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I N T R O D U C T I O N

In this thesis we are concerned with the study of the nodal set of nontrivial solutions of
di�erent types of elliptic equations strictly related to a problem of singularly perturbed systems
of nonlocal elliptic equations.
The manuscript is divided in three di�erent parts, corresponding to the main problems treated
during the last years. The �rst one is devoted to the study of the nodal set of a segregated critical
con�guration arising as singular limit of a system of elliptic nonlocal equations with strongly
competing interaction terms, while in the second one we consider the problem of s-harmonic
functions on cones when the parameter s approaches 1, wondering whether solutions of the
problem do converge to harmonic functions in the same cone or not.
Finally, in the last part we focus the attention on the nodal set of solutions of a class of degenerate-
singular elliptic equation trying to understand how the presence of degeneracy and singularity in
the coe�cient a�ects the structure and the regularity of the solutions. Moreover, in this last part,
we �nd a remarkable link with the problem of the nodal set of s-harmonic functions.

Before moving on, we would like to stress that all the Chapters are not only centred on the
research topic of the nodal set of solutions of partial di�erential equations, but they represent
three key points in the analysis of patterns formation through spatial segregation in some models
of enhanced anomalous di�usion.
Several physical phenomena can be described by a certain number of densities, populations or
probabilities distributed in a domain and subject to laws of di�usion, reaction, and competitive
interaction. In the pioneering work [53] of Georgii Gause of the 1932, has been introduced the so
called “competitive exclusion principle” which states that whenever the competitive interaction is
the prevailing phenomenon, the densities can not coexist simultaneously and tend to segregate,
hence determining a partition of the domain itself.
As a model problem, let us start with the system of stationary equations

−∆ui,β = fi,β(ui,β)− βui,β
∑
j 6=i

gij(uj,β)

ui,β > 0.

In particular, the cases gij(t) = βijt (Lotka-Volterra competitive interactions) and gij(t) = βijt
2

(focusing-defocusing Gross-Pitaevskii system) are of particular interest in the applications to
population dynamics [75] and theoretical physics [54, 61] respectively. For the case of standard
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di�usion, the regularity of solutions and the asymptotic analysis is fairly well understood, starting
from [11, 20, 31] for the Lotka-Volterra case and from [17, 26, 30, 33] for the Gross-Pitaevskii
system, in a series of recent papers [19, 32, 35, 72, 90], also in the parabolic case [36, 34, 35,
89]. Since, from a modeling point of view, the limiting con�gurations as β → +∞ describe an
approximation of highly competing systems, one crucial step of this analysis is the study of the
qualitative properties of the singular limit. Indeed, in the classic case has been shown that the
limit vector u = (u1, . . . ,uh) has densities with mutually disjoint supports, i.e. the segregated
states ui satisfy −∆ui = fi(ui) in {ui > 0}

ui · uj ≡ 0 for j 6= i.
(1)

The natural subjects of this analysis concern the optimal regularity of the limiting pro�les, equilib-
rium principle at the arising interfaces and regularity of the free boundary itself. In the mentioned
papers, the authors in [30, 33] studied singularly perturbed systems relating them to some optimal
partition problem for nonlinear eigenvalues. For this latter problem, we remark that in [25]
the authors have proved the regularity of free interfaces of optimal partition problems for the
eigenvalues of the Laplacian operator with Dirichlet boundary conditions. Moreover, in [32, 29]
they proved Lipschitz regularity of the limiting solutions as well as the regularity of the free
boundaries in the case of two dimension.
On the other hand, in [71, 72] has been deeply studied that the limits of a system of Gross-
Pitaevskii equations relying the proof on elliptic estimates, blow-up technique, the monotonicity
formula by Almgren [1] and Alt-Ca�arelli-Friedman type formula [2, 3]. We mention the book of
Ca�arelli-Salsa [21] for a complete picture of the application of the monotonicity formulas for a
larger class of free boundaries problem and to [16] for the case of more general nonlinearities.
The common characteristic of all these problems is that in the singular limit, the components of
the solutions of these systems group in di�erent blocks and the supports of the di�erent blocks
become disjoint. In particular, these are speci�c cases of free boundary problems and they are
strictly connected to the problem of nodal and critical point sets of solution for PDEs, which is
itself a research topic that has attracted a great deal of attention in the last decades (see e.g. [15,
41, 56, 57, 58, 66]). The philosophy is that both in the case of energy minimizing solutions and
critical ones, the limiting segregated con�gurations satisfy a re�ection law which represents the
only interaction between the di�erent densities through the common free boundary. Thanks to
this re�ection property, the free boundary is locally described as the nodal set of a scalar valued
solution of some PDE.

From this perspective, before to compare this results with their nonlocal counterpart, we would
like to give more attention to two recent papers [18, 81] which include all the previous cases and
summarize the most recent results achieved in this research topic. In the �rst one, the authors
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studied the local structure and the smoothness of singularities of the nodal set of a constrained
harmonic maps into a singular space, i.e. given Ω ⊂ Rn a bounded smooth domain and

Σ =
{
x ∈ Rh : F (x) = 0

}
with F (x) =

∑
i 6=j

x2
ix

2
j ,

the problem is to �nd a minimizer v = (v1, . . . , vh) ∈ H1
0 (Ω, Σ) such that

ˆ
Ω
|∇u|2 dX = min

{ˆ
Ω
|∇v|2 dX : u ∈ H1

0 (Ω, Σ) such that
ˆ

Ω
u2dX = 1

}
.

We remark that this problem is strictly related to the one of optimal partition for the Dirichlet
eigenvalue and contains the class of limiting pro�le arising as β →∞. In particular they proved
a strati�cation result for the singular set, as was done in the classic case [79], by a convexity
argument deeply based on the validity of Weiss type monotonicity formula [91]. Moreover, with
a convexity argument, they proved uniqueness of tangent maps as well as the local structures of
the singular sets.
Instead, in [81] the authors dealt with the nodal set of segregated critical con�gurations under a
weak re�ection law, i.e. they considered the class of functions u ∈ (H1(Ω))h whose components
are all nonnegative and Lipschitz continuous in the interior of Ω and such that−∆ui = fi(ui)− µi in D′(Ω)

ui · uj ≡ 0 for j 6= i,

where fi are a suitable collection of di�erentiable functions and µi ∈M(Ω) some nonnegative
Radon measures, each supported on the nodal set Γ(u) = {x ∈ Ω : u(x) = 0}. Moreover, they
impose the validity of a weak re�ection principle based on some Pohožaev type identities, which
implies that the absolute value of the gradient is the same when we approach the regular set from
opposite sides. The importance of this class is due to the fact that it collects the singular limit
to competition-di�usion systems, both those possessing a variational structure and those with
Lotka-Volterra type interaction.

In the recent years has been given much attention on the case of anomalous di�usion, when
the Gaussian statistics of the classical Brownian motion is replaced by a di�erent one, giving
rise to the so called “Lévy jumps”. Since such operators are of real interest both in population
dynamics (see [59]) and in relativistic quantum electrodynamics (see [64, 65]), we plan to extend
the previous analysis of the nodal set of segregated con�guration to the nonlocal context.
Since the asymptotic analysis and the study of the nodal set in case of fractional Laplacians are
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Figure 1: Prototype of segregated con�gurations in Rn+1
+ = Rn

x ×R+
y

very challenging issue, the only known results are contained in [83, 84, 85, 88, 86]. In [83, 84, 86],
the authors considered the class of stationary systems of semilinear equations(−∆)sui,β = fi,β(ui,β)− βui,β

∑
j 6=i gij(uj)

ui,β ∈ Hs(Rn),

focusing on the case gij(t) = βijt (Lotka-Volterra competitive interactions [86]) and gij(t) =
βijt

2 (relativistic Gross-Pitaevskii system [83, 84]). In both cases, they provide some uniform
estimates in Hölder spaces with respect to the parameter of competition β. This results can be
obtained considering the local realisation of the fractional Laplacian due to the so called Ca�arelli-
Silvestre extension popularized in [23], which characterize the fractional Laplacian in Rn as
the Dirichlet-to-Neumann map for a variable v depending on one more space dimension. With
this formulation, the competition-di�usion problem in Rn translates into a degenerate-singular
elliptic equation in Rn+1

+ with a Neumann type condition on ∂Rn+1
+ = Rn , which allows to

introduce the fractional versions of the Alt-Ca�arelli-Friedman and Almgren type monotonicity
formulas.
As a byproduct, up to subsequences, there is convergence of the above solutions to a limiting
pro�le, which components are segregated. Because of the genuinely nonlocal nature of the
problem, many di�culties and technicalities arise in the asymptotic analysis and in the study of
the nodal set. First of all, since these problems have been studied using the extension technique,
both in the Lotka-Volterra and in the variational case, the segregation occurs only in the n-
dimensional space and it is natural to expect free boundaries of codimension 2 (see Figure 1).
Secondly, the Gross-Pitaevskii competition and the Lotka-Volterra one exhibit deep di�erences
not only from the point of view of the optimal regularity exponent, but also with the one of the
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segregated limiting pro�les, which is in deep contrast with the local case s = 1, as we previously
pointed out. More precisely, in the �rst case the limiting pro�les satisfy a natural extension to the
fractional setting of (1), that is(−∆)sui = fi(ui) in {ui > 0}

ui · uj ≡ 0 for j 6= i,

while in the second one(−∆)s
(
ui −

∑
j 6=i uj

)
= fi(ui)−

∑
j 6=i fj(uj) in {ui > 0}

ui · uj ≡ 0 for j 6= i.

Moreover, in the Gross-Pitaevskii case, where the structure of the nodal set is wilder than the
Lotka-Volterra one, the nonlocal nature of the problem a�ects the ideas and techniques developed
in [18, 81]. In the latter, the de�nition of the nonlocal operator (−∆)s does not allow to relate the
structure of the free boundary to the nodal set of s-harmonic function since, roughly speaking,
the linear combination of s-harmonic functions with disjoint supports is no more s-harmonic
in their union. Secondly, the nonlocal counterpart of the formulation via constrained harmonic
maps into singular space introduced in [18], is intimately related to the problem of harmonic
maps with “partially free boundary”. Unfortunately, this strategy turn out to be ine�cient since
the segregated condition on Rn translates into the problem of fractional harmonic maps into
singular space which implies the occurrence of a “singular partially free boundary”(see [69] for
an application in the context of fractional Ginzburg-Landau equations).
Last but not least, we remark that in [83, 84] the most challenging issue lies in the lack of the
validity of an exact Alt-Ca�arelli-Friedman monotonicity formula, which re�ects, at the spectral
level, the lack of convexity of the eigenvalues with respect to domain variations.

In Chapter 1 we tried to give a better picture of the limiting pro�les in the context of varia-
tional competition. In this analysis, the main di�culties are the problem of codimension between
the segregation and the degenerate-singular elliptic equation introduced with the extension
technique and the lack of validity of a re�ection principle that allows to compare our problem to
the one of the nodal set of some nonlocal elliptic equation. In order to overcame this problem,
we consider the case of planar segregated con�gurations, in order to exploit the topology of S1.
Nevertheless, as pointed out in [84], we need to take care of the presence of self-segregation for
s ≥ 1/2. This phenomenon was also discussed in [81] for the local case with critical segregated
con�gurations, but the nonlocal attitude of our problem prevents to apply the same reduction
used for the classical Laplacian. We mention that in [35] the authors proved, when we consider
segregated pro�les arising as limit of competition-di�usion systems, that the self-segregation can
be ruled out using an improvement of �atness.
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In our �nal result, we split the nodal set into its segregated and self-segregated part, proving a
local regularity result near the two strata. Moreover, in the �rst case, we show the existence of a
regular setR(u) relatively open in Γ(u) which satisfy a vanishing Reifenberg �atness condition
and a singular set S(u) which consists in a locally �nite collection of singular points.
All the result contained in Chapter 1 are obtained in collaboration with Susanna Terracini and
Alessandro Zilio.

As already mention, in Chapter 2, we consider the problem of s-harmonic function on cone,
i.e. given C an open cone in Rn with vertex in 0 and s ∈ (0, 1), we consider the problem of the
classi�cation of nontrivial functions which are s-harmonic inside the cone and vanish identically
outside, that is 

(−∆)sus = 0 in C,
us ≥ 0 in Rn

us ≡ 0 in Rn \C.
(2)

By [5], it is known that there exists a homogeneous, nonnegative and nontrivial solution of the
form

us(x) = |x|γsus
(
x

|x|

)
,

where γs := γs(C) is a de�nite homogeneity degree (characteristic exponent of the cone C).
This problems is actually deeply connected to the one of Chapter 1, since it consists on the study
of such conic s-harmonic functions that appear as limiting blow-up pro�les and play a major
role in many free boundary problems with fractional di�usions and in the study of the geometry
of nodal sets, also in the case of partition problems (see, e.g. [7, 14, 39, 51] and the blow-up
analysis of Chapter 1). Moreover, as we shall see later, they are strongly involved with the possible
extensions of the Alt-Ca�arelli-Friedman monotonicity formula to the case of fractional di�usion.
The problem of homogeneous s-harmonic functions on cones has been deeply studied in [5, 8,
9, 67]. and since not many qualitative properties are known for the s-harmonic functions on
cones, we decided to focus our attention on the limiting behaviour as s↗ 1 wondering whether
solutions of the problem do converge to a harmonic function in the same cone and, in case, which
are the suitable spaces for convergence in order to deduce. In such a way, we wanted to deduce
some qualitative properties of the s-harmonic function for s su�ciently near 1.
We therefore addressed the problem of the asymptotic behavior of the solutions of problem
(2) for s ↗ 1, obtaining a rather unexpected result: our analysis shows high sensitivity to the
opening solid angle ω of the cone Cω , as evaluated by the value of the homogeneity degree
γ(Cω) = γ1(Cω) of the harmonic function on C :

1. in the case of “wide cones”, when γ(C) < 2 (that is, θ ∈ (π/4,π) for spherical caps), our
solutions do converge to the harmonic homogeneous function of the cone;
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2. instead, in the case of “narrow cones”, when γ(C) > 2 (that is, θ ∈ (0,π/4] for spherical
caps), then limit of the homogeneity degree will be always two and the limiting pro�le will
be something di�erent, though related through a correction term.

θ

y

0 π/4 π/2 3π/4 π

2
2s

s

y = γ(λ1(θ))

y = γs(λs1(θ))

Figure 2: Characteristic exponents of spherical caps of aperture 2θ for s < 1 and s = 1.

