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Men fear thought

as they fear nothing else on earth,
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Thought is subversive and revolutionary.
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INTRODUCTION

In this thesis we are concerned with the study of the nodal set of nontrivial solutions of
different types of elliptic equations strictly related to a problem of singularly perturbed systems
of nonlocal elliptic equations.

The manuscript is divided in three different parts, corresponding to the main problems treated
during the last years. The first one is devoted to the study of the nodal set of a segregated critical
configuration arising as singular limit of a system of elliptic nonlocal equations with strongly
competing interaction terms, while in the second one we consider the problem of s-harmonic
functions on cones when the parameter s approaches 1, wondering whether solutions of the
problem do converge to harmonic functions in the same cone or not.

Finally, in the last part we focus the attention on the nodal set of solutions of a class of degenerate-
singular elliptic equation trying to understand how the presence of degeneracy and singularity in
the coefficient affects the structure and the regularity of the solutions. Moreover, in this last part,
we find a remarkable link with the problem of the nodal set of s-harmonic functions.

Before moving on, we would like to stress that all the Chapters are not only centred on the
research topic of the nodal set of solutions of partial differential equations, but they represent
three key points in the analysis of patterns formation through spatial segregation in some models
of enhanced anomalous diffusion.

Several physical phenomena can be described by a certain number of densities, populations or
probabilities distributed in a domain and subject to laws of diffusion, reaction, and competitive
interaction. In the pioneering work [53] of Georgii Gause of the 1932, has been introduced the so
called “competitive exclusion principle” which states that whenever the competitive interaction is
the prevailing phenomenon, the densities can not coexist simultaneously and tend to segregate,
hence determining a partition of the domain itself.

As a model problem, let us start with the system of stationary equations

—Au; g = fip(uig) — Buip > gij(u;3)
A
Ui 3 > 0.

In particular, the cases g;;(t) = B;;t (Lotka-Volterra competitive interactions) and g;;(t) = 3;;t*
(focusing-defocusing Gross-Pitaevskii system) are of particular interest in the applications to
population dynamics [75] and theoretical physics [54, 61] respectively. For the case of standard
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diffusion, the regularity of solutions and the asymptotic analysis is fairly well understood, starting
from [11, 20, 31] for the Lotka-Volterra case and from [17, 26, 30, 33] for the Gross-Pitaevskii
system, in a series of recent papers [19, 32, 35, 72, 90], also in the parabolic case [36, 34, 35,
89]. Since, from a modeling point of view, the limiting configurations as 8 — +o0o describe an
approximation of highly competing systems, one crucial step of this analysis is the study of the
qualitative properties of the singular limit. Indeed, in the classic case has been shown that the
limit vector u = (uq, ..., u) has densities with mutually disjoint supports, i.e. the segregated
states u; satisfy

—Au; = f@(ul) in {ul > 0}

~ v ()
u; - u; =0 for j # 1.

The natural subjects of this analysis concern the optimal regularity of the limiting profiles, equilib-
rium principle at the arising interfaces and regularity of the free boundary itself. In the mentioned
papers, the authors in [30, 33] studied singularly perturbed systems relating them to some optimal
partition problem for nonlinear eigenvalues. For this latter problem, we remark that in [25]
the authors have proved the regularity of free interfaces of optimal partition problems for the
eigenvalues of the Laplacian operator with Dirichlet boundary conditions. Moreover, in [32, 29]
they proved Lipschitz regularity of the limiting solutions as well as the regularity of the free
boundaries in the case of two dimension.

On the other hand, in [71, 72] has been deeply studied that the limits of a system of Gross-
Pitaevskii equations relying the proof on elliptic estimates, blow-up technique, the monotonicity
formula by Almgren [1] and Alt-Caffarelli-Friedman type formula [2, 3]. We mention the book of
Caffarelli-Salsa [21] for a complete picture of the application of the monotonicity formulas for a
larger class of free boundaries problem and to [16] for the case of more general nonlinearities.
The common characteristic of all these problems is that in the singular limit, the components of
the solutions of these systems group in different blocks and the supports of the different blocks
become disjoint. In particular, these are specific cases of free boundary problems and they are
strictly connected to the problem of nodal and critical point sets of solution for PDEs, which is
itself a research topic that has attracted a great deal of attention in the last decades (see e.g. [15,
41, 56, 57, 58, 66]). The philosophy is that both in the case of energy minimizing solutions and
critical ones, the limiting segregated configurations satisfy a reflection law which represents the
only interaction between the different densities through the common free boundary. Thanks to
this reflection property, the free boundary is locally described as the nodal set of a scalar valued
solution of some PDE.

From this perspective, before to compare this results with their nonlocal counterpart, we would
like to give more attention to two recent papers [18, 81] which include all the previous cases and
summarize the most recent results achieved in this research topic. In the first one, the authors
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studied the local structure and the smoothness of singularities of the nodal set of a constrained
harmonic maps into a singular space, i.e. given () C R” a bounded smooth domain and

Y= {a: eR": F(z) = O} with F(z) = Zx?m?,
1#]

the problem is to find a minimizer v = (vy,...,v,) € Hg(Q, ) such that
/ |Vu|>dX = min {/ |Vv|?dX : u € H}(Q, ) such that / u?dX = 1} .
Q Q Q

We remark that this problem is strictly related to the one of optimal partition for the Dirichlet
eigenvalue and contains the class of limiting profile arising as 3 — co. In particular they proved
a stratification result for the singular set, as was done in the classic case [79], by a convexity
argument deeply based on the validity of Weiss type monotonicity formula [91]. Moreover, with
a convexity argument, they proved uniqueness of tangent maps as well as the local structures of
the singular sets.

Instead, in [81] the authors dealt with the nodal set of segregated critical configurations under a
weak reflection law, i.e. they considered the class of functions u € (H'(Q))" whose components
are all nonnegative and Lipschitz continuous in the interior of () and such that

—Aui = fz(uz) — My in D/(Q)
u; - u; =0 for j # 1,

where f; are a suitable collection of differentiable functions and p; € M(Q)) some nonnegative
Radon measures, each supported on the nodal set I'(u) = {z € O): u(z) = 0}. Moreover, they
impose the validity of a weak reflection principle based on some Pohozaev type identities, which
implies that the absolute value of the gradient is the same when we approach the regular set from
opposite sides. The importance of this class is due to the fact that it collects the singular limit
to competition-diffusion systems, both those possessing a variational structure and those with
Lotka-Volterra type interaction.

In the recent years has been given much attention on the case of anomalous diffusion, when
the Gaussian statistics of the classical Brownian motion is replaced by a different one, giving
rise to the so called “Lévy jumps”. Since such operators are of real interest both in population
dynamics (see [59]) and in relativistic quantum electrodynamics (see [64, 65]), we plan to extend
the previous analysis of the nodal set of segregated configuration to the nonlocal context.

Since the asymptotic analysis and the study of the nodal set in case of fractional Laplacians are
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Figure 1: Prototype of segregated configurations in IRT_T_Jrl =R7} x ]Rz,r

very challenging issue, the only known results are contained in [83, 84, 85, 88, 86]. In [83, 84, 86],
the authors considered the class of stationary systems of semilinear equations

(=A)uip = fip(uipg) — Buipg > zi 9ij(us)
ujg € H*(R™),

focusing on the case g;;(t) = S;;t (Lotka-Volterra competitive interactions [86]) and g;;(t) =
ﬁith (relativistic Gross-Pitaevskii system [83, 84]). In both cases, they provide some uniform
estimates in Holder spaces with respect to the parameter of competition 3. This results can be
obtained considering the local realisation of the fractional Laplacian due to the so called Caffarelli-
Silvestre extension popularized in [23], which characterize the fractional Laplacian in R" as
the Dirichlet-to-Neumann map for a variable v depending on one more space dimension. With
this formulation, the competition-diffusion problem in IR" translates into a degenerate-singular
elliptic equation in lR’ffl with a Neumann type condition on 81R’}r+1 = R"™, which allows to
introduce the fractional versions of the Alt-Caffarelli-Friedman and Almgren type monotonicity
formulas.

As a byproduct, up to subsequences, there is convergence of the above solutions to a limiting
profile, which components are segregated. Because of the genuinely nonlocal nature of the
problem, many difficulties and technicalities arise in the asymptotic analysis and in the study of
the nodal set. First of all, since these problems have been studied using the extension technique,
both in the Lotka-Volterra and in the variational case, the segregation occurs only in the n-
dimensional space and it is natural to expect free boundaries of codimension 2 (see Figure 1).
Secondly, the Gross-Pitaevskii competition and the Lotka-Volterra one exhibit deep differences
not only from the point of view of the optimal regularity exponent, but also with the one of the
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segregated limiting profiles, which is in deep contrast with the local case s = 1, as we previously
pointed out. More precisely, in the first case the limiting profiles satisfy a natural extension to the
fractional setting of (1), that is

(—A)Sui = fz(uz) in {UZ > O}
ui-u; =0 for j # i,

while in the second one

(—4)° (Uz — i Uj) = fi(wi) =22 fi(u;) in{u; >0}
u; - uj =0 for j # i.

Moreover, in the Gross-Pitaevskii case, where the structure of the nodal set is wilder than the
Lotka-Volterra one, the nonlocal nature of the problem affects the ideas and techniques developed
in [18, 81]. In the latter, the definition of the nonlocal operator (—A)S does not allow to relate the
structure of the free boundary to the nodal set of s-harmonic function since, roughly speaking,
the linear combination of s-harmonic functions with disjoint supports is no more s-harmonic
in their union. Secondly, the nonlocal counterpart of the formulation via constrained harmonic
maps into singular space introduced in [18], is intimately related to the problem of harmonic
maps with “partially free boundary”. Unfortunately, this strategy turn out to be inefficient since
the segregated condition on IR" translates into the problem of fractional harmonic maps into
singular space which implies the occurrence of a “singular partially free boundary”(see [69] for
an application in the context of fractional Ginzburg-Landau equations).

Last but not least, we remark that in [83, 84] the most challenging issue lies in the lack of the
validity of an exact Alt-Caffarelli-Friedman monotonicity formula, which reflects, at the spectral
level, the lack of convexity of the eigenvalues with respect to domain variations.

In Chapter 1 we tried to give a better picture of the limiting profiles in the context of varia-
tional competition. In this analysis, the main difficulties are the problem of codimension between
the segregation and the degenerate-singular elliptic equation introduced with the extension
technique and the lack of validity of a reflection principle that allows to compare our problem to
the one of the nodal set of some nonlocal elliptic equation. In order to overcame this problem,
we consider the case of planar segregated configurations, in order to exploit the topology of S*.
Nevertheless, as pointed out in [84], we need to take care of the presence of self-segregation for
s > 1/2. This phenomenon was also discussed in [81] for the local case with critical segregated
configurations, but the nonlocal attitude of our problem prevents to apply the same reduction
used for the classical Laplacian. We mention that in [35] the authors proved, when we consider
segregated profiles arising as limit of competition-diffusion systems, that the self-segregation can
be ruled out using an improvement of flatness.
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In our final result, we split the nodal set into its segregated and self-segregated part, proving a
local regularity result near the two strata. Moreover, in the first case, we show the existence of a
regular set R(u) relatively open in I'(u) which satisfy a vanishing Reifenberg flatness condition
and a singular set S(u) which consists in a locally finite collection of singular points.

All the result contained in Chapter 1 are obtained in collaboration with Susanna Terracini and
Alessandro Zilio.

As already mention, in Chapter 2, we consider the problem of s-harmonic function on cone,
i.e. given C an open cone in R” with vertex in 0 and s € (0, 1), we consider the problem of the
classification of nontrivial functions which are s-harmonic inside the cone and vanish identically
outside, that is

(=A)*us =0 in C,

ug > 0 in IR" (2)

us =0 in R"\C.

By [5], it is known that there exists a homogeneous, nonnegative and nontrivial solution of the

u () = [2[ 7w, (|) ,

where v, := 75(C) is a definite homogeneity degree (characteristic exponent of the cone C).

form

This problems is actually deeply connected to the one of Chapter 1, since it consists on the study
of such conic s-harmonic functions that appear as limiting blow-up profiles and play a major
role in many free boundary problems with fractional diffusions and in the study of the geometry
of nodal sets, also in the case of partition problems (see, e.g. [7, 14, 39, 51] and the blow-up
analysis of Chapter 1). Moreover, as we shall see later, they are strongly involved with the possible
extensions of the Alt-Caffarelli-Friedman monotonicity formula to the case of fractional diffusion.
The problem of homogeneous s-harmonic functions on cones has been deeply studied in [5, 8,
9, 67]. and since not many qualitative properties are known for the s-harmonic functions on
cones, we decided to focus our attention on the limiting behaviour as s ,”* 1 wondering whether
solutions of the problem do converge to a harmonic function in the same cone and, in case, which
are the suitable spaces for convergence in order to deduce. In such a way, we wanted to deduce
some qualitative properties of the s-harmonic function for s sufficiently near 1.

We therefore addressed the problem of the asymptotic behavior of the solutions of problem
(2) for s 1, obtaining a rather unexpected result: our analysis shows high sensitivity to the
opening solid angle w of the cone C, as evaluated by the value of the homogeneity degree
v(C,) = 71(C,) of the harmonic function on C":

1. in the case of “wide cones”, when v(C') < 2 (that is, § € (7w /4, ) for spherical caps), our
solutions do converge to the harmonic homogeneous function of the cone;
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2. instead, in the case of “narrow cones”, when v(C') > 2 (that is, § € (0, 7 /4] for spherical
caps), then limit of the homogeneity degree will be always two and the limiting profile will
be something different, though related through a correction term.

o /4 /2 3r/4 ™
Figure 2: Characteristic exponents of spherical caps of aperture 20 for s < 1 and s = 1.

This surprisedly result yields different nontrivial improvement in the context of segregated critical
configurations. First of all, as shown in [84, 83], estimates in Holder spaces can be obtained by
the use of fractional versions of the Alt-Caffarelli-Friedman and Almgren monotonicity formulas.
In particular, one could prove a deep connection with the optimal partition problem among the
class P* of 2-partitions on S™ 1

2

1
pACE.— 2 inf (A7 (w;i)),
= 5 o, 20 0)

where 75(\§ (w)) is equal to the characteristic exponent of the cone spanned by w C S~ L.

A classical result by Friedland and Hayman, [47], yields v4“f = 1 (case s = 1), and the minimal
value is achieved for two half spheres; this equality is the core of the proof of the classical Alt-
Caffarelli-Friedman monotonicity formula.

It [84] was also conjectured that v F = s for every s € (0, 1). Unfortunately, the exact value of

vACT s still unknown, but as a byproduct of our asymptotic analysis we have

lim v2F =1 .
s—1

In the end, we remark that this asymptotic analysis suggests that even the segregated configura-
tions are affected by this unexpect phenomenon since the trace of the blow-up limits introduced
in Chapter 1 belong to the class of s-harmonic functions on cones. We believe that this asymptotic

ix
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result will push our research in a new challenging direction. All these results are obtained in
collaboration with Susanna Terracini and Stefano Vita (see [82]).

Finally, in the last Chapter we conclude the thesis dealing with the nodal set of solutions of
degenerate-singular elliptic equations, which put an end to our glimpse into the study of segre-
gated configurations and free boundary problems ruled by anomalous diffusion.

In literature, the subject of nodal sets, or level sets in general, is an important research topic for
solutions of PDEs. While in some cases, this topics are themselves the primary concern, in many
others they provide an important tool in the study of qualitative properties of solutions of PDEs.
Initially, in [15, 58] the authors respectively proved an optimal bound on the Hausdorff dimension
of the singular set of solutions of linear and superlinear elliptic equations and, in the second work,
the first estimate on the (n — 1)-Hausdorff measure of the nodal set in a neighbourhood of a
point with vanishing order. We remark that in the second paper, the estimate is explicit and based
only on the existence of a finite order of vanishing, which suggests that the validity of a strong
unique continuation property is the starting point of this kind of analysis.

Recently in [41, 56, 57, 66] they proved several results on the structure of the singular set and
even some estimate on the (n — 2)-Hausdorff measure of the singular set.

In all these cases, as pointed out in [48, 49, 66], the class of solution of PDEs, of which we want
to study the nodal set, must satisfy a strong unique continuation principle, in order to ensure
the existence of a finite vanishing order. Many improvement have been done in this topic, using
on one side the Carleman estimates approach and on the other one the monotonicity approach
(see e.g. [48, 49]), deeply based on the existence of an Almgren type monotonicity formulas
and a geometrical reduction, first introduced in [4]. These last results prove the validity of the
strong unique continuation principle for solutions of divergence form elliptic equations of the
second order with Lipschitz leading coefficients and suitable lower order terms. In particular,
in [68] the author proved the optimality of the Lipschitz condition with an Holder continuous
counterexample.

At the same time, in their pioneering papers [44, 43] the authors introduced a general class
of degenerate operators L = div(A(X)V-) whose coefficient A(X) = (a;;(X)) are defined
starting from a symmetric matrix valued function such that

Mo(X) €1 < (A(X)E,6) < Aw(X) [¢*,  for some A, A > 0,

where w may either vanish, or be infinite, or both. In particular they focus the attention on the
case w € Ax-Muckenhoupt class, i.e.

. (g [ 000) (g fo o) <0
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While in the recent years these operators are quite commonly used since they are strictly related
to the local realisation of fractional powers of operators (see [23, 27, 80] for different application
in the extension of fractional operator), the authors initiated this research motivated by some
result on the boundary behaviour of harmonic functions in non-tangentially accessible domains
in [60].

Inspired by [43, Section 3], given X = (z,y) € R? x R, we consider the cases of w(X) =
ly|*, with a € (—1,1), and the associated degenerate-singular operator L, defined as L, =
div(|y|* V), with div and V respectively the divergence and the gradient operator in R™ 1,

Now, given X the “characteristic manifold” associated to our weight, as the set of points where
the coefficient either vanishes or blows up, we studied the properties of the nodal set I'(u) of
solutions to

—Lou=0 inB; Cc R"™,

focusing the attention on the restriction of the nodal set I'(u) on the characteristic manifold X.
Following the philosophy explained in the third paragraph of the Introduction, one motivation of
our analysis is the application of this results on a competition-diffusion system with variational
competition and degenerate-singular diffusion: one can imagine that the characteristic manifold
Y. is playing an active role in the diffusion phenomenon, indeed we expect that the diffusion
across the manifold ¥ is penalized or encouraged accordingly to the value of a € (—1,1).

On the other hand, the choice to study this class of 1-dimensional homogeneous weights, allows
to extend our analysis to the cases when . is an n-dimensional manifold properly embedded
in R™"! and the weights take the form w(X) = dist(X, X)® and even then to a wilder class of
monomial weights(see for example [12, 62]).

In Chapter 3 we discuss the local properties of L,-harmonic functions and their nodal set near
the characteristic manifold ¥.. In particular, using some Almgren and Weiss type monotonicity
formulas, we classify the possible blow-up limit and we prove the uniqueness of a nondegenerate
tangent map at every point of the nodal set.

The main feature of this class of degenerate-singular equations is that any L,-harmonic function
can be decomposed with respect to the direction orthogonal to the characteristic manifold X, in
the sense that given u an L,-harmonic function in H1%(By) there exist u? € H%(B;),u?™% €
H'27%(By) two unique functions symmetric with respect to X respectively L, and Ls_, har-
monic in B and locally smooths, such that

u(X) = ug(X) +ug” " (X)yly| ™" in By,

Therefore, local properties of the solutions, as their exponent of optimal regularity, their Taylor
expansion near nodal set and the structure of the nodal set itself, are fulled comprehended by
knowing the local behaviour of their even (symmetric with respect to orthogonal direction of X.)

xi
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and odd (antisymmetric with respect to orthogonal direction of X)) parts.

This specific “conduct” of the solutions is due to the presence of the characteristic manifold X,
where either the vanishing or the blowing up of the weights imposes a quantization of the possible
ways in which the nodal set can diffuse across 2.

With the previous decomposition in mind, we restrict our blow-up analysis to the symmetric case
and finally we introduce the new notion of “tangent field” ®*° of u at a nodal point Xy € X,
which takes care of the different behaviour of both the symmetric and antisymmetric part of w.
Moreover, we introduce the regular R () and the singular part S(u) as

R(u) = {X €T(u): [Vou(X)[ +

opu(X)[* # 0} L S(u) = T(u) \ R(u)

and we developed a blow-up analysis in order to fully understand the structure in R™*! and its
restriction on X.

Since our approach seems to be quite flexible, in the last part of Chapter 3 we present an ap-
plications of our theory in the context of nonlocal elliptic equations. In particular, inspired by
[23, 27, 80], we exploit the local realisation of the fractional Laplacian, and more generally of
fractional power of divergence form operator L with Lipschitz leading coefficient, in order to
study the structure and the regularity of the nodal set of (— L )*-harmonic functions, for s € (0, 1).
Moreover, this last Section allows to extend our analysis to fractional powers (—Ajs)® of the
Laplace-Beltrami operator on a Riemannian manifold M, also for the case of Lipschitz metric,
and moreover to conformal fractional Laplacian on conformally compact Einstein manifolds and
asymptotically hyperbolic manifold, thanks to the extension technique developed in [27] and the
asymptotic expansion of their geodesic boundary defining function.

As suggested in [86], we would like to stress that our analysis on the nodal set of s-harmonic
function allows to fully understand the limiting profile arising from the case of Lotka-Volterra
competition, showing a different behaviour with respect to the one presented in Chapter 1.
Finally, our results show some purely nonlocal feature on the possible local expansion of s-
harmonic map near their zero set and on the structure of the nodal set itself. On one side we prove
that first term of the Taylor expansion of an (—L)*-harmonic function is either an homogeneous
harmonic polynomial or any possible homogeneous polynomial. In particular, we exhibit the
stratification of the singular set S(u), showing the existence of an unexpected stratum S*(u)
contained in a (n — 1)-dimensional C'! manifolds, in deep contrast with the local case. In the end,
we prove what could be seen as the nonlocal counterpart of a conjecture that Lin proposed in
[66]. Following his strategy, we give an explicit estimate on the (n — 1)-Hausdorff measure of
the nodal set I'(u) in terms of the Almgren monotonicity formula previously introduced.

This Chapter is part of a bigger project in collaboration with Yannick Sire, Susanna Terracini and
Stefano Vita.
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Notations and general results. Throughout the manuscript, we will consider X = (z,y) €
R™*!, with 2 € R" and y € R. With this notation in mind, we define the subspace lRT'l =
R*"" ! N {y > 0} with OR""! = RY x {0}. Now, given D C R":"! we write

+
AIRy
o+tB*

Dt =Dn{y >0}
8tD =08Dn{y >0}

~ -

R 9D =0Dn{y=0}

In the picture, we use this notation with D = B,.(zo, 0) for the (n + 1)-dimensional ball centered
in Xy = (20,0) € R™ x {0}.

For any vector valued function u = (uy,...,u;) € R", we define u?> = 3 | u?, Vu :=
(Vui,...,Vuy) and d,u := (d,uq,...,0,up), for every v € R™FL. In particular, through
Chapter 1 we will deeply use the notation (-, -) for the scalar product in R".

Through the paper, for a € (—1, 1) we will always consider the weighted Sobolev spaces H'*( By )
deeply studied in [44, 43, 70] as the closure of C'*® (E) with respect the norm

lulfrapy = [ lyl*u®dX + [ |yl [Vu*dX.
Bl Bl

In this setting, we will always denote with L, = div(|y|* V) the divergence form operator
associated to the weight w(y) = |y|”. More precisely, following the idea in the mentioned [23],
for every u € H*(IR™), we consider v € HY*(R"™!) satisfying

div(Jy|]* Vo) =0 in R
v(z,0) =u(z) inR",

with a = 1—2s € (—1,1). In this setting, the nonlocal operator (—A)* translates into

Cn, 5) lim yl_Qsﬁyv(az, ).

(—A)°: H*(R") - H*(R"), u+— _7(7% e

Such an extension exists unique for a suitable class of functions wu, and it is given by the formula

v(z,y) = v(n, s)/ y*u(n) dn  where y(n,s)™! = /]R" ( !

R® (|x_n|2+y2)n/2+s |n|2+1)n/2+s

In the introduction of Chapter 2 and in Chapter 3, we will give more details on this content.

dn .
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NODAL SET OF SEGREGATED CRITICAL CONFIGURATIONS

1.1 INTRODUCTION

Several physical phenomena can be described by a certain number of densities or populations
distributed in a domain and subject to laws of diffusion, reaction, and competitive interaction,
starting from biological models for competing species in population dynamics [75] to the phase-
segregation phenomenon in Bose-Einstein condensation and theoretical physics [54, 61].

In the recent years has been given much attention on the fractional Laplacians, since such
operators are of real interest both in population dynamics (see [59]) and in relativistic quantum
electrodynamics (see [64, 65]). Inspired by this physical motivations, we plan to extend the known
results on the nodal set of segregated configuration to their nonlocal counterpart.

Hence, as pointed out in [83, 84], exploiting the local realization of the fractional Laplacian (—A)
as a Dirichlet-to-Neumann map (see for instance [23]), several asymptotic results can be proved

s

in the context of competition-diffusion problems with internal reactions, fractional diffusion and
strong variational competition.

Theorem 1.1.1 ([84]). Let 8 > 0, (f; 3) be a collection of continuous functions uniformly bounded
with respect to 3 on bounded sets and let (ug)z € HY*(B]; R") be a family of solutions ug =
(u1,8, ..., unp) of the problems
—Louip =0 in Bf @)
3
—0guip = fig(uig) — Buip Dt aijuiﬁ on 3°Bj.

Let us assume that
Huﬂ||Loo(Bl+) <M

for some constant M > 0 independent on [3. Then, there exists « = a(n, s) > 0, non depending on
B, such that for a € (0, a*)

HuB”CO,a(@) < C?
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with C' = C(M, ). Moreover, (ug)g is relatively compact in H"*(B},) N C**(B{,,), for
a € (0,a%).

The above result allows to prove its natural global counterpart, either on the whole of R” or
on domains with suitable boundary conditions.

Theorem 1.1.2 ([84]). Let 8 > 0, (fi 3)p be a collection of continuous functions uniformly bounded
with respect to 3 on bounded sets and let (ug)s € H*(R™;R") be a family of solutions ug =
(u1,8,...,unp) of the problems

(4)

(=A)uip = fip(uip) — Buip Xz aijui g in O
Ui, g = 0 in R" \ Q,

where () is a bounded domain of R™ with smooth boundary. Let us assume that
||uﬂHLoo(Q) <M

for some constant M > 0 independent on (3. Then, there exists «* = a*(n,s) > 0, non depending
on 3, such that for o € (0, *)
Hu/BHCo,a(]Rn) S C,

withC = C(M, ).
As a byproduct of these results, can be proved that, up to subsequences, we have convergence

of the above solutions to a limiting profile, which components are segregated on the boundary
9B, Actually, if furthermore f; 3 — f;, uniformly on compact sets, we can prove that this

u = (uq,...,up) limiting configuration satisfies
—Laui =0 in Bf_
U (a;ui + fl(uz)) =0 on 8OBl+
u; - uj =0 on "By, for every i # j

Since in the singular limit one finds a vector u € H'%(B;") of limiting profiles with mutually
disjoint supports, it is a natural question to understand the regularity and the structure of the
nodal set

T(u) = {X €8"Bf: u(X) = 0},

where all the components of u takes zero value. Hence, we focus our attention on the following
class of vector valued configurations with segregated supports. At this point we postpone the
discussion on the order o* € (0,1) of Hélder regularity of the segregated configurations for
several reasons that will be show later.
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Definition 1.1.3. Let s € (0,1),a = 1—2s € (—1,1) and o* € (0, 1), we define the class

G*(BY) as the set of vector valued function u = (uy, ..., us) € Hy%(Bj;R") whose compo-

nents are all non negative, continuous functions such that
(1) ue HY(KN B )NC% (K N By), for every compact set K C Bandevery a € (0,a*);

(2) u; - ujly—o= 0 for every i # jand u # 0 on By N X. Moreover, fori = 1,..., h it satisfies

{—Laui =0 in By ©
5

U; (aguz + fz(ul)) =0 ond'Bf
where f;: Rt — R are nonnegative C' functions such that f;(s) = O(s) for s — 0;

(3) for every Xo = (w9,0) € 0°B; and r € (0, dist(Xg, dB)), the following Pohozaev type

identity holds
(1- a—n)/ ly|* |Vu* dX +7~/ ly|* |Vul* do+
B (Xo) B (Xo)
h h
+2n/ F(u; dx—2fr/ Fi(u;)dz = 2r/ ly|* (8,u)?do
8OB¢(X0>; () Sp~ 1 (Xo) ; () 9+ B/ (Xo) o)

(6)
where F(s) = (Fi(s),...,Fp(s)) with F;(s) = [ fi(t) dt forevery i =1,...h.

First, in [83] the authors proved for the case s = 1/2, i.e. a = 0, that for solutions u €

G'/2(B™) the highest possible regularity correspond to the Holder exponent a* = 1/2. This
result is based on a blow-up analysis based on an Almgren type monotonicity formula and an
optimal Liouville type theorem for segregated configuration.
Instead, for the general case s € (0, 1) in [84] the authors proved, with a combination of a blow-up
analysis and a Liouville type theorem based on the validity of an Alt-Caffarelli-Friedman type
monotonicity formula, that the highest possible regularity of the limiting profile correspond to
the Holder exponent o = a*(n, s) such that

o vACE, 0<s<i,
min{v/F 25— 1}, I<s<1,

where vACTF

! corresponds to the exponent associated to the Alt-Caffarelli-Friedman formula (see

(83, 84]). The threshold s = 1/2 is due to the presence of the phenomenon of self-segregation
of nonlocal problem where s € (1/2,1), which consists in the existence of a ball B™ C IRKle
centered on the nodal set I'(u) and an index ¢ = 1, ..., h such that all the components u; of u



NODAL SET OF SEGREGATED CRITICAL CONFIGURATIONS

with j # i are identically zero on the ball make exception of u; which is not identically zero and
such that

BT \T(u) = {X € 3°B*: w;(X) > 0}.
More precisely, following the idea of the optimal Liouville exponent in [83], in Section 1.6 we
easily improve the previous results finding the following bound

. s, 0<s§%,
a:
2s—1, 2<s<l

In particular, this improvement emphasizes the deep relation between the different a-Holder
regularity of the solutions near the nodal set and the structure of the nodal set itself. Inspired
by this connection, we decompose the nodal set into its “segregated” and “self-segregated” part.
Finally, under the previous notations, we have

Segregated nodal set Self-Segregated nodal set
h h
T(u) = 9°Bf \ |J int ({u; > 0}) T(u) = |J o{w; > 0} \ int ({w; > 0})
i=1 i=1
« - Holder continuous, for a € (0, ) « - Holder continuous, for a € (0,25 — 1)

Since our main result does not concern the self-segregated portion of the nodal set, we remark
that through this Chapter we will always consider the class of segregated profiles G*( B™) locally
a-Hélder continuous for every a € (0, s). Just in Section , we will give more details in the context
of self-segregation.

Our approach is deeply based on the validity of an Almgren’s type monotonicity formula and on
a blow-up analysis of the critical configurations. More precisely, for every X, € °B; and r > 0
such that B, (Xo) C By, we define the functionals

1
E(Xop,u,r) = ——— ly|* \Vu]QdX — (u, F(z,u))dz |,
rn—1l+a B (Xo) 20 B+

ly|“ udo,
T ot B (Xo)

and, the Almgren’s monotonicity formula as

H(Xo, u, T) =

E(IL'(), u, T)
H(x[)v u, 7") .

Unfortunately, as we anticipate in the Introduction of the manuscript, in order to overcame some

N(zo,u,r) =

technical problem due to problem of codimension between the free boundary I'(u) and the space
where the degenerate-singular equation is satisfied, we restrict our attention on the planar case
n = 2. In this case, we are able to prove
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Proposition 1.1.4. Given s € (0,1),n = 2 andu € G*(By), then for Xy € T'(u) either
N(Xo,u,0") =5 or N(Xg,u,0")>s+6,

for some universal constant 6 > 0. Moreover, the possible values of the Almgren frequency formula
N(Xo,u,0") are a discrete set in [s,2s) with 2s as point of accumulation.

This result, combined with the convergence of the blow-up sequence both with respect to the
strong topologies in Hllo’g, C'IOO’? and to the Hausdorff distance dy;, allows to prove the main result
of this Chapter.

Theorem 1.1.5. Let s € (0,1),n = 2 and u € G*(B™). Then the nodal set I'(u) splits into its
regular and singular part defined by

R(u) = {Xp € T'(u): N(Xg,u,0") = s},
S(u) = {Xp € T'(u): N(Xo,u,0") > s},

where S(u) is a locally finite collection of points and R(u) a set relatively open in I'(u) which
satisfies a vanishing Reifenberg flatness condition.

This Chapter is organized as follows. In Section 1.2 we prove that elements in G*(B™)
satisfy an Almgren’s type monotonicity formula; by exploiting this fact, in Section 1.3 we prove
convergence of blow-up sequences as well as some closure properties of the class G*( B ). In
Section 1.4 we use the Federer’s Reduction Principle in order to prove some Hausdorff estimates
for the nodal sets and we introduce the notion of regular and singular set. Moreover, in Section
1.5 we prove that the regular part of the nodal set satisfies a vanishing Reifenberg condition.
Finally in Section 1.6 we present some useful remark and the relation between the class G*(B;")
and the singular limit of competition-diffusion problem with fractional diffusion and variational
competition.

Through this Chapter we will substitute the assumption on the dimension n = 2 only in the
“clean-up” type result, in order to stress which results hold for every dimensions.

1.2 ALMGREN’S TYPE MONOTONICITY FORMULA

The functions belonging to G*(B;") have a very rich structure, mainly thanks to the valid-
ity of the PohoZaev identities we are able to prove the validity of the Almgren’s monotonicity
formula. The most challenging feature of this Section is that the segregation occurs only in the
n-dimensional space, which it implies that, when dealing with Pohozaev type identities, integrals
on the “boundary of the boundary” appear.

Let us recall the definition of the class G*(B;") that we will use through the paper.
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Definition 1.2.1. Let a € (—1,1), we define the class G*(B;) as the set of vector valued

functionu = (uy,...,up) € Hﬁ)g(Bf ;IR") whose components are all non negative, continuous
functions such that

(1) ue€ HY(K N B ) NC%(K N By"), for every compact set K C B and every o € (0, s);
(2) wi-ujly—o= 0 for every i # j,u # 0 on X and for every i = 1,..., h it satisfies

{—Laui =0 in Bf_ ( )
7

U (85’11@ + fz(uz)) =0 ond'Bf
where f;: R™ — R are nonnegative C! functions such that f;(s) = O(s) for s — 0;

(3) for every Xo = (0,0) € 3°B; and r € (0, dist(X, dB)), the following Pohozaev type

identity holds
(1- a—n)/ ly|*|Vu* dX —f—r/ ly|*|Vul* do+
B; (Xo) 9B} (Xo)
h h
+2n/ Fi(u; dx—2r/ F(u; dx:2r/ y|” (9,u)%do
8B, (Xo) ; () Sﬁ*l(xon; () 6+B¢(Xo)‘ o)

®)
where F(s) = (F1(s),...,Fp(s)) with Fi(s) = [ fi(t) dt forevery i = 1,...,h.

Now, for every X € 9°B;" and r > 0 such that B;" (Xy) C B;, we define the functionals

1
E(Xo,u,r) = —— ly|*|Vu?dX — (u, F(z,u))dz
rr= e\ Sy (x0) 0B}

1
H(Xo,u,’l") = rnta /8+B+(XO) |y|au2da

and, whenever the average H (zo,u,r) # 0, the Almgren’s frequency formula by

E(z9,u,r)

N($0,H7T):W-

Since u € HY*(By;R") both r — E(Xg,u,r) and r + H(Xg,u,r) are locally absolutely
continuous functions for 7 € (0, dist(Xo,dB; )). As usual, integrating by parts on B;" (Xo)
every component u; and summing over ¢ = 1,..., h we get

1 a rd
E(Xo,u,r) = W/<9+B+ ly|* (u, Opu)do = §$H(Xo,uﬂ‘)- (9)
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The presence of internal reaction terms in the definition of the energy F(Xy, u, ) has to be dealt
with. For this reason, we introduce the following lemmata to provide a crucial estimate in order
to bound the Almgren quotient.

Leta € (—1,1) and u € HY*(B,;"(Xy)) for some Xy € 9B and r € (0,dist(Xo,0B;")).
Then, for every p € [2,p”], where p# = 2n/(n — 2s) there exists a constant C(n, p, s) such
that

1

2
1 P 1

L / P dz|” < C(npys) | —— / 191° |Vl dX + —— / y]® w?dX
™ JooB} (Xo) r B, (Xo) r 0+ B} (Xo)

(10)

This result is a direct consequence of the characterization of the class of trace of H%(B;")

in [70] and the critical Sobolev exponent for the trace embedding in the context of fractional
Sobolev-Slobodeckij spaces W*2(K), with s € (0,1) and K C R™.

Lemma 1.2.2. Let s € (0,1) andu € G*(By"). Then, for everyp € [2,p"] and Xy € 9° B there
exist constants C > 0,7 > 0 such that

»
1/ \u|pdm] < C(E(Xo,u,r)+ H(Xo,u,r)),
OBt (Xo)

Tn

foreveryr € (0,7).
Proof. Since u € L*°(Bi"), and each components of F = (fi,..., f,) is locally Lipschitz
03

continuous with f;(0) = 0, we obtain

1 C
—_— u,F(u))dz| < u?dz
s [, Eea < 2

1 1
< Cyrl—e / ¢\ Vul?dX + / “wdX|,
cor | Ao [ wemlaxe L[

r

where we used the trace inequality in the case p = 2. Finally, since a € (—1,1) we get

1 1
B(Xo,0,r) + H(Xo,ur) > (1-Cyr' ) [+ [owewatax s o | |y“u2dxl,
r B (Xo) r 9+ B (Xo)
(11)
the result follows by taking into account the trace inequality and choosing 7 > 0 sufficiently
small. O

Following the same idea in [83] for the case s = 1/2, let introduce for p € (2,p#] the

auxiliary function
2

1_
¥(Xo,u,7) = (i / |u|2dX>
" J80 B, (Xo)
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which is bounded for r € (0, dist(Xo, dB;")). Under this notations, for a € (—1,1) consider

Y(Xo,u,r) = C(n,s) /OT e (1 + % (ty(Xo, u,t)) dt,

which is well defined on r € (0,dist(Xo,dB;)) such that lim,_,o+ ¥(Xo,u,7) = 0, since
1 (Xo,u, ) is bounded for r sufficiently small. In order to simplify the notations, through the
Section we will just use the notation (1) and ¥ (r) for the auxiliary functions previously defined.

Lemma 1.2.3. Lets € (0,1) andu € G*(B{"). Then, for everyp € (2,p"] and Xo € 9° B there
exist constants C > 0,7 > 0 such that

1

Tnfl

/5”1 lul? do < C (E(Xo,u,7)+ H(Xo,u,7)) % (rop(r)),

foreveryr € (0,7).

Proof. The proof follows it is the same of [83, Lemma 9.5] make exception in our case is based on
the generalized Poincare inequality (10). Hence, a direct computation yields the identity

%(Tlﬁ(r)):ﬂ)(T) r<12>m—|—(ln<12>) ;

p / lul? do
OOB;t

and, since p < p* implies n(1 —2/p) < 1, we infer

2) /5"1 |ul? do

d
2 ) 2 vt (1-2 T e

p
Finally, recalling the definition of ¢ and using Lemma 1.2.2, we deduce

(B(Xo,u,r) + H(Xo,w,7) - (rb(r)) > O /S [uf? do.

- rn—l
]

We are now ready to prove the boundedness of the Almgren quotient, rather than its mono-
tonicity, considering a modified version of the quotient.
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Proposition 1.2.4. Givens € (0,1),u € G5(B{") and Q" CC By, there exist constants C, 7 > 0
such that, for every Xo € 0°Q" C 9°B; andr € (0,7) such that B," (X,) C By, we have that
H(Xo,u,r) > 0and N(Xg,u,r) > 0 foreveryr € (0,T). Moreover, the map

r s CYXowr) (N(X u,r) 4+ 1)
is monotone non decreasing on (0,7 ), which ensures the existence of limit

N(Xo,u,0") = lim N(Xo,u,r),

r—0t

which is finite and called the Almgren frequency of u at Xj.

Proof. Let Xy € I'(u) and 7 > 0 be such that 7 < dist(Q", B;") and Lemma 1.2.2 and Lemma
1.2.3 hold true. First, let us consider the following modified Almgren frequency formula
\T E<X07 u, T)

N(Xo,ll,’l“):m‘i‘l:N(Xo,u,T)‘i‘l. (12)

Under this notations, we get by Lemma 1.2.2

N E(X07 u, 7’)
E(X H(X >0— N(X =——-<+12>0
( Q,U,T)—f— ( (],Ll,?")_ ( 0,11,7") H(X(),’Ll,?")+ =Y
whenever H(Xy,u,r) # 0. By continuity of » — H(Xy, u,r) we can consider a reasonable
neighborhood of 7 where it does not vanish. Since u € L*°(Bj), and each components of
F = (f1,..., fn) is locally Lipschitz continuous with f;(0) = 0, there exists a positive constant
C > 0 such that

|(u,F(z,u))| < Cu?® and [F(z,u)| < Cu?

for every ¢ = 1, ..., h. Now, taking into account the PohoZaev identity (8), if we differentiate the
map r — E(Xy,u,r) we obtain

—1
4 p(Xgur) =" LTa / Iyl [Vul?dX — / (u, F(u))dz | +
d?“ rnJra B;*' aquj-

1 a 9 1
+ ita /3+B;r ly|* |Vul|”do — iTa o (u,F(u))do
2 a 2
= rn—l+a /a+B:' ly|* |0yul” do + R(zo,u,7),

9
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where the remainder can be estimated as

n—1+a 2n
R(Xg,u,r)| < 2 ~-T4 F(u))|d Fi(u;)|d
R(Xo,u, ) < "] /WBM)m (w))ldo+ 2 /WXO; ()] da+

2 1
_c Fi(u)|d F(u))|d
b [ DBt e [ RGlas

P (Xo) i=1
1

1
<C(n,s / wlde + —— / u?do
( >l7""+“ B} (Xo) e fspeix)

<C(n,s)r *(E(Xo,u,r) + H(Xo,u,r)) (1 + ;ﬂ(”/’(ﬂ))

where in the third inequality we used Lemma 1.2.2 and Lemma 1.2.3. Therefore, differentiating
the Almgren quotient and using the Cauchy-Schwarz inequality on " B;, we obtain

d d d
d ~ fE(Xo,u,T)—F*H(X(),u,’I") 7H(X01u>74)
—N(Xop,u,r) = dr dr _dr
dr ’ E(Xo, u,r) + H(Xo, 11,7“) H(X(), u,r)

2
2H (Xo,u, a a a
> [ o ar [yt - ( [ <u,aru>do) T
r o+ B;f o+ B o+ B;f

~ O s) N (o, u, ) (14 2 (r(r)))
>~ Cn,)N (Xo,ur)r (1 i(r¢(r))> |
which implies that the function
s eCYXowr) N (X0 u, )

is nondecreasing as far as H(Xo,u,r) # 0. Passing to the logarithmic derivative of r —
H(Xo,u,r) we infer from (9) that for r € (r1,72) we get

d 2
p log H(Xo,u,r) = ;N(XO, u,r). (13)

More precisely, we can choose r; = 0,79 = +00. On one hand, the above equation provides
that, if log H (X, u, R) > —oo then log H(Xo,u,r) > —oo for every r > R, so that ry =
dist(Xo, 0B;"). Now, on the other hand assume by contradiction that

ry = inf {r: H(Xo,u,r) > 0on (r,r2)} > 0.
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By the monotonicity result on the modified Almgren quotient (12), we have that
N(Xo,u,r) < Y (N(Xo,u,2r) +1) — 1,
for every r; < r < 2r;. Hence, integrating (13) between r and 2r, we get

H(Xg,u,2r) 91 \ 2(¢7F T (N (Xo,u,2r1)+1)—1)
and, since r — H(Xy, u, ) is continuous we deduce the absurd H (X, u,r;) > 0. =

The first Corollary of the Almgren monotonicty result is the following lower bound for the
Almgren frequency formula of u € G*(Bj) at X € T'(u).

Corollary 1.2.5. Givens € (0,1) andu € G*(By), for any X, € T'(u) we have
N(Xo,u,0") > s.

Proof. Let ¥ > 0 be such that Proposition 1.2.4 holds true and suppose by contradiction the
existence of 0 < ¥ < 7 and € > 0 such that

Y0 (N (X, u,7) +1) < 1+s—ec.

By the above bound, we obtain for every r € (0, 7) that

o) P +1)—1 _
%logH(Xo,u,r) <2 € (N(Xo;ua 7) +1) < 2(sr 5)'

Integrating this inequality between 7 and 7 yields

H(Xo,u,7) _ (?)2“—6)

H(Xo,u,r) r

which, together with the fact that u € C2*(B;) for every a € (0,s) and that u(X,) = 0,

loc
implies
Cr2s—e) < H(Xg,u,r) < Cr?®,

for every a € (0, s). Hence, the contradiction follows for 7 sufficiently small. O]

Corollary 1.2.6. For everys € (0,1) and u € G*(B;") the map from Xy — N(Xg,u,0") is
upper semi-continuous on 80Bfr .

11
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Proof. Fixed a vector valued function u € G*(B;"), let us take a sequence X — X in "B . By
Proposition 1.2.4 there exists a constant C' > 0 and 7 > 0 such that, for r € (0,7)

N(Xp,u,r) = e YY) (N (X, r) +1) — 1> e Y0 (N (X, u,07) +1) — 1.
By taking the limit superior in k and afterwards the limit as » — 0" we obtain

N(X,u,07) > limsup N(Xg,u,07).

k—o00

O]

Another simple consequence of the monotonicity result is the following comparison property
which, with r9 = 27 is the so called doubling property.

Proposition 1.2.7. Given s € (0,1),u € G*(B;{") and QT CC By, there exists C > 0 and
7 > 0 such that

o 2C
H(Xo,u,r9) < H(Xo,u,r1) <>
r1

for every Xog € 0°QF and 0 < r; <1y <T.

Proof. Fixedu € G*(B{") and Q" cC B, let C > 0 and 7 > 0 be such that Proposition 1.2.4
holds true for every X, € 9°Q)". Hence, given

C= sup N(Xo,u,F) < +4oo, (14)
Xo€eddO)t
we get
D log H(Xo,u,r) =2 N(Xo,u,7)
— 1o r) == r
dr g 0,4, r 0,4,
2 _ _
<= (=YY (N (X, u,7) +1) — 1)
,
2

<= ((6+ 1)eC¥@) _ 1),

for every 0 < r < 7. Now, by integrating the previous inequality between r; and r, for
0 <7y < ry <T,we obtain

H(Xo,u,r2) - <r2)20
H(XQ,U,T‘1> A\ ’

as we previously claimed. O
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1.3 COMPACTNESS OF THE BLOW-UP SEQUENCES

All techniques presented in this Chapter involve a local analysis of the nodal set of the solution,
which will be performed via a blow-up and blow-down procedure. In this Section we study the
behaviour of the class G*(B; ) under rescaling and translations with respect to point on ¥, in
order to apply the blow-up analysis of u € G*(Bj") near the nodal set T'(u).

Givenu € G*(B; ) let F = (F1,..., F},) be the vector valued associated to Definition 1.2.1. For
every p,t > 0 and Xo = (z0,0) € 9°B; we define the rescaled function
Xo+tX B — X
v(X) = M, for X € B)—?ot = %0, (15)
p bl
where obviously the previous equality holds for every component of the vector valued function.
It is easy to check that each components of v solves the system

—Lqv; =0 in B},
0t (16)
v; (85112- —f—gi(vi)) =0 ond By, 4
where
tlfa
gi(s) = P fi(ps). (17)

In this setting, if we define for any Zy € By, and r € (0,dist(Zo, dBY, ,))

1
E(Zo,v,r) = — / ] Vv dX — / (v, G(v))dz
pn—1l+a B (X0) 905+

1
H(Zy,v,r) = ly|* vido
T Jor By (xo)

and the following identities hold
1 1
E(Zo,v,r) = 5 E(Xo+tZy,u,tr) and H(Zo,v,r) = —H(Xo+tZy,u,tr) (18)
p p

and hence N (Zy,v,r) = N(Xo + tZo,u,tr).

Proposition 1.3.1. Let s € (0,1) and u € G*(B{") be fixed. Then, for every p,t > 0 and
Xo € 8"By, given v as in (1.3.1) we have v € G*(B; ,).

