RESEARCH COMMUNICATION Nicotinic acid—adenine dinucleotide phosphate mobilizes Ca²⁺ from a thapsigargin-insensitive pool

Armando A. GENAZZANI* and Antony GALIONE

University Department of Pharmacology, Mansfield Road, Oxford OX1 3QT, U.K.

Nicotinic acid–adenine dinucleotide phosphate (NAADP) is a novel intracellular Ca²⁺ releasing agent recently described in seaurchin eggs and egg homogenates. Ca²⁺ release by NAADP is independent of that induced by either inositol trisphosphate (InsP₃) or cyclic adenosine dinucleotide phosphate (cADPR). We now report that in sea urchin egg homogenates, NAADP releases Ca²⁺ from a Ca²⁺ pool that is distinct from those that are sensitive to InsP₃ and cADPR. This organelle has distinct Ca²⁺ uptake characteristics: it is insensitive to thapsigargin and

INTRODUCTION

Many cells, including sea-urchin eggs, possess multiple mechanisms for Ca^{2+} mobilization from internal stores [1], which may be evoked during cellular signalling. Inositol trisphosphate $(InsP_{a})$ and ryanodine (Ry) receptors are the two principal Ca²⁺release channels that have been characterized [2]. These two channels are regulated by $InsP_3$ and cyclic adenosine dinucleotide phosphate (cADPR) respectively, which are both potent Ca²⁺mobilizing agents and activators of sea-urchin eggs [3-6] and have been demonstrated to release Ca2+ from internal stores in a variety of mammalian cells [7,8]. InsP3 and cADPR both contribute to the Ca2+ wave during the fertilization of sea-urchin eggs, since neither the InsP₃ receptor antagonist, heparin, nor antagonists of the cADPR/Ry receptor, Ruthenium Red or 8amino-cADPR, are able to block the fertilization Ca²⁺-wave alone, but their co-injection blocks both Ca²⁺ increases and egg activation by sperm [9,10].

Recently, nicotinic acid–adenine dinucleotide phosphate (NAADP) has been characterized as a third independent Ca²⁺-releasing agent in sea-urchin eggs [11,12]. NAADP is even more potent than either $InsP_3$ or cADPR in releasing Ca²⁺ from intracellular stores in sea-urchin homogenates [11,12] and in intact eggs [12,13]. NAADP-induced release appears to operate via an $InsP_3$ - and cADPR-independent mechanism, since there is no cross-desensitization between NAADP- and $InsP_3/CADPR$ -induced Ca²⁺ release mechanisms in sea-urchin egg homogenates, and all three agents exhibit homologous desensitization [11,12]. Furthermore, heparin and 8-amino-cADPR, while blocking $InsP_3$ - and cADPR-induced Ca²⁺ release respectively, have no inhibitory effects on NAADP-induced Ca²⁺ release [12], and NAADP does not affect [³H]cADPR and [³H]InsP₃ binding to

cyclopiazoic acid, but maintenance of the pool shows some requirement for ATP. Although the different Ca^{2+} pools have different characteristics, there appears to be some degree of overlap or cross-talk between the NAADP- and cADPR/Ins P_3 sensitive Ca^{2+} pools. Ca^{2+} -induced Ca^{2+} release is unlikely to account for the apparent overlap between stores, since NAADPinduced Ca^{2+} release, in contrast with that stimulated by cADPR, is not potentiated by bivalent cations.

sea urchin egg microsomes [11]. Although Ca²⁺ release by NAADP has been reported only in sea-urchin eggs to date, the ability of mammalian cells to synthesize and degrade this molecule has been shown in various rat tissues, including brain and liver [14]. Candidate enzymes for NAADP synthesis are ADP-ribosyl cyclases [15] and molecules related to the lymphocyte antigen CD38 [16], both of which are present in a variety of mammalian tissues [17,18]. Both of these enzymes promote the synthesis of cADPR from β -NAD⁺, but they have also been shown to catalyse the synthesis of NAADP from its precursor β -NADP⁺ by a base-exchange reaction in the presence of nicotinic acid at acidic pH [19]. These reports strongly suggest that NAADP is synthesized in mammalian cells and raise the possibility that it is also a ubiquitous Ca²⁺-mobilizing agent.

