-
variate Gaussians and (n̄ + n̄0)-variate truncated normals, thus
overcoming convergence and mixing issues of MCMC methods;
see Section 4.

Uncertainty quantification and calculation of credible inter-
vals is instead facilitated by the availability of a closed-
form expression for the SUN cumulative distribution function.
Adapting Azzalini and Bacchieri (2010) and Arellano-Valle and
Azzalini (2021), this is

pr(β ≤ b|y) = �p̄+(n̄+n̄0)([(b − ξpost)
ᵀω−1

post, γ
ᵀ
post]ᵀ; �̃post)

�n̄+n̄0(γ post; 	post)
,

(12)
for every b ∈ Rp̄, where �̃post denotes a matrix with blocks
�̃post[11] = �̄post, �̃post[22] = 	post and �̃post[21] = �̃

ᵀ
post[12] =

−�
ᵀ
post.

Extending the results of Durante (2019), Fasano and Durante
(2022) and Benavoli, Azzimonti, and Piga (2021) to the more
general setting under consideration, it is also possible to obtain
the marginal likelihood as follows

p(y) = c · φn̄1(ȳ1 − X̄1ξ ; �̄1 + X̄1�X̄ᵀ
1 )

�n̄+n̄0(γ post; 	post)

�n̄(γ ; 	)
,

(13)
where c = 1 under all the routinely-implemented models
in Section 2 which rely on Gaussian utilities, namely (2)–(7),
whereas for those formulations based on skewed utilities, for
example, (S.1)–(S.3), the constant c is a known value. Albeit
the primary interest is inference on β , the marginal likelihood
in (13) allows to obtain empirical Bayes estimates also for the
other quantities in likelihood (1), such as the parameters of the
covariance matrices �̄1 and �̄0, via numerical maximization;
see Section 6 for further discussion on estimation of �̄1 and �̄0.
In addition, (13) facilitates direct calculation of Bayes factors for
model selection and evaluation of predictive probabilities. This
second objective can be readily accomplished noting that the
predictive probability p(ynew|y) for a new vector of observations
ynew from model (1) is equal to the ratio p(ynew, y)/p(y) of
the two associated marginal likelihoods. Therefore, focusing
for simplicity on the case c = 1, which covers the most
widely–used models in Section 2, direct application of (13)

leads to

p(ynew|y) = φn̄1+n̄1new (ȳ1pred−X̄1predξ ;�̄1pred+X̄1pred�X̄ᵀ
1pred)

φn̄1 (ȳ1−X̄1ξ ;�̄1+X̄1�X̄ᵀ
1 )

·�n̄+n̄0+n̄0new (γ pred;	pred)

�n̄+n̄0 (γ post;	post)
,

(14)

where n̄1new and n̄0new are the dimensions of the two vec-
tors ȳ1new and ȳ0new associated with ynew. Similarly, ȳ1pred =
(ȳᵀ

1 , ȳᵀ
1new)ᵀ, X̄1pred = (X̄ᵀ

1 , X̄ᵀ
1new)ᵀ, whereas �̄1pred denotes

the block-diagonal matrix that has �̄1pred[11] = �̄1 and
�̄1pred[22] = �̄1new. The two quantities γ pred and 	pred, and,
implicitly, ξpred, �pred and �pred, are constructed analogously
to the posterior parameters in Theorem 1, after replacing the
original data with the enriched ones (ȳ1pred, X̄1pred, �̄1pred) and
(ȳ0pred, X̄0pred, �̄0pred), where ȳ0pred = (ȳᵀ

0 , ȳᵀ
0new)ᵀ, X̄0pred =

(X̄ᵀ
0 , X̄ᵀ

0new)ᵀ and �̄0pred is the block–diagonal matrix with
�̄0pred[11] = �̄0 and �̄0pred[22] = �̄0new.

Before concluding the overview of the SUN properties
which facilitate posterior inference, it shall be emphasized
that SUNs are also closed under marginalization, linear
combinations and conditioning (Arellano-Valle and Azzalini
2006, 2021). This means, for instance, that the posterior
distribution of any sub-vector β[j], with j ⊂ {1, . . . , p̄} is
a SUN|j|,n̄+n̄0(ξpost[j], �post[jj], �post[j], γ post, 	post), where
�post[j] corresponds to the matrix �post after deleting all the
rows with indexes not in j. Therefore, setting j = {j} shows that
the posterior of each βj, j = 1, . . . , p̄ is still a SUN. Similarly, the
posterior distribution for the linear combination (a + Aᵀβ) ∈
Rd is a SUNd,n̄+n̄0(a+Aᵀξpost, Aᵀ�postA,[(Aᵀ�postA) �
Id]−1/2Aᵀωpost�post, γ post, 	post). In particular, this implies
that the posterior distribution of any linear predictor is still
SUN.

The results presented in this section also clarify that, unlike
for Bayesian linear regression with Gaussian priors, it is not
immediate to disentangle the role of the prior parameters from
the one of the data in the functionals and shape of the SUN
posterior treated in this article. In fact, as clarified in (11), each
of these quantities covers multiple roles in controlling location,
scale and skewness; see Durante (2019) for an attempt to sep-
arate the effect of the different terms in probit regression with
Gaussian priors.

4. Computational Methods

The results presented in Section 3.2 suggest that posterior infer-
ence under the models illustrated in Section 2 can be performed
via closed-form solutions. This is true for any, even huge, p̄ as
long as n̄+ n̄0 is small-to-moderate, but not when n̄+ n̄0 exceeds
few hundreds (Durante 2019; Fasano and Durante 2022). In fact,
(9)–(14) require evaluation of cumulative distribution functions
of (n̄ + n̄0)-variate Gaussians or sampling from (n̄ + n̄0)-variate
truncated normals, which is known to be computationally chal-
lenging in high dimensions (Genz 1992; Genz and Bretz 2009;
Botev 2017; Genton, Keyes, and Turkiyyah 2018; Cao et al.
2019, 2021). This motivates still active research on developing
sampling-based methods and accurate deterministic approxi-
mations for tractable Bayesian inference under the models in
Section 2. Sections 4.1–4.3 review, unify, extend and compare
both past and more recent developments along these lines.
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4.1. Analytical Methods

As discussed above, the evaluation of high-dimensional Gaus-
sian integrals with linear constraints, such as those found in (9)–
(14), is a longstanding problem (e.g., Genz 1992; Genz and Bretz
2002; Miwa, Hayter, and Kuriki 2003; Gassmann 2003; Genz
2004; Craig 2008; Ridgway 2016; Botev 2017; Genton, Keyes, and
Turkiyyah 2018; Cao et al. 2019; Gessner, Kanjilal, and Hennig
2020; Cao et al. 2021).

A popular class of strategies for evaluating these Gaussian
integrals encompasses several extensions of the original sepa-
ration of variables estimator initially proposed by Genz (1992).
This solution recasts the problem as a sequence of tractable
one-dimensional integrals, which are evaluated numerically via
a randomized quasi-Monte Carlo sampling. As suggested in,
for example, Genz and Bretz (2009), the variance of the result-
ing estimator can be further reduced by means of variable
reordering. More recently, Botev (2017) proposed a new solution
relying on an optimal exponential tilting of the Genz (1992)
construction, which is found by solving efficiently a minimax
saddle-point problem, and then used as an effective importance
sampling proposal. While still providing an unbiased estimate,
this technique achieves practical reduction of the estimator vari-
ance by orders of magnitude. Moreover, this procedure remains
effective in settings where the Genz (1992) method cannot
provide reliable estimates. Such a solution, available in the R
library TruncatedNormal, remains generally tractable in a
few hundreds of dimensions, but it progressively slows down
beyond this regime. To achieve scalability in higher dimensions,
recent solutions leverage low-rank hierarchical block structures
of the covariance matrix within the high-dimensional Gaussian
integral to decompose the problem into a sequence of smaller-
dimensional ones which facilitate reduction of computational
cost while preserving accuracy (Genton, Keyes, and Turkiyyah
2018; Cao et al. 2019, 2021). Among these alternatives, the
one proposed in Cao et al. (2021) provides a state-of-the-
art extension of the original separation of variables estimator
which incorporates both an effective tile-low-rank representa-
tion of the covariance matrix and an iterative block-reordering
scheme to obtain notable improvements in runtimes and scal-
ability. For instance, such a solution has been recently adapted
to the problem of evaluating predictive probabilities in high-
dimensional probit Gaussian processes with n̄0 and p̄ in tens of
thousands (Cao, Durante, and Genton 2022), obtaining remark-
able improvements over state-of-the-art methods.

There are also alternative solutions beyond the classical sep-
aration of variables technique. For example, Ridgway (2016)
developed a sequential Monte Carlo sampler to compute Gaus-
sian orthant probabilities, adding a dimension at each step, com-
bined with carefully-designed MCMC moves. More recently,
Gessner, Kanjilal, and Hennig (2020) constructed an efficient
estimator of Gaussian integrals with linear domain constraints,
that decomposes the problem into a sequence of easier-to-
solve conditional probabilities, based on nested domains. Each
internal step uses an analytic version of elliptical slice sam-
pling, exploiting the availability of closed-form solutions for the
intersections between the ellipses and linear constraints. The
authors reported evidence of effectiveness of such method even
for thousands-dimensional integrals. Further strategies can be

found in, for example, Genz and Bretz (2002), Miwa, Hayter, and
Kuriki (2003), Gassmann (2003), Genz (2004), Craig (2008), and
Trinh and Genz (2015).

Interestingly, some of the aforementioned strategies also pro-
vide, as a byproduct, effective solutions for sampling from mul-
tivariate truncated normals, which can be useful to generate
values from the SUN posterior via the additive representation
in (11). These methods can be found, for example, in Botev
(2017) and in Gessner, Kanjilal, and Hennig (2020). Motivated
by inference on a phylogenetic multivariate probit model, Zhang
et al. (2021) recently employed an alternative scheme for sam-
pling from truncated normals with dimension above 10,000,
via a bouncy particle sampler. See also Pakman and Paninski
(2014) for an Hamiltonian Monte Carlo scheme, incorporating
the truncations via hard walls and exploiting the possibility to
integrate exactly the Hamiltonian equations.

All the above solutions provide effective methods for eval-
uating Gaussian cumulative distribution functions and, possi-
bly, sampling from multivariate truncated normals. However,
such procedures are still subject to a tradeoff between accuracy
and computational tractability which is often specific to the
model analyzed and to the size of the data, thereby motivating
still ongoing research. Due to this, it is difficult to identify a
generally-applicable gold-standard among the aforementioned
techniques, although, in practice, the method by Botev (2017)
has often notable performance when applied to (9)–(14) in
small-to-moderate size settings with n̄ + n̄0 in the order of
few hundreds. Higher-dimensional problems may require more
scalable solutions (e.g., Gessner, Kanjilal, and Hennig 2020; Cao
et al. 2021; Zhang et al. 2021), even if more extensive empirical
analyses are required to assess these methods.

4.2. Sampling-based Methods

Whenever the interest is on more complex posterior function-
als beyond those derived in Section 3.2, an effective solution
is to consider Monte Carlo estimates based on samples from
p(β|y). While generally-applicable MCMC strategies such as
state-of-the-art implementations of Hamiltonian Monte Carlo
(e.g., Hoffman and Gelman 2014) and Metropolis–Hastings
(e.g., Roberts and Rosenthal 2001) can be considered, a widely-
implemented class of algorithms within the context of the mod-
els presented in Section 2 are data augmentation Gibbs sam-
plers (see, e.g., Chib 1992; Albert and Chib 1993; McCulloch
and Rossi 1994; Chib and Greenberg 1998; Albert and Chib
2001; Imai and Van Dyk 2005; Holmes and Held 2006). This is
because the formulations in Section 2 rely on Gaussian latent
utilities which are assigned a regression model with coefficients
β . Therefore, treating these utilities as augmented data restores
Gaussian-Gaussian conjugacy between the prior for β and the
likelihood of the augmented utilities, which can be in turn
sampled from independent truncated normal full-conditionals,
given β and the censoring information provided by the observed
y. This yields tractable Gibbs samplers that iterate among these
two steps, thus producing samples from the posterior of β .