This surprisedly result yields di�erent nontrivial improvement in the context of segregated critical
con�gurations. First of all, as shown in [84, 83], estimates in Hölder spaces can be obtained by
the use of fractional versions of the Alt-Ca�arelli-Friedman and Almgren monotonicity formulas.
In particular, one could prove a deep connection with the optimal partition problem among the
class Ps of 2-partitions on Sn−1

νACFs :=
1
2 inf

(ω1,ω2)∈P2

2∑
i=1

γs(λ
s
1(ωi)),

where γs(λs1(ω)) is equal to the characteristic exponent of the cone spanned by ω ⊂ Sn−1.
A classical result by Friedland and Hayman, [47], yields νACF = 1 (case s = 1), and the minimal
value is achieved for two half spheres; this equality is the core of the proof of the classical Alt-
Ca�arelli-Friedman monotonicity formula.
It [84] was also conjectured that νACFs = s for every s ∈ (0, 1). Unfortunately, the exact value of
νACFs is still unknown, but as a byproduct of our asymptotic analysis we have

lim
s→1

νACFs = 1 .

In the end, we remark that this asymptotic analysis suggests that even the segregated con�gura-
tions are a�ected by this unexpect phenomenon since the trace of the blow-up limits introduced
in Chapter 1 belong to the class of s-harmonic functions on cones. We believe that this asymptotic
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result will push our research in a new challenging direction. All these results are obtained in
collaboration with Susanna Terracini and Stefano Vita (see [82]).

Finally, in the last Chapter we conclude the thesis dealing with the nodal set of solutions of
degenerate-singular elliptic equations, which put an end to our glimpse into the study of segre-
gated con�gurations and free boundary problems ruled by anomalous di�usion.
In literature, the subject of nodal sets, or level sets in general, is an important research topic for
solutions of PDEs. While in some cases, this topics are themselves the primary concern, in many
others they provide an important tool in the study of qualitative properties of solutions of PDEs.
Initially, in [15, 58] the authors respectively proved an optimal bound on the Hausdor� dimension
of the singular set of solutions of linear and superlinear elliptic equations and, in the second work,
the �rst estimate on the (n− 1)-Hausdor� measure of the nodal set in a neighbourhood of a
point with vanishing order. We remark that in the second paper, the estimate is explicit and based
only on the existence of a �nite order of vanishing, which suggests that the validity of a strong
unique continuation property is the starting point of this kind of analysis.
Recently in [41, 56, 57, 66] they proved several results on the structure of the singular set and
even some estimate on the (n− 2)-Hausdor� measure of the singular set.
In all these cases, as pointed out in [48, 49, 66], the class of solution of PDEs, of which we want
to study the nodal set, must satisfy a strong unique continuation principle, in order to ensure
the existence of a �nite vanishing order. Many improvement have been done in this topic, using
on one side the Carleman estimates approach and on the other one the monotonicity approach
(see e.g. [48, 49]), deeply based on the existence of an Almgren type monotonicity formulas
and a geometrical reduction, �rst introduced in [4]. These last results prove the validity of the
strong unique continuation principle for solutions of divergence form elliptic equations of the
second order with Lipschitz leading coe�cients and suitable lower order terms. In particular,
in [68] the author proved the optimality of the Lipschitz condition with an Hölder continuous
counterexample.
At the same time, in their pioneering papers [44, 43] the authors introduced a general class
of degenerate operators L = div(A(X)∇·) whose coe�cient A(X) = (aij(X)) are de�ned
starting from a symmetric matrix valued function such that

λω(X) |ξ|2 ≤ (A(X)ξ, ξ) ≤ Λω(X) |ξ|2 , for some λ, Λ > 0,

where ω may either vanish, or be in�nite, or both. In particular they focus the attention on the
case ω ∈ A2-Muckenhoupt class, i.e.

sup
B⊂Rn+1

( 1
|B|

ˆ
B
ω(X)dX

)( 1
|B|

ˆ
B
ω−1(X)dX

)
<∞.
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While in the recent years these operators are quite commonly used since they are strictly related
to the local realisation of fractional powers of operators (see [23, 27, 80] for di�erent application
in the extension of fractional operator), the authors initiated this research motivated by some
result on the boundary behaviour of harmonic functions in non-tangentially accessible domains
in [60].
Inspired by [43, Section 3], given X = (x, y) ∈ Rn

x ×Ry we consider the cases of ω(X) =

|y|a, with a ∈ (−1, 1), and the associated degenerate-singular operator La de�ned as La =

div(|y|a∇), with div and∇ respectively the divergence and the gradient operator in Rn+1.
Now, given Σ the “characteristic manifold” associated to our weight, as the set of points where
the coe�cient either vanishes or blows up, we studied the properties of the nodal set Γ(u) of
solutions to

−Lau = 0 in B1 ⊂ Rn+1,

focusing the attention on the restriction of the nodal set Γ(u) on the characteristic manifold Σ.
Following the philosophy explained in the third paragraph of the Introduction, one motivation of
our analysis is the application of this results on a competition-di�usion system with variational
competition and degenerate-singular di�usion: one can imagine that the characteristic manifold
Σ is playing an active role in the di�usion phenomenon, indeed we expect that the di�usion
across the manifold Σ is penalized or encouraged accordingly to the value of a ∈ (−1, 1).
On the other hand, the choice to study this class of 1-dimensional homogeneous weights, allows
to extend our analysis to the cases when Σ is an n-dimensional manifold properly embedded
in Rn+1 and the weights take the form ω(X) = dist(X, Σ)a and even then to a wilder class of
monomial weights(see for example [12, 62]).

In Chapter 3 we discuss the local properties of La-harmonic functions and their nodal set near
the characteristic manifold Σ. In particular, using some Almgren and Weiss type monotonicity
formulas, we classify the possible blow-up limit and we prove the uniqueness of a nondegenerate
tangent map at every point of the nodal set.
The main feature of this class of degenerate-singular equations is that any La-harmonic function
can be decomposed with respect to the direction orthogonal to the characteristic manifold Σ, in
the sense that given u an La-harmonic function in H1,a(B1) there exist uae ∈ H1,a(B1),u2−a

e ∈
H1,2−a(B1) two unique functions symmetric with respect to Σ respectively La and L2−a har-
monic in B1 and locally smooths, such that

u(X) = uae(X) + u2−a
e (X)y |y|−a in B1.

Therefore, local properties of the solutions, as their exponent of optimal regularity, their Taylor
expansion near nodal set and the structure of the nodal set itself, are fulled comprehended by
knowing the local behaviour of their even (symmetric with respect to orthogonal direction of Σ)
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and odd (antisymmetric with respect to orthogonal direction of Σ) parts.
This speci�c “conduct” of the solutions is due to the presence of the characteristic manifold Σ,
where either the vanishing or the blowing up of the weights imposes a quantization of the possible
ways in which the nodal set can di�use across Σ.
With the previous decomposition in mind, we restrict our blow-up analysis to the symmetric case
and �nally we introduce the new notion of “tangent �eld” ΦX0 of u at a nodal point X0 ∈ Σ,
which takes care of the di�erent behaviour of both the symmetric and antisymmetric part of u.
Moreover, we introduce the regularR(u) and the singular part S(u) as

R(u) =
{
X ∈ Γ(u) : |∇xu(X)|2 +

∣∣∣∂ayu(X)
∣∣∣2 6= 0

}
, S(u) = Γ(u) \R(u)

and we developed a blow-up analysis in order to fully understand the structure in Rn+1 and its
restriction on Σ.

Since our approach seems to be quite �exible, in the last part of Chapter 3 we present an ap-
plications of our theory in the context of nonlocal elliptic equations. In particular, inspired by
[23, 27, 80], we exploit the local realisation of the fractional Laplacian, and more generally of
fractional power of divergence form operator L with Lipschitz leading coe�cient, in order to
study the structure and the regularity of the nodal set of (−L)s-harmonic functions, for s ∈ (0, 1).
Moreover, this last Section allows to extend our analysis to fractional powers (−∆M )s of the
Laplace-Beltrami operator on a Riemannian manifold M , also for the case of Lipschitz metric,
and moreover to conformal fractional Laplacian on conformally compact Einstein manifolds and
asymptotically hyperbolic manifold, thanks to the extension technique developed in [27] and the
asymptotic expansion of their geodesic boundary de�ning function.
As suggested in [86], we would like to stress that our analysis on the nodal set of s-harmonic
function allows to fully understand the limiting pro�le arising from the case of Lotka-Volterra
competition, showing a di�erent behaviour with respect to the one presented in Chapter 1.
Finally, our results show some purely nonlocal feature on the possible local expansion of s-
harmonic map near their zero set and on the structure of the nodal set itself. On one side we prove
that �rst term of the Taylor expansion of an (−L)s-harmonic function is either an homogeneous
harmonic polynomial or any possible homogeneous polynomial. In particular, we exhibit the
strati�cation of the singular set S(u), showing the existence of an unexpected stratum Ss(u)
contained in a (n− 1)-dimensional C1 manifolds, in deep contrast with the local case. In the end,
we prove what could be seen as the nonlocal counterpart of a conjecture that Lin proposed in
[66]. Following his strategy, we give an explicit estimate on the (n− 1)-Hausdor� measure of
the nodal set Γ(u) in terms of the Almgren monotonicity formula previously introduced.
This Chapter is part of a bigger project in collaboration with Yannick Sire, Susanna Terracini and
Stefano Vita.
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Notations and general results. Throughout the manuscript, we will consider X = (x, y) ∈
Rn+1, with x ∈ Rn and y ∈ R. With this notation in mind, we de�ne the subspace Rn+1

+ =

Rn+1 ∩ {y > 0} with ∂Rn+1
+ = RN × {0}. Now, given D ⊂ Rn+1

+ we write

R+
y

Rn
x

∂+B+B+

∂0B+

D+ = D ∩ {y > 0}

∂+D = ∂D ∩ {y > 0}

∂0D = ∂D ∩ {y = 0}

In the picture, we use this notation withD = Br(x0, 0) for the (n+ 1)-dimensional ball centered
in X0 = (x0, 0) ∈ Rn × {0}.
For any vector valued function u = (u1, . . . ,uh) ∈ Rh, we de�ne u2 =

∑h
i=1 u

2
i , ∇u :=

(∇u1, . . . ,∇uh) and ∂νu := (∂νu1, . . . , ∂νuh), for every ν ∈ Rn+1. In particular, through
Chapter 1 we will deeply use the notation 〈·, ·〉 for the scalar product in Rh.
Through the paper, for a ∈ (−1, 1)we will always consider the weighted Sobolev spacesH1,a(B1)

deeply studied in [44, 43, 70] as the closure of C∞(B1) with respect the norm

‖u‖2H1,a(B1)
=

ˆ
B1

|y|a u2dX +

ˆ
B1

|y|a |∇u|2 dX.

In this setting, we will always denote with La = div(|y|a∇) the divergence form operator
associated to the weight ω(y) = |y|a. More precisely, following the idea in the mentioned [23],
for every u ∈ Hs(Rn), we consider v ∈ H1,a(Rn+1

+ ) satisfyingdiv(|y|a∇v) = 0 in Rn+1
+ ,

v(x, 0) = u(x) in Rn ,

with a = 1− 2s ∈ (−1, 1). In this setting, the nonlocal operator (−∆)s translates into

(−∆)s : Hs(Rn)→ H−s(Rn), u 7−→ −C(n, s)
γ(n, s) lim

y→0+
y1−2s∂yv(x, y).

Such an extension exists unique for a suitable class of functions u, and it is given by the formula

v(x, y) = γ(n, s)
ˆ

Rn

y2su(η)

(|x− η|2 + y2)n/2+sdη where γ(n, s)−1 :=
ˆ

Rn

1
(|η|2 + 1)n/2+sdη .

In the introduction of Chapter 2 and in Chapter 3, we will give more details on this content.
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1
N O DA L S E T O F S E G R E G AT E D C R I T I C A L C O N F I G U R AT I O N S

1.1 introduction

Several physical phenomena can be described by a certain number of densities or populations
distributed in a domain and subject to laws of di�usion, reaction, and competitive interaction,
starting from biological models for competing species in population dynamics [75] to the phase-
segregation phenomenon in Bose-Einstein condensation and theoretical physics [54, 61].

In the recent years has been given much attention on the fractional Laplacians, since such
operators are of real interest both in population dynamics (see [59]) and in relativistic quantum
electrodynamics (see [64, 65]). Inspired by this physical motivations, we plan to extend the known
results on the nodal set of segregated con�guration to their nonlocal counterpart.
Hence, as pointed out in [83, 84], exploiting the local realization of the fractional Laplacian (−∆)s

as a Dirichlet-to-Neumann map (see for instance [23]), several asymptotic results can be proved
in the context of competition-di�usion problems with internal reactions, fractional di�usion and
strong variational competition.

Theorem 1.1.1 ([84]). Let β > 0, (fi,β)β be a collection of continuous functions uniformly bounded
with respect to β on bounded sets and let (uβ)β ∈ H1,a(B+

1 ; Rh) be a family of solutions uβ =

(u1,β, . . . ,uh,β) of the problems−Laui,β = 0 in B+
1

−∂ayui,β = fi,β(ui,β)− βui,β
∑
j 6=i aiju

2
j,β on ∂0B+

1 .
(3)

Let us assume that
‖uβ‖L∞(B+

1 ) ≤M

for some constantM > 0 independent on β. Then, there exists α = α(n, s) > 0, non depending on
β, such that for α ∈ (0,α∗)

‖uβ‖C0,α(B+
1/2)
≤ C,
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with C = C(M ,α). Moreover, (uβ)β is relatively compact in H1,a(B+
1/2) ∩ C

0,α(B+
1/2), for

α ∈ (0,α∗).

The above result allows to prove its natural global counterpart, either on the whole of Rn or
on domains with suitable boundary conditions.

Theorem 1.1.2 ([84]). Let β > 0, (fi,β)β be a collection of continuous functions uniformly bounded
with respect to β on bounded sets and let (uβ)β ∈ Hs(Rn; Rh) be a family of solutions uβ =

(u1,β, . . . ,uh,β) of the problems(−∆)sui,β = fi,β(ui,β)− βui,β
∑
j 6=i aiju

2
j,β in Ω

ui,β ≡ 0 in Rn \Ω,
(4)

where Ω is a bounded domain of Rn with smooth boundary. Let us assume that

‖uβ‖L∞(Ω) ≤M

for some constantM > 0 independent on β. Then, there exists α∗ = α∗(n, s) > 0, non depending
on β, such that for α ∈ (0,α∗)

‖uβ‖C0,α(Rn) ≤ C,

with C = C(M ,α).