The nature of the NAADP-sensitive Ca²⁺ store is unknown. The fractionation of sea urchin egg homogenates on Percoll gradients resolves the $InsP_3$ - and cADPR-sensitive Ca²⁺ stores to the microsomal band, while NAADP-induced Ca2+-releasing activities are scattered throughout various fractions [12]. Although it is clear that the NAADP-sensitive Ca²⁺ release mechanism is distinct from cADPR and InsP₃ release mechanisms, we have investigated the possibility that the NAADPsensitive Ca2+ release mechanism may reside on a separate internal store. We show that the pharmacology of Ca²⁺ sequestration into NAADP-sensitive Ca2+ pools differs from that of Ins P_3 - and cADPR-sensitive pools, since the microsomal Ca²⁺uptake inhibitor, thapsigargin, while functionally removing $InsP_3$ - and cADPR-sensitive Ca²⁺ pools, leaves the NAADPsensitive Ca2+ pool intact. However, NAADP-induced Ca2+ release and that evoked by InsP₃ or cADPR are non-additive, suggesting either direct or indirect communication between the different Ca2+ pools.

Abbreviations used: NAADP, nicotinic acid-adenine dinucleotide phosphate; $lnsP_{3,}$ inositol trisphosphate; cADPR, cyclic adenosine dinucleotide phosphate; Ry, ryanodine; IM, intracellular medium; ER, endoplasmic reticulum; CICR, Ca^{2+} -induced Ca^{2+} release; CCCP, carbonyl cyanide *m*-chlorophenyl-hydrazone.

^{*} To whom correspondence should be addressed.

The present data supports the hypothesis that NAADP-sensitive Ca^{2+} pools are distinct from $InsP_3$ and Ry receptor-sensitive Ca^{2+} stores, with the possibility that the NAADP-induced Ca^{2+} release mechanism is located on a distinct organelle, but that there is some degree of overlap or cross-talk between NAADP- and cADPR/Ins P_3 -sensitive Ca^{2+} pools.

MATERIALS AND METHODS

Ca²⁺ release assays

Homogenates [2.5% (w/v)] of unfertilized Lytechinus pictus eggs (Marinus Inc., Long Beach, CA, U.S.A.) were prepared as described previously [4], and Ca²⁺-loading was achieved by incubation at 17 °C for 3 h in an intracellular medium (IM) consisting of 250 mM potassium gluconate, 250 mM Nmethylglucamine, 20 mM Hepes (pH 7.2), 1 mM MgCl_a, 1.0 mM ATP, 10 mM phosphocreatine, 10 units/ml creatine phosphokinase, 1 µg/ml oligomycin, 1 µg/ml antimycin, 1 mM sodium azide and $3 \mu M$ fluo-3. Free Ca²⁺ concentration was measured by monitoring fluorescence intensity at excitation and emission wavelengths of 490 nm and 535 nm respectively. Fluorimetry was performed at 17 °C using 500 µl of homogenate in a Perkin-Elmer LS-50B fluorimeter. Additions were made in 5 μ l volumes and all chemicals were added in IM containing $10 \,\mu M$ EGTA. Basal concentrations of Ca²⁺ were typically between 100 and 150 nM. Sequestered Ca²⁺ was determined by monitoring the decrease in fluo-3 fluorescence during microsomal loading and by measuring Ca^{2+} release in response to ionomycin (5 μ M), and was constant between experiments. Ca2+ calibrations were performed for each condition tested in each experiment.

[³H]cADPR binding

[³H]cADPR binding was determined in sea-urchin homogenates as described by Chini et al. [11]. In brief, homogenates were diluted to a concentration of 2 mg/ml in IM containing 1 mM EGTA, and incubated with 20 nM [³H]cADPR for 10 min at 4 °C. Non-specific binding was assessed with 10 mM cADPR. Binding was terminated by filtration (fibreglass GF/B filters) under vacuum and the filters were rapidly washed twice in icecold IM. Radioactivity retained on the filters was determined using standard scintillation counting techniques.

Materials

cADPR was synthesized as previously described [15]. Fluo-3 was obtained from Calbiochem and NAADP from RBI (St. Albans, U.K.). Bafilomycin A_1 was obtained from LC Laboratories (Bingham, U.K) and [³H]cADPR from Amersham (Amersham, UK). All other chemicals were from Sigma.