Although the above techniques have been proposed only
for a subset of the models presented in Section 2, and in sep-
arate contributions mainly focusing on Gaussian priors (e.g.,
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Chib 1992; Albert and Chib 1993; McCulloch and Rossi 1994;
Holmes and Held 2006), the comprehensive framework in (1),
and the general conjugacy results reported in Section 3 allow
to unify these MCMC strategies within a broad construction
which can be applied to any model in Section 2, even beyond
those currently studied, and holds not only for Gaussian prior
distributions, but also for the general SUN ones. Letting

Xpost = �
ᵀ
post�̄

−1
postω

−1
post, ηpost = γ post − Xpostξpost,

�post = 	post − �
ᵀ
post�̄

−1
post�post,

this general Gibbs sampler can be obtained by noticing that,
due to (8), the density kernel of the SUN posterior in The-
orem 1 coincides with φp̄(β − ξpost; �post)�n̄+n̄0(ηpost +
Xpostβ ; �post), where the cumulative distribution function term
can be also written as

∫
φn̄+n̄0(z̄−(ηpost +Xpostβ); �post)1(z̄ >

0)dz̄. Hence, extending the augmented-data representation by
Albert and Chib (1993)—see also Fasano and Durante (2022)—
and leveraging standard properties of multivariate Gaussian
and truncated normals, this alternative formulation implies a
generally-applicable data augmentation Gibbs sampler relying
on the full-conditional distributions

(β|y, z̄) ∼ Np̄(Vpost[Xᵀ
post�

−1
post(z̄ − ηpost) + �−1

postξpost], Vpost),

(z̄|y, β) ∼ TNn̄+n̄0(0; ηpost + Xpostβ , �post), (15)

where Vpost = (�−1
post + Xᵀ

post�
−1
postX

ᵀ
post)

−1. Hence, available
Gibbs samplers for specific models within (1) and yet unex-
plored extensions to the whole class under general SUN priors,
can be readily obtained as special cases of (15) under suitable
specification of the posterior parameters defining the above full-
conditionals. It shall also be emphasized that the sampling from
the (n̄ + n̄0)-dimensional truncated normal distribution in (15)
is usually simplified by the conditional independence properties
among the latent utilities underlying most of the regression
models presented in Sections 2.1–2.4. This means that �post is
either diagonal or block-diagonal, often with small-dimensional
blocks, and, therefore, sampling from (z̄|y, β) simply requires
to draw values from univariate or low-dimensional truncated
normals. Nonetheless, as discussed in Johndrow et al. (2018) the
dependence structure between β and z̄ can still yield to poor
mixing; see also Qin and Hobert (2019) for detailed convergence
analysis.

An effective option to obviate the above mixing issues is to
sample iid values from the joint posterior p(β , z̄|y), instead of
autocorrelated ones as in (15). Extending the derivations by
Holmes and Held (2006) to the whole class of models in (1),
under SUN priors (8), this task can be accomplished by noting
that p(β , z̄|y) = p(β|y, z̄)p(z̄|y), where p(β|y, z̄) coincides with
the density of the Gaussian in (15), whereas p(z̄|y) is obtained
by marginalizing out from the truncated normal in (15) the β

vector with density φp̄(β − ξpost; �post). Leveraging standard
properties of Gaussian and truncated normal random variables,
and recalling Holmes and Held (2006), this implies that

(z̄|y) ∼ TNn̄+n̄0(0; γ post, 	post). (16)

Replacing the full-conditional multivariate truncated normal in
(15) with the one in (16), yields to a scheme for sampling iid
values from p(β , z̄|y) and, as a direct consequence, from the

posterior p(β|y) of interest. To do this, it is sufficient to draw
z̄ from (16) and then generate a value for β by sampling from
the Gaussian in (15) with mean evaluated at the sampled value
of z̄. This routine is closely related to the iid sampler based on
the additive representation of the SUN in (11) that relies on
a linear combination among samples from p̄-variate Gaussians
and (n̄ + n̄0)-variate truncated normals (Durante 2019; Fasano
et al. 2021; Fasano and Durante 2022).

Although the above strategies effectively address the mix-
ing and convergence issues of the Gibbs sampler in (15), the
multivariate truncated normal in (16) is often more challenging
from a computational perspective relative to the one in (15). In
fact, marginalizing out β in TNn̄+n̄0(0; ηpost + Xpostβ , �post)
induces dependence among the latent utilities in z̄. This means
that, unlike for �post, the covariance matrix 	post of the trun-
cated normal in (16) has no more a diagonal or block-diagonal
structure and, hence, p(z̄|y) does not factorize as the prod-
uct of univariate or low-dimensional truncated normals as for
p(z̄|y, β) in (15), making the sampling from (16) more chal-
lenging when (n̄ + n̄0) is large. In probit regression, Holmes
and Held (2006) address such issue by leveraging the closure
under conditioning properties discussed, for example, in Hor-
race (2005) to sample iteratively from the univariate truncated
normal full-conditionals p(z̄i|z̄−i, y), for i = 1, . . . , n̄ + n̄0.
However, this strategy implies a Gibbs-sampling routine which
may be still subject to mixing issues. Alternatively, it is possible
to sample directly from p(z̄|y) in (16) leveraging the state-of-the-
art schemes presented in Section 4.1 (e.g., Botev 2017; Gessner,
Kanjilal, and Hennig 2020). However, there is still the lack of a
generally-applicable gold-standard for any size of p̄ and n̄ + n̄0.

4.3. Deterministic Approximation-based Methods

Even resorting to state-of-the-art solutions, sampling from the
posterior distribution is often prohibitive for high-dimensional
datasets and large sample sizes (e.g., Chopin and Ridgway 2017).
In these scenarios, an effective solution is to consider deter-
ministic approximations of the exact posterior. Sections 4.3.1–
4.3.2 provide a unified treatment of classical and more recent
VB (Blei, Kucukelbir, and McAuliffe 2017) and EP (Minka 2001)
approximations which are widely-implemented solutions in the
context of the models considered in this article; see Chopin and
Ridgway (2017) for a review of alternative methods, such as
Laplace approximation and INLA (Rue, Martino, and Chopin
2009). A detailed derivation and discussion of the computational
costs can be found in Section S3 of the supplementary materials.

4.3.1. Variational Bayes (VB)
VB solves a constrained optimization problem that aims at find-
ing the approximating density which is the closest, in Kullback–
Leiber (KL) divergence (Kullback and Leibler 1951), to the exact
posterior, among all the densities within a pre-specified tractable
family facilitating Bayesian inference. Recalling Blei, Kucukelbir,
and McAuliffe (2017), within the context of models admitting
conditionally conjugate constructions with global parameters β

and local augmented data z̄—such as for the formulations in Sec-
tion 2—the solution of the optimization problem often benefits
from taking p(β , z̄|y) as the target density to be approximated,
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which in turn would yield to an approximation for p(β|y) after
marginalizing out z̄ (Girolami and Rogers 2006; Consonni and
Marin 2007; Fasano, Durante, and Zanella 2022; Fasano and
Durante 2022). As for the choice of the approximating family
Q, classical solutions (e.g., Girolami and Rogers 2006; Con-
sonni and Marin 2007) rely on the mean-field assumption (e.g.,
Blei, Kucukelbir, and McAuliffe 2017) which can be generally
expressed as Qmf = {q(β , z̄) : q(β , z̄) = q(β)

∏C
c=1 q(z̄c)},

where z̄1, . . . , z̄C denote distinct sub-vectors of z̄, such that
z̄ = (z̄ᵀ

1 , . . . , z̄ᵀ
C)ᵀ. Note that the choice of how to factorize

q(z̄) in C independent blocks is often guided by the dependence
structures in z̄. For instance, in models relying on conditionally
independent latent utilities, such as those in Section 2, it is
common to factorize q(z̄) consistent with these conditionally
independent sub-vectors. In fact, as illustrated in the context
of probit (e.g., Consonni and Marin 2007) and multinomial
probit (e.g., Girolami and Rogers 2006), even without assuming
a specific factorization for q(z̄), that is, C = 1, the optimum
q∗

mf(z̄) within the classQmf would still factorize as
∏C

c=1 q∗
mf(z̄c),

where z̄1, . . . , z̄C correspond to the subsets of conditionally
independent utilities, as implied by the chosen model and prior.

Summarizing the above discussion, the mean-field varia-
tional Bayes (MF-VB) solution can be formalized as

q∗
mf(β , z̄)= argminq(β ,z̄)∈Qmf KL[q(β , z̄)||p(β, z̄|y)]

= argmaxq(β ,z̄)∈Qmf ELBO[q(β , z̄)], (17)

since ELBO[q(β , z̄)] = −KL[q(β , z̄)||p(β , z̄|y)] + log p(y).
Recalling Blei, Kucukelbir, and McAuliffe (2017), (17) can
be solved by leveraging a tractable coordinate ascent varia-
tional inference (CAVI) algorithm which iteratively updates
the solution of the approximating densities for both β and
z̄ via q(t)

mf(β) ∝ exp{Eq(z̄)[log p(β|y, z̄)]} and q(t)
mf(z̄c) ∝

exp{Eq(β ,z̄−c)[log p(z̄c|y, β , z̄−c)]}, for c = 1, . . . , C, where z̄−c
coincides with z̄ without the sub-vector z̄c, while the expectation
is taken with respect to the most recent update of the variational
density over the other conditioning variables. Replacing the full-
conditional distributions in these expressions with those in (15),
and leveraging the closure under conditioning of multivariate
truncated normals (Horrace 2005), yields a general MF-VB
that extends Girolami and Rogers (2006) and Consonni and
Marin (2007) to the whole class of models and priors presented
in Sections 2–3, and can be obtained via closed-form CAVI
updates. More specifically, let η̄post = Eq(z̄)(z̄) − ηpost, where
Eq(z̄)(z̄) = [Eq(z̄1)(z̄ᵀ

1 ), . . . ,Eq(z̄C)(z̄ᵀ
C)]ᵀ, and define �post(c) =

�post[c,c] − �post[c,−c](�post[−c,−c])−1�post[−c,c], with �post[c,c],
�post[c,−c], �post[−c,c], and �post[c,c], corresponding to the four
blocks of �post when partitioned to highlight the sub-vector z̄c
against all the others in z̄−c. Then, the CAVI updates for MF-VB
are given by

q(t)
mf(β) = φp̄(β − Vpost(Xᵀ

post�
−1
postη̄post + �−1

postξpost); Vpost),
q(t)

mf(z̄c) ∝ φnc(z̄c −Eq(β ,z̄−c)(μc); �post(c))1(z̄c > 0),
for c = 1, . . . , C,

(18)
where nc is the dimension of z̄c, whileEq(β ,z̄−c)(μc) = ηpost[c] +
Xpost[c]Eq(β)(β) + �post[c,−c](�post[−c,−c])−1[Eq(z̄−c)(z̄−c) −
ηpost[−c] − Xpost[−c]Eq(β)(β)]. The quantities Xpost[c], Xpost[−c],
ηpost[c] and ηpost[−c] within (18) denote the rows of Xpost and

ηpost corresponding to z̄c and z̄−c, respectively. Hence, accord-
ing to (18), MF-VB for the whole class of models and priors
in Sections 2–3 can be implemented via a simple CAVI rou-
tine providing Gaussian and truncated normal approximating
densities for β and z̄1, . . . , z̄C, respectively, which only require
updating of the corresponding means with respect to the most
recent density estimate of the other conditioning variables, until
convergence of the ELBO. Computing the Gaussian expectation
Eq(β)(β) poses no computational difficulties, whereas, recalling
Sections 3.2 and 4.1, evaluating the mean Eq(z̄c)(z̄c), for c =
1, . . . , C of the truncated normals may be challenging when nc
is large. Nonetheless, nc is typically equal to 1 or to a small
value when factorizing q(z̄) consistent with the diagonal block
structures of �post that are implied by most of the models
in Sections 2.1–2.4. This means that the MF-VB solutions for
the local variables z̄ correspond to tractable low-dimensional
truncated normals whose expectation can be computed via effi-
cient routines, such as the one in the R library MomTrunc
(Galarza Morales et al. 2022).