Proof. Fixed u € G*(B]), by the previous remarks, the last thing left to prove is the validity
of the Pohozaev identity (8) for v, in every ball B,(Z) C B)Jgo,t’ with Zp € 00B;§07t and

13
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r € (0, dist(Zp, 83}”)). We check itby using (18) and by performing the change of variables
(z,y) = (zo + tz, tw) in the expression of the derivative of the energy r — E(Zy, v, 7).
More precisely, from (17) let us define G = (G4, ..., G},) where

s tlfa ps tlfa
Gi9) = [ aurar = = [7 fir)ar = SR,

p
then
d d 1 t dE
%E(Zo,v, r)= %?E(Xo +tZy, v, tr) = EE(XO +tZo,u,tr)
2t / ly|*|0yu)? do + ! R(Xo +tZy,u,tr)
= >~ - — 0 0,u,
pQ(tT)n_1+a 8+B:T(X0+tZO) 102
2
= n—1+a/ ly|* 0,v]* do + R(Zo, v, 7),
r 9+ B (Zo)
where
t t h
—R(Xg+tZp,u,tr :/ n+a—1){u,F(u))—2n )Y F;(u;)dx+
e ( ) P Joos (xorize) ( ){u, F(u)) ; (wi)

h
t
+/ 2 Fj(u;) — (u,F(u))dz
p? ()" et Jsn=t(xgtez) ; (s) =, Fu))

1 h
= n+a—1){u, G(v)) —2n G;(v;)de+
. )0, G(¥)) ~ 23 Gilw)
1 h
—|—/ 2y Gi(vy) — (v,G(v))dzx
,,nn-i-a—l S,’f’l(Zo) ; ( ) ( ( ))
= R(Zy,v,r).

O]

Now, we turn our attention to the convergence of the blow-up sequences, using the previous
results about the rescaled functions. Given Q" CC B;" compactly supported in By and (Xj)x €
QT and r, N\, 0, let us consider the following normalized blow-up sequence

X —|—’I”kX)

u(X) = u o for X € BY (19)

XksTk
with
1

,Oi - ”u(Xk +’l°k:')”i2,a(a+BIr) = n+a/ |y|“u2 do = H(Xk,,u, Tk).
T O By, (Xk)
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Hence we have that HukHLZva(z%Bf) = 1 and, by Proposition 1.3.1, uy € QS(B§k7rk) since every
component solves

—Lau;p =0 in B
a 0t (20)
U k (@,W,k + fzk(uzk:>> =0 ond"By, .
where
t,
fir(s) = = fi(pxs). (21)
Pk

In order to simplify some notations, we introduce the following class of functions which corre-
sponds to the one introduced in [83, 84] in the context of entire segregated profiles.

Definition 1.3.2. For every s € (0,1) we define with G (R""!) the collection of u €
Hﬁ)’g (R"*1; R") with u = (uy,...,us) continuous, and such that

* Ui - uj|y—o= 0 for every i # j and u # 0 on . Moreover, for every i = 1,..., h it satisfies

{Lauz- —0 mR"! )

a J— .
uiayui =0 onZ;

. for every Xy = (20,0) € X and r > 0, the following Pohozaev type identity holds

l—a—n a a a
A [ wevepaxs [ vl =2 [ @w?de
r B (Xo) B} (Xo) ot B (Xo)

r

(23)

In the remaining part of the Section we will prove the following convergence result for blow-up
sequences, and present some of its main consequences. First, roughly speaking, we observe that
(B — X}) /7). approaches the whole R"™! as k — o0 since the distance dist( Xy, 0B;") >
dist(QY",0B;") > 0 for every k.

Theorem 1.3.3. Given s € (0,1) andu € G*(B{"), let us consider a sequence (X})r C 0°By
and (uy, )y the associated blow-up sequence defined in (19). Thus, there exists a vector valued function
U € G .(R™™Y) such that, up to a subsequence, u;, — U in Cloo’g (RY) for every o € (0, ) and
strongly in H>* (R™1). In particular, the blow-up limit @ = (a1, . . ., uy,) satisfies

L. =0 . ]Rn-i-l
{ alli mn + in D,(RnJrl), (24)

—m&gﬂi =0 onX

foreveryi=1,...,h.

15
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The proof will be presented in a series of lemmata, since some results follow directly from the
ideas and techniques presented in [83, 84].

Lemma 1.3.4. Lets € (0,1),u € G5(B{") and Q" CC By compactly supported in Bi". Then,
there exist C > 0 and # > 0 such that for every X € 0°Q" and 0 < r < 7 we have

1 a 2 1 / a2
—_— Vu|”dX + udX < C(E(Xg,u,r)+ H(Xp,u, .
yn—1l+a /B;r().'o) ’y| | | rnta o+ BY (Xo) ‘y| = ( ( 0 ’I“) ( 0 ’I”))

The proof of the previous result is a direct consequence of (11) in the proof of Lemma 1.2.2.
Lemma 1.3.5. Under the previous notations, for any given R > 0 we have

el oy <€ and el ) < €

where C' > 0 is a constant independent on k > 0.

Proof. Lets € (0,1) andu € G*(B;) be such that u = (uy, ..., up), withu; € Ho%(B). First,
in order to prove the uniform bound with respect to the H'%*-norm, by the Poincaré¢ inequality
(10) we consider the weighted Sobolev space H !¢ (BE) endowed with the norm

1 1
2 . a 2 a 2
= MU B

R

By definition of the blow-up sequence (uy ), given C' > 0 and 7 > 0 be constants such that
Proposition 1.2.4, Proposition 1.2.7 and Lemma 1.3.4 hold true. Then, up to taking k so large that
Tk, Te R < T, we get

1
/ ly|* wjdo = 2/ ly|* u®(Xy + i X)do
ot B}, Py Jo+B},
i Jorng, (x)
H(Xk7 u, R?"k)
H(Xk7 u7rk)

Rry, 20
< pnta [ 2 F
= h ( Tk )

— Rn—l—a
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where C' > 0 is defined in (14). Since we proved ||uk||%2,a(a+3§) < C(R)R"", passing to the
second term we conclude

a 1 a
| Vel s = Nou R [l uddo
Br 0

Br
< C(R)R" "N (X}, u, Rry,)
< C(R)R™ 'Y (N(Xp,u,7) + 1)
< é(R)Rn—l-i-a

where in the second inequality we used the monotonicity result of Proposition 1.2.4. Since by (14)
we obtain ||Vuk||ig7a( B) < C(R)R"" 71, it remains to prove the uniform bound with respect
to the L°°(B};)-norm.

Fixed R > 0,let v, € H 17“(3;) be the symmetric extension of uy with respect to X to the whole
B;. Since —8Zuk < 0on d°B7, the map Vi, is Lg-subharmonic, i.e. —L,vy < 0, by [88, Lemma
A.2] we get

1/2
1
sup u; = sup vi < C(n,s) (R”“*“/ ly|® v,%,dX)
Br

+ Br/2
BR/2 /

i 1/2
— o a .2
=2C(n,s) (Rn+1+a /B; ly ukdX)

H(0,uy, R) > 1/2

SQC(n,s)( e

where in the third inequality we used the monotonicity of 7 — H (0, ug,r) in (0, R). Finally, the
estimate follows directly from the one the L*%(9* B}, )-norm. O

So far we have proved the existence of a nontrivial function @ € Hllo’g (]R]_X TLRM N
Ly, (]Ri“) such that, up to a subsequence, we have u;; — u; weakly in Hllo’f (]R’}rﬂ), for
everyt =1,...,h.

Moreover, since by Definition 1.2.1 and (21) there exists M > 0 such that, for every i =1,...,h
and £ > 0

Hfi,k(ui,k))HLoo(aoB;) S Mrli_a Hui,kHLoo(aOB;) — 07 (25)

since a € (—1,1) and r, — 0". Hence we deduce

—L,u; =0 i anJrl
{ B BT DR, (26)

ﬂﬁgm =0 onX

17
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forevery i = 1,..., h. The next step is to prove that the convergence of u; — U is indeed strong

in H a(]R”'H) and CO (R for a € (0, 5).

loc loc

Lemma 1.3.6. Lets € (0,1) andu € G*(By") be fixed. Given (uy,)y a blow-up sequences of the
form (19), then for every R > 0, up to a subsequence, uj, — U strongly in H*(B},).

Proof. We already know, by compactness, the existence of a blow-up limit © &€ Hllo’g(IR”),
which solves (26) in D’ (IR} ). To prove the strong convergence in H, L JY(REHY) let us consider
¢ € C2°(Bap) a cut-off function such that 0 < ¢ < 1, ¢ = 1 in Bp. First, since it holds

—L, (u“g — ﬂl) =0 in D/(B;_R),
testing it with (u; ;, — U;)¢ and integrating by parts, we get
/+ 1 ¢ |V (ui — ) |* dX JF/+ Y| (wige — ) (V(uip — ), Vp)dX =
B B

B o (27)
:—/ o (uip —ag) Oy (ui g — U) d.
9B

Now, we can conclude just by observing that

[l = ) (7 (s~ ), V)X

2R

<O gk —mIILm(@) IIVuiijLg,a(B;R) -0,

/aOB+ cp(uzk.—uk)a (wig —ug) dz| < |lu;f — ul||Loo B+)/ao . cpa u; pda +
2R

+ [Jui g — Uz||Loo B} )/aOBt pOyudx
2R

+ C(R) ||luir — | — 0,

Lo Bt)

where in the right hand side of (27) we used [88, Lemma A.2], since —3y u; ) < 0and —0gui,k <0
on 2. O

Similarly, given vy, € H1 Y(R"*!) and v € Hl ¢(R™"1) respectively the symmetric exten-
sions of uy and T through X, one could relate the system (26) to a system of degenerate elliptic
equation with a boundary measure data on .. More precisely, for every k > 0 there exists a
collection of non negative Radon measures 1, € M(B;") fori = 1,..., h, each one supported

on Y B, such that
—Lavip = —pi inD’ (B;gwk) ;
for every i = 1,..., h. Then, following the strategy in [81, Lemma 3.7] and [81, Lemma 3.11], one

could obtain the same strong convergence in H ¢(R™*1) by using the uniform L> and H¢
estimates in BF, for every R > 0.



1.3 COMPACTNESS OF THE BLOW-UP SEQUENCES

Lemma 1.3.7. Under the previous notations, for every R > 0 there exists C' > 0, independent of k,
such that

X1) —u(X
[u(X1) u(a2>\ <c

| X1 — Xo

1,42 R

foreverya € (0,a*).

Proof. The proof follows essentially the ideas of the similar results in [83, 84]. Without loss of
generality, let R = 1 and suppose by contradiction that up to a subsequence

n(X1)wi e (X1) — n(X2)uix(X2)|
| X1 — Xa|®

L = max sup — 00

=1,...,h ey
Thel x XaeBf

where € C2°(By) is a smooth function such that

n(X) =1, 0<|X|<1/2
0<n(X)<1, 1/2<]X|<1
n(X) =0, [ X]=1.

Since we may assume that L, is achieved by the first component of uj, and a sequence of points
(X1 4, Xox) € B x By, given 7, = | X1, — Xox| we can prove, as k — oo, that
e T — 0

dist( X1, 0" B} dist( Xy, 0" B}
. ( 1,71fk ) = 00, ( 2,7Ifk 1)

Before to continue, let us fix the notations X1, = (21, y1.) and Xao = (22k, y2.x). Now,
since by Lemma 1.3.5 the norm [[ug|| oo B is uniformly bounded, we have

[kl oo (B7)

p < Ry (M(X1k) —n(Xok)), (28)

which immediately implies that 7, — 0. Now, since 7 is compactly supported in B; and it
vanishes on 91 B, for every X € Bf’ we have

n(X) < dist(X, 8" Bf")Lip(n),

where obviously Lip(7) denotes the Lipschitz constant of 7. Finally, the inequality (28) becomes

— OO

dist(X1 4,07 BY") N dist(X2x, 07 Bi") - Lyr?
Tk Tk ~ Lip(n) ||ul<:HLoo(Bl+)

19
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and the result follows by recalling that av < 1. As in [83, 84], our proof is based on two different
blow-up sequences, indeed for every ¢ = 1,.. ., h we introduce the auxiliary sequences

ui7k(Pk + TkX)
Lyry

(nui k) (P + riX)
Lkrg

w; k(X) = n(Pr) and  w;,(X) =

for X € Bltk - and P, = (pz,k, py,k) a suitable sequence of points that will be choose later. On
one hand the sequence (W}, ), has an uniform bound on the « - Holder seminorm, i.e.

|wlk(X1)—ka(X2>‘ ‘ <X1—Pk) o <X2—Pk)‘
> > < _ ] — E— =1
X1 — Xo|* =R T LR ’

sup

X1 #XgeB;k,rk

while on the other hand (wy,), € G%(Bj, . ), where each components satisfy

_LZka e O in B;k:rk (29)
Wi Jo (8;"]“1111-7;C +gi,k(wiyk)) =0 on 803}2“

with the new operators

Lk? _ d py,k “ ak __ . py7k: “
o =div{ly+==) V)], 09, = hrgl y+ == 0y,
TL y_)_gi];k Tk

and

25—«
r Lpr®
gi i (t) = n(Py) kLk fik <n(kP:) t) .

By Lemma 1.3.5 and (25) , we infer

25—«
-
sup | gik(wix)| = n(P) ’“L sup | fi e (i) — 0"
Bp_ . ko0Bf

as k — +o0.
The importance of these two sequences lies in the fact that they have asymptotically equivalent
behaviour. Namely, since

_ [kl oo (3,
[w; 1 (X) — Wi 1 (X)] STkl

11—«

< Lip(n)rk
=T .

1N(Pr +1:X) —1n(Pr)|
(30)

Mkl poo 5y [ X
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we get, for any compact K C R™*!, that

max  |wi(X) — W (X)] — 0. (31)
XeKnB}

Prork
Moreover, since wy,(0) = Wy (0) we note by (30) that
|wip (X) = wi g (0)] < Jwi g (X) = @i p (X)| 4 [0 4 (X) =05 1(0)]
-«

<C (Tk X + |X]O‘>
Ly,

and consequently, there exists C' = C(K) such that |wy (X ) — wi(0)| < C, for every X € K.
Let us prove that it is not restrictive to choose P € ¥ in the definitions of the sequences (W)
(W), showing that X7 j, X5 1, must converge to "B, i.e. there exists C' > 0 such that, for k
sufficiently large,
dist(Xy x, 0" By) + dist(Xa , 0°By")
Tk

<C.

The following proof follows directly the one of [84, Lemma 4.5]) but for the sake of complexness
we report some details. Arguing by contradiction, suppose that

dist(X1 1, 0°Bi") + dist(Xox, 0°B;")
Tk

—r X

and let us choose P, = X j, in the definition of wy,, W, so that B;Fk“ — Rl and p;irk — 0T,
Given W), = wy — wi(0) and Wy, = Wy, — W, (0), by construction Wy, is a sequence of
functions which share the same bound on the o - Holder seminorm and they are uniformly
bounded in every compact K C R""! since W(0) = 0. Thus, by the Ascoli-Arzel4 theorem,
there exists W € C'(K) which, up to a subsequence, is the uniform limit of Wy. By (??), we also
find that W, — W uniformly con compact sets.

In order to reach a contradiction we can prove that W is a nonconstant globally Hélder harmonic
function with « € (0, o*).

Since we already know that W € C%%(R"*!) it reamins to prove the harmonicity of the limit
function. To this purpose, let ¢ € C°(IR""1) be a compactly supported smooth function and
k be sufficiently large so that supp ¢ C Blﬁk ,forall k > k. Fixedi = 1,..., h, by testing the
first equation in (29) with ¢ we get

/ div ((1 + y”) w) w; xdX = 0.
Rn+1 py’k

Passing to the uniform limit and observing that

Tk

a
1—|—yr—k — 1 inC* (suppy),
Dy k

21
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we deduce that W is indeed harmonic. The contradiction follows by the classical Liouville
Theorem once we show that W is globally « - Holder continuous and not constant. Hence, since
P, = X i, then, up to a subsequence,

Xokg— P Xogp—Xip

= — Xy € 0B;.
Tk | X2k — X1k 2 !

Finally, by the equicontinuity and the uniform convergence, we conclude

— X1— Py — Xo — Py — —

’WI,k <1) -~ Wik (2>’ =1— ’W1(0) - Wl(X2)’ =1L
Tk Tk

At this point, the choice P, = (z14,0) for every k € IN guarantees the convergence of the

rescaled domains B;.Fk e IRTrl, while for any compact set K ¢ R™"!

max  |wg(X)—wg(X) — 0.

XeKnBp,

Hence, we are left with two possibilities:

« for any compact set K C X we have wy (X)) # 0 for every k > ky and X € K;

« there exists a sequence (X} ), C X such that wi(X) = 0, for every k € IN.

In the first case, if we define again W = wj — w;(0) and Wy = Wy — W, (0) we obtain
that the last sequence is uniformly bounded in C%“ and hence (W} ), converges uniformly on
compact set to a nonconstant globally « - Holder continuous L,-harmonic function W, with
OyW1 = 0and W; = 0 for i > 1, on X. Now, extending properly the vector W to the whole
R+, we find a contradiction with the Liouville theorem for entire L,-harmonic function, since
a <min{l,1 —a}.

Similarly, in the second case (wy )y itself does converge uniformly on compact sets to a noncon-
stant globally o - Holder continuous function w. In particular, by Lemma 1.3.6, we already know
that (wy, )y, itself converge strongly in Hﬁ)g (R1) and consequently w € G _(R*1). The con-
tradiction follows by the Liouville theorem for entire segregated configurations in Gy, . (lRﬁJrl ). O

We remark that the class of entire segregated profiles ngC(IR1H) has been introduced in
[84, 84], where the authors proved several properties and monotonicity formulas in order to
better understand the asymptotic behaviour of solutions of a competition-diffusion problem with
anomalous diffusion and variational competition.

The following is an improved version of a compactness result concerning entire segregated
profiles in [84, Proposition 4.7]. Moreover, this result provides a compactness criterion for suitable
blow-up sequences, and will be useful in the proof of the gap condition on the possible values of
the Almgren frequency formula.
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Proposition 1.3.8. Let (uz); C G& (R™1) N C%(BY), for some a € (0,v), such that
ol sy < M,

with M independent on k. Then, for every o/ € (0, ), there exists a constant C = C(M, ) such
that
AV < C.
Huk’HCo,a (B1+/2) =
Furthermore, the subset (uy,)y, is relatively compact in H"*(By ;) N 0’ (By)5), for every o €
(0, ).

Furthermore, in the context of entire segregated profiles, we can improve Proposition 1.2.4
and Corollary 1.2.6 with the following result.

Proposition 1.3.9. [84, Proposition 2.11] Let s € (0,1) and u € G _(R""1). Then, for every
Xo € X, the Almgren frequency function

1

S “Ivul?dXx
E(Xo,u,r) rrta=l /Bff(Xo) " [Vul

N0 = g un ~

a . .2
ly|* udo
e /a+Br(Xo>

well define on (0, +00) and monotone non decreasing and it satisfies

N (X
4 log H(Xop,u,r) =2 ( O,U’T)_ (32)
dr r

Moreover, if N(Xo,u,r) = k on an open interval, then N (X, u,r) = k for everyr, andu =
(u1,...,up) is k-homogeneous function in R™ 1,

The following is a generalization for s € (0, 1) of [83, Lemma 3.4], that will be crucial in the
study of the structure of the nodal set I'(u).

Corollary 1.3.10. Lets € (0,1) andu € G .(R"™!). Then
e X — N(X,u,0") is a non negative upper semi-continuous function on
e X — N(X,u,0") is constant, even infinite.

Proof. The first part of the Corollary follows because in the case of entire configurations N (X, u,0")
is defined, by monotonicity, as the infimum of continuous functions X — N (X, u,r). On the
other hand, following the reasoning in Lemma 3.7 in [83], given

k= lim N(0,u,r)>0

r—-+00
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let us prove the second assertion in the case k¥ < 400, otherwise it follows with minor changes.
By contradiction, suppose there exists X € X such that sup, N (Xo,u,r) = k — 2¢, for some
€ > 0. Let moreover ry > 0 be such that

N(0,u,rg) > k—e.

Up to taking R; and Rj sufficiently large, integrating by parts (32) we get from the previous
assumption

H(Xo,u,Ry) < H(Xo,u, )R and H(0,u, Ry) 2 H(0,u,1) R,

By definition

Ry
/ |y’a uw?dX = / pn+aH(XO’ u, p)d,o < CRle—a—i-Q(kas)
B}, (Xo)\BJ, (Xo) o

and similarly
f2 2(k
[ e = [ a0 p)dp = CRY T,
BEQ\B% 70
Now, if we let | Xo| = R1 — R2, we get

S/ \y!“ude—/ \ylau2dX+/ ly|* u*dX
Bj()(XO) B7+0 BEI(XO)\Bjo(XD)

<C+ O(RQ + ‘)(0‘)11-&-(1-‘:—2(k72z-:)7

CR;H-LI-FQ(]C*E) < / |y\au2dX
B, \Bry
2

and we find a contradiction for Ry sufficiently large. O

Up to now we have dealt with blow-up sequences with arbitrary moving centers (X} ) C X
the following result emphasizes how some particular choices of X}, provide additional informa-
tional on the blow-up limit and how it is correlated to the Almgren frequency formula. More
precisely, we have

Proposition 1.3.11. Let s € (0,1) andu € G*(By"). Fixed a blow-up sequence (uy,);, associated
to (Xg)r C T'(u), suppose that one of these situations occurs:

e Xi = Xo foreveryk € N,
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e Xi, € T(u) and Xj, — X € T'(u) with N(Xop,u,07) = s.

Then N(0,u,r) = N(Xo,u,0") =: « for every r > 0 and the blow-up limitu(r,0) = r*g(6),
where (1,0) are the generalized polar coordinates centered at the origin in R" 1.

Proof. First of all we prove that N (0,1, ) is constant for every r € (0, +00). Let us recall that
N(0,ug,r) = N(Xg,u,r,r) and that Theorem 1.3.3 yields that
N(0,a,r) = lim N(0,ug,r) = lim N (X, u,rgr).
k—o0

k—o0

If Xx = X, for some Xy € I'(u), then limy N(Xo,u,r,r) = N(Xo,u,0") by Proposition
1.2.4.

In the second case, i.e. X, € I'(u) and X, — X € I'(u) with N(Xo,u,0") = s, our purpose
is to prove limy N (Xp, u,rxr) = s.

Denoting with 7 > 0, C' > 0 the constants associated to Proposition 1.2.4, for any given ¢ > 0 let
us take 0 < 7 = 7(g) < 7 such that

s+ 1+ 2¢

N(Xo,u,r)gs—f—% for every 0 < r <7 such that eC‘YmS Srite

Furthermore there exists & > 0 such that
N(X,u,7) <s+e for X € "B (Xo).
Hence, using Proposition 1.2.4 we obtain
N(X,u,r) < (s+1+42)e) —1<s+2, for X € 8°B; (Xo)

and the claim follows by taking into account Corollary 1.2.5.
Finally, let us compute the derivative of  — N (0, W, ), in order to prove that U is a-homogeneous

in R, ie. for every X € R7™ #£0

An previously remarked in (9)

d _ 2 A 2 _
—H(0,u,r) = i /6+B;r ly|* (@, 0,1) da = ;E(O,u,r)

dr

which, together with Theorem 1.3.3, readily implies

2
[ wrwtdo [ jpatdo ([ oo
1d o+ Bf ot Bt o+ Bt

:—7N u =
0 2dr (0,11, 7) P22 020, u, )
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for 7 > 0. This equality yields the existence of C' = C(r) > 0 such that 9,u = C(r)u for > 0.
Using this fact we get

2/ ly|° (@, 0,) do
Ot B;"

2 2
20(r) = = g H(0,1,7) = 2N(0,1,7) = 2a
@2 dr r T
/ ly|“u* do
0t B;"
and thus C(r) = a/r and u(r,0) = r*g(f) as we claimed. O

Moreover, in the case of a blow-up sequences centered we can further improve the convergence
result in the following way

Corollary 1.3.12. Givens € (0,1) andu € G*(By"), let (uy)). be a blow-up sequence centered in
Xo € T(u) andT'(uy) the associated nodal sets. Then T'(uy) — I'(@) locally with respect to the
Hausdorff distance dy; in X, i.e. for every R > 0

dy (T(u) N "B, T(W) N° B ) — 0.
In the previous statement we denoted with

dy (A, B) := max { sup dist(a, B), sup dist(A, b)}, A,BCRY (33)
acA beB

the Hausdorff distance in IR”. Notice that dy;(A4, B) < e ifand only if A C N.(B) and B C
N, (A), where N,(-) is the closed e-neighborhood of a set, more precisely

N.(A) = {z e RY : dist(z, A) <&}, ACRY.

Proof of Corollary 1.3.12. It is not restrictive to consider the case R = 1. By the definition of
Hausdorff distance, the claimed result is equivalent to prove that for every € > 0 there exists
k > 0 such that for every k > k

I(u) N° By € N. (T(w) 0" By )
T(@)Nd°B € N. (T(w) N° By ) .

Supposing by contradiction that the first inclusion is not true, then there exist € > 0 and a
sequence X}, € I'(u;) N "By such that dist (X, (W) N9°By") > z. Moreover, up to a sub-
sequence, X; — X € ['(W) N 9By by the LS, convergence of u; — U. Since by Proposition

1.3.11 the nodal set T'(10) is a conical set, i.e. for every A > 0 and X € I'(1) we have AX € I'(u)
and 0 € I'(7), we deduce that dist(X, (1) N 9°B;") = 0, which provides the contradiction.
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Finally, we have to prove that for every £ > 0 there exists k£ > 0 such that
r@)no’BC N, (F(uk) N OOBIF) for every k > k.

We start by proving that given X € I'(W) € 0°B; and § > 0, the vector valued function u must
have a zero in 8B (X), for k sufficiently large. If not, by recalling that u; x, - u; x|y—0= 0 for
every i # j, we would have that there exists an index 0 < 7 < h such that
—Lauip =0 in B (X —
atuk g(+)7 ., uix > 00nd"Bf (X)
—8Zui,k = f,(uz,k) on d Bé (X)

and u;j; = 0in 8° By (X), for every j # i. Passing to the limit, this would imply that
—Lau; =0 in Bf (X -

B in B (X) @ > 0on 3°B} (X)

—08u; =0 on "B (X)

and u; = 0 on "B} (X) for every j # i. Since X € I'(u) it follows from the Hopf princi-
ple (see [43, 13]) that @ = 0in 9 Bi (X)), a contradiction with the fact the I'(@) has empty interior.

Now, arguing by contradiction, suppose the existence of & > 0 and (X}); € I'(w) N 9B
such that X;, — X € T'(u) N9°B; and dist( X}, [(ug) N3°B;) > &. Since I'(W) is a con-
ical set passing through the origin, let us take X € T'(u) N 8°B; such that ’X - Y‘ < g/4.
Furthermore, we can take, by using the result proved in the previous paragraph, a sequence
(Xk)k € T(ug) N9°B; such that ‘Yk — X’ < &/4 for sufficiently large k. The final contradic-
tion follows noticing that

4—7

diSt(Xk,r(uk) ﬂ&OBf) < ‘Xk —Yk’ < ‘Xk —Y‘ + ’Y—X‘ + ‘X —Yk‘ <
for sufficiently large k. O

Finally, we define the following class of blow-up which contains all the possible blow-up limit
of u centered in a fixed point Xy € u.

Definition 1.3.13. Given s € (0, 1) we define the set B*(IR"™!) of all possible blow-up limit of
u € G%(By") centered in X € I'(u) as the collection of homogenous entire segregated profile in

glsOC (]Rn+l )’
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In particular, given u € B*(IR""!) a k-homogenous entire segregated profile, then there
exists g € H%%(S7) such that

wX)=|X|"g (é,) : (34)

We remark that for a € (—1,1), given (r, ) the generalized spherical coordinates in R"** with

r > 0and @ € S, the weighted Sobolev space H%(S™) is defined as the closure of C°(S7)
with respect to the norm

I 0y = [ Isin6u|* g?do+ | [sin6,|*|Vsngl® do,
+ Si Sﬁ

where 6,, is the spherical coordinate associated to the y-direction and V g» the tangential gradient
on S". Moreover, under the previous notations, we can find a spherical decomposition of the
L,-operator. More precisely,

1 1 n
Lou = sina’(en)—n O (r" T 0,u) + — LaS U (35)
r r

where y = 7sin(6,,) and the Laplace-Beltrami type operator is defined as
L u = divgn (sin®(0,,) Vgnu), (36)

with divgn the tangential divergence on S™. Inspired by the previous spherical decomposition,
we can find a simple characterization of the blow-up limit u € B*(IR"*!) in term of its trace on
the upper sphere S7.

Proposition 1.3.14. Let s € (0,1) andu € B*(R"*!) be a y-homogeneous blow-up limit, i.e.
such that N(0,u,1) = . Then, there existsg = (g1,...,9n) € H"(S) such that, for every
i=1,...,h weget

—L5"g; = A(7)gisin®(6,) in ST

95 9i=10 onw; C S"1 (37)

9i =10 on S 1\ w;,

where \(v) = y(y +n+a—1), (w;); € S"* x {0} and
95 9(0',0) = lim | sin®(0,,)0, g(#',6,) for € "L,

0,—0
Proof. Let us consider initially a general case: let u € Hllo’g(]R”H) be a y-homogeneous L,-
harmonic function in lR’frl such that udju = 0 on X. By the homogeneity of u, there exists
w C S"~! such that

C’w:{XGZ:)X(‘Ew}:{XGZzazu(X):O}, (38)
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where C,, is the cone in X spanned by w with vertex at zero. Since w is y-homogeneous, i.e.

u(r,0) = r7g(0) for r € (0,4+00) and § € S™ !, we get by (35) and (36) that
~LY" g =X (7)gsin®(#,) on ST,
with A\j(7) = v(y +n+ a— 1), and similarly by (38) we get
95.9(0',0) =0 onw.

Hence, with a slight abuse of notations, for every open region w C S™ !, we can define the
eigenvalue

Y172 |Vnul* do )
s we () {0) -
/ 1-2s 2 "u=0in S" M\ w
Y u“do
S

n
+

A} (w) = inf

and similarly the characteristic exponent of the cone C,, spanned by w as the quantity

75 (Cw) = 15(Af (W) ,

where the function 74(t) is defined by

%(t):\l<n—225> +t_n—225'

Now, given u € B*(R"™!) let g € H*(S7;R") be its spherical part defined by (34). Since all

the components u; € Hllog (R:1) share the same homogeneity degree ~y, we directly get that

the eigenvalue \(g;) is the same for every component of g. O

Using the variational formulation of the eigenvalue problem associated to \j (w) defined in
(39), for every w C S™"~! we easily get that

0= (8"71) < A(w) < A(0) = 2s

and more generally, for w; C wo it holds AL (ws) < AL(w;) (see [85, 82] for further properties of
this eigenvalue problem). We will exhibit several connection between this two formulations of
blow-up limits in Chapter 2 finding a different connection with their interpretation on the traces
space as s-harmonic function on cones. However, by the previous characterization, at this point
we can improve the bound on the Almgren frequency for the segregated profile.
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Corollary 1.3.15. Let s € (0,1) andu € G*(B;"). Then, for every X, € T'(u) we get
N(Xg,u,0") < 2s.

Proof. By the definition of the class of segregated profiles, given u € G*(B;") we have u # 0
on X. Given Xy € uand u € Gi (R""!) a blow-up limit of u at Xy, we get by the uniform
convergence that @ # 0 on X. By the characterization of Proposition 1.3.14 we get that necessary
w # () or, in other words, \}(w) < 2s. The previous inequality implies

N(Xo,u,0") = N(0,@,1) = A\ (w) < 25,
as we claimed. O

Actually, we remark that combining the previous bound and the monotonicity result Proposi-
tion 1.2.4 we can prove that a segregated function in u € G*(Bj") has identically zero trace on
By NXif and only if N (X, u,0") = 25 on some point X € I'(u).

1.4 HAUSDORFF DIMENSION ESTIMATES FOR REGULAR AND SINGULAR SETS

In the same spirit of [19, 18, 36, 81] we prove that there exists a gap in the possible values
of the Almgren frequency formula N (X, u,0") for X, € I'(u). We remark that as in [81], our
analysis is not restricted to solutions of minimal energy as in [19].

Proposition 1.4.1. Given s € (0,1),n =2 andu € G*(By), then for Xy € T'(u) either
N(Xp,u,0") =s or N(Xgp,u,07)>s+4,
for some universal constant 6 > 0.

Proof. By contradiction, given s € (0,1) and u € G*(B;") suppose there exist two sequences
er \ 0" and (X3)x C T'(u) N°Q7F, for some QF CC By, such that

N(Xg,u,0%) < s+¢p.

Moreover, it is not restrictive to suppose that ¢, < s/2, in order to always have s + ¢ < 2s.
Since I'(u) has empty interior in R"*!, up to a subsequence there exists Xy € I'(u) such that
X — Xp and, by Corollary 1.2.5 and Corollary 1.2.6 we get N (Xp,u,0") = s.

Therefore, let us construct a sequence of blow-up limit (Tx)x € Gf .(R""") in order to translate
the absurd hypothesis in the context of entire segregated configurations in G{ _(R""!). Hence,

for every k € IN let
u( Xy +r X
() = LS
(2
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be the blow-up sequence centered in X}, associated to r; \, 0" and p? = H(Xy,u,r;). By
Theorem 1.3.3, there exists a family of blow-up limits (;)x € G (R""!) of homogenous
function in R"*! such that ux, ; — Uy and

/ ‘y|aﬁ%da =1 and N(O,ﬁlmr) =s+ €k for every r > 07 (40)
otBf

namely Ty, is (s + £;)-homogeneous in R" ™, i.e.
X
() = X" g ()
RY

with g, € H%%(S7 ). Following the same idea in the proof of Lemma 1.3.5, since for every R > 0
we have —8Zﬁk < 0 on "B}, if we consider ¥, € H 1’“(B]'E) the symmetric extension of uy,
with respect to X to the whole B; we get

—L,v, <0 inR"M.

Hence, by [88, Lemma A.2] it follows for every R > 0

1/2
1
sup Uy = sup v < C(n,s) <Rn+1+a/ ’y‘au%dX>
Bpgr

Bt Bry2

R/2
1 1/2
=2 — ‘apdX
C(n,s) (Rn+1+a /thc [y|" wid )

1/2
1
=9 s+e a—Qd
C(n,s)R <n+2+25k /@+Bl+ vl @ U) )

where in the last equality we used the (s + ¢ )-homogeneity of Ty.. By (40) it follows that for every
R > 0 the sequence (1) C Gi,.(R*1) N CLY (R with o € (0, o*) is uniformly bounded

loc

in L°°(B},), for every R > 0, which implies by Theorem 1.3.8 the existence of w € G .(R"*1).

Moreover, by the strong convergence in H, llo’g (R™*1) it follows that N (0,1, r) = s for every

r > 0, i.e. up to a rotation U = (@, Uz, 0,...,0) where
S S
_ Vi +y? - m _ VEl Y+
wey) =0 [V and mey) =G (Y] @
for some positive constant C'y > 0 such that [[a[| ;2.0 5+ Bf) = 1. Up to relabeling the components
of Uy, let us suppose that the components %; ;. — 0 strongly in H, ﬁ)’g N CIOO’? foreveryi = 2,...,h,
while (@ j, U2 ;) — (U1, U2) strongly in H, ﬁ)g N Cloo’f‘. By (41), since

{u1 =0} NE ={X = (21, 22,y) € X: 21 >0}

_ (42)
{ug =0} NE ={X = (21, 22,y) € X: 21 <0}
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for every k > 0 there exist nonempty wi, C {X € X: 21 > 0} such that wy is a connected
component in S"~! of {g;, > 0} . By contradiction, let us suppose there exists k > 0 such
that g,z = O on S"1N{X € Z: 27 > 0}. Then, necessary we must have 9oz = Oon
S 1N {X € Z: z1 < 0}, otherwise by the monotonicity of the eigenvalue (37) we would obtain
A(917) > A(gy7) in contradiction with the definition of @ € B* (R™*1). Hence, since uy and
U satisfy the same boundary condition, by uniqueness their homogeneities must be equal, in
contradiction with the fact that Ty is (s + £3;)-homogeneous in R™"!. The same contradiction
follows from the sequence ( By ).

Now, since we are working in dimension n = 2, there exist two sequences (Py)x, (Qk)r C
S'N{X € ¥: 21 > 0} such that wy = (P, Q) can be seen as an arc of S! between the
endpoints Py, and Q. Since by compactness of S! there exist, up to a subsequence, P,Q €
S'N{X € Z: 21 > 0} respectively limit of (P;);, and (Qy ), let us consider separately the
cases |P;, — Q| — 0and P # Q.

If P # Q,letw = (P, Q) be the limit of the sequence (wy ) and C,, be the cone in ¥ spanned
by w, i.e.

Cw:{XGZ:é’ewcsl}.

One one hand, by definition of wy, since u1 ; and usy . are segregated on X, we get passing
U 1, = 0 on wy, and then, passing to the limit for K — oo, w2 = 0 on w. On the other hand, by the

i -convergence of the sequence (), we get from (42) that H§1 k HL ( — 0 which implies,
k) oo w

k)

passing to its homogeneous extension, that u; = 0 on every compact set K C C,,, and similarly
U = 0 on every compact set in C,, in contradiction with (41).

Hence in the other case, given r, = |P, — Q| Y\ 0 and P, € X let introduce the blow-up
sequence (W), C G5 .(R"™1) centered in (Py)x € I'(ug) N.S™! and associated to 7, > 0, i.e.

u (P X
Wk(X) = M with Pk = \/H(Pk,ﬁkﬂ'k),

Pk

such that HWkHLZa(WBf) = 1. By construction, for every k € IN we have

Qk—Pk>,

wk(O):O:wk( -

(43)

where (Qr — Pi.)/r) — v € S~ x {0} by compactness in S"~*. Now, following the same ideas
in the proof of Lemma 1.3.5, given C' > 0 and 7 > 0 be such that Proposition 1.2.4, Proposition
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1.2.7 and Lemma 1.3.4 hold true then, up to taking k so large that r, R < 7, we get for every
R > 0 that

1
a—2 _ a—2
/ N ‘y| Wkda - 2,n+ta n ’y‘ ukda
"By PiTk 8+BRT‘I€ (Py)

H(Pk,ﬁk, R’I”k)
H(Py,uy,ry)

R'I"k 2C
< Rn+a VR
N ( Tk ) 7

— Rn+a

which implies that

H(0,%p, R) > 172
n+a+1

T
BR/2

1/2
1
sup Wy < 2C(n, s) (R"“*“ /B+ ]y|awidX> <2C(n,s) <
R

is uniformly bounded for £k > 0. By Proposition 1.3.8, there exists a blow-up limit W &

HEY (RN O (R™1) forevery a € (0, s) such that w € G¢ _(R™!) with 10l 200 1) =
1.

Since the blow-up sequence (W}, )y is constructed starting from a family of homogeneous entire
segregated profiles in B3 (IR"*1), we can prove that W is constant along the direction parallel

to P € S"! and that its restriction on the orthogonal half plane belongs to G .(R").
Hence, let X € R"*! and A € R be fixed. By the homogeneity of T, we obtain

u (P X + AP, u((1 AP X
Wk(X+)\Pk)=uk( k£ re(X +AP)) :uk(( + riA) P + i X)

Pk Pk

(14 7)o ( Tk )
=" P X
Pk e (s 1+ Tk)\

— Tk
= (14 rpA)> X
( + Tk ) Wk (1 + A )

and then

|Wk(X+)\Pk)—Wk(X)| < ’(1+Tk/\)s+5kwk( "k X) —Wk( "k X)’—l—

14+ rpA 147
_ Tk _
X |- X
+’Wk<1+ﬂ%A ) Wil ﬁ
< sten _ " %) e -
—O(HTM) 1‘+’1+m ! ’X)”W’“‘Coﬂawr)
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with a € (0, s). Thus, as 7 N\, 0, by the uniform convergence (W) on every compact set, we
get
[W(X +AP)—wW(X)| =0 forevery \ € R,

where P = limy P, € S x {0}.

Now, given the section of W with respect to the direction AP, with A € R, we observe that the
equations and the segregation conditions are trivially satisfied and the PohoZaev identities on
every ball B, (Xy) on R"} follow immediately by the ones for W on the corresponding ball in
]R:LrJrl having B, (X)) as n-dimensional section. Hence, with slight abuse of notation we still
denote the n-dimensional section by W € G _(IR™). By Corollary 1.3.10, since for every k > 0
and ¢t € (0, +00)

N(Pk’ﬁ/mt) < N(Pk’ﬁka +OO)
= N(0,uy, +00) = s+ &
we get from Proposition 1.2.4 and Proposition 1.3.9 that for every R > 0

N(0,w,R) = lim N(0,wWg, R) = lim N (P, Uk, rtR) < s+ ck. (44)
r—0 r—0
Finally, we reach the contradiction applying a blow-down analysis on the limit function W &
G; .(R™). With a slight abuse of notations, for 7, — 400, consider the blow-down sequence
(Vk )k centered in the origin defined as

- w(reX)
vi(X) = A for X € B;km
with
2 — 2 1 a—2 —
Pk ZZH‘V(Tk')HL2a(a+B;):: nta y|* W do = H(0,W,ry).
Tk O+ Bl

Fixed R > 1, since HWHLQ,Q(mBD = 1, we get from integrating (32) between 1 and R that

H(0,w, R) < R*5Fek),

and consequently, up to relabeling the constant, we get

sup vy < 2C(n,s)
By

_ 1/2
<H<07Vk,2R)> / < C(n S)RS+6k
n+a+1 - ’ ’

Since (V) C Gi.(R™1), by the previous uniform bound in L{° (R™!) there exists a blow-
down limit v € G¢ _(IR"*') such that v, — ¥ strongly in H*(R"!) and uniformly in
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CY (R, for o € (0, s).

loc
Moreover, the uniform convergence and Proposition 1.3.9 yield that

N(0,v,R) = klin;o N(0,vk, R) = kl;n;o N(0,w,r,R) = N(0,w, +0c0),

for every R > 0, which implies by Proposition 1.3.9 that v € %5°(IR"*!) with degree homogeneity
(V) < s+ &. By the gap condition in the lower dimensional case R, we get that necessary
v(¥) = s, which it implies, going back to the function W, that

s < N(0,w,r) < N(0,W, +o0) = s.

In other words, by the monotonicity result Proposition 1.3.9, the Almgren monotonicity formula

satisfies N (0, W, r) = s for every r > 0, i.e. up to a rotation W = (w1, w2, 0, ...,0) where
S S
_ Vol ty? - o _ Vi +yr o
() = O [ Y ) and mey) =6 [ ] )
for some positive constant Cy > 0 such that [|W][ 2.5+ By) = 1. The contradiction follows
immediately by (43). O

We remark that in general, the latter statement is equivalent to the following one:
for every a - homogeneous @ € B°(IR"™!), either & = s or a > 5+ ).,

for some universal constant d,, > 0. Moreover, we can actually generalize the previous result by
proving that the possible values of the Almgren frequency formula are a discrete subset of the
interval [s, 2s).

Proposition 1.4.2. Given s € (0,1),n = 2 andu € G*(By"), then for X, € T(u) the possible
values of the Almgren frequency formula N (Xo,u,0") are a discrete set in [s, 2s) with 2s as point
of accumulation.

Proof. The proof of the first part follows the one of Proposition 1.4.1 since it was based on a
contradiction argument due to the a gap in dimension n = 1 for the possible values of the Almgren
frequency formula. Hence, let us prove the result by induction on the Almgren frequency. Since
the first step is prove in Proposition 1.4.1, let us consider the inductive step. Let A € (0,1) be a
possible value of the Almgren frequency and u € G*(Bj"). By induction we already know that
A = B+ 0, for some 0 > 0and B € [s,2s) lower Almgren frequency. By contradiction, suppose
there exist two sequences g, N\, 07 and (X}, ), C T'(u) N9°QT, for some O CC By, such that

N(Xk, u,()+) < A+ ey
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with g < s — A/2, in order to always have A + ¢, < 2s. Since I'(u) has empty interior in
R™ "1, up to a subsequence there exists Xo € I'(u) such that X; — Xy and, by the induction
hypothesis and Corollary 1.2.6 we get N (Xg,u,0") = A.

Therefore, let us construct a sequence of blow-up limit (0x)x € Gf .(R""!) in order to translate
the absurd hypothesis in the context of entire segregated configurations in QISOC(IR:L_+1 ). Hence,
following the details in Proposition 1.4.1, we can construct a family of blow-up limits () €
Gi .(R™"1) of homogenous function in R""! such that uy, ; — Uy and

/ ly|tido =1 and N(0,Tg,7r) = A+ep forevery r >0, (46)
otBf

namely Uy, is (A + &5 )-homogeneous in R" ™., i.e.

X
W (X) = [X|[ gy <|X|> ’

with gi, € H1(S7). By (46) it follows that for every R > 0 the sequence (ux)x C G . (R" ™) N
CPY(R™HY) with a € (0, s) is uniformly bounded in L (B},), for every R > 0, which implies

loc
by Theorem 1.3.8 the existence of @ € G (R""1). Moreover, by the strong convergence in

HY(R™1) it follows that N (0,1, r) = A for every r > 0.

loc
Since u € B*(IR™"1), we get that ['(W) is a conic set and its domain of positivity are totally

defined by its spherical section g € H%(S") (this is a generalisation of the previous case in
Proposition 1.4.1, since in this case we do not know the explicit formulation of the blow-up limit T).

Now, let us prove the existence of anindexi = 1,. .., hsuch that, givenw = {§ € S"71: g; = 0},
then for every k£ > 0 there exist a nonempty wy C @ such that wy is a connected component in
S of {g; . > 0}.

By contradiction, suppose that for every index i = 1,.. ., h there exists k > 0 such that 9,5=0
on the zero set of g; on S”~!. Then, by uniqueness of the eigenvalue problem (37) we must obtain
that A(gr) = A(g), in contradiction with the definition of Ty, and its homogeneity.

Now, since we are working in dimension n = 2, there exist two sequences (Pj ), (Qx)r C S*
such that wy = (P, Q}) can be seen as an arc of S! between the endpoints P, and Q. Since by
compactness of S! there exist, up to a subsequence, P, Q € S! respectively limit of (Py); and
(Qk )k, let us consider separately the cases | P, — Qx| — 0 and P # Q.

If P # Q,letw = (P, Q) be the limit of the sequence (wy ) and C,, be the cone in ¥ spanned
by w, i.e.

X
Cw:{XeZ:ewcsl}.
| X
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One one hand, by definition of wy, since u; 1, - u; x = 0 on X, we get u; 1, = 0 on wy, C w for every
& # 4 and then, passing to the limit for & — oo, ; = 0 on w, for every j # 4. The contradiction
follows from the fact that since, by definition g; = 0 on @ and necessary must exist a component
of g non identically zero on w C @.

Hence in the other case, given 7, = |P; — Qx| ¢ 0 and P;, € X let introduce the blow-up
sequence (W), C G .(R™™!) centered in (P)x € I'(ug) N.S™! and associated to r, > 0, i.e.

u (P X
Wk(X) = —uk( bt Tk ) with p, = H(Pk,ﬁk,Tk),
Pk
such that ||[Wg]| L2e(a+Bf) = 1. By construction, for every k € IN we have
— — (Qr— By

where (Qr — Py)/rx — v € S"1 x {0} by compactness in S"~. Now, following the same
ideas of the proof of Proposition 1.4.1, by Proposition 1.3.8 there exists a blow-up limit W €
1, 0, — S (e

flog (RN O (R™ ) forevery a € (0, s) suchthatw € G (R"*!) with 190l 200 1) =
Since the blow-up sequence (W}, )y is constructed starting from a family of homogeneous entire
segregated profiles in B3 (IR"*1), we can prove that W is constant along the direction parallel
to P € S"! and that its restriction on the orthogonal half plane belongs to G .(R™).

Hence, with slight abuse of notation we still denote the n-dimensional section by w € G (R™).

By Corollary 1.3.10, since for every k > 0 and ¢ € (0, +00)
N (Py,uy,t) < N(Pg, Uy, +0)
= N(0,u, +o0) = A+
we get from Proposition 1.2.4 and Proposition 1.3.9 that for every R > 0
N(0,w,R) = rlkigloN(O,Wk, R) = TEgloN(Pk,ﬁk,rkR) < A+ey. (48)
Finally, as in Proposition 1.4.1, we reach the contradiction applying a blow-down analysis on the

limit function W € G _(R™). Indeed, applying the same procedure, we get by the gap condition
in the lower dimensional case IR" that

s < N(0,w,r) < N(0,w, +00) = s.

In other words, by the monotonicity result Proposition 1.3.9, the Almgren monotonicity formula
satisfies N (0, W, r) = s for every r > 0, i.e. up to a rotation W = (wy, wo,0, ...,0) where

Var+y?— 1 ’ Va4 ’
wi(x,y) = Ch (1 and Wi (z,y) = Cy yoL2o (49)

2 2
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for some positive constant C'y > 0 such that ||[W|[ 205+ Bf) = 1. The contradiction follows
immediately by (47). The second part of the proof is a direct consequence of the results in [85].
In this paper, the authors proved in the case n = 2 the existence of some segregated profiles
possessing some natural symmetry. Such solutions are constructed as limit of a competition-
diffusion problem and starting from the eigenvalue problem (39) and in particular they proved
that they have growth rate at infinity which is arbitrarily close to the critical one, that is, 2s. []

1.5 REGULARITY AND FLATNESS OF THE REGULAR SET

In this Section, we will provide an estimate of the Hausdorff dimension of the whole nodal set
T(u) = {X € 3B} : u(X) = 0},
and, regarding its regularity, we will split I'(u) in two parts:
« the singular part S(u), which we will show to be a local finite collection point in ° B;";

« the regular part R(u), which is relatively open in I'(u) and satisfies a flatness type condi-
tion.