As a byproduct of these results, can be proved that, up to subsequences, we have convergence
of the above solutions to a limiting pro�le, which components are segregated on the boundary
∂0B+

1 . Actually, if furthermore fi,β → fi, uniformly on compact sets, we can prove that this
u = (u1, . . . ,uh) limiting con�guration satis�es

−Laui = 0 in B+
1

ui
(
∂ayui + fi(ui)

)
= 0 on ∂0B+

1

ui · uj = 0 on ∂0B+
1 , for every i 6= j

.

Since in the singular limit one �nds a vector u ∈ H1,a(B+
1 ) of limiting pro�les with mutually

disjoint supports, it is a natural question to understand the regularity and the structure of the
nodal set

Γ(u) = {X ∈ ∂0B+
1 : u(X) = 0},

where all the components of u takes zero value. Hence, we focus our attention on the following
class of vector valued con�gurations with segregated supports. At this point we postpone the
discussion on the order α∗ ∈ (0, 1) of Hölder regularity of the segregated con�gurations for
several reasons that will be show later.



1.1 introduction 3

De�nition 1.1.3. Let s ∈ (0, 1), a = 1− 2s ∈ (−1, 1) and α∗ ∈ (0, 1), we de�ne the class
Gs(B+

1 ) as the set of vector valued function u = (u1, . . . ,uh) ∈ H1,a
loc (B

+
1 ; Rh) whose compo-

nents are all non negative, continuous functions such that

(1) u ∈ H1,a(K ∩B+
1 )∩C0,α(K ∩B+

1 ), for every compact setK ⊂ B and everyα ∈ (0,α∗);

(2) ui · uj |y=0≡ 0 for every i 6= j and u 6= 0 on B1 ∩Σ. Moreover, for i = 1, . . . ,h it satis�es−Laui = 0 in B+
1

ui
(
∂ayui + fi(ui)

)
= 0 on ∂0B+

1
(5)

where fi : R+ → R are nonnegative C1 functions such that fi(s) = O(s) for s→ 0;

(3) for every X0 = (x0, 0) ∈ ∂0B+
1 and r ∈ (0, dist(X0, ∂B)), the following Pohožaev type

identity holds

(1− a− n)
ˆ
B+
r (X0)

|y|a |∇u|2 dX + r

ˆ
∂B+

r (X0)
|y|a |∇u|2 dσ+

+2n
ˆ
∂0B+

r (X0)

h∑
i=1

Fi(ui)dx− 2r
ˆ
Sn−1
r (X0)

h∑
i=1

Fi(ui)dx = 2r
ˆ
∂+B+

r (X0)
|y|a (∂ru)2dσ

(6)

where F(s) = (F1(s), . . . ,Fh(s)) with Fi(s) =
´ s

0 fi(t) dt for every i = 1, . . . ,h.

First, in [83] the authors proved for the case s = 1/2, i.e. a = 0, that for solutions u ∈
G1/2(B+) the highest possible regularity correspond to the Hölder exponent α∗ = 1/2. This
result is based on a blow-up analysis based on an Almgren type monotonicity formula and an
optimal Liouville type theorem for segregated con�guration.
Instead, for the general case s ∈ (0, 1) in [84] the authors proved, with a combination of a blow-up
analysis and a Liouville type theorem based on the validity of an Alt-Ca�arelli-Friedman type
monotonicity formula, that the highest possible regularity of the limiting pro�le correspond to
the Hölder exponent α∗ = α∗(n, s) such that

α∗ =

νACFs , 0 < s ≤ 1
2 ,

min{νACFs , 2s− 1}, 1
2 < s < 1,

where νACFs corresponds to the exponent associated to the Alt-Ca�arelli-Friedman formula (see
[83, 84]). The threshold s = 1/2 is due to the presence of the phenomenon of self-segregation
of nonlocal problem where s ∈ (1/2, 1), which consists in the existence of a ball B̃+ ⊂ Rn+1

+

centered on the nodal set Γ(u) and an index i = 1, . . . ,h such that all the components uj of u
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with j 6= i are identically zero on the ball make exception of ui which is not identically zero and
such that

∂0B̃+ \ Γ(u) = {X ∈ ∂0B̃+ : ui(X) > 0}.
More precisely, following the idea of the optimal Liouville exponent in [83], in Section 1.6 we
easily improve the previous results �nding the following bound

α∗ =

s, 0 < s ≤ 1
2 ,

2s− 1, 1
2 < s < 1.

In particular, this improvement emphasizes the deep relation between the di�erent α-Hölder
regularity of the solutions near the nodal set and the structure of the nodal set itself. Inspired
by this connection, we decompose the nodal set into its “segregated” and “self-segregated” part.
Finally, under the previous notations, we have

Segregated nodal set Self-Segregated nodal set

Γ(u) = ∂0B+
1 \

h⋃
i=1

int
(
{ui > 0}

)
vs Γ(u) =

h⋃
i=1

∂{ui > 0} \ int
(
{ui > 0}

)
α - Hölder continuous, for α ∈ (0, s) α - Hölder continuous, for α ∈ (0, 2s− 1)

.

Since our main result does not concern the self-segregated portion of the nodal set, we remark
that through this Chapter we will always consider the class of segregated pro�les Gs(B+) locally
α-Hölder continuous for every α ∈ (0, s). Just in Section , we will give more details in the context
of self-segregation.
Our approach is deeply based on the validity of an Almgren’s type monotonicity formula and on
a blow-up analysis of the critical con�gurations. More precisely, for every X0 ∈ ∂0B+

1 and r > 0
such that B+

r (X0) ⊂ B+
1 , we de�ne the functionals

E(X0, u, r) = 1
rn−1+a

(ˆ
B+
r (X0)

|y|a |∇u|2 dX −
ˆ
∂0B+

r

〈u,F (x, u)〉dx
)

,

H(X0, u, r) = 1
rn+a

ˆ
∂+B+

r (X0)
|y|a u2dσ,

and, the Almgren’s monotonicity formula as

N(x0, u, r) = E(x0, u, r)
H(x0, u, r) .

Unfortunately, as we anticipate in the Introduction of the manuscript, in order to overcame some
technical problem due to problem of codimension between the free boundary Γ(u) and the space
where the degenerate-singular equation is satis�ed, we restrict our attention on the planar case
n = 2. In this case, we are able to prove
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Proposition 1.1.4. Given s ∈ (0, 1),n = 2 and u ∈ Gs(B+
1 ), then for X0 ∈ Γ(u) either

N(X0, u, 0+) = s or N(X0, u, 0+) ≥ s+ δ,

for some universal constant δ > 0. Moreover, the possible values of the Almgren frequency formula
N(X0, u, 0+) are a discrete set in [s, 2s) with 2s as point of accumulation.

This result, combined with the convergence of the blow-up sequence both with respect to the
strong topologies in H1,a

loc ,C0,α
loc and to the Hausdor� distance dH, allows to prove the main result

of this Chapter.

Theorem 1.1.5. Let s ∈ (0, 1),n = 2 and u ∈ Gs(B+). Then the nodal set Γ(u) splits into its
regular and singular part de�ned by

R(u) =
{
X0 ∈ Γ(u) : N(X0, u, 0+) = s

}
,

S(u) =
{
X0 ∈ Γ(u) : N(X0, u, 0+) > s

}
,

where S(u) is a locally �nite collection of points and R(u) a set relatively open in Γ(u) which
satis�es a vanishing Reifenberg �atness condition.

This Chapter is organized as follows. In Section 1.2 we prove that elements in Gs(B+)

satisfy an Almgren’s type monotonicity formula; by exploiting this fact, in Section 1.3 we prove
convergence of blow-up sequences as well as some closure properties of the class Gs(B+). In
Section 1.4 we use the Federer’s Reduction Principle in order to prove some Hausdor� estimates
for the nodal sets and we introduce the notion of regular and singular set. Moreover, in Section
1.5 we prove that the regular part of the nodal set satis�es a vanishing Reifenberg condition.
Finally in Section 1.6 we present some useful remark and the relation between the class Gs(B+

1 )

and the singular limit of competition-di�usion problem with fractional di�usion and variational
competition.
Through this Chapter we will substitute the assumption on the dimension n = 2 only in the
“clean-up” type result, in order to stress which results hold for every dimensions.

1.2 almgren’s type monotonicity formula

The functions belonging to Gs(B+
1 ) have a very rich structure, mainly thanks to the valid-

ity of the Pohožaev identities we are able to prove the validity of the Almgren’s monotonicity
formula. The most challenging feature of this Section is that the segregation occurs only in the
n-dimensional space, which it implies that, when dealing with Pohožaev type identities, integrals
on the “boundary of the boundary” appear.

Let us recall the de�nition of the class Gs(B+
1 ) that we will use through the paper.
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De�nition 1.2.1. Let a ∈ (−1, 1), we de�ne the class Gs(B+
1 ) as the set of vector valued

function u = (u1, . . . ,uh) ∈ H1,a
loc (B

+
1 ; Rh) whose components are all non negative, continuous

functions such that

(1) u ∈ H1,a(K ∩B+
1 )∩C0,α(K ∩B+

1 ), for every compact set K ⊂ B and every α ∈ (0, s);

(2) ui · uj |y=0≡ 0 for every i 6= j, u 6= 0 on Σ and for every i = 1, . . . ,h it satis�es−Laui = 0 in B+
1

ui
(
∂ayui + fi(ui)

)
= 0 on ∂0B+

1
(7)

where fi : R+ → R are nonnegative C1 functions such that fi(s) = O(s) for s→ 0;

(3) for every X0 = (x0, 0) ∈ ∂0B+
1 and r ∈ (0, dist(X0, ∂B)), the following Pohožaev type

identity holds

(1− a− n)
ˆ
B+
r (X0)

|y|a |∇u|2 dX + r

ˆ
∂B+

r (X0)
|y|a |∇u|2 dσ+

+2n
ˆ
∂0B+

r (X0)

h∑
i=1

Fi(ui)dx− 2r
ˆ
Sn−1
r (X0)

h∑
i=1

Fi(ui)dx = 2r
ˆ
∂+B+

r (X0)
|y|a (∂ru)2dσ

(8)

where F(s) = (F1(s), . . . ,Fh(s)) with Fi(s) =
´ s

0 fi(t) dt for every i = 1, . . . ,h.

Now, for every X0 ∈ ∂0B+
1 and r > 0 such that B+

r (X0) ⊂ B+
1 , we de�ne the functionals

E(X0, u, r) = 1
rn−1+a

(ˆ
B+
r (X0)

|y|a |∇u|2 dX −
ˆ
∂0B+

r

〈u,F (x, u)〉dx
)

H(X0, u, r) = 1
rn+a

ˆ
∂+B+

r (X0)
|y|a u2dσ

and, whenever the average H(x0, u, r) 6= 0, the Almgren’s frequency formula by

N(x0, u, r) = E(x0, u, r)
H(x0, u, r) .

Since u ∈ H1,a(B1; Rh) both r 7→ E(X0, u, r) and r 7→ H(X0, u, r) are locally absolutely
continuous functions for r ∈ (0, dist(X0, ∂B+

1 )). As usual, integrating by parts on B+
r (X0)

every component ui and summing over i = 1, . . . ,h we get

E(X0, u, r) = 1
rn−1+a

ˆ
∂+B+

r

|y|a 〈u, ∂ru〉dσ =
r

2
d

dr
H(X0, u, r). (9)
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The presence of internal reaction terms in the de�nition of the energy E(X0, u, r) has to be dealt
with. For this reason, we introduce the following lemmata to provide a crucial estimate in order
to bound the Almgren quotient.
Let a ∈ (−1, 1) and u ∈ H1,a(B+

r (X0)) for some X0 ∈ ∂0B+
1 and r ∈ (0, dist(X0, ∂B+

1 )).
Then, for every p ∈ [2, p#], where p# = 2n/(n− 2s) there exists a constant C(n, p, s) such
that[

1
rn

ˆ
∂0B+

r (X0)
|u|p dx

] 2
p

≤ C(n, p, s)
[

1
rn−1+a

ˆ
B+
r (X0)

|y|a |∇u|2 dX +
1

rn+a

ˆ
∂+B+

r (X0)
|y|a u2dX

]
(10)

This result is a direct consequence of the characterization of the class of trace of H1,a(B+
1 )

in [70] and the critical Sobolev exponent for the trace embedding in the context of fractional
Sobolev-Slobodeckij spaces W s,2(K), with s ∈ (0, 1) and K ⊂ Rn.

Lemma 1.2.2. Let s ∈ (0, 1) and u ∈ Gs(B+
1 ). Then, for every p ∈ [2, p#] andX0 ∈ ∂0B+

1 there
exist constants C > 0, r > 0 such that[

1
rn

ˆ
∂0B+

r (X0)
|u|p dx

] 2
p

≤ C (E(X0, u, r) +H(X0, u, r)) ,

for every r ∈ (0, r).

Proof. Since u ∈ L∞(B+
1 ), and each components of F = (f1, . . . , fh) is locally Lipschitz

continuous with fi(0) = 0, we obtain∣∣∣∣∣ 1
rn−1+a

ˆ
∂0B+

r

〈u, F(u)〉dx
∣∣∣∣∣ ≤ C

rn−1+a

ˆ
∂0B+

r

u2dx

≤ C2r
1−a

[
1

rn−1+a

ˆ
B+
r (X0)

|y|a |∇u|2 dX +
1

rn+a

ˆ
∂+B+

r (X0)
|y|a u2dX

]
,

where we used the trace inequality in the case p = 2. Finally, since a ∈ (−1, 1) we get

E(X0, u, r)+H(X0, u, r) ≥ (1−C2r
1−a)

[
1

rn−1+a

ˆ
B+
r (X0)

|y|a |∇u|2 dX +
1

rn+a

ˆ
∂+B+

r (X0)
|y|a u2dX

]
,

(11)
the result follows by taking into account the trace inequality and choosing r > 0 su�ciently
small.

Following the same idea in [83] for the case s = 1/2, let introduce for p ∈ (2, p#] the
auxiliary function

ψ(X0, u, r) =
(

1
rn

ˆ
∂0B+

r (X0)
|u|2 dX

)1− 2
p
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which is bounded for r ∈ (0, dist(X0, ∂B+
1 )). Under this notations, for a ∈ (−1, 1) consider

Ψ(X0, u, r) = C(n, s)
ˆ r

0
t−a

(
1 + d

dt
(tψ(X0, u, t)

)
dt,

which is well de�ned on r ∈ (0, dist(X0, ∂B+
1 )) such that limr→0+ Ψ(X0, u, r) = 0, since

ψ(X0, u, r) is bounded for r su�ciently small. In order to simplify the notations, through the
Section we will just use the notation ψ(r) and Ψ(r) for the auxiliary functions previously de�ned.