Although MF-VB provides a scalable and widely-applicable
solution under the regression models considered in this arti-
cle, as shown by Fasano, Durante, and Zanella (2022) in the
context of probit regression with Gaussian priors, the resulting
Gaussian approximation q∗

mf(β) is characterized by low accu-
racy, both theoretically and empirically, in high dimensions,
especially when p̄ > n̄ + n̄0. These drawbacks are evident
not only in a general underestimation of posterior uncertainty,
but also in the tendency to over-shrink the locations and to
induce bias in the predictive probabilities, thereby affecting
the reliability of Bayesian inference under q∗

mf(β). To address
these fundamental issues and improve the accuracy of VB
in high dimension, Fasano, Durante, and Zanella (2022) and
Fasano and Durante (2022) propose a partially-factorized MF-
VB solution (PFM-VB) which replaces the classical mean-field
family Qmf = {q(β , z̄) : q(β , z̄) = q(β)

∏C
c=1 q(z̄c)} with

the more flexible partially-factorized one Qpfm = {q(β , z̄) :
q(β , z̄) = q(β|z̄)∏C

c=1 q(z̄c)}, that avoids assuming indepen-
dence between β and z̄ as in mean-field, and only factorizes
q(z̄) as

∏C
c=1 q(z̄c). The structure of this enlarged family is

directly motivated by the form of the actual joint posterior
p(β , z̄|y). In fact, as highlighted in Section 4.2, p(β , z̄|y) can
be rewritten as p(β|y, z̄)p(z̄|y), where p(β|y, z̄) is the density of
the Gaussian full-conditional in (15), whereas p(z̄|y) is the one
of the (n̄ + n̄0)-variate truncated normal with full covariance
matrix in (16); see also Holmes and Held (2006). Therefore,
since the Gaussian form of p(β|y, z̄) does not seem to pose
computational difficulties, it is reasonable to preserve depen-
dence between β and z̄ in Qpfm and only approximate the
intractable multivariate truncated normal density p(z̄|y) via
the product

∏C
c=1 q(z̄c) of low-dimensional tractable ones. In

addition, when the block partitions under MF-VB and PFM-VB
coincide,Qmf ⊂ Qpfm. Hence, it is guaranteed that the optimum
q∗

pfm(β , z̄) under Qpfm is never less accurate than q∗
mf(β , z̄), that

is, KL[q∗
pfm(β , z̄)||p(β , z̄|y)] ≤ KL[q∗

mf(β , z̄)||p(β , z̄|y)].
The improved accuracy of the PFM-VB approximation, com-

bined with the simple solution for the optimization problem
even under the new enlarged family Qpfm, have motivated sev-
eral extensions of the original idea in Fasano, Durante, and
Zanella (2022) to multinomial probit (Fasano and Durante
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2022) and Gaussian processes (Cao, Durante, and Genton
2022), which can be, in fact, generalized to the whole class
of models and priors presented in Sections 2–3. To clar-
ify this result, first notice that by the chain rule of the KL
divergence it follows that KL[q(β|z̄)∏C

c=1 q(z̄c)||p(β , z̄|y)] =
Eq(z̄)(KL[q(β|z̄)||p(β|z̄, y)]) + KL[∏C

c=1 q(z̄c)||p(z̄|y)], where
the first nonnegative summand is equal to zero only when
q(β|z̄) = p(β|z̄, y). Therefore, q∗

pfm(β|z̄) is the density of
the exact Gaussian full-conditional in (15), while the mini-
mizer of KL[∏C

c=1 q(z̄c)||p(z̄|y)] can be readily obtained by
applying the closure under conditioning properties (Horrace
2005) of the multivariate truncated normal in (16) to the
CAVI equations q(t)

pfm(z̄c) ∝ exp{Eq(z̄−c)[log p(z̄c|y, z̄−c)]}, for
c = 1, . . . , C. These results yield a scheme for obtaining
q∗

pfm(β , z̄), that is as tractable as the one of MF-VB in (18).
Specifically, let η̄∗

post = z̄ − ηpost and 	post(c) = 	post[c,c] −
	post[c,−c](	post[−c,−c])−1	post[−c,c]. Then, the CAVI equations
for PFM-VB are

q∗
pfm(β|z̄)= φp̄(β − Vpost(Xᵀ

post�
−1
postη̄

∗
post + �−1

postξpost); Vpost),
q(t)

pfm(z̄c)∝ φnc(z̄c −Eq(z̄−c)(μ̄c); 	post(c))1(z̄c > 0),
for c = 1, . . . , C,

(19)
whereEq(z̄−c)(μ̄c) in (19) is defined asEq(z̄−c)(μ̄c) = γ post[c] +
	post[c,−c](	post[−c,−c])−1(Eq(z̄−c)(z̄−c) − γ post[−c]), with the
expectation taken with respect to the most recent density esti-
mate of the conditioning variables, whereas the indexing of sub-
vectors and matrix blocks is the same as the one detailed in (18).

As for the MF-VB scheme in (18), also the CAVI for PFM-VB
simply requires to update the mean vectors until convergence
of the ELBO. However, unlike for (18), such a scheme is only
required for the truncated normal components, whereas the
solution q∗

pfm(β|z̄) is already known to coincide with p(β|z̄, y).
This gain comes at the cost that, unlike for MF-VB, the approx-
imation q∗

pfm(β) of interest is not available as a direct out-
put of (19). Recalling, Fasano, Durante, and Zanella (2022)
and Fasano and Durante (2022), this apparent drawback can
be easily addressed after noticing that, by (19) and η̄∗

post =
z̄ − ηpost, q∗

pfm(β) is the density of the random variable dis-
tributed as a linear combination between a Gaussian, with mean
Vpost(−Xᵀ

post�
−1
postηpost + �−1

postξpost) and covariance matrix
Vpost, and a random vector z̄ whose joint density is approxi-
mated via the product of low-dimensional truncated normals
under the CAVI updates in (19). Recalling (11), this construc-
tion coincides with the additive representation of a SUNp̄,n̄+n̄0
variable that, unlike for the exact SUN posterior in Theorem 1,
relies on a block-diagonal matrix 	pfm with C low-dimensional
nc × nc blocks, for c = 1, . . . , C. This means that the compu-
tational challenges for closed-form inference under the exact
SUN posterior discussed in Sections 3.2 and 4.1 are no more
present for the optimal SUN approximating density q∗

pfm(β),
since the (n̄ + n̄0)-variate Gaussian cumulative distribution
functions and truncated normals in (9)–(14) now factorize as C
low-dimensional components that can be effectively evaluated
whenever n1, . . . , nC are small-to-moderate. For example,

Epfm(β) = Vpost(Xᵀ
post�

−1
post(Epfm(z̄) − ηpost) + �−1

postξpost),

varpfm(β) = Vpost + VpostXᵀ
post�

−1
postvarpfm(z̄)�−1

postXpostVpost,
(20)

where Epfm(z̄) = [Epfm(z̄ᵀ
1 ), . . . ,Epfm(z̄ᵀ

C)]ᵀ comprises the
expectation of each low-dimensional sub-vector z̄c, c = 1, . . . , C
with respect to its optimal truncated normal approximating den-
sity, while varpfm(z̄) is a block-diagonal covariance matrix with
generic block varpfm(z̄)[c,c] denoting the covariance matrix of
z̄c according to its optimal truncated normal approximation. As
previously mentioned, each of these quantities can be effectively
evaluated in small-to-moderate dimensions via, for example, the
R library MomTrunc (Galarza Morales et al. 2022). Recalling
Fasano, Durante, and Zanella (2022), the computational com-
plexity of PFM-VB is the same as the one for MF-VB, although
the new partially-factorized solution yields improved accuracy
both in theory and in practice. For instance, the authors prove
that, unlike for MF-VB, the KL divergence between the PFM-VB
approximation and the exact posterior goes to 0 as p̄ → ∞ for
any fixed sample size, thereby providing accurate inference in
high-dimensional settings at a much lower computational cost
than the exact solution.

4.3.2. Expectation-Propagation (EP)
EP (Minka 2001) provides another well-established procedure
for constructing a global approximation q∗

ep(β) of the poste-
rior distribution p(β|y) (see, e.g., Chopin and Ridgway 2017;
Riihimäki, Jylänki, and Vehtari 2014; Vehtari et al. 2020), which
often yields improved accuracy in practice, relative to VB.
Contrarily to the mean-field VB methods presented in Sec-
tion 4.3.1—which only impose factorized structures for the
approximating densities without necessarily assuming a func-
tional form—EP postulates that the target posterior density itself
can be written as a product of factors, also referred to as sites,
and then iteratively approximates each one with an element of a
given family of distributions, typically Gaussian for continuous
variables or multinomial for discrete ones. Moreover, in the EP
scheme each update is driven by the minimization of a suitable
reverse KL, instead of the forward KL as in VB. This operation
tends to improve accuracy (e.g., Chopin and Ridgway 2017)
and becomes particularly convenient when the approximating
density qep(β) belongs to the exponential family, since it simply
requires suitable moment matching strategies between qep(β)

and p(β|y) (see, e.g., Vehtari et al. 2020; Bishop 2006, chap. 10).
Current implementations of EP for probit (Chopin and

Ridgway 2017) and multinomial probit (Riihimäki, Jylänki, and
Vehtari 2014) suggest that these strategies may yield practical
gains for the whole class of models in Section 2, thus, motivating
the development of a broadly-applicable unified EP scheme,
that is unavailable to date. This section aims at covering such a
gap, while providing novel closed-form expressions for moment
matching of Gaussian sites leveraging the SUN conjugacy in
Section 3, which also yields additional supporting arguments on
the accuracy of EP for the models in Section 2.

To address such a goal, first notice that, although the likeli-
hood in (1) is general, all the relevant examples discussed in Sec-
tion 2 admit a factorized form

∏C
c=1 �n̄c(ȳ0[c] + X̄0[c]β ; �̄0[c,c])

for the intractable quantity �n̄0(ȳ0 + X̄0β ; �̄0), where ȳ0 =
(ȳᵀ

0[1], . . . , ȳᵀ
0[C])ᵀ, X̄0 = (X̄ᵀ

0[1], . . . , X̄ᵀ
0[C])ᵀ and �̄0 is a block-

diagonal matrix with generic block �̄0[c,c], for every c =
1, . . . , C. As discussed in Sections 4.2 and 4.3.1, this factorization
is implied by the conditional independence among the latent
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utilities, which yields to tractable one-dimensional (e.g., probit
and tobit) or low-dimensional (e.g., multinomial probit) factors
�n̄c(ȳ0[c] + X̄0[c]β ; �̄0[c,c]). Therefore, under these models, the
likelihood in (1) is equal to

p(y|β) = p(ȳ1|β)p(ȳ0|β)

∝ φn̄1(ȳ1−X̄1β ; �̄1)
∏C

c=1�n̄c(ȳ0[c]+X̄0[c]β ; �̄0[c,c]), (21)

thus, providing a general factorized structure that motivates EP.
For ease of notation and presentation, this routine is first derived
below under the Gaussian prior p(β) = φp̄(β − ξ ; �), and
subsequently extended to the general class of SUN prior distri-
butions. Updating p(β) = φp̄(β − ξ ; �) with the likelihood in
(21) yields the posterior p(β|y) which can be more conveniently
re-expressed as

p(β|y) ∝ p(β|ȳ1)p(ȳ0|β)

∝ φp̄(β − ξpost; �post)
∏C

c=1�n̄c(ȳ0[c]+X̄0[c]β ; �̄0[c,c])
= l0(β)

∏C
c=1 lc(β) = ∏C

c=0 lc(β),
(22)

where lc(β) = �n̄c(ȳ0[c] + X̄0[c]β ; �̄0[c,c]), c = 1, . . . , C,
correspond to the Gaussian cumulative distribution function
terms in likelihood (21), whereas l0(β) = p(β|ȳ1) = φp̄(β −
ξpost; �post) is the conditional density obtained by updating the
Gaussian prior φp̄(β − ξ ; �) for β with the tractable factor
φn̄1(ȳ1 − X̄1β ; �̄1) in likelihood (21). As a direct consequence
of the results in Section 3.2, this conditional density can be
obtained in closed form and coincides with the one of a Gaussian
Np̄(ξpost, �post) having parameters defined as in Theorem 1.
Such a density acts as an intermediate prior in (22) to be updated
with the intractable likelihood terms for obtaining the posterior
p(β|y).