Hence, let us start introducing the notion of regular and singular set in the planar case.

Definition 1.5.1. Given s € (0,1),n = 2 and u € G*(B;"), we define its regular and singular
sets respectively as

R(u) = {Xo € T(u): N(Xo,u,0") =5} and S(u)={XpeT(u): N(Xo,u,07) > s}.

Corollary 1.5.2. Fors € (0,1) andn = 2 the set R(u) is relatively open in T'(u) and S(u) is
closed in 3° By, wheneveru € G*(By).

Proof. This result is a direct consequence of Proposition 1.4.1 together with the upper semi-
continuity of the Almgren frequency function X +— N (X, u,0") stated in Corollary 1.2.6. [

Next we state and prove some estimates regarding the Hausdorff dimensions of two strata
previously defined by using the version of the Federer’s Reduction principle in [78]. Hence, let us
take a class of functions F invariant under rescaling and translation and S a map which associate
to each function ® € S a subset of R" . Thus, this principle establishes conditions on F and S
which imply that to control the Hausdorff dimension of S(®) for every ® € S, we just need to
control the Hausdorff dimension of S(®) for elements which are homogeneous of some degree.
In Chapter 3, we will state the Federer’s Reduction principle in its most general version.
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Theorem 1.5.3. Givens € (0,1) andn = 2, letu € G*(B;") and T (u) be its nodal set. Then if
I'(u) # %, then dimy (T (u)) < 1 and

dimy(R(u)) =1 dimy(S(u)) =0.
Moreover for any given compact K CC 0°B; we that S(u) N K is a finite set.

Proof. A preliminary remark is that we only need to prove the Hausdorff dimensional estimates
for the localization of the sets in K CC By, since the general statement follows because a
countable union of sets with Hausdorff dimension less than or equal to some n € R] also has
Hausdorff dimension less than or equal to n. Moreover, since the Hausdorff dimension of the
nodal set of a function is invariant under rescaling, in order to simplify the notations we claim
that

dimy(T(w)Nd°B") <1 dimy(S(u)Nad’Bf) = 0.

Let us consider the class of functions F defined as
h
F = {u € (Lﬁfc(IRiJrl)) tu € G¥(B}(Xp)), forr € R, Xo € X such that B, (X)) C Bf}

By the linearity of the L, operator, we already know that the closure under rescaling, translation
and normalization and assumption (F1) are all satisfied.

On the other hand, let X € 9°B;", r), | 0T andu € F,and choose py, = ||u(Xo + 7% - 'r)HL27a(8+Br).
Theorem 1.3.3 and Proposition 1.3.11 yield the existence of a blow-up limit @ € F, i.e. up

to a subsequence u;, — U in F and U is a homogeneous entire segregated profile of degree

k = N(Xo,u,0+) > s. Hence also (F2) holds.

Next we choose the map S in (F3) according to our needs.

1. Dimensional estimate of the nodal set I'(u)

First, let us consider S: u + I'(u). By the continuity of u, we already know that the set
I'(u) N By is obviously closed in B; and it is quite straightforward to check the two hypotheses
in (F3).

Hence, in order to conclude the analysis, the only thing left to prove is that the integer d in (131)
is equal to 1. Suppose by contradiction that d = 2, then this would imply the existence of v € F
with S(v) = R%i.e., v = 0 on X, which contradicts the definition of G*.

Actually, taking V = R! x {(0,0)} and ¥ = (v1, 92,0, ...,0) where

2 2 8 2 5 S
LTIy -1 1ty + a1
m(xl,x%y):(ﬁ) " w(%w):(ﬁ |

2 2

we obtain the claimed estimate on d.
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2. Dimensional estimate of the regular set R(u)
Let us consider S: u — R(u). By the inclusion in I'(u), we already know that

dimy (R(u) N9°Bf) < 1.

Finally, we can apply the Reduction principle since (F3) is completely satisfied. More precisely,
for Xo € 9°Bf",p > 0andt > 0if X € R(pux,) then obviously X + tX € R(u), ie.
N(Xo+tX,u,0") = 1. Secondly, given ui, U € F as in (F3), suppose by contradiction that
there exists a sequence X; € 9°B;" and £ > 0 such that

N(Xp,uz,07) =5

and dist(X}, S(w)) > €. Since, up to a subsequence, X, — X, by the upper semi-continuity
of the Almgren frequency formula, we already know that N (X ,w,0") > 1. Moreover, up to a
subsequence, X, — X € I'(W) N XN By by the L{, convergence of u; — 1.

Now, since I'() is a conical set, i.e. for every A\ > 0 and X € I'(u) we have AX € I'(u),
we deduce that if we can prove X € R(u) N °B;" we provide a contradiction, more precisely we
get dist(X, S(@) N Y B;") = 0. Since there exists O CC d°B; such that (Xo + 7;X;); C Q, if
we consider

Ry = min _dist(p,S* x {0}),
peddOt

C = sup N(p,u,Ry),
peddO)t

we easily get from Corollary 1.2.7 that there exists C > 0 and 7 > 0 such that for p € QN R (u)
and r < min{7, R;} we have

R, 2+a—142C 1
N(p,u,r) < N(p,u, R1) (T,) SO

In particular, from the previous inequality we get that there exists R = R(a) > 0 sufficiently
small, such that for » < R we have

1)
s < N(Xg,ug,r) §s+§.

Since limy, N (X}, ug,r) = N(X,u,r) for sufficiently small r, we directly obtain from Proposi-
tion 1.4.1 that N(X, 1, 0") = s, as we claimed.
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As before, let us suppose now that there exist v € F and a d-dimensional subspace V' C X, with
d <1, and k£ > 0 such that

Vy,r:rkv forall Y € V,r >0 and R(@)HE)OBT:VHE)OB;

Since v € B*(R?*1) is homogenous of degree k with respect to any Y € V = R(¢), namely
N(Y,v,0") = k, we get that necessary k = s and that R(¢) is d-dimensional. Since the only

entire segregated profiles with degree s is, up to rotation, of the form v = (71, 72,0, ...,0) where
S S
B Vol +y?—m B Val +y?
U1 (71, 22, y) = 5 and  Uz(71,72,y) = 5 |

we get that R(¢) must be 1-dimensional, and consequently that

dimy (R(u) N0B;) = 1.

3. Dimensional estimate of the singular set S(u)
Let us focus on the singular strata, namely given S: u +— S(u), the map satisfies the first part of
(F3) thanks to (18), since for Xy € 9°B{", p > 0and t > 0, if X € S(pux,) we get

N(X,pux,+,07) > s+ N(Xo+tX,u,07) > s,

which is equivalent to X + tX € S(u). Now, given u; = pipux, ., a € F as in (F3), suppose
by contradiction that there exists a sequence X € 9°B;" andz > 0 such that, up to a subsequence,
X — X and

N(Xp,up,07) > 540 (50)

and dist( Xy, S(u)) > €. Then, following the same reasoning in Corollary 1.2.6, by Proposition
1.2.4 there exists a constant C' > 0 and 7 > 0 such that, for € (0,7)

N(Xp,u,r) = e YY) (N (X u,r) —1> e Y0 (s +140) -1
and hence, since for r € (0, 7) it holds N (X, ug,7) — N(X,q,r) —, we get N(X,w,0") >
s + 6, which implies a contradiction.
Since S(u) C I'(u), we already know that
dimy (S(u) Nd°BY") <1, (51)

which is not the optimal bound for the singular set. Indeed, suppose d = 1, then must exist v € F
homogeneous with respect to every point in R x {(0,0)}, i.e. there exists k > 0 such that

v(Y +AX) = M'v(X) forall Y € R x {(0,0)}, X € RX™,

41
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such that S(v) = R x {(0,0)}. Hence, given Yy € S(v), we get for every u > 0 that v(uYp +
X) = v(X), which implies that v € B*(R:}*!) with N(0,v,0%) = k& > s and S(v) = 0.
The absurd follows from the fact that necessary N (0,v,0") = 2s and hence v = 0 on %, in
contradiction with the definition of F and the upper bound (51). O

At this point, combining Corollary 1.3.12 and Corollary 1.5.2 we can state the following
results about the flatness of the regular part R(u) of the nodal set I'(u). More precisely, the
following result prove that R (u) verifies the so called vanishing Reifenberg flat condition, i.e.
the (0, R)-Reifenberg flat condition for every § € (0,1) and some R = R(§) > 0.

Proposition 1.5.4. Given s € (0,1) andn = 2 consider u € G*(Bi"). Then, fixed 0" CC B,
for any given § € (0,1) there exists R > 0 such that X € R(u) Nd°Q" and 0 < r < R there
exists an hyper-plane H = Hx , passing through X such that

dy(T(u) N "B (X), Hx, N3 B, (X)) < dr,
where dy is the Hausdorff distance defined in (33).

The idea of the proof is similar to the one in Corollary 1.3.12 since, roughly speaking, they
are both a consequence of Proposition 1.3.11. Indeed, by Theorem 1.3.3 we already know the
topology in which the blow-up sequence converges and Proposition 1.3.11 ensure the existence
of an homogeneous blow-up limit for a specific choices of X}, which are the ones considered in
Proposition 1.3.12 and in this result.

Proof of Proposition 1.5.4. Arguing by contradiction, let us suppose there exists § > 0 and a
sequence (X)r C R(u) Nd°QT, r;, — 0 such that

dy(T(u) N "B, (Xy), HN B (Xi)) > ry.

for every hyper-plane H passing through X}. If we consider the blow-up sequence centered in
(Xk) associated to 7, i.e. let

u(X) = Xy b rX)

H(Xk7 u, Tk)
then “rescaling” the contradiction statement we get
dy(T(up) Nd°Bf, HN "B} >4,

whenever H is a hyper-plane that passes through the origin.
Hence, since up to a subsequence X;, — X € I'(u) € 9°Q%, Theorem 1.3.3 together with
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property Proposition 1.3.11 implies the existence of a blow-up limit @ whose nodal set I'(Q) is a
hyper-plane containing the origin. Hence we obtain a contradiction once we are able to prove
that

dy(T(ux) N3Bf, T (@) Na°Bf) — o.

Equivalently, the claimed result is to prove that for every € > 0 there exists k¥ > 0 such that for
every k > k

T(u) N°B; € N. (T(w) "By )
r(@)ne°B C N. (T(w)Nd"By) .

Supposing by contradiction that the first inclusion is not true, then there exist £ > 0 and a
sequence X, € I'(u;) N "By such that dist (X, T'(0) N9°B;") > & Moreover, up to a sub-
sequence, Xy — X € I'(W) N 9B} by the L, convergence of u; — U. Since by Proposition

1.3.11 the nodal set T'(1) is a conical set, i.e. for every A > 0 and X € I'(1) we have AX € I'(u)
and 0 € I'(1), we deduce that dist(X, (1) N 9°B;") = 0, which provides the contradiction.

Finally, we have to prove that for every £ > 0 there exists £ > 0 such that
(@ na’BC N. <F(uk) N 8031") for every k > k.

We start by proving that given X € I'(w) € 8°B; and § > 0, the vector valued function uy, must
have a zero in 8B (X), for k sufficiently large. If not, by recalling that u; j, - u; x|y—0= 0 for
every ¢ # j, we would have that there exists an index 0 < 7 < h such that

{_Laui,k =0 in B; (y) Ui fe > 0 on 6OB;_ (7)

—Ogui ) = fi(uig) ond°By (X)
and v} = 0in ('9035r (X), for every j # i. Passing to the limit, this would imply that
—Lou; =0 in B (X —
atli in B ( )7 , @ >00nd"Bf (X)

—9%u; =0 on d"Bf (X)
and u; = 0 on 9B, (X) for every j # i. Since X € T'() it follows from the Hopf princi-
ple (see [13, 43]) that @ = 0in 9 Bi (X)), a contradiction with the fact the I'(@) has empty interior.

Now, arguing by contradiction, suppose the existence of & > 0 and (Xj); € I'(w) N 9B
such that X}, — X € I'(w) N9°B;" and dist( X, ['(u;) N3°B;") > & Since I'(W) is a con-
ical set passing through the origin, let us take X € T'(@w) N d°B; such that )X - Y’ < g/4.
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Furthermore, we can take, by using the result proved in the previous paragraph, a sequence
(X1)k € T(ug) NO°By such that ‘Yk -X ‘ < £/4 for sufficiently large k. The final contradic-
tion follows noticing that

dist(X. T(ug) N°BY ) < | X — X < [ X~ K|+ [X - X[ +|X - X < 5

<6,
for sufficiently large k. O

With the vanishing Reifenberg property we are able to prove a local separation result. We
remark that the following result follows the idea of Proposition 5.4 in [81].

Proposition 1.5.5. Givens € (0,1) andn = 2 consideru € G*(B;"). Then, given Xy € T'* there
exists a radius Ro > 0 such that 3° Bf; (Xo) N'R(u) = 8"Bf; (Xo) NT(u) and °B, (Xo) \
T'(u) = 3B, (Xo) N{u > 0} has exactly two connected components, i.e.

Bf, (Xo) NR(u) =Q UuQ_.

More precisely, there exists § > 0 such that, given Y € I'(u) € 9"B},(Xo) andr € (0, Ry —
|Y — Xy|) there exists a hyperplane Hy , and a vector vy , € Sn—t orthogonal to Hy , such that

{(X+tvy, € B (Y): X € Hy ,,t > dr} C Qg

Proof. Fixed Xy € R(u), since R(u) is a relatively open set in I'(u), there exists 7 such that
"B (Xo) NR(u) = 8°B;- (Xo) NT(u) and fix § < 1/6. Using the notations of Proposition
1.5.4, for O = B} (X) there exists R > 0 such that I'(u) N 9B, (X,) satisfies the (J, R)-
Reifenberg flatness condition. Let us prove our result with Ry := min{R, 7}.

By Proposition 1.5.4, there exists a hyperplane Hx, r, containing X¢ and such that

dy (T (u) N8B, (Xo), Hxo,ro N "B (X0)) < 6R. (52)

Hence the subset 9B}, (Xo) \ Nasr, (Hx,,r,) has exactly two connected components, namely
D; and D, which do not intersect the nodal set T(u). Hence, let us define the function

x) 1 ifXeD,
o =
—1 ifX € Dy.

Take now a point X; € T'(u) N9°Bj; (Xo) € Nisr,(Hxo,r,) N0° B (Xo). As we did before, by
using Proposition 1.5.4, considering a ball of radius R /2 centered at X there exists a hyperplane
Hx, r,/2 such that

R
dp(T(u) N°Bf; o (X1), Hy, gos2 N0 B 5(X1)) < 570.
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This inequality combined with (52) yields that
Nsgo/2(Hx, ros2) VOB 1o(X1) N8B (Xo) € Nasry (Hxo,re) N O° By, (Xo).

Hence 8° By, (Xo) N 8OBEO /2(X1) \ Nsro (Hx, Ry/2) has exactly two connected components,
each one intersecting D; or D9 and not both. Thus the set

U 0"B (Xo) N°Bf ;o(X1) \ Nsry (Hxy mos2) | UD1UDy — (53)
X er(u)maoB;O(Xo)

has exactly two connected components which do not interest the nodal set I'(u) and hence we
can continuously extend o to this set.

Iterating this argument to a ball of radius Rg /2 centered at a point of I'(u) we find two connected
and disjoint set 0, , ) such that 9° B}, (Xo) \T(u) = Qy UQ_, with D; € Q) and D, C
Q_. Furthermore, the map o: "B} \ T'(u) — {+1, —1} such that

o: X = xa, (X) = xa_(X)

is continuous and thus 8 Bf; (Xo) \ I'(u) has exactly two connected components.

In order to check the continuity, take X € 8°Bj; (Xo) such that dist(X,T'(u) N 9By, (Xo)) =
v > 0, with X € T'(u) N8°Bj; (Xo) the point of minimum distance, and k so large that
Ro/2F1 <~ < Ry/2F; then X € Br, ok (X)\ Nsry 2k (HY,R0/2"*1 ), due to the choice of 4,
and hence ¢ is constant in a small neighborhood of X. O

1.6 SINGULAR LIMIT OF A COMPETITION-DIFFUSION PROBLEM

In this last Section we consider the class of segregated profiles arising from a competition-
diffusion problem with nonlocal diffusion and variational competition. In particular, we motivate
our definition of the class G*(By") and we give some result in the context of self-segregation,
comparing them with the ones known for the local case.

As we mentioned in the introduction, in the papers [83, 84] the authors proved that given
B > 0and (f;3)s a collection of continuous functions uniformly bounded with respect to /3 on
bounded sets, the sequence (ug)s € H%(B;;R") of solutions ug = (uy4,...,ups) of the
problems

—Lau; g =0 in By
—0guip = fip(uwip) — Buip 3z aijuiﬁ on 9By
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uniformly bounded in L>(B;") with respect to 3, does converge uniformly on compact sets and
strongly in HY¢(K N BY), for every K C By, to a vector valued function u = (u1,...,up) €
HY

loc

(1) u e HY(KNB;)NC%(K N B ), for every compact set K C Bandevery a € (0, a*);

(Bfr ;IR") whose components are all non negative, continuous functions such that

(2) wi-uj|ly—o= 0 for every i # jand u # 0 on By N X. Moreover, for i = 1, ..., h it satisfies
—Lqu; =0 in B
u; (851% + fl(uz)> =0 ond'Bf

where f;: RT™ — R are the nonnegative C' limits of f; 5, such that f;(s) = O(s) for
s —0;

(3) for every Xo = (z0,0) € 3°B; and r € (0, dist(X, dB)), the following Pohozaev type
identity holds

(1—a—n)/ ]y|a|Vu]2dX+7“/ y|° [Vul? do+
B; (Xo) 9Bt (Xo)

h

—|—2n/ F;(u; dx—QT/ Fi(u; d:E—QT/ y|* (8,u)?do
aOBr(XO); (ui) o 1(XO)Z ly|* (Oru)

i=1 9" B, (Xo)
where F(s) = (Fi(s),..., Fy(s)) with F;(s) = [ fi(t) dt forevery i =1,...,h.

In particular, they proved that for s = 1/2 the limit profile are Cloo’g /2 (B;") while in general they
estimate the solutions in the Holder spaces by the use of a fractional versions of the Alt-Caffarelli-
Friedman and Almgren monotonicity formula. More precisely, let us recall the fractional version
of the spectral problem beyond the Alt-Caffarelli-Friedman formula used in [84, 83]. Consider the
set of 2-partitions of 5"~ ! as

P? .= {(wl,wg) cw; € 8™ L open, wy Nwy =0, TTUT = S 1}

ACF

the optimal partition value v*~" is defined as

1
ACF
- inf
vty €P2Z% w;) (54)

It is easy to see, by a Schwarz symmetrization argument, that AT i

is achieved by a pair of
complementary spherical caps (wp,w,_g) € P? with aperture 20 and 6 € (0, ) (for a detailed

proof of this kind of symmetrization we refer to [85]), that is:
ACF

VS = min 1—'5(9) — mmin 78(6) + 75(7[' — 6) '
0€[0,7] 9e0,7] 2
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Then, for s € (0, 1) the previous statement for the limiting profile holds true for

o vACE, 0<s<i,
min{y/1°F 25 -1}, l<s<1

As we mentioned, the threshold s = 1/2 is due to the presence of the phenomenon of self-
segregation of nonlocal problem with s € (1/2,1), namely centered on the nodal set I'(u) there
exists a ball Bt C lRTLl sufficiently small and an index ¢ = 1, ..., h such that all the components
u;j of u with j # 4 are identically zero on the ball make exception of u; which is not identically
zero and such that

BT \T(u) = {X € "B w;(X) > 0}.
The presence of self-segregation in the context of competition-diffusion problem is a phenomenon
well known in the literature, even in the local case. Indeed, in [81] the authors dealt with the case
of self-segregated profile relabeling the restrictions of the profile on each connected component
of the positive set. Since in that case the operator is local, the restriction itself satisfies the
assumption of the segregated profile, but unfortunately the nonlocal attitude of our operator does
not allow this strategy. Moreover, we mention the work [35], where the authors proved that the
self-segregation is a phenomenon that does not appear as singular limit of the local counterpart
of our competition-diffusion problem (3).
In the context of the fractional Laplacian (—A)*, as pointed out in [84], the main point is that the
fundamental solution turns out to be bounded near 0 and in H%(B;") whenever s > 1/2,n = 1.
This implies that, when s € [1/2,1) and n > 2, the function

25—1

u(z,y) = («1 +47)

is a positive L,-harmonic function in IRTH with non trivial trace on ¥ and dyu = 0 on X. In

particular, its trace on X is self-segregated since it has two disconnected positivity regions.

The following result is a refinement of the Liouville theorem [83, Theorem 7.1] for every s € (0, 1)
and it is based on the division of the nodal set in its segregated and self-segregated part, in such a
way we can apply our result obtained in the previous Sections to the segregated part of I'(u).

Definition 1.6.1. Let s € (0,1) and u € G*(By). Then the nodal set I'(u) is said to be either
“segregated” in K N X if

h
I'(u) =0"K"\ Jint ({uz > 0})
i=1
or “self-segregated” in K N X if

h
T(u) = [J 0{ui > 0} \int ({u; > 0}).
=1
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z5 = max(z,0)* CY%* regularity
(—A)°z% = —csw_

u(—A)*u=0inR

S

C%25=1 regularity

(=A)" o> = &
u(—A)'u =0inR

Figure 3: One-dimensional configurations in G _(IR) respectively segregated and self-segregated

In general, the nodal set is said to be segregated (self-segregated) in X if it is segregated (self-
segregated) on every compact set X N 2.

Theorem 1.6.2. Lets € (0,1). If

« either () is segregated in ¥ and u € G§ (R"™1) N CO(RTH) fora € (0, 5),

+ orT(u) is self-segregated in £ and u € G§ (R"1) N CO(RTH) fora € (0,25 — 1),
then u is constant.

In the remaining part of the Chapter we prove this result following the procedure in [83]. This
result implies a refinement in theory of the regularity of segregated profiles near the nodal set.

Corollary 1.6.3. Let s € (0,1) andu € G*(B]") be limit of a sequence (ug)g of solutions of (3).

enu € ’ oreverya € (0,s) ifand only i u) is segregated in b1 N 2.
Th Cl(Bf y 0 d only if T gregated in By N ¥

loc

The proof of this Corollary is based on our Liouville type theorem and on the techniques
developed in the mentioned works [83, 84].



1.6 SINGULAR LIMIT OF A COMPETITION-DIFFUSION PROBLEM

Proof of Theorem 1.6.2. Since by assumption u € G (R%"!) N C%(R"M), we easily get by
[84, Corollary 2.12] that u is homogeneous of degree v with respect to any of its possible zeros.
Thus, for a > 0 and for every dimension n, as in [83], let us introduce the critical value

VMO () = inf {a > 0: B5(R""H) N CO’Q(IR:L_H) is non empty } :

s loc

Since for every s € (0,1) and n > 1 the function (¥%%,0,-,0) € B (R"1) N CP>* (R,
we get l/i““’u" < 2s. However, since we need to take care of the structure of the nodal set we

introduce the following critical value

B4 (R"H N C'I%’?(RZ_H) is non empty }

vi(n)=inf{a>0
I'(u) is segregated in X.

such that v} (n) < %% (n). The main idea is to reduce such problem to the ones of estimating
vHoW (1) and v (1), which can be computed explicitly: let us prove that for any dimension n > 2
it holds

V%iouV(n) > VgiouV(n o 1).

Since u € B*(R" "), as we previously remarked, we have that I'(u) is a cone with vertex at the
origin and N (0,u,r) = «, for every r € (0, +00).
We can easily exclude the case I'(u) = X, since in that case all the components of u have trivial
trace on X.. As a consequence, the odd extension of u through X is a nontrivial vector of harmonic
functions on R"*1, forcing a > 25 > v/HoW(n — 1).
Similarly, since n > 2 and for dimI'(u) < n — 2s we obtain that I'(u) has null L,-capacity, we
can exclude the case I'(u) = {0}.
Now, given X € I'(u) N S™1, let us introduce the blow-up sequence of u associated to 75 > 0
as

up(X) = u<X0;_TkX) with p7 = H(Xo,u, 7).

k

Now, following the same ideas in the proof of Lemma 1.3.5, given C' > 0 and 7 > 0 be such that
Proposition 1.2.4, Proposition 1.2.7 and Lemma 1.3.4 hold true then, up to taking £ so large that

rg, TR < T, we get for every R > 0 that

1
/ ly|* ujdo = 2n+a/ ly|* ujdo
8+BE kak 8+B;7'k (XO)
H(X()a u, Rrk)
H(X07 u, Tk)

< gt (Rk )20

Tk

— Rn+a

49



50

NODAL SET OF SEGREGATED CRITICAL CONFIGURATIONS

which implies, by the L,-subharmonicity of the odd extension of u; through %, that

1/2 1/2
1 a H(O,uk,R)
sup u < 2C(n,s / y|* uZdX <2C(n,s <>
= ( ><Rn+1+a BE|| k ( ) n+a+1

R/2

is uniformly bounded for k& > 0. By Proposition 1.3.8, there exists a blow-up limit & € G (R"*1)
with [[@l| 2.0 9+ pr) = 1.

Since the blow-up sequence (uy )y is constructed starting from a family of homogeneous entire
segregated profiles in B3 (IR"*1), we can prove that T is constant along the direction parallel to
Xo € S™ 1 and that its restriction on the orthogonal half plane belongs to G . (R™). Moreover,
since the blow-up sequence (uy ) is centered in a fixed point X, by Proposition 1.2.4, Corollary
1.2.6 and Proposition 1.3.11 we get that u € B*(IR") N C’l()”y(IR"H), with N(0,@,1) = v < a.

ocC

Finally, since « is arbitrary choose in #11°% (1), the thesis follows from the bound % (n — 1) <

Q.

1

If instead, we consider the critical values v (n) the result of dimensional descent still holds since

S
the uniform convergence on compact sets of the blow-up sequence (uy, ) ensures that the nodal

set I'(u) is still segregated in X, and hence
vs(n) > vg(n—1),

for every s € (0,1) and n > 2. Thus, by a complete classification of the elements in B°(IR% ),
see [88, Section 5], we can finally reach the claimed result since

, s, if (0,2
Vglouv(l) — . ( 22 and yi(l) = s forany s € (0, 1).
2s—1, ifse [5,1)
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ON S-HARMONIC FUNCTIONS ON CONES

2.1 INTRODUCTION

Let n > 2 and C be an open cone in IR™ with vertex in 0, for a given s € (0, 1), we consider
the problem of the classification of nontrivial functions which are s-harmonic inside the cone
and vanish identically outside, that is:

(=A)*us =0 in C,
ug > 0 in R" (55)

us =0 in R"\C.

By [5, Theorem 3.2], it is known that there exists a homogeneous, nonnegative and nontrivial
solution to (55) of the form

us(@) = [2l 7", (,g) ,

where v; := 7,(C) is a definite homogeneity degree (characteristic exponent), which depends
on the cone. Moreover, such a solution is continuous in R” and unique, up to multiplicative
constants. We can normalize it in such a way that ||t || oo (gn-1) = 1. We consider the case when
s approaches 1, wondering whether solutions of the problem do converge to a harmonic function
in the same cone and, in case, which are the suitable spaces for convergence.

Our problem (55) can be linked to a specific spectral problem of local nature in the upper half
sphere by using the extension technique popularized in [23] by Caffarelli and Silvestre, which
characterize the fractional Laplacian in IR™ as the Dirichlet-to-Neumann map for a variable v
depending on one more space dimension.
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Hence, let us consider an open region w C sl = 0S8, with S = S™ N {y > 0}, and define
the eigenvalue

y1_23|V5nu|2da
A} (w) = inf i cue HY (ST y' " *do) \ {0} and u = 0in S" '\ w

/ y1—25u2d0_
S

n
+

Next, define the characteristic exponent of the cone C,, spanned by w (see Definition 2.2.1) as

VS(Cw) = ’Vs()‘i(w)) ) (56)

where the function 7(t) is defined by

We recall the existence of a remarkable link between the nonnegative \§ (w)-eigenfunctions
and the 75 (\§ (w))-homogeneous L,-harmonic functions. As pointed out in Proposition 1.3.14,
given ¢, the first nonnegative eigenfunction to \§(w) and vy its v (\§ (w))-homogeneous exten-
sion to lRiH, ie.

vs(r, 0) = rNi@)g (9),

we easily get that v is L,-harmonic in the upper half-space, witha = 1 —2s € (—1, 1). Moreover
its trace us(xz) = vs(z,0) is s-harmonic in the cone C,, spanned by w, vanishing identically
outside: in other words u is a solution of our problem (55). In a symmetric way, for the standard
Laplacian, we consider the problem of v-homogeneous functions which are harmonic inside the
cone spanned by w and vanish outside:

—Au; =0 in C,,
up >0 in R» (57)
u =0 in R™\ C,.

Is is well known that the associated eigenvalue problem on the sphere is that of the Laplace-
Beltrami operator with Dirichlet boundary conditions:

/ |VSn—1U|2dO'
A (w) = inf { L8

/ u’do
Sn—l

cue HY(S" )\ {0}andu=0in S" 1 \wy,
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and the characteristic exponent of the cone C,, is

1(C) = J (”;2) () - = @) (59

In the classical case, the characteristic exponent enjoys a number of nice properties: it is minimal
on spherical caps among sets having a given measure. Moreover for the spherical caps, the
eigenvalues enjoy a fundamental convexity property with respect to the colatitude 6 (see the
results in [3, 47]). We remark that the convexity plays a major role in the proof of the Alt-Caffarelli-
Friedman monotonicity formula, a key tool in the Free boundary theory (see [21] for a general
excursus on the subject).

Since the standard Laplacian can be viewed as the limiting operator of the family (—A)® as
s /1, some questions naturally arise:

Problem 2.1.1. Is it true that

(1) lims—y1 v5(C) = ~4(C)?
(2) lims_1 us = u; uniformly on compact sets, or better, in Holder local norms?

(3) for spherical caps of opening 6 is there any convexity of the map 6 — \§(6) at least, for s
near 1?

We therefore addressed the problem of the asymptotic behavior of the solutions of problem
(55) for s * 1, obtaining a rather unexpected result: our analysis shows high sensitivity to the
opening solid angle w of the cone C,, as evaluated by the value of v(C). In the case of wide
cones, when y(C') < 2 (that is, § € (7/4, ) for spherical caps of colatitude 6), our solutions do
converge to the harmonic homogeneous function of the cone; instead, in the case of narrow cones,
when v(C') > 2 (that is, § € (0,7 /4] for spherical caps), then limit of the homogeneity degree
will be always two and the limiting profile will be something different, though related through a
correction term. Similar transition phenomena have been detected in other contexts for some
types of free boundary problems on cones (see [74]). Moreover, we will see that an important
quantity which appears in this estimates and plays a fundamental role is

C(n,s)
25 —v5(C)’

where C(n, s) > 0 is the normalization constant given in (62). It will be therefore very important
to bound this quantity uniformly in s. Our main result is the following Theorem.
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Theorem 2.1.2. Let C be an open cone with vertex at the origin. There exist finite the following

limits:
7(C) = lim ~5(C) = min{~(C), 2}
and
f <2
(O = lim C(n,s) _ )0 if v(C) < 2,
so1- 25 =75(C) | po(C) i 4(C) > 2,

where C(n, s) is defined in (62) and
/ |V gnrul® — 2nu’do
Sn—1

(/S ]u\da)z

Let us consider the family (us) of nonnegative solutions to (55) such that ||us|| o (gn-1) = 1. Then,
as s /1, up to a subsequence, we have

po(C) := inf cuwe HY(S" )\ {0} andu = 0in S" 1\ C

1. us — @ in L2 (R™) to somew € HL (R™) N L°(S"1).

loc

2. The convergence is uniform on compact subsets of C', U is nontrivial with |[@|| oo (gn-1) =1
and is 7(C')-homogeneous.

3. The limit u solves

—At = u(C) / udo in C,
gn-1 (59)
u=0 inR"\ C.

Uniqueness of the limit @ and therefore existence of the limit of us as s /* 1 holds in the
case of connected cones and, in any case, whenever 'y(C ) > 2. We will see in Remark 2.4.2 that
under symmetry assumptions on the cone C, the limit function @ is unique and hence it does not
depend on the choice of the subsequence.

A further motivation to our study of (55), as shown in [83, 84] and in the blow-up analysis in
Chapter 1, is its deep relation with the exponent of the optimal Holder regularity of segregated
profiles and the geometric analysis of the segregation phenomenon. In [84, 83], estimates in
Holder spaces have been obtained by the use of fractional versions of the Alt-Caffarelli-Friedman
and Almgren monotonicity formulas. Let us state here the fractional version of the spectral
problem beyond the first monotonicity formula: consider the set of 2-partitions of S"~! as

P? .= {(wl,w2) cw; € 8" Lopen, w; Nwy =0, Wy Uz = S"_l}
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and define the optimal partition value as:

1
JACF .

— inf 60
Vs 2 (w1,w2) E'PQZ’YS l (60)

It is easy to see, by a Schwarz symmetrization argument, that vF is achieved by a pair of
complementary spherical caps (wy,wr_g) € P? with aperture 20 and 6 € (0, ) (for a detailed
proof of this kind of symmetrization we refer to [85]), that is:

ACF

v = min T°(f) = min 75(0) +%(7T_9).
0€[0,m] 0€[0,m] 2

This gives a further motivation to our study of (55) for spherical caps. A classical result by Friedland
and Hayman, [47], yields vACF = 1 for the case s = 1, and the minimal value is achieved for
two half spheres; this equality is the core of the proof of the classical Alt-Caffarelli-Friedman
monotonicity formula.

Y

Y /4 /2 3r/4 T

Figure 4: Possible values of I'*(0) = I'*(wg,wy_g) for s < land s = 1 and n = 2.

It was proved in [84] that T is linked to the threshold for uniform bounds in Holder norms
for competition-diffusion systems, as the interspecific competition rate diverges to infinity, as well
as the exponent of the optimal Ho6lder regularity for their limiting profiles. It was also conjectured
that VA" = s for every s € (0, 1). Unfortunately, the exact value of A is still unknown, and we
only know that 0 < v2F < s (see [84, 83]). Our contribution to this open problem is a byproduct
of Theorem 2.1.2.
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Corollary 2.1.3. In any space dimension we have

lim v4F =1 .

s—1

Moreover, exploiting the connection between s-harmonic functions on cones and the traces
on IR™ of the blow-up limits in B*(R™*!), discussed in Proposition 1.3.14 in Chapter 1, we can
reasonably state the following remark on the asymptotic limit of the segregated configurations in
Gioe(BY).
More precisely, given for s € (0,1) the class B°(IR™) of the traces of the blow-up limit in
B5(R"1), we directly get, from Theorem 2.1.2 that
sup {N(O,ﬂ, 1):ue %S(IR"H)} < sup 7s(0) <25 <2
0e(0,m)

for every s € (0, 1). This simple bound suggests that the possible blow-up limits of the segregated
profiles arising from a competition-diffusion problem with nonlocal diffusion and variational
competition can not converge to the ones of the segregated solutions studied in [18, 81]. This
remark suggests that even for the case of segregated configurations we have to expect, for s 1,
a rather unexpected result.

The Chapter is organized as follows. In Section 2.2 we introduce our setting and we state the
relevant known properties of homogeneous s-harmonic functions on cones. After this, we will
obtain local C”:®-estimates in compact subsets of C and local H*-estimates in compact subsets
of R for solutions of (55). In Section 2.3 we analyze the asymptotic behaviour of v,5(C) as s
converges to 1, in order to understand the quantities 5(C') and 1(C). To do this, we will establish
a distributional semigroup property for the fractional Laplacian for functions which grow at
infinity. In Section 2.4 we prove Theorem 2.1.2 and Corollary 2.1.3. Eventually, in Section 2.5, we
prove a nontrivial improvement of the main Theorem concerns uniform bounds in Hélder spaces
holding uniformly for s — 1.

2.2 HOMOGENOUS S-HARMONIC FUNCTIONS ON CONES

In this Section, we focus our attention on the local properties of homogeneous s-harmonic
functions on regular cones. Since in Section 2.3 we will study the behaviour of the characteristic
exponent as s approaches 1, in this section we recall some known results related to the boundary
behaviour of the solution of (55) restricted to the unitary sphere S”~! and some estimates of the
Holder and H® seminorm.

Definition 2.2.1. Let w C S"~! be an open set, that may be disconnected. We call unbounded
cone with vertex in 0, spanned by w the open set

Co={rz :r>0, zcw}



2.2 HOMOGENOUS S-HARMONIC FUNCTIONS ON CONES

Moreover we say that C = C,, is narrow if v(C') > 2 and wide if v(C') < 2. We call C,,, regular
cone if w is connected and of class C1'1. Let @ € (0, 7) and wy C S™ ! be an open spherical cap
of colatitude . Then we denote by Cy = C,,, the right circular cone of aperture 20.

Hence, let C' be a fixed unbounded open cone in IR” with vertex in 0 and consider

(=A)Pus =0 in C,
us =0 in R"\C.

with the condition ||t || o (gn-1) = 1. By Theorem 3.2 in [5] there exists, up to a multiplicative
constant, a unique nonnegative function us smooth in C' and ,(C)-homogenous, i.e.

un(e) = o, ()

]

where v5(C) € (0,2s). As it is well know (see for example [8, 76]), the fractional Laplacian (—A)*
is a nonlocal operator well defined in the class of integrability £} := £! (dz/(1 + |z])"+29),

namely the normed space of all Borel functions u satisfying

. Ju(2)]
lull s o= /IR e < e (61)

Hence, for every u € L1, ¢ > 0 and # € R" we define

Ay u(e) = s u(z) ~ uly)
() =0 [ Oy

where

C(n,s) = W e <0,4r (Z + 1)] . (62)

and we can consider the fractional Laplacian as the limit

(=A)°u(z) = lim(—A)Zu(x) = C(n, s) PV. /an Wdy

We remark that u € L] is such that u € £} 4 forany 6 > 0, which will be an important tool
in this part of the manuscript, in order to compute high order fractional Laplacians. Another
definition of the fractional Laplacian, which can be constructed by a double change of variables
as in [38], is

(—A)SU(I> _ C(Za s) /n 2u(x) — U(E‘_{—n—i/?)s_ u(z —y) dy
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which emphasize that given u € C?(D) N L, we obtain that z +— (—A)*u(z) is a continuous
and bounded function on D, for some bounded D C IR™.

By [67, Lemma 3.3], if we consider a regular unbounded cone C' symmetric with respect to
a fixed axis, there exists two positive constant ¢; = ¢1(n, s,C') and c2 = c2(n, s, C) such that

crfa| ~*dist(z, 00)* < us(x) < cola| ~*dist(z, 9C)* (63)

for every x € C'. We remark that this result can be easily generalized to regular unbounded cones
C,, with w € S™ ! which is a finite union of connected C'*! domain w;, such that @; U w; = (@ for
i # j, since the reasonings in [67] rely on a Boundary Harnack principle and on sharp estimates
for the Green function for bounded C'"*! domain non necessary connected (for more details [28]).

Through the paper we will call the coefficient of homogeneity v, as "characteristic exponent", since
it is strictly related to an eigenvalue partition problem.

As we already mentioned, our solutions are smooth in the interior of the cone and locally C*
near the boundary 9C' \ {0} (see for example [67]), but we need some quantitative estimates
in order to better understand the dependence of the Holder seminorm on the parameter s € (0, 1).

Before showing the main result of Holder regularity, we need the following estimates about
the fractional Laplacian of smooth compactly supported functions: this result can be found in [8,
Lemma 3.5] and [37, Lemma 5.1], but here we compute the formula with a deep attention on the
dependence of the constant with respect to s € (0,1).

Proposition 2.2.2. Lets € (0,1) and ¢ € C?(R™). Then

(~A)p(w)] <

—_— R" 6
(1 + |z[)n+es’ Vz € R", (64)
where the constant ¢ > 0 depends only onn and the choice of ©.

Proof. Let K C IR™ be the compact support of ¢ and k¥ = max,cx |¢(x)|. There exists R > 1

such that K C Bg/5(0).
Let |z| > R.

Care@] = [ctus) [ ADEWay| ~ o) [ A ay

nfz— gyt K |z =yt
C(n,s)k 1 d < C(n,s)k2" 25| K|
= et [ (- [ Y= [T 2s
x
C(n, s)k22(+29)| K| < c

<
— (1 + |$|)n+2s — (1 + |:L=Dn+2$’
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where ¢ > 0 depends only on n and the choice of ¢.

Let now |z| < R. We use the fact that any derivative of ¢ of first and second order is uni-
formly continuous in the compact set K and the fact that in Bg(0) the function (1 + |x|)""2s
has maximum given by (1 + R)"*2%. Hence there exist 0 < § < 1 and a constant M > 0, both
depending only on n and the choice of ¢ such that

(e +2) + oz — 2) = 20(x)] < M|2]* ¥z € Bs(0).

Hence
s p(z) —e(y) p(z) = e(y)
(-A)p()| = ‘cm, o[ gy o [ A2y,
R™\Bs(x) [T —y["T% By(w) |z —y[nt?
1 —2z)—2
< 2Cns) [ gy C) / lplo+2) + ol —2) = 2p(0)]
R\ Bs(z) 1T — Y| 2 JBs0) |2
+o00 M )
< QkC(n,s)wn_l/ 7"_1_2sdr—|— C’(TL,S);}M/ T1_2Sd7"
8 0
_ kC(n,s)wp—1 | C(n,s)wp_1 M2
N 5028 4(1 — )
1 n+2s 1 n+2
< %+c:c(+|x|) - < Ut h) = A
5 (T fa)mt2s = (14 |z))m2e (14 |z)m*2
where ¢ > 0 depends only on n and the choice of ¢. This concludes the proof. O

By the previous calculations we have also the following result.

Remark 2.2.3. Let s € (0,1) and ¢ € C?(IR™). Then there exists a constant ¢ = ¢(n, ) > 0
and a radius R = R(y) > 0 such that

(-8)6(@)] < c; O(n. <) Va € R™\ Br(0). (65)

T+ lal) 7
The following result provides interior estimates for the Holder norm of our solutions.

Proposition 2.2.4. Let C be a cone and K C C' be a compact set and so € (0, 1). Then there exist
a constant ¢ > 0 and @ € (0, 1), both dependent only on sg, K, n, C, such that

C(n,s) > ’

« < 9 —~ ()
[usllcoe () < (1 T 25— (0)

forany a € (0,a] and any s € [sg,1).
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By a standard covering argument, there exists a finite number of balls such that K C
U;?:l B, (x;), for a given radius 7 > 0 such that U?:1 Byy(zj) C C. Thus, it is enough to
prove

Proposition 2.2.5. Let By, (T) C C be a closed ball and s € (0, 1). Then there exist a constant
¢ > 0anda € (0,1), both dependent only on sg, r,T,n, C, such that

C(n,s) ) ,

sl 3 < ¢ (1 T2 7(0)

forany o € (0,@] and any s € [so, 1).

In order to achieve the desired result, we need to estimate locally the value of the fractional
Laplacian of us in a ball compactly contained in the cone C.

Lemma 2.2.6. Let ) € C°(Ba(T)) be a cut-off function such that0 < n < 1 withn = 1 in
B,.(T). Under the same assumptions of Proposition 2.2.5,

C(n,s) >

[1(=2)* (usn)l| L= (B, ) < Co (1 TN ()

forany s € [sg, 1), where Cy > 0 depends on so,n, T, r,C, and the choice of the function 1.

Proof. Let R > 1 such that By, (T) C Bgr/2(0). Hence, let fix a point € Ba,(T). We can
express the fractional Laplacian of u,7 in the following way

)@ = )8 @)+ Cms) [ ) 11y,

_ n(z) —n(y)
= C(ns) /B ) dy +

|z — y[r 2

n(z) —n(y)
+C(n,s / ug(y) ————==dy.
() R™\ Bg(0) ) |z — y|nt2s Y
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We recall that us(z) = |2[**(©ug(z/|z|) and that for any s € (0,1) the functions u, are
normalized such that ||us|| 00 (gn-1) = 1. Moreover we remark that n(z) —n(y) = n(z) > 0 in
Bo, (T) x (R™\ Bgr(0)). Hence, using Proposition 2.2.2 and the fact that ,(C') < 2s, we obtain
n(z) —n(y)
Us (y) nt2s dy
/BR(O) |z — y[n T2

’(_A)s(usn)(‘r)’ < C’(n,s) +

n(z) —n(y)
+C n,s / Us\Yy dy
(n,5) R\ B (0) ( >|93—y|"+28
1
< R¥O|(=A)n(z)|+ C(n,s 2”+25/ — - dy
|( ) ( )| ( ) IR”I\BR(()) ‘y|n+2s—"/5(c)

< ekt + C(n,s)2" 2w 1/+oo pm 1725 (O) gy
= (LA [zt ’ " IR

cR? cC(n,s)
< +
T (L fz)nr2 0 R2(0)(25 — 44(0))
<

co(1+25_(”7;'z)c)).

O]

Proof of Proposition 2.2.5. Letasbefore n € C°(Ba,(T)) be a cut-off function such that 0 < n < 1
with = 1 in B,(T). First, we remark that there exists a constant ¢y > 0 such that for any
s € (0,1), it holds

usn|| oo (rny < co, (66)

where ¢ depends only on n, T, r. In fact, let R > 0 be such that By, (Z) C Br(0). Then, for any
x € R", we have 0 < ugn(z) < R(C) < R2, Using the bound (66) and the previous Lemma, we
can apply [24, Theorem 12.1] obtaining the existence of @ € (0,1) and C' > 0, both depending
only on n, 5o and the choice of B, (T) such that

snll o 537, < CUltanll e + 11 (~A) (wsn) | = 5, 5)

<C<00+C(] (1-1—%)),

for any s € [sg, 1) and any « € (0, @]. Since n = 1 in B, () we obtain the result. O

Similarly, now we need to construct some estimate related to the H® seminorm of the solution
us, Since the functions do not belong to H*(IR™), we need to truncate the solution with some cut
off function in order to avoid the problems related to the growth at infinity. In such a way, we

can use
2

[U]J%IS(]R") = H(_A)S/ZU‘ L2(R")

= / v(=A)*vdx. (67)
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which holds for every v € H*(R™). So, let n € C2°(Bs) be a radial cut off function such that
T—x0

n=1in By and 0 <7 < 1in By, and consider nr(x) = 1n(*52) the rescaled cut off function
defined in Byg (o), for some R > 0 and zy € R™.

Proposition 2.2.7. Let so € (0,1) andng € C2°(Bar(x¢)) previously defined. Then

C(n,s) )

2 < —
[wsnR]3rs(rny < € (1 T oo ¥5(C')

forany s € [sg, 1), where ¢ > 0 is a constant that depends on o, R, C, sy and 1.

Proof. Let n € C2°(Bs2) be a radial cut off function such that = 1in By and 0 < 7 < 1in
By, and consider the collection of (1g)r with R > 0 defined by ng(z) = n(*3) with some
xp € R™. By (67), for every R > 0 we obtain

2

s/2
( L2(R™)

(el ey = (-8 wann) [}, gy = [ wenn(=8) ().