RESULTS AND DISCUSSION

In sea urchin egg homogenates, NAADP mobilized a larger Ca²⁺ pool than either Ins P_3 or cADPR. A maximal concentration of NAADP (500 nM) typically released 6–10 nmol of Ca²⁺ in different experiments from separate batches of sea urchin egg homogenates. This was significantly more Ca²⁺ than was released by maximal concentrations of either cADPR (500 nM) or Ins P_3 (1 μ M), which were typically in the ranges 3.6–6 and 3–5 nmol of Ca²⁺ respectively. The ratio between the release by NAADP and by the other two agonists was similar between experiments.

Since cADPR- and $InsP_3$ -sensitive pools are thought to be part of the endoplasmic reticulum (ER) [20], we examined whether there was appreciable overlap between these pools and

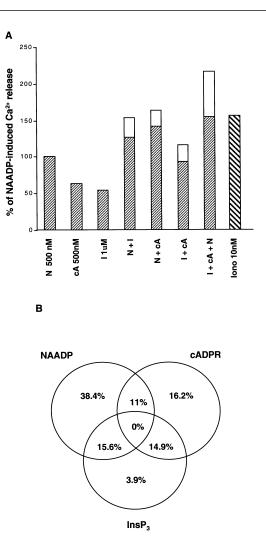


Figure 1 (A) Ca^{2+} release by Ca^{2+} -mobilizing agents and (B) distribution of agonist-sensitive Ca^{2+} pools in sea urchin egg homogenates

(A) Ca²⁺ release by maximal concentrations of the three Ca²⁺-mobilizing agents, NAADP, cADPR and InsP₃ in sea urchin egg homogenates. NAADP (500 nM) released 7.3 \pm 0.3 nmol of Ca²⁺. Values are medians of 6–12 determinations. Hatched bars show actual release, while unfilled bars represents the additional Ca²⁺ release expected if release by two or more agents added together was additive. N, NAADP; cA, cADPR; I, InsP₃; Iono, ionomycin. (B) Venn-diagram of the distribution of agonist-sensitive Ca²⁺ pools, derived from the data in (A), showing the extent of overlap between different Ca²⁺ pools.

the pool that was sensitive to NAADP, which, if the case, may favour an ER location for NAADP-sensitive pools. To address the question of whether the pools from which the Ca²⁺ is released by the three agonists showed significant overlap, co-additions were performed and the total amount of Ca²⁺ release ascertained. Figure 1(A) shows that when any two agonists are co-added their effect is less than additive. The finding that cADPR- and $InsP_3$ induced Ca2+ release are non-additive effects is in accordance with a previous report [21], although in the present experiments the extent of overlap is significantly less. We found that Ca²⁺ release evoked by NAADP in combination with either cADPR or $InsP_3$ was similarly non-additive, although to a lesser extent, despite the previous apparent separation of NAADP-and cADPR/InsP₃-sensitive Ca²⁺ pools on Percoll gradients [12]. When all three agonists were co-added, the Ca2+ released was equivalent to the amount of Ca2+ released by a maximal

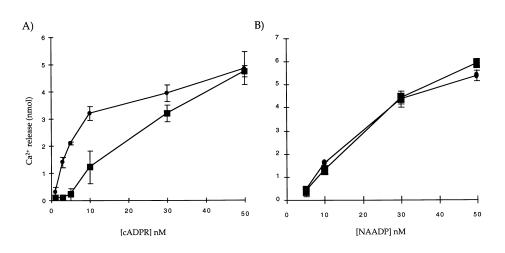
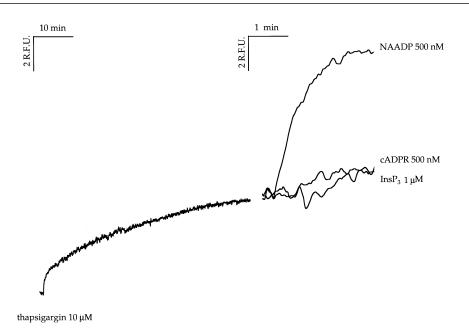


Figure 2 Effect of Sr^{2+} ions on Ca^{2+} release induced by sub-maximal concentrations of cADPR (A) or NAADP (B)

Homogenates were pretreated with Sr^{2+} (\odot ; 100 μ M), which itself caused no Ca^{2+} release, and cADPR (**A**) or NAADP (**B**) was added 30 s later and the resultant maximal Ca^{2+} release recorded. \blacksquare , Control. Concentrations of agonists higher than 50 nM were not potentiated or augmented by Sr^{2+} . Values are means \pm S.E.M. of 6–9 determinations.