Recalling, for instance, Vehtari et al. (2020), EP approximates
the above posterior with a density qep(β) that has the same
factorized form of p(β|y) in (22), and is made of C +1 Gaussian
sites. Hence

qep(β) ∝ ∏C
c=0qc(β)= ∏C

c=0 exp(−0.5βᵀQcβ+βᵀrc)
= exp(−0.5βᵀQepβ + βᵀrep),

(23)
where rc and Qc define the natural parameters associated with
the local Gaussian site c, for each c = 0, . . . , C, while rep =∑C

c=0 rc and Qep = ∑C
c=0 Qc denote those of the Gaussian

EP approximation qep(β) for p(β|y). Consistent with the above
expressions, the ideal goal of EP would be to obtain the optimal
r∗

ep and Q∗
ep such that the induced Gaussian density q∗

ep(β)

under (23) is as close as possible to the exact p(β|y) in (22)
under the reverse KL divergence KL[p(β|y)||qep(β)]. Recall-
ing Bishop (2006, chap. 10), the solution of this optimization
problem relies on a simple moment matching, which implies
that r∗

ep = [var(β|y)]−1
E(β|y) and Q∗

ep = [var(β|y)]−1, or,
alternatively, ξ∗

ep = E(β|y) and �∗
ep = var(β|y), where ξ∗

ep
and �∗

ep denote the mean vector and the covariance matrix of
the Gaussian EP approximation. As discussed in Section 3.2, the
exact posterior is a SUN, and, hence, computing the associated
moments is computationally challenging in general settings. In
fact, such computational bottlenecks are those motivating the
approximate schemes in Section 4.3.

To circumvent the aforementioned issue, EP relies on an iter-
ative scheme which progressively improves rep = ∑C

c=0 rc and

Qep = ∑C
c=0 Qc by sequentially updating each term (rc, Qc),

for c = 1, . . . , C, keeping fixed the others at their previous
estimate (see, e.g., Vehtari et al. 2020). Let l(−c)(β)= ∏

c′ �=c lc′(β)

and q(−c)(β) = ∏
c′ �=c qc′(β) denote the product among the

factors in (22)–(23), respectively, excluding the cth one. Then,
EP proceeds by optimizing, for every site c, a more tractable
approximation for the reverse KL divergence in which the exact
posterior p(β|y) ∝ l(−c)(β)lc(β) in (22) is replaced by the inter-
mediate hybrid density defined as p(tc)(β|y) ∝ q(tc)

(−c)(β)lc(β),
where tc is the step of the algorithm which updates the site c
at the tth iteration. Employing this alternative density yields
a more tractable updating scheme since, by (23), q(tc)

(−c)(β) is
the kernel of a multivariate Gaussian distribution with natural
parameters r(tc)

ep(−c) and Q(tc)
ep(−c) corresponding to rep − rc and

Qep − Qc, respectively, when rep, rc, Qep, and Qc are fixed
at their most recent estimate. Therefore, p(tc)(β|y) has a sin-
gle Gaussian cumulative distribution function term lc(β) =
�n̄c(ȳ0[c]+X̄0[c]β ; �̄0[c,c]). Adapting the results in Section 3, this
yields the hybrid density p(tc)(β|y) ∝ q(tc)

(−c)(β)lc(β) with

q(tc)
(−c)(β) = φp̄(β − (Q(tc)

ep(−c))
−1r(tc)

ep(−c); (Q(tc)
ep(−c))

−1),
lc(β) = �n̄c(ȳ0[c] + X̄0[c]β ; �̄0[c,c]),

which implies that p(tc)(β|y) coincides with the density of the
SUNp̄,n̄c(ξ c, �c, �c, γ c, 	c) with

ξ c = (Q(tc)
ep(−c))

−1r(tc)
ep(−c), �c = (Q(tc)

ep(−c))
−1,

�c = �̄cωcX̄ᵀ
0[c]s−1

c , γ c = s−1
c (ȳ0[c] + X̄0[c]ξ c),

	c = s−1
c (�̄0[c,c] + X̄0[c]�cX̄ᵀ

0[c])s−1
c ,

where sc = [(�̄0[c,c] + X̄0[c]�cX̄ᵀ
0[c])� In̄c ]1/2. Therefore, unlike

for the exact SUN posterior, this hybrid SUN is much more
tractable since the dimension of the cumulative distribution
function term is n̄c, and not

∑C
c=1 n̄c as in p(β|y). In fact, as

previously discussed, n̄c is either equal to 1 or to a low value
under most of the models outlined in Sections 2.1–2.4. This
means that inference under the SUN with density p(tc)(β|y) can
be performed via the closed-form expressions in Section 3.2,
which can be effectively evaluated when n̄c is small; see also
Section 4.1. In particular, it is possible to compute the expec-
tation E

(tc)(β|y) and variance var(tc)(β|y) of β with respect to
the hybrid density p(tc)(β|y) via expressions (10) evaluated at
the parameters ξ c, �c, �c, γ c, and 	c. Alternatively, leveraging
the additive representation of the SUN in (11), it follows that

E
(tc)(β|y) = ξ c + ωc�c	

−1
c E(U1c) = ξ (tc)

ep ,

var(tc)(β|y) = �c − ωc�c	
−1
c �

ᵀ
c ωc (24)

+ ωc�c	
−1
c var(U1c)	

−1
c �

ᵀ
c ωc = �(tc)

ep ,

where U1c ∼ TNn̄c(−γ c; 0, 	c) is a low-dimensional truncated
normal whose expectation E(U1c) and variance var(U1c) can be
effectively computed via R library MomTrunc (Galarza Morales
et al. 2022), due to the small value of n̄c. This implies that the
reverse KL can be easily optimized via moment matching when
p(β|y) is replaced by p(tc)(β|y), thereby obtaining the updated
estimates r(tc)

ep and Q(tc)
ep for the parameters of interest rep and Qep

at step tc, defined as

r(tc)
ep = (�

(tc)
ep )−1ξ (tc)

ep , Q(tc)
ep = (�

(tc)
ep )−1.
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Concurrently, the updated parameters at the site c—which are
required for the subsequent steps—are r(tc)

c = r(tc)
ep − r(tc)

ep(−c) and
Q(tc)

c = Q(tc)
ep − Q(tc)

ep(−c).
The above scheme is iterated multiple times t ∈ {1, 2, . . .}

and for each site c = 1, . . . , C, until convergence to a stationary
point. Note that in this routine site c = 0 does not require to be
updated sequentially. Recalling Chopin and Ridgway (2017) and
Vehtari et al. (2020), l0(β) corresponds to the tractable Gaussian
density in (22) and, hence, this term can be analytically matched
to q0(β) in (23), obtaining r0 = �−1

postξpost and Q0 = �−1
post,

where ξpost and �post are defined as in Theorem 1. We shall also
emphasize that the aforementioned EP scheme can yield, as a
direct by-product, an approximation of the marginal likelihood
p(y). A detailed presentation of the step-by-step procedure to
obtain such an estimate can be found in Appendix E of Vehtari
et al. (2020), which shows that a key condition to compute such
an approximation is the availability of the normalizing constant
for the hybrid density p(tc)(β|y). Interestingly, this quantity is
available in closed form for the EP scheme discussed above since
p(tc)(β|y) is the density of a SUNp̄,n̄c(ξ c, �c, �c, γ c, 	c). Hence,
recalling Section 3, its normalizing constant is �n̄c(γ c; 	c). Since
n̄c is small, also this quantity can be effectively evaluated using,
for example, the R library TruncatedNormal (Botev 2017).

Although EP is often more accurate than VB, it shall be
noted that state-of-the-art implementations build on weaker
theoretical guarantees (e.g., Bishop 2006; Chopin and Ridgway
2017; Vehtari et al. 2020) and, as discussed in the supplementary
materials, are more computationally demanding. In particular,
even the new EP implementation proposed in Section S3—
which noticeably reduces the currently reported per-iteration
cost in probit regression from O(np2) = O(n̄0p̄2) (Chopin and
Ridgway 2017) to O(np · min{n, p}) = O(n̄0p̄ · min{n̄0, p̄})
— is still not competitive with the O(n · min{n, p}) = O(n̄0 ·
min{n̄0, p̄}) cost of MF-VB and PFM-VB (Fasano, Durante, and
Zanella 2022). Moreover, there is no guarantee that the EP solu-
tion minimizes the global reverse KL[p(β|y)||qep(β)], nor that
the routine always converges in general. Nonetheless, empirical
evidence typically reports remarkable EP accuracy, which is also
confirmed by the simulations in Section 5. Recalling Bishop
(2006) an intuition for this notable performance is that, at each
EP iteration, the sites are updated to be most accurate in regions
of high posterior probability. Dehaene and Barthelmé (2018)
provide more formal arguments, which show that in asymptotic
settings the discrepancy between the EP solution and the exact
posterior goes to 0 faster than, for instance, Laplace approxi-
mation. These results are intimately related to the log-concavity
of the target posterior. Interestingly, as shown in Arellano-Valle
and Azzalini (2021, sec. 3.1), SUNs are log-concave. Hence, the
results in Section 3 also provide further support to EP under the
models in Section 2.

Before concluding the analysis of EP, notice that extending
the above derivations to the case of a more general SUN prior
poses no conceptual difficulties. In fact, the Gaussian density
and distribution functions appearing in the prior in (8) can
be disentangled and treated as two separate sites appearing in
the factorized target. In particular, the first exact site l0(β) =
φp̄(β − ξpost; �post) remains unchanged, as it still arises from
the combination of the Gaussian density φp̄(β − ξ ; �) in the

prior and the likelihood term φn̄1(ȳ1−X̄1β ; �̄1). Conversely, the
distribution function term in the prior can be simply addressed
by adding a site lC+1(β) = �n̄(γ + �ᵀ�̄

−1
ω−1(β − ξ); 	 −

�ᵀ�̄
−1

�), to be approximated via an extra term qC+1(β)

in (23). As such, the only hindrances might arise from the
computation of the moments for the hybrid distribution with
kernel lC+1(β)

∏C
c=0 q(tC+1)

c (β), which still corresponds to a
SUN of dimensions p̄ and n̄. However, as mentioned in Sec-
tion 3.1, the SUN prior often relies on a low n̄, or alternatively
factorizes as the product of independent skew-normals. In the
former case, computations in low dimensions remain feasible,
while in the latter case the (C + 1)th exact site can be further
disentangled as the product of p̄ sites, each one involving a
tractable univariate Gaussian cumulative distribution function.
This flexibility in choosing the factorization of the target distri-
bution is a general characteristic of EP. The two extreme cases
correspond, respectively, to considering the target as one single
site or decomposing it into the finest factorization allowed by
its analytical formulation. Any intermediate situation leads to
a valid EP routine, as described above, possibly with a tradeoff
between accuracy of the resulting approximation and complex-
ity of the required computations. Finer factorizations lead to
simpler moment matching calculations. Conversely, coarser fac-
torizations yield more accurate, but expensive, approximations.

5. Empirical Studies

Insightful empirical assessments of the methods in Sections 3–
4, under selected regression models, can be found in Chopin
and Ridgway (2017), Durante (2019), Fasano and Durante
(2022), Cao, Durante, and Genton (2022), Fasano, Durante,
and Zanella (2022), Fasano et al. (2021), and Benavoli, Azzi-
monti, and Piga (2020, 2021); refer also to the GitHub reposi-
tories ProbitSUN, PredProbitGP, Probit-PFMVB, and
Dynamic-Probit-PFMVB. These studies encompass anal-
yses of probit regression, multinomial probit, dynamic probit,
probit Gaussian processes, skewed Gaussian processes and pos-
sible combinations of these constructions, but do not cover tobit
regression for which SUN conjugacy has been established in
the present article and, hence, the practical consequences of
this result and the associated computational methods remain
unexplored.