By definition of the fractional Laplacian we have

/n usnr(—A)°(usnr)dz = C(n, s) /]R”XJR” us(x)nr(z) Us(x)mfifﬂ_) ;:jQ(g)nR(y) dydzx

= /n nuus(—A)*ugdz + C(n, s)/ MWus(x)us(y)nR(x)dydx

R xR |7 — Y|

C(n,s T)— 2
_ (2 )/]R . |77R’(x) y‘Zigi/H us(x)us(y)dydx
’n/>< n —_

where the last equation is obtained by the symmetrization of the previous integral with respect to
the variable (z,y) € R™ x IR™. Before splitting the domain of integration into different subset, it
is easy to see that

nr(z) —nr(y) =0 in Br(zo) x Br(xo) U (R™\ Bar(wo)) x (R™\ B2r(o))
Inr(z) —nr(y)| =1 in Br(zo) x (R™\ Bag(wo)) U (R™\ B2r(z0)) x Br(zo).

where all the previous balls are centered at the point z;y. Hence, given the sets ()1 = Bsg(z) X
BgR(l‘o) and Oy = BQR(J}O) X (an \ BgR(J}Q)) U (]Rn \ B3R(l‘0)) X BQR(ZL‘()) we have

2 2
fooge e et < [ G @ 0) e+
R™ xR Ix—y! (Of} |x_y’

[ (x) = 1R (y)I*
* /02 |z — y’n+2s us(z)us(y)dyde.
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In particular

_ 2 e
/ |"7R(:E) UR(Z/)| us(x)us(y)dydz < sup ui/ ” 77R”L (R )dyda:
o7 Bsr(wo)

2 25—2
|z —y|" Bsr(z0) xByp(zo) |@—y[" T

1
< ”VWRH%OO sup U2/ dl”/ —dy
B3zRr(o) ° B3g(0) Bgr(x) |z _y‘n—i- °

HVUH%OO 2 | (6R)*7
——=— sup u;|Bsg||S" | T+
Rr? B3 (o) ’ ’ 2(1 B S)

n—2s

<
R
< C Vil 3=

where in the second inequality we use the changes of variables z — xg and y — z¢ and the fact
that B3r(0) x B3sg(0) C B3r(0) x Bgr(z) for every x € Bsgr(0). Similarly we have

2
/ nr(@) =1 Wy () dyda < 2 / us(2) ( / %@) de
0, |z —y| Bar(w0) R™\Bsg(z0) |T — Y|

§2/ us(z + x0) / us(y+xo)n+28dy dx
Bar(0) R™\B3g(0) |y\n+23 (1 — %)

Ys
< 2.3n+25/ US(ZL‘—|—$0) (/ C(’y‘ _:_ifs(ﬂ) dy) dz
B3r(0) R™\B3g(0) |y|

< C sup us|Bag] ‘S”_l‘ 27°G(xo, R)

max {20/ , (3R)*} el o 51

Bsr(zo)
with y
2':“_' - (3R)~2%* if |zo| > 3R (3R)-2
G(wo, R) = (;R)%_QS N P 5 max{|zg|,3R}"".
S if x| < 3R °

25 — s

Finally, we obtain the desired bound for the seminorm [usnR]%{s (R") summing the two terms and
recalling that HusHLm(Sn_l) =1. -

2.3 CHARACTERISTIC EXPONENT ’)/S(C)! PROPERTIES AND ASYMPTOTIC BEHAVIOUR

In this Section we start the analysis of the asymptotic behaviour of the homogeneity degree
7s(C') as s converges to 1. The main results are two: first we get a monotonicity result for the
map s — (C), for a fixed regular cone C, which ensures the existence of the limit and, using
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some comparison result, a bound on the possible value of the limit exponent. Secondly we study
- - - C(n,s)

the asymptotic behaviour of the quotient T5—e (O

In order to prove the first result and compare different order of s-harmonic functions for different

power of (—A)®, we need to introduce some results which give a natural extension of the classic

semigroup property of the fractional Laplacian, for function defined on cones which grow at

infinity.

2.3.1 Distributional semigroup property

It is well known that if we deal with smooth functions with compact support, or more gener-
ally with functions in the Schwartz space S(IR™), a semigroup property holds for the fractional
Laplacian, i.e. (—A)% o (—A)%2 = (—A)%1752 where 51,52 € (0,1) with s1 + s3 < 1. Since
we have to deal with functions in £! that grow at infinity, we have to construct a distributional
counterpart of the semigroup property, in order to compute high order fractional Laplacians for
solutions of the problem given in (55).

First of all, we remark that a solution us to (55) for a fixed cone C belongs to L’i since 0 <
us(z) < |z)*(©) in R™ with v,(C) € (0,2s). Moreover, by the homogeneity one can rewrite
the norm (61) in the following way

uy(2) / /°° pr el
s — 7d — Sd 7d
[|u ||Lg /]R" (1+ [z])"+2s v gn—1 Usca o (I4+p)nt2s ’

_I(n+7(C))T(2s —75(C))
- ['(n+2s) /Snl usdo.

In the recent paper [40] the authors introduced a new notion of fractional Laplacian applying to a
wider class of functions which grow more than linearly at infinity. This is achieved by defining
an equivalence class of functions modulo polynomials of a fixed order. However, it can be hardly
exploited to the solutions of (55) as they annihilate on a set of nonempty interior.

As shown in [8, Definition 3.6], if we consider a smooth function with compact support ¢ €
C2°(R™)(or ¢ € C%(IR™)), we can define the distribution k£2¢ by the formula

(=8)°(0) = (K, ).

By this definition, it follows that (—A)%p(x) = k5 * o(z).
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Definition 2.3.1. [8, Definition 3.7] For u € £! we define the distributional fractional Laplacian
(—A)*u by the formula

((=A)°u, ) = (u, (=A)°¢), Vo€ CF(R").

In particular, since given an open subset D C R" and u € C?(D) N L., the fractional
Laplacian exists as a continuous function of z € D and (—A)*u = (—A)*u as a distribution in
D [8, Lemma 3.8], through the Chapter we will always use (—A)?® both for the classic and the
distributional fractional Laplacian. The following is a useful tool to compute the distributional
fractional Laplacian.

Lemma 2.3.2. [8, Lemma 3.3] Assume that

// | \y a:|"+g‘|gd vdy <+oo and / |f(z)g(z)|dx < +oo, (68)
ly—x|>e - n

then ((=A)3f,g) = (f,(=A)3g). Moreover if f € L} and g € C.(R™) the assumptions (68) are
satisfied for every € > 0.

Before proving the semigroup property, we prove the following lemma which ensures the
existence of the d-Laplacian of the s-Laplacian, for 0 < ¢ < 1.

Lemma 2.3.3. Let us be solution of (55) with C' a regular cone. Then we have (—A)*u, € L} for
anyd > 0, ie.
[(=8)"us ()]
B72) %)y
Jo e ppmtn <+

Proof. Since the function us is s-harmonic in C, namely (—A)*us(z) = 0 for all € C, we can
restrict the domain of integration to R \ C.

By homogeneity and the results in [8], we have that the function (—A)®u is (s — 2s)-homogeneous

and in particular x — (—A)®u(x) is a continuous negative function, foreveryz € D CcC R™\ C.
In order to compute the previous integral, we focus our attention on the restriction of the fractional
Laplacian to the sphere .S n—1 in particular, we prove that there exists £ > 0 and C' > 0 such that

C

s n—1

where N.(0C) = {z € R"\ C : dist(z,0C) < €} is the tubular neighborhood of OC'.
Hence, fixed R > 0 small enough, consider initially ¢ < R and z € S"~! N N.(9C): since
us(y) < |y|”* in R™ and by (63) there exists a constant C' > 0 such that for every y € C we have

us(y) < Cly[™ " dist(y, 0C)°,
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it follows, defining 6 (z) := dist(z, 9C') > 0, that

Usg Us
Coru@i=cs) [ U aycp [ g,
CNBg(x) |z — Y| C\Br(x) |z — Y|
Ys—S di B Vs
< C(n,s) / O lsi(fé’sac) dy +C(n,s) / andy-
CNBg(z) |z —y| C\Bg(z) |z — |

Since C'N Br(x) C Br(x)\ Bs(y) (), we have

ly|7>* (|lz —y|+ 1)
[(=A)us(z)| < C ———dy + o dy
’ R>la—y|>8(z) |2 —y[" ey>r |z —y|"
1 o (4 1)
<C . dytw _1/ AL
R>la—y|>8(z) |2 —y[" R

L |
§) T
1

<C—F+ M.
- Cdist(:r,@C)S *

Moreover, again since s € (0, 1), up to consider a smaller neighborhood N.(9C'), we obtain that
there exists a constant £ > 0 small enough and C' > 0 such that

C
[ —
~ dist(z,0C)*

Now, fixed > 0 and considered & > 0 of (69), we have

(-8 )

[(=A)°us ()| /
——— 2 dzr = dx
Jone T3 = foro ™o
> 2 (=A)%us(2)] g
= " “do(z)dr
/0 /snlm(]Rn\C) (L4 r)n+2 (2)

[ — (-8)*u,(2)
S S / _A)ouy(2)| do.
o (L4720 Jonaqmm o)

Since 5 € (0,2s) and s € (0,1), it follows

[(—=A)us(x)] for every 2 € N:(0C) N S"~L.

a2

(-8)"u(2) s / s
T narwdr <C —A)’ug(z)|do+C —A)’us(z)| do
oo rhpemtz<e [ eado e [ ey

1
<C —F—odo+ M
Sn—=1NN(8C) dlSt(Z, 8(3’)3

< 400
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where in the second inequality we used that z — (—A)%us(z) is continuous in every A CC

S"=1 A (R™\ C) and in the last one that dist(z,0C)~* € L}(S"~!1 N Nz(0C), do). O

Proposition 2.3.4 (Distributional semigroup property). Let us be a solution of (55) with C a
regular cone and consider 6 € (0,1 — s). Then

(=8)"Fus = (=8)°[(=8)°us] inD'(C)
or equivalently
((=8)""us, 0) = ((=8)°[(=A)°us], 0),  ¥p € CZ(C).

Proof. Since |ug(x)| < |z|"*, with vs € (0,2s), it is easy to see that us € L1 N C?(C). Moreover,
as we have already remarked, if us € £} thenu, € L], ; forevery § > 0. In particular, (—A)5H0u,
does exist and it is a continuous function of « € C, for every 6 € (0,1 — s). By definition of the
distributional fractional Laplacian, we obtain

((=8)"*us, ) = (us, (1)),

and since for ¢ € C°(C') C S(IR™) in the Schwarz space, the classic semigroup property holds,
we obtain that

((=A)" us, ) = (us, (—8)°[(=8)°¢)]).
On the other hand, since by Lemma 2.3.3 we have (—A)*u, € £}, it follows

(=2)2[(=8)*us),9) = ((=B)°us, (~8)2) (70)

for every € > 0. Since (—A)*us € L} and p € C°(IR™), the §-Laplacian of (—A)%us does exists
in a distributional sense and hence the left hand side in (70) does converge to ((—A)°[(—A)*us], )
as ¢ — 0. Moreover the right hand side in (70) does converge to ((—A)%us,, (—A)%p) by the
dominated convergence theorem, using Proposition 2.2.2 and Lemma 2.3.3 which give

[ corumipear < [ bl

o (1 n |w‘)n+25dx < 4o00.

By the previous remarks,

(=2)°[(=A)°us], ) = ((=B)°us, (—B)°¢).

In order to conclude the proof of the distributional semigroup property, we need to show that

(us, (=0)°[(=A)°¢]) = ((=B)*us, (=4)°p), (71)
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which is not a trivial equality, since (—A)%¢ € C*°(IR™) is no more compactly supported.

Let n € C°(B2(0)) be a radial cutoff function such that » = 1in B;(0) and 0 < 7 < 1
in B2(0), and define np(z) = n(z/R), for R > 0. Obviously, since usng € C.(R") and
(—=A)op € L1, by Lemma 2.3.2 we have

(ustir, (=8)2[(=8)°¢]) = (=) (usnr), (—4)°0) (72)

for every €, R > 0. First, for R > 0 fixed, we want to pass to the limit for ¢ — 0. For the left
hand side in (72), we get the convergence to (usng, (—A)*[(—=A)%¢]) since we can apply the
dominated convergence theorem. In fact

| w8381l < e [ (=8)* < 400,

where K denotes the support of usng. For the right hand side in (72) we observe that, for any
reR"”

(=8)2(usnr) (x) = nr(@)(=D)2us(x) + us(2) (=A)2nr(2) — I(us, nr)(7),

where

() (w) = Cn.s) [ . (us(2) = uTiy_)) y([liif) ) g,

Obviously the first term ((—A)3us,nr(—=A)%p) — ((=A)%us,nr(—A)%p) by definition of
the distributional s-Laplacian, since us € £} and nr(—A)%¢ € C°(R™). The second term
(us(—=A)ng, (—A)°¢) — (us(—=A)*ng, (—A)°p) by dominated convergence, since

/nus(—A)gnR(—A)%dx < c/ @) g

re (1 [z

Finally, the last term (I.(us,ngr), (—A)2¢p) — (I(us,nr), (—A)%p) by dominated convergence,
since

/ I (s, 1) (—A)odz < C

which is integrable by Proposition 2.2.2. Finally, passing to the limit for ¢ — 0, from (72) we get

(usnRv (_A)S[(_A)é()p]) = ((_A)S(usnR)v (_A)(S(P)’ (73)

(—A)’e|da,
-

for every R > 0.
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Now we want to prove (71), concluding this proof, by passing to the limit in (73) for R — 4o00.

é
)
for R — oo, we focus our attention on the other one. At this point, we need to prove that for any

p e CX(0),

Since we know, by dominated convergence, that the left hand side converges to (ug, (—A)*(—A)

| cartumeaye— [ aru-ars @
as R — +oo. First of all, we remark that (—A)®(usnr) — (—A)%us in L] (R"). In fact,
let K C IR" be a compact set. There exists 7 > 0 such that K C By. Then, considering
any radius R > 7, nr(z) = 1 for any € K. Hence, for any R > T, using the fact that
us(z) = |z us(a/]

), we obtain

C(n, S)P.V/ us(x)nr(r) — uTiy_)nszgZ:- us(y) — us(w)d:

18 ) ) = (-8 (oo = [ s n
Ug 1-—
= C(n, s)/de (P.V/C\BR (’i)[_ y|nZR2£y)]dy>
< C(n,s)/}(dx (P.V/G\BR Wdy)

Vs
<C(n,s /dx P.V/ vl = d
( ) K ( C\Br ’y|n+2$(1 _ %)n+2s Yy

n+2s P 1
:C< R ) lim ———dr

R-7 p—too [p r25TYstl
R n+2s 1
(=) w0

as R — +o00. Hence we obtain also pointwise convergence almost everywhere. Moreover, we
can give the following expression

(~8)" (i) (2) = ) (=) ) + Clo Y. [ i) "I 0y (75

We remark that ng(z)(—A)%us(z) — (—A)us(z) and [, us(y)wdy — 0 point-

lz—y[nF2s
wisely. Moreover we can dominate the first term in the following way

and
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since (—A)*u; € £} and using Proposition 2.2.2 over ¢ € C°(C'). In order to prove (74), we
want to apply the dominated convergence theorem, and hence we need the following condition

forany R > 0
nr(z) —nr(y)
im | oo (o [ ) Ry e <

Therefore, we will obtain a stronger condition; that is, the existence of a value £ > 0 such that

forany R > 1

C
Iéﬁ'

We split the region of integration IR"™ x IR™ into five different parts; that is,
Oy = (R"\ Bag) x R", Qg := Bag x Bapg, Q3 := (Bar \ Br) x (Bsr \ B2r),

04 = (BQR\BR) X (IRn\BgR), 05 = BR X (IRn\BQR).

First of all, we remark that (—A)*ng (z) = R™?*(—A)®*n(x/ R) and also that || (—=A)*n]| oo (rn) <
+00. For the first term, using the fact that ng(z) — nr(y) = 0if (x,y) € (R™\ Bagr) x (R™\

Bar)
— nr(y)
b= /IR”\BQR |’/n |"f25 dy| dz
</ n\BmM—A)%(x)\ / mus@)’W da
= ] (TR TS EEIE

< c 1 de < c
— Rst'yS n (1 + |x|)n+26 T = R2s Ys

For the second term, using the fact that nr(z) — nr(y) > 0if (z,y) € Bag x (R™\ Bag), we

obtain as before
—nr(Y)
I, := / x)| / ——————=dy
Ban ‘ ’n+25

/B (~A)o () <p) (~A)*nr(x)ldz

Baor

dx

IN

< c 1 Ay < c
— Rst'ys n (1 + |$Dn+26 T = RstfyS .
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For the third part

nr(x) —nr(y)
him [ feare@l| [ ) Iy o,
Bor\BRr B3r\B2r ]a} _y| +2

we consider the following change of variables { = /R € By \ By and ( = y/R € B3\ Ba.

Hence, using the v5s-homogeneity of us and the definition of our cut-off functions, we obtain

R" n(€) —n(¢)
< —0' — AV o (RE) |ug ()32 qedc.
3 S Rn+28—'7s //(VBQ\Bl)X(B3\BQ) ’( ) 80( £)|u (C) ‘g - <|1’L+28 g C

We use the fact that us € C%*(Bs\ Bj) (see (63) proved in [67]) and the cut off function
n € Lip(Bs \ Bj); that is, there exists a constant ¢ > 0 such that

us(§) —us(Q)f <€ =¢* and  |n(&§) —n(Q)] < ¢l =], (76)

for every &,( € B3\ Bj. Hence,

_B R [us () = us (&)l In(€) = n(Q)|
M e //(32\31)><(B3\Bz)’( Al € = ¢Jn+ee dede
_ LAY [n(€) = ()]
g o oy (ORI D aeac
= J1+ Jo.

By (76), we obtain

B ettt // (—ayYe(re) L= deac
>~ Rn+28—’)/5 (BQ\Bl)X(Bg\BQ) |§ _ C n+2s

- R // 1 1 ded¢
C—
T R (B2\B1)x(B3\Bz2) (1+ R|§Dn+26 |§ —¢|nts—t
1

C C
< T A6dC <
R 42077 //(BQ\Bl)x(Bg,\Bz) [§ = ¢Jrte—t R2s20
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Moreover, using other two changes of variable (£,¢) — (£, + h) and (§,() — (£,€ — h), we

obtain
i 5 n(§) —n(<)
=y v —A s 7(1 d
" S ooy (P R R T aag
! NGEGI
< Rn+2s Vs ﬂBg\B1 (B3\Bz) (1—|—R‘f|)"+25 5<€) |£ <'|n+28 5 C
e §O (0
= R2s+20-7s //(BQ\BI «(Bs\By) 1€ —¢|"t2s sde
<

<V (&)h,h > c
—_ dédh —_—
R2s+25 Vs ( //32\31 ) B. |h|n+25 5 R23+26 Ys

For the fourth part

- CAYoo(z (o)1) = 1R(Y) 4 1
i Aol [ ) Paya

we consider, as before, the following change of variables { = /R € B3\ Byand ( = y/R €
R™\ Bs. Hence,

Lo< e B J (AP (Rl deac
T R JJ(By\By)x (R7\Bs) ¢ — &t
R*" // 1 <[
< = déd¢
Rr257% J) o\ x (Re\By) (14 RIEN)™ 20 |¢ — 2o jn+2s
c <]
< s dgd¢
R2s+20=s //(Bg\Bl)X(]R”\B ¢ 2s (1 — b2
< C

- - - 3ed - -
R25+26—'ys //(Bg\Bl) (R™\ Bs) ‘C‘nJrQS Vs § C— R25+26 Vs

Eventually, we consider the last term

nr(x) —nr(y)
Us\Y ——~dy|dx.
/Rn\BQR ) |z — y[rt2s

I = /B (~A) ()
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Hence we obtain

Bosoef Jeabe@l( [ ey
Br R™\Bap |y—x’ s
< of Jemen| [ e ay)
Br R™\Bar |y — m‘wr s
1
< C/ (=8)°p(x (/ dy)dx
5 (=8)°p ()] e TP
1 +o00 1 c
< B, | d
= ¢ (\/]Rn (1 + ’.’E‘)n-‘rQ(S .’E) (/2R r1+28—’ys T) RQS_’YS’
which it implies the desired result. 0

At this point, fixed s € (0, 1), by the distributional semigroup property we can compute
easily high order fractional Laplacians (—A)**? viewing it as the J-Laplacian of the s-Laplacian.

Corollary 2.3.5. Let C be a regular cone. For every 6 € (0,1 — s), the solution us of (55) is
(s + &)-superharmonic in C' in the sense of distribution, i.e.

((=2)**us, ) > 0

for every test function ¢ € C°(C') nonnegative in C.
Moreover, us is also superharmonic in C' in the sense of distribution, i.e.

(—AUS, SO) Z O
for every test function ¢ € C°(C') nonnegative in C.

Proof. As said before, the facts that u; € L}, 5 and u, € C?(A) for every A CC C ensure
the existence of the (—A)*+%u, and the continuity of the map = ++ (—A)*+ou,(z) for every
x € A CC C. Hence at this point, the only part we need to prove is the positivity of the
(s 4 0)-Laplacian in the sense of the distribution, which is a direct consequence of the previous
result. Indeed, since u; is a solution of the problem (55), by Proposition 2.3.4 we know that for
every ¢ € C2°(C) we have

(=) us, ) = ((=0)°[(=8)*us), )
:/ (p(l’) P.V./ (_A) Us(x) — (_A) US(y)dydiL‘.
c R |z

- y’n+25
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where (—A)[(—A)%u,] is well defined since that (—A)%us = 0 € C?(A) for every A CC C
and, by Lemma 2.3.3, (—A)%us € L} for every 6 € (0,1 — s).

Consider now nonnegative test function ¢ > 0in C, since (—A)%ug(x) = 0 for every z € C, we
have for every z € R"\ C

() ute) = | ‘“(,)dy <0,

Similarly,

(-arule) = [ o) [ =Ry =0

since the support of ¢ is compact in the cone C, and so there exists ¢ > 0 such that [x — y| > €in
the above integral. We have obtained that for any § € (0, 1 — s) and any nonnegative ¢ € C2°(C)

((=A)*"uy, ) >0,

then, passing to the limit for & — 1 — s, the function u is superharmonic in the distributional
sense

0< lim ((=A)*Mug, ) = lim (us, (—A)*"¢) = (us, —Ap) = (—Aus, @).

d—1—s o0—1—s

2.3.2  Monotonicity of s — ~5(C)

The following proposition is a consequence of Corollary 2.3.5 and it follows essentially the
proof of Lemma 2 in [9].

Proposition 2.3.6. For any fixed regular cone C' with vertex in 0, the map s — ~5(C') is monotone
non decreasing in (0, 1).

Proof. Fixed the cone C, let us denote with v, and 7,45 respectively the homogeneities of us and
us+5. Let us suppose by contradiction that vs > 515 forad € (0,1 — s), and let us consider the
function

h(z) = usys(x) —us(z) inR",
where u is the homogeneous solution of (55) and s is the unique, up to multiplicative constants,
nonnegative nontrivial homogeneous and continuous in IR” solution for

(=A)¥0u =0, in C,
u=0, in R"\C,
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of the form

x
Usy5(2) = |2 0 usys <|$) .

The function h is continuous in R” and h(z) = 0 in R™ \ C. We want to prove that A(z) < 0 in
R™ \ (C'N By). Since h = 0 outside the cone, we can consider only what happens in C'\ Bj. As
we already quoted, we have

c1(8) |z *dist(x, 0C)° < ug(x) < ea(s)|z[*dist(x, 0C)?, (77)
for any z € C \ {0}, and there exist two constants c; (s + d), ca(s + &) > 0 such that
c1(s 4+ 0)|z| s+~ dist (2, 0C) 0 < ugys(z) < ca(s+ 0)|x|'s+o~Fdist(x, DC)*H.

We can choose us and usys5 so that ¢ := ¢1(s) = ca2(s + 9) since they are defined up to a
multiplicative constant. Then, for any z € C'\ By, since |z|?++¢ < |z|7*, we have

dist(x, 0C)°

h(z) < c|z|"*dist(z, 0C)* l 2P

- 1] <0. (78)

In fact, if we take x such that dist(z, C') < 1, then (78) follows by

dist(x, 0C)?

P — 1 < dist(z,0C)° —1 <0,

Instead, if we consider  so that dist(z, 0C) > 1, then dist(z, 9C)° < |z|° and hence (78) follows.

Now we want to show that there exists a point g € C N B; such that h(zg) > 0. Let us
take a point T € S" ' N C and let & := us 5(Z) > 0 and 3 := us(T) > 0. Hence, there exists
a small 7 > 0 so that ar?s+5 > Sr7, and so, taking = with |xg| = r and so that 2% = T, we

B
obtain h(xg) > 0.

If we consider the restriction of h to C'N By, which is continuous on a compact set, for the
considerations done before and for the Weierstrass Theorem, there exists a maximum point
21 € C'N By for the function h which is global in IR™ and is strict at least in a set of positive
measure. Hence,

(—A)*"*h(z1) = C(n, s) PV. / M) =hly) g~

Rn ’xl _ y‘n+2(s+5)

and since (—A)*Th is a continuous function in the open cone, there exists an open set U (z1)
with U(z1) C C such that

(=A)*TOh(z) >0 Vo e Ul(x).
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But thanks to Corollary 2.3.5 we obtain a contradiction since for any nonnegative o € C2°(U (1))

((=2)"*°h, ) = ((—0)"Fusss, ) = (=4)" us, ) = =((=1)*Fus, ) < 0.
O

With the same argument of the previous proof we can show also the following useful upper
bound.

Proposition 2.3.7. For any fixed regular cone C' with vertex in 0 and any s € (0,1), 75(C) <
7(C).

Proof. Seeking a contradiction, we suppose that there exists s € (0, 1) such that 75 > 7. Hence
we define the function
h(z) = u(z) —us(z) inR",

where us and u are respectively solutions to (55) and

—Au =0, in C,
{ (79)

u=0, in R"\C.

We recall that these solutions are unique, up to multiplicative constants, nonnegative nontrivial
homogeneous and continuous in R™ of the form

X

u(z) = |z (\x) , us(x) = |z us <|§’> .

for some 75 € (0,2s) and vy € (0, 400). The function A is continuous in R" and h(z) = 0 in
R" \ C. We want to prove that h(x) < 0inR™\ (C N By). Since h = 0 outside the cone, we
can consider only what happens in C'\ Bj. So, there exist two constants ¢; (), c2(s) > 0 such
that, for any = € C \ {0}, it holds (77). Moreover there exist two constants ¢y, ca > 0 such that,

c1]z|Mist(z, 0C) < u(x) < colx|dist(x, C).

We can choose us and u so that ¢ := ¢1(s) = c¢2 since they are defined up to a multiplicative
constant. Then, for any z € C'\ By, since |z|” < |z|7*, we have

dist(x, 0C)1~¢

|x|175

h(z) < c|z|dist(z, C)* [ -1/ <o,

with the same arguments of the previous proof.

Now we want to show that there exists a point 9 € C N By such that h(zp) > 0. Let us
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take a point 7 € S" 1 N C and let @ := u(Z) > 0 and 3 := us(T) > 0. Hence, there exists a
small 7 > 0 so that ar” > 375, and so, taking xo with |zo| = r and so that ﬁ—& = T, we obtain
h(ﬂfo) > 0.

If we consider the restriction of h to C'N By, which is continuous on a compact set, for the
considerations done before and for the Weierstrass Theorem, there exists at least a maximum
point in C'N By for the function h which is global in IR™. Moreover, since h cannot be constant on
C N By and it is of class C? inside the cone, there exists a global maximum y € C' N By such that,
up to a rotation, 97, h(y) < Oforanyi=1,...,nand 8§jzjh(y) < 0 for at least a coordinate
direction. Hence

=1

By the continuity of A/ in the open cone, there exists an open set U (y) with U(y) C C such that
Ah(z) <0 VzeUl(y).
Since, by Corollary 2.3.5 for any nonnegative ¢ € C°(U(y))
(—Aus, @) >0,

hence
(Ahv @) = (Auv @) - (Aus, CP) = (7Au57 90) > O’

and this is a contradiction. O

2.3.3 Asymptotic behavior of%

Let us define for any regular cone C' the limit

pu(C) = lim C(n, s)

R (o) B

Obviously, thanks to the monotonicity of s — ~5(C') in (0, 1), this limit does exist, but we want
to show that 1(C') can not be infinite. At this point, this situation can happen since 2s — v, (C)
can converge to zero and we do not have enough information about this convergence. The study
of this limit depends on the cone C'itself and so we will consider separately the case of wide cones
and narrow cones, which are respectively when v(C') < 2 and when v(C) > 2. In this Section,
we prove this result just for regular cones, while in Section 2.4 we will extend the existence of a
finite limit 1(C') to any unbounded cone, without the monotonicity result of Proposition 2.3.6.
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Wide cones: y(C) < 2

We remark that, fixed a wide cone C' C R"™, then there exists ¢ > 0 and sg € (0, 1), both
depending on C, such that for any s € [sg, 1)

25 —75(C) > e >0.

In fact we know that s — 75(C') is monotone non decreasing in (0,1) and 0 < 75(C) < v(C) <
2. Hence, defining 7(C') = lims_,1 75(C) € (0,2) we can choose
7(C) 2-7(C)

-2
spi=———+1€(1/2,1) and e:= 5

>0
4 Y

obtaining
25 —75(C) > 250 —7(C) =& > 0.

As a consequence we obtain (C') = 0 for any wide cone.

Narrow cones: y(C') > 2

Before addressing the asymptotic analysis for any regular cone, we focus our attention on the
spherical caps ones with "small" aperture. Hence, let us fix 6y € (0, 7/4) and for any 6 € (0, 6],
let

1 |Vgnu*d
M) = M(wn) = min  JsmtVeriuldo
weHY(S"10Cy)  [gno1 utdo
u#0

We have that A1 (6) > 2n, and hence the following problem is well defined

net | Vgn-1u|® — 2nu?d
po(0) == min Jgnor Vsl Znu ’. (80)
ueHg(s; 1NCy) (fgn-1 |uldo)
u#0

This number z1o () is strictly positive and achieved by a nonnegative ¢ € H (S"~1NCy) \ {0}
which is strictly positive on S”~! N Cy and is obviously solution to

—Agn-10 = 2np + po(0) / odo in SNy,
Sn—1 (81)

=0 in S\ Oy,

where —Agn-1 is the Laplace-Beltrami operator on the unitary sphere S" 1.
Let now v be the 0-homogeneous extension of ¢ to the whole of R” and r(x) := |z|. Such a
function will be solution to
_Ap = 2w po(6) / d ; C
v o i e Sn_lv o in 0, (82)
v=0 in R™\ Cy.
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Since the spherical cap Cy N .S" ! is an analytic submanifold of S"~! and the data (9Cjy N
S"=1.0,0,) are not characteristic, by the classic theorem of Cauchy-Kovalevskaya we can
extend the solution ¢ of (81) to a function 3, which is defined in a enlarged cone and it satisfies

—Agn1® = 2np + pp(0) / edo in S"1NCye,
Sn—1
=9 in S"In Cy,

for some € > 0. As in (82), we can define ¥ as the 0-homogenous extension of . Finally, we
introduce the following function

vs(z) == r(2)" Dy (),

where the choice of the homogeneity exponent v (6) € (0, 2s) will be suggested by the following
important result.

Theorem 2.3.8. Let 0 € (0, 6], then there exists so = so(0) € (0, 1) such that
(=A)%vs(z) <0 inCy,
foranys € [so,1).
Proof. By the v (#)-homogeneity of v, it is sufficient to prove that (—A)%vs < 0 on Cy N S™71,
since z — (—A)%vs is (72 (0) — 2s)-homogenous. In order to ease the notations, through the

following computations we will simply use 7 instead of v () and o(1) for the terms which
converge to zero as s goes to 1. Hence, for z € S"~! N Cy, we have

n+2s

(=8)%vs(z) = |27 (=A8)v(2) +v(2)(=A)*r"(z) = C(n, s) /

First for R > 0,

n |z — 1y

. 2’ = |y 2’ = |y
(=A)°r7(x) :C(n,s)/ ||77|1+|25dy+6‘(n, s)/ H77|1+|25dy
Br() | =y R™\Bp(z) [ =yl
C(n,s) 20z|" — |zt 2" — |z — 2" L—|y|”
:2/ i 3s dZ+C(n,8)/ wdy
BR(0) 2| R™\Bp(z) [ = |
C(n,s) [T p*p"! 2
= -5 /0 T dp/Sn1 (VZz|" 2, z)do + o(1)+
) [ 1 ly”
+C(n,s)|S™! / Sdp—C(n,s)/ ———dy
‘ ‘ R p1+2 R\ Br(z) |$_y‘ +2
C(n,s) R>~2
= (2 ) 5 93 /Snl (V% 2|7 2, 2)do+
( )/oopn_lﬂ/ Z _ 9| dee(9)dp + o(1)
—C(n,s —_— - — (o5} p+o(l).
R P Jgrlp
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Since for every symmetric matrix A we have

/ (Az,z)do = %wn_l
Sn—1 n

where w;,_1 is the Lebesgue measure of the (n — 1)-sphere S™ ™!, we can simplify the first term
since trV? |z|” = A(|z|”) and checking that 5= 19‘7 =14vp 1 0,z) +o(p~')asp— ocoit

follows
(—A)*r(x) = — C(’;, s) fz_‘; A(|$2wn1  Cln s /: p;:;;v o)
= Cm'y(n —247) |z 2 R2% — (;Enii)wany—% +o(1)
= CM’Y(TL I o ii”_ai)wn_l}w_zs +o(1)
- CM’V(H—2+7) - girﬁ?wn_l +o(1),

where in the last equality we choose v = 7% () such that v*(0) — 2s — 0 as s goes to 1.
Similarly, if ¥ is the 0-homogenous extension of v in an enlarged cone, which is such that v > ©
and v = ¥ on Cy N S™ 1, it follows

(—A)*u(x) :C(n, s) /||<1 20(x) —v(z+ 2) _U(x_z)dz—k(}'(n, s)/ v(z) —v(y)d

n S o y
2 |Z‘ +2 |Ct—y|>1 ‘J;_y| +2s
C(n73) / Qﬁ(m)—ﬁ($+z)—1~)(x—z) /oo pnfl /
<—- P dz+C(n,s v(x) —v(y)dadp
2 |z|<1 |Z‘ +2 ( ) 1 pn+2s gn—1 ( ) ( )
C(n,s) [1p1p? )
T v 1
2 /0‘ pn+28 /S’”—l <v U(m)z,z>d0dp+0( )

- 4n(1 _ S) (—A)@(l‘) + 0(1)7

where we can use that 7 solves
—AD =2n? + ,uo/ vdo
Snfl
in the enlarged cap S™ ! N Cy... Finally,

C(n, S) /n (‘xh — ’yh)(’l}(x) - U(y))dy :C(n,s) [/|y|<1 (1 _ ‘yp)(v(x) _ v(y))dy+

|ﬂ§'—y|n+25 |x_y|n+25

(L—Jy")(v(@) —v(y))
+/y|>1 W

o —y|"
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where the first term is o(1) since

[a-me [ a0y M- [ ) e+ olp)asay

et |z — py|

R
[T a=me [ @) v+ 290l e,
Hence, we obtain

) [ LN =0, ) [ A 2oty

|x_y|n+2$ yl>1 ‘$_y|n+2$
Y _
—o(1) = Cn,s) [ R ZE g 1oy
y>1 T =yl
=0(1)—C(n,8)/ pvp”‘l/ %dodp
1 sn=1 |z — py|

=o1) = Clns) [ [ ola) =01+ o))
=Cns) [T [ (e = o) (nt 29) o o

=o(1) — Wv(x) + ignii) /Snl v(y)do.

Hence, recalling that v = v*(6), for x € S"~1 N Cy we have

(~8y0(a) < (a0 Gptest = CODY [ o GRS 01 0)) 2 -3 0

< (MO(Q) - m> /Sn_l vsdo +o(1)

where 0(1) is uniform with respect to y¥(#) as s — 1. In order to obtain a negative right hand
side, it is sufficient to choose v} (f) < 2s in such a way to make the denominator 2s — v*(0)

small enough and the quotient 25_(3;3()0) still bounded. O

The previous result suggestes the following choice of the homogeneity exponent
C(n,s)

Yi(0) :=2s —s ROR

We can finally prove the main result of this Section.

Corollary 2.3.9. For any regular cone C' we get 1i(C') < +o0.
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Proof. We will show that ;1(f) < 400 for any 6 € (0, 6p]. Then, fixed an unbounded regular
cone C, there exists a spherical cone Cy such that § € (0, 6y] and Cyp C C. Since by inclusion
7s(C) < 75(0), we obtain

pu(C) < u() < +oo.
We want to show that fixed 6 € (0, 6], 75(0) < ~Z(0) for any s € [s9(0), 1), where the choice

of s59(6) € (0,1) is given in Theorem 2.3.8. The proof of this fact is based on considerations done
in Proposition 2.3.6. By contradiction, vs(6) > (). Let

h(z) = vs(z) — us(x).

The function A is continuous in R” and h(z) = 0 in R™ \ Cy. We want to prove that h(z) <0
inIR™\ (Cyp N By). Since h = 0 outside the cone, we can consider only what happens in Cy \ Bj.
By (77), there exist two constants ci(s), c2(s) > 0 such that, for any = € Cy \ {0},

c1(s)]z|*dist(z, 0Cy)°® < us(x) < co(s)|z"**dist(x, dCy)?,
and there exist two constants c1, ca > 0 such that
c1 |z st (z, 0Cy) < vs(z) < eolz|’= ~Ldist(x, DC).

We can choose v, so that ¢ := ¢;1(s) = ¢ since it is defined up to a multiplicative constant. Then,
for any x € Cp \ By, since |z|" < |z|", we have

¢ | dist(z,0Cy)1* 1l <0

h(z) < c|z|"*dist(z, 0Cp) B <

Now we want to show that there exists a point g € Cy N By such that h(xo) > 0. Let us consider
for example the point Z € S"~! N Cy determined by the angle ¥ = 6/2, and let a := v4(Z) > 0
and 5 := ug (f) > 0. Hence, there exists a small 7 > 0 so that ar? > Br7s, and so, taking xg
with angle ¢ = 0/2 and |x¢| = r, we obtain h(xy) > 0.

If we consider the restriction of h to Cy N By, which is continuous on a compact set, for the
considerations done before and for the Weierstrass Theorem, there exists a maximum point
x1 € Cy N By for the function h which is global in IR™ and is strict at least in a set of positive
measure. Hence,

(=A)*h(z1) = C(n, ) P.v./ ) =hy) 4,

Re |1 — Y|

and since (—A)*h is a continuous function in the open cone, there exists an open set U (x1) with

U(x1) C Cp such that

(=A)°h(z) >0 VzeU(xr).
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But thanks to Theorem 2.3.8 we obtain a contradiction since for any nonnegative p € C2°(U (1))

((_A)Sh7 90) = ((_A)SU&SO) - ((_A)SU&SO) = ((_A)SU&(P) <0,
where the last inequality holds for any s € [so(6), 1). Hence, for any 6 € (0, 6]

p(0) = lim C(n.s) < lim Cln s)

9¢ —~(0) T o 0 . 8
s—1— 23_75(9) ~ e1- 28—7;‘(0) HO( ) < +o0 (83)

2.4 THE LIMIT FOR s /1

In this Section we prove the main result, Theorem 2.1.2, emphasizing the difference between
wide and narrow cones. Then we improve the asymptotic analysis proving uniqueness of the
limit under assumptions on the geometry and the regularity of C'

Let C' C IR™ be an open cone and consider the minimization problem

/ |VS'IL—1U|2dO-
Sn—1

u?do
Sn— 1

which is strictly related to the homogeneity of the solution of (79) by A1 (C) = v(C)(y(C) +
n—2).
Moreover, if v(C') > 2, equivalently if A\; (C) > 2n, the problem

A1 (C) = inf cue HY(S" )\ {0}andu=0in S" 1\ C}, (84)

/ |V gn-1ul* — 2nu’do
Sn—1

(/S ]u\da)Z

is well defined and the number 1((C') is strictly positive.

wo(C) = inf cue HY(S" )\ {0}andu=0in S" '\ C

(85)

By a standard argument due to the variational characterization of the previous quantities, we
already know the existence of a nonnegative eigenfunction ¢ € H}(S"~ 1N C) \ {0} associated
to the minimization problem (84) and a nonnegative function ¢y € H(S" 1N C)\ {0} that
achieves the minimum (85), since the numerator in (85) is a coercive quadratic form equivalent to
the one in (84).
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Since the cone C' may be disconnected, it is well known that ¢ is not necessarily unique. Instead,
the function ¢ is unique up to a multiplicative constant, since it solves

—Agn-11h = 2n1p + po(C) Ydo in S"INC,
Sn—l (86)
Y =0 in S"1\ C.

In fact, due to the integral term in the equation, the solution 1) must be strictly positive in every
connected component of C' and localizing the equation in a generic component we can easily get
uniqueness by maximum principle.

1

oc?

A fundamental toll in order to reach as s — 1 the space H,, is the following result

Proposition 2.4.1. [10, Corollary 7] Let (3 C R™ be a bounded domain. For 1 < p < oo, let
fs € W*P(Q)), and assume that

[fslwsr(q) < Co.

Then, up to a subsequence, (fs) converges in LP(Q) as s — 1(and, in fact, in WP(Q)), for all
t < 1)tosome f € WP(Q).

In [10] the authors used a different notation since in our manuscript the normalization constant
C(n, s) is incorporate in the seminorm [-| s, in order to obtain a continuity of the norm ||-|| ;.
for s € (0,1].

Proof of Theorem 2.1.2. Let C be an open cone and C be a regular cone with Section on S~ ! of

class C1'! such that Cp C C and 9Cr N IC = {0}.

By monotonicity of the homogeneity degree v,(-) with respect to the inclusion, we directly
obtain 5 (C') < 75(Cr) and consequently, up to consider a subsequence, we obtain the existence
of the following finite limits

7(C) = lim 7,(C), w(C) = lim

s—1 s—1 25 — ’yS(C) ) (87)

Since v5(C') < 2s, then 7(C') < 2 and similarly x(C) € [0, +00).

Let K C R™ be a compact set and consider zp € K and R > 0 such that K’ C Br(zo). Given
n € C°(By), a radial cut off function such that = 1 in B; and 0 < 5 < 1 in By, consider the

rescaled function 7x (x) = 7(*52) which satisfies nx = 1 on K.

By Proposition 2.2.7, we have

C(n,s) C(n,s)
2(1—2s) + 2s — 751’

stk ) Fre By (o)) < (UKo rny < M (n, K)
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and similarly

2 2
st ers (Byp(ao)) < lusni T2y + [usnKﬁ{S(lR")

<MnK{ Cln, ”S)+1}
21—5 23—73
2
<MnK{ n + cu(C —|—1].
Wn—1

By applying Proposition 2.4.1 with Q) = Byg(z(), we obtain that, up to a subsequence, usnx —
unk in L?(Bar(x0)) and
0K 1 By 0y < M (2, K)
up to relabeling the constant M (n, K).
By construction, since 75 = 1 on K and nx € [0,1], we obtain that us — % in L?(K) and
similarly
[l g rey < Nl ey < KN a1 (Byg (20)) < 00

which gives us the local integrability in H*(IR").

By Proposition 2.2.4 and Corollary 2.3.9 we obtain, up to pass to a subsequence, uniform in s bound
in C2%(C) for (us). Then, since we obtain uniform convergence on compact subsets of C, the
limit must be necessary nontrivial with |[%|| . (gn-1) = 1, nonnegative and 7(C')-homogeneous.

Let ¢ € C2°(C') be a positive smooth function compactly supported such that supp ¢ C B,
for some p > 0. By definition of the distributional fractional Laplacian

O:/ go(—A)Susd:U:/ us(—A)Scpdx:/ us(—A)Sgodx—F/ us(—A)°pdz.
n n ]Rn\Bp B

P

Since

1 1 Tl ~ Ul
o — g = PR — (n+2s) |:v|/ n+2s+2dt ’

III Iw\

by definition of the fractional Laplacian for regular functions, it follows

/ us(—A)°pdx =C(n, s) / us(x)/ %dydx
R\B, R™\B, supp ¢ |y — |

=C(n, s)/ usrgfgs/ —p(y)dydz+
R\B, || supp

+C(n,s)(n+2s)/IR %W dz,

"\B, |7|
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for some 1) € L. Moreover, since u; is 7s(C')-homogeneous with v,(C) < 2s, we have

us () C(n,s) )2
C’n,s/ de = ——"L_,7s(C) S/ ug(0)do
( ) ]R"\B,, |x‘n+28 28—’75(0)p Sn—1 ( )

and similarly

/ us(x) ¢($)dx‘ < C(TL"S)WHD>OP%(C)—28—1/ us(0)do = o(1).
R sn-t

C(n,s <
( ) "B, |$|TL+28+1 25 — 75(0) +1

Hence, for each s € (0,1)

/ us(—A)’pdr = / us(—A)°pdx
B, R™\B,
= C(n,s) / us(x)/ Lynl%dydx
R"™\B, supp ¢ |7 — Y|

—M x)dx ugdo 4o
_25*%’<C) /suppg;@( )d /Snl wdo +o(1)

and passing through the limit, up to a subsequence, we obtain

/Bpu(—A)cpdx — u(C) /S ado /Supp el

_ /B p (,u(C) /5 nluda) o(x)dz,

which implies, integrating by parts, that

—Au = u(0) /Snl ude inD'(C).
Since the function % is 7(C')-homogenous, we get

—ASn_lu:Au+u(0)/g o on s tnc, (88)
where A = 7(C)(F(C) + n — 2) is the eigenvalue associated to the critical exponent 5(C') < 2.

Consider now a nonnegative ¢ € H}(S" 1N C)\ {0}, strictly positive on S~ N C which
achieves (84). Then
—Agn-1p =M (C)p, in HH(S"1NCO). (89)

By testing this equation with u and integrating by parts, we obtain

()\1(0) —X) / updo = M(C)/ uda/ pdo >0 (90)
Sn—1 Sn—1 Sn—1
which implies that in general v(C') > 7(C') and v(C') = 7(C) if and only if 1(C') = 0.
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Wide cones: v(C') < 2

By the previous remark we have 7(C') < 2 and by definition of x(C), it follows p(C) = 0.
Since ¢ is the trace on S™~! of an homogenous harmonic function on C, we obtain that 7(C') =
v(C) and @ is an homogeneous nonnegative harmonic function on C' such that ||@|| ; (sn-1) = L.

Narrow cones: y(C') > 2

If5(C) < 2 we have u(C) = 0 and consequently A1 (C') = A, which is a contradiction since
v(C) > 2 > 5(C). Hence, if C' is a narrow cone we get 7(C') = 2. Since 7(C') = 2 is trivial and
it follows directly from the previous computations, consider now p(C') as the minimum defined
in (85), which is well defined and strictly positive since we are focusing on the remaining case
7(C) > 2. We already remarked that it is achieved by a nonnegative v» € H} (S"~1nC)\ {0}
which is strictly positive on S"~! N C and solution of

~Agn11) = 2n9p + o (C) Ydo in H1(S"1nQ).
Sn—1
As we already did in the previous cases, by testing this equation with & we obtain ;1(C) = po(C).
By uniqueness of the limits 7(C') and p(C'), the result in (87) holds for s — 1 and not just up to
a subsequence. O

Remark 2.4.2. The possible obstruction to the existence of the limit of u, as s converge s to one
lies in the possible lack of uniqueness of nonnegative solutions to (59) such that ||| j.cc (gn-1) = 1.
This is the reason why we need to extract subsequences in the asymptotic analysis of Theorem
2.1.2. More precisely, uniqueness of (84) implies uniqueness of the limit % in the case y(C') < 2
and uniqueness of (85) in the case v(C') > 2. When C' is connected (84) is attained by a unique
normalized nonnegative solution via a standard argument based upon the maximum priciple. On
the other hand, as we already remarked, when +(C') > 2, problem (85) always admits a unique
solution. Ultimately, the main obstacle in this analysis is the disconnection of the cone C' when
v(C) < 2: in this case we cannot always ensure the uniqueness of the solution of the limit
problem and even the positivity of the limit function % on every connected components of C.

The following example shows uniqueness of the limit function @ due to the nonlocal nature
of the fractional Laplacian under a symmetry assumption on the cone C.

Proposition 2.4.3. Let C = C1 U---UCy, be a union of disconnected cones such that C is
connected and there are orthogonal maps @, ..., ®,, € O(n) (e.g. reflections about hyperplanes)
such that C; = ®,(Cy) and and ®,(C) = (C) fori = 2,...,m. Let (us) be the family of
nonnegative solutions to (55) such that ||s|| oo (gn-1) = 1. Then there exists the limit of us ass /1
in L2 (R™) and uniformly on compact subsets of C.

loc
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Proof. We remark that, for any element of the orthogonal group ®: R® — R",

(—A)* (wo®) (z) = C(n, ) PV. / UP(z)) — uly)

R |®(z) -y

dy = (=8)"u (®(2)) -

By the uniqueness result [5, Theorem 3.2 ] of s-harmonic functions on cones, we infer that
us = ug o Py, for every i = 2, ..., m. Therefore, there holds convergence to w, where satisfies
[T oo (gn-1) = 1, and it is a solution of

—Au:u(C)/ udo inC,

Sn—1
>0 inC, (91)
=0 inR"\ C,
such that w = w o ®; for every ¢ = 2, ..., m. Finally, connectedness of C yields uniqueness of
such solution also for narrow cones. O

0
Y /4 /2 3r/4 T

Figure 5: Values of the limit T'(6) = lims_,; I'*(0) and I'(#), for n = 2.

Proof of Corollary 2.1.3. Corollary 2.1.3 is an easy application of our main Theorem 2.1.2, since
it is a consequence of the Dini’s Theorem for a monotone sequence of continuous functions
which converges pointwisely to a continuous function on a compact set. In fact, fixed s € (0, 1),
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the function 6 + ~,(#) is continuous in [0, 7) with v,(0) = 2s and ~s(7) = 0. Moreover this
function is also monotone decreasing in [0, | and since there exists the limit

lim_~,(6) =

O—m—

% ifn:2ands>%,
vs(m) =0 otherwise,

we can extend 6 — () to a continuous function in [0, 7] (see [67]). Nevertheless, the limit
~7(0) = lims—,1 v5(0) = min{~(0), 2} is continuous on [0, 7| with

L ifn =2,
7(W)={2

0 otherwise.

Eventually, for any fixed § € [0, 7], the function s — () is monotone nondecreasing in (0, 1).