concentration of the Ca²⁺ ionophore, ionomycin (10 μ M). A role for mitochondrial pools in Ca^{2+} mobilization by NAADP, $InsP_3$ or cADPR in sea-urchin homogenates can be ruled out, since high concentrations of mitochondrial inhibitors (oligomycin, antimycin, sodium azide), acting at different targets in the respiratory/electron-transport chain, are added during the preparation (see the Materials and methods section). Since Ca²⁺ release by NAADP, InsP₃ and cADPR together can account for all the releasable Ca2+ from intracellular non-mitochondrial Ca2+ stores in the sea-urchin egg, this may suggest that no further Ca2+-mobilizing agents remain to be discovered in the seaurchin egg. The effects of the three Ca2+-releasing agents on sea-urchin egg Ca²⁺ stores revealed that a total of just over half the non-mitochondrial Ca2+ (58.5%) could be independently released by a single agonist alone, while the remainder was sensitive to more than one agonist (Figure 1B), with no Ca^{2+} pool releasable by all three agonists (Figure 1B). Extrapolating these data to intact eggs, the results may in part explain the redundancy of cADPR and $InsP_3$ in the generation of fertilization Ca^{2+} -waves, since a substantial portion of stored Ca2+ is accessible to more than one agent. However, the largest pool is sensitive to NAADP alone (38.4%; Figure 1B).

It has been reported that cADPR modulates Ca2+-induced Ca²⁺ release (CICR) in sea urchin egg homogenates [6,22,23]. To determine whether this effect was specific to cADPR or was shared by the other pyridine nucleotide, NAADP, and whether Ca²⁺ release from one pool could trigger Ca²⁺ release from another, and thus account for the apparent non-additivity of the different Ca2+ release mechanisms, the effect of the bivalent cation strontium (Sr²⁺) on the different Ca²⁺-release mechanisms was studied. As previously reported, Sr²⁺ can act as a surrogate for Ca²⁺ in potentiating cADPR-induced Ca²⁺ release, with the advantage that it does not alter fluo-3 fluorescence and so any fluorescence changes observed are entirely due to stimulation of Ca²⁺ release (Figure 2A; see also [23]). If the NAADP-sensitive release is modulated by bivalent cations, Sr²⁺ should potentiate its action. Sr²⁺ did not significantly augment NAADP-induced Ca²⁺ release (Figure 2B). Furthermore, caffeine (1 mM), another agent that potentiates CICR via an Ry-sensitive mechanism, did not potentiate NAADP-induced Ca2+ release, although it enhanced cADPR-induced Ca2+ release (results not shown; Lee [23]). In addition, it has been reported that Mg^{2+} , an inhibitor of CICR, while blocking cADPR-induced Ca^{2+} release, does not alter that induced by NAADP [24]. Since it has been previously reported that Sr^{2+} ions and caffeine are also ineffective at potentiating $InsP_3$ -induced Ca^{2+} release [23], it appears that in sea urchin egg homogenates, CICR is a property only of the cADPR/Ry-sensitive Ca^{2+} release mechanism, and thus cannot account for the extensive overlap between the different Ca^{2+} stores present. It therefore appears that the overlap between the pools is not due to CICR but is most likely due to a small physical overlap.

To distinguish between the different Ca^{2+} pools, egg homogenates were incubated for 1 h with various agents that interfere with intracellular Ca^{2+} sequestration, and then challenged with maximal concentrations of $InsP_3$, cADPR or NAADP. As expected, when homogenates were pre-treated with ionomycin (10 μ M) none of the three agonists were able to release further Ca^{2+} . This could not be explained by dye saturation, since further addition of Ca^{2+} still produced a detectable increase in fluorescence (results not shown).