To address such a gap, we provide empirical evidence for
the performance of the computational methods in Section 4,
focusing on standard tobit regression as in (7). In accomplishing
this goal, we simulate a total of n = n0 + n1 = 200 obser-
vations from a tobit model, under three different proportions
of censored observations κ = n0/n ∈ {0.15, 0.50, 0.85}. This
choice allows to cover a broad spectrum of scenarios which
ranges from a model more similar to a Gaussian linear regres-
sion, when κ = 0.15, to one closely mimicking an unbalanced
probit regression, when κ = 0.85. The p unit-specific predic-
tors in xi, i = 1, . . . , n, are instead simulated from standard
Gaussians, except for the intercept term, whereas the regression
coefficients in β are generated from a uniform distribution in
the range [−5, 5]. Exploiting the latent utility interpretation of
tobit regression, the responses yi, i = 1, . . . , n are obtained
by first simulating the associated utilities zi, i = 1, . . . , n
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Table 1. Runtimes, in seconds, of two strategies to sample 5000 realizations from the posterior distribution in tobit regression with n = 200.

p

Censoring Method 10 20 50 100 200 400 800 1200

κ = 0.85 NUTS 2.32 4.61 9.87 26.17 50.21 134.95 323.73 659.25
iid 2.94 2.85 18.97 15.98 7.71 3.55 4.94 9.26

κ = 0.50 NUTS 1.62 2.04 3.78 10.90 39.06 110.73 546.07 2128.08
iid 1.30 1.21 1.20 1.84 2.58 2.33 4.21 8.25

κ = 0.15 NUTS 0.91 1.18 2.27 4.60 20.08 87.10 619.58 1973.92
iid 0.13 0.10 0.14 0.23 0.56 1.13 2.91 6.91

NOTE: (NUTS):rstan implementation of No-U-Turn HMC sampler. (iid): iid sampling from the exact SUN posterior via (11) leveraging theR libraryTruncatedNormal.

from the N(xᵀ
i β , 1), and then setting yi = zi1(zi > zt) for

every i = 1, . . . , n, where zt is a pre-specified threshold to
obtain the desired proportion of censored observations under
the three different settings of κ . Recalling Section S1.2 in the
supplementary materials, this threshold poses no difficulties in
Bayesian inference since it directly enters the intercept term.
To evaluate accuracy and computational efficiency at varying
dimensions, these datasets are simulated for different values
of p ∈ {10, 20, 50, 100, 200, 400, 800, 1200}. Posterior inference
under the datasets produced for each combination of κ and
p relies on spherical Gaussian priors Np(0, ω2

pIp), with ω2
p =

25 · 10/p inducing increasing shrinkage in high dimensions. In
combination with the recommended practice of standardizing
the predictors to have mean 0 and standard deviation 0.5 (e.g.,
Chopin and Ridgway 2017), such a weakly informative prior is
intended to control the overall variance of the linear predictor
(see, e.g., Fasano, Durante, and Zanella 2022) so as to constrain
it within a sensible range of variation for the models analyzed
in this study (e.g., Gelman et al. 2008), regardless of p. This
facilitates comparison across different dimensions.

Table 1 illustrates the computational benefits in sampling-
based methods which can be obtained by leveraging routines
that exploit directly the SUN conjugacy in Section 3. This is
accomplished by comparing, for every combination of κ and
p, the runtimes to obtain 5000 samples from the exact poste-
rior distribution of β under both the routinely used rstan
implementation of the No-U-Turn HMC algorithm, and the
iid sampler which exploits the additive representation of the
SUN posterior in (11); refer to the code at https://github.com/
niccoloanceschi/TobitSUN and to Chopin and Ridgway (2017)
for details on the implementation of the HMC sampler in the
class of models analyzed. The iid scheme leverages instead the
R library TruncatedNormal (Botev 2017) to sample the
multivariate truncated normal component in (11). As discussed
in Sections 4.1 and 4.2, such a task is inherently related, in terms
of implementation and computational cost, to that of evaluat-
ing the Gaussian cumulative distribution functions required to
conduct posterior inference under the closed-form expressions
in Section 3.2. Nonetheless, Monte Carlo inference under iid
samples has the additional benefit of allowing evaluation of
any functional, even beyond those derived in closed form in
Section 3.2, from a single set of samples, thereby motivating
our focus on sampling-based methods which allow for a more
comprehensive assessment.

Consistently with related findings on probit (Durante 2019)
and multinomial probit (Fasano and Durante 2022), Table 1
confirms the computational gains of iid sampling relative to

HMC in almost all the settings of κ and p, especially when p
is large. In fact, while high-dimensional regimes are often chal-
lenging for HMC, under (11) p only controls the dimension of
the multivariate Gaussian, which is feasible to sample from, even
for a large p. As discussed in Sections 4.1–4.2, more problematic
for the iid scheme is the number of censored data n0, which
defines the dimension of the truncated normal in (11). This issue
can be clearly seen in the increments of the runtimes under
iid sampling when the censoring percentage grows from 15%
to 85%. Nonetheless, the procedure is still competitive relative
to HMC in these small-to-moderate n0 settings. Notice also
an increment in the runtime for the setting κ = 0.85 (i.e.,
n0 = 170), when p ≈ n0/2. In such a regime, the method
by Botev (2017) experiences low acceptance probabilities with
a trend over n0 that is reminiscent of the double-descent phe-
nomenon in high-dimensional regression (Hastie et al. 2022).
This deserves further investigations.

As clarified in Table 1, the moderate dimensions of the sim-
ulated datasets would still allow posterior inference under the
closed-form solutions and iid sampling schemes presented in
Sections 4.1 and 4.2. Nonetheless, as previously discussed, when
n0 grows, these procedures become computationally impracti-
cal, thus motivating also the assessment of the more scalable
approximate methods presented in Section 4.3. The relevant
outcomes of these performance comparisons are reported in
Figures 1–2 and in Table 2, with a focus on both accuracy
and scalability. In particular, Figure 1 provides insights on the
accuracy of MF-VB, PFM-VB, and EP in approximating key
posterior functionals of interest at varying p, and for the three
different settings of κ . These quantities include the posterior
mean and variance of each βj for j = 1, . . . , p, along with
predictive measures for the expected value of the response
E[φ(xᵀ

new,iβ) + (xᵀ
new,iβ)�(xᵀ

new,iβ)|y] and the probability of
the censoring event E[�(−xᵀ

new,iβ)|y], both computed for 200
test observations whose predictors are simulated as for the orig-
inal training data. For such functionals, Figure 1 displays the
medians and quartiles of the absolute differences between the
corresponding Monte Carlo estimates under iid sampling from
the exact SUN posterior and the approximations provided by
the three methods analyzed, for varying κ and p. In the first
two panels, the three quartiles are computed on the p absolute
differences associated with coefficients β1, . . . , βp, whereas in
the last two panels these summaries are calculated on the 200
absolute differences for the 200 test units. For what concerns
the initialization of the variational routines, we consider the
default setting which sets to zero the elements of the vectors
Eq(β ,z̄−c)(μc) and Eq(z̄−c)(μ̄c) in (18) and (19), respectively, for

https://github.com/niccoloanceschi/TobitSUN
https://github.com/niccoloanceschi/TobitSUN
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Figure 1. For four functionals of interest and different settings of κ ∈ {0.15, 0.50, 0.85}, trajectories for the median of the absolute differences, at varying p, between an
accurate Monte Carlo estimate of such functionals via iid sampling from the exact SUN posterior and their approximation provided by mean-field variational Bayes (MF-VB),
partially-factorized variational Bayes (PFM-VB) and expectation-propagation (EP) under tobit regression, with n = 200. The shaded areas correspond to the first and third
quartiles computed from the absolute differences. See the online article for the color version of this figure.

Figure 2. Runtimes, in seconds, for each iteration of mean-field variational Bayes (MF-VB), partially-factorized variational Bayes (PFM-VB) and expectation-propagation (EP)
in tobit regression, for n = 200 and different values of p and κ . The runtimes are obtained as the median over 20 repetitions. The line breaks separate the result for two
alternative implementations of each routine, optimizing the computational cost in p and n0. For the two variational procedures, the cost per iteration is O(n0 · min{n0, p}),
while for EP it becomes O(n0p · min{n0, p}). See the online article for the color version of this figure.

Table 2. Total runtimes in seconds (pre-computations, total iterations and post-computations), and number of iterations (within square brackets) required to reach
convergence for mean-field variational Bayes (MF-VB), partially-factorized variational Bayes (PFM-VB) and expectation-propagation (EP) under tobit regression, with
n = 200.

p

Censoring Method 10 20 50 100 200 400 800 1200

κ = 0.85 MF-VB 0.016 [307] 0.046 [719] 0.070 [712] 0.134 [828] 0.104 [630] 0.129 [675] 0.170 [610] 0.219 [571]
PFM-VB 0.091 [85] 0.237 [192] 0.236 [155] 0.262 [140] 0.061 [47] 0.039 [13] 0.062 [8] 0.100 [7]

EP 0.014 [4] 0.018 [4] 0.068 [6] 0.270 [5] 0.175 [4] 0.252 [3] 0.327 [2] 0.488 [2]
κ = 0.50 MF-VB 0.002 [50] 0.004 [87] 0.007 [97] 0.020 [194] 0.034 [303] 0.050 [236] 0.111 [230] 0.197 [248]

PFM-VB 0.009 [14] 0.016 [23] 0.017 [21] 0.024 [32] 0.021 [15] 0.033 [6] 0.086 [4] 0.165 [3]
EP 0.008 [4] 0.008 [3] 0.024 [4] 0.050 [4] 0.090 [5] 0.142 [4] 0.295 [4] 0.459 [4]

κ = 0.15 MF-VB 0.001 [14] 0.001 [19] 0.001 [25] 0.003 [46] 0.019 [130] 0.043 [111] 0.126 [22] 0.253 [7]
PFM-VB 0.001 [5] 0.002 [6] 0.002 [7] 0.003 [8] 0.018 [7] 0.042 [3] 0.126 [3] 0.253 [3]

EP 0.002 [3] 0.002 [3] 0.003 [3] 0.005 [3] 0.023 [4] 0.052 [4] 0.149 [4] 0.278 [3]
NOTE: The reported runtimes are the medians over 20 repetitions.

all c = 1, . . . , C. Analogously, in the case of EP we initialize the
starting global approximation to the Gaussian density l0(β) =

p(β|ȳ1), which corresponds to setting to zero the elements of the
vectors rc and matrices Qc in (23), for all c = 1, . . . , C. In the
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absence of additional information, these initializations provide
a sensible choice, which proved effective in a large number of
experiments.

Consistently with Chopin and Ridgway (2017) and despite
the limited theory guarantees, EP emerges as the most accurate
solution in Figure 1 since its discrepancy from the Monte Carlo
estimates under iid sampling is negligible in all regimes, ranging
from p < n0 to p ≥ n0. Nonetheless, as highlighted in
Figure 2, the per-iteration runtimes of EP are linear in p for high
dimensions, as opposed to the quadratic growth in previously-
available implementations, whereas those of MF-VB and PFM-
VB are essentially constant and much lower. The impact of such
a scaling in the cost per iteration on the overall runtimes is
relatively moderate in the regimes we focus on, as illustrated in
Table 2 which displays the overall runtimes required by each
routine to perform not only the total iterations, but also pre-
and post-computations. Nonetheless, the higher per-iteration
cost of EP becomes clearly appreciable when p exceeds a few
hundreds, as seen in Figure 2 and Table 2. Therefore, from a
computational perspective, the variational routines are more
effective and scalable alternatives in high-dimensional settings.
This is especially true for PFM-VB which, as expected from the
theory in Fasano, Durante, and Zanella (2022), attains the same
accuracy of EP when p � 2n0, but with a lower computational
effort. On the contrary, MF-VB is not competitive with EP in
terms of accuracy and does not yield remarkable improvements
in runtimes relative to PFM-VB in high dimensions. Notice
that, although PFM-VB and MF-VB have the same per-iteration
cost, the former does not allow for a joint updating of the
approximating densities for the local variables, thus requiring a
for cycle in basic R implementations that yields an increment
in the per-iteration runtimes under PFM-VB, due to software-
related inefficiencies. This drawback can be seen from Table 2,
especially in those p < n0 regimes where PFM-VB requires a
moderate number of iterations to reach convergence.