Lemma 1.2.3. Let s ∈ (0, 1) and u ∈ Gs(B+
1 ). Then, for every p ∈ (2, p#] andX0 ∈ ∂0B+

1 there
exist constants C > 0, r > 0 such that

1
rn−1

ˆ
Sn−1
r

|u|p dσ ≤ C (E(X0, u, r) +H(X0, u, r)) d
dr

(rψ(r)) ,

for every r ∈ (0, r).

Proof. The proof follows it is the same of [83, Lemma 9.5] make exception in our case is based on
the generalized Poincarè inequality (10). Hence, a direct computation yields the identity

d

dr
(rψ(r)) = ψ(r)

r
(

1− 2
p

) ˆ
Sn−1
r

|u|p dσ
ˆ
∂0B+

r

|u|p dσ
+

(
1− n

(
1− 2

p

)) ,

and, since p ≤ p# implies n(1− 2/p) ≤ 1, we infer

d

dr
(rψ(r)) ≥ rψ(r)

(
1− 2

p

) ˆ
Sn−1
r

|u|p dσ
ˆ
∂0B+

r

|u|p dσ
.

Finally, recalling the de�nition of ψ and using Lemma 1.2.2, we deduce

(E(X0, u, r) +H(X0, u, r)) d
dr

(rψ(r)) ≥ C
1

rn−1

ˆ
Sn−1
r

|u|p dσ.

We are now ready to prove the boundedness of the Almgren quotient, rather than its mono-
tonicity, considering a modi�ed version of the quotient.
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Proposition 1.2.4. Given s ∈ (0, 1),u ∈ Gs(B+
1 ) and Ω+ ⊂⊂ B+

1 , there exist constantsC, r > 0
such that, for every X0 ∈ ∂0Ω+ ⊂ ∂0B+

1 and r ∈ (0, r) such that B+
r (X0) ⊂ B+

1 , we have that
H(X0,u, r) > 0 and N(X0,u, r) > 0 for every r ∈ (0, r). Moreover, the map

r 7→ eCΨ(X0,u,r) (N(X0, u, r) + 1)

is monotone non decreasing on (0, r), which ensures the existence of limit

N(X0, u, 0+) = lim
r→0+

N(X0, u, r),

which is �nite and called the Almgren frequency of u at X0.

Proof. Let X0 ∈ Γ(u) and r > 0 be such that r < dist(Ω+,B+
1 ) and Lemma 1.2.2 and Lemma

1.2.3 hold true. First, let us consider the following modi�ed Almgren frequency formula

Ñ(X0, u, r) = E(X0, u, r)
H(X0, u, r) + 1 = N(X0, u, r) + 1. (12)

Under this notations, we get by Lemma 1.2.2

E(X0, u, r) +H(X0, u, r) ≥ 0 −→ Ñ(X0, u, r) = E(X0, u, r)
H(X0, u, r) + 1 ≥ 0,

whenever H(X0, u, r) 6= 0. By continuity of r 7→ H(X0, u, r) we can consider a reasonable
neighborhood of r where it does not vanish. Since u ∈ L∞(B+

1 ), and each components of
F = (f1, . . . , fh) is locally Lipschitz continuous with fi(0) = 0, there exists a positive constant
C > 0 such that

|〈u, F(x, u)〉| ≤ Cu2 and |F(x, u)| ≤ Cu2,

for every i = 1, . . . ,h. Now, taking into account the Pohožaev identity (8), if we di�erentiate the
map r 7→ E(X0, u, r) we obtain

d

dr
E(X0, u, r) =− n− 1 + a

rn+a

(ˆ
B+
r

|y|a |∇u|2 dX −
ˆ
∂0B+

r

〈u, F(u)〉dx
)
+

+
1

rn−1+a

ˆ
∂+B+

r

|y|a |∇u|2 dσ− 1
rn−1+a

ˆ
SN−1
r

〈u, F(u)〉dσ

=
2

rn−1+a

ˆ
∂+B+

r

|y|a |∂ru|2 dσ+R(x0, u, r),
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where the remainder can be estimated as

|R(X0, u, r)| ≤ n− 1 + a

rn+a

ˆ
∂0B+

r (X0)
|〈u, F(u)〉|dx+ 2n

rn+a

ˆ
∂0B+

r (X0)

h∑
i=1
|Fi(ui)|dx+

+
2

rn+a−1

ˆ
Sn−1
r (X0)

h∑
i=1
|Fi(ui)|dx+

1
rn+a−1

ˆ
Sn−1
r (X0)

|〈u, F(u)〉|dσ

≤C(n, s)
[

1
rn+a

ˆ
∂0B+

r (X0)
u2dx+ 1

rn+a−1

ˆ
Sn−1
r (X0)

u2dσ
]

≤C(n, s)r−a (E(X0, u, r) +H(X0, u, r))
(

1 + d

dr
(rψ(r))

)
where in the third inequality we used Lemma 1.2.2 and Lemma 1.2.3. Therefore, di�erentiating
the Almgren quotient and using the Cauchy-Schwarz inequality on ∂+B+

r , we obtain

d

dr
Ñ(X0, u, r) =

d

dr
E(X0, u, r) + d

dr
H(X0, u, r)

E(X0, u, r) +H(X0, u, r) −

d

dr
H(X0, u, r)

H(X0, u, r)

≥ 2H(X0, u, r)
r2n+2a−1

ˆ
∂+B+

r

|y|a |∂ru|2 dσ
ˆ
∂+B+

r

|y|a u2dσ−
(ˆ

∂+B+
r

|y|a 〈u, ∂ru〉dσ
)2
+

−C(n, s)Ñ(X0, u, r)r−a
(

1 + d

dr
(rψ(r))

)
≥ −C(n, s)Ñ(X0, u, r)r−a

(
1 + d

dr
(rψ(r))

)
.

which implies that the function

r 7→ eCΨ(X0,u,r)Ñ(X0, u, r)

is nondecreasing as far as H(X0, u, r) 6= 0. Passing to the logarithmic derivative of r 7→
H(X0, u, r) we infer from (9) that for r ∈ (r1, r2) we get

d

dr
logH(X0, u, r) = 2

r
N(X0, u, r). (13)

More precisely, we can choose r1 = 0, r2 = +∞. On one hand, the above equation provides
that, if logH(X0, u,R) > −∞ then logH(X0, u, r) > −∞ for every r > R, so that r2 =

dist(X0, ∂B+
1 ). Now, on the other hand assume by contradiction that

r1 = inf {r : H(X0, u, r) > 0 on (r, r2)} > 0.
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By the monotonicity result on the modi�ed Almgren quotient (12), we have that

N(X0, u, r) < eCΨ(2r1) (N(X0, u, 2r1) + 1)− 1,

for every r1 < r ≤ 2r1. Hence, integrating (13) between r and 2r1, we get

H(X0, u, 2r1)

H(X0, u, r) ≤
(2r1
r

)2(eCΨ(2r1)(N(X0,u,2r1)+1)−1)

and, since r 7→ H(X0, u, r) is continuous we deduce the absurd H(X0, u, r1) > 0.

The �rst Corollary of the Almgren monotonicty result is the following lower bound for the
Almgren frequency formula of u ∈ Gs(B+

1 ) at X0 ∈ Γ(u).

Corollary 1.2.5. Given s ∈ (0, 1) and u ∈ Gs(B+
1 ), for any X0 ∈ Γ(u) we have

N(X0, u, 0+) ≥ s.

Proof. Let r > 0 be such that Proposition 1.2.4 holds true and suppose by contradiction the
existence of 0 < r̃ < r and ε > 0 such that

eCΨ(r̃) (N(X0, u, r̃) + 1) ≤ 1 + s− ε.

By the above bound, we obtain for every r ∈ (0, r̃) that

d

dr
logH(X0, u, r) ≤ 2 e

CΨ(r̃) (N(X0, u, r̃) + 1)− 1
r

≤ 2(s− ε)
r

.

Integrating this inequality between r and r̃ yields

H(X0, u, r̃)
H(X0, u, r) ≤

(
r̃

r

)2(s−ε)

which, together with the fact that u ∈ C0,α
loc (B

+
1 ) for every α ∈ (0, s) and that u(X0) = 0,

implies
Cr2(s−ε) ≤ H(X0, u, r) ≤ Cr2α,

for every α ∈ (0, s). Hence, the contradiction follows for r su�ciently small.

Corollary 1.2.6. For every s ∈ (0, 1) and u ∈ Gs(B+
1 ) the map from X0 7→ N(X0, u, 0+) is

upper semi-continuous on ∂0B+
1 .
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Proof. Fixed a vector valued function u ∈ Gs(B+
1 ), let us take a sequence Xk → X in ∂0B+

1 . By
Proposition 1.2.4 there exists a constant C > 0 and r > 0 such that, for r ∈ (0, r)

N(Xk, u, r) = e−CΨ(r)eCΨ(r) (N(Xk, u, r) + 1)− 1 ≥ e−CΨ(r) (N(Xk, u, 0+) + 1
)
− 1.

By taking the limit superior in k and afterwards the limit as r → 0+ we obtain

N(X, u, 0+) ≥ lim sup
k→∞

N(Xk, u, 0+).

Another simple consequence of the monotonicity result is the following comparison property
which, with r2 = 2r1 is the so called doubling property.

Proposition 1.2.7. Given s ∈ (0, 1), u ∈ Gs(B+
1 ) and Ω+ ⊂⊂ B+

1 , there exists C > 0 and
r > 0 such that

H(X0, u, r2) ≤ H(X0, u, r1)

(
r2
r1

)2C

for every X0 ∈ ∂0Ω+ and 0 < r1 < r2 ≤ r.

Proof. Fixed u ∈ Gs(B+
1 ) and Ω+ ⊂⊂ B+

1 , let C > 0 and r > 0 be such that Proposition 1.2.4
holds true for every X0 ∈ ∂0Ω+. Hence, given

C = sup
X0∈∂0Ω+

N(X0, u, r) < +∞, (14)

we get

d

dr
logH(X0, u, r) =2

r
N(X0, u, r)

≤2
r

(
e−CΨ(r)eCΨ(r) (N(X0, u, r) + 1)− 1

)
≤2
r

(
(C + 1)e−CΨ(r) − 1

)
,

for every 0 < r < r. Now, by integrating the previous inequality between r1 and r2, for
0 < r1 < r2 ≤ r, we obtain

H(X0, u, r2)

H(X0, u, r1)
≤
(
r2
r1

)2C
,

as we previously claimed.
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1.3 compactness of the blow-up sequences

All techniques presented in this Chapter involve a local analysis of the nodal set of the solution,
which will be performed via a blow-up and blow-down procedure. In this Section we study the
behaviour of the class Gs(B+

1 ) under rescaling and translations with respect to point on Σ, in
order to apply the blow-up analysis of u ∈ Gs(B+

1 ) near the nodal set Γ(u).

Given u ∈ Gs(B+
1 ) let F = (F1, . . . ,Fh) be the vector valued associated to De�nition 1.2.1. For

every ρ, t > 0 and X0 = (x0, 0) ∈ ∂0B+
1 we de�ne the rescaled function

v(X) =
u(X0 + tX)

ρ
, for X ∈ B+

X0,t :=
B+

1 −X0
t

, (15)

where obviously the previous equality holds for every component of the vector valued function.
It is easy to check that each components of v solves the system−Lavi = 0 in B+

X0,t

vi
(
∂ayvi + gi(vi)

)
= 0 on ∂0B+

X0,t
(16)

where
gi(s) =

t1−a

ρ
fi(ρs). (17)

In this setting, if we de�ne for any Z0 ∈ B+
X0,t and r ∈ (0, dist(Z0, ∂B+

X0,t))

E(Z0, v, r) = 1
rn−1+a

( ˆ
B+
r (X0)

|y|a |∇v|2 dX −
ˆ
∂0B+

r

〈v, G(v)〉dx
)

H(Z0, v, r) = 1
rn+a

ˆ
∂+B+

r (X0)
|y|a v2dσ

and the following identities hold

E(Z0, v, r) = 1
ρ2E(X0 + tZ0, u, tr) and H(Z0, v, r) = 1

ρ2H(X0 + tZ0, u, tr) (18)

and hence N(Z0, v, r) = N(X0 + tZ0, u, tr).

Proposition 1.3.1. Let s ∈ (0, 1) and u ∈ Gs(B+
1 ) be �xed. Then, for every ρ, t > 0 and

X0 ∈ ∂0B+
1 , given v as in (1.3.1) we have v ∈ Gs(B+

x0,t).

Proof. Fixed u ∈ Gs(B+
1 ), by the previous remarks, the last thing left to prove is the validity

of the Pohožaev identity (8) for v, in every ball Br(Z0) ⊂ B+
X0,t, with Z0 ∈ ∂0B+

X0,t and
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r ∈ (0, dist(Z0, ∂B+
X0,t)). We check itby using (18) and by performing the change of variables

(x, y) = (x0 + tz, tw) in the expression of the derivative of the energy r 7→ E(Z0, v, r).
More precisely, from (17) let us de�ne G = (G1, . . . ,Gh) where

Gi(s) =

ˆ s

0
gi(τ )dτ =

t1−a

ρ2

ˆ ρs

0
fi(τ )dτ =

t1−a

ρ2 Fi(ρs),

then
d

dr
E(Z0, v, r)= d

dr

1
ρ2E(X0 + tZ0, v, tr) = t

ρ2
dE

dr
(X0 + tZ0, u, tr)

=
2t

ρ2(tr)n−1+a

ˆ
∂+B+

tr(X0+tZ0)
|y|a |∂ru|2 dσ+

t

ρ2R(X0 + tZ0, u, tr)

=
2

rn−1+a

ˆ
∂+B+

r (Z0)
|y|a |∂rv|2 dσ+R(Z0, v, r),

where

t

ρ2R(X0 + tZ0, u, tr) = t

ρ2(tr)n+a

ˆ
∂0B+

tr(X0+tZ0)
(n+ a− 1)〈u, F(u)〉 − 2n

h∑
i=1

Fi(ui)dx+

+
t

ρ2(tr)n+a−1

ˆ
Sn−1
tr (X0+tZ0)

2
h∑
i=1

Fi(ui)− 〈u, F(u)〉dx

=
1

rn+a

ˆ
∂0B+

r (Z0)
(n+ a− 1)〈u, G(v)〉 − 2n

h∑
i=1

Gi(vi)dx+

+
1

rn+a−1

ˆ
Sn−1
r (Z0)

2
h∑
i=1

Gi(vi)− 〈v, G(v)〉dx

=R(Z0, v, r).