When homogenates were treated with a supra-maximal concentration of thapsigargin (10 μ M), a potent and selective inhibitor of the sarco(endo)plasmic reticulum Ca²⁺/Mg²⁺-ATPases [25,26], the Ca²⁺ level slowly rose to a plateau value after about 50 min, after which no resequestration was observed (Figure 3). Ca^{2+} release by cADPR and $InsP_3$, added after 1 h of incubation with thapsigargin (10 μ M), was significantly reduced to less than 20 % of release in the absence of thapsigargin (Figure 3 and Table 1). This result is in agreement with previous reports that both $InsP_3$ - and ryanodine-sensitive stores are sensitive to thapsigargin [27]. In contrast, release by NAADP was unaffected by pre-treatment with thapsigargin (Figure 3 and Table 1). Cyclopiazoic acid, another selective inhibitor of the sarco(endo)plasmic reticulum Ca2+/Mg2+-ATPase [28] had a similar effect in substantially reducing Ca2+ release by InsP3 and cADPR but not affecting Ca²⁺ release by NAADP (Table 1). These results provide strong evidence that the NAADP-induced Ca²⁺ release mechanism is located on stores that are distinct from the ER Ca^{2+} -release channels gated by $InsP_3$ and cADPR.

We therefore explored the effects of agents that inhibit Ca^{2+} sequestration mechanisms on membranes other than those of the ER. Although plasma membranes should not contribute to Ca^{2+} release in the sea-urchin homogenate, the possibility that they

Figure 3 Representative fluorimetric trace of Ca²⁺ release by NAADP, InsP₃ or cADPR after addition of 10 µM thapsigargin

Plateau fluorescence was observed after 50 min in the presence of thapsigargin. NAADP, $InsP_3$ or cADPR was added after 1 h to separate homogenate aliquots. Note that the time scale is different in the two parts of the Figure to accentuate the difference in kinetics of NAADP-, $InsP_3$ and cADPR-induced Ca²⁺ release after thapsigargin treatment. R.F.U. is relative fluorescence units representing the fluor-3 fluorescence changes observed.

Table 1 Effect of different Ca^{2+}-uptake inhibitors on maximal Ca^{2+} release by NAADP, cADPR and $Ins {\it P}_{3}$

Values are means \pm S.E.M. of 6–15 determinations in 2–5 separate experiments. Results are expressed as a percentage of maximal Ca²⁺ release (100%) obtained in the absence of Ca²⁺ uptake inhibitors.

Inhibitor	NAADP (500 nM)	cADPR (500 nM)	Ins <i>P</i> 3 (1 μM)
Thapsigargin (10 μ M)	93 <u>+</u> 7.6	22 <u>+</u> 2.2	21 ± 5.4
Cyclopiazoic acid (10 μ M)	93 <u>+</u> 4.0	40 <u>+</u> 6.5	33 <u>+</u> 2.1
Vanadate (10 mM)	102 ± 7.1	47 <u>+</u> 9.51	19 <u>+</u> 8.0
CCCP (10 µM)	87 <u>+</u> 4.0	12 <u>+</u> 6.2	46 <u>+</u> 8.9
Apyrase (10 units/ml)	48 ± 3.8	46±8.8	6.8±1.8

would reseal and therefore create artifactual microsomes was evaluated by using vanadate, an inhibitor of both the ER and plasma membrane Ca²⁺-pumps [29], since it has been reported that it is a more potent inhibitor of the plasma membrane type pump [30,31]. Pretreatment with sodium orthovanadate did not modify the Ca²⁺-release properties of NAADP and $InsP_3$ (Table 1). In contrast, Ca2+ release by cADPR was decreased by 50 % . Since InsP₃- and cADPR-sensitive Ca²⁺-release mechanisms appear to reside on the same stores they should share the same uptake mechanisms, thus the effect of vanadate is probably not due to specific action on a Ca²⁺ pump but to a direct effect of vanadate, or one of the species formed by this compound in solution [32], on the cADPR receptor. A precedence for this is that decavanadate, one of the species formed in solution, inhibits $InsP_3$ -induced Ca^{2+} release in endocrine cells [33] and $InsP_3$ binding to its receptor [34], and it is therefore possible that another form of oligovanadate, or decavanate itself, blocks the cADPR-gated channel in the sea urchin. However, vanadate

does not appear to act at the cADPR-binding site, since [³H]cADPR-binding to sea urchin egg microsomes was not significantly altered in the presence of 10 mM orthovanadate. Specific binding to egg microsomes obtained with this radioligand was 1008 ± 229 d.p.m./mg of protein and 1122 ± 347 d.p.m./mg of protein (results given \pm S.E.M.; n = 5, for both determinations) in the presence or absence of orthovanadate (10 mM) respectively. Therefore vanadate does not interfere with cADPR-binding to its receptor, but rather could act at the level of the Ca²⁺ channel itself.