Table 2 also displays the number of iterations required by
the three deterministic approximation procedures to reach con-
vergence. Following common practice (e.g., Blei, Kucukelbir,
and McAuliffe 2017), the convergence for the two variational
methods is intended as observing a difference below a suitable
threshold between the ELBO of two consecutive iterations; see
Fasano, Durante, and Zanella (2022) and Consonni and Marin
(2007) and the code in the GitHub repository for an expression
of the ELBO under PFM-VB and MF-VB. The results presented
in Table 2 correspond to a threshold of 10−3 on the logarithm of
the ELBO. Conversely, as discussed in Section 4.3.2, EP routines
do not share the same monotonicity and convergence guarantees
that characterize variational routines. Therefore, the conver-
gence of EP is commonly assessed in terms of the maximum
absolute difference over the set of low dimensional parameters,
characterizing the approximate Gaussian sites, between con-
secutive iterations (Chopin and Ridgway 2017), for which we
employ the same threshold as above. Consistent with the theo-
retical results in Fasano, Durante, and Zanella (2022), Table 2
provides evidence on the fact that the number of iterations
needed by PFM-VB to reach convergence of the ELBO decays to
one as p grows to infinity, while also displaying the phenomenon
reminiscent of double-descent noticed in Table 1, thus motivat-
ing further research along this line. Interestingly, the empirical

results in Table 2 also suggest that the number of iterations
required by EP does not grow with p. These analyses point
toward EP as a default strategy, while suggesting PFM-VB as a
feasible accurate alternative in high dimensions.

6. Discussion and Future Research Directions

This review article provides a novel unified methodological
and computational framework for Bayesian inference within a
wide class of routinely-used regression models under a similarly
broad set of prior distributions, which include the Gaussian
one. Such an important gap in the literature is covered by first
expressing the likelihoods associated with probit, tobit, multi-
nomial probit and their extensions as special cases of a single
formulation, and then generalizing previous findings for specific
models in, for example, Durante (2019), Fasano and Durante
(2022), Fasano et al. (2021), Cao, Durante, and Genton (2022),
Benavoli, Azzimonti, and Piga (2020), Benavoli, Azzimonti, and
Piga (2021) to prove SUN (Arellano-Valle and Azzalini 2006)
conjugacy for any representation that admits such a unified
likelihood. This yields general versions of past and more recent
computational methods, previously proposed only for some spe-
cific members of the general class and with a focus on Gaussian
priors. These include data-augmentation Gibbs samplers, iid
sampling schemes, VB approximations and scalable EP imple-
mentations.

Due to the relevance of the models considered, such a review
is expected to catalyze increasing interest by applied, computa-
tional and methodological researchers, and will hopefully moti-
vate further research advancements along the directions opened
by the results in Sections 2–5. For instance, the closed-form
expressions in Section 3.2 for inference under the exact SUN
posterior provide additional motivations to stimulate ongoing
research aimed at developing accurate and fast methods to
evaluate cumulative distribution functions of high-dimensional
Gaussian distributions. In fact, any advancement along this
direction and in sampling from multivariate truncated normals
can be directly applied to conduct posterior inference via the
closed-form results in Section 3.2, for increasingly larger sample
sizes n̄ + n̄0, beyond small-to-moderate settings. This would
be also useful for estimation of possible unknown parameters
in the covariance matrices �̄1 and �̄0, via numerical maxi-
mization of the marginal likelihood p(y) in (13). As clarified
in Sections 2.1–2.4 such matrices are often parameterized by
a one-dimensional or low-dimensional vector of parameters,
and hence, can be effectively estimated via direct maximization
of p(y) when its evaluation is computationally practical. The
availability of a closed-form expression (13) for p(y) and of
iid sampling schemes from (β|y) as in (11) can be also use-
ful to facilitate full Bayesian inference for �̄1 and �̄0 when
the associated parameters are assigned a prior. For example,
leveraging p(y) it is possible to derive collapsed Metropolis–
Hastings schemes to sample from the posteriors of �̄1 and �̄0
after integrating out β analytically, thereby improving mixing
of data-augmentation MCMC (Park and Van Dyk 2009); see
also Chan and Jeliazkov (2009) for effective MCMC methods to
infer �̄0 under identifiability constraints. These advancements
are beyond the scope of this review, but provide a research
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direction that is worth further exploration. Finally, it is also
interesting to include hyperpriors for the scale parameters of
the Gaussian or, more generally, SUN prior, that yield to scale-
mixture representations inducing shrinkage in high dimensions
(Carvalho, Polson, and Scott 2010). Since most of these con-
structions rely on conditionally Gaussian priors, the results in
the present review may be useful to obtain improved theoretical
and practical performance in state-of-the-art implementations
of the models in Section 2 under sparse settings; see Onorati
and Liseo (2022) for recent advancements along these lines,
motivated by SUN conjugacy.

Although (1) already encompasses several models of interest,
further generalizations of such a likelihood and of the conjugacy
results in Section 3 can be considered. For instance, it is possible
to extend (1) to any version of the models in Sections 2.1–2.4
that arise from censoring or rounding of the Gaussian latent
utilities into a generic truncation region. As discussed in the
supplementary materials, such a mechanism is directly related
to the generative construction of the broader class of selection
distributions (SLCT) in Arellano-Valle, Branco, and Genton
(2006). Hence, following the same general reasoning, it seems
natural to prove SLCT conjugacy for this broader family of
likelihoods. For example, this has been done in Kowal (2022)
and King and Kowal (2021) by extending the ideas in Durante
(2019) and Fasano et al. (2021) to static and dynamic rounded-
data situations. These generalizations can be considered to prove
similar conjugacy results for any extension of (1) which incorpo-
rates truncation into a finite region. It would be also interesting
to extend the recent conjugacy results under skew-elliptical link
functions, such as skew-t (Branco and Dey 2001; Azzalini and
Capitanio 2003; Gupta 2003), to the proposed general frame-
work. In fact, the unified skew-elliptical distribution (Arellano-
Valle and Genton 2010) has a general density expression that
shares the product form of the likelihood (1), with a proba-
bility density function multiplied by a cumulative distribution
function computed in some appropriate linear transformation
of the parameter. This class of distributions admits as particular
cases both the SUN and the unified skew-t distribution, and
thus also the skew-t. Motivated by these results, Zhang et al.
(in press) proved that unified skew-elliptical distributions are
conjugate to probit and multinomial probit with skew-elliptical
link functions, thus suggesting that this result may hold for any
regression model based on skew-elliptical utilities.

As proved in a recent article by Durante, Pozza, and Szabo
(2023), suitable generalizations of skew-normal distributions
also provide more accurate limiting laws and skew-modal
approximations for generic posterior distributions—beyond
those considered in this article—with an improved convergence
rate relative to the one achieved by the classical Bernstein–von
Mises theorem based on limiting Gaussians.

Finally, it shall be also emphasized that the class of models
discussed in Section 2 arguably encompasses one of the broadest
set of formulations that appear in econometrics (Greene 2008)
and social sciences (DeMaris 2004). Nonetheless, routine appli-
cations of such models under a Bayesian perspective have lagged
behind the growing interest in Bayesian statistics. This review
not only clarifies that the posterior distributions induced by the
likelihoods of these models belong to a known class of variables,
but also that such conjugacy results hold for a broader set of

priors and for various extensions of classical probit, tobit, and
multinomial probit that are of direct relevance in econometrics
and social sciences. This will hopefully boost the routine-use
of these Bayesian models in applied research and motivate the
development of even more flexible versions which still belong
to likelihood (1), including, for example, random effects and
graphical models (e.g., Jones et al. 2005).

Supplementary Materials

The supplementary materials contain (i) further examples of relevant
regression models whose likelihood can be rewritten as in (1), (ii) proofs
of Lemma 1 and Theorem 1, and (iii) a detailed discussion on the compu-
tational costs of the routines to derive the approximations in Section 4.3.
Code can be found at https://github.com/niccoloanceschi/TobitSUN.
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S1 Further extensions to skewed link functions,
non-linear models and dynamic settings

Although the models discussed in Sections 2.1, 2.2 and 2.3 cover
the most widely-implemented formulations in the literature, as
highlighted in Sections S1.1–S1.4 several additional extensions
of these representations to skewed, non-linear, dynamic and other
contexts can be reframed within the likelihood in (1).

S1.1 Inclusion of skewed latent utilities

S1.1.1 Skewed extensions of linear regression and multi-
variate linear regression

It is possible to include skewness within the formulations in Sec-
tion 2.1, while still remaining in the class of models whose likeli-
hood can be expressed as in (1). Recalling Sahu, Dey, and Branco
(2003) and Azzalini (2005), this can be done by assuming that
(yi | β) ∼ sn(xᵀ

i β, σ
2, α), independently for each i = 1, . . . , n,

where sn(xᵀ
i β, σ

2, α) denotes the skew-normal distribution (Az-
zalini, 1985) with location xᵀ

i β, scale σ2 and shape parameter α.
This choice implies that

p(y | β) ∝
∏n

i=1
φ(yi − xᵀ

i β;σ2)Φ(α(yi − xᵀ
i β);σ2)

= φn(y −Xβ;σ2In)Φn(αy − αXβ;σ2In),
(S.1)

which coincides again with (1), when n̄1 = n̄0 = n, ȳ1 = y,
ȳ0 = αy, X̄1 = X, X̄0 = −αX and Σ̄1 = Σ̄0 = σ2In. Inclu-
sion of skewed responses frommore elaborated distributions such
as the multivariate skew-normal (Azzalini and Dalla Valle, 1996;
Azzalini and Capitanio, 1999), the extended multivariate skew-
normal (Arnold and Beaver, 2000; Arnold et al., 2002), the closed
skew-normal family (González-Farias, Dominguez-Molina, and
Gupta, 2004; Gupta, González-Farias, and Dominguez-Molina,
2004) and the SUN (Arellano-Valle and Azzalini, 2006), is also
possible and yields again special cases of Equation (1); see, e.g.,
Canale, Pagui, and Scarpa (2016).

S1.1.2 Skewed extensions of probit, multivariate probit and
multinomial probit

The inclusion of skewed link functions is possible also under pro-
bit, multivariate probit and multinomial probit models. This di-
rection has been effectively explored by Chen, Dey, and Shao
(1999) and Bazán, Bolfarine, and Branco (2010) with a main fo-
cus on basic probit models, and can be again reframed within the
general formulation in (1). For example, in the context of univari-
ate probit regression, skewness can be incorporated by replacing
the Gaussian latent utilities with skew-normal ones; namely (zi |
β) ∼ sn(xᵀ

i β, σ
2, α), independently for i = 1, . . . , n. As a con-

sequence, the binary response data yi = 1(zi > 0) are Bernoulli
variables with probabilities pr(yi = 1 | β) = pr(zi > 0 | β) ∝
Φ2[(xᵀ

i β, 0)ᵀ; diag(σ2, 1)+σα(1+α2)−1/2(121
ᵀ
2−I2)], whose

expression follows directly from the cumulative distribution func-
tion of the skew-normal; see e.g., González-Farias, Dominguez-
Molina, and Gupta (2004); Arellano-Valle and Azzalini (2006);
Azzalini and Bacchieri (2010); Azzalini and Capitanio (2013),
and Arellano-Valle and Azzalini (2021). Leveraging the same re-
sults, it also follows that pr(yi = 0 | β) = pr(zi < 0 | β) ∝
Φ2[(−xᵀ

i β, 0)ᵀ; diag(σ2, 1)−σα(1+α2)−1/2(121
ᵀ
2−I2)]. Let

Xi = [(2yi−1)xi,0]ᵀ and Σi = diag(σ2, 1)+(2yi−1)σα(1+
α2)−1/2(121

ᵀ
2 − I2) = Σ + (2yi − 1)Λ, the joint likelihood for

the binary response data can be then expressed as follows

p(y | β) ∝
∏n

i=1
Φ2(Xiβ; Σi)

= Φ2n(Xβ; In ⊗Σ + diag(2y − 1n)⊗Λ),
(S.2)

with X = (Xᵀ
1 , . . . ,X

ᵀ
n)ᵀ, Σ = diag(σ2, 1), and Λ = σα(1 +

α2)−1/2(121
ᵀ
2 − I2). As a consequence, Equation (S.2) is again

a special case of (1), after setting n̄1 = 0, n̄0 = 2n, ȳ0 = 0,
X̄0 = X and Σ̄0 = In⊗Σ+diag(2y−1n)⊗Λ. Similar deriva-
tions can be considered to incorporate skewness within multivari-
ate and multinomial probit via multivariate skew-normal (Az-
zalini and Dalla Valle, 1996), closed skew-normal (González-
Farias, Dominguez-Molina, and Gupta, 2004; Gupta, González-
Farias, and Dominguez-Molina, 2004) or unified skew-normal

∗Department of Decision Sciences and Bocconi Institute for Data Science and Analytics, Bocconi University, Italy, e-mail: daniele.durante@unibocconi.it

1



(Arellano-Valle andAzzalini, 2006) latent utilities. Some of these
choices have not yet been explored to induce skewed link func-
tions formultivariate andmultinomial extensions of classical pro-
bit regression. Nonetheless, all these variables have cumulative
distribution functions proportional to those of multivariate Gaus-
sians, evaluated at a linear combination of β, and, hence, induce
likelihoods which can be again expressed as special cases of the
general framework in (1).