Now, we turn our attention to the convergence of the blow-up sequences, using the previous
results about the rescaled functions. Given Ω+ ⊂⊂ B+

1 compactly supported inB+
1 and (Xk)k ∈

Ω+and rk ↘ 0, let us consider the following normalized blow-up sequence

uk(X) =
u(Xk + rkX)

ρk
for X ∈ B+

Xk,rk (19)

with

ρ2
k = ‖u(Xk + rk·)‖2L2,a(∂+B+

1 ) =
1

rn+ak

ˆ
∂+B+

rk
(Xk)
|y|a u2 dσ = H(Xk, u, rk).
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Hence we have that ‖uk‖L2,a(∂+B+
1 ) = 1 and, by Proposition 1.3.1, uk ∈ Gs(B+

Xk,rk) since every
component solves −Laui,k = 0 in B+

Xk,rk
ui,k

(
∂ayui,k + fi,k(ui,k)

)
= 0 on ∂0B+

Xk,rk
(20)

where

fi,k(s) =
t1−ak

ρk
fi(ρks). (21)

In order to simplify some notations, we introduce the following class of functions which corre-
sponds to the one introduced in [83, 84] in the context of entire segregated pro�les.

De�nition 1.3.2. For every s ∈ (0, 1) we de�ne with Gsloc(R
n+1) the collection of u ∈

H1,a
loc (R

n+1; Rh) with u = (u1, . . . ,uh) continuous, and such that

• ui · uj |y=0≡ 0 for every i 6= j and u 6≡ 0 on Σ. Moreover, for every i = 1, . . . ,h it satis�es−Laui = 0 in Rn+1
+

ui∂
a
yui = 0 on Σ;

(22)

• for every X0 = (x0, 0) ∈ Σ and r > 0, the following Pohožaev type identity holds

1− a− n
r

ˆ
B+
r (X0)

|y|a |∇u|2 dX+

ˆ
∂B+

r (X0)
|y|a |∇u|2 dσ = 2

ˆ
∂+B+

r (X0)
|y|a (∂ru)2dσ.

(23)

In the remaining part of the Section we will prove the following convergence result for blow-up
sequences, and present some of its main consequences. First, roughly speaking, we observe that
(B+

1 −Xk)/rk approaches the whole Rn+1 as k → +∞ since the distance dist(Xk, ∂B+
1 ) ≥

dist(Ω+, ∂B+
1 ) > 0 for every k.

Theorem 1.3.3. Given s ∈ (0, 1) and u ∈ Gs(B+
1 ), let us consider a sequence (Xk)k ⊂ ∂0B+

1
and (uk)k the associated blow-up sequence de�ned in (19). Thus, there exists a vector valued function
u ∈ Gsloc(R

n+1) such that, up to a subsequence, uk → u in C0,α
loc (R

N ) for every α ∈ (0, s) and
strongly in H1,a

loc (R
n+1). In particular, the blow-up limit u = (u1, . . . ,uh) satis�es−Laui = 0 in Rn+1

+

−ui∂ayui = 0 on Σ
in D′(Rn+1), (24)

for every i = 1, . . . ,h.
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The proof will be presented in a series of lemmata, since some results follow directly from the
ideas and techniques presented in [83, 84].

Lemma 1.3.4. Let s ∈ (0, 1), u ∈ Gs(B+
1 ) and Ω+ ⊂⊂ B+

1 compactly supported in B+
1 . Then,

there exist C̃ > 0 and r̃ > 0 such that for every X ∈ ∂0Ω+ and 0 < r ≤ r̃ we have

1
rn−1+a

ˆ
B+
r (X0)

|y|a |∇u|2 dX+
1

rn+a

ˆ
∂+B+

r (X0)
|y|a u2dX ≤ C (E(X0, u, r) +H(X0, u, r)) .

The proof of the previous result is a direct consequence of (11) in the proof of Lemma 1.2.2.

Lemma 1.3.5. Under the previous notations, for any given R > 0 we have

‖uk‖H1,a(B+
R)
≤ C and ‖uk‖L∞(B+

R)
≤ C,

where C > 0 is a constant independent on k > 0.

Proof. Let s ∈ (0, 1) and u ∈ Gs(B+
1 ) be such that u = (u1, . . . ,uh), with ui ∈ H1,a

loc (B+). First,
in order to prove the uniform bound with respect to the H1,a-norm, by the Poincarè inequality
(10) we consider the weighted Sobolev space H1,a(B+

R ) endowed with the norm

‖v‖2H1,a(B+
R)

:=
1

rn−1+a

ˆ
B+
R

|y|a |∇v|2 dX +
1

rn+a

ˆ
∂+B+

R

|y|a v2dσ.

By de�nition of the blow-up sequence (uk)k, given C > 0 and r > 0 be constants such that
Proposition 1.2.4, Proposition 1.2.7 and Lemma 1.3.4 hold true. Then, up to taking k so large that
rk, rkR ≤ r, we get

ˆ
∂+B+

R

|y|a u2
kdσ =

1
ρ2
k

ˆ
∂+B+

R

|y|a u2(Xk + rkX)dσ

=
1

ρ2
kr
n+a
k

ˆ
∂+B+

Rrk
(Xk)
|y|a u2dσ

= Rn+a
H(Xk, u,Rrk)
H(Xk, u, rk)

≤ Rn+a
(
Rrk
rk

)2C
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where C > 0 is de�ned in (14). Since we proved ‖uk‖2L2,a(∂+B+
R)
≤ C(R)Rn+a, passing to the

second term we conclude
ˆ
BR

|y|a |∇uk|2 dσ = N(0, uk,R)
1
R

ˆ
∂BR

|y|a u2
kdσ

≤ C(R)Rn−1+aN(Xk, u,Rrk)

≤ C(R)Rn−1+aeCΨ(r) (N(Xk, u, r) + 1)
≤ C(R)Rn−1+a

where in the second inequality we used the monotonicity result of Proposition 1.2.4. Since by (14)
we obtain ‖∇uk‖2L2,a(B+

R)
≤ C(R)Rn+a−1, it remains to prove the uniform bound with respect

to the L∞(B+
R )-norm.

FixedR > 0, let vk ∈ H1,a(B+
R ) be the symmetric extension of uk with respect to Σ to the whole

B1. Since −∂ayuk ≤ 0 on ∂0B+
1 , the map vk is La-subharmonic, i.e. −Lavk ≤ 0, by [88, Lemma

A.2] we get

sup
B+
R/2

uk = sup
BR/2

vk ≤ C(n, s)
(

1
Rn+1+a

ˆ
BR

|y|a v2
kdX

)1/2

= 2C(n, s)
(

1
Rn+1+a

ˆ
B+
R

|y|a u2
kdX

)1/2

≤ 2C(n, s)
(
H(0, uk,R)
n+ a+ 1

)1/2
,

where in the third inequality we used the monotonicity of r 7→ H(0, uk, r) in (0,R). Finally, the
estimate follows directly from the one the L2,a(∂+B+

R )-norm.

So far we have proved the existence of a nontrivial function u ∈ H1,a
loc (R

N+1
+ ; Rh) ∩

L∞loc(R
n+1
+ ) such that, up to a subsequence, we have ui,k ⇀ ui weakly in H1,a

loc (R
n+1
+ ), for

every i = 1, . . . ,h.
Moreover, since by De�nition 1.2.1 and (21) there exists M > 0 such that, for every i = 1, . . . ,h
and k > 0

‖fi,k(ui,k))‖L∞(∂0B+
R)
≤Mr1−a

k ‖ui,k‖L∞(∂0B+
R)
→ 0, (25)

since a ∈ (−1, 1) and rk → 0+. Hence we deduce−Laui = 0 in Rn+1
+

ui∂
a
yui = 0 on Σ

in D′(Rn+1), (26)
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for every i = 1, . . . ,h. The next step is to prove that the convergence of uk → u is indeed strong
in H1,a

loc (R
n+1
+ ) and C0,α

loc (R
n+1
+ ) for α ∈ (0, s).

Lemma 1.3.6. Let s ∈ (0, 1) and u ∈ Gs(B+
1 ) be �xed. Given (uk)k a blow-up sequences of the

form (19), then for every R > 0, up to a subsequence, uk → u strongly in H1,a(B+
R ).

Proof. We already know, by compactness, the existence of a blow-up limit u ∈ H1,a
loc (R

n),
which solves (26) in D′(Rn+1

+ ). To prove the strong convergence in H1,a
loc (R

n+1
+ ) let us consider

ϕ ∈ C∞c (B2R) a cut-o� function such that 0 ≤ ϕ ≤ 1, ϕ ≡ 1 in BR. First, since it holds

−La (ui,k − ui) = 0 in D′(B+
2R),

testing it with (ui,k − ui)ϕ and integrating by parts, we getˆ
B+

2R

|y|a ϕ |∇(ui,k − ui)|2 dX +

ˆ
B+

2R

|y|a (ui,k − ui)〈∇(ui,k − ui),∇ϕ〉dX =

=−
ˆ
∂0B+

2R

ϕ (ui,k − uk) ∂ay (ui,k − uk) dx.
(27)

Now, we can conclude just by observing that∣∣∣∣∣
ˆ
B+

2R

|y|a (ui,k − ui)〈∇(ui,k − ui),∇ϕ〉dX
∣∣∣∣∣ ≤C ‖ui,k − ui‖L∞(B+

2R)
‖∇ui,k‖L2,a(B+

2R)
→ 0,∣∣∣∣∣

ˆ
∂0B+

2R

ϕ (ui,k − uk) ∂ay (ui,k − uk) dx
∣∣∣∣∣ ≤ ‖ui,k − ui‖L∞(B+

2R)

ˆ
∂0B+

2R

ϕ∂ayui,kdx +

+ ‖ui,k − ui‖L∞(B+
2R)

ˆ
∂0B+

2R

ϕ∂ayuidx

+C(R) ‖ui,k − ui‖L∞(B+
2R)
→ 0,

where in the right hand side of (27) we used [88, Lemma A.2], since−∂ayui,k ≤ 0 and−∂ayui,k ≤ 0
on Σ.

Similarly, given vk ∈ H1,a
loc (R

n+1) and v ∈ H1,a
loc (R

n+1) respectively the symmetric exten-
sions of uk and u through Σ, one could relate the system (26) to a system of degenerate elliptic
equation with a boundary measure data on Σ. More precisely, for every k > 0 there exists a
collection of non negative Radon measures µi,k ∈M(B+

1 ) for i = 1, . . . ,h, each one supported
on ∂0B+

1 , such that
−Lavi,k = −µi,k in D′

(
B+
Xk,rk

)
,

for every i = 1, . . . ,h. Then, following the strategy in [81, Lemma 3.7] and [81, Lemma 3.11], one
could obtain the same strong convergence in H1,a

loc (R
n+1) by using the uniform L∞ and H1,a

estimates in B+
R , for every R > 0.
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Lemma 1.3.7. Under the previous notations, for every R > 0 there exists C > 0, independent of k,
such that

[uk]C0,α(BR)
= sup

X1,X2∈BR

|u(X1)− u(X2)|
|X1 −X2|α

≤ C

for every α ∈ (0,α∗).

Proof. The proof follows essentially the ideas of the similar results in [83, 84]. Without loss of
generality, let R = 1 and suppose by contradiction that up to a subsequence

Lk = max
i=1,...,h

sup
X1,X2∈B+

1

|η(X1)ui,k(X1)− η(X2)ui,k(X2)|
|X1 −X2|α

→∞

where η ∈ C∞c (B1) is a smooth function such that
η(X) = 1, 0 ≤ |X| ≤ 1/2
0 < η(X) ≤ 1, 1/2 ≤ |X| ≤ 1
η(X) = 0, |X| = 1.

Since we may assume that Lk is achieved by the �rst component of uk and a sequence of points
(X1,k,X2,k) ∈ B+

1 ×B+
1 , given rk = |X1,k −X2,k| we can prove, as k →∞, that

• rk → 0

• dist(X1,k, ∂+B+
1 )

rk
→∞, dist(X2,k, ∂+B+

1 )
rk

→∞.

Before to continue, let us �x the notations X1,k = (x1,k, y1,k) and X2,k = (x2,k, y2,k). Now,
since by Lemma 1.3.5 the norm ‖uk‖L∞(B+

1 ) is uniformly bounded, we have

Lk ≤
‖uk‖L∞(B+

1 )

rαk
(η(X1,k)− η(X2,k)) , (28)

which immediately implies that rk → 0. Now, since η is compactly supported in B1 and it
vanishes on ∂+B+

1 , for every X ∈ B+
1 we have

η(X) ≤ dist(X, ∂+B+
1 )Lip(η),

where obviously Lip(η) denotes the Lipschitz constant of η. Finally, the inequality (28) becomes

dist(X1,k, ∂+B+
1 )

rk
+

dist(X2,k, ∂+B+
1 )

rk
≥

Lkr
α−1
k

Lip(η) ‖uk‖L∞(B+
1 )

→∞
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and the result follows by recalling that α < 1. As in [83, 84], our proof is based on two di�erent
blow-up sequences, indeed for every i = 1, . . . ,h we introduce the auxiliary sequences

wi,k(X) = η(Pk)
ui,k(Pk + rkX)

Lkr
α
k

and wi,k(X) =
(ηui,k)(Pk + rkX)

Lkr
α
k

for X ∈ B+
Pk,rk and Pk = (px,k, py,k) a suitable sequence of points that will be choose later. On

one hand the sequence (wk)k has an uniform bound on the α - Hölder seminorm, i.e.

sup
X1 6=X2∈B+

Pk,rk

|wi,k(X1)−wi,k(X2)|
|X1 −X2|α

≤
∣∣∣∣w1,k

(
X1 − Pk

rk

)
−w1,k

(
X2 − Pk

rk

)∣∣∣∣ = 1,

while on the other hand (wk)k ∈ Gs(B+
Pk,rk), where each components satisfy−L

k
awi,k = 0 in B+

Pk,rk
wi,k

(
∂a,k
y wi,k + gi,k(wi,k)

)
= 0 on ∂0B+

Pk,rk
(29)

with the new operators

Lka = div
((

y+
py,k
rk

)a
∇
)

, ∂a,k
y = lim

y→−
py,k
rk

(
y+

py,k
rk

)a
∂y,

and

gi,k(t) = η(Pk)
r2s−α
k

Lk
fi,k

(
Lkr

α
k

η(Pk)
t

)
.