The protonophore carbonyl cyanide *m*-chlorophenylhydrazone (CCCP), when used at high concentrations (100 μ M), completely abolished Ca2+ release by NAADP, cADPR and Ins P_3 (results not shown), while lower concentrations (10–50 μ M) selectively reduced cADPR- and $InsP_3$ -sensitive Ca^{2+} release (Table 1). Since, as mentioned above, all experiments were performed in the presence of mitochondrial inhibitors, it is unlikely that CCCP exerts its effects on agonist-induced Ca²⁺ release by uncoupling oxidative phosphorylation. An alternative explanation is that CCCP, at high concentrations, acts as a nonspecific ionophore, releasing Ca²⁺ from the ER. Since NAADPsensitive Ca²⁺-stores appear to be more resistant to CCCP, this further discriminates between the site of NAADP action and the sites sensitive to $InsP_3$ and cADPR. This may suggest differential accessibility of the NAADP-sensitive pool to CCCP, or a different membrane composition of this store that is less susceptible to protonophore insertion.

To test whether maintenance of the NAADP-sensitive Ca^{2+} pool was dependent on ATP, homogenates were incubated for 1 h with a high concentration of apyrase (10 units/ml), which possesses a high ATPase activity. During the incubation, Ca^{2+} levels rose steadily (results not shown), demonstrating that Ca^{2+} homoeostasis in the egg homogenate is a dynamic process which requires the presence of ATP. Ca^{2+} release by all three agonists was affected by apyrase, since the Ca^{2+} release by NAADP, cADPR and $InsP_3$ was dramatically reduced in its presence. NAADP-induced Ca^{2+} release was affected least, since only 50 % of the release was abolished (Table 1). This further exemplifies differences between NAADP-sensitive Ca^{2+} pools and those regulated by cADPR or $InsP_3$. These data may suggest: (1) that the Ca^{2+} sequestration mechanism of the NAADP-sensitive pool is less dependent on ATP than are the other pools; (2) that other sequestration mechanisms may also be operating here; or (3) that the pool is less labile, perhaps due to a lower background activity of a Ca^{2+} leak pathway.

To further investigate the localization of the NAADP-sensitive pool, we examined the effects of drugs known to interfere with Ca2+ storage by other organelles. Homogenates were preincubated with brefeldin A, a drug which selectively disassembles the Golgi complex [35], since it has been reported that preincubation with this drug is able to reduce Ca2+ storage in LLC-PK1 cells [35]. In the sea-urchin homogenate, brefeldin A did not significantly affect Ca²⁺ release by either of the three agonists tested (results not shown). Bafilomycin A1, an antibiotic which has been reported to block Ca2+/H+ exchange in vacuoles of Trypanosoma brucei, where the presence of an acidocalcisome has been suggested [36], was also ineffective in modifying release by NAADP, InsP₃ or cADPR (results not shown). These results suggest that the Golgi complex, or a putative acidocalcisome [36], are unlikely to be the sites of the Ca^{2+} -mobilizing actions of NAADP.

In conclusion, this study extends previous reports suggesting that the novel Ca^{2+} -releasing compound NAADP acts upon a different Ca^{2+} -release mechanism from those modulated by $InsP_3$ and cADPR. We suggest that NAADP not only activates a distinct Ca^{2+} -release mechanism, but that the site of this mechanism may be located on a distinct organelle with different characteristics from the ER both in terms of Ca^{2+} release and uptake.

REFERENCES

- 1 Galione, A. and White, A. (1994) Trends Cell Biol. 4, 431-436
- Furuichi, T., Kohda, K., Miyawaki, A. and Mikoshiba, K. (1994) Curr. Opin. Neurobiol. 4, 294–303
- 3 Clapper, D. L., Walseth, T. F., Dargie, P. J. and Lee, H. C. (1987) J. Biol. Chem. 262, 9561–9568
- 4 Clapper, D. L. and Lee, H. C. (1985) J. Biol. Chem. 260, 13947-13954