S1.1.3 Skewed extensions of tobit regression

As for the models presented in Sections 2.1 and 2.2, also tobit re-
gression admits extensions to skewed contexts. This generaliza-
tion has been explored, for example, by Hutton and Stanghellini
(2011) who replace the Gaussian assumption for each (zi | β) ∼
N(xᵀ

i β, σ
2) with the skew-normal (zi | β) ∼ sn(xᵀ

i β, σ
2, α),

independently for every unit i = 1, . . . , n. Recalling the deriva-
tions for the skewed extensions of the models in Sections 2.1–2.2,
this assumption implies that the contribution to the likelihood for
the i–th data point is proportional to (φ(yi − xᵀ

i β;σ2)Φ[α(yi −
xᵀ
i β);σ2])1(yi>0)(Φ2[(−xᵀ

i β, 0)ᵀ; diag(σ2, 1)−σα(1+α2)−1/2

(121
ᵀ
2 − I2)])1(yi=0). Therefore, letting diag(σ2, 1) = Σ and

σα(1 + α2)−1/2(121
ᵀ
2 − I2) = Λ, yields

p(y | β) ∝
∏

i:yi>0
φ(yi − xᵀ

i β;σ2)Φ(α(yi − xᵀ
i β);σ2)

·
∏

i:yi=0
Φ2[(−xᵀ

i β, 0)ᵀ; Σ−Λ]

= φn1(y1−X1β;σ2In1)

· Φn1+2n0(α[yᵀ
1 ,0

ᵀ]ᵀ − (αXᵀ
1 ,X

ᵀ
0)ᵀβ; Σ0),

(S.3)

where n1, n0, y1 and X1 are defined as in (7), whereas X0 is a
2n0×p designmatrix obtained by stacking 2×p row blocksXi =
(xi,0)ᵀ for those units with yi = 0, while Σ0 is a block-diagonal
matrix with blocksΣ0[1,1] = σ2In1

,Σ0[2,2] = In0
⊗Σ−In0

⊗Λ.
Hence, to express (S.3) as a particular case of (1) it suffices to set
n̄1 = n1, n̄0 = n1 +2n0, ȳ1 = y1, ȳ0 = α[yᵀ

1 ,0
ᵀ]ᵀ, X̄1 = X1,

X̄0 = −(αXᵀ
1 ,X

ᵀ
0)ᵀ, Σ̄1 = σ2In1

and Σ̄0 = Σ0. Recall-
ing discussions in Sections 2.1–2.2, these derivations can be di-
rectly applied to incorporate skewness in type II–V tobit models
(Amemiya, 1984), also under more general distributions which
extend the original skew-normal (e.g., Arellano-Valle and Azza-
lini, 2006).

S1.2 Inclusion of generic thresholds

All the results presented in Sections 2.1–2.3 hold, under minor
changes, when replacing the commonly-used zero threshold with
a generic one zt, possibly varying between units. For instance, in
probit regression this modification implies that pr(yi = 1 | β) =
Φ(−zt+xᵀ

i β), thus providing the joint likelihood
∏n

i=1 Φ[(2yi−
1)(−zt + xᵀ

i β)] = Φn(−zt(2y−1n) + diag(2y−1n)Xβ; In),

which coincides with expression (1) after letting n̄1 = 0, n̄0 = n,
ȳ0 = −zt(2y−1n), X̄0 = diag(2y−1n)X and Σ̄0 = In. Sim-
ilar derivations apply to multivariate probit, multinomial probit,
tobit, and their skewed extensions.

By contrast, all models relying on truncations to a finite in-
terval of the form [z1t, z2t] do not induce likelihoods that can be
rewritten as in (1). Nonetheless, these versions are less frequent
than those presented in Sections 2.1–2.3 and, as discussed in Sec-
tion 6, the SUN conjugacy results presented for the general class
of models whose likelihoods admit the form (1), are useful to mo-
tivate similar extensions for a generic truncation mechanism. In
fact, as discussed in Arellano-Valle, Branco, and Genton (2006),
the SUN family belongs itself to an even more general class of
selection distributions (SLCT) whose construction rely on cumu-
lative distribution functions evaluated at generic intervals. This
result has been recently leveraged by Kowal (2022) and King and
Kowal (2021) to extend the original SUN conjugacy properties
presented by Durante (2019) and Fasano et al. (2021) for probit
regression and its multivariate dynamic extensions, respectively,
to rounded/categorical data where truncation is in finite intervals
(e.g., Jeliazkov, Graves, and Kutzbach, 2008). These modifica-
tions can be extended to prove the SLCT conjugacy for general-
izations of (1) which admit truncation to any finite interval.

S1.3 Inclusion of non-linear effects

Another key extension of the models presented in Sections 2.1–
2.3 can be obtained by including non-linearities within the pre-
dictor. A common solution to accomplish such a goal is to re-
place f(xi) = xᵀ

i β with the generic basis expansion f(xi) =
g(xi)

ᵀβ, where g(xi) = [g1(xi), . . . , gk(xi)]
ᵀ are pre-specified

non-linear basis functions, such as splines (see e.g., Holmes and
Mallick, 2001; Lang and Brezger, 2004). Including this extension
within the general framework in Equation (1) poses no difficul-
ties since it is sufficient to replicate the derivations for the models
presented in Sections 2.1, 2.2 and 2.3 with xi = (xi1, . . . , xip)ᵀ

replaced by x̃i = [g1(xi), . . . , gk(xi)]
ᵀ, for each i = 1, . . . , n.

Alternatively, one can model directly [f(x1), . . . , f(xn)]ᵀ ∈
R

n via aGaussian process (e.g., Rasmussen andWilliams, 2006).
This direction has been commonly explored in the context of the
models presented in Sections 2.1–2.3 (e.g., Kuss, Rasmussen,
and Herbrich, 2005; De Oliveira, 2005; Girolami and Rogers,
2006; Nickisch and Rasmussen, 2008; Riihimäki, Jylänki, and
Vehtari, 2014; Cao, Durante, and Genton, 2022; Benavoli, Azz-
imonti, and Piga, 2020, 2021), and can be also reframed within
formulation (1). In particular, by assuming, without loss of gener-
ality, no overlap in x1, . . . ,xn, the Gaussian process construction
with mean function m(·) and covariance kernel K(·, ·) implies
that [f(x1), . . . , f(xn)]ᵀ is jointly distributed as a Nn(ξ,Ω)with
ξ = [m(x1), . . . ,m(xn)]ᵀ and covariance matrix Ω having en-
tries Ωii′ = K(xi,xi′), for each i = 1, . . . , n and i′ = 1, . . . , n.
This representation can be alternatively rewritten as X̃β, where

2



β = [f(x1), . . . , f(xn)]ᵀ ∼ Nn(ξ,Ω) and X̃ = In. Therefore,
letting x̃i denote an n× 1 vector with value 1 in position i and 0
elsewhere, for each i = 1, . . . , n, it is possible to consider Gaus-
sian process extensions of the models in Sections 2.1–2.3, while
still remaining within the general framework in (1).

S1.4 Inclusion of dynamic structure

Time–varying extensions of the models in Sections 2.1, 2.2 and
2.3 are common in the literature (e.g., Manrique and Shephard,
1998; Andrieu and Doucet, 2002; Naveau, Genton, and Shen,
2005; Chib and Jeliazkov, 2006; Soyer and Sung, 2013; Fasano
et al., 2021). These extensions often appear as generalizations of
the original dynamic linear model having observation equation
(yt | βt) ∼ Nm(Xtβt,Σt), independently for every time t =
1, . . . , n, and state equations (βt | βt−1) ∼ Np(Gtβt−1,Wt),
independently for any t = 1, . . . , n, where Xt, Σt, Gt, and Wt

are known system matrices, whereas β0 ∼ Np(a0,P0). This
building-block construction implies that the contribution to the
likelihood of yt, for every t = 1, . . . , n, is p(yt | β) = φm(yt−
Xtβt; Σt) = φm(yt − X̃tβ; Σt), where β = (βᵀ

1 , . . . ,β
ᵀ
n)ᵀ

and X̃t = vᵀ
t ⊗ Xt, with vt denoting a n × 1 indicator vector

having value 1 in position t and 0 elsewhere. Therefore, this rep-
resentation can be directly interpreted as a particular version of
the multivariate linear regression model in Equation (3) with co-
variance matrix possibly changing across the time units. Such a
connection allows to directly recast the joint likelihood p(y | β)
ofy = (yᵀ

1 , . . . ,y
ᵀ
n)ᵀ within (1). Clearly, this result holds for any

subsequence yᵀ
1:t = (yᵀ

1 , . . . ,y
ᵀ
t )ᵀ, with t = 1, . . . , n, thereby

facilitating online derivation of the filtering p(βt | y1:t), pre-
dictive p(βt+1 | y1:t) and smoothing p(β | y) distributions via
the Gaussian-Gaussian conjugacy implied by the observation and
state equations (Kalman, 1960).

The above results have been recently extended by Fasano et al.
(2021) for deriving the first analog of the classical Kalman filter
(Kalman, 1960) within the context of multivariate dynamic probit
models with Gaussian states, leveraging the SUN–probit conju-
gacy properties proved in Durante (2019). Recalling Fasano et al.
(2021) and adapting the notation to the one in this article, the con-
tribution to the likelihood of yt, for every time t = 1, . . . , n, can
be expressed as p(yt | β) = Φm(BtXtβt; BtΣtBt), where Xt

and Bt are defined as in (5), with i replaced by time t, whereas
Σt is a possibly time-varying covariance matrix among the latent
utilities (zt1, . . . , ztm)ᵀ. Recalling the derivations considered for
the Gaussian dynamic setting, the expression for p(yt | β) can
be alternatively rewritten as p(yt | β) = Φm(X̃tβ; BtΣtBt),
with X̃t = vᵀ

t ⊗ (BtXt), which shows again the direct connec-
tion between this dynamic formulation and its static counterpart
in (5), thereby allowing to recast the induced joint likelihood for
y = (yᵀ

1 , . . . ,y
ᵀ
n)ᵀ and its subsequences yᵀ

1:t = (yᵀ
1 , . . . ,y

ᵀ
t )ᵀ,

t = 1, . . . , n, within Equation (1).
These results clearly hold also for the dynamic extensions of

models (2) and (4), which represent the univariate versions of
(3) and (5), respectively, thus simply requiring to set m = 1 in
the above derivations. Similarly, multinomial probit (6) and tobit
(7) observation equations, along with skewed extensions ((S.1),
(S.2), (S.3)), can be again reframed within (1) since all these con-
structions are characterized by contributions to the likelihood for
each time t = 1, . . . , n having the same form of those associated
with the statistical units i = 1, . . . , n in the static counterparts of
such models presented in Sections 2.1–2.3, under suitable speci-
fications of the design and covariance matrices.

As a final remark, it is worth emphasizing that (1) naturally
encompasses any combination of the models discussed in Sec-
tions 2.1–2.4. For example, if yi = (yi1, yi2, yi3, yi4)ᵀ, where
yi1, yi2, yi3 and yi4 are from models in (2), (4), (6) and (7), re-
spectively, for each i = 1, . . . , n, then, leveraging the derivations
in Sections 2.1–2.3, it directly follows that the joint likelihood for
the vector y = (yᵀ

1 , . . . ,y
ᵀ
n)ᵀ still belongs to (1).