By the Dini’s Theorem the convergence is uniform on [0, 7w]. This fact obviously implies the
uniform convergence

FS(H) — ’75(9) +75(7r — 9) SN T(@) _ 7(0) +7(7T — 9)
2
in [0, 7], and hence
vACT = min T%(0) — min T(9) = 47,
0€(0,7] 0€(0,7]

2.5 UNIFORM ESTIMATES IN ¢

ON ANNULI

We have already remarked in Section 2.2 that, if you take a cone C = C,, withw C S n—1 4
finite union of connected C*! domain wj, such that @; U wj = D fori # j, by [67, Lemma 3.3]
we have (63).
Hence solutions u; to (55) are C%*(S™~1) and for any fixed a € (0, 1), any solution us with
s € (a,1) is C%¥(S™71); that is, there exists Lg > 0 such that

wp 1@ W
z,yesSn—1 ’x - y|

Let us consider an annulus A = A,, ,, = By, \ By, with 0 < r; < 72 < +00. We have the
following result.
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Lemma 2.5.1. Leta € (0,1), s9 € (max{1/2,a},1) and A an annulus centered at zero. Then
there exists a constant ¢ > 0 such that any solution u to (55) with s € [so, 1) satisfies

sup w S CLS.

z,y€A ’.’L‘ - y|a

Proof. First of all we remark that

sup < cLs, (92)

:E,yES:'_l |J; _y’Oé
for any r € (71,72). In fact, by the v5-homogeneity of our solutions, we have

‘Us(ﬂf) _Us(y)| — LST'ysfa,

e |z =yl

zyesSy!

and since (259 —1)/2 < v5(C) < 2forany s € [sg, 1) by the inclusion C' C R™\ {half — line from 0},

we obtain (92).

Now we can show what happens considering =,y € A which are not on the same sphere. We can
suppose without loss of generality that z € S}, y € SP~! with r; < r < R < ry. Hence let us
take the point z obtained by the intersection between S”~! and the half-line connecting 0 and x
(z may be y itself). Hence

lus () — us(2)] + us(2) — us(y)|
us(x/ |z|)||z"* — |27 4 cLs|z — y|*
cLg|lx —y|*.

us() — us(y)|

ININ A

In fact we remark that ||us|[;«(gn-1) = 1. Moreover, since the angle 3 = 72y € (7/2,7],
obviously |z — y|* < |z — y|*. Moreover by the a-Hélder continuity of ¢ — 7 in (r1,72) and
the bounds (2sp — 1) /2 < 45(C) < 2, one can find a universal constant ¢ > 0 such that

[l = |2 < effa] = [2]|* < elz = 2" < clz —y[%,
where the last inequality holds since z is the point on S?~! which minimizes the distance
dist(z, SP~1). O
A nontrivial improvement of the main Theorem concerns uniform bounds in Holder spaces
holding uniformly for s — 1.

Theorem 2.5.2. Assume the coneisCH!. Letaw € (0,1), so € (max{1/2,a},1) and A an annulus
centered at zero. Then the family of solutions us to (55) is uniformly bounded in C%%(A) for any
s € [s0,1).
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Proof. Seeking a contradiction,

max [ () = s, (9)] = L,, = L — 400, as s, — 1. (93)
zyesn=1 |z —y|*

We can consider the sequence of points zy, yx € S™~! which realizes Ly, at any step. It is easy to
see that this couple belongs to C'N S™~ 1. Moreover we can always think z, as the one closer
to the boundary OC N S"~!. Therefore, to have (93), we have r;, = |z — yx| — 0. Hence,
without loss of generality, we can assume that xy, yx belong defenetively to the same connected
component of C' and

sy, (Yr) s @)l _p e
Tk Tk
Let us define
k sy, (T + 1) — us, (1) C —
= Q= .
u”(x) oLy ) x € Q) o

We remark that ©*(0) = 0 and u* ((yx, — x1) /71) = 1.

Moreover we can have two different situations.

Casel: If .
k
—_— — 0
dist(zg, C) -
then the limit of (), is R™.
Case2: If
Tk
— 1 € (0,400,

dist(ﬂjk, 60)
then the limit of (), is an half-space R” N {z; > 0}.

In any case let us define () this limit set. Let us consider the annulus A* := Bg /5 \ By /2. By
Lemma 2.5.1 and the definition of u”*, we obtain, for any k,

|uF(x) — uF(y)|

sup — <g, (94)
z,yeA} |$ - y|
where A} := A"=2k _, R and the constant ¢ > 0 depends only on « and A*. Let us consider a

Tk

compact subset K of Q). Since for k large enough K C A%, functions u* are C%%( K) uniformly
in k. This is due also to the fact that they are uniformly in L>°(K), since |u*(z) — u*(0)| < ¢|z|®
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on K. Hence u* — % uniformly on compact subsets of Q.. Moreover 7 is globally a-Holder
continuous and it is not constant, since u(e;) — u(0) = 1. To conclude, we will show that u is
harmonic in the limit domain Q; that is, for any ¢ € C2°(Qx)

/QOO b(—A)adz = 0,

and this fact will be a contradiction with the global Hélder continuity. In fact we can apply
Corollary 2.3 in [72], if Qs = R™ directly on the function @ and if Qs = R™ N {z1 > 0}, since
% = 0 in 00, we can use the same result over its odd reflection. Hence we want to prove

/ o(—A)udz :/ W(—A)pdr = lim uF (=) pdr = 0,
Qoo (O

k—+o0 Bgr

where Br contains the support of ¢ and the second equality holds by the uniform convergences

uF — 7 and (—A)*¢ — (—A)¢ on compact subsets of (), since ¢ is a smooth function

k

compactly supported. Moreover, since u” is sg-harmonic on (), and for k large enough the

support of ¢ is contained in this domain, we have
/ uF (=A)*Fpdx = P(—A)*uFdz = 0.
n R
In order to conclude we want

lim uP(=A)*Fpda = 0.
k—+o00 R"\Bg

Hence, defining n = xy, + o and using Remark 2.2.3, we obtain

/ uF (=A)*Fpdz
R"\Bpr

For k large enough, we notice that we can choose ¢ > 0 such that the set {n € R” : Rr; <

< C(nask)TQSk—a/ |u8k(77) — Ugy, (xk’)|
- Ly F =g >Rr, |1 g[S

|n — x| < e} is contained in A*. So, we can split the integral obtaining

/ |u8k (77) - ZTQ(Szkﬂdn < / ‘uszc (77) - QZTQ(Skadn—’—/ IUSk (77) - Q:Lj/j2<sxk)|dn
|[n—xk|>Rry, ’77 - $1€| k Rri<|n—zi|<e |77 - xk| k [n—xk|>e |77 - xk| k
where we have

2 —
C(n, Sk)rk% “ / |usy, (1) — us, (xkﬂdn < C(n, Sk)Tzsk_aCWn—l /6 g 1ta=2s 44
Rri<|n—zk|<e

Ly, [N — @p |2 Rry

25—«
:C’(n, Sk)CwWn—1 Ra—2si _ T
281, — g2sk—a
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and similarly

C(n, Sk)”%L_a / |, (1) _USk(xk)’d < C(n, sp)ri™ ™ cwn1 /OO (L+2)7x
[n—zk|>e

Ly |17 — x| 25k 7= Ly, t1+2sk
_C(nv Sk)rliSkiacwn—l 14 grsk — 2
Lk 251(: — Vsk .

Finally, recalling that 7, — 0, C(n, sx) — 0, Ly — oo and 2s; — a > 0 taking sg > 1/2, we

obtain )
Sp—Q
/ uF(=A)*pdr| < (C(n, sk) + Cln, %) 7 )M
R™\Bgr

25k — Vs, Li
which converges to zero as we claimed, since

C(n,sk)

T = (O) o (O] — u(C) € [0,4+00)

in any regular cone C' C R™. O
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NODAL SET OF SOLUTIONS OF DEGENERATE - SINGULAR
EQUATIONS

3.1 INTRODUCTION

In literature, the subject of nodal sets, or level sets in general, is an important research topic
for solutions of PDEs. Recently in [41, 56, 57, 66] much attention has been paid on the structure
of the singular set and on its (n — 2)-Hausdorff measure, and, as pointed out in [48, 49, 66], a
starting point of this analysis is the validity of a strong unique continuation principle, in order to
ensure the existence of a finite vanishing order.

In this Chapter we consider the nodal set in R"*! of solution of a peculiar class of degenerate-
singular operator, firstly studied in the pioneering works [44, 43]. In the 8os Fabes, Jerison, Kening
and Serapioni introduced a general class of degenerate operators L = div(A(X)V-) whose
coefficient A(X) = (a;;(X)) are defined starting from a symmetric matrix valued function such
that

Aw(X) €12 < (A(X)E,€) < Aw(X) €)%,  for some A, A > 0,

where w may either vanish, or be infinite, or both. In particular, the prototypes of weights
considered in their analysis where in the Muckenhoupt As-class, i.e. such that

2 (731 [, 20 (5 7 000 <o

Givena € (—1,1) and X = (z,y) € R} x R, we consider the cases of w(X) = |y|*, with

L, = div(|y|* V),

where obviously we denote with div and V respectively the divergence and the gradient operator
in R™*!. Our main purpose is to fully understand the local behaviour of L,-harmonic function
near their nodal set and to develop a geometric analysis of its structure and regularity in order to
comprehend how the presence of a nontrivial set where the coefficients of an elliptic equation
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may either vanishes or be infinite can affect the local picture of its solution.

Inspired by this last claim, we introduce the notion of “characteristic manifold” 3. associated to
the operator L, as the set of points where the coefficient either vanishes or blows up, and we
studied the properties of the nodal set T'(u) of solutions of

—L,u=0 in By Cc R*.

In particular, since the operator L, is locally uniformly elliptic on R" !\ X, we restrict our atten-
tion on the structure of the nodal set in a neighbourhood of the manifold X, trying to understand
the difference between the whole nodal set I'(u) and its restriction on the characteristic manifold 2.

At first sight, our approach seems to be based upon the validity of an Almgren and Weiss type
monotonicity formulas, which guarantee the uniqueness of a non trivial tangent map at every
point of the nodal set, and on a complete classification of the possible homogenous configurations
appearing at the blow-up limit. Instead, the crucial result of our analysis relies in the decom-
position of L,-harmonic function with respect to the orthogonal direction to the characteristic
manifold 2. More precisely, we prove

Proposition 3.1.1. Given a € (—1,1) and u an L,-harmonic function in By, there exist two
unique functions u® € H%%(By),u?~% € H27%(By) symmetric with respect to ¥ respectively L,
and Lo_, harmonic in By and locally smooth, such that

w(X) = ul(X) +u2“(X)yly|™® inBu.

Heuristically, the presence of a characteristic manifold X imposes a quantization of the possible
ways in which the nodal set can diffuse across .
With the previous decomposition in mind, we can reduce the classification of the possible blow-up
limits to the symmetric ones ad finally recover all the possible cases. In particular, in our analysis
we introduce the new notion of “tangent field” X0 of u at a nodal point, which takes care of the
different behaviour of both the symmetric and antisymmetric part of an L,-harmonic function.
Namely, by the decomposition and the Definition 3.5.7 of the notion of tangent map, i.e. the
unique nonzero map ¢*° € B¢ (u) such that

B U(Xo +rX )

uXoﬂ“(X) = ok — SOXO (X),

with k the vanishing order of u at Xy, we introduce the following concept.

Definition 3.1.2. Leta € (—1,1),u be an L,-harmonic function in By and X € I'y(u) N X,

for some k > min{1, 1 — a}. We define as tangent field of u at X the unique nontrivial vector
field ®X0 € (HL*(R™1))? such that

D0 = (7%, 05°),



3.1 INTRODUCTION

where X0 and X are respectively the tangent map of the symmetric part u, of u and of the
antisymmetric one .

This new object allows to overcame the obstacle of the degeneracy-singularity of the coefficient
and it allows to understand the topology of the nodal set by proving in Proposition 3.5.19 a
“vectorial” counterpart of the classic result of upper semi-continuity of the vanishing order.
Hence, given now the regular R (u) and singular part S(u) as

R(u) = {X €T(u): |VoulX) +

opu(X)| # o},

S(u) = {X ET(u): |Vou(X) +

2
opu(x)| = o} ,
we developed a blow-up analysis in order to fully understand the structure of I'(u) in R"**! and
its restriction on 2. The following is a summary of the main result on the regular and singular set.

Theorem 3.1.3. Leta € (—1,1),a # 0 andu be an L,-harmonic function in By. Then the regular
set R(u) is locally a C*" hypersurface on R" " in the variable (z,y |y|~") with

k:LQJ and r = 2 {2J
1—a 1—a 1—a

On the other hand, it holds

S(u)NZ =8"(u) US*(u)

where S*(u) is contained in a countable union of (n — 2)-dimensional C'' manifolds and S%(u) is
contained in a countable union of (n — 1)-dimensional C* manifolds. Moreover

s'w) = U S and §*u) = | S*u),
=0 =0

where both S} (u) and 8¢ (u) are contained in a countable union of j-dimensional C" manifolds.

In the last part of Chapter 3 we present an applications of our theory in the context of nonlocal
elliptic equations. In particular, inspired by [23, 27, 80], we exploit the local realisation of the
fractional Laplacian, and more generally of fractional power of divergence form operator L with
Lipschitz leading coefficient, in order to study the structure and the regularity of the nodal set of
(—L)%-harmonic functions, for s € (0, 1). More precisely, we combine the extension developed
in [80] with a geometric reduction introduced in [4] and deeply popularized in [48, 49].

This last Section allows to extend our analysis to fractional powers (—Ajs)® of the Laplace-
Beltrami operator on a Riemannian manifold M, also for the case of Lipschitz metric, and
moreover to conformal fractional Laplacian on conformally compact Einstein manifolds and
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asymptotically hyperbolic manifold, thanks to the extension technique developed in [27] and the
asymptotic expansion of their geodesic boundary defining function. These examples suggest that
our choice of weight collects a wilder class of degenerate-singular elliptic problems.

Moreover, our results show some purely nonlocal feature on the possible local expansion of
(—L)%-harmonic map near their zero set and on the structure of the nodal set itself. One one
side we prove that first term of the Taylor expansion of an (— L )*®-harmonic function is either an
homogeneous harmonic polynomial or any possible homogeneous polynomial. In particular, it
implies

Theorem 3.1.4. Given s € (0,1) and L a divergence form operator with Lipschitz leading coeffi-
cients, let u be (—L)*-harmonic in By. Then it holds

S(u) = 8*(u) US*(u)

where S*(u) is contained in a countable union of (n — 2)-dimensional C' manifolds and S°(u) is
contained in a countable union of (n — 1)-dimensional C'* manifolds. Moreover

5*(u) = Qs;(u) and % (u) = Qs;(u),

where both 87 (u) and 8§ (u) are contained in a countable union of j-dimensional C' manifolds.

In the end, we prove what could be seen as the nonlocal counterpart of a conjecture that Lin
proposed in [66]. Following his strategy, we give an explicit estimate on the (n — 1)-Hausdorff
measure of the nodal set I'(u) of s-harmonic functions in terms of the Almgren monotonicity
formula previously introduced. Finally, we propose an interesting direction of research in order
to improve that stated result.

This Chapter is organized as follows. In Section 3.2 we prove some general result about L,-
harmonic function, first of all the decomposition with respect to the direction orthogonal to .
After that in Section 3.3 we prove the validity of an Almgren’s type monotonicity formula which
allows in Section 3.4 to prove the existence of blow-up limit in every point of the nodal set T'(u).
Finally, in Section 3.5 we prove a Weiss type monotonicity formula, which allows to introduce
the notion of tangent map and tangent field at every point of the nodal set. In Section 3.6 we
present some useful result on the stratification of the nodal set and finally in Section 3.7 we
prove a general result on the regularity of the whole nodal set I'(u) and on its restriction on the
characteristic manifold 2. In the last two Sections we consider an application of the previous
results for solutions of fractional powers of divergence form operator, with Lipschitz leading
coefficient. In particular, in Section 3.8 we apply our technique in order to study the nodal set of
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s-harmonic function and, more generally, of solutions of (—L)® operators, and in Section 3.9 we
give a new estimate of the Hausdorff measure of the nodal set of s-harmonic functions.

3.2 DECOMPOSITION OF La-HARMONIC FUNCTIONS

In this Section we states some general results on L,-harmonic function and we introduce some

basic additional concept that will be often use through this Chapter in order to better understand
the structure of the nodal set T'(u).
In particular, we give a definition of characteristic manifold . for a degenerate-singular operator
and we prove a crucial decomposition of L,-harmonic function with respect to the orthogonal
direction to X.. Thanks to this property, we can state a general regularity result on L,-harmonic
functions.

As already remarked, in the pioneering works [44, 43] the authors introduced a class of degenerate-
singular operator strictly correlated to some weighted Sobolev spaces with Muckenhoupt A,-
weights. In [43, Section 2] they gave six general properties that the weight must satisfy in order to
have existence of weak solutions, Sobolev embeddings, Poincaré inequality, Harnack inequality,
local solvability in Holder spaces and estimates on the Green’s function and in particular they
found a sufficient condition in the definition of the Muckenhoupt A2-class. Hence, they introduced
for a € (—1, 1) the weighted Sobolev spaces H'*(B) as the closure of C*°(B;) functions under
the norm

lullFags = | lyl®u®dX + [ |y[*[Vul* dX.
Bl Bl

Anyway, as the authors in [43] pointed out in the study of a special classes of elliptic problem
associated to quasi-conformal maps, properties as the Sobolev embeddings, Poincaré inequality,
Harnack inequality and local solvability in Holder spaces still hold for every a € (—1,+00).
Thus, the following definition is well defined for every a € (—1, +00).

Definition 3.2.1 ([43]). Given F' = (f1,--- , fn) on By such that |F| € L?»~%(By), we say that
u € HY%(By) is a solution of L,u = divF if for every ¢ € C°(B;) we have

| ol (vavedx = [ (F.vgax.
Bl Bl

Similarly, a function u € H%(By) is said to be L,-harmonic in Bj if for every ¢ € C°(By)
we have

[ i vu.veax =o
By

Now, we can finally state the concept of characteristic manifold associated to the operator L,.
We obviously remark that the following definition can be easily generalized to the whole class of
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Muckenhoupt As-weights, where in general ¥ can be any possible non-smooth subset of R"*!
with dimension 0 < d < n.

Definition 3.2.2. Let a € (—1,1) and L, the weighted divergence form operator in R"*!
associated to the weight w(X) = |y|*. Then we call as “characteristic manifold” associated to
L, the collection of points £ C IR™ ™! where the weight takes value zero (degeneracy, a > 0) or
infinite (singularity, a < 0).

We remark that in a more general case, on the characteristic manifold the weight could attains
both zero and infinite values.
Since the operator L, is uniformly elliptic on every compact subset of R"*! \ X, the challenging
part of our work is the one related to the study of the nodal set near the characteristic manifold -
associated to L. Inspired by this remark, through the Chapter we will focus on the case Xy €
and we will simply compare the result on ¥ with the case R" ! \ ¥, avoiding all the technical
details.

In order to better understand the structure of the nodal set and the local behaviour of the
L4-harmonic function, we decided to decompose these functions with respect to the characteristic
manifold X. More precisely, we construct, starting from an L,-harmonic function, its parts
respectively symmetric and antisymmetric with respect to the orthogonal direction to %, since we
can imagine that the latter affects the way this functions cross the space of degeneracy-singularity.

Definition 3.2.3. Leta € (—1,1) and u € H%(B;) be an L,-harmonic function in B;. Then,
u is said to be symmetric with respect to X if

u(z, —y) = u(z,y) inR"
Conversely, the function u is said to be antisymmetric with respect to X if
u(z, —y) = u(z,y) inR"
It is easy to see that given an L,-harmonic function « in By, the functions

u(x’ y) - u(xv _y)
2

u(x’ y) + u<1:7 _y)
2

and  u,(x,y) =

ue(z,y) =
are respectively symmetric and antisymmetric with respect to X and such that
w(X) = ue(X) + uo(X).

At first sight, the previous decomposition seems to be innocuous and independent on the oc-
currence of degeneracy of the operator, but with the following Propositions would be clear the
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complete picture of how the presence of a set where the coefficients take value zero of infinite
affect the local behaviour of the solutions.

First, the following result allows us to focus the characterization of the blow-up limits to just the
symmetric L,-harmonic function

Proposition 3.2.4. Leta € (—1,1) and u be an L,-harmonic function in By antisymmetric with
respect to 2. Thus, there exists a unique Lo_,-harmonic function v symmetric with respect to ¥ such
that

u(z,y) = v(z,y)ylyl™  nR"

Proof. Given v(z,y) = u(x,y) |y|*y~!, let us first prove that v € H2~%(B;), where 2 —a €
(1, 3). By direct computations we get

/ yl* " v2dX = / ly|* u?dX, (95)
B1 Bl

and similarly

2
[P velax = [l vaPax + -0 [ e ax
B By By Y

sc(/ @ w2dX + / \y|“|w2dx),
Bl Bl

where in the last inequality we used the validity of an Hardy type inequality (see [42]). Since that
for a.e. X € B; we have

Lay_qv = div(Jy[* * V) = (a — 1)dyu + div(yVu) = y|y|~* Lau, (96)

let us prove v is Ly_4-harmonic in Bj in the sense of Definition 3.2.1.
For every ¢ € C°(B1) and 0 < § < 1let ns € C°°(By) be a family of compactly supported
cut-off functions such that 0 < 75 < 1 and

ns(a.y) = 10 on @) € Bu lyl <4},
) 1 on{(x,y) & Bll |y’ > 26}’

with |Vns| < 1/6. Thus, by testing (96) with ¢ns we get for every 6 € (0, 1)
/ Y|~ (Vo, V(nsp))dX = — / nspLo_qvd X
Bl Bl

= _/31 (y |~ nw) LoudX =0,
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where in the last equality we used that y |y|”“ nsp € C°(By). Now, by integration by parts

/B ly[>~* <Vv,V(n590)>dX=/B ly[>~ ns(Vv,V<p>dX+/B >~ o(V, Vis)d X, (97)
1 1 1

where by Dominated convergence we get that

lim |y|2“na<Vv,V<p>dX=/ >~ (Vo, Vp)d X
0—0t B By

and by Holder inequality

1/2 1/2
/|?/|2a§0<vv’vn6>dX§”90HL°°(Bl) (/ !yl2“|vv\2dx> (/ |y|2“|V175|2dX>
By By By

1/ 2 1/2
<C ||<PHLOO(Bl) HUHHL‘I(Bl) 5 (/6 ’y|2_a dy)

93—a _ 1) 1/2 e

<C ||§0HL°C(Bl) ””HHI’“(BI) < 3—a o,

which imply, passing through § — 0 in (97), that
[ W e Tt =0 forpe o (B,
B1

since we are dealing with a < 1. Ul

Hence, for @ € (—1,1) and every L,-harmonic function u € H%(B;) there exist u¢ €
HY%(By) and u2~% € HY?7%(B;) two symmetric function with respect to X respectively L,
and Lo_, harmonic in By such that

w(X) =ud(X)+uZ " (X)yly|™* in B (98)

e

Thus, through the following Sections we will restrict the classification of the blow-up limit, i.e.
the entire homogenous L,-harmonic functions, to the symmetric with respect to X and in the
final part of the work we will collect all the result for a generic L,-harmonic function.
Secondly, the previous decomposition combined with the following result gives a complete picture
of the regularity of an L,-harmonic function.

Proposition 3.2.5 ([87]). Leta € (—1,1) and u be an L,-harmonic function in By. Then it holds:

e ifu is symmetric with respect to X, we get u € CIIO’CO‘(Bl),for anya € (0,1);
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e if u is antisymmetric with respect to ., we get u € C%S(Bl), forany a € (0,a*) with
o* = min{l,1 —a}.

Moreover, ifa € (—1,400) and u is symmetric with respect to X, we even get that u € C.(By).

Proposition 3.2.6 ([87]). Leta € (—1,1) andu be L,-harmonic in By. Then foreveryi = 1,...,n
we get that Oy, u is Lq-harmonic in By and agu is L_,-harmonic in By, where

By — ly|* Oyu ifX¢gx
Y limy_o |y|* Oyu(z,y) ifX € X

These results have been recently obtained in [87] using some new approximation technique
and Liouville type theorem for a wilder class of degenerate-singular elliptic problems. The main
idea is to consider degenerate-singular operator as asymptotic limit of a specific class of uniformly
elliptic operator, where the exponent of Holder regularity can be reached by a blow-up argument
combined with some Almgren’s type monotonicity formula.

We recall here some general result about L,-harmonic functions. First we introduce the fol-
lowing Caccioppoli inequality, which enables us to give a priori estimates of the L norm of the
derivatives of the solution u in terms of the L*%-norm of u.

Proposition 3.2.7. Leta € (—1,1) and u an L,-harmonic function in B;. Then, for each X, €
BiNXand0 <r < R <1—|Xo| we have

C 2
|ya Vu|2dX§ / y|a|u—)\ dX, (99)
/B,.<XO> . (B =7)2 /B (x0)\B: (X0) | |

forevery XA € IR.

Proof. Fix 0 < r < R <1 —|Xy| and consider a smooth cut-off function n € C$°(B;) such that
0<n<1landn=1onB,(Xp)andn=0on Bgr(Xo)\ Br(Xo). Moreover, it is not restrictive
to suppose that

2
V| < R_r in Br(Xo).

Now, by testing the equation —L,u = 0 with the test function ¢ = (u — A\)n? and integrating
by parts, we get

/ ly|*n? IVu|2dX+2/ ly|“n(Vn, Vu)(u— \)dX =0,
By B1
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and using the Holder inequality

1/2
/ @ n? |Vul? dX < ( / g7 |w2dx> ( / A1yl u— AP |vm?dx)
BR(XO) BR(XO) BR(XO)

Hence, dividing by the first term in the right hand side and taking into account the properties of

1/2

7 we obtain

/ Iyl [Vul? dX < / yl*n? |Vul? dX
B (Xo) Br(Xo)

16

< [ [yl u— A dX.
(B —=7)% JBp(x0)\B,(X0)
O
Now, for a € (—1,1) let us fix
S, = [ lyld
0B,
which implies
N 1 Tn+a+1
e N ntat1l e

Lemma 3.2.8 ([88, Lemma A.1]). Leta € (—1,1) ad u be an L,-harmonic function in By. Then,
for each ball B, (Xy), with Xy € L andr € (0,1 — | Xy

), we have
1 1
u(Xo :/ yaudU:/ y|* ud X
( ) ’Sn|arn+a OB, (Xo) ’ ‘ |Bn+l‘arn+a+l Br(Xo) | ‘

Proof. Let us consider the case Xy = 0 since the problem is invariant under translation on B; N X.
Set

1 a a
) = s [ lolPuds = [yl u(ra)do,
r 9B 0B

then

d 1
—®(r) = * Opudo.
50 = [ oo

Since L,u = 0 on By, by a Gauss-Green formula we get

/ ly|* Orudo :/ LoudX =0

T T



3.3 ALMGREN TYPE MONOTONICITY FORMULA

which directly implies that  — ®(r) is constant and consequently

1 a
— 1. a 1-
e /BBT [y udo = lim o5 [yl” lim u(rz)do

Similarly, by integrating from 0 to r the function ®(r), we get

/ / ly|* udodt = / ly|* udx

o JoB B,

/ (/ |y|audo’> dt = u(0) |S"\a/ ttadt,
0 \JoB 0

from which we get the claimed result. O

and secondly

We remark that in the case of L,-subharmonic function, i.e. —L,u < 0, the previous result
holds true in the form of inequality. Finally, by standard Moser’s iteration, we also have the
following bound

Lemma 3.2.9 ([88, Lemma A.2.]). Leta € (—1,1) and u be a L,-subharmonic function in Bj.
Then, for Xo € BiNZ andr € (0,1 — | Xo|) we get

1/2
1 a, 2
HUHLOO(BT/Q(XO)) <C(n,a) <r”+1+a /BT(XO) ly|* u dX) )

where C(n, a) is a constant depending only onn and a.

3.3 ALMGREN TYPE MONOTONICITY FORMULA

In this Section we introduce the degenerate-singular counterpart of the classical Almgren
monotonicity formula for harmonic functions. This computations are more manageable with
respect to the ones in Chapter 1 since peculiar phenomena like the problem of the codimension
of the nodal set does not manifest in the case of L,-harmonic functions.

Since we want to understand the structure and regularity of the nodal set of L,-harmonic function
near the characteristic manifold X, let us consider Xy = (¢, 0) € X. Hence, for every r € (0, R),
where R > 0 will be defined later, consider

1 a
e N\
Br(Xo)

1
H(Xo,u,r) = ra /8]3 ” ly|* u?do
T 0

E(XOa Uu, T) =
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and the Almgren type monotonicity formula

Bix r/ yl* |Vul® dX
N(Xo,u,r) = (Xo,u,7) = 75X . (100)

H(X(),u,T‘) / |y|a U2d0'
0B (Xo)

Since u € Hﬁ;g(Bl), both the functional r — E(Xo,u,r) and r — H (X, u,r) are locally
absolutely continuous on (0, +00), that is that both them derivatives are in L{ _((0, +0)).

loc

Proposition 3.3.1. Leta € (—1,1) and u be an L,-harmonic function on By. Then, for every
Xo € B1NX we have that the map r — N(Xo,u,r) is absolutely continuous and monotone
nondecreasing on (0,1 — | Xo|).

Hence, there always exists finite the limit

N(Xo,u,07) = lim N(Xo,u,r) = ir;%N(Xo,u,r),
T

r—0+t
which we will call as the Almgren frequency formula.
Proof. Obviously the denominator is nonnegative and at least strictly positive on a nonempty

interval (r1,72), otherwise we get u = 0. First, passing to the logarithmic derivatives, the
monotonicity of r — N (Xo, u, ) is a direct consequence of the claim

d d
d 1 dr ly|* | Vul” dX dr/ ly|* udo
S log N(Xo,u,r) =~ + B (Xo) _ 47 Jop, (xo) -
' " / ly|* |Vu|? dX / ly|% u2do
Br(Xo) 8B, (Xo)

for r € (rq,72). Deriving the numerator and using the Pohozaev identity, i.e. for any Xy € R™*!
andr > 0

l-n—a

/ Iyl [Vl dX + - / 9] [Val? do = r / y[® (Bu)2do+
2 Br(Xo) 2 JoB,(x0) 9B, (Xo)

2
_ayo/ Iy|® [Vl dx
2 B (Xo) Y



3.3 ALMGREN TYPE MONOTONICITY FORMULA

we easily get

d

a4 1y [Vul? dX = / 191 [Vl do
dr By (Xo) dBr(Xo)

—1
- / 9] (Br)?do + " 21 / Iyl |Vl? dX
9B, (Xo) r Br(Xo

_ay e VP g
T JBr(Xo)
(101)
and similarly
d a, 2 d n a 2
- ly|"udo = —|r o + ry|* u(Xo 4+ rX)do
dr JaB, (xo) dr 9B,
= 2/ ly|* udrudo — 2% Mu2dt7—|— (102)
9B (Xo) T JoB,(Xo) Y
nta / ly|* u*do.
T JoB,(Xo)
As a consequence, by the Cauchy-Schwarz inequality, if Xg € %, i.e. yop = 0, we get
d 2
—FE(Xo,u,r) = / y|* (8yu)?do
FEEo =i [ o)
dH(X u,T) 2 / ly|* udrud
-5 0, WU, = Y| uorudo
dT Tn+a 8BT(X0)
and consequently
L d / ly|* (0pu)?do / ly|* ud,udo
5 log N (Xo, u,r) = =) — 2] >0
" / ly|* udrudo / ly|* udo
8B (Xo) 9By (Xo)
for r € (r1,r2). By the previous differentiation, we have
d
o log N(Xo,u,7) >0 forr e (r1,72)
r
and
d 2
d—logH(Xo,u,r) = -N(Xo,u,r). (103)
r r

Following the same reasoning in [84], it is quite easy to conclude that the maximum interval is
the one with r; = 0. ]

107



108

NODAL SET OF SOLUTIONS OF DEGENERATE - SINGULAR EQUATIONS

As a direct consequence of the monotonicity result, we get that the Almgren frequency for-
mula X — N(X,u,0") on X is upper semi-continuous since it is defined as the infimum of
continuous function.

A simple consequence of the monotonicity result and (103) is the following comparison property
(which, with ro = 27y, is the so called doubling property).

Corollary 3.3.2. Let a € (—1,1) and u be L,-harmonic on By. Hence, there given N =
N(Xo,u,1—|Xol|) such that for every Xog € By N %,

o\ 2N
H(Xo,u,r2) < H(Xo,u,m1) <>
r1

for0 <7y <re <1—1|Xp|

Proof. Fixed R = 1 — | X;y| we have that N (X, u,r) < N(Xo,u, R) for every r € (0, R) and
integrating (103) between r; and r2, with 0 < r; < ro < R, we obtain

H(XO,'LL,T'Q) < <7«2>2N
H(XO,U,T’l) RN

whit N = N(Xo,u, R). 0

In other words, for every Xo € By NX

1 R\?N 1
M/ ly|* u?do < <) n+a/ ly|* u?do
R 8Br(Xo) r r 8B, (Xo)

with0 <r < R < 1—]X0]andN:N(X0,u,1—|XO

we get
1 / a, 2 R ANt 1 a, 2
S y|* u2dX < () / y|* udX. (104)
Rnta+1 Br(Xo) ‘ | r rnta+l Br(Xo) | ‘

In order to justify the analysis of the local behaviour of L,-harmonic functions, we prove the

), and integrating the previous inequality

validity of the strong unique continuation property for the degenerate-singular operator L,. In
general, a function u, is said to vanish of infinite order at a point X € I'(u) if

/ u?dX = O(r¥), forevery k € N,
| X —Xo|<r

as 7 — 0. Given an elliptic operator L, L is said to have the strong unique continuation property
in By if the only solution of Lu = 0 in H] _(B;) which vanishes of infinite order at a point
Xo € T'(u) is u = 0. Moreover, L is said to have the unique continuation property in Bj if the
solution of Lu = 0 in Hlloc(Bl) which can vanish in an open subset of B; is u = 0. (see [48, 49]
for more details for the uniformly elliptic case).
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Corollary 3.3.3 ([49, Theorem 1.4]). Leta € (—1,1) and u be L,-harmonic in By. Then u cannot
vanish of infinite order at Xo € I'(u) N By unlessu = 0 in By.

In [49] the authors stated the proof for analytic nonnegative weights and pointed out the
validity for more general, even degenerate, weighted elliptic equations.

The previous result implies that the nodal set I'(u) has empty interior in R"*!. As a conse-
quence of our blow-up analysis, we will prove a posteriori unique continuation property for the
restriction of T'(u) on X.

Corollary 3.3.4. Leta € (—1,1) and u be an Ly-harmonic function on B;. Then, for every
Xo € BiNZX given R =1 — | Xy| we get

1 1
|y w?do S/ ly|* w*dX < / ly|* u*do,
n+a+1+2N Jopy(xo) Br(Xo) n+a+1Jopg(xo)

where N = N (Xo,u, R).

Proof. Let R =1—|Xo|and r € (0, R), we get by (103)
R N(Xg,u,t)
H(Xo,u, R) = H(Xo,u,r)exp 2/ %dt > H(Xo,u,r)

or simply

/ ly|* u?do < H(Xo,u, R)r" .
8B (Xo)

Finally, integrating the previous inequality in (0, R) we obtain

R
/ ly|® u?dX = / / ly|* u?dodr
Br(Xo) 0 JOBr(Xo)

R 1
< H (X, u,R)/ rredr =
0

—H(X R).
n+a+1 (Xo,u, R)

On the other hand, for any € (0, R), we have

R
H(XO7U7R) = H(XOauaT)eXp {2/ ]Wdt}

r

> H(Xo,u,r)exp{—2N(Xo,u,r)logr}

and consequently
H(Xg,u,r) > r2NXowB) (X, u, R).
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Thus, as before

R
1
a 2 a 2
Y udX:/ / y|"udo > H(Xp,u,R).
/BR(XO) ’ ‘ 0 JOB,(Xo) ’ ‘ n+a+1+ QN(X(), Uu, R) ( )

O]

The following result can be viewed as the degenerate-singular counterpart of [55, Theorem
1.6], which gives us a sufficient condition for the presence of the nodal set in the unitary ball.

Proposition 3.3.5. Let a € (—1,1) and u be an L,-harmonic function on By. Then, for any
R € (0,1) there exists Ny = No(R) < 1 such that the following holds:

1. if N(0,u,1) < Ny, then u does not vanish in Br;

2. if N(0,u,1) > Ny, then

N <X0,u, > < CN(0,u,1) forany Xy, € BrNZ,

where C' is a positive constant depending only onn,a and R.

Moreover, the vanishing order, i.e. the Almgren frequency formula, of u at any point of Br never

exceeds CN (0, u,1).

Proof. This prof will follows directly the one in [55, 66]. Moreover, the previous result is known
to be true if we restrict our study to the set B; \ X, by the local uniform ellipticity of the operator
L, outside the characteristic manifold. First, the monotonicity of 7 — N (0, u, ) implies that the
vanishing order of u at 0 never exceeds N (0, u, 1), more precisely

1 a2 oN(0u,1) L / a2
—_— dX < A\ i dX
(\R)n+1+a /Bm‘y’ u = R fp [y" u

for every R € (0,1) and A € (1,1/R). Through this proof we will use the following notation to
identify the average of the integrals

1
a, 2 a, 2
y|" u dX = / Yy u dX,
]{BT(XO)‘ | ptlta BT(XO)‘ |

and in order to simplify the notations we will use N = N(0, u, 1) as the frequency of u in Bj.
Under these notations, the previous inequalities become

][ ly|* u?do < )\2N][ ly|* u’do
OB\R OBRr

][ ly|* u?dX < )\_1/\2]\[][ |ly|* u2d X
Bir Br
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where the second one is a consequence of Corollary 3.3.2.

Now, let us prove the claimed result for the case R = 1/4 since in the general case it follows by
scaling. By definition, we have that B3 /4(Xo) C B; and By,4 C By/5(Xy) for any Xy € By 4.
Hence, we have

][ ly|* u?dX < c(n, a)42N][ ly|* u?d X
Bs/4(Xo) By /2(Xo)

for any X( € Bj /4. Now, let us prove that

][ ly|* u’do < ¢(n, a)42N][ ly|* u*do. (105)
8BS/B(X0) aBl/Q(XO)

Since by (103) the map r — H (X, u, r) is monotone non decreasing on (0,1 — | X

/ ly|* uPdX > / ly|* u?dX
Bg;4(Xo) Bs/4(X0)\Bs/s(Xo)

3/4
= / " H(Xo,u,)dr
5/8

> C(n,a)H (X07u75/8) ’

), and hence

and similarly

1/2 1
/ ly|* u?2d X :/ "t H (X, u,r)dr < C(n,a)H <X0,u, ) .
By a(Xo) 0 2

Finally, integrating (103) between the previous radii, we obtain

5/8

log H (Xo, u,r)

5/8
_/ IN(Xo, ) g - 2C(n)N(Xo,u, 1/2).
1

/2 r

1/2

Combining the previous inequality with the claimed (105), we get
c(n,a)N(Xo,u,1/2) <log (c(n, a)42N(O’“’1))

or equivalently N (Xo,u,1/2) < ¢(n,a)N(0,u,1) + ¢(n, a). Finally, let us consider the second
part of the statement. Hence, given ¢ = €(n, a), sufficiently small, such that N (0,u,1) < ¢, let
us prove that u(X() # 0 for any X € By 4. It is not restrictive to assume that H(0,u,1) = 1,
which implies by the definition of the Almgren monotonicity formula that

/ Wl® Va2 dX <e.
B
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By the L,-harmonicity of u, for every i = 1,...,n the derivative 0;,u and J;u are respectively
L, and L_,-harmonic in Bj. Hence, by [88, Lemma A.2], we get the following interior estimates

1/2
1
sup ‘8&“‘ < C(”a a) (W/B |y|a |a’mu|2 dX> < C(n?a)\@
1

Bi/2

) ) 1/2
sup |Oyu| < c(n, —a) <na+1/ ly|~* |0y u dX) < ¢(n,a)ve.
Bi/a r B

By the normalization assumption, we have

1= / ly|* u?do < cl(n,a)/ ly|* u?do,
0B, 0By /2

and consequently the existence of Xy € 0By 5 such that

2
X)P> —m— “do.
O 2 o [ it

Up to relabeling with ¢; (n, a) the previous lower bound, we get that for every X € By, that
c1(n, a) < [u(Xo)| < [u(X)|+ c(n, a)VE,
which yields |u(X)| > 0 of By 9, for ¢ = £(n, a) sufficiently small. O
Corollary 3.3.6. Let u be L,-harmonic on By, then for every Xo € T'(u) NX we have
N(Xo,u,07) > min{1,1—a}. (106)

More precisely

e ifu is symmetric with respect to ¥, we have N (Xg,u,07) > 1,

e ifu is antisymmetric with respect to ¥. we have N (Xo,u,0") > 1 —a.

Proof. This result follows by Proposition 3.2.5. More precisely, et & = min{1,1 — a} be the
coefficient of optimal Holder regularity for L,-harmonic function, and suppose by contradiction
that (106) is not satisfied.

Since the limit N (Xo, u,0") exists, we obtain the existence of R > 0 and € > 0 such that
N(Xo,u,r) < a*—eforall 0 <r < R.By (103), up to consider a smaller interval of (0, R), we
have

d 2
— log H(Xo,u,r) = =N (Xo,u,r) < =(a* —¢).
r

dr

SN
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Integrating this inequality between r and R yields

H(Xo,u,R) _ (R)2(a*€>

H(Xo,u,r) — r

which, together with the fact that u is o*-Hélder continuous and u(X() = 0, implies
Cyr2e™=e < H(Xo,u,r) < Cor?e”,

The contradiction follows for small value of r > 0.

If an addition we suppose that w is symmetric or antisymmetric with respect to X, we get
respectively that u is Lipschitz continuous or (1 — a)-Hélder continuous, and the lower bound
on the Almgren frequency formula follows immediately. O

In all the first part of this Section, we had supposed that Xy € B; N, since the degenerate-
singular attitude of the operator L, is constrained to the characteristic manifold . Instead, if
Xo = (w0,y0) € By \ %, since the operator is uniformly elliptic on Br(Xo) € R""!, with
R = [yo

, the structure and the regularity of the nodal set of u is well known.

At this point, we want to remark how the different scaling of the operator on ¥ and on R"*! \ &
affects the Almgren monotonicity formula.

Let Xo = (%0, y0) € By and r > 0 and consider u and L,-harmonic function in Bj. If we define
ux,r(X) = u(Xo + rX) we directly see that

ar

lyo + ry|*
Yo +ry

B — X
D) (AXUXO,T + 1707
r

%uxo,r) =0 forX e
,

and
7“””“/ div (Jy|* Vux,,) dX if Xo e X
/ LoudX = B .
Br(Xo) r"‘l/ div (|yo + ry|* Vux, ) dX if Xo € X
By

Inspired by the different scalings of L, operator, for Xy € By \ %, i.e. yo # 0, and r € (0, |yo
let us introduce the following functionals

).

1 a
B(Xowr) =y [l 9ufax,
T 0

1
H(Xo,u,’l“) = |y\au2da,
™ JaB,(Xo)
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and consequently the Almgren type monotonicity formula

a 2
r y|* | Vu|"dX
E(X(),'U,,’I") _ /;T‘(XO) ‘ | | ‘

H(Xo,u,r) B / ‘y’au2d0
0B, (Xo)

As we can see, the expression of the Almgren monotonicity formula is not affected by the position
of the point X € R™*1, jeif either Xg € BiNX or Xg € By \ Z. Instead, the rescaling factor
in the definitions of (X, u,r) and H (X, u,r) are strictly related to the different attitudes of
the operator L,. By [48, 49] we already know the existence of an Almgren type monotonicity

N(Xo,u,r) = (107)

formula and the structure/regularity of the nodal set associated to uniformly elliptic operator.
For completeness, we give some results on the Almgren type monotonicity result which holds for
every Xg € R"*! without using the change of coordinates introduced in [48, 49].

Proposition 3.3.7. Leta € (—1,1) and u be an L,-harmonic function on B;. Then, for every
Xo € By \ T there exists C > 0 such that r + e“"N(Xo,u,r) is absolutely continuous and
monotone nondecreasing on (0, |yo!).

Hence, there always exists finite the limit

N(Xo,u,07) = lim N(Xo,u,7),

r—07t

which we will call as the Almgren type frequency formula.
Proof. The strategy of the proof is similar to the one for the case Xg € B; NX. By (101) and (102),

we already know that passing to the logarithmic derivatives we get from the Cauchy-Schwarz
inequality

d d

- P S B
d 1 dr dr |-
2 log N (Xo,u,r) =~ + B-(Xo) _ 9 JoB,(X0)
' " / !y\“\Vu]QdX / ‘y|au2d0_
Br(Xo) 9B-(Xo)
|a

a
ayo/ Mu2d0 ayo/ v \Vul? do
> 9B (Xo) Y B.(Xo) Y

r/ ]y\aqua r/ \y[“[Vu\QdJ
0B, (Xo) B (Xo)

for r € (r1,r2). This remainders come out since the Muckenhoupt As-weight w(X) = |y|” is
homogenous with respect to .. Obviously if a = 0, by the translation invariance of the Laplacian,

we don’t need to care anymore about the position of X and also, just substituting a = 0, we
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obtain the classic Almgren type monotonicity formula of the Laplacian, e.g. [19, 81].
Now, for every 7 € (r1,72)

d LTy,O (minaBT(XO) % - maXBT(XO) %) ifa- Yo > 0
d—logN(Xo,u,r) >
" ayo

- (minBr(XO) % — maXaBT(XO) %) 1fa * Yo < 0

which is equivalent to

d 2 |ayo 2 ayo|
—10gN(X0,u,r) > — > — forr € (7”1,7“2),
dr vo—r" T yo—r

from which we learn that necessary ry < |yo|. Consider now

1
— / ly|* u?do
r 9B, (Xo)

/ Muzda
8B (Xo) Y

/ ly|* u’do
0B, (Xo)

Let us prove the existence of the limit of the Almgren frequency formula as 7 — 0™, so suppose
by contradiction that r; = inf{r > 0 : H(Xo,u,r) > Oon (r,|yo|)} > 0 and consider
r € (71, |yo|). By the previous inequality, we have that there exists a positive constant C' > 0
such that

H(Xo,u,r) =

such that

d 2
L log H(Xo,u,r) = =N (Xo,u,7) + = [ 1 -y
dr r r

r = e“" N (Xo,u,r)

is monotone nondecreasing on (71, |yo|). Then, let 1 < r < 2r1 < |yo|, since

a
0B, (Xo)

Y > (108)
T ly|* u*do 1__ayg oo
/BBT(XO) T = 2 ifa-yo <0
we have J 5
d—log H(Xo,u,r) < =e*°"'N(Xq, u,2r1) (109)
r r

By integrating (109), it follows

H(Xo,u,2r) < <2r1>2620T1N(X0’u’271)

H(Xo,u,r) o
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and since r — H (X, u,r) is continuous, H(Xg, u,71) > 0 and we seek the contradiction.
O

As before, a simple consequence of the monotonicity result and (103) is the following compar-
ison property (which, with 7o = 2ry, is the so called doubling property).

Corollary 3.3.8. Let u be an L,-harmonic function in By. For every Xy € By \ ¥, there exists
C > 0and R > 0 such that

ro 2C
H(X07u77ﬂ2) S H(XO,U,’I"l) (7"1)

forevery0 <r <1y < R.

Proof. Let us consider R < |yo| and 0 < 7 < 72 < R. In order to use the monotonicity of
r +— N(Xo, u, r) in this case we need to fix C', R > 0 depending on the distance of X from X.
By (108) we get

d 2
jlogH(X07u7 T’) < 7620RN(X07U7 R)
T r

Now, by integrating the previous inequality we get the claimed result. O

Moreover, since the operator L, is uniformly elliptic outside ¥, we can apply the same
reasoning using the Lipschitz optimal regularity in R" \ X and proving

Corollary 3.3.9. Let u be an L,-harmonic function in By. For every Xy € T'(u) \ £ we have
N(Xg,u,0%) > 1.

3.4 COMPACTNESS OF BLOW-UP SEQUENCES

All techniques presented in the following Sections involve a local analysis of the solutions,
which will be performed via a blow-up procedure. Fixa € (—1, 1) and u an L,-harmonic function
in B;. Consider now X € I'(u) a point on the nodal set of u, then for any 7 | 0" we define as
the blow-up sequence the collection

X X B —X
w forXEXGBXO’rk:g,

up(X) =
H(Xo,u,T'k) Tk

such that L,uy, = 0 and ||ug||; 2. (9B,) = L. Through this Chapter we will always apply a blow-up
analysis centered in point of the nodal set I'(u) on the characteristic manifold X, since as we
already remarked the local behaviour of L,-harmonic function is known outside the characteristic
manifold.

In this Section we will prove the convergence of the blow-up sequence and the classification of
the blow-up limits starting from the following convergence result.
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Theorem 3.4.1. Leta € (—1,1) and o* = min{1,1 — a}. Given Xy € T'(u) N X and a blow-up
sequence uy, centered in X and associated to some 1y, | 0T, there exists p € Hﬁ)’g(lR”) such that,
up to a subsequence, uy — p in Cp%(R™) for every o € (0, a*) and strongly in HL*(R™). In
particular, the blow-up limit is and entire L,-harmonic function, i.e.

Lep=0 inR".