By Lemma 1.3.5 and (25) , we infer

sup
∂0B+

Pk,rk

|gi,k(wi,k)| = η(Pk)
r2s−α
k

Lk
sup
∂0B+

1

|fi,k(ui,k)| → 0+

as k → +∞.
The importance of these two sequences lies in the fact that they have asymptotically equivalent
behaviour. Namely, since

|wi,k(X)−wi,k(X)| ≤
‖uk‖L∞(B1)

rαkLk
|η(Pk + rkX)− η(Pk)|

≤
Lip(η)r1−α

k

Lk
‖uk‖L∞(B1)

|X|
(30)
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we get, for any compact K ⊂ Rn+1, that

max
X∈K∩B+

Pk,rk

|wk(X)−wk(X)| −→ 0. (31)

Moreover, since wk(0) = wk(0) we note by (30) that

|wi,k(X)−wi,k(0)| ≤ |wi,k(X)−wi,k(X)|+ |wi,k(X)−wi,k(0)|

≤ C
(
r1−α
k

Lk
|X|+ |X|α

)
and consequently, there exists C = C(K) such that |wk(X)−wk(0)| ≤ C , for every X ∈ K .
Let us prove that it is not restrictive to choose Pk ∈ Σ in the de�nitions of the sequences (wk)k
(wk)k, showing that X1,k,X2,k must converge to ∂0B+

1 , i.e. there exists C > 0 such that, for k
su�ciently large,

dist(X1,k, ∂0B+
1 ) + dist(X2,k, ∂0B+

1 )

rk
≤ C.

The following proof follows directly the one of [84, Lemma 4.5]) but for the sake of complexness
we report some details. Arguing by contradiction, suppose that

dist(X1,k, ∂0B+
1 ) + dist(X2,k, ∂0B+

1 )

rk
−→∞

and let us choose Pk = X1,k in the de�nition of wk, wk so thatB+
Pk,rk → Rn+1 and p−1

y,krk → 0+.
Given Wk = wk −wk(0) and Wk = wk −wk(0), by construction Wk is a sequence of
functions which share the same bound on the α - Hölder seminorm and they are uniformly
bounded in every compact K ⊂ Rn+1 since Wk(0) = 0. Thus, by the Ascoli-Arzelá theorem,
there exists W ∈ C(K) which, up to a subsequence, is the uniform limit of Wk . By (??), we also
�nd that Wk →W uniformly con compact sets.
In order to reach a contradiction we can prove that W is a nonconstant globally Hölder harmonic
function with α ∈ (0,α∗).
Since we already know that W ∈ C0,α(Rn+1) it reamins to prove the harmonicity of the limit
function. To this purpose, let ϕ ∈ C∞c (Rn+1) be a compactly supported smooth function and
k be su�ciently large so that suppϕ ⊂ B+

Pk,rk , for all k ≥ k. Fixed i = 1, . . . ,h, by testing the
�rst equation in (29) with ϕ we get

ˆ
Rn+1

div
((

1 + y
rk
py,k

)a
∇ϕ

)
wi,kdX = 0.

Passing to the uniform limit and observing that(
1 + y

rk
py,k

)a
→ 1 in C∞ (suppϕ) ,
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we deduce that W is indeed harmonic. The contradiction follows by the classical Liouville
Theorem once we show that W is globally α - Hölder continuous and not constant. Hence, since
Pk = X1,k then, up to a subsequence,

X2,k − Pk
rk

=
X2,k −X1,k
|X2,k −X1,k|

→ X2 ∈ ∂B1.

Finally, by the equicontinuity and the uniform convergence, we conclude∣∣∣∣W 1,k

(
X1 − Pk

rk

)
−W 1,k

(
X2 − Pk

rk

)∣∣∣∣ = 1 −→
∣∣∣W 1(0)−W 1(X2)

∣∣∣ = 1.

At this point, the choice Pk = (x1,k, 0) for every k ∈ N guarantees the convergence of the
rescaled domains B+

Pk,rk → Rn+1
+ , while for any compact set K ⊂ Rn+1

max
X∈K∩B+

Pk,rk

|wk(X)−wk(X)| −→ 0.

Hence, we are left with two possibilities:

• for any compact set K ⊂ Σ we have w1,k(X) 6= 0 for every k ≥ k0 and X ∈ K ;

• there exists a sequence (Xk)k ⊂ Σ such that wk(Xk) = 0, for every k ∈N.

In the �rst case, if we de�ne again Wk = wk −wk(0) and Wk = wk −wk(0) we obtain
that the last sequence is uniformly bounded in C0,α and hence (Wk)k converges uniformly on
compact set to a nonconstant globally α - Hölder continuous La-harmonic function W, with
∂ayW1 ≡ 0 and Wi ≡ 0 for i > 1, on Σ. Now, extending properly the vector W to the whole
Rn+1, we �nd a contradiction with the Liouville theorem for entire La-harmonic function, since
α < min{1, 1− a}.
Similarly, in the second case (wk)k itself does converge uniformly on compact sets to a noncon-
stant globally α - Hölder continuous function w. In particular, by Lemma 1.3.6, we already know
that (wk)k itself converge strongly in H1,a

loc (R
n+1
+ ) and consequently w ∈ Gsloc(R

n+1
+ ). The con-

tradiction follows by the Liouville theorem for entire segregated con�gurations inGsloc(R
n+1
+ ).

We remark that the class of entire segregated pro�les Gsloc(R
n+1
+ ) has been introduced in

[84, 84], where the authors proved several properties and monotonicity formulas in order to
better understand the asymptotic behaviour of solutions of a competition-di�usion problem with
anomalous di�usion and variational competition.

The following is an improved version of a compactness result concerning entire segregated
pro�les in [84, Proposition 4.7]. Moreover, this result provides a compactness criterion for suitable
blow-up sequences, and will be useful in the proof of the gap condition on the possible values of
the Almgren frequency formula.
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Proposition 1.3.8. Let (uk)k ⊂ Gsloc(R
n+1
+ ) ∩C0,α(B+

1 ), for some α ∈ (0, ν), such that

‖uk‖L∞(B+
1 ) ≤M ,

withM independent on k. Then, for every α′ ∈ (0,α), there exists a constant C = C(M ,α′) such
that

‖uk‖C0,α′ (B+
1/2)
≤ C.

Furthermore, the subset (uk)k is relatively compact in H1,a(B+
1/2) ∩C

0,α′(B+
1/2), for every α

′ ∈
(0,α).

Furthermore, in the context of entire segregated pro�les, we can improve Proposition 1.2.4
and Corollary 1.2.6 with the following result.

Proposition 1.3.9. [84, Proposition 2.11] Let s ∈ (0, 1) and u ∈ Gsloc(R
n+1). Then, for every

X0 ∈ Σ, the Almgren frequency function

N(X0, u, r) = E(X0, u, r)
H(X0, u, r) =

1
rn+a−1

ˆ
B+
r (X0)

|y|a |∇u|2 dX

1
rn+a

ˆ
∂+B+

r (X0)
|y|a u2dσ

well de�ne on (0,+∞) and monotone non decreasing and it satis�es

d

dr
logH(X0, u, r) = 2N(X0, u, r)

r
. (32)

Moreover, if N(X0, u, r) ≡ k on an open interval, then N(X0, u, r) ≡ k for every r, and u =

(u1, . . . ,uh) is k-homogeneous function in Rn+1.

The following is a generalization for s ∈ (0, 1) of [83, Lemma 3.4], that will be crucial in the
study of the structure of the nodal set Γ(u).

Corollary 1.3.10. Let s ∈ (0, 1) and u ∈ Gsloc(R
n+1). Then

• X 7→ N(X, u, 0+) is a non negative upper semi-continuous function on Σ,

• X 7→ N(X, u, 0+) is constant, even in�nite.

Proof. The �rst part of the Corollary follows because in the case of entire con�gurationsN(X, u, 0+)
is de�ned, by monotonicity, as the in�mum of continuous functions X 7→ N(X, u, r). On the
other hand, following the reasoning in Lemma 3.7 in [83], given

k = lim
r→+∞

N(0, u, r) > 0
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let us prove the second assertion in the case k < +∞, otherwise it follows with minor changes.
By contradiction, suppose there exists X0 ∈ Σ such that supr>0N(X0, u, r) = k− 2ε, for some
ε > 0. Let moreover r0 > 0 be such that

N(0, u, r0) ≥ k− ε.

Up to taking R1 and R2 su�ciently large, integrating by parts (32) we get from the previous
assumption

H(X0, u,R1) ≤ H(X0, u, 1)R2(k−2ε)
1 and H(0, u,R2) ≥ H(0, u, 1)R2(k−ε)

2 .

By de�nition
ˆ
B+
R1

(X0)\B+
r0 (X0)

|y|a u2dX =

ˆ R1

r0

ρn+aH(X0, u, ρ)dρ ≤ CRn+a+2(k−2ε)
1

and similarly
ˆ
B+
R2
\B+

r0

|y|a u2dX =

ˆ R2

r0

ρn+aH(0, u, ρ)dρ ≥ CRn+a+2(k−ε)
2 .

Now, if we let |X0| = R1 −R2, we get

CR
n+a+2(k−ε)
2 ≤

ˆ
B+
R2
\B+

r0

|y|a u2dX

≤
ˆ
B+
r0 (X0)

|y|a u2dX −
ˆ
B+
r0

|y|a u2dX +

ˆ
B+
R1

(X0)\B+
r0 (X0)

|y|a u2dX

≤ C +C(R2 + |X0|)n+a+2(k−2ε),

and we �nd a contradiction for R2 su�ciently large.

Up to now we have dealt with blow-up sequences with arbitrary moving centers (Xk)k ⊂ Σ:
the following result emphasizes how some particular choices of Xk provide additional informa-
tional on the blow-up limit and how it is correlated to the Almgren frequency formula. More
precisely, we have

Proposition 1.3.11. Let s ∈ (0, 1) and u ∈ Gs(B+
1 ). Fixed a blow-up sequence (uk)k associated

to (Xk)k ⊂ Γ(u), suppose that one of these situations occurs:

• Xk = X0 for every k ∈N,
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• Xk ∈ Γ(u) and Xk → X0 ∈ Γ(u) with N(X0, u, 0+) = s.

Then N(0, u, r) = N(X0, u, 0+) =: α for every r > 0 and the blow-up limit u(r, θ) = rαg(θ),
where (r, θ) are the generalized polar coordinates centered at the origin in Rn+1.

Proof. First of all we prove that N(0, u, r) is constant for every r ∈ (0,+∞). Let us recall that
N(0, uk, r) = N(Xk, u, rkr) and that Theorem 1.3.3 yields that

N(0, u, r) = lim
k→∞

N(0, uk, r) = lim
k→∞

N(Xk, u, rkr).

If Xk = X0, for some X0 ∈ Γ(u), then limkN(X0, u, rkr) = N(X0, u, 0+) by Proposition
1.2.4.
In the second case, i.e. Xk ∈ Γ(u) and Xk → X0 ∈ Γ(u) with N(X0, u, 0+) = s, our purpose
is to prove limkN(Xk, u, rkr) = s.
Denoting with r > 0,C > 0 the constants associated to Proposition 1.2.4, for any given ε > 0 let
us take 0 < r̃ = r̃(ε) ≤ r such that

N(X0, u, r) ≤ s+ ε

2 for every 0 < r ≤ r̃ such that eCΨ(r̃) ≤ s+ 1 + 2ε
s+ 1 + ε

.

Furthermore there exists δ > 0 such that

N(X, u, r̃) ≤ s+ ε for X ∈ ∂0B+
δ (X0).

Hence, using Proposition 1.2.4 we obtain

N(X, u, r) ≤ (s+ 1 + ε)eCΨ(r̃) − 1 ≤ s+ 2ε, for X ∈ ∂0B+
δ (X0)

and the claim follows by taking into account Corollary 1.2.5.
Finally, let us compute the derivative of r 7→ N(0, u, r), in order to prove that u isα-homogeneous
in Rn+1

+ , i.e. for every X ∈ Rn+1
+ 6= 0

u(X) = |X|α u
(
X

|X|

)
.

An previously remarked in (9)

d

dr
H(0, u, r) = 2

rn+a

ˆ
∂+B+

r

|y|a 〈u, ∂ru〉 dx =
2
r
E(0, u, r)

which, together with Theorem 1.3.3, readily implies

0 =
1
2
d

dr
N(0, u, r) =

ˆ
∂+B+

r

|y|a u2 dσ

ˆ
∂+B+

r

|∂νu|2 dσ−
(ˆ

∂+B+
r

|y|a 〈u, ∂ru〉 dσ
)2

r2n+2a−2H2(0, u, r)
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for r > 0. This equality yields the existence of C = C(r) > 0 such that ∂ru = C(r)u for r > 0.
Using this fact we get

2C(r) =
2
ˆ
∂+B+

r

|y|a 〈u, ∂ru〉 dσ
ˆ
∂+B+

r

|y|a u2 dσ
=

d

dr
logH(0, u, r) = 2

r
N(0, u, r) = 2

r
α

and thus C(r) = α/r and u(r, θ) = rαg(θ) as we claimed.

Moreover, in the case of a blow-up sequences centered we can further improve the convergence
result in the following way

Corollary 1.3.12. Given s ∈ (0, 1) and u ∈ Gs(B+
1 ), let (uk)k be a blow-up sequence centered in

X0 ∈ Γ(u) and Γ(uk) the associated nodal sets. Then Γ(uk) → Γ(u) locally with respect to the
Hausdor� distance dH in Σ, i.e. for every R > 0

dH
(

Γ(uk) ∩ ∂0B+
R , Γ(u) ∩ ∂0B+

R

)
→ 0.

In the previous statement we denoted with

dH(A,B) := max
{

sup
a∈A

dist(a,B), sup
b∈B

dist(A, b)
}

, A,B ⊆ RN (33)

the Hausdor� distance in Rn. Notice that dH(A,B) ≤ ε if and only if A ⊆ Nε(B) and B ⊆
Nε(A), where Nε(·) is the closed ε-neighborhood of a set, more precisely

Nε(A) = {x ∈ RN : dist(x,A) ≤ ε}, A ⊆ RN .