S2 Proofs of Lemma 1 and Theorem 1

Proof of Lemma 1. To prove Lemma 1, first notice that, by Bayes
rule

p(β | ȳ1) ∝ p(β)p(ȳ1 | β),

where p(ȳ1 | β) = φn̄1
(ȳ1 − X̄1β; Σ̄1), whereas p(β) is the

SUN density in (8). Leveraging Gaussian-Gaussian conjugacy,
it follows that the product between φn̄1

(ȳ1 − X̄1β; Σ̄1) and the
density term φp̄(β−ξ; Ω) in (8) is proportional to φp̄[β−(Ω−1+
X̄ᵀ

1Σ̄−1
1 X̄1)−1(Ω−1ξ+X̄ᵀ

1Σ̄−1
1 ȳ1); (Ω−1 +X̄ᵀ

1Σ̄−1
1 X̄1)−1] =

φp̄(β − ξ1; Ω1), where

ξ1 = (Ω−1 + X̄ᵀ
1Σ̄−1

1 X̄1)−1(Ω−1ξ + X̄ᵀ
1Σ̄−1

1 ȳ1),

Ω1 = (Ω−1 + X̄ᵀ
1Σ̄−1

1 X̄1)−1 = ω1Ω̄1ω1,

Therefore, p(β | ȳ1) is proportional to the product between this
updated Gaussian density and the cumulative distribution func-
tion term Φn̄(γ + ∆ᵀΩ̄−1ω−1(β − ξ); Γ −∆ᵀΩ̄−1∆) of the
SUN density in (8), which can be also re-expressed asΦn̄[s−1

1 γ+
s−1

1 ∆ᵀΩ̄−1ω−1(β − ξ); s−1
1 (Γ −∆ᵀΩ̄−1∆)s−1

1 ], where s−1
1

is defined as in Lemma 1. To prove that this product yields to the
SUN kernel in Lemma 1, rewrite s−1

1 γ+s−1
1 ∆ᵀΩ̄−1ω−1(β−ξ)

as s−1
1 γ−s−1

1 ∆ᵀΩ̄−1ω−1ξ+s−1
1 ∆ᵀΩ̄−1ω−1β, and then sum

and subtract s−1
1 ∆ᵀΩ̄−1ω−1ξ1 inside this expression to obtain

s−1
1 [γ + ∆ᵀΩ̄−1ω−1(ξ1 − ξ)] + s−1

1 ∆ᵀΩ̄−1ω−1(β − ξ1)

= γ1 + s−1
1 ∆ᵀΩ̄−1ω−1(β − ξ1)

= γ1 + s−1
1 ∆ᵀΩ̄−1ω−1ω1Ω̄1Ω̄

−1
1 ω−1

1 (β − ξ1)

= γ1 + ∆ᵀ
1Ω̄1

−1ω−1
1 (β − ξ1),

with γ1 and ∆1 defined as γ1 = s−1
1 [γ+ ∆ᵀΩ̄−1ω−1(ξ1− ξ)]

and ∆1 = Ω̄1ω1ω
−1Ω̄−1∆s−1

1 , respectively. In order to con-
clude the proof, note that the correlation matrix within the cumu-
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lative distribution function term can be also rewritten as

s−1
1 (Γ−∆ᵀΩ̄−1∆)s−1

1

= s−1
1 (Γ−∆ᵀΩ̄−1∆)s−1

1 + ∆ᵀ
1Ω̄−1

1 ∆1 −∆ᵀ
1Ω̄−1

1 ∆1

= s−1
1 [Γ + ∆ᵀ(Ω̄−1ω−1Ω1ω

−1Ω̄−1 − Ω̄−1)∆]s−1
1

−∆ᵀ
1Ω̄−1

1 ∆1,

which corresponds to Γ1 − ∆ᵀ
1Ω̄−1

1 ∆1, with Γ1 defined as in
Lemma 1. This proves that the kernel p(β)p(ȳ1 | β) of the pos-
terior coincides with that of a SUN having parameters ξ1, Ω1,
∆1, γ1 and Γ1 specified as in Lemma 1.

Proof of Theorem 1. The proof of Theorem 1 simply requires to
combine Lemma 1 with an adaptation of Corollary 4 in Durante
(2019). In particular, by direct application of the Bayes rule, it
follows that

p(β | y) ∝ p(β)p(y | β) ∝ [p(β)p(ȳ1 | β)]p(ȳ0 | β).

Therefore, the posterior distribution p(β | y) can be obtained by
first updating the SUN prior p(β) with p(ȳ1 | β) ∝ φn̄1

(ȳ1 −
X̄1β; Σ̄1), and then use such a conditional density p(β | ȳ1) as
an intermediate prior to be updated with the likelihood p(ȳ0 |
β) ∝ Φn̄0

(ȳ0 +X̄0β; Σ̄0) of ȳ0 for obtaining the final posterior.
By direct application of Lemma 1, it follows that p(β | ȳ1) is the
density of the SUNp̄,n̄(ξ1,Ω1,∆1,γ1,Γ1) with parameters de-
fined as in Lemma 1. Therefore, to conclude the proof, it is suffi-
cient to prove that the updating of this intermediate prior with the
likelihood p(ȳ0 | β) ∝ Φn̄0

(ȳ0 + X̄0β; Σ̄0) for ȳ0 yields again
to a SUNp̄,n̄+n̄0

(ξpost,Ωpost,∆post,γpost,Γpost) with ξpost, Ωpost, ∆post,
γpost andΓpost defined as in Theorem 1. This result follows directly
from an adaptation of Corollary 4 in Durante (2019); refer also to
Theorem 1 in Fasano and Durante (2022). In particular, replac-
ing D with X̄0 and In with Σ̄0 in Corollary 4 by Durante (2019),
under a SUNp̄,n̄(ξ1,Ω1,∆1,γ1,Γ1) prior, yields to the expres-
sions for ξpost, Ωpost, ∆post and Γpost in Theorem 1. Inclusion of the
offset ȳ0 in the proof of Corollary 4 by Durante (2019) poses no
difficulties since it directly enters the SUN truncation parameter,
thereby providing the expression for γpost in Theorem 1.

S3 Computational costs

To further extend the analysis of the approximate schemes in Sec-
tions 4.3.1–4.3.2, we discuss the associated cost per-iteration fo-
cusing, for the ease of notation, on the classical probit regression∏n

i=1 Φ(xᵀ
i β)1(yi=1)[1−Φ(xᵀ

i β)]1(yi=0) as in (4), with a spher-
ical Gaussian prior p(β) = φp(β;ω2Ip). Note that, as discussed
in Section 2.2, n = n̄0 and p = p̄ when such a model is written
as a special case of likelihood (1). Besides providing one of the
most widely implemented formulations within the class of mod-
els whose likelihood can be expressed as in (1), this choice is also
motivated by the fact that detailed costs per-iteration of effective

MF-VB and PFM-VB implementations have been already derived
in Fasano, Durante, and Zanella (2022) under probit regression
with a Gaussian prior. Moreover, it gives the opportunity to show
that currently-reported per-iteration costs of EP for the same class
of models and priors (Chopin and Ridgway, 2017) can be further
reduced, thus making also EP more scalable to high dimensions.

For deriving the costs of MF-VB, PFM-VB and EP it shall be
emphasized that, in probit regression, such approximations rely
on c = 1, . . . , n and, therefore, nc = n̄c = 1 for any c. Under
EP (Chopin and Ridgway, 2017) this choice is a common practice
which follows from the factorized form of the likelihood, whereas
inMF-VB (Consonni andMarin, 2007) it is implied by the formu-
lation of the optimization problem and is a direct consequence of
the conditional independence among the unit-specific latent util-
ities. Instead, for PFM-VB (Fasano, Durante, and Zanella, 2022)
such a setting is not enforced. Nonetheless, it provides a conve-
nient specification which is in line withMF-VB and EP solutions,
and also facilitates posterior inference by only requiring to deal
with univariate truncated normals.

Under the aforementioned settings, Appendix A of Fasano,
Durante, and Zanella (2022) provides a detailed discussion of the
per-iteration cost for both MF-VB and also PFM-VB, which is
O(n·min{n, p}) = O(n̄0 ·min{n̄0, p̄}), after suitable matrix pre-
computations before running the CAVI routine. Since the mean
and variance of univariate truncated normals can be accurately
computed at O(1) cost under standard algorithms (e.g., Botev,
2017), the most intensive computations in the CAVI routines for
MF-VB and PFM-VB correspond to the matrix multiplication op-
erations. These steps can be efficiently implemented by exploit-
ing recursive formulas when updating each univariate truncated
normal approximating density conditioned the most recent esti-
mate of the others, in PFM-VB, or of the β parameters, in MF-
VB, thereby leading to an overall per-iteration cost that is either
linear or sublinear in p = p̄.

As for EP, the currently reported per-iteration cost in probit
regression with spherical Gaussian priors isO(np2) = O(n̄0p̄

2)
(Chopin and Ridgway, 2017), after suitable precomputations as
in MF-VB and PFM-VB. Intuitively, this increased complexity is
due to the fact that, unlike for MF-VB and PFM-VB, not only the
expectations but also the p × p covariance matrices must be up-
dated and then inverted at every site c, for each c = 1, . . . , n.
Although the specific form of such matrices allows to reduce the
common cubic cost into a quadratic one via the application of the
Woodbury’s formula to avoid direct matrix inversion (Chopin and
Ridgway, 2017), an O(np2) = O(n̄0p̄

2) cost can be still com-
putationally impractical in the large p = p̄ setting. In fact, as
mentioned in the final discussion by Chopin and Ridgway (2017),
even the state-of-the-art implementations of EP are often compu-
tationally challenging when p exceeds one thousand. This point
is also confirmed in the empirical studies of Fasano, Durante, and
Zanella (2022), where the EP implementation within the R pack-
age EPGLM by Chopin and Ridgway (2017) requires more than six
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hours to reach convergence in a high-dimensional Alzheimer’s
application with p = p̄ = 9036 and n = n̄0 = 300. Notably, as a
further contribution of the present article, it shall be emphasized
that a more scalable EP implementation with per-iteration cost
O(np·min{n, p}) = O(n̄0p̄·min{n̄0, p̄}) can be actually derived
by leveraging similar results considered in Fasano, Durante, and
Zanella (2022) for obtaining efficient implementations ofMF-VB
and PFM-VB. In particular, this new EP implementation exploits
the fact that, under the same reformulation via Woodbury’s iden-
tity of Chopin and Ridgway (2017), the site updates do not nec-
essarily require direct computation of the aforementioned p × p
matrices, since such quantities enter via the inner product with
the p × n design matrices X̄ᵀ

0 . Hence, when p = p̄ is large, it
is more convenient to update this product directly, without stor-
ing, updating or multiplying any p × p matrix. This yields to an
O(np) = O(n̄0p̄) cost for each site, and to an overall cost for the
n = n̄0 site updates of O(n2p) = O(n̄2

0p̄). In high dimensional
settings, when p� n, this linear cost in p = p̄ yields to massive
computational gains relative to the original O(np2) = O(n̄0p̄

2)
cost of EPGLM in Chopin and Ridgway (2017). For example, by
considering the proposed more scalable implementation within
the high-dimensional Alzheimer’s application yields to an over-
all runtime of less than one minute, which is orders of magnitude
lower than EPGLM (Chopin and Ridgway, 2017) that requires, in-
stead, more than six hours. When, instead, n � p, the linear
cost in n = n̄0 of the EPGLM ensures effective implementations.
Combining these two scenarios yields to an overall per-iteration
cost of O(np ·min{n, p}) = O(n̄0p̄ ·min{n̄0, p̄}), which is lin-
ear in the higher between n = n̄0 and p = p̄. To the best of
our knowledge, this is the first implementation of EP available in
the literature to achieve such a computational efficiency. Despite
this, standard EP remains more computationally demanding than
MF-VB and PFM-VB since, as discussed above, also the p × p
matrices need to be updated at each step of the EP routine, either
directly or implicitly via the product with X̄ᵀ

0 .
The above reasoning can be directly applied in order to high-

light a similar dependence on sample size and number of predic-
tors in the per-iteration cost of effective MF-VB, PFM-VB and
EP implementations under the whole class of models and priors
in Sections 2 and 3 — as long as nc and n̄c are sufficiently small
to allow the calculations of the moments for the associated mul-
tivariate truncated normals at a negligible cost compared to the
one of thematrix operations. This result is illustrated in empirical
studies in Section 5, with a focus on tobit regression.
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