In particular, the previous result can be easily improved in the case of L,-harmonic function
purely symmetric with respect to 2. More precisely, inspired by Proposition 3.2.5, in the first case
the convergence holds in Cllo’? for every « € (0, 1), and this difference relies on the Liouville
type theorems introduced in [87].

As in Chapter 1, the proof will be presented in a series of lemmata.

Lemma 3.4.2. Let X € T'(u) N X. For any given R > 0, we have
el rra(py) <€ and H“’fHLOO(B*R) <C,

where C' > 0 is a constant independent on k > 0.

Proof. Let us consider p; = H (X, u,7}), then by definition of the blow-up sequence uy, and
Corollary 3.3.2 we get

1
/ ly|* updo = — ly|* u?(Xo + ri.X)do
O0BRr pk OBRr

= ly|* u“do
piri " JoBg,, (xo)

H(XO')U: RT'k)

H(X()v u, Tk)

< Rn+a <Rrk>2c

Tk

— Rn+a

which gives us Huk”%Za(aBR) < C(R)R™"%. Similarly

1
| ol 1Vl ds = NOu R [ ol udo
Br R JaBy

C(R)R" "N (Xo,u, Rry,)
C(R)R" TN (Xo,u, R)

(110)

IN A
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where in the last inequality we used the monotonicity result of Proposition 3.3.1. Since the map
uy is Lq- harmonic, by [88, Lemma A.2] we get

1/2
1
sup ug < C(n,s) <Rn+1+a/ ly|® ude>
Br/2 Br

H(0,uz, R) ) 172
n+a+1 ’

<C(n,s) (

where in the second inequality we used the monotonicity of 7 — H (0, uk, ) in (0, R). Finally,
the estimate follows directly from the one the L>%(9Bg)-norm. [

So far we have proved the existence of a nontrivial function p € H, ﬁ)’g(lR”*l) N L2 (R

such that, up to a subsequence, we have uj, — pweakly in H*(R"!) and L,p = 0in D’/ (R"*1).

The next step is to prove that for Xy € T'(u) N X the convergence uy — p is indeed strong
in H% and in C}'% for a € (0, a*).

Lemma 3.4.3. For every R > 0, up to a subsequence, u, — p strongly in H“%(Bg).

Proof. We already know the existence of a blow-up limit p € H, llo’g(IR"), which solves L,p = 0
in D'(R"™). Let ¢ € C2°(Bapr) be a cut-off function such that 0 < ¢ < 1, ¢ = 1 in Bg. By the
L,-harmonicity of u, we get

/ 1yl 0|V (g — p) P dX + / W1 (= p)(V (s, — p), Vo) dX = 0
Bor Bsog

and consequently, we can conclude just by observing that

/B 1y1% (g — p){V (ug — p), Vig)dX

< C'lluk = Plloe () Vbl 20 (5,) = 0

Lemma 3.4.4. For every R > 0 there exists C' > 0, independent of k, such that

Ju(X1) — U()§2)| <C
| X1 — X

Helone o) = NixalT
1,42 R

forevery a € (0, ).
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Proof. The proof follows essentially the ideas of the similar results in [83, 84]. Without loss of
generality, let R = 1 and suppose by contradiction that up to a subsequence

n(X1)ug(X1) — n(Xo)ug(Xa)|
| X1 — Xo|*

L= sup — 00

Xl,X2€§1

where n € C°(By) is a smooth function such that

n(X) =1, 0<|X|<1/2
0<n(X)<1, 1/2<]X|<1
n(X) =0, | X] = 1.

Since we may assume that Ly, is achieved by (Xl,k, Xg,k) € By x By, givenrj, = | X1 6 — Xo gkl
we can prove, as k — oo, that

°T’k—)0

dist(X i
, dis ( ;}k,aBl) S o0, dlSt(Xng,aBl) o
k Tk
Before to continue, let us fix the notations X = (z1%,y1.%) and Xo = (22k, y2,%). Now,
since by Lemma 3.4.2 the norm [|ug [ ;o g+ is uniformly bounded, we have

[kl oo ()

Ly <

(U(Xl,k) _n(XQ,k))7 (111)

which immediately implies that r, — 0. Now, since 7 is compactly supported in B, for every
X € B we have

n(X) < dist(X,0B1)Lip(n),

where obviously Lip(7) denotes the Lipschitz constant of 7). Finally, the inequality (111) becomes

dist(Xy4,0B) | dist(Xp,0B) _  Lyr”!

> — — 00
Tk Tk Lip(n) lukl poo (5,

and the result follows by recalling that o < o = min{1,1 —a} < 1. As in [83, 84], our proof is
based on two different blow-up sequences, indeed we introduce the auxiliary sequences

uk(Pk + ’r‘kX)
Lyry

(nur) (Py + 7. X)
Lyry

w(X) = n(Py) and wi(X) =
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for X € Bp, ,, and P, = (p%k, png) a suitable sequence of points. On one hand, following the
same strategy of the blow-up analysis in Chapter 1, Wy, has an uniform bound on the a-Hélder
seminorm, i.e.

sup

X)) — X X1 - P Xo—P
\wk( 1) Wk:( 2)| < ‘wk < 1 k> . < 2 k)‘ 1,
X1#X2€Bp, ry

|X1 — Xo|* T T
while on the other hand

a
— L];wi7k =0 inBp,,,, with LZ = div ((y + %) V) . (112)

The importance of these two sequences lies in the fact that they have asymptotically equivalent
behaviour. Namely, since

lurll Lo
wr(X) = w4(X)] <= P n(Pe+ 4 X) = n(Pe)
Lip(o)ri o
STk l[ull oo (5, 1X]
we get, for any compact K C R""!, that
max  |wg(X) —wE(X)| — 0. (114)

XeKNBp, ,,
Moreover, since wy,(0) = wy(0) we note by (113) that
|wi(X) = wi(0)] < Jwg (X) = w5 (X)| + [ (X) — W (0))]
7"1_&
<C ('“ | X |+ |X]O‘>
Ly,
and consequently, there exists C' = C(K) such that |wg(X) — wg(0)] < C, for every X € K.

Let us prove that it is not restrictive to choose P, € X in the definition of wy,, Wy, since X1 1, Xo j
must converge to B} NX, i.e. there exists C' > 0 such that, for &k sufficiently large,

diSt(XLk, BN Z) + diSt(ngk, BN Z) <C

Tk

Arguing by contradiction, suppose

dist(XLk, Bin Z) + diSt(XZk, Bin Z)
Tk

—r X0
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and let us choose P, = X ;, in the definition of wy,, Wy, so that Bp, ,, — R"™*! and p;irk — 0T,
By definition, since Wy, is a sequence of functions which share the same a-Holder seminorm and
uniformly bounded in every compact K C R™™1, by the Ascoli-ArzelA theorem, there exists a
limit w € C(K) which, up to a subsequence, is the uniform limit of wy. By (114), we also find
that wy, — w uniformly con compact sets.

In order to reach a contradiction we can prove that w is a nonconstant globally Hélder harmonic
function To this purpose, let ¢ € C°(IR™"1) be a compactly supported smooth function and k
be sufficiently large so that supp ¢ C Bp, ,,, forall k > k. Fixed i = 1,.. ., h, by testing the first
equation in (112) with ¢ we get

/ div ((1 n y”) w) wpdX = 0.
]Rn+1 png

Passing to the uniform limit and observing that

a
1—|—yr—k — 1 inC* (suppy),
Dy .k

we deduce that w is actually harmonic and the contradiction follows naturally by the classical
Liouville Theorem, once we have shown that w is globally « - Hélder continuous and not constant.
since P, = X j, then, up to a subsequence,

Xop — P Xop— Xig
Tk | X2k — X1k

— X9 € 0B;.

Finally, by the equicontinuity and the uniform convergence, we conclude

X1 —-P Xo—P
() e (5[ = w0 e =1

At this point, the choice P, = X ;, for every k£ € IN guarantees the convergence of the domains
Bp, r, — R™!, while for any compact set K C R"!

XGII(I%EBT"W;C |w(X) —wg(X)] — 0.

Hence, we are left with two possibilities:
« for any compact set K C % we have wy(X) # 0 for every k > kg and X € K;

« there exists a sequence (X} ), C X such that wy(Xj) = 0 for every k € IN.
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In the first case, if we define W), = wy, — wy(0) and Wy, = Wy, — wy(0) we obtain that the last
sequence is uniformly bounded in C%® and hence (W} ), converges uniformly on compact set
to a nonconstant globally a-Holder continuous L,-harmonic function W and similarly in the
second case the sequence (wy); does converge to a nonconstant globally a-Hélder continuous
L,-harmonic function.

In both cases, the contradiction follows from the Liouville theorem for L,-harmonic functions
since a € (0, "), with «* = min{1,1 — a}. Now, since o € (0, a*) with * = min{1,1 — a},
the contradiction follows immediately from the Liouville theorem for L,-harmonic functions. [

If instead we consider the general case X € I'(u) we can prove the following general result

Theorem 3.4.5. Let u be an L,-harmonic function in By and Xy € T'(u) a point on its nodal set.
Given the blow-up sequence uy, centered in X and associated tory, | 0T we have this two cases:

1. if Xo € %, there exists p € H*(R™) such that uy, — p in C%(R™) for every a € (0, o)

loc loc
and strongly in Hllog (R™). In particular the blow-up limit solves

—Lsp =0 in R™.
2. if Xo ¢ %, there existsp € HL_(R") such that uy — p in C2%(R") for every a € (0,1)
and strongly in HL. .(R™). In particular the blow-up limit solves
—Ap =10 in R".
Now we will mention some counterpart of the previous results for the case Xy € I'(u) \ X.

Lemma 3.4.6. Let Xy € I'(u) \ X. For any given R > 0, we have lukll g (g, < C where C'is
independent on k > 0.

Proof. Since for X € I'(u) \ £ we have

1
pi = H(Xo,u,r)) = — / ly|* u?do = / lyo + rry|* uido,
Ty 8B, (Xo) 9B,

we get by Corollary 3.3.8 that

1
/ lyo + reyl|® ujdo = 2/ lyo + | u? (Xo + 7.X )do
aBR pk aBR

1
= 2n—1/ ly|* u’do
Pr"k 9BRy;, (Xo)
_ gt H(Xo,u, Rry)
H(Xo,u,rg)
e ()

Tk
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Consequently, by the Almgren monotonicity formula, for k so large that r, Rry < |yo|, we have
/Im+mﬁWwﬁM§CmW“%W%%R)
Br
Since X € R™\ £ and r | 07 we have
inf |yo +rey|® = inf [yo +rryl* = [yol” min{[1 + rol*, |1 —ro|*}
Br dBg
and finally
1 1 C'(R
1/ U%da‘f‘g/ |Vuk’2dX§La)
R Jopy, R g, [yl
which gives the claimed bound. O

For completeness we just remarked the uniform bound in H'! for the blow-up sequence cen-
tered outside X, but the convergence result for the blow-up sequence centered in X ¢ X is a direct
consequence of [81, Theorem 3.3]. Indeed, for every k > 0 we have that div(|yo + rxy|” Vug) = 0
or equivalently

Tk

—Auy = |8yuk,

—r
lyo + Ty
which implies the existence of a nontrivial function p € H{ ,(R™™!) N L (R™!) such that, up

to a subsequence, we have uy — p weakly in H} (R""1) and —Ap = 0 in D'(R"1).

Proposition 3.4.7. Let Xy € I'(u) \ X and p be the blow-up limit of u centered in Xy, as previously
defined. Then the following Almgren monotonicty formula

1

. / V2 dX
r Br(Zp)

1

— / p2da
r 3B, (Zo)

is well defined for Zy € R""* and r > 0. In particular the map v + N(Zy,p,r) is monotone
nondecreasing for every Zo € R"! andr € (0, +o0).
Moreover, N(0,p,r) = N(Xo,u,0") =: k for every r > 0, namely p is k-homogeneous

N(Z07p7r) =

X
p(X)=|X]|"p <|X|> for every X € R""1,

withk € N,k > 1.

Now we focus our attention on the blow-up limit itself in the challenging case Xy € T'(u) N %
and the relationship between the value of the Almgren frequency formula and its local behaviour.
More precisely, we have
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Proposition 3.4.8. Let Xy € I'(u) N % and p be a blow-up limit of u centered in Xy, as previously
defined. Then N(0,p,r) = N(Xo,u,0") =: k for everyr > 0 and p is k-homogeneous, i.e.

X
p(X)=|X"p (|X|> for every X € R" 1.

Proof. First of all we prove that r — N (0, p,r) is constant. Let us observe that N (0, uy,r) =
N(Xo,u,rry) and that Theorem 3.4.1 yields that N (0,p,r) = limy N (0, ux, r). Similarly, for
the right hand side we get limy N (Xo, u,77rr) = N(Xo,u,0") by Proposition 3.3.1.

We now compute the derivative of r — N (0, p,7), in order to prove that p is k-homogeneous,
where obviously k¥ = N(Xg,u,0") is the Almgren frequency formula. As in the proof of
Proposition 3.3.1, we know that

d 2 .
%H(OJZ?;T) - m /aBT |y‘ parpda

and by integration by parts that

1

d 2
—E(0,p,7) = / y|* (0,p)~ do.
=y M

dr

Hence, this two equalities imply

2
_d . 2 1 a 2 a 2 a
0= %N(O,p,r) T p2n42a-2 HZ((),p’T) [/BBT ’y‘ p do /83T ’y‘ ‘arp| do — </BBT |y’ parpd0'> ]

for r > 0. This equality yields the existence of C' = C(r) > 0 such that 9,p = C(r)p for every
r > 0. Using this fact in (103) we get

faB ly|* poypdo d 9 )
Jos, " p?do dr 8 (0,p,7) , (0,p,7) .

2C(r)

and thus C(r) = k/r and p is k-homogenous as we claimed. O

In the final part of this Section we classify the possible values of the Almgren frequency
formula on the restriction I'(z) N X and consequently the possible blow-up limits, in order to
better understand the structure and the stratification of the nodal set of .

A crucial Corollary of this analysis is that a blow-up limit of « in a point of the nodal set
on X is either symmetric or antisymmetric with respect 2: this attitude is due to the fact that
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near the characteristic manifold the local behaviour of L,-harmonic function symmetric with
respect to X is different to the one of antisymmetric L,-harmonic function, which it is a feature
of the degenerate-singular case for a € (—1,1) and a # 0.

At this point, we already know that given an L,-harmonic function u on B, for every Xy €
['(u) NX and i | 0T we have, up to a subsequence, that

U(XO —+ rkX)
H(X07 u, Tk)

uk(X) = —)p(X),

where p € Hlloff (R™1!) is an nonconstant entire L,-harmonic function homogenous of order
k € R with ||p|[;2.(9p,) = 1. In particular, by Proposition 3.4.8 we already know that k =
N(Xo,u,0).

Inspired by Proposition 3.2.4, let us consider separately the case when u is symmetric with respect
to X and the antisymmetric one.

Lemma 3.4.9. Leta € (—1,1) and u be an L,-harmonic function symmetric with respect to X.
Then, for every X € T'(u) N X, we have

N(Xo,u,07) € 1+N.

Proof. Let Xp € I'(u) NE and k = N (X, u,0") be the Almgren frequency formula in X. For
every rp — 0 we already know that, up to a subsequence, by Theorem 3.4.1 and Proposition
3.4.8 that

U(XO —+ rkX)

H(X07 u, Tk)

Uk’(X) = —>p(X)’

where p is an L,-harmonic k-homogenous function symmetric with respect to .

Since, by Corollary 3.3.6 we already know that k > 1, let us suppose by contradiction that there
exists an homogenous L,-harmonic function of order £ > 1 such that £ ¢ IN. Since for every
i=1,...,n,we have

La<aa:ip) - 8ziLap - 07

fixed k = | k|, by Euler’s homogeneous function Theorem, we already know that any k-order
partial derivative of p with respect to the variables z1,...,x, must be an homogenous L,-
harmonic of order & = k — | k] € (0,1). The contradiction follows from Proposition 3.3.6, since
the homogeneity of an homogenous function is equal to the Almgren frequency formula evaluated
in the origin, hence in the symmetric case it must be greater or equal to 1. O
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Lemma 3.4.10. Leta € (—1,1) and u be an L,-harmonic function antisymmetric with respect to
Y. Then, for every X € T'(u) N'X, we have

N(Xo,u,07) €1 —a+N.

Proof. As in the previous Lemma, let Xy € I'(u) N X and k = N(Xp,u,0") be the Almgren
frequency formula in X. For every 7, — 0" we already know that, up to a subsequence, we have
by Theorem 3.4.1 and Proposition 3.4.8 that u — p where p is an L,-harmonic k-homogenous
function antisymmetric with respect to X.

By Proposition 3.2.4, there exists ¢ € Hllo’z “%(R™*1) and Lo_,-harmonic function symmetric
with respect to ¥, such that p = qy |y| . Since p is k-homogenous, we already know that ¢ must
be (k — 1 + a)-homogenous, i.e.

11 .1a e (XN yHy® e (X
a(X) = p(X )y~ yl® = | X1 p(m) e = q()

for every X € R"*1,

Obviously if ¢(0) # 0, then k = 1 — a and q is zero-homogenous, i.e. ¢ = ¢(0) on R""!, instead,
if ¢(0) = 0, by Lemma 3.4.9 we know that N'(0,¢,0") € 14 IN and consequently k € 2 —a + IN.
Similarly, since these two cases correspond to N(0,¢,0") = 0 and N(0,q,07) € 1 4+ N, the
final result on k can be formulated as N (Xg,u,0") € 1 —a + IN. O

Proposition 3.4.11. Leta € (—1,1) and u be an L,-harmonic function. Given Xo € I'(u) N X
and a blow-up sequence uy, centered in X and associated to some 1y, | 0", Then the blow-up limit
p€E Hllo’g(lR"“) is either symmetric or antisymmetric with respect to 2. and

1+N £ i
N(Xo,u,07) € TN if p is symmetric,
1—a+ NN, ifpisantisymmetric.

Proof. The proof is a direct consequence of the previous Lemmas. Indeed, let Xy € T'(u) N X
and k = N(Xp, u,0") be the Almgren frequency formula in Xj. For every r;, — 0" we already
know that, up to a subsequence, we have by Theorem 3.4.1 and Proposition 3.4.8 that

U(XO + rkX)
H(X()a u, Tk)

uk(X) = —>p(X),

where p is an L,-harmonic k-homogenous function. By Proposition 3.2.4 and (98), there ex-
ist a unique Lg-harmonic function p, € Hﬁ)’g (IR"H) and an Ls_,-harmonic function ¢, €
H>?7*(R™*1) both symmetric with respect to X, such that

loc

p(,y) = pe(x,y) + qe(2,y)y ly|~*, for every (z,y) € R™.
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Since p is k-homogeneous, we already know by the Definition 3.2.3 that also p. and g.y |y| * are
k-homogeneous, i.e.

N(0,pe,07) =k = N(0,q,07) + 1 —a. (115)

If p is purely symmetric or antisymmetric with respect to X, the result follows respectively by
Lemma 3.4.9 and Lemma 3.4.10. Instead, suppose by contradiction that p. # 0 and ¢. # 0, then
by (115) the two homogeneity of p. and g. can not be simultaneously in IN + 1, in contradiction
with the previous Lemmas. O

In order to understand the local behaviour of the L,-harmonic function, we need to con-
struct explicitly the homogenous L,-harmonic function. As before, we start by classifying the
homogeneous solution symmetric with respect to ¥ in order to classify all the possible ones.

Lemma 3.4.12. Letp € Hllo’g(IR”“) be a nonconstant homogeneous L,-harmonic function, sym-
metric with respect to X.. Then p does not depend on the variable y if and only if it is harmonic in the
variable x1, ..., xy.

The proof is trivial and the main consequence is that for every £ € 1 4 IN an homogenous
harmonic function in the variable x1, ..., z, of order k is an admissible blow-up limit. For this
reason, let us concentrate our attention on the case of blow-up limits that depend on the variable
Y.

Lemma 3.4.13. [22, Lemma 2.7] Letp € Hﬁ)g (R™1) be an entire L,-harmonic function symmetric
with respect to X, such that

p(X)| <C(1+1x]F) iR,

for some k € IN. Then p is a polynomial.

In order to give an explicit formulation of the blow-up limits, at least for n + 1 = 2, we remark
that if p is a k-homogenous L,-harmonic function, then for every ¢ = 1, ..., n the functions 0,,u
are (k — 1)-homogeneous Ly-harmonic function and 97, u + ay~'0,u is a (k — 2)-homogenous
Lg-harmonic function. More precisely,

Lemma 3.4.14. Letp € H* (R™"1) be an L,-harmonic homogenous polynomial of degree k > 2

loc

symmetric with respect to X.. Then p is Lq-harmonic if and only if O,,p and 8§yp + ay~o,p are
L,-harmonic, for everyi =1,... n.

Proof. Since the derivatives commute, we get

Y17 LaOup = s, (Jy| ™ Lap) , ¥i=1,...,m

2 1 2 1 (116)
L, (ayyp 4+ ay~ 8yp) = 0y Lap+ay™ 0yLap.
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The first implication is obvious since replacing L,p = 0, we get the conditions on the derivatives.
Now let us suppose that (116) holds true, since p is an homogenous polynomial of degree k, the
function (z,y) — |y|~* (Lap)(z,y) is an homogenous polynomial of degree k — 2 symmetric
with respect to 2. Moreover, since d,,p is L,-harmonic, for every ¢ = 1,...,n, from the first
conditions in (116) we have L,p = ¢(y), with ¢(y) = ¢(—y) and

02,q+ ay ' dyq =0, (117)

from the last condition on the derivatives with respect to y.
Since the general solution of (117) is ¢(y) = ¢1 + ¢2 |y|”“, we immediately get, from the con-
strained of symmetry, that ¢(y) = 0 and hence that L,p = 0 on R"", O

The following Proposition gives a complete picture of the possible entire configurations in
IR2. This profiles will be useful in the stratification result of Section 3.7.

Proposition 3.4.15. Letp € H1 “(IR%) be a nonconstant entire L,-harmonic function symmetric
with respect to 2. such that N(O,p, r) = k for everyr > 0. Suppose that p depends on the variable
y, then if k € 2IN we have

1
plz,y) = oFi -5, —5—5+5:5—35 |V (118)
2’fr(1+k)r(1+“+k‘> 272 2 22 y
2 2 2 2
and if k € 2N + 1 we get
(Lo
(2,y) = (1) 2r<2+2> (L Bk a3 @) e
p\r,y Qk 11—v<1+k>r<a+k) 2141 2 27 9 2727 yQ Yy s 9
2 2 2 2

where o F is the hypergeometric function.

Proof. The proof is by induction and based on the properties related to the derivatives of ho-
mogenous L,-harmonic functions. By Lemma 3.4.13, we already know that every homogenous
L,-harmonic function symmetric with respect to X is a polynomial p(x, y) such that, for every
x € X the map y — p(z,y) is a polynomial of even degree.

Fix k = 2m with m € IN, consider

(—1)mt - (5 +5)

! b 1
200 2me o1 Zitas 2t'( — t)122m=2T (m —tt 5+ ;L)

c(m,a,t) =

—_

(120)
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and consequently

g?m 2t 2m—2t
p(xvy) = TTH' + Z C(’I’I’L, a, t){L' ) mes
: t=0

which is equivalent to (118). By a direct computation, it is easy to see that Lyp(z,y) = 0 for
every (z,y) € R% Now, let us prove by induction on k > 2 that every homogenous L,-harmonic
function is of the form (118). Since the case k = 0 is trivial, let us take kK = 2. Since p must be
of degree 2 and even in the variable y, the polynomial must be like p(z,y) = a12? + asy? and

consequently
1

1+a

Lip=0 <+— ago=— ay,

and for a; = 1/2 we obtain the formula in (120).
Suppose (120) are true for k € 2IN, and consider a L,-harmonic polynomial p of degree k + 2, i.e.

m
_ 2m+2 2, Im—2t
p(z,y) = ama12®™ T+ aga®tyt
=0

Since 92p is a L,-harmonic polynomial of degree k, we must have by the inductive hypothesis

am+1(2m+2)(2m+1) = 2t(2t — 1)a; = ¢(m,a,t — 1) fort =1,...,m.

2m!’
which imply, by definition (120), that

1 c(mya,t—1) (m+1,a,1)
Qa = at — —————~ = ¢c\m a
T em ) T T 2t(2t—1) T

fort =1,...,m. Finally, let w = —8§yp — ay~'9,p be a polynomial of degree k. By Lemma
3.4.14 w is Lg-harmonic and, by the inductive hypothesi, we get by linearity that

_agy(a0y2m+2) o ayflay(aonm—&-Z) — c(m, a, 0)y2m’
or in other words that —(2m + 2)(2m + 1 + a)ay = ¢(m, a, 0), which implies that

¢(m,a,0)
2(m+1)(2m+1+a)

ag = =c¢(m+1,a,0).
We have already proved the formula for the case k£ € 2IN, while the other one is obtained via an
integration respect to the variable x. O

Before to consider the general case n > 3, we complete the Section with some concrete
examples of blow-up profiles in 2-dimensional case. This example, and more generally the class
of homogeneous function described by the previous Proposition, will summarize all the possible
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behaviour of the (n — 2)-dimensional singular set, as we will see in Section 3.7. For n > 3, we
can not give an explicit formula for the blow- up limits which depend on the variable y, but we
can prove that every polynomial in R” admits a unique L,-harmonic extension symmetric with
respect to 2. Since we want to classify the possible blow-up limit of s-harmonic functions on the
nodal set, this result suggests that s-harmonic functions can vanish like any polynomial. We will
discuss in the following Sections the implication of this classification.

Lemma 3.4.16. [51, Lemma 5.2] Let p(z) be an homogeneous polynomial of degree d in IR".Then,
there exists a unique polynomial (X)) = q(x,y) of degree d in R™** such that

Log=0 in R"+1
q(z,y) = q(z,—y) inR"M
q(z,0) = p(x) on R™.

In particular, it can proved that this extension is obtained by

d/2 a 2k k .
%y 2i—1
Q(:l/‘?y) = Z (*1>kCQkAk77, Cok = H N )
= al (2k!) i 20— 2s
where o = (a1,...,a,) € N4, 2% = 251 - 297 and a! = a1!- - o,

Inspired by the previous results, let us introduce the following classes of blow-up limit.

Definition 3.4.17. Givena € (—1,1) and k € IR, we define the set of all possible blow-up limit
of order £, i.e. the set of all L,-harmonic symmetric polynomials of degree k, as

Lop = 0in R™H!

BUR™) = {p e LR
p(0) = X

loc X ) . n+1
— | inR
X

Similarly, the set of blow-up limit of order k respectively symmetric or antisymmetric with respect
to X are defined as

sBY(R™) = {p € BE(R™) | p symmetric with respect to X },
aB (R = {p € BL(R™) | p antisymmetric with respect to & }

By Proposition 3.2.4 and Lemma 3.4.12 we can classify even more the structure of the previous
classes emphasizing two subclasses of blow-up limit.
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Definition 3.4.18. Givena € (—1,1) and k € R, let us define 5B} (R" ") = B (R?) the set
of functions p € BE(R™ 1) such that Ayp = 0, namely p(z,y) = p(z) in R*™! = R? x R,

By the previous Section, we already know that for a € (—1,1) we have B¢(R""!) =
B3(R""!) and for k > 2 we have sB§ (R""1) \ B5(R"*!) # () and it consists of all blow-up
limit which depends on the variable y. Finally

Corollary 3.4.19. Fora € (—1,1), let u be an L,-harmonic function in By and Xy € T'y(u), for
somek € 1+ N ork € 1 — a+ IN. Then, every blow-up limit p centered in Xy € T'j(u) is either
in sBL(R™™) or in aBE(IR™™1). Moreover, for everya € (—1,1) we have

aBE(R™) = sB7 2 (R™ )y [y 7.

3.5 UNIQUENESS AND CONTINUITY OF TANGENT MAPS AND TANGENT FIELDS

In this Section we start introducing a Weiss type monotonicity formula, which is a fundamental
tool well suited for the blow-up analysis at the nodal points X € I'(u) where N (X, u,0") = k.
Starting from this result we will improve our knowledge of the blow-up convergence by proving
the existence of a unique no-zero blow-up limit at every point of the nodal set I'(u), which will
be called the tangent map X0 of u at Xj.

In particular, inspired by the decomposition in (98), we introduce the notion of tangent “field” at
the nodal point ®X¢, which take the main role in our blow-up analysis.

Definition 3.5.1. Given u an L,-harmonic function in By, for k¥ > min{1,1 — a}, we define
Ti(u) == {Xo € ['(u): N(Xo,u,0") = k}.

One has to point out that the sets I';(u) may be nonempty only for & in a certain set of
values. Indeed, by Proposition 3.4.11, we already know that 'y (u) N X is nonempty if and only if
ke€l+Norke€1l—a+ IN. We remark that all the following results are well known for the
case X € I'p(u) \ X since the L, operator is uniformly elliptic outside X.

Proposition 3.5.2. Let u be a nontrivial L,-harmonic function in By. For Xo € T (u) N L, we
introduce the k-Weiss type formula

1 / 2 k a 2
e T ly[* [Vl dX—/ ly|" [ul” do.
rn+a—1+2k By (Xo) ,r.n+a+2k 9B, (Xo)

Forr € (0,1 —|Xo|) we have

Wi(Xo,u,r)

d 2

L w(x S (Y, X — Xo) — ku)? do.
Cl?“Wk( O,U,T) ynta+1+2k /(93r(X0) |y| (<VU, 0> k‘U) do (121)
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which implies that r — Wy, (Xo,u, ) is monotone nondecreasing in (0,1 — | Xo|).
Furthermore, the map r — Wy,(Xo, u, ) is constant if and only if u is homogeneous of degree k.
Proof. By the definition of the Almgren monotonicity formula, we have

H(XU,U, T)

Wk(XQ,U, 7’) = r2k

(N (Xo,u,7) — k) (122)
which directly implies that

d — 9k 1 /d d
Wi Xo,u, 1) = (E(Xo,u,r) — kH(Xo,u,7)) + —= (dE(XO, u,r) = k- H(Xo,u, r))
T T

dr T2k+1 T2k
—4k 2k* 1 d
g T2k+1E(X07U,T‘) + WH(XO,U/,T) + eraE(X(]’u’ 7")
2 " )
= ariiok Vu, X — Xo) — ku)“d
as we previously claimed. 0

By a integration by parts, we can rewrite the k-Weiss monotonicity formula as

1

Wi (Xo,u,r :/ yl®u ((Vu, X — Xo) —u)do.
(o) = s [ ol 0

Proposition 3.5.3. Leta € (—1,1) andu be an L,-harmonic function in By and X € Ty (u) NX.
For every homogenous L, -harmonic polynomial p € B¢ (R™ 1), the map

H(Xo,u—px,,7) 1 “ 9
re r2k o rntat2k /BBT(XO) |y| (u_pxo) do

is monotone non decreasing in (0,1 — | Xg

), where px,(X) = p(X — Xp).

Through the following Section, we will use the notation r — M (Xy,u,px,,r) for the
previous map.

Proof. Since X € I'y(u) NX and p is a k-homogenous L,-harmonic function, we already know
that Wy, (Xo, u,r) > 0 and Wy (Xo, px,,r) = 0 for every r € (0,1 — | Xp|). Let w = u — px,,
then
Wk(X07 u, T) - Wk(X07 u, T) + Wk(X07pX07 T)
1 / 2 a k a, 2 a
e s yI* IVwl” + 2 |y|* (Vw, Vp)dX — = y|* w” +2]y[* wpdo
rn+a 1+2k ( BT(XO) 8BT(X0

”
2
= Wi (Xo,w,r +/ y|*w((Vpx,, X — Xo) — kp)do
( 0 ) ynta+2k 8Br(X0)| | (< 0 0> )

- Wk’(XO?u_pXoar)'
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Hence , by (122), we finally get
d H(Xo,u—px,,T) H(Xo,u—px,,7)
% r2k ° =2 r2k+1 : (N(X()?u — PXo» T) - k)

2
= ;Wk(X[)vu_pXQ)T) 2 O

O]

Now, we apply the previous monotonicity formulas to study the growth rate of the L,-
harmonic function at the points of the nodal set. In particular, we prove a nondegeneracy and
uniqueness result of the blow-up limit, for every points of the nodal set.

Lemma 3.5.4. Leta € (—1,1) and u be an L,-harmonic function in B;. Then, for every X, €
T (u) N, there exists C > 0 such that

u(X)| < C|X — Xo|¥  inBgrya(Xo).
where R = 1 — dist( Xy, 0B1).

Proof. Since whenever X € T'y(u) we have N (Xo,u,7) > N(Xp,u,0") = k, then for every
re€ (0,R)

d 2 2k
%logH(Xg,u,T‘) > ;N(X07u’r) > 7
and similarly
H(Xo,u,R) 1
log ———"—~ > 2klog —
8 H(Xo,u,r) — &

which implies H (X, u,r) < H(Xo,u, R)r?**. Now, by [88, Lemma A.2.] and the previous
estimate, we get for every r € (0, R)

1 1/2
supu < C(n,a) W/ ly|* u2d X
B, /2 r By

H(0,u, R)\ /2
< C(n,a) (n(—i—a—i—l)) 3

where in the second inequality we used the monotonicity of r — H (0, ug, ) in (0, R). O

Lemma 3.5.5 (Nondegeneracy). Leta € (—1,1) and u be an L,-harmonic function in By. Then,
for every X € T'y(u) N X there exists C > 0 such that

sup |u(X)|>Cr* for0<r<R
0B (Xo)

where R = 1 — dist( Xy, 0By).
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Proof. Fix X € I';(u) and suppose by contradiction, given a decreasing sequence r; | 0, that

/2

H(Xo,u,7;)/? 1 '

i 0T gy <n+a+2k/ !y\““2d0> -
r 9B, (Xo)

j—o0 r; Jj—00

Consider now the blow-up sequence
. U(Xo + T’jX )
Pj

1/2

u;(X) where p; = H(Xo,u,rj)

constructed starting from 7; and centered in X € I';(u). By Theorem 3.4.1, up to a subsequence
uj — p uniformly, where p is a nontrivial L,-harmonic homogenous polynomial of degree k&
such that H(0,p,1) = 1.

Let us focus our attention on the functional M ( Xy, u, px,, ) with px, as above. By the assump-
tion on the growth of v it follows

1

4N\ s a . 2
M(X07u7pX070 )_}11)% Tn+a+2k /BBT(XO) ’y‘ (u pX()) dO'

X, X 2
= lim ly|® <U(O+T) —p(X)) do
0B1

r—0 rk

[
0B1

= lyl* pX, do-
rn+a+2k 9B, (Xo) 0

By the monotonicity result of Proposition 3.5.3 on the map r — M (Xy, u, px,, ), we obtain

1 / 2 1 a 2
e [yl (u—px,) do > ————r / y|* p, do
rn+a 1+2k 9B, (Xo) 0 rn+a 1+2k 9B, (Xo) 0

and similarly
[l = 2upx) do 2 0
0B, (Xo)

On the other hand, rescaling the previous inequality and using the blow-up sequence u; defined
as above, we get

/ ly|* (H(Xo,u, rj)u? — 2H(X0,u,rj)1/2rfujp) do >0
0B,

and

H(Xo,u,r;)"/?
/ ‘y’a ( 077277‘]) u?_Qqu do > 0.
0By

Ty
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The absurd follows passing to the limit for j — oo, indeed by the previous inequality we get

/ y[* p2 do < 0
0B1

in contradiction with p # 0. O

Theorem 3.5.6 (Uniqueness of the blow-up limit). Givena € (—1,1) and u be an L,-harmonic
function in By, let us consider Xo € T (u) NL, i.e. N(Xo,u,0") = k. Then there exists a unique
nonzerop € B¢(R"T1) blow-up limit such that

_u(Xo+rX)

ux,r(X) = — p(X). (123)

rk
Proof. Up to a subsequence r; — 07, we have that u Xo,r; — P in Cﬁ;?. The existence of such
limit follows directly from the previous growth estimate |u(X)| < C'|X|* and by Lemma 3.5.5
we have p is not identically zero. Now, for any r > 0 we have
Wi (0,p,r) = lim Wy(0,ux,,r;,7) = lim Wi(Xo,u,rr;) = Wi(Xo,u,07) = 0.
j—00 j—00

In particular, Proposition 3.5.2 implies that the L,-harmonic function p is k-homogeneous and
consequently p € B¢(IR"™!). By Proposition 3.5.3 the limit M (X, u, px,,0") exists and can
be computed by

M(XOa U, PXxop, 0+) = hm M(X07 U, PXop> 7"])

j—00
= lim M(0,ux,,;,p,1)

j—o00

= lim ly|* (uXO,Tj —p)*do = 0.
J]—00 831

Moreover, let us suppose by contradiction that for any other sequence 7; — 0 we have that the
associated sequence converges to another blow-up limit, i.e. ux,,, — ¢ € BL(R""1), ¢ # p,
then

0 = M(Xo,u,px,,0") = lim M(Xo,u,px,,7:)

1—00

= lim [ Jy|* (ur, —p)*do

1—00 6B1

= / ly|* (¢ — p)? do.
0B1

As we claim, since ¢ and p are both homogenous of degree k they must coincide in R™. O
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Inspired by the previous uniqueness and nondegeneracy results, we introduce the notion of
tangent map at every point on the nodal set I'(u).

Definition 3.5.7. Givena € (—1,1), let u be an L,-harmonic function in By and X € Ty (u) N
Y, for k > min{l,1 — a}. We define as tangent map of u at X the unique nonzero map
X0 € B¢ (u) such that
u(Xo +rX
o (%) = ") oo x)
Moreover, we define as normalized tangent map of u at X, the unique nonzero map pX° € B (u)
normalized with respect to the L?%(9Bj ) norm, i.e. the map obtained as

U(XO + TX) N pXo

UXO,T(X) =
H(XOa u, ’I")

Exploiting the deep connection between the existence and uniqueness of the tangent map
and the Taylor expansion of an L,-harmonic function, we can find another characterization of

the sets T'; (u).

Corollary 3.5.8. Fora € (—1,1), letu be an L,-harmonic function in By and X € T'y(u) N L,
with k > min{2,2 — a}. Then

e ifk € 24+ N, we have D"u(Xy) = 0 for every |v| < k — 1 and there exists |vg| = k such
that D"°u(X,) # 0;

e ifk € 2—a+ N, we have D" (uy |y|”*)(Xo) = 0 for every |v| < k — 1 and there exists
|vo| = k such that D™ (uy ly|~*)(Xo) # 0.

Finally, we can prove the validity of the weak unique continuation principle for the restriction
of T'(u) on X. This result will improve the study of the nodal set of u by showing that its restriction
on the characteristic manifold X is either with empty interior in X or is X itself. While in [73] the
author proved a similar weak unique continuation property using a boot strap argument based
on some regularity estimates for the L,-operator, in our case we want to emphasize how our
blow-up analysis and the classification of the tangent maps allow to study several local property
of L,-harmonic function.

Proposition 3.5.9. Let a € (—1,1) and u be an L,-harmonic function in By. If there exists
Xo € BiNX and R < 1 —|Xy| such thatu = 0 on Bg(Xo) N X, thenu =0 on B NX.

Proof. Let X € T'(u)NX and R < 1 —|Xj|. Since we are focusing the attention on the restriction
of the nodal set on X, by definition of the symmetric part of u with respect to %, we can assume
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that u = w, is purely symmetric with respect to X.

The idea of the proof is to prove that u is identically zero in the whole ball Br(Xj) in order to
apply the Strong Unique continuation property Corollary 3.3.3, which is actually a stronger result
since it does not only concern the trace of u on X.

Suppose by contradiction that u # 0 on Br(Xj), then

1
n+a/ ly|® u?dX >0
r 3B (Xo)

for all » € (0, R). Now, since Xy € T'(u), there exists by Theorem 3.5.6 a unique nontrivial
tangent map 0 € B¢(R" 1) of u at X, where k = N (Xp, u,0"). Since u is symmetric with
respect to X, by Corollary 3.4.9 we know that X0 € §B%(R"™!), with k € 1 + IN.

Let us see the points in Br(X() N X as the collection of point Xy + rv forr < Rand v € S" NX.
By the L convergence of the blow-up sequence we get that 90 (v) = 0 forallv € S"N X,

loc

H(Xo,u,r) =

ie. o = 0 on X. Let us prove now that ¢ = 0 on R"*! by induction on the homogeneity
k= N(0,p%0 07).

Let k = 1, then up to a rotation ¢~*°(z,y) = C(X,e;) = Cxy, where x = (x1,--- ,z,) and
consequently C' = 0. Now let us suppose that every k-homogenous L,-harmonic polynomial
symmetric with respect to ¥ which is zero on X is actually identically zero in R™*! and consider
the case k + 1. Given v; = 9,,p° € H*(B;) we have that

Lov; =0 in R**,
v; =0 onX,

N(O, ’Ui,OJr) < k.

By the induction hypothesi we have that for every i = 1,--- ,nv; = 0 on R"*!,ie. 9,,0%0 =0
and consequently X does not depend on = € X.. The absurd follows immediately since the only
L,-harmonic polynomial in the y-variable is purely antisymmetric and equal, up to a multiplicative
constant, to f(y) = y|y|~“. O

Inspired by the doubling estimate in [73], we get

Proposition 3.5.10. Leta € (—1,1) and u a Lq-harmonic function in By. Then T (u) has empty
interior in R™"! and its restrictions T'(u) N is either equal to ¥ or it has empty interior in ¥ itself.
More generally,

T(u)NE =T(u)NE.

137



138

NODAL SET OF SOLUTIONS OF DEGENERATE - SINGULAR EQUATIONS

Proof. Assume by contradiction that there exists X € I'(u) such that d = dist( Xy, 0T (u)) < R,
where R = 1 — | Xy|. By definition of d, we have H (X, u,r) > 0 for r € (d,d + ¢), for some
e > 0. By (103), the map r — H (Xo, u, ) solves the Cauchy problem

{Hm = a(r)H(r), forre (d,d+e) (124)

H(d) =0,

where a(r) = 2N (X, u,r)/r, which is continuous at d by the monotonicity result of r —
N(Xo,u,r),ie. Proposition 3.3.1. Then by uniqueness, H(r) = 0 for r > d, which contradicts
the definition of d and the assumption that « is not identically zero in B;.

Now, let us consider I'(u) N X. By definition of u, u, we easily get

T(u)NE =T(u)NE.

Hence, let us suppose that u # u,, ie. I'(u) NX & X, and assume as before that there exists
Xo € T'(u) NE =T (ue) NE such that d = dist(Xp, 0T (u.) NX) < R, where R = 1 — | Xy|. In
other words, the symmetric part u. of u solves for every r < d,

Loue =0 on B, (X))
ue =0 on B, (Xp)NZX
Oyue =0 on B.(Xo) NI,

which implies that u, = 0 in By(Xy), i.e. H(Xo,ue,d) = 0. As before, by the uniqueness of
the Cauchy problem (124), we get that u. is identically zero in Bj, in contradiction with the
assumption I'(u) N X & X. O

Looking again to the blow-up sequence, we can establish an auxiliary result concerning the
convergence with respect to the Hausdorff distance dy. In particular, we will prove that given the
blow-up sequence (ux, ) of u at Xo, then the nodal sets T (ux, ) converge to I'(¢*0) with
respect to the Hausdorff distance. More precisely, given two sets A, B, the Hausdorff distance
dy (A, B) is defined as

dy (A, B) := max {sup dist(a, B), sup dist(A, b)} )
acA beB

Notice that dy (A, B) < e ifand only if A C N.(B) and B C N.(A), where N.(-) is the closed
e-neighborhood of a set, i.e.

N.(A) = {X € R"™! : dist(X, 4) < e}
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Proposition 3.5.11. Let u be an L,-harmonic function in By and X, € T'y(u) NX. Given, ux, ,
the blow-up sequence at Xy, i.e.

u(X() —i—TX)
ux, - (X) = -5

— ™0 (X).
Then T (ux, ) N — T(¢X0) NZ with respect to the Hausdorff distance d, in By. More precisely,
for every k > min{1, 1 — a} we have that

T (uxyr) NZ — Tp(eX0)NZ
with respect to the Hausdorf{f distance dy; in By

Proof. Let7; — 0" and u; = u Xo,r; De the blow-up sequence of u at X associated to r; and
T';:(u;) be the sequence of nodal sets associated to the blow-up sequence. Through the proof,
we will omit the fact that we are just focusing on the restriction of the nodal sets on ¥ and we
will call T (0X0) as the tangent cone of T'y(u) at Xo. By Theorem 3.5.6 we already know that
¢©X0 and T'(¢X?) do not depend on the choice of the sequence 7. By the definition of Hausdorff
distance, the claimed result

dy (Fk(ul) N By, rk((pXO) N Bl) —0
is equivalent to prove that for every £ > 0 there exists ¢ > 0 such that for every i > i

Ti(ui) N By € N (Th(p™) N B1)
rk(('pXo) N Bl C Ns (rk‘(uz) N Bl) .

Supposing by contradiction that the first inclusion is not true, then there exist € > 0 and a
sequence X; € I'y(u;) N By such that dist (Xi,rk(goxo) N Bl> > 2. Up to a subsequence,
X; = X € T(¢%0) N By by the LS. convergence of u; — 0. Since X; € I'y(u;) is equivalent

loc

to Xo + 7 X; € T'y(u), given Q) CC By such that (X + 7, X;); C ), let us consider

Ry =mindist(p,0B1) < 1,
peQ

C =sup N(p,u, Ry).
peQ
Hence, by the monotonicity result Proposition 3.3.1 and Corollary 3.3.2, for p € QN T (u) and
r < Ry we get that N(p,u,r) > k and

1

R n+a—1+2C B
! <C— .
- rn+a—1+2C’

N(pauv T) S N(p7 u, Rl) (T
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In particular, from the second inequality we can easily state that for every € > 0 there exists
R = R(n,a,Q,e) > 0 such that
N(p,u,r) < k+e,

for every p € QO NT(u) andr < R.

Now, since for ¢ > 0 sufficiently large N(X;,u;,7) < N(Xo+ X;,u,r), if we take p =
Xo + 7;X; in the previous inequality, we get that there exists R = R(n,a, Xg) > 0 sufficiently
small, such that for » < R we have

1 1—-a |a
k < N(X;,u;,r) < k+ min (2 I 2|) :
Since lim; N (X;, u;,r) = N(X, X0, r) for sufficiently small , we directly obtain from Propo-
sition 3.4.11 that N (X, ¢~ 07) = k, ie. X € I'1(¢%°) N By. Finally, the absurd follows
immediately since Ty (0°) U {0} is an homogeneous cone passing through the origin and hence
it implies that dist(X, 'z (¢X°) N By) = 0.

Now let us consider the second inclusion, i.e. for every ¢ > 0 there exists ¢ > 0 such that
for every i > i
Fk((pXO) NB; C N <rk(uz) N Bl) .

Let us start by proving that given X € I'y(p~°) and § > 0 such that Bs(X) N (pX0) =
Bs(X) NTx(¢X0) there exiss 7 > 0 such that for every i > 7 the function u; must admit a zero
of order k in Bs(X), 'y (u;) N Bs(X). Suppose it is not true, we would have two possibilities:
first that u; > 0 in Bs(X) for every k > 0 or secondly that every zeros of u; is not of order k. In
the first case, the positivity implies that X0 must be an homogeneous L,-harmonic function
nonnegative in Bs(X) with ¢X0(X) = 0, and therefore »*° = 0 in R"*!. In this case the
contradiction follows by Lemma 3.5.5 and Theorem 3.5.6.

Secondly, since up to a subsequence there exists a sequence X; € ' (u;) N Bs(X) for h # k, by
arguing as in the proof of the other inclusion, we can prove that X; — X € I';(¢X°) N Bs(X),
in contradiction with the definition of § > 0.

Finally, suppose the existence of £ > 0 and X; € T'y(¢*°) N By, X; — X € T(¢X0) N By,
such that dist(X;, [y (¢X°) N By) > &. Since X = {0} is a trivial case, let us focus on the case
X € I'y(¢X°) N By. By definition, I';,(¢X°) U {0} is an homogenous cone passing through the
origin and hence we can take X € T'y(¢*) N By such that ’X - Y’ < /4. Moreover, by the
previous paragraph, there exist a sequence X; € I'(u;) N By and i > 0, such that for i > i we
have ‘71 — Y’ < min{4,z}/4 Hence, we get

dist(X;, T (X)) N By) <

\X—Y]Jr
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which leads a contradiction for large ¢ > 0. O

The following result will be a fundamental tool in the study of I'(u) N X. Indeed, by using
the continuation of the tangent map with respect to the L>%(9B1), we will prove a separation
property for the set T (u) N X, for £ > min{2,2 — a}.

Theorem 3.5.12 (Continuation of the tangent map on I' (u)). Let Xo € T'x(u) NZ and ¢X° be
the tangent map of u at Xo, such that
u(X) = 9™ (X — Xo) +0(|X — Xo[). (125)
Thus, the map Xo — ©X0 from Ty (u) to BE(R™ L) is continuous.Moreover, for any compact set
K C Tk (u) N By there exists a modulus of continuity ok such that o (0) = 0 and
u(X) = ™ (X = Xo)| < o (1X = Xol) |X = Xol*,
forany X € K.