Proof of Corollary 1.3.12. It is not restrictive to consider the case R = 1. By the de�nition of
Hausdor� distance, the claimed result is equivalent to prove that for every ε > 0 there exists
k > 0 such that for every k ≥ k

Γ(uk) ∩ ∂0B+
1 ⊆ Nε

(
Γ(u) ∩ ∂0B+

1

)
Γ(u) ∩ ∂0B ⊆ Nε

(
Γ(uk) ∩ ∂0B+

1

)
.

Supposing by contradiction that the �rst inclusion is not true, then there exist ε > 0 and a
sequence Xk ∈ Γ(uk) ∩ ∂0B+

1 such that dist
(
Xk, Γ(u) ∩ ∂0B+

1
)
> ε. Moreover, up to a sub-

sequence, Xk → X ∈ Γ(u) ∩ ∂0B+
1 by the L∞loc convergence of uk → u. Since by Proposition

1.3.11 the nodal set Γ(u) is a conical set, i.e. for every λ > 0 and X ∈ Γ(u) we have λX ∈ Γ(u)
and 0 ∈ Γ(u), we deduce that dist(X, Γ(u) ∩ ∂0B+

1 ) = 0, which provides the contradiction.
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Finally, we have to prove that for every ε > 0 there exists k̄ > 0 such that

Γ(u) ∩ ∂0B ⊆ Nε

(
Γ(uk) ∩ ∂0B+

1

)
for every k ≥ k̄.

We start by proving that given X ∈ Γ(u) ∈ ∂0B+
1 and δ > 0, the vector valued function uk must

have a zero in ∂0B+
δ (X), for k su�ciently large. If not, by recalling that ui,k · uj,k|y=0≡ 0 for

every i 6= j, we would have that there exists an index 0 < i < h such that−Laui,k = 0 in B+
δ (X)

−∂ayui,k = fi(ui,k) on ∂0B+
δ (X)

, ui,k > 0 on ∂0B+
δ (X)

and uj,k ≡ 0 in ∂0B+
δ (X), for every j 6= i. Passing to the limit, this would imply that−Laui = 0 in B+

δ (X)

−∂ayui = 0 on ∂0B+
δ (X)

, ui ≥ 0 on ∂0B+
δ (X)

and uj ≡ 0 on ∂0B+
δ (X) for every j 6= i. Since X ∈ Γ(u) it follows from the Hopf princi-

ple (see [43, 13]) that u ≡ 0 in ∂0B+
δ (X), a contradiction with the fact the Γ(u) has empty interior.

Now, arguing by contradiction, suppose the existence of ε̄ > 0 and (Xk)k ∈ Γ(u) ∩ ∂0B+
1

such that Xk → X ∈ Γ(u) ∩ ∂0B+
1 and dist(Xk, Γ(uk) ∩ ∂0B+

1 ) > ε̄. Since Γ(u) is a con-
ical set passing through the origin, let us take X̃ ∈ Γ(u) ∩ ∂0B+

1 such that
∣∣∣X̃ −X∣∣∣ ≤ ε̄/4.

Furthermore, we can take, by using the result proved in the previous paragraph, a sequence
(Xk)k ∈ Γ(uk) ∩ ∂0B+

1 such that
∣∣∣Xk − X̃

∣∣∣ ≤ ε̄/4 for su�ciently large k. The �nal contradic-
tion follows noticing that

dist(Xk, Γ(uk) ∩ ∂0B+
1 ) ≤

∣∣∣Xk −Xk

∣∣∣ ≤ ∣∣∣Xk −X
∣∣∣+ ∣∣∣X − X̃∣∣∣+ ∣∣∣X̃ −Xk

∣∣∣ ≤ 3ε̄
4 ≤ ε̄,

for su�ciently large k.

Finally, we de�ne the following class of blow-up which contains all the possible blow-up limit
of u centered in a �xed point X0 ∈ u.

De�nition 1.3.13. Given s ∈ (0, 1) we de�ne the set Bs(Rn+1) of all possible blow-up limit of
u ∈ Gs(B+

1 ) centered in X0 ∈ Γ(u) as the collection of homogenous entire segregated pro�le in
Gsloc(R

n+1).
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In particular, given u ∈ Bs(Rn+1) a k-homogenous entire segregated pro�le, then there
exists g ∈ H1,a(Sn+) such that

u(X) = |X|k g
(
X

|X|

)
. (34)

We remark that for a ∈ (−1, 1), given (r, θ) the generalized spherical coordinates in Rn+1 with
r > 0 and θ ∈ Sn+, the weighted Sobolev space H1,a(Sn+) is de�ned as the closure of C∞c (Sn+)

with respect to the norm

‖g‖2H1,a(Sn+)
=

ˆ
Sn+

|sin θn|a g2dσ+

ˆ
Sn+

|sin θn|a |∇Sng|2 dσ,

where θn is the spherical coordinate associated to the y-direction and∇Sn the tangential gradient
on Sn. Moreover, under the previous notations, we can �nd a spherical decomposition of the
La-operator. More precisely,

Lau = sina(θn)
1
rn
∂r
(
rn+a∂ru

)
+

1
ra
LS

n

a u (35)

where y = r sin(θn) and the Laplace-Beltrami type operator is de�ned as

LS
n

a u = divSn(sina(θn)∇Snu), (36)

with divSn the tangential divergence on Sn. Inspired by the previous spherical decomposition,
we can �nd a simple characterization of the blow-up limit u ∈ Bs(Rn+1) in term of its trace on
the upper sphere Sn+.

Proposition 1.3.14. Let s ∈ (0, 1) and u ∈ Bs(Rn+1) be a γ-homogeneous blow-up limit, i.e.
such that N(0, u, 1) = γ. Then, there exists g = (g1, . . . , gh) ∈ H1,a(Sn+) such that, for every
i = 1, . . . ,h we get 

−LSna gi = λ(γ)gi sina(θn) in Sn+
∂aθngi = 0 on ωi ⊂ Sn−1

gi = 0 on Sn−1 \ ωi,
(37)

where λ(γ) = γ(γ + n+ a− 1), (ωi)i ⊂ Sn−1 × {0} and

∂aθng(θ
′, 0) = lim

θn→0+
sina(θn)∂θng(θ′, θn) for θ′ ∈ Sn−1.

Proof. Let us consider initially a general case: let u ∈ H1,a
loc (R

n+1) be a γ-homogeneous La-
harmonic function in Rn+1

+ such that u∂ayu = 0 on Σ. By the homogeneity of u, there exists
ω ⊂ Sn−1 such that

Cω =

{
X ∈ Σ :

X

|X|
∈ ω

}
=
{
X ∈ Σ : ∂ayu(X) = 0

}
, (38)
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where Cω is the cone in Σ spanned by ω with vertex at zero. Since u is γ-homogeneous, i.e.
u(r, θ) = rγg(θ) for r ∈ (0,+∞) and θ ∈ Sn−1, we get by (35) and (36) that

−LSna g = λs1(γ)g sina(θn) on Sn+,

with λs1(γ) = γ(γ + n+ a− 1), and similarly by (38) we get

∂aθng(θ
′, 0) = 0 on ω.

Hence, with a slight abuse of notations, for every open region ω ⊆ Sn−1, we can de�ne the
eigenvalue

λs1(ω) = inf



ˆ
Sn+

y1−2s |∇Snu|2 dσ
ˆ
Sn+

y1−2su2dσ
:
u ∈ H1,a(Sn+) \ {0}
u ≡ 0 in Sn−1 \ ω

 (39)

and similarly the characteristic exponent of the cone Cω spanned by ω as the quantity

γs(Cω) = γs(λ
s
1(ω)) ,

where the function γs(t) is de�ned by

γs(t) =

√√√√(n− 2s
2

)2

+ t− n− 2s
2 .

Now, given u ∈ Bs(Rn+1) let g ∈ H1,a(Sn+; Rh) be its spherical part de�ned by (34). Since all
the components ui ∈ H1,a

loc (R
n+1
+ ) share the same homogeneity degree γ, we directly get that

the eigenvalue λ(gi) is the same for every component of g.

Using the variational formulation of the eigenvalue problem associated to λs1(ω) de�ned in
(39), for every ω ⊂ Sn−1 we easily get that

0 = λ1
s(S

n−1) ≤ λ1
s(ω) ≤ λ1

s(∅) = 2s

and more generally, for ω1 ⊂ ω2 it holds λ1
s(ω2) < λ1

s(ω1) (see [85, 82] for further properties of
this eigenvalue problem). We will exhibit several connection between this two formulations of
blow-up limits in Chapter 2 �nding a di�erent connection with their interpretation on the traces
space as s-harmonic function on cones. However, by the previous characterization, at this point
we can improve the bound on the Almgren frequency for the segregated pro�le.
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Corollary 1.3.15. Let s ∈ (0, 1) and u ∈ Gs(B+
1 ). Then, for every X0 ∈ Γ(u) we get

N(X0, u, 0+) < 2s.

Proof. By the de�nition of the class of segregated pro�les, given u ∈ Gs(B+
1 ) we have u 6≡ 0

on Σ. Given X0 ∈ u and u ∈ Gsloc(R
n+1) a blow-up limit of u at X0, we get by the uniform

convergence that u 6≡ 0 on Σ. By the characterization of Proposition 1.3.14 we get that necessary
ω 6= ∅ or, in other words, λ1

s(ω) < 2s. The previous inequality implies

N(X0, u, 0+) = N(0, u, 1) = λ1
s(ω) < 2s,

as we claimed.

Actually, we remark that combining the previous bound and the monotonicity result Proposi-
tion 1.2.4 we can prove that a segregated function in u ∈ Gs(B+

1 ) has identically zero trace on
B1 ∩ Σ if and only if N(X0, u, 0+) = 2s on some point X0 ∈ Γ(u).

1.4 hausdorff dimension estimates for regular and singular sets

In the same spirit of [19, 18, 36, 81] we prove that there exists a gap in the possible values
of the Almgren frequency formula N(X, u, 0+) for X0 ∈ Γ(u). We remark that as in [81], our
analysis is not restricted to solutions of minimal energy as in [19].

Proposition 1.4.1. Given s ∈ (0, 1),n = 2 and u ∈ Gs(B+
1 ), then for X0 ∈ Γ(u) either

N(X0, u, 0+) = s or N(X0, u, 0+) ≥ s+ δ,

for some universal constant δ > 0.

Proof. By contradiction, given s ∈ (0, 1) and u ∈ Gs(B+
1 ) suppose there exist two sequences

εk ↘ 0+ and (Xk)k ⊂ Γ(u) ∩ ∂0Ω+, for some Ω+ ⊂⊂ B+
1 , such that

N(Xk, u, 0+) ≤ s+ εk.

Moreover, it is not restrictive to suppose that εk ≤ s/2, in order to always have s+ εk < 2s.
Since Γ(u) has empty interior in Rn+1, up to a subsequence there exists X0 ∈ Γ(u) such that
Xk → X0 and, by Corollary 1.2.5 and Corollary 1.2.6 we get N(X0, u, 0+) = s.
Therefore, let us construct a sequence of blow-up limit (uk)k ∈ Gsloc(R

n+1
+ ) in order to translate

the absurd hypothesis in the context of entire segregated con�gurations in Gsloc(R
n+1
+ ). Hence,

for every k ∈N let

uXk,i(X) =
u(Xk + riX)

ρi
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be the blow-up sequence centered in Xk associated to ri ↘ 0+ and ρ2
i = H(Xk, u, ri). By

Theorem 1.3.3, there exists a family of blow-up limits (uk)k ∈ Gsloc(R
n+1) of homogenous

function in Rn+1 such that uXk,i → uk andˆ
∂+B+

1

|y|a u2
kdσ = 1 and N(0, uk, r) = s+ εk for every r > 0, (40)

namely uk is (s+ εk)-homogeneous in Rn+1, i.e.

uk(X) = |X|s+εk gk
(
X

|X|

)
,

with gk ∈ H1,a(Sn+). Following the same idea in the proof of Lemma 1.3.5, since for every R > 0
we have −∂ayuk ≤ 0 on ∂0B+

R , if we consider vk ∈ H1,a(B+
R ) the symmetric extension of uk

with respect to Σ to the whole B1 we get

−Lavk ≤ 0 in Rn+1.

Hence, by [88, Lemma A.2] it follows for every R > 0

sup
B+
R/2

uk = sup
BR/2

vk ≤ C(n, s)
(

1
Rn+1+a

ˆ
BR

|y|a u2
kdX

)1/2

= 2C(n, s)
(

1
Rn+1+a

ˆ
B+
R

|y|a u2
kdX

)1/2

= 2C(n, s)Rs+εk
(

1
n+ 2 + 2εk

ˆ
∂+B+

1

|y|a u2
kdσ

)1/2

,

where in the last equality we used the (s+ εk)-homogeneity of uk . By (40) it follows that for every
R > 0 the sequence (uk)k ⊂ Gsloc(R

n+1) ∩C0,α
loc (R

n+1
+ ) with α ∈ (0,α∗) is uniformly bounded

in L∞(B+
R ), for every R > 0, which implies by Theorem 1.3.8 the existence of u ∈ Gsloc(R

n+1).
Moreover, by the strong convergence in H1,a

loc (R
n+1) it follows that N(0, u, r) = s for every

r > 0, i.e. up to a rotation u = (u1,u2, 0, . . . , 0) where

u1(x, y) = C1


√
x2

1 + y2 − x1

2

s and u2(x, y) = C1


√
x2

1 + y2 + x1

2

s , (41)

for some positive constant C1 > 0 such that ‖u‖L2,a(∂+B+
1 ) = 1. Up to relabeling the components

of uk , let us suppose that the components ui,k → 0 strongly inH1,a
loc ∩C

0,α
loc for every i = 2, . . . ,h,

while (u1,k,u2,k)→ (u1,u2) strongly in H1,a
loc ∩C

0,α
loc . By (41), since

{u1 = 0} ∩ Σ = {X = (x1,x2, y) ∈ Σ : x1 ≥ 0}
{u2 = 0} ∩ Σ = {X = (x1,x2, y) ∈ Σ : x1 ≤ 0}

(42)
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for every k > 0 there exist nonempty ωk ⊂ {X ∈ Σ : x1 > 0} such that ωk is a connected
component in Sn−1 of {g1,k > 0} . By contradiction, let us suppose there exists k > 0 such
that g1,k ≡ 0 on Sn−1 ∩ {X ∈ Σ : x1 ≥ 0}. Then, necessary we must have g2,k ≡ 0 on
Sn−1 ∩ {X ∈ Σ : x1 ≤ 0}, otherwise by the monotonicity of the eigenvalue (37) we would obtain
λ(g1,k) > λ(g2,k) in contradiction with the de�nition of u ∈ Bs(Rn+1). Hence, since uk and
u satisfy the same boundary condition, by uniqueness their homogeneities must be equal, in
contradiction with the fact that uk is (s+ εk)-homogeneous in Rn+1. The same contradiction
follows from the sequence (Bk)k.