Received 8 February 1996/7 March 1996; accepted 13 March 1996

725

- 5 Lee, H. C., Walseth, T. F., Bratt, G. T., Hayes, R. N. and Clapper, D. L. (1989) J. Biol. Chem. 264, 1608–1615
- 6 Galione, A., Lee, H. C. and Busa, W. B. (1991) Science 253, 1143-1146
- 7 Berridge, M. J. (1993) Nature (London) **361**, 315–325
- 8 Lee, H. C., Galione, A. and Walseth, T. F. (1994) Vitamins and Hormones (San Diego) 48, 199–257
- 9 Lee, H. C., Aarhus, R. and Walseth, T. F. (1993) Science 261, 352-355
- 10 Galione, A., McDougall, A., Busa, W. B., Willmott, N., Gillot, I. and Whitaker, M. (1993) Science **261**, 348–352
- 11 Chini, E. N., Beers, K. W. and Dousa, T. P. (1995) J. Biol. Chem. 270, 3216-3223
- 12 Lee, H. C. and Aarhus, R. (1995) J. Biol. Chem. 270, 2152-2157
- 13 Perez-Terzic, C. M., Chini, E. N., Shen, S. S., Dousa, T. P. and Clapham, D. E. (1995) Biochem. J. **312**, 955–959
- 14 Chini, E. N. and Dousa, T. P. (1995) Biochem. Biophys. Res. Commun. 209, 167–174
- 15 Lee, H. C. and Aarhus, R. (1991) Cell. Regul. 2, 203–209
- 16 Howard, M., Grimaldi, J. C., Bazan, J. F., Lund, F. E., Santos-Argumedo, L., Parkhouse, R. M., Walseth, T. F. and Lee, H. C. (1993) Science 262, 1056–1059
- 17 Rusinko, N. and Lee, H. C. (1989) J. Biol. Chem. 264, 11725–11731
- 18 Malavasi, F., Funaro, A., Roggero, S., Horenstein, A., Calosso, L. and Mehta, K. (1994) Immunol. Today 15, 95–97
- 19 Aarhus, R., Graeff, R. M., Dickey, D. M., Walseth, T. F. and Lee, H. C. (1995) J. Biol. Chem. 270, 30327–30333
- 20 Pozzan, T., Rizzuto, R., Volpe, P. and Meldolesi, J. (1994) Physiol. Rev. 74, 595-636
- 21 Dargie, P. J., Agre, M. C. and Lee, H. C. (1990) Cell. Regul. 1, 279-290
- 22 Galione, A. (1992) Trends Pharmacol. Sci. 13, 304–306
- 23 Lee, H. C. (1993) J. Biol. Chem. 268, 293–299
- 24 Graeff, R. M., Podein, R. J., Aarhus, R. and Lee, H. C. (1995) Biochem. Biophys. Res. Commun. 206, 786–791
- 25 Inesi, G. and Sagara, Y. (1994) J. Membr. Biol. 141, 1-6
- 26 Inesi, G. and Sagara, Y. (1992) Arch. Biochem. Biophys. 298, 313–317
- 27 Poulsen, J. C., Caspersen, C., Mathiasen, D., East, J. M., Tunwell, R. E., Lai, F. A., Maeda, N., Mikoshiba, K. and Treiman, M. (1995) Biochem. J. **307**, 749–758
- 28 Seinder, N. W., Jona, I., Vegh, M. and Martonosi, A. (1989) J. Biol. Chem. 264, 17816–17823
- 29 Carafoli, E. (1991) Annu. Rev. Physiol. 53, 531-547
- 30 Rossi, J. P., Garrahan, P. J. and Rega, A. F. (1981) Biochim. Biophys. Acta 648, 145–150
- 31 Michelangeli, F., Di-Virgilio, F., Villa, A., Podini, P., Meldolesi, J. and Pozzan, T. (1991) Biochem. J. 275, 555–561
- 32 Pettersson, L., Hedman, B., Andersson, I. and Ngri, N. (1983) Chem. Scr. 22, 254–264
- 33 Fohr, K. J., Scott, J., Ahnert-Hilger, G. and Gratzl, M. (1989) Biochem. J. 262, 83–89
- 34 Strupish, J., Wojcikiewicz, R. J. H., Challis, R. A. J., Safrany, S. T., Willcocks, A. L., Potter, B. V. L. and Nahorski, S. R. (1991) Biochem. J. 277, 294
- 35 Zha, X., Chandra, S., Ridsdale, A. J. and Morrison, G. H. (1995) Am. J. Physiol. 268, C1133–C1140
- 36 Vercesi, A. E., Moreno, S. N. and Docampo, R. (1994) Biochem. J. 304, 227-233