Proof. Since B¢(R™*1) is a convex subset of a finite-dimensional vector space, namely the space
of all k-homogeneous polynomials in IR"*1, all the norms on such space are equivalent and hence

we can then endow B¢ (IR"™!) with the norm of L?>?(9By).
Fixed X € I'(u) NX, by Theorem 3.5.6 we have the following expansion

u(X) = X (X — Xo) + o(|X — Xo|").
where chO is the unique blow-up limit of u in X. Given € > 0, consider r. = 7.(Xj) such that
1 2
W/;B ‘y’a (U(Xo‘i‘X)—QOXO(X)) do < e.
There exists also 0. = d:(Xp) such that if X; € T'y(u) NX and | X; — Xg| < 0. then

1 X 2

Te

X X 2
/ ly|* (W — chO(X)) do < 2¢
831 TE

M(XO') u, SOX(J? r&‘) -

or similarly

From Proposition 3.5.3, we have that M (X1, u, ¢X0,r) < 2¢ for r € (0, r.), which implies
M(Xq,u,X0,07) = lirr(l) M (X1, u, X0, r)
r—

X +rX 2
= lim lyl* (u( 1Jkrr )—sDXO(X)) do
r—0 8B r

2
= / ly|* ((le — (pX(’) do < 2e.
0B1
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Now, by the previous computations, for | X; — Xo| < 6.,0 < r < r. we get

X1 XO

< 2¢/2¢,

L2a(8By)

) + HQOX() —¢

Hqu,r — @ ) S HUXLT — @

L2:a (631 L2:a (831

where ux, , and uy, , are the blow-up sequences defined in (123) centered respectively in X
and Xo. Now, covering the compact set K C I'y,(u) N B; with finitely many balls By, (xi) (X§),
for some points X} € K,i = 1,..., N, we obtain that the previous inequality is satisfied for all
X; € Kwithr <X =min{r.(X{):i=1,...,N}.

Now, since ux, , — X1 is an L,-harmonic function in By, by [88, Lemma A.2] and (103), we get

X
s, —
B2

1/2
< Clna ([ 1wy = )
B1
2e
< 20C _—
< 20(m a4

forall X; € K,0 < r < XX, which immediately implies the second part of the Theorem. O

The following definition allows us to study the structure of the restriction I'(x) N X. Inspired
by Proposition 3.5.10, since I'(u) N X = T'(u.) N X, where u, is the symmetric part of u with
respect to X, we characterize the sets I'y (u) starting from the unique tangent map of u.. Moreover,
since we are dealing with a purely symmetric function, we will see that the structure of the nodal
set on ¥ is completely defined starting from the blow-up classes 58§ (R"*1) and B} (R*!).

Definition 3.5.13. Given u an L,-harmonic function on Bj, for £ > min{1,1 — a} we define

onX
Ti(u) = {Xo € Ti(u) NE: 0 € eB;(R™!)} and Tf(u) = Ty (u) \ T (u),

X
e

where X0 € 8% (R""!) is the unique tangent map of u. at Xo.

In particular I't (u) = I'{ (v) and for k£ > 2 the points in I'{(u) are the ones whose tangent
map depends on the variable y.

Corollary 3.5.14. For every k > 2 we have that T';.(u) NT'¢(u) = 0 = I} (u) NTE(u).

Proof. The proof of this result is based on the continuation of the tangent map of v on T'y(u) N X
with respect to the norm L?%(9By).

First, suppose by contradiction that there exists a sequence (X;); C I'z(u) such that X; — X €
['%(u). Let oXi = oXi and X0 = X0 be respectively the tangent map of u, at X; and Xy, then
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by Theorem 3.5.12 we get that oXi — (™0 strongly in L?>*(9By), i.e. for every & > 0 there exists
N = N(e) > 0 such thatif i > N, then

/331 ly|* (WXZ' - ¢X°)2d0 <e.

Hence, fixed w; = ¢~ — o*0 we get that L,w; = 0 in By and lwill 2.0(9p,) — 0. Since w; is
homogenous of degree k, we have

1
“deX:/ @ 02do
/BIM i ntat2k+1 aBlm i

/ 9l [Vui2dX = k / 9l wido
Bl 8B1

which implies that w; — 0 strongly in H1%(B;). In particular, for every ¢ € H%(B;) we have

/ ly|* (VX0 Ve)dX = .lim/ ly|* (V™ Ve)dX
B 71— 00 B:

If p = ¢(y) € C((—1,1)) we get Vo = 9,¢ e, and consequently, since ¢Xi € 5B} (R 1),
that

/ ly|* 9y p~ 00, pd X = lim / ly|* Dy, pdX = 0,
B 1— 00 B

in contradiction with the fact that X0 € sB¢(R""1) \ s8] (R"1).
Similarly, suppose now there exists a sequence (X;); C I'?(u) such that X; — Xy € I';(u). As
before, let 0 and X0 be respectively the tangent map of u. at X; and X, fixed w; = X — p*0

we get

|l otewax + [ it (08,0~ 20,65 )odX =k | |yl wigdo

B By Y 0By

for every ¢ € H1*(By). The idea now is to reach the contradiction by induction on k, proving
that it is impossible that the sequence of L,-harmonic polynomials in §8¢(R"*1) \ §8} (R"*!)
converges strongly in the L?%(9B1)-topology to a function in 57 (R" ).

First, for ¢ € Hy" (B ), we have

a a :
’/B | <8§y(PXZ+yay@Xl) PpdX
1

which gives us that
WP = fasygoxi - gaygoxi — 0 in L*%(By), (126)
Y

< C(n,k,a) (IIVwill 2y + il 2a(s,)) 1] fr1e(sy)
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where 1); is a sequence of homogeneous L,-harmonic polynomial of degree k£ — 2 > 0. Since
X > ;i is continuous, by Lebesgue’s dominated convergence theorem, we get |vs| 2.0,y — 0.
i.e. 1; — 0 strongly in L?%(By).

Hence, let k = 2 and ¢~ € sB5(R"!) \ sB5(R""!) be the sequence that converges to
some X0 € sB5(IR™™1). As in (126), let us consider the associate sequence 1; of L,-harmonic
polynomial of degree k — 2 = 0, i.e. a sequence of nonzero constants. Since ¢~ € 85 (IR"*1)\
B35 (IR" 1), by the reasoning in Section 3.4, there exists, up to a multiplicative constant, a unique
homogeneous polynomial uXi = u~i(x) of degree 2, such that

o¥i(z,y) = uri(z) —y® nR"™,

where A uXi = 2(1 + a) in R™. In particular, by (126) we get 1»; = 2(1 + a), and the contradic-
tion follows immediately since a € (—1,1).

Suppose now that we have proved the statement for every £k < K and let us consider the
case K + 1. By contradiction, let us suppose that sB%_ ; (R""1) \ sB7%_ ; (R""!) is not closed
in the L?%(9By) topology and ¢~ — *0 strongly in L>?(0By ), with X0 € 5875, (R""1).
Thus, we already know that the sequence 1); defined by (126) strongly converges to the zero func-
tion with respect to the L>%(B;) topology. Now, since (1);); are (K — 1)-homogenous, we have
that the L?%(B;) and L*%(9B;) topologies are equivalent. Finally, given that 0 < K — 1 < K,
we have constructed a sequence of (K — 1)-homogenous L,-harmonic polynomials 1); that con-
verges to the zero function 0 € 5%B% _; (R"!), which contradicts the inductive hypothesis. [

In the uniformly elliptic case, the Almgren and Weiss monotonicity formulas allow to prove
the uniqueness and non degeneracy of the tangent map and also to construct the generalized
Taylor expansion of v at Xj.

In this degenerate-singular setting, since as we already pointed out that the symmetric and
antisymmetric cases are complementary, we introduce the notion of tangential field of u on its
nodal set in order to take care of both this aspect of the solution w.

Definition 3.5.15. Leta € (—1,1), u be an L,-harmonic function in By and X € Ty (u) N L,
for some k > min{1, 1 — a}. We define as tangent field of u at X the unique nontrivial vector
field ®X0 € (HLY(R™1))? such that

D0 = (7%, 95°),

where X0 and X0 are respectively the tangent map of the symmetric part u,. of u and of the
antisymmetric one u,.
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The notion of tangent field will allows us to better understand the regularity of the nodal set
I'(u). Indeed, the main weakness of the concept of tangent map in this context is that it take care
either of the symmetric part of u or of the even one since they do not share the same optimal
regularity and even the same possible vanishing orders. More precisely, by Definition 3.5.7, for
every X € T'x(u)

ue(Xo +7X) n uo(Xo +7X)

UXOJ‘(X) = ok K
Cul(Xo+rX) | ui(Xo+7rX) |4
= ok + rk—1ta ylyl

where both u¢ and u2~? are symmetric with respect to X.. By Proposition 3.4.11 we already know
that the tangent map of u at X is either the tangent map of u, or the one of w,.

Definition 3.5.16. Let a € (—1,1),u be an L,-harmonic function in By and Xy € I'y(u), for
some k > min{1,1 — a}. We define as Almgren monotonicity formula associated to the tangent
field ®X0 of u at X as the vector

N(X, %0, 1) = (N(X, X0, 1), N(X,0,7))

Obviously, the “vectorial” notion of the Almgren frequency formula can be naturally extended
to the L,-harmonic function u as

N(Xo,u,r) = (N(Xo, te,7), N(Xo, o, 7)) .

for every Xy € X, but we will avoid this ambiguity on this notion. However, if the function w is
symmetric or antisymmetric with respect to X, the Almgren monotonicity formula associated to ®
is equal to the one of the tangent map ¢~° of u at X and it does not contain further information
on the local behaviour of u at Xy. In general, proving uniqueness result on both the symmetric
and antisymmetric part of u with respect to X gives the following generalized Taylor expansion

Corollary 3.5.17. Givena € (—1,1), let u be an L,-harmonic function in By and X € T'(u) N X.
Then
u(X) = X0 (X — Xo) + 93" (X — Xo) +0o(|X — Xol")

where X0 € §B%(R" ) and ¢ X0 € aB¢(R™ ") are respectively the tangent maps of u. and u,

€ o

at Xo and k = max{N (0, X0 07), N(0, X0, 07)}.
Lemma 3.5.18. Letu be an L,-harmonic function in By and R (u) the set
R(u) = {Xo € T(u): N(Xo,ue,0") =1 or N(Xo,u,07)=1-a}
= {Xo e T(u): N(X,®%,0%) = (1,1-a)}.
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Then R(u) N X is relatively open in T (u) N'X, while for k > 2 the set Ty (u) is F,, i.e. it is a union
of countably many closed sets.

Proof. The first part of the Lemma is a direct consequence of the upper semi-continuity of
X — N(X,u,0") on X. More precisely, since I'(u) "X = T'(u.) NL, we can restrict our
attention on functions symmetric with respect to ¥ and hence, we have

R(u)NE = {Xo € T(u)NE: N(Xo,ue,0") =1}

Now, by Lemma 3.4.9 we get

3
(Xo € T(w): N(Xo,ue,0%) = 1} = {Xo € T(u): N(Xo,ue,0%) < 2}.
Hence, let us focus our attention on the case T'y(ue) N X, with k > 2. For j € IN, let us define
with E; the set of points of X such that

-1 .
Ej:{Xoel"k(ue)ﬂZﬂBl_l/j: }pk§| sup| lue(X)| < jp¥, 0<p<1—\X0\}.
X—Xol|=p

By Lemma 3.5.4 and Lemma 3.5.5 we have that

o
Iy(u)nE = J E;.
j=1

The result follows immediately once we prove that E is a collection of closed sets. Given Xy € E,
since it satisfies 1
A< sup Jue(X)| < e, (127)
J | X —Xol|=p
we need only to show that X € Ty (u) N L, ie. N(Xo, ue, 07) = k. Since X — N (X, u,,0™)
is upper semi-continuous on %, we readily have N(Xg, u.,07) > k. On the other hand, if

N(Xo,ue, 07) = k' > k, we would have
ue(X)] < C1X — X/ in By_jx,(Xo) NZ,
which contradicts Lemma 3.5.4 and implies that Xy € E;. O

An other important consequence of our analysis of the tangent field of u at some nodal point
X € T'(u) N X is the following a posteriori result about the “quasi” upper semi-continuity of the
Almgren frequency X — N (X, u,0") in the whole R™ ",
Obviously, the restriction of this map on the characteristic manifold £ and the one on its com-
plementary are both upper semi-continuous, but in general in the whole space IR"*! the upper
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semi-continuity is not a immediate consequence of the Almgren monotonicity formula.

This result is based on the decomposition (98) of L,-harmonic functions and on the regular-
ity result of Proposition 3.2.5 for L,-harmonic function symmetric with respect to X.

Moreover, the following result can be seen as the “vectorial” counterpart of the classic one, since it
will establish the validity of an upper semi-continuity property for the Almgren frequency in the
vectorial sense of Definition 3.5.16. In particular, it allows to relate the notion of vanishing order
on X to the one on R"*! \ ¥, which is a fundamental step in order to comprehend the complete
topology of the nodal set near .

Proposition 3.5.19. Let u be an L,-harmonic function in By. Given (X;); € Tx(u) \ X, with
k € 14+ N such that X; — Xo € T'(u) N X, then

N(Xo,ue, 01),
N(Xi,u,0t) < § (X0t 07)

N(Xo,10,0") + a.
Proof. By Definition 3.2.3 and Proposition 3.2.4, we already know that there exist f € H1%(B1),g €
H'27%(B;) symmetric with respect to ¥ and respectively L, and Ls_,-harmonic in By, such
that

u(x7y) = f($7y) +g($7y)y |y|_a in By, (128)

where respectively the first term is the symmetric part u,. of u with respect to X and the second
one the antisymmetric part w,.

Through this proof, let us suppose that up to a subsequence y; > 0. Since (X;); € T'x(u) \ X
and the operator L, is locally uniformly elliptic on R""! \ ¥ we know that D"u(X;) = 0, for
any |v| < k and there exists |vy| = k such that D"u(X;) # 0. Let us prove the main result by
induction on k > 2. If k = N(X;,u,0") = 2, then for every j = 1,--- ,n we get from (128)
that

a$]f(x’uy2) = —0y g(wlvyl)yzl a)

—y; Oy f (i, yi) = (1 —a)g(zi, yi) + vi0yg (@i, vi),
where the maps X — 0, f(X), X — 0, f(X), X = 0,,9(X) and X — 9,9(X) are all smooth
in Bj thanks to Proposition 3.2.5. Passing through the limit as ¢ — oo we get

Oz, f(Xo) =0 and -9 f(Xo) = (1-a)g(Xo).

First, since 9y f is antisymmetric with respect to ¥ we get that 9(Xp) = 0 and consequently
N(Xo,u0,0") = N(Xg,9,0") + 1 —a > 2 — a. Similarly, if X0 (f) is the tangent map of f at
X, we get ‘VX(chO (f))(XU)‘ = 0 and consequently that N (X, f,07) = N(0,p%°,0%) > 2,
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as required.

Now, let us prove the inductive step k — 1 — k. Let us consider for j = 1,...,n the collection
of symmetric L,-harmonic functions v; = 8xju and the antisymmetric L_,-harmonic function
w = Ofu. Since N (X;,u,0") = k, we get

N(X;,v;,0")=k—1 fori=1,...,n and N(X;,w,0") =k —1,

where we remark that since X; ¢ X it is the same to consider the order of vanishing of d,u or of
the covariant derivative w = Jju.
By the inductive hypothesi, passing through the limit as ¢ — oo we get

{N(Xo,vj,e, )>k—1 N(Xo,we,0%) > k—1

N(Xp,we,0") —a>k—1

0+
forj=1,...,n and
N(XQ,U]'7O,O+)—|—CLZ k‘—l

Hence, comparing this result with the notations in (128), since v; = &Kj fandw = (1—a)gon
>, we get

N(Xo,9,0%) > k—1
N(X0,02£,07) —a>k—1

)

{N(Xo,axjf,m) > k-1

forj=1,...,n and
N(Xo0,0:,9,07) +a>k—1

which directly imply that N (X, ue, 07) > k and N (X, u,,0") > k — a, as required. O

Lemma 3.5.20. Let u be an L,-harmonic function in By and R(u) the set

_ N(Xo,u,0%) =1 if Xo ¢ %
R(u) = {Xo € I'(u) N(Xo,te,0%) = 1 or N(Xo,10,0%) =1—a  if Xp €%

_ N(Xo,u,0") =1 if Xo ¢ %

— {X(] S r(u) N(O,‘DXO,0+) — (17 1 _a) ion cy ,

is relatively open in T'(u), while for k > min{2,2 — a} the set ['y(u) is F,, i.e. it is a union of
countably many closed sets.

Proof. The first part of the Lemma is a direct consequence of the upper semi-continuity of
X — N(X,u,r) restricted to ¥ and to R™*!\ ¥ and of the Proposition 3.5.19. Hence, let us
focus our attention on the case I'y (u), with £ > min{2,2 — a}. For j € IN, let us define with E;
the set of points of X such that

Ej:{XOETk(u)ﬂZﬂBl_l/j: —pf < sup |u(X)]<jpk,0<p<1—|X0|}.
J |X—Xol=p
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By Lemma 3.5.4 and Lemma 3.5.5 we have that

oo
Th(u)NZ = |J Ej.
J=1

The result follows immediately once we prove that E; is a collection of closed sets. Given X € Ej,

since it satisfies ]

=< sup fu(X)] < ot
J | X —Xol|=p

we need only to show that Xy € T'x(u) N L, ie. N(Xo,u,0") = k. Since X — N(X,u,0™)

is upper semi-continuous on X, we readily have N (X, u,0"7) > k. On the other hand, if

N(Xo,u,0") =k’ > k, we would have
k.
[u(X)] < C[X = Xo["  in By |x,|(Xo),
which contradicts Lemma 3.5.4 and implies that X, € Ej. O
3.6 HAUSDORFF DIMENSION ESTIMATES FOR THE NODAL SET
In this Section we prove different estimates on the Hausdorff dimension of the sets I'(u) and
I'(u) N X. In the latter, we improve our analysis taking care of the regular and singular part of

the restricted nodal set I'(u) N X.

Hence, given a € (—1,1) and u be an L,-harmonic function in By, let us split the nodal set I'(u)
in its regular part

R(u) = {XO €TI'(u)

N(Xo,u,0%) = 1 if X ¢ =
o o . , (129)
N(Xo,ue,0") =1or N(Xp,u,,07) =1—0a ifXyeX

and its singular part

S(u) = {X(] eT'(u)

N(Xo,u,0+)22 le()QZ
N(Xo,ue,0") >2and N(Xo,u0,07) >2—a ifXgeX |[°

(130)
The main idea is to apply a version of the Federer’s Reduction Principle due to [78, Appendix
A]. More precisely, given a class F of functions invariant under rescaling and translation and
a map S which associates to each function a subset of IR”, by the Reduction principle we can
establishes conditions on F' and S which imply that to control the Hausdorff dimension of S(u)
for every u € F, we just need to control the Hausdorff dimension of S(u) for elements which
are homogeneous of some degree.
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Theorem 3.6.1 (Federer’s Reduction Principle). Let F C LS (R™™!) and define, for any given
u € F, Xo € R* andr > 0, the rescaled and translated function

uxyr = u(Xo+r-).

We say that u,, — u in F if and only if u,, — u uniformly on every compact set of R" 1. Moreover,
let us assume that F satisfies the following conditions:

(F1) (Closure under rescaling, translation and normalization) Given any | Xo| < 1 —7r,0 <
r,p > 0andu € F, we have that pux, , € F.

(F2) (Existence of a homogeneous blow- up) Given | Xy| < 1,7 N\, 0 and u € F, there exists a
sequence py, € (0,00), a real number o > 0 and a functionw € F a-homogenous such that,
if we define uy,(x) = u(Xo + ripx)/ pi then ,up to a subsequence, we have

up —u inJF.

(F3) (Singular Set hypotheses) There exists a map S: F — C, where
C:={ACR" 1 : AN By(0) is relatively closed in By (0)}
such that
(1) Given|Xo|<1—7r,0<r < 1andp >0, it holds
S(puxyr) = (3(u)>XO,T = S(U)T_XO.
(2) Given |Xo| < 1,7, \¢ 0 and u,u € F such that there exists pr, > 0 satisfying
Uk = PrUX,r, — U in F, the following property holds:
Ve > 0, 3k = k(e) > 0 such that for every k < k(e)
S(up) N B1(0) C {x € R™™: dist(z,S(q)) < e}
Then, if we define

d := max {dim V : V is a vector subspace of R""! and there exists u € F and @ > 0
_ (131)

such that S(u) # 0 and uy, = ru, Vy € V, r > O},
either S(u) N B1(0) = () for every u € F or else dimy (g(u) N By (0)) < d for everyu € F.
Furthermore in the latter case there exists a function ¢ € F, a d-dimensional subspace V C R
and a real number o« > 0 such that

oy, =1% forall Y € V,r >0 and S(p) N B1(0) =V N B;1(0)
At last if d = 0 then S(u) N B,(0) is a fine set for eachu € F and 0 < p < 1.
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We will apply this general result due to Federer in order to construct some estimates on the
Hausdorff dimension of the nodal set I'(«) and on its restriction I'(u) N X. In the second case, we
improve our analysis introducing its regular and singular part on X.

Theorem 3.6.2. Leta € (—1,1) andu be an L,-harmonic function in By. Then dimy (T'(u)) < n.

Proof. A preliminary remark is that we only need to prove the Hausdorff dimensional estimates for
the localization of the sets in K' CC Bj, since the general statement follows because a countable
union of sets with Hausdorff dimension less than or equal to some n € R{ also has Hausdorff
dimension less than or equal to n. Let us consider the class of functions F defined as

F = {u € L2, (R"™M)\ {0}: Lou = 0 in B,.(Xj), for some r € R, Xy € R""! with B,(X) C Bl}.

By the linearity of the L, operator, we already know that the closure under rescaling, translation
and normalization and assumption (F1) are all satisfied.

On the other hand, let | Xy| < 1,7 | 07 and u € F, and choose py = |Ju(Xo + 7% - $)||L2,a(881)'
Theorem 3.4.1 and Proposition 3.4.8 yield the existence of a blow-up limit goXO € F,i.e. nor-
malized tangent map of u at Xy, such that, up to a subsequence, ux — ¢~ in F and ¢™~° is a
homogeneous function of degree k = N (X, u,0+) > min{1,1 — a}. Hence also (F2) holds.

Now, let us consider S: u + I'(u). By the continuity of u, we already know that the set
I'(u) N By is obviously closed in Bj and it is quite straightforward to check that the two hypothe-
ses in (F3) are satisfied.
Hence, in order to conclude the analysis, the only thing left to prove is that the integer d in (131)
is equal to n. Suppose by contradiction that d = n + 1, then this would imply the existence of
¢ € F with S(¢) = R" e, p = 0 on R*"!, which contradicts the fact the fact the I'(¢) has
empty interior.
Actually, taking V' = R" ! x {0} x R and ¢(X) = (X, e,), we obtain the claimed estimate on
d.

O]

Now, we prove a different stratification result for the set I'(u) N'X, in order to emphasize the
different structure of the nodal set with respect of the one of the elliptic case. In particular, with
this analysis we want to point out how the different classes of blow-up influence the stratification
on the characteristic manifold X.. Obviously, by Proposition 3.5.10 we already know that

TF(u)NZ =T(ue)NE,

and it is either equal to X or with empty interior in X.. Inspired by this fact, since we are dealing
with the restriction of the nodal set on the characteristic manifold ¥, we will concentrate our
attention on the trace of u on ¥, which is actually equal to the trace of u, itself.
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Theorem 3.6.3. Leta € (—1,1) and u be an L,-harmonic function in By. If T (u) N X # X, then,
under the previous notations, we have dimy (T'(u) NX) < n — 1 and more precisely

dimy (R(u)NX)=n—-1 and dimy(S(u)NX)<n-1.

Proof. Let us consider the class of functions F defined as

u symmetric with respect to £

F = {u € Lig.(R")\ {0}

Lqou = 0in B, (Xy), forsomer € R, X € 1R"+1}

Since the functions in F are symmetric with respect to ¥ and nontrivial, the condition I'(u) N
B, (X)) NX # X is always satisfied.

As before, we already know that the closure under rescaling, translation and normalization and
assumption (F1) and (F2) are all satisfied. Moreover, by (129) and (130) we get

Ru)NZ ={XoeT'(u)NZ: N(Xo,u,0") =1},

SN =) nZ = J {Xo €eT(u)NE: N(Xo,u,0") = k}
k>2 k>2

since we are dealing with functions in the class F.
Now, we choose the map S in (F3) according to our needs.

1. Dimensional estimate of I'(u) N X

First, let us consider S: u + T'(u) N Z. By the continuity of u, we already know that the set
I'(u) NX N By is obviously closed in By and it is quite straightforward to check the two hypothe-
sis in (F3). Therefore, in order to conclude the analysis of I'(u) N %, the only thing left to prove
is that the integer d in (131) is equal to n — 1.

Suppose by contradiction that d = n, this would implies the existence of ¢ € F such that
S(¢) =R"ie., » =0 on X. Since ¢ solves

Lyp=0 inR"!
=0 on X
dyjp=0 onk,

it implies that ¢ = 0 on the whole R" ™!, which contradicts the fact the 0 ¢ F. Actually, by
taking V = R""! x (0,0) C £ and p(X) = (X, e,), we obtain the claimed estimate on d.

2. Dimensional estimate of R(u) NX
Let us consider S: u + R(u) NX. Since we are dealing just with symmetric function with
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respect to X, by Lemma 3.4.9 we get that necessary N (Xg,u,0") = 1 for every Xg € R(u). By
the inclusion, we already know that

dimy (R(u) NENBy) <n-—1.

Finally, we can apply the Reduction principle since (F3) is completely satisfied. More precisely,
for Xo e XN By,p>0andt > 0if X € R(pux,) N X then obviously Xy +tX € R(u) NZ,
ie. N(Xo+tX,u,0") = 1. Secondly, given u;,w € F as in (F3), suppose by contradiction that
there exists a sequence X; € >N By and € > 0 such that

N(Xi,ui, 0+) =1

and dist(X;, S(u)) > €. Since, up to a subsequence, X; — X, by the upper semi-continuity
of the Almgren frequency formula, we already know that N (X,%,0") > 1. Moreover, up to a
subsequence, X; — X € I'(w) N X N By by the LS. convergence of u; — u. The contradiction
follows from the same argument of the proof of the second case of Theorem 3.6.2.

More precisely, since I'(z) N X is a conical set, i.e. for every A > 0 and X € T'(u) € X we
have A\X € I'(u) N X, we deduce that if we can prove X € R(u) N By N'X we provide a contra-
diction, more precisely we get dist(X,S(u) N By) = 0. Since there exists O CC Bj \ ¥ such
that (Xo + r;X;); C Q, if we consider

Ry = mindist(p, B1),

peEQ)

C =sup N(p,u, Ry),
peQ

we easily get from Corollary 3.3.2 that for p € QO NR(u) and r < Ry we have

Rl n+a—1+2C . 1
N(p,u,r) < N(p,u, R1) (r> SCW'

In particular, from the previous inequality we get that there exists R = R(n,a, Xg,¢) > 0
sufficiently small, such that for r < R we have

1

Since lim; N (X;,u;, ) = N(X,%,r) for sufficiently small r, we directly obtain from Lemma
3.4.9 that N(X,u,07) = 1, as we claimed.
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As before, let us suppose now that there exist ¢ € F and a d-dimensional subspace V' C R™*1,
withd < n —1,and k > 0 such that

oy r=1"p forall Y € V,r >0 and R(p)NZNB; =V NB

Since ¢ € §B%(R""1) is homogenous of degree k with respect to any Y € V = R(p) NI,
namely N (Y, p,0") = k, we get that necessary £ = 1 and that R(¢) N X is d-dimensional.
Since every homogenous L,-harmonic function of order £ = 1 is one dimensional, i.e. there
exists v € S~ ! and C > 0 such that either

o(X) = C(X, (v,0)), forevery X = (z,y) € R*™,
we get that R(¢) N X must be (n — 1)-dimensional, and consequently that

dimy (R(uw)NENB1) =n—1.

3. Dimensional estimate of S(u) X
Let us focus on the singular strata

S(u)NE = J {XoeT(u)NZ: N(Xo,u,0%) = k}
k>2

Hence, given S: u — S(u), the map satisfies (F3), since for Xy € £ N By,p > 0and t > 0, if
X € S(pux,,) we get

N(X, puxy s, 07) =k +— N(Xo+tX,u,07) =k,

which is equivalent to Xo +tX € I'y(u) C S(u). Now, given u; = pjux,r;,u € F asin (F3),
suppose by contradiction that there exists a sequence X; € B; and € > 0 such that, up to a
subsequence, X; — X and

N(X;,u;,07) =k (132)

and dist(X;, S(@)) > . By the upper semi-continuity of the Almgren frequency formula, we
already know that N (X,%,0") > k. Since X; € I'y(u;), there exists QO CC By \ X such that
(Xo +riX;): C Q,if we consider

Ry = mindist(p, dBy),
peQ)

C =sup N(p,u, Ry),
peQ
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we easily get from Corollary 3.3.2 that for p € QO NTk(u) and r < Ry we have

Rl n+a—1+26 o 1
N(p,u,r) < N(p,u, B1) <T> Sy

In particular, from the previous inequality we get that there exists R = R(n,a, Xg,¢) > 0
sufficiently small, such that for r < R we have

1

Since lim; N (X;,u;,r7) = N(X,u,r) for sufficiently small r, we directly obtain from Lemma
3.4.9 that N(X,u,0") = k, as we claimed.

Since S(u) N X C I'(u) N X, we already know that
dlmH(S(u) Nnxn Bl) <n-—1,

which is actually the optimal bound even for the singular set. Indeed, since there exists ¢ € F, a
(n — 1)-dimensional subspace V' C X and k > 0 such that

oy r=1"p forall Y € V,r >0 and S(p)NZNB; =V NB.

In particular, for every k > 2, n > 1 it can be seen by taking V' = R"~! x {0,0} and

en)?

k k a
P(X) = N1 a k 2F1<‘7“
2" 2 2
1+ )T (=+=+=>
(1+5)r(5+5+5)

as it was previously proved in Section 3.4. O

+1 1
272’

3.7 REGULARITY OF THE REGULAR AND SINGULAR STRATA

In this Section we show some results about the regularity of the regular and singular strata of
the nodal set I'(u). As in Section 3.6, we will consider first the stratification in IR"*! of the whole
nodal set I'(u), while in the second case we will focus the attention on the restriction I'(u) N X
of the nodal set on the characteristic manifold.

The main idea of this stratification is to classify and then to stratify the nodal set by the spines of
the normalized tangent maps, i.e. the largest vector space that leaves the tangent map invariant.
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Indeed, we will introduce the subset 1“?; (u) as the set of points at which every tangent map has at
most j independent directions of translation invariance in order to correlate the nodal set of u
with the dimension of the set where the tangent map X0 vanishes with the same order of u.
Moreover, by Theorem 3.6.2 we already know that F{C(u) is well defined for j < n — 1.

More precisely, if £ > min{2,2 — a} given
Te(u) = {Xo € T(u): N(Xo,u,0") =k}
foreach 5 = 0,...,n — 1 let us define
T (u) = { Xo € Tx(u): dim Ty (™) = j},

where X° is the unique normalized tangent limit of u at X. Obviously, since the uniformly
elliptic case is well studied, we focus on the structure of the nodal set I'(u) near X.

Before to continue our analysis, let us prove that the concept of dimension in well defined.

Lemma 3.7.1. Given a € (—1,1), for every ¢ € BL(R"), the singular set T(p) of order
k > min{2,2 — a} is the largest vector subspace on ¥ which leaves o and N (-, ¢,0") invariant, i.e.

Ti(p) = {Z € R o(X +2) = o(X) for every X € R™'}.

Proof. We can restrict our proof to the case ¢ € B¢ (IR"™1) for k > 2, since by Corollary 3.4.19
we can easily extend the analysis to the antisymmetric case. Thus, we already know by Corollary
3.5.8 that since ¢ € sB7(IR"*1) we have

Tr(p) = {X € R"": D"p(X) =0forany |v| <k — 1} .
Obviously 0 € T'x(¢) by the homogeneity of ¢ and we claim that for every Z € T ()
o(X)=p(X +2Z), forall X e R"
in other words I'x () leaves the map ¢ invariant. Hence, let Z € T'x(¢), i.e.
D"p(Z) =0 forany |v|<k—1 (133)
and write the homogenous polynomial ¢ € C'* as

o(X) = Z a, XV,

v|=k
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where XV = z{' - 25 - - - y’»*! and a,, € R. By (133) we directly get that

p(X) = > a(X-2)",

lv|=k

which implies the claimed invariance. Since ¢ is k-homogenous, for every A > 0 and X € R""!

p(X) = (X - 2)

— (A1) (
(2 m)

X»—t

)\ 4+
=A+Drp(Z+

=o(X +)\2),

therefore, we obtain D”p(AZ) = 0 for any |v| < k — 1,ie. AZ € T (¢).
Similarly, noticing that for any Z, W € T'y(¢) we have o(Z + W + X ) = p(W + X) = ¢(X)
for any X € R"™!, we get Z + W € T'i(p). O

Definition 3.7.2. Let a € (—1,1) and u be an L,-harmonic function in B;. We call d*¢ the
dimension of 'y, (u) at Xy € T'x(u) as

dX0 = dim T}, (p™°)
= dim {¢ € R"™*!: (¢, Vx™ (X)) = O forall X € R"!}.

Following the previous notations we get I, (u) = { Xy € Ty (u): d¥0 = j}.
Hence, given a € (—1,1) and u be an L,-harmonic function in B;. Then, let us split the
nodal set I'(u) in its regular part

R(u) = {Xo € T'(u)

N(XQ,U, 0+) =1 leo Q/ M
N(Xo,ue,07) =1or N(Xo,u,0")=1—a ifXpeX [’

and its singular part

N(Xo,te,07) > 2and N(Xo,u0,07) >2—a if XgeX

S(u) = {X(] eT'(u)

N(Xg,u,0") > 2 if Xo ¢ % }

As we previously remarked the definition of the regular set R (u) is well defined in such a way,
for every X € I'(u) NX such that N(Xo, u.,0") = 1 or N(Xo,u,,07) = 1 — a must exist a
sequence of point (X;); € T'(u) \ £ such that N(X;,u,0") = 1 and X; — X. The following
result gives a generalization in the context of degenerate-singular operator of the concept of
regular hypersurface as the set of points where the function vanishes away from its critical set.
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Theorem 3.7.3. Leta € (—1,1),a # 0 and u be an L,-harmonic function in By. Then the regular
set R(u) is locally a C*" hypersurface on R"*1 in the variable (z,y |y|~®) with

2 2 2
k:—h_aJ and r_l—a_{l—aJ'

Moreover, we have that

R(u) = {X € T(u): |Vau(X)+

f)gu(X)]2 ” o} . (134)

Proof. Let us start by proving the characterization of the regular set in terms of the derivatives of
the L,-harmonic function u. By (98), there exist u? € H1%(By),u?"% € HY27%(By) respectively
L, and Lao_4-harmonic function in Bj, symmetric with respect to X, such that

w(X) = ul(X) +uZ“(X)yly|~® in B

e

For every i = 1,..., h, differentiating the previous equality, we get
Oy u(X) = Dy (X) + (0,u (X)) y |y~ (135)
8Zu(X) = ((1 — a)ug_“(X) + yﬁyug_a> + Oyug, (136)

where we split the two functions as sum of their symmetric and antisymmetric part. If Xg €
R(u) \ X the condition in (134) is obviously satisfied by the local uniformly elliptic regularity
outside X. Instead, if Xy € R(u) N L, if N(Xo,u.,07) = 1 it follows

ue(X) = X0 (™) (X — Xo,v™°) + o(|X — Xo),
for some vX° € §"~1 = S" N ¥, and by Theorem 3.5.6 and (135) we get
Ou(Xo) = Ou,ue(Xo) = 920 (170 (es, v70),

and by the nondegeneracy of the blow-up limit |Vu(Xo)| = ¢X0(vX0) # 0 (for further details,
we remaind to the proof of Theorem 3.7.6). Similarly, taking care of the antisymmetric part, if
N(Xo,uo,0") =1 — a we get

Uo(X) = X0 (e)y [yl + o(|X — Xo|' ™),

and consequently 9%u(Xo) = 0tu.(Xo) = (1 —a)p)°(ey) # 0, as we claimed.

Now, let us consider the other part of the Theorem and let us study the regularity of the regular
part R (u). Since the implicit function theorem implies that the nodal set of a smooth function is
a smooth hypersurface away from the critical nodal set, we decide to introduce a suitable change
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of variable.
More precisely, let us introduce the change of variable ®: R"*! — R™*! such that

d: (z,2) — (m, (1 —a)z\z|ﬁ) ,

-1, ylyl™
D (z,y) — (x’(l—a)la> ,

with Jacobian |Jg-1(z,y)| = (1 —a)®|y|”* and ®(X() = X, for every Xy € X. By (98) and
This change of variable is well known in the literature since it allows to correlate our class of
degenerate-singular operator with the class of Baouendi-Grushin Operators (see also [52]). In
particular, since a € (—1,1), we get by simple computations that & € C**' (R"+! R™+1), with

lit] sl
k—h_a and r_l—a T—al

The previous quantity are well defined since (1 —a)~! > 2, for every a € (—1,1) and it blows

up as a approaches 1.
Now, given v(z, z) = u(P(x, 2)), we get I'(u) = ®(T'(v)) and by (98), (135) and (136)

v(z,2) = ug(P(x,2)) +ug™(P(x,2))z
Op,v(x,2) = (Op,u) (P(x,2)), foreveryi =1,...,h
dv(z,z) = (agu)(q)(:v,z)),
2
so in particular |Vo(z, 2)|* = (|Vul? + dyu| )(P(z,2)). By (98) and Proposition 3.2.5 we get

that given and L,-harmonic function v in By, since ud(®(z, 2)), u2~*(®(z, 2)) € CF "' (B 2)
we obtain that v € C*'"’ (B12).Moreover, as we remarked in Section 3.4, since for every ¢ €
B¢ (R" ") we have that and our change of variables @ acts only in the y-direction, we get from

Proposition 3.2.5 and Theorem 3.5.6 that actually v € C']”(Bl/g) with

k‘:{ 2 JZl and 7r = 2 —{ 2 J
1—a 1—a 1—a

Now, by the first part of the statement, since Xy € R(u) N X we get by Corollary 3.5.17
2
Vo(Xo)? = [Vau(Xo)* + = e () + (1 a)%)0(e,)? £ 0,

8;U(X0)

where X0 and X0 are respectively the tangent map of the symmetric and the antisymmetric part
of u with respect to X. Since the conclusion follows after an application of the implicit function
theorem on the function v and the relation I'(u) = ®(T'(v)), let us consider three different cases:

159



160

NODAL SET OF SOLUTIONS OF DEGENERATE - SINGULAR EQUATIONS

(1) N(Xo,ue,07) = 1 and N(Xo,u,0") > 1 — a, which implies that 9,v(Xy) = 0 and
V.v(Xo) = X0 (vX0)pX0, In this case, up to relabeling the z-variables, by the implicit
function theorem we get that there exists p > 0 and g € C*"(B,(Xj)) such that z; =
g(xz) = g(za,...,zp, z) for every (x,2z) € T'(v) N B,(Xp). Going back to the (z,y)
variables, we get

r1 = g(x2,..., 20,y |y|*) for every X € T'(u) N B,,2(Xo);

(2) N(Xo,ue,0") > 1and N(Xp,u,,07) = 1 —a, in this case since 9,,v(Xy) = 0 for all
i =1,...,nand 9,v(Xg) # 0 we get that there exists p > 0 and g € C*"(B,(Xp))
such that z = g(x) = g(z1,...,xy) for every (z, z) € I'(v) N B,(Xo). Going back to the
(z,y) variables, we get

ylyl™ = g(x) for every X € T'(u) N By/5(Xo);

(3) N(Xo,ue,0") = 1and N(Xp,u,,0") = 1 — a, we get that if a < 0, by applying the
implicit function theorem with respect to the z-variables as in case (1), we get, up to a
rotation on X, that

x1 = g(z2,..., 20,y |y|"*) for every X € T'(u) N B,/2(Xo);

where in this case y |y| * € C’llo’; “(By). Otherwise, if a > 0 by applying the implicit
function theorem on the z-variable as in (2), we get

yly™* = g(x) for every X € T'(u) N By/2(Xo),
where in the both cases g € C*"(B,(Xy)).

We remark that the previous records can be changed considering the cases when the minimum
between the Almgren frequency of the symmetric and the antisymmetric part of w is achieved by
the first or the second one.

Thus, up to consider a smaller radius on the previous cases, the results on R(u) is a direct
consequence of the local one on I'(u) near Xy, since the regular set is relatively open in I'(u)
and hence there exists p > 0 such that T'(u) N B,(Xo) = R(u) N B,(Xo). O

The previous result explains why the tangent map at a point of the restriction of the nodal set
I'(u) NX does not allow to fully understand the geometric picture of the nodal set itself, since we
need to take care of both the symmetric and antisymmetric part of u.

Furthermore, we can describe the local behaviour of the regular set R (u) near the characteristic
manifold by using the tangent field ®X°, which contains all the geometric information of the
regular set. More precisely, as a direct consequence of the previous reports we get
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Corollary 3.7.4. Leta € (—1,1) and u be an L,-harmonic function in By. Then the regular part
R(u) of the nodal set intersects the characteristic manifold . either orthogonally or tangentially.
More precisely, given Xo € R(u) N X

e if N(Xo,u,0") = 1 the direction is orthogonal,
 if N(Xo,u,0") = 1 — a the direction is tangential.

Moreover, independently on a € (—1,1) and on the value of N (0, ®X0,07), the restriction on ¥. of
R(u) is completely described by 0.

Instead, since the structure of the singular set is well known outside of the characteristic man-
ifold X, we decided to postpone our analysis and to concentrate our attention to the intersection
of the nodal set on X.

Hence, in this last part of the Section, we extend the previous analysis focusing on the restriction
of the regular and singular set on the characteristic manifold. First, since Lemma 3.7.1 relies on
the homogeneity and the regularity of the homogenous polynomial ¢ € 8% (R"™1), we can
reasonably introduce the concept of dimension restricted to X.

Definition 3.7.5. Given a € (—1,1), let u be an L,-harmonic function in By. We call d))fo the
dimension of 'y (u) NX at Xy € Tx(u) N X as

dy® = dim Ty (p%X0) N T

= dim {5 €% (£, VaX0(2,0)) = 0forall z € 2}.

Following the previous notations, we define I, (u) VX = {Xg € T (u) NX: dy® = j}.
In the previous Section, we split the restriction on the nodal set on X into its regular part

R(u)NE ={X € T(u)NZ: N(X,u,0") =1},
and its singular part

S(u)NE={X €T (u)NZ: N(X,ue,0") >2} = | Tp(u) NE.
k>2

Theorem 3.7.6. Leta € (—1,1) and u be an L,-harmonic function in By. Then the regular set
R(u) on X is locally a smooth hypersurface on ¥. and

Ru)NE={X eT(u)NZ: |Vyue(X)| # 0}.
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Proof. By Proposition 3.5.10 we already know that
T(u) NE =T(ue) NE,

and it is either equal to X or with empty interior in 2. Inspired by this fact, we will concentrate
our attention on the trace of u on X, which is actually equal to the trace of u, itself. In order to
simplify we will just write u instead of u, assuming the symmetry with respect to .

Suppose that T'(u.) # X, by Theorem 3.5.6 and our blow-up classification, for every Xy €
R(u) N X there exists a linear map ¢~ € 58¢(IR"*1) such that

u(X) = @*(X = Xo) + o(|X = Xo|) = ™ (™) (X — Xo, ™) + o(|X — Xo|)

for some vX0 € S"~1 = S"N X,
Moreover, by Theorem 3.5.12 we know that the map X ~— ¢~ (v%0)%0 is continuous. Passing
through its trace on X, since v € X we get

u(,0) = o™ (v)(x — 20, v) + o(|z — o).

Since by Proposition 3.2.5 the function u € C°°(By3), we can use the tangent map in order to
compute the directional derivative of u, which will implies the nondegeneracy of the gradient on
Y of u at Xg. More precisely, for every ¢ € S7~!

(Vou(X0),€) = Su(Xo 1) = lim X1

_ Xo(,,Xo Xo
d -0 150 t - 90 <V )<€7 v >7

and hence V,u(Xy) = X0 (v*0)yX0 which is nonzero by Theorem 3.5.5. Finally, by the implicit
function theorem we get the claimed result. O

As we already mentioned, since for k > 2 we have B¢ (R" 1) \ 8% (R" ™) # (), we decide
to introduce the following singular sets

S*(u) = U Ii(u) and S%u) = U Ti(u),

k>2 k>2
where
Ti(u) = {Xo € Ty(u) NE: o € sBL(R™) | and Tf(u) = (Tx(u) NE) \ T (u),
The idea is to stratify the singular set taking care of both the dimension dé(o and the different
classes of tangent map associated to the sets I'; (u) and I'f (u).

Theorem 3.7.7. Givena € (—1,1), let u be an L,-harmonic function in By. Then fork € 2+ N
andj = 0,--- ,n — 1 the sets Fi(u) N X is contained in a countable union of j-dimensional C'*
manifolds.
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Proof. The proof of this result follows the strategy of [50, Theorem 1.3.8]. Since ¢™X° is a polyno-
mial of degree k on X, we can write the following

where the coefficients X — a,(X) are continuous on I'y(u) N X and, since u(X ) = 0 on T'x(u)
it holds
’ngO(X —XO)‘ <o (|X = Xo|) | X — XoF  forevery X, X € K.

For any multi-index || < k, let us introduce for any X € T';(u) the collection

ao(X) if lo| =k
0 if o] <k

Let us prove that the compatibility conditions for the Whitney’s extension theorem are fully
satisfied in order to guarantee the existence of a function F' € C*(R"*!) such that

0°F = fo, onkEj,

for every o« < k. More precisely, following [92] our claim is that for any X, X € K it holds

fax) = 30 R e Ry, x0),
|B|<k~la '

with
|Ra(X, X0)| < 0a (|X — Xo|) |X — Xo|" 1 (137)

where 0, = X is a certain modulus of continuity.

If || = k, since Ry (X, Xo) = aa(X) — an(Xo), we infer from the continuity of X + ¢ on
K that |R, (X, Xo)| < 04 (|X — Xo|). Instead, for 0 < |a| < k we have

Ra(X,X0) = - % M(X — Xo) Y = —0%%0 (X — Xo). (138)

> (7 - Oé)'
[v[=k

By contradiction, suppose that there is no modulus of continuity ¢, such that (137) is satisfied for
X, Xo € K. Then, must exist § > 0 and two sequences X*, X} € K with p; = |Xi — X6| N O
such that

k—|al

> (CW(XO)), (X = Xo)™*| > 6 |x* - X}
v —a)!

Y>o

IvI=k
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Thus, consider the blow-up sequence associated to the sequences (X}); and (p;); given by
Xi+pX) . Xi- X}
uz(X)IU( Otpl )’ §' = 0’
Pi Pi

where it is not restrictive to assume that X(i) — Xo € Kand & — & € 0B;. By Theorem 3.5.12
we get u’ — X0 € B¢(R" ) uniformly on compact set and there exist a modulus of continuity
such that

wi(X) = ™0 (X)| < o (pi | X)) |X]".

In particular, since X}, X' € K = E;, the inequalities (127) holds true for u’ at 0 and ¢'. Thus,
passing to the limit, we obtain that

1 .
St < s [pMo(x)| <,

J | X —&ol=p
for 0 < p < 400, which implies that £y € Ty (™). Finally, since 9%~ (&y) = 0 for |a| < k,
dividing both the left and the right hand side of (138) by pfflal and passing to the limit, we reach
a contradiction since we get

3a<pX0(§0)’ = Z M(X—Xo)v—a > 4.
hick

Finally, under the previous notations, let us consider Xy = (z¢,0) € T?C(u) N E;, where Ej; is
defined in Lemma 3.5.20. Hence, by definition of dgo, there exists n — dgo linearly independent
unit vectors (1;); C S™, such that

(vi, Vxp~0) # 0 on X,
where dgo = j. Hence, there exist multi-indices o; or order |a;| = k — 1 such that
d,, D% (0,0) # 0.
Since X0 is a polynomial of degree k on ¥, we can write the following
P00 = 3 el
|la|=k ’

where the coefficients X — a,(X) are continuous on I'y(u) N X. Thus, the nondegeneracy
condition on ¢ implies

8y, D F(20,0) #0, i=1,---,n—dy°. (139)
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Finally, since
. n—j
I (u)NENE; C [ {D%F=0}nX,
i=1

in view of the implicit function Theorem, the condition (139) implies that Fi(u) NXNE;is
contained in a j-dimensional manifold in a neighborhood of Xj.
The results follows immediately from Lemma 3.5.20 ]

We remark that in this particular case of L,-harmonic function symmetric with respect to X,
since by the definition of tangent map at a point of the nodal set we have

and u € C°°(By/2) thanks to Proposition 3.2.5, we get that D*u(z0,0) = 0 for || = k — 1 and
D%u(xg,0) = aq(z0,0) for |a| = k. Thus, the nondegeneracy condition on *° implies

Oy, D%u(x0,0) #0, i=1,---,n—dy. (140)

Hence, we can obtain conclusion just looking at the strata { D%wu = 0}, withi =1,...,n —j.
Instead, the previous proof is more general and it will be applied to a more general class of
degenerate-singular operators in Section 3.8.

The following is the main Theorem of this stratification analysis, in particular it allows to empha-
size the degenerate-singular attitude of the operator L, near the characteristic manifold X by
showing the presence of a (n — 1)-dimensional singular stratum for a € (—1,1) with a # 0.

Theorem 3.7.8. Givena € (—1,1), let u be L,-harmonic in By. Then there holds
S(u)NZ =8"(u) US*(u)

where S*(u) is contained in a countable union of (n — 2)-dimensional C* manifolds and S®(u) is
contained in a countable union of (n — 1)-dimensional C'' manifolds. Moreover

s = U S and §*u) = ] S*u),
j=0 Jj=0

where both S} (u) and 8¢ (u) are contained in a countable union of j-dimensional C' manifolds.

Proof. The proof can be seen as an improvement of Proposition 3.7.7 since it consists on applying
the previous strategy for the dimension and the regularity of the set I} (u) taking care on the
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case when the tangent map belongs to §8} (R"!) or not. Indeed, this two cases influence the
upper bound on the dimension dgo and consequently the dimension of the singular strata.
Hence, let us set

C |

~Usw-=U

k>2

<.
I
.—no

S
|

— U st = | X emi: a =)
Jj=0 k=>2

J

Since for every k > 2 the functions ¢ € 557} (IR""!) are homogeneous polynomial harmonic in
¥, we have that dim (S(p) N Z) < n — 2, and consequently dy® < n — 2 for every Xo € T%(u).
Similarly, following Proposition 3.4.15 and the remarks in the proof of Theorem 3.6.3, since for
every k > 2 there exists ¢ € §B7(R""!) \ 5B} (R"*!) such that dim (S(u) NX) = n — 1 we
get that for X € T'¢(u) it holds dg® < n — 1.

Now, by applying the same argument in the proof of Proposition 3.7.7, if we set

S;‘(u):U{Xer;;() dXO—j} for j =0, ,n—2
E>2

Sy(u):U{Xerg(u):dffozj} for j =0, ,n—1,
E>2

we get that S7(u) and S (u) are contained in j-dimensional C'! manifold. O

Furthermore, by Proposition 3.4.15 we get that for any Xy € S8?_; (u) the leading polynomial
of u at Xy, i.e. the first term of the Taylor expansion of u at X, is an homogenous polynomial of
two variables of the form (118) or (119), up to a rotation on X.

3.8 FRACTIONAL POWER OF ELLIPTIC OPERATOR IN DIVERGENCE FORM

In this Section, we find an application to the previous analysis relating, via the extension
technique, the study of the restriction of the nodal set on the characteristic manifold X to the local
properties of solutions of fractional power of elliptic differential equations in divergence form.
Initially we start focusing the attention on the case of the fractional Laplacians (—A)® and then
we discuss the monotonicity formula and its consequences for solutions of fractional elliptic
differential equations of the second order with Lipschitz leading coefficients.

Let s € (0,1) and u: B; C R™ — R be a nontrivial s-harmonic function in By, that is

(=A)°u(z) =0 in Bj. (141)
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Here we define the s-Laplacian

(=A)°u(z) = C(n,s) P.V./]R Mdy :

n |$ _ y|n+25

where

C(n,s) = w € (O,4P (Z + 1)} ) (142)

/2T (1 —s)

In general, the s-Laplacian can be defined in various ways, which we review now. First, in order
to better understand these definitions, we introduce the spaces

A (R") = {u € *(R"): [¢* (Fu)(€) € PR},

where s € (0,1) and F denotes the Fourier transform. In the literature, the spaces /°(IR") are
called Bessel spaces and in particular they can be equivalently defined as a Sobolev-Slobodeckij
spaces. More precisely, fixed () C IR™ an open set, for every fractional exponent s € (0,1) we
define H*(Q)) as the set of all functions u defined on () with a finite norm

1/2
n,s ’LL
N R ST ms‘dd) ,

where the term

1/2
[u]HS(Q) - ( o // [ule n+2s‘ drdz ) (143)

is the so-called Gagliardo seminorm of u in H*(Q}). It can be proved that H*(R") = H*(R")
and in particular, for every u € H*(IR") we get

ey = [ 167 1Fu©) g = (=)

lg(Rn)'

Note that one can also define the fractional Laplacian acting on spaces of functions with weaker
regularity.

More precisely, following [77], let S be the Schwartz space of rapidly decreasing smooth functions
in R" and S*(IR™) be the space of smooth function u such that (1 + |z|""2*)D* f(z) is bounded

in R™, for every k > 0, endowed with the topology given by the family of seminorms

[l = sup (1+2["">) DX f(x).
zeR™
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Under this notations, the fractiona Laplacian of f € S is well defined in (—A)*®f € S, and, by
duality, this allows to define the fractional Laplacian for functions in the space

LIR") = {u € Li,.(R"): /an %dx < +oo}

= Lioe(R") N SL(R"),

where S’ (IR") stands for the dual of Ss(IR™). We remark that necessary a function in £} (IR™)
needs to keep an algebraic growth of power strictly smaller than 2s, in order to make the above
expression meaningful, as we pointed out in Chapter 1 and Chapter 2.

In order to study the local behaviour of u, let us look at the extension technique popularized by
Caffarelli and Silvestre (see [23]), characterizing the fractional Laplacian in IR" as the Dirichlet-
to-Neumann map for a variable v depending on one more space dimension. Namely for every
u € H*(R"), let us consider v € H*(R"™!) satisfying

div(y?Vo) =0 in R%M,
. (144)
v(z,0) =u(z) inX.
with a =1 —2s € (—1,1). Such an extension exists unique and is given by the formula
2s
y**u(x) . / 1
= d h =: 7 —d
’U(l‘,y) ’Y(TL,S) /]R’fl (‘56—77‘2+y2)”/2+5 77 where ’y(n,s) n (|77’2+1)n/2+s 7,

where the nonlocal operator (—A)* translates into the Dirichlet-to-Neumann opeartor type

Cn,s) lim y'"#9,0(z,y),

(=8)% HP(RY) = H2(RY), wsy —— 25 i

with C(n, s) the normalization constant deeply studied in Chapter 2. By [70], it is known that the
space H*(IR™) coincides with the trace on 9IR"*! of the weighted Sobolev space H 14 (R")
and in general

C(n,s)

() = Sy [l Vol ax,

where v is the L,-harmonic extension of u defined by (144). Since in the context of the extension

problem the equation (141) translates in the homogeneous Neumann condition

) g o) =0 o BCE
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by applying the even reflection through ¥, we can study the structure of the nodal set of s-
harmonic function in R™ as the restriction of the nodal set I'(v) on the characteristic manifold ¥
of the solution

Lov =0 in By
v(z,—y) =v(z,y) in B (145)
v(z,0) = u(x) in By

where @ = 1 — 2s € (—1,1) and Bj" is the unitary (n + 1)-dimensional ball in R™*".
Moreover, by [70] is it well known that the class of trace on Bf N X = Bj of function L,-
harmonic in By is equal to the space H*(By).

Through this Section we will always identify as v the L,-harmonic extension of v in R™*!
symmetric with respect to ¥ and with B, (x¢)™" the ball in IR’frl of radius r > 0 and centered in
the point X = (20,0) € X in the characteristic manifold associated to X.

The following results are a direct consequence of the ones obtained for purely symmetric L,-
harmonic function. For this reason the proof of the majority of them is skipped when the result is
obtained just passing through the L,-harmonic extension.

Proposition 3.8.1. Given s € (0,1), let u be s-harmonic in By. Then, there for every xo € Bj,

2N-1 1
udz < C(n, s) () — w?dz, (146)
r rh Br(z0)

1

Rr Br(wo)

for0<r < R<1—|zo|and N = N(Xo,v,1—|Xo|), with v the Ly-harmonic extension of u.

Proof. Let v € HY%(B1) be the L,-harmonic extension of u in R"*!, symmetric with respect
to X. The idea of this proof is to “move” the doubling condition on R"*! to the characteristic
manifold X. In [73] the author used a similar strategy to prove a so called “bulk doubling property”.
In our case we improve the proof by using our blow up analysis developed in Section 3.4 and
applying the correct factor of scaling in order to pass from a doubling condition in the dimension
n + a + 1 to the one on .

Let Xg € By N, and v the L,-harmonic extension symmetric with respect to X.. Integrating the
inequality in Corollary 3.3.2, see (104), we obtain that

R 2C+n+a
/ ly|* v?dX < <) / ly|* v®dX
B},(Xo) r B} (Xo)
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forevery 0 < r < R < 1—|Xp|, with N = N(Xo,v,1—|Xp|). By the interpolation estimate
in [73], we get

— u*dz < C(n,a) <M/ ly|* v?dX + na_/ ly|* Vol dX)
R Jpg(x0) Rrtatt B} (Xo) Rrta—t B} (Xo)
1 1
<C(n,a / yav2dX+/ y|* v?dX
) (gt [ WXt g [

1
<C n,a 22N+n+a+1/ |y|av2dX
( ) Rn+a BE(XO)

where in the second inequality we used the Caccioppoli estimate (99) and in the last one the
doubling condition. Since it yields the desired lower bound for the left hand side of the doubling
condition on X, we left to prove the upper bound. Let us prove by contradiction the existence of
C > 0 and aradius 0 < 7 < R such that

/ ly|* v3dX < C(n, a)r““/ uw?dz forall0 < r <T, (147)
(93:r (Xo) aBr(XO)

which will finally implies (146) after a simple integration.
Hence, suppose there exists a sequence rj N\, 0" such that

[0ll 220 08 (x0)) 2 kry? lull 208, (x0)) - (148)
with # = a + 1. Then let us consider the blow-up sequence of u centered at X associated to
(Th)

_ v(Xo 41 X)

1
vp(X) = "2 with pf = n+a/ ly|® v?*dX = H(Xo,v,7%).
Pi et oy, (xo)

By definition we have ||UkHL2»a(8Bf) = 1, and by Lemma 3.4.2 the sequence (v )y is uniformly
bounded in H'*(B}) and L>(Bg), for every R > 0. In particular, by (148), we get

_n—1

i, 2 lll2 s, (xo)) g erl=s

lukll20m,) = Ukl L208,) = e - Skt o=k
e 0 ollpee@sy (x0)

Thus, up to a subsequence, by Theorem 3.4.1 the blow-up sequence (v )y strongly converge

in H.*(R"1) and in C2%(R"™), for every a € (0,1) to some homogeneous blow-up limit

7 € Hy*(R™*1) such that 7 = 0 on By,

WHLz,a(aBD = 1 and it satisfies

L,s=0 inR"t!
8;@ =0 inX.

Hence, by Proposition 3.5.10 we get that 7 = 0 in contradiction with ||D[| f2.0( B = L O
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In order to justify the analysis of the local behaviour of s-harmonic functions, it is necessary
to ensure the validity of the strong unique continuation property. It is known by [45] that an
s-harmonic function in B; enjoys the strong unique continuation property in By, i.e. the only
solutions which vanishes of infinite order at a point X € I'(u) is u = 0. Similarly, an s-harmonic
function in B is said to satisfies the unique continuation property in B if the only solution of
(=A)*u = 0 in H} (Bj) which can vanish in an open subset of Bj is u = 0. Indeed, as a direct
consequence of Proposition 3.5.10 we prove

Corollary 3.8.2. Let s € (0,1) and u be s-harmonic in By. Then the nodal set T'(u) has either
empty interior in By oru = 0.

Hence, it is reasonable to define the notion of vanishing order of u at g € T'(u). More
precisely, the strong unique continuation property guarantees the existence of k£ € R such that

1
lim sup / u?dz > 0.
rn+2k Br(wo)

r—0t

In order to correlate the notion of vanishing order of s-harmonic functions with the one for their
L,-harmonic extension, let us introduce the following common definition.

Definition 3.8.3. Given s € (0,1), let u be an s-harmonic function in B; and xy € T'(u). The
vanishing order of u in x is defined as the number O(u, z¢) € R such that

i 2gy [0 ik <O a0)
11m sup m u - ar = .
r—0+t 0B (z0) oo ifk > O(u,a:o).

In particular, from Lemma 3.4.9 and Proposition 3.8.1 we get

Corollary 3.8.4. Let s € (0,1) anda = 1 —2s € (—1,1). Given u an s-harmonic function in
By, then the vanishing order O(u, zo) of u in xo € I'(u) satisfy

7“/+ ly|* |Vo? dX
O(u,79) = N(Xg,v,07) = lim B (%)

r—07t / ‘y’a U2d0'
9By (Xo)

where v is the unique L,-harmonic extension of u symmetric with respect to ¥ and Xy = (g, 0).

9

Hence, for k € 1 + IN, we define the subsets
Tp(u) == {zo € T(u): O(u,x9) = k},

which is coherent with the Definition for the L,-harmonic case. Indeed, inspired by the results in
Section 3.4, we can prove a convergence result for the blow-up sequence associated to zg € T'(u)
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to some blow-up limit ¢ € H? (IR").

Before to prove the main convergence result, let us introduce two different classes of tangent
maps strictly related to the ones introduced in Definition 3.4.17 and Definition 3.4.18. In particular,
we will see that the structure of the nodal set is completely defined starting from these blow-up
classes.

Definition 3.8.5. Given s € (0,1) and k € 1+ IN, we define the set of all possible blow-up limit
of order k, i.e. the set of the traces of all L,-harmonic polynomial of degree k symmetric with
respect to X, as

B (R") = {90 € H{ (R") : the L,-extension of ¢ € 5%%(][(”“)} i

Moreover, by Lemma 3.4.12 and Lemma 3.4.16, the space B; (R™) is the set of all possible
homogenous polynomial of order & in IR™, which is, by the results in [70], the space of traces on
X of B¢ (IR™). Similarly, if we define with B} (IR") the set of function ¢ € B (R") such that
Ap = 0in R", namely the collection of homogeneous harmonic polynomial of order £, it holds
that B8} (R"™) coincides with the set of traces of blow-up limits in s%8 (R""1).

The following result is a direct application of Theorem 3.4.1, Lemma 3.5.5, Theorem 3.5.6 and
Theorem 3.5.12 on the L,-harmonic extension of u symmetric with respect to X and it ensure the
existence of a unique non trivial tangent map at every point of the nodal set of w.

Proposition 3.8.6. Given s € (0, 1), let u be an s-harmonic function in By and x¢ € T'y(u). Then
there exists a unique k-homogenous polynomial ™ € B%(IR™) such that

u(ro + 11T
o) = UEDL) ),

where the blow-up sequence (uy, ), converges strongly in H{,.(R™) and in C\u%(By), for every
a € (0,1). Moreover, the unique tangent map ©™ is nontrivial and it satisfies the following
generalized Taylor expansion

u(x) = @™ (x = z0) + o[ — wo|"),
where the map xo — p™ from T’y (u) to the space B; (R™) is continuous.

Thus, let
R(u) = {zo € T(u): O(u,z9) = 1},
S(u) = U Tp(u) = U {zo € T(u): O(u,x0) = k},

k>2 k>2
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be respectively the regular and singular part of I'(u). Moreover, by Corollary 3.5.8 we can find a
different characterization of the singular strata 'y (u) for k > 2, i.e.

Fk(u) = {xo S Fk(u)

D¥u(xg) =0 forevery |v| <k—1
DYu(zg) #0 for some |vy| =k

The following are the main theorems related to the regularity and the geometric structure of
the nodal set: while in the first result we focus the attention on the regular part of the nodal set,
proving a result similar to its local counterpart (see [56, 66]), in the ones related to the singular
strata we highlight the presence of a singular subset S*(u) strictly related to the nonlocal attitude
of the fractional Laplacian.

Theorem 3.8.7. Givens € (0,1), letu be s-harmonic in By. Then the regular set R (u) is relatively
open inT'(u) and is locally a smooth hypersurface on R™. Moreover

R(u) ={z €T(u): |[Vu(z)| #0}.

Proof. By Corollary 3.8.2, let us suppose that u # 0 in B; and hence I'(u) has empty interior.
Given v the unique L,-harmonic extension of u symmetric with respect to X, well defined in
H1%(B{") by (145), it is obvious to infer that

R(v)NE =R(u).

Moreover, by Lemma 3.5.20 we already know that R (u) is relatively open in I'(u) and by the
application of the Federer reduction principle in Theorem 3.6.3 we get

dimy (R (u)) =n—1.

Now, by Theorem 3.8.6 and our blow-up classification, for every 2o € R(u) N X there exists a
linear map ™ € B§(R™) such that

u(z) = " (z — o) + o(|z — xo|) = " (V™) {x — 20, V™) + 0(|T — T0]|)

for some 1% € S§"~1,

Moreover, still by Theorem 3.8.6 we know that the map xo — ¢ (v*°)v™ is continuous. By
Proposition 3.2.5, since u € C°°(By/5) we can use the tangent map in order to compute the
directional derivative of u, which will ensures the nondegeneracy of the gradient of u at xy. More
precisely, for every £ € "1

(Vuleo),€) = Luleo+t6)| = tim HTOHIO)

— (/%0 (7,20 To
dt =0 t—0 t SO (V )<£7V >7

and hence Vu(zg) = ¢® (v*°)v® which is nonzero by the nondegeneracy of the tangent map.

Finally, by the implicit function theorem we get the claimed result. O]

173



174

NODAL SET OF SOLUTIONS OF DEGENERATE - SINGULAR EQUATIONS

As in Section 3.7, initially we will prove a stratification result for the singular set S(u).
The main idea of this stratification is to stratify the nodal set by the spines of the normalized
tangent maps. Indeed, we will introduce the subset ch(u) as the set of points at which every
tangent map has at most j independent directions of translation invariance in order to correlate
the nodal set of u with the dimension of the set where the tangent map X° vanishes with the
same order of .

We remark that these result are a direct consequence of Theorem 3.7.7 and Theorem 3.7.8, never-
theless, for the sake of completeness, we present some technical details.
From Definition 3.7.5, given s € (0, 1) we call d*° the dimension of I'y(u) at xy € I'y(u) as

d™ =dim{{ € R": (¢,Vp™(x)) =0forallz € R"}.
Now, fixed k > 2, foreach j = 0,...,n — 1 let us define
F{C(u) = {zo € Tx(u): dimT(p™) = j},

where ¢®° is the unique tangent limit of u at zy. As we already mentioned, since for £ > 2 we
have B (R") \ B} (R") # 0, we decide to introduce the following singular sets

S*(u) = U Ti(u) and &(u) = [J Ii(w),

k>2 k>2

where

[i(u) = {xo € Tp(u): p*° € BL(R™)} and T3 (u) = Tg(u) \Tr(u).

The idea is to stratify the singular set taking care of both the dimension d*° and the different
classes of tangent map associated to the sets I'; (u) and I'; (u).

Theorem 3.8.8. Given s € (0,1) let u be s-harmonic in By. Then it holds
S(u) = 8" (u) US*(u)

where S*(u) is contained in a countable union of (n — 2)-dimensional C' manifolds and S*(u) is
contained in a countable union of (n — 1)-dimensional C'* manifolds. Moreover

S*(u) = ”O Si(u) and S°(u) = "O S:(u),
j=0 Jj=0

where both S} (u) and 8§ (u) are contained in a countable union of j-dimensional C' manifolds.
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Proof. The proof is based on a combination of Theorem 3.7.7 Theorem 3.7.8. Since for every
k > 2 the functions ¢ € 5B} (IR""!) are homogeneous polynomial harmonic in ¥, we have that
dim (S() NX) < n — 2, and consequently ds° < n — 2 for every Xg € T’ (u).

Similarly, following Proposition 3.4.15 and the remarks in the proof of Theorem 3.6.3, since for
every k > 2 there exists ¢ € §B7(R"™!) \ 5B} (R""!) such that dim (S(u) NX) =n — 1 we
get that for X € T'¢(u) it holds dg® < n — 1.

Now, by applying the same argument in the proof of Theorem 3.7.8, if we set

S;f(u): U {z €eT}(u): d*™ =4} forj=0,---,n—2

k>2
Si(u) = J{zeTj(u): d®™ =j} forj=0,--- ,n—1,
k>2
we get the claimed result. O

Furthermore, by Proposition 3.4.15 we get that for any 2y € S_; (u) the leading polynomial
of u at z( is a monomial of degree k£ with £ € 2 + IN depending only on one variable of R".

In order to show the optimality of the result, we will now present an explicit example of s-
harmonic function in B; = (—1,1) C R with vanishing order k¥ > 2. More precisely, the

following construction allows to exhibit an s-harmonic in By C R" with I'(u) = 83_; (u).

Fixed s € (0,1),let By = (—1,1) C R be the unitary ball in the real line and f € £!(R) N C(R)
an admissible function. By the classical potential theory is it known that the unique solution of
—A)P*u=0 inB
u=7f inR\ By

an be computed explicitly as

I'(1/2)sinws 2\8 1 f(v)
u(x) = / P(z,y)f(y)dy = ——— (1 — || / dy.
R\ By m3/2 ( ) rR\B: ([y> —1)% |z =yl
We remark that several results and reference about the Poisson kernel can be found in the classical

book of Landkof [63].
Now, given f € LL(R) N C(R), let us consider f., f, € L1(R) N C(IR) respectively the even
and odd part of f uniquely defined as

o) = L)+ S2)

Under this notations, we get for z € (—1,1)

f@) = f(=2)

and  f,(x) = >

175
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Since for every y € R\ By we have |y| > |z|, using the series expression
y2 — :c2 R nz% y2n
we obtain
2I'(1/2)sin7s s | & >0
u($) = (7-‘-322 (1 _ |l’|2) lz AQn(f)fL'Qn + Z A2n+1(f)x2n+1 ’
n=0 n=0

where for every n € N

e w Y fo(y)
)= | g e A= [

In particular, if we consider f(z) = (|z|* —1)%g(2~!) we get by a simple change of variables

Aan(f) = / ) oy and A1) = | ' go(u)ydy.

Hence, for every fixed order of vanishing k& € 2 4+ IN, there exists a polynomial function g(z)
such that A4;(f) = 0, for every i < k — 1. We remark that all these coefficients can be computed
explicitly. Moreover, this construction it implies that for every vanishing order & € 2 + IN there
exists an s-harmonic function in (—1, 1) which vanishes in zero with order k, which shows the
purely nonlocal attitude of the singular set of s-harmonic functions.

In this part we will generalize the previous result to a more general class of fractional power of
divergence form operator following the change of variables first introduced in [4] and deeply
popularized in the works [48, 49] . Inspired by works, we consider solutions of homogeneous
linear elliptic differential equations of the second order with Lipschitz leading coefficients and
no lower order terms. We remark that in general the regularity assumption on the coefficient is
optimal thanks to the counterexample of [68].

Let A(z) = (a;j(x)) be a symmetric n x n matrix-valued function in B; satisfying the fol-
lowing assumptions:

1. there exists A € (0, 1) such that
NP < aij(x)&&; < L€ forany x € By and € € RY,
2. there exists I' > O such that forany 1 < 4,5 <n

laij(x) —aij(z)] < v|z—z foranyz,z € B.
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Hence, consider now the uniformly elliptic operator
, 0 0 :
Lu = div (A(z)Vu(z)) = el (:U)a—x]u =0 inB;. (149)

By [80], we already know the existence of characterization for the fractional powers of second
order partial differential operators in some suitable class.

Proposition 3.8.9. Lets € (0,1) andu € LL(R"). Givena = 1 —2s € (—1,1), a solution of
the extension problem

Lv + 20,0 + 65y1) =0 inR}™ (150)
v(z,0) = u(x) in R™;
is given by
1> . L2 dt
vaw) = 5 | @D @
and

I'(s)
) im 4% .
91-2sT(1 — s) yiO‘*’ y*Oyu(z,y)

A similar extension can be constructed in the context of fractional powers (—Ajs)® of the

(~L)u(z) =

Laplace-Beltrami operator on a Riemannian manifold M and to conformal fractional Laplacian on
conformally compact Einstein manifolds and asymptotically hyperbolic manifold, thanks to the
extension technique developed in [27] and the asymptotic expansion of their geodesic boundary
defining function.

In this Section, we just consider the case of divergence form operator L in order to show how to
deal with the limit case of Lipschitz coefficients. Therefore, this analysis will extend the results
also to the case of Laplace-Beltrami with Lipschitz metric.

As we did for the fractional Laplacian, in order to study the local behaviour of solution of
fractional elliptic equation associated to operator L in divergence form, let s € (0,1) and u be a
solution of the extended problem (150) associated to L, even with respect to the y-direction, i.e.
such that

div,, (ly|* A(z)Vyyu) =0, inR"! (151)
151
u(:v,y) = u(x, _y)a in]Rn+1'
where A(z) is a symmetric (n + 1) x (n + 1) matrix-valued function in B; such that
Az) = (152)
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Inspired by Definition 3.2.1 we define the natural generalization of notion of L,-harmonicity in
the context of divergence form operator L with Lipschitz leading coefficient.

Definition 3.8.10. Let a € (—1,1), we say u € HY*(By) is LA-harmonic in B if for every
¢ € C2°(By) we have

/ ly|* (A(z)Vu, Ve)dX =0,
By

where A(z) is the symmetric (n + 1) x (n + 1) matrix-valued function defined in (152).

Through this Section we will state all the result in the contxt of L\-harmonic function in B;
symmetric with respect to %, since the nodal set of the fractional powers (—L)® is completely
defined as the restriction of the nodal set of L-harmonic function symmetric with respect to X,
as we did in the previous part of the Section.

Obviously, in order to better understand the behaviour of general degenerate operator with
Lipschitz leading coefficient, one could consider general L2-harmonic solution and apply the
ideas and the decomposition of the previous Sections.

In order to develop a blow-up analysis, let us construct a monotonicity formula base on a geo-
metrical reduction introduce in [4] and deeply used in the local case [48, 49]. Hence, for n > 3,
define a Lipschitz metric § = g;;(, y)dz; ® dzj + gy, (2, y)dy ® dy on By by setting

9ij = av (det Z) [

.. 1
1 a¥ AR, if1<i,j<n
(153)

1
|A|»=T, otherwise

i j i j . : ——1 o y
where @/ and a’/ denote respectively the entries of A~ and A~!. Letting similarly g/ be the
entries of the inverse metric of g, consider

T(SC, y)2 = ?lj(o)xll‘] +§yy(0>y2

= |A’ﬁ (aij (0).%:@ + yg)
and

n(a.y) = - ) (7" (@)7 ()70 (0)sz; + 7" (2)7,(0)7,, (0)9?)

r2(z,y
_ akl(x)aik(O)aﬂ(O)xixj + 92
a(0)xiz; + y? '

We can easily verify that 7 is a positive Lipschitz function in B;, whose Lipschitz constant depends
onn,\,I'butnotona € (—1,1).
Next, we introduce a new metric tensor g = g;;(x,y)dz; @ dzj + gyy(z,y)dy ® dy in By by
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defining ¢ = n(z,y)g. In the intrinsic geodesic polar coordinates with pole at zero of the
Riemannian manifold (Bj, gij), the metric tensor takes the form

g =dr®dr+r2b;;(r,0)do;  dé;,

where

bij (07 0) = 67lj7 |a’r‘b1j (T7‘9)| < A(na )‘7 r)a for1 < Zy] <n. (154)
Moreover, if we denote |g| = |det g| we get

n+l [ nt+1 1
Vigl=n2"v/Igl=n=2 [A[=T. (155)

Here we denote by V u and div, X respectively the intrinsic gradient of a function u and the
intrinsic divergence of a vector field X on Bj in the metric g, i.e.

T I AN 9
Vou =g 9z, 0z, legX—\/g<;axi(\/sz)+ay( |9|Xy)>‘

Finally, in this new metric we rewrite the divergence form equation in (151) as

divg (Jy|* pVgu) = \/733/ [( \/79%#) u—— |yl }

where 1 = p(x,y) is a positive Lipschitz function given by

n—1

w(z,y) =n(z,y)” 2

bounded in B; and such that, in polar coordinates, it satisfies
0
1(0,0) = 1, ‘8,u(7“,l9)‘ < A(m,\T). (156)
r
By (153), (155) and the definition of y, for every (z,y) € By

\/79”#—77 AT AT gy = 1
To proceed, given u € H%%(By, dV}) a solution of
divy (Jy|* pVgu) =0 in By (157)
symmetric with respect to X, let us define for any r € (0,1)

1 a
Ey(u,r) :7“””_1/3 ( )|y| 1|V gul® dv,
gT’
1

Hyor) = gz [l Vi,
g T
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where here By(r) represents the geodesic ball in the metric g of radius r centered at the ori-
gin. We remark that by the polar decomposition of g, By(r) coincides with the usual Euclidian ball.

In [52] the authors introduced a new monotonicity formula for a class of generalized Baouendi-
Grushin operators. Since it is well known the existence of a connection between this two families
of degenerate elliptic operator, their result gives an analogue counterpart in the context of our
weighted degenerate operator, firstly introduced in the pioneering papers [43, 44]. More precisely,
let us introduce the change of variable ®: R’} "' — R’:"! such that

($72) = CD(xay) = <$7 (13;;1—(1> )

with inverse ®~1(z,2) = (m, (1— a)zﬁ). Now, given a function u(z, z) defined for (z,z) €
R'M™!, we define a function @(z,y) with (z,y) € RT as @(z,y) = u(®(z,y)). A simple
computations gives

2a

Li(z,y) + Oyyt(z,y) + gayﬂ(fn,y) =z 1-a [@zu(fn, z) + Z%Lu(:n, z)} )

As we can see, the operator within square brackets in the right-hand side of the previous equation
is a special case of the family of operators in R” x IR! known as generalized Baouendi-Grushin
operator.

Nevertheless, our problem does not satifsy the hyphotesis of the remarkable result obtained in
[52] and consequently we need to construct a new monotonicity formula, which “does” extend
the class of generalized Baouendi-Grushin operator for which a unique continuation principle
holds true.

Under the previous notations, for r € (0, 1), we define the Almgren type monotonicity for-
mula as
r oyl el Veul* v
Eqy(u, ) /Bgm Y
Ny(u,r) = Hy(u,r) =
u,r
I / [y|* pu*dVap,
OBgy(r

Theorem 3.8.11. Leta € (—1,1) and u be a solution of (157) symmetric with respect to X.. Then
there exist a constant C' > 0 such that the map r + e“" N, (u,r) is absolutely continuous and
monotone nondecreasing on (0, 1). Hence, there always exists finite the limit

Ny(u,0%) = lim N,(u,r),
r—0+

which we will call as the Almgren frequency formula.
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Proof. By assumption, both 7 — E4(u,r) and r — Hy(u,r) are locally absolutely continuous
function on (0, 1), that is both their derivative are L{ (0, 1). First, passing to the logarithmic
derivatives, the monotonicity of 7 — Ny(u,r) is a direct consequence of the claim

d/ a 2 d a 2
— ly|* | Vul”dV, / ly|* pu”dVyp,
d L, 4 /s, _ A Jopy ()

710gN(X07u7T) =
/ ly|* 1| Vul* aV, / [y|* pu®dVap,
By(r) 9By (r)

dr r
for r € (0,1). First, by setting b(r,0) = |det b;;(r,0)|, we get \/g(r,0) = r"/b(r,0) and we

can rewrite the denominator Hy(u,r) of the Almgren monotonicity formula as

>0

H,y(u,r) = /aB [0 100,00 o 010,

where 6, is the spherical coordinate associated to the y-direction. By differentiating respect to
r € (0,1, we obtain

d 2 1 ly|* 0 2

—H, = * pud,udV; = b)u*dV;

d?" g(u, T> ,’nnJra /839(7‘) |y| e Pu OB + rnJra /aBg(T) \/l; 8,0 <Mf) B o8
where 0,u denotes the radial differentiation d,u = (Vg u, X /p) for X € R™"!. Finally, by (154)
and (156) we get

2 a
—Hg(u,r) = —— / ly|* pud,udVap, + O(1)Hy(u,r), (158)
dr rnTa 8By (r)

with O(1) a function bounded in absolute value by a constant C' = C(n, A). On the other hand,
the divergence theorem gives

/ y|* | Vul|? AV, = —/ udivg (Jy|* pVu) dVg+/ ly|* pud,udVyp,
By(r) By(r) 0Bgy(r)
and hence we can rewrite (158) as

d 2

L Hy(u,r) = 2By, r) + O Hy (7). (159)

We now focus on the derivative of r — Ey(u, ), following the idea of the radial deformation in
[48, 49]: for 0 < 7, Ar < 1/2 fixed, we define w;: Rt — R™ by

t, ifp<r
wi(p) = {1 ifp>r+ Ar

tr+§;_p+p&nr, ifr <p<r+Ar.

181
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Now, for 0 < t < 1+ Ar/(r + Ar), we define the bi-Lipschitz map [;: R**! — R as
W(X) = wi(p(X))X,
with p(X) = disty(0, X), and consequently the radial deformation u; of u as
u'(X) = u(ly1(X)) € HY(By,dV,).
By definition we have u!(Z) = u(X), with Z = [;(X). Since u is a solution of (157), given the

functional I(t) = E,(u’, 1) we have

=0. (160)

In order to ease the notations, through the following computations we will simply use B, instead
of By(r). Inspired by the definition of w(t), let us set

2 2 2
I(t) = / Iy|® 1 ‘Vut‘ AV, +/ ly|® \wt\ AV, +/ ly|® 1 \vwf\ AV,
Byt By yar\Brt Bi\Byiar
= I1(t) + Lo (t) + I3(t).
It is easy to see that

2
B = [ wlulveave = [ ulvaPavs,
Bl\B'l +Ar Bl\BT'+A’V'

and consequently that I3(t) does not give contribution to the derivative of I(t). Next, we have

o= [ i ufvu| avs,
/ /83 (p: 0n)[* u(tp, 0)0pu* (p,0) mdﬁdp
+/0 /aB £ (p. 00| 1(tp. 0)5" (tp, ) 3o, u(p,0) 3%, u(p, )t g (tp. 6)d0cl,

where obviously b are the entries of the inverse of (bij)i; associated to the metric g. By (156),
we get

’;M(tp,e)’ < A(m,\,T)p.

Furthermore, we can rewrite

{\/g@p,e) = t"p"[b(1p, ) (a6

b (tp,0)1/9(tp,0) = "=2p" 2 [33; + <45 (0, 0)]
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for some (g (tp, 0))ij. Since that (154), we have

’gt\/m‘ < C(n, Ao, );m‘ < C(n,A)p

which gives

I(t) =tr+e) [/g | 10801 9,000,020, 005" bltp.8)00
1

+ /0 /a ; ‘(Pyen)‘au(tpﬁ)pn2(5z‘j—|—E(tp,9))8@iu(p,9)8gju(p,9)d0dp],

and consequently

d
e
dt ()

= (n—{-a—l)/B \y|a,u|Vgu]2dVg+O(7’)/B | |V gul? AV, (162)
t=1 v v

with O(r) a function of (r, #) whose absolute value is bounded by C(n, A)r.

Finally, in order to estimate the second term of (), we need to introduce the following notations.

Hence, given X € B, a, \ By and Z = [;(X) € B,ya: \ Byt let us consider their expression in

the intrinsic geodesic polar coordinates associated to g, namely X = (p,6) and Z = (v(p), 6),

where A
o _ _ [rtAr—p p-r
Y (p) = disty(Z,0) = w(X)p=p [t Ar + A } )
and 0 +Ar—2p 2
r+Ar—2p 2p—r
Zvlp) =t .

Then, still using the polar coordinates, we have

2

2 ..
Vi (2)[ = [0 (5,0)] +Sinw(s,e)agiut(s,e)agjut(s,a)

S=7t (P)

2
1 .
+ b ,0)99,u(p, 0)99 u(p, ),
s—m(p)) ,yt(p)g (Vt(p) )9 (P )HJ (IO )

=mﬂmmﬁmmf+%&wammm%wmmmﬂ@ﬁ»

= 8pu(p,0)|? (i’r{l(S)

and similarly the volume element is given by

dVp, (Z) = 7(p)" g(%(ﬁ)ﬁ)i}%(p)dpd&
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By the previous computations and the expansions in (161), we get

Iz(t)Z/ [yl u’Vu‘ dVs,(Z)
T+Ar\Brt

r+Ar
= [ [0 hots. 0007 (0.0 b(s0) | g
0B, s=7¢(p)
r+Ar ) u a
+ / 2|5, 001" () i(5,0) (55 + =(5,0)) ., 0)00, (. 0) | Bl
v OB P s=1(p)
Since A 5 A
_ r+tp—p g _ r+1r—2p

we can conclude
d a r+Ar—p r+Ar—2p] 9
°r — _
2o [, witn | a0 g 22| (@u)av,

a r+Ar—p r+Ar—2p 9 9
+/ Y u[n+a—2+Op + } Voul” = (0u)*) dVp,.
el (M) =% | (IVgul’ = (9p0)*) Vs

Finally, by letting Ar — 07 we get

d
%12( )

= 21"/ ly|* 1(9,u)?dVag, — 7"/ ly|* p |Vgu|2 dVip, . (163)
1 OB, OB,
From (160), (162) and (163), we obtain
d a a a
rd/ ly| u]Vgu|2dVaBr—(n—|—a— 1—|—O(T))/ |y u(Vgu)2dVBr = 2r/ ly|* 1(9,u)?dVas,
T JB, B, 0B,
which implies with (159) that
2 / y|” 1(Bpu)*dVap, 2 / ly|* pudpudVas,

d
- log N(Xo,u,r) = O(1) + o5 AL > —C(n,A),
/ ly|* pud,udVyp, / ly|* uquVaBT
9B, dBy(r)

where the inequality is a consequence of Schwarz’s inequality. It follows immediately that
the map r — exp(C(n, A)r)Ny(u,r) is a monotone nondecreasing function on r € (0,1) as
required. u
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Returning to the formulation of the problem in the euclidian metric, for Xy € X and r €
(0,1 —|Xo|) we set

1

B(Xo,u,r) = 74%_1/3 (X)]y\“<Z(X)Vu,Vu>dX
T 0

1
H(X07uvr) = rnta /83 (o) |y|a MOUQdO',
T 0

and consequently

E(Xo,u,r)

H(Xo,u,r)’

with pg is a positive Lipschitz function bounded in B; satisfying (154) with A depending only on
n,Aand I'.

N(Xo,u,r) =

Corollary 3.8.12. Leta € (—1,1) and u be a solution of (151) in By symmetric with respect to X..

Then there exist a constant C' > 0 such that for every Xo € By N X the map
r = e“" N (Xo, u,r)

is absolutely continuous and monotone nondecreasing on (0,1 — | Xo|).
Hence, there exists finite the Almgren frequency formula defined as

N(Xo,u,0") = Tl_i>151+N(X0,u,r) = ;%N(Xo,u,r).

Now, we can finally apply the previous analysis to the general case (—L)*, by proving the
validity of a doubling condition, a compactness result for blow-up sequences and a general
Theorem on the structure of the nodal set itself.

Proposition 3.8.13. Leta € (—1,1) and u be a solution of (151) in By. Hence, there exists a
constant C' = C(n, A) such that, for every Xy € By N %,

for0 < i <1y < 1—|Xg|, where C = N(Xo,u, R)eCmMR,

Proof. Fixed R = 1 — | Xg|, by Corollary 3.8.12 we have that N (Xq,u,r) < e“EN(Xo,u, R) for
every r € (0, R). By (159) we get

ilogH(Xo,u,r) = gN(Xg,u,T) +0(1)

dr T

< gN(Xo, u, R)ec(”’A)R +C(n,A),
,
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for every 0 < r < R. Now we integrate between 0 < r; < r9 < R, obtaining

log m < 2N (Xo,u, R)eC M og :—? +C(n,A)(ra —11)
and finally i
s = ()
with C' = N (Xo,u, R)eC(mME, O

Moreover, since we are dealing with the extension L2 of operator uniformly elliptic in
divergence form with Lipschitz coefficent, we can easily extend Corollary 3.3.6 to our new class
of operator following the technique developed in [85]. Indeed, since the lower bound on the
Almgren frequency formula is based on the Holder regularity of L:'-harmonic function, we easily
get

Corollary 3.8.14. Letu be L:'-harmonic on By, then for every Xo € I'(u) N L we have
N(Xo,u,0") > min{1,1 - a}. (164)
More precisely
e ifu is symmetric with respect to ¥, we have N (Xg,u,0") > 1,
e ifu is antisymmetric with respect to ¥. we have N (Xo,u,07) > 1 —a.

In particular, since in this Section we are focusing on the symmetric case, we directly get
N(Xo,u,0%) > 1, for any X, € I'(u) N X. All techniques presented in this manuscript involve
a local analysis of the solutions, which will be performed via a blow-up procedure. The following
result are a generalization of the ones in Section 3.4. Fixed @ € (—1,1) and u an L2-harmonic
function in By, for every Xo = (20,0) € I'(u) NX and r; | 0" we define as the blow-up
sequence the collection

X X B —X
w forXEXGBXO’Tk:g,

up(X) =
H(Xo,u,rg) Tk
such that LA%u;, = 0 and vkl L2.a(op,) = 1, where

Ltk = dive,y (|yl* Ap(2)Vay ), with Ay (x) = A(wo + 1),

for every X € Bx, ry-
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Proposition 3.8.15. Leta € (—1,1). Given X € I'(u) N % and a blow-up sequence uy, centered
in X and associated to some i, | 0T, there exists p € Hllo’g (IR") such that, up to a subsequence,
up, — p in CLY(R™) for every o € (0,1) and strongly in HL“(R™). In particular, the blow-up
limit is and entire solution of following elliptic equation with constant coefficient

divy 4 (!y\“Z(wo)Vz’yp) — 0 inR"™

The proof of this result is a straightforward adaption of the one of Theorem 3.4.1. In particular,
since the coefficient of A are Lipschitz continuous and uniformly elliptic, all the computations of
the blow-up argument follows the line of the local counterpart in [56, 66, 49, 48, 81, 4].

Moreover, since for every Xy € I'(u) N X the blow- up limit satisfies a degenerate-singular
equation with constant coefficients, it is not restrictive to suppose that A(zg) = Id, since by
trivial transformation we can rewrite the equation in a canonical form.

Therefore, all the results on the structure of the singular strata, proved in the previous part of
the Section for the nodal set of s-harmonic functions, remain valid for the nodal set of fractional
power of divergence form operator with Lipschitz leading coefficients. Indeed, as we already
pointed out, in the proof of Theorem 3.7.7 and Theorem 3.7.8 we never used Proposition 3.2.5 in
order to attain the result on the structure of the singular strata on .. The crucial idea is that the
Whitney extension allows to study the structure of the nodal set just by using the generalized
Taylor expansion (3.5.17) for symmetric function without the high-order differentiability of the
function itself. In this way the results can be easily generalized to our class of operators.

Proposition 3.8.16. Given s € (0,1), let u be a solution of
(-=L)’u=0 inB;,

with L a uniformly elliptic operator with Lipschitz coefficient defined as (149). Then the nodal set
T'(u) splits into its regular and singular part

R(u) ={z €T (u): |Vu(z)| #0} and S(u) ={z eTl(u): |Vu(z)| = 0}.

Moreover, ifu € C*(By/5) on one hand R(u) is locally a smooth hypersurface and on the other one
it holds
S(u) = 8*(u) US*(u)

where S*(u) is contained in a countable union of (n — 2)-dimensional C! manifolds and S*(u) is
contained in a countable union of (n — 1)-dimensional C' manifolds. Moreover

§'w) = U Siw) and §*w) = | SHu),
j=0 Jj=0

where both S} (u) and S§(u) are contained in a countable union of j-dimensional C' manifolds.
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3.0 MEASURE ESTIMATES OF NODAL SETS OF S-HARMONIC FUNCTIONS

In this last Section, we estimate the measure of the nodal set I'(u) in the case of s-harmonic
functions. This result can be seen as the nonlocal counterpart of a conjecture that Lin proposed
n [66]. Indeed, following his strategy, we give an explicit estimate on the (n — 1)-Hausdorff
measure of the nodal set in terms of the Almgren monotonicity formula of its L,-extension.

As we already did in the previous Section, since the local structure of the nodal set I'(u) can be
described using the results on the restriction of the nodal set of L,-harmonic function on the
characteristic manifold X, we will follow the notations previously introduced. More precisely,
through this Section we will denote with v € H%(Bj") the restriction on the unitary ball in
]RTr1 of the L,-harmonic extension, defined by (144), symmetric with respect to X (see (145)).

Since the fractional Laplacian (—A)® admits a representation formula, we directly have that
the analyticity assumption, which is fundamental in order to apply a strategy developed in [66], is
fully satisfied on every compact set K CC Bj. Moreover, by Proposition 3.8.1 we already provide
a quantitative doubling condition for s-harmonic functions strictly correlated to the one in the
extended space R"*1,

In order to achieve the estimate on the Hausdorff measure of the nodal set I'(u) we use the
following lemma relating the growth of a complex analytic function with the number of its zeros
introduced in [41].

Lemma 3.9.1. Let f: By C C — C be an analytic function such that

If(0)|=1 and sup|f| <2V,
Bi

for some positive constant N. Then for anyr € (0,1)
#{z€B,: f(z) =0} <cN
and
#{Z S Bl/gi f(Z) = 0} <N,
where C' is a positive constant depending only on the radius r.

Before to state the main result on the measure of the nodal sets I'(u) in terms of the Almgren
monotonicity formula of the L,-harmonic extension, let us start with an example in the setting
of tangent maps B; (R™) that emphasizes how the measure of the nodal set is strictly related
to the class of tangent maps that we are considering. More precisely, the classes B} (R™) and
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B7 (R™) \ B (R") strictly affect the local measure of the nodal set.
First, it is not restrictive to assume that € B3 (IR?) for some k € 1+ IN. Hence, consider the
case n = 2 with the notation (z,z) € R?. Since every ¢ € B}(R?) is harmonic in R?, it is
known that

H' (T(¢) N By) = 2k.

Instead, for ¢ € B3 (R?) \ B} (R?), with k > 2, the previous bound turn to be not optimal. More
precisely, given the constant & = #{t € R: ¢(t,1) = 0}, we get
H (T(p) N By) = 2K,

where, by the Fundamental Theorem of Algebra, it is obvious to see that 0 < k' < k.

In general, we prove the following result which is based on an argument first introduced in
[66] in the context of solution of second order elliptic equation with analytic coefficient.

More recently, in [6] the author constructs a similar estimate in a more general context connecting
the Hausdorff measure of the nodal set of smooth functions with their finite vanishing order,
which can be also applied to our case. Unfortunately, the remarkable difference between the
case B} (R") and B5 (R") \ B} (R™) (or similarly 5B (R"*1) and sBf(R" ™) \ sB} (R"*1)

) implies the not optimality of the result of Bar in our setting.

Theorem 3.9.2. Givens € (0,1), let u be an s-harmonic function in By and 0 € T'(u). Then
Hrt (F(u) ﬂB;) < C(n,s)N,
2

where N = N (0,v, 1) is the frequency of the L,-harmonic extension v in Bf" defined by

/ Iyl [Vol? dX
B+
N=253

/ |y|av2da
oBf

Proof. Let (Br(p;))i be a finite cover of By /o with R < 1/8 and p; € B; /2. Moreover, up to a
normalization, it is not restrictive to assume that

][ uldr = 1.
B1

By Proposition 3.3.5 and Proposition 3.8.1, for every p; € B/, we have

][ w?dz > 4_0(”’5)N][ ’LL2d:L',
B (pi) Bar(pi)
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with0 < r <1/4and N = N(0,v, 1). Moreover, using the normalization hypothesi, we get

][ U2d.%' > 4—C(n,s)N'
Br(pi)

Given p1,...,p; € Bj/y the collection of points associated to the covering, let us consider
(xp,)i € Br(p;) such that

u(wp, )| > 9~ Clns)N

— Y

foranyi=1,...,7.

In order to apply Lemma 3.9.1, for i = 1, ..., j consider the collection of analytic functions of
one complex variable defined as

filw, 2) = u(zp, +4Rzw), forw e S" 1 2 e BE
Then, by construction, we have
|fi(w,0)] = 270N and | fy(w,2)| < C,

for some positive dimensional constant C' > 0. Since, by Lemma 3.9.1 we have

Ni(w) =# {3: € Bag(xp,): u(z) =0 for (z —xp,) | w}
<#{z€BS),: filw,z) =0}
<e¢(n,s,N)N,

for every i = 1,---,j, by the integral geometric formula in [46, Theorem 3.2.27], we finally
obtain

H" (T (u) N By jg) < i?—["_l (T(v) N Bgr(pi)) < c¢(n,s,N) Zi: - N;(w)dw < C(n,s, N)N

where in the second inequality we used Bgr(p;) C Bagr(zp,) foreveryi=1,..., 7. O

In the end, since our estimate on the Hausdorff measure is deeply based on the existence of
an L,-harmonic extension of v and on the validity of an Almgren’s type monotonicity result, we
expect to improve Theorem ?? exploiting the connection between the Dirichlet energy associated
to the L,-extension and the Gagliardo seminorm introduced in (143). This improvement would
show a purely nonlocal version of the result in [66].
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