Now, since we are working in dimension n = 2, there exist two sequences (Pk)k, (Qk)k ⊂
S1 ∩ {X ∈ Σ : x1 > 0} such that ωk = (Pk,Qk) can be seen as an arc of S1 between the
endpoints Pk and Qk. Since by compactness of S1 there exist, up to a subsequence, P ,Q ∈
S1 ∩ {X ∈ Σ : x1 ≥ 0} respectively limit of (Pk)k and (Qk)k, let us consider separately the
cases |Pk −Qk| → 0 and P 6= Q.
If P 6= Q, let ω = (P ,Q) be the limit of the sequence (ωk)k and Cω be the cone in Σ spanned
by ω, i.e.

Cω =

{
X ∈ Σ :

X

|X|
∈ ω ⊂ S1

}
.

One one hand, by de�nition of ωk, since u1,k and u2,k are segregated on Σ, we get passing
u2,k ≡ 0 on ωk and then, passing to the limit for k →∞, u2 ≡ 0 on ω. On the other hand, by the
L∞loc-convergence of the sequence (uk)k we get from (42) that

∥∥∥g1,k

∥∥∥
L∞(ωk)

→ 0 which implies,
passing to its homogeneous extension, that u1 ≡ 0 on every compact set K ⊂ Cω , and similarly
u ≡ 0 on every compact set in Cω , in contradiction with (41).

Hence in the other case, given rk = |Pk −Qk| ↘ 0 and Pk ∈ Σ let introduce the blow-up
sequence (wk)k ⊂ Gsloc(R

n+1) centered in (Pk)k ∈ Γ(uk) ∩ Sn−1 and associated to rk > 0, i.e.

wk(X) =
uk(Pk + rkX)

ρk
with ρk =

√
H(Pk, uk, rk),

such that ‖wk‖L2,a(∂+B+
1 ) = 1. By construction, for every k ∈N we have

wk (0) = 0 = wk

(
Qk − Pk

rk

)
, (43)

where (Qk−Pk)/rk → ν ∈ Sn−1×{0} by compactness in Sn−1. Now, following the same ideas
in the proof of Lemma 1.3.5, given C > 0 and r > 0 be such that Proposition 1.2.4, Proposition
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1.2.7 and Lemma 1.3.4 hold true then, up to taking k so large that rk, rkR ≤ r, we get for every
R > 0 that

ˆ
∂+B+

R

|y|a w2
kdσ =

1
ρ2
kr
n+a
k

ˆ
∂+B+

Rrk
(Pk)
|y|a u2

kdσ

= Rn+a
H(Pk, uk,Rrk)
H(Pk, uk, rk)

≤ Rn+a
(
Rrk
rk

)2C
,

which implies that

sup
B+
R/2

wk ≤ 2C(n, s)
(

1
Rn+1+a

ˆ
B+
R

|y|a w2
kdX

)1/2

≤ 2C(n, s)
(
H(0, wk,R)
n+ a+ 1

)1/2

is uniformly bounded for k > 0. By Proposition 1.3.8, there exists a blow-up limit w ∈
H1,a

loc (R
n+1)∩C0,α

loc (R
n+1) for everyα ∈ (0, s) such that w ∈ Gsloc(R

n+1)with ‖w‖L2,a(∂+B+
1 ) =

1.

Since the blow-up sequence (wk)k is constructed starting from a family of homogeneous entire
segregated pro�les in Bs

loc(R
n+1), we can prove that w is constant along the direction parallel

to P ∈ Sn−1 and that its restriction on the orthogonal half plane belongs to Gsloc(R
n).

Hence, let X ∈ Rn+1 and λ ∈ R be �xed. By the homogeneity of uk we obtain

wk(X + λPk) =
uk(Pk + rk(X + λPk))

ρk
=

uk((1 + rkλ)Pk + rkX)

ρk

=
(1 + rkλ)

ρk

s+εk

uk
(
Pk +

rk
1 + rkλ

X

)
= (1 + rkλ)

s+εk wk

(
rk

1 + rkλ
X

)
and then

|wk(X + λPk)−wk(X)| ≤
∣∣∣∣(1 + rkλ)

s+εk wk

(
rk

1 + rkλ
X

)
−wk

(
rk

1 + rkλ
X

)∣∣∣∣+
+

∣∣∣∣wk

(
rk

1 + rkλ
X

)
−wk(X)

∣∣∣∣
≤
(∣∣(1 + rkλ)

s+εk − 1
∣∣+ ∣∣∣∣ rk

1 + rkλ
− 1

∣∣∣∣α |X|α) ‖wk‖C0,α(B+
1 )
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with α ∈ (0, s). Thus, as rk ↘ 0, by the uniform convergence (wk)k on every compact set, we
get

|w(X + λP )−w(X)| = 0 for every λ ∈ R,

where P = limk Pk ∈ Sn−1 × {0}.
Now, given the section of w with respect to the direction λP , with λ ∈ R, we observe that the
equations and the segregation conditions are trivially satis�ed and the Pohožaev identities on
every ball Br(X0) on Rn

+ follow immediately by the ones for w on the corresponding ball in
Rn+1

+ having Br(X0) as n-dimensional section. Hence, with slight abuse of notation we still
denote the n-dimensional section by w ∈ Gsloc(R

n). By Corollary 1.3.10, since for every k > 0
and t ∈ (0,+∞)

N(Pk, uk, t) ≤ N(Pk, uk,+∞)

= N(0, uk,+∞) = s+ εk

we get from Proposition 1.2.4 and Proposition 1.3.9 that for every R > 0

N(0, w,R) = lim
rk→0

N(0, wk,R) = lim
rk→0

N(Pk, uk, rkR) ≤ s+ εk. (44)

Finally, we reach the contradiction applying a blow-down analysis on the limit function w ∈
Gsloc(R

n). With a slight abuse of notations, for rk → +∞, consider the blow-down sequence
(vk)k centered in the origin de�ned as

vk(X) =
w(rkX)

ρk
for X ∈ B+

Xk,rk

with
ρ2
k = ‖w(rk·)‖2L2,a(∂+B+

1 ) =
1

rn+ak

ˆ
∂+B+

rk

|y|a w2 dσ = H(0, w, rk).

Fixed R > 1, since ‖w‖L2,a(∂+B+
1 ) = 1, we get from integrating (32) between 1 and R that

H(0, w,R) ≤ R2(s+εk),

and consequently, up to relabeling the constant, we get

sup
B+
R

vk ≤ 2C(n, s)
(
H(0, vk, 2R)
n+ a+ 1

)1/2
≤ C(n, s)Rs+εk .

Since (vk)k ⊂ Gsloc(R
n+1), by the previous uniform bound in L∞loc(R

n+1) there exists a blow-
down limit v ∈ Gsloc(R

n+1) such that vk → v strongly in H1,a
loc (R

n+1) and uniformly in
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C0,α
loc (R

n+1), for α ∈ (0, s).
Moreover, the uniform convergence and Proposition 1.3.9 yield that

N(0, v,R) = lim
k→∞

N(0, vk,R) = lim
k→∞

N(0, w, rkR) = N(0, w,+∞),

for everyR > 0, which implies by Proposition 1.3.9 that v ∈ Bs(Rn+1) with degree homogeneity
γ(v) ≤ s+ εk. By the gap condition in the lower dimensional case Rn, we get that necessary
γ(v) = s, which it implies, going back to the function w, that

s ≤ N(0, w, r) ≤ N(0, w,+∞) = s.

In other words, by the monotonicity result Proposition 1.3.9, the Almgren monotonicity formula
satis�es N(0, w, r) = s for every r > 0, i.e. up to a rotation w = (w1,w2, 0, . . . , 0) where

w1(x, y) = C1


√
x2

1 + y2 − x1

2

s and w2(x, y) = C1


√
x2

1 + y2 + x1

2

s , (45)

for some positive constant C1 > 0 such that ‖w‖L2,a(∂+B+
1 ) = 1. The contradiction follows

immediately by (43).

We remark that in general, the latter statement is equivalent to the following one:

for every α - homogeneous u ∈ Bs(Rn+1), either α = s or α ≥ s+ δn,

for some universal constant δn > 0. Moreover, we can actually generalize the previous result by
proving that the possible values of the Almgren frequency formula are a discrete subset of the
interval [s, 2s).

Proposition 1.4.2. Given s ∈ (0, 1),n = 2 and u ∈ Gs(B+
1 ), then for X0 ∈ Γ(u) the possible

values of the Almgren frequency formula N(X0, u, 0+) are a discrete set in [s, 2s) with 2s as point
of accumulation.

Proof. The proof of the �rst part follows the one of Proposition 1.4.1 since it was based on a
contradiction argument due to the a gap in dimension n = 1 for the possible values of the Almgren
frequency formula. Hence, let us prove the result by induction on the Almgren frequency. Since
the �rst step is prove in Proposition 1.4.1, let us consider the inductive step. Let A ∈ (0, 1) be a
possible value of the Almgren frequency and u ∈ Gs(B+

1 ). By induction we already know that
A = B+ δ, for some δ > 0 and B ∈ [s, 2s) lower Almgren frequency. By contradiction, suppose
there exist two sequences εk ↘ 0+ and (Xk)k ⊂ Γ(u)∩ ∂0Ω+, for some Ω+ ⊂⊂ B+

1 , such that

N(Xk, u, 0+) ≤ A+ εk.
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with εk ≤ s−A/2, in order to always have A+ εk < 2s. Since Γ(u) has empty interior in
Rn+1, up to a subsequence there exists X0 ∈ Γ(u) such that Xk → X0 and, by the induction
hypothesis and Corollary 1.2.6 we get N(X0, u, 0+) = A.
Therefore, let us construct a sequence of blow-up limit (uk)k ∈ Gsloc(R

n+1
+ ) in order to translate

the absurd hypothesis in the context of entire segregated con�gurations in Gsloc(R
n+1
+ ). Hence,

following the details in Proposition 1.4.1, we can construct a family of blow-up limits (uk)k ∈
Gsloc(R

n+1) of homogenous function in Rn+1 such that uXk,i → uk and
ˆ
∂+B+

1

|y|a u2
kdσ = 1 and N(0, uk, r) = A+ εk for every r > 0, (46)

namely uk is (A+ εk)-homogeneous in Rn+1., i.e.

uk(X) = |X|A+εk gk
(
X

|X|

)
,

with gk ∈ H1,a(Sn+). By (46) it follows that for everyR > 0 the sequence (uk)k ⊂ Gsloc(R
n+1)∩

C0,α
loc (R

n+1
+ ) with α ∈ (0, s) is uniformly bounded in L∞(B+

R ), for every R > 0, which implies
by Theorem 1.3.8 the existence of u ∈ Gsloc(R

n+1). Moreover, by the strong convergence in
H1,a

loc (R
n+1) it follows that N(0, u, r) = A for every r > 0.

Since u ∈ Bs(Rn+1), we get that Γ(u) is a conic set and its domain of positivity are totally
de�ned by its spherical section g ∈ H1,a(Sn+) (this is a generalisation of the previous case in
Proposition 1.4.1, since in this case we do not know the explicit formulation of the blow-up limit u).

Now, let us prove the existence of an index i = 1, . . . ,h such that, given ω = {θ ∈ Sn−1 : gi ≡ 0},
then for every k > 0 there exist a nonempty ωk ⊂ ω such that ωk is a connected component in
Sn−1 of {gi,k > 0}.
By contradiction, suppose that for every index i = 1, . . . ,h there exists k > 0 such that gi,k ≡ 0
on the zero set of gi on Sn−1. Then, by uniqueness of the eigenvalue problem (37) we must obtain
that λ(gk) = λ(g), in contradiction with the de�nition of uk and its homogeneity.

Now, since we are working in dimension n = 2, there exist two sequences (Pk)k, (Qk)k ⊂ S1

such that ωk = (Pk,Qk) can be seen as an arc of S1 between the endpoints Pk and Qk . Since by
compactness of S1 there exist, up to a subsequence, P ,Q ∈ S1 respectively limit of (Pk)k and
(Qk)k, let us consider separately the cases |Pk −Qk| → 0 and P 6= Q.

If P 6= Q, let ω = (P ,Q) be the limit of the sequence (ωk)k and Cω be the cone in Σ spanned
by ω, i.e.

Cω =

{
X ∈ Σ :

X

|X|
∈ ω ⊂ S1

}
.
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One one hand, by de�nition of ωk , since ui,k · uj,k = 0 on Σ, we get uj,k ≡ 0 on ωk ⊆ ω for every
æ 6= i and then, passing to the limit for k →∞, uj ≡ 0 on ω, for every j 6= i. The contradiction
follows from the fact that since, by de�nition gi ≡ 0 on ω and necessary must exist a component
of g non identically zero on ω ⊂ ω.

Hence in the other case, given rk = |Pk −Qk| ↘ 0 and Pk ∈ Σ let introduce the blow-up
sequence (wk)k ⊂ Gsloc(R

n+1) centered in (Pk)k ∈ Γ(uk) ∩ Sn−1 and associated to rk > 0, i.e.

wk(X) =
uk(Pk + rkX)

ρk
with ρk =

√
H(Pk, uk, rk),

such that ‖wk‖L2,a(∂+B+
1 ) = 1. By construction, for every k ∈N we have

wk (0) = 0 = wk

(
Qk − Pk

rk

)
, (47)

where (Qk − Pk)/rk → ν ∈ Sn−1 × {0} by compactness in Sn−1. Now, following the same
ideas of the proof of Proposition 1.4.1, by Proposition 1.3.8 there exists a blow-up limit w ∈
H1,a

loc (R
n+1)∩C0,α

loc (R
n+1) for everyα ∈ (0, s) such that w ∈ Gsloc(R

n+1)with ‖w‖L2,a(∂+B+
1 ) =

1.
Since the blow-up sequence (wk)k is constructed starting from a family of homogeneous entire
segregated pro�les in Bs

loc(R
n+1), we can prove that w is constant along the direction parallel

to P ∈ Sn−1 and that its restriction on the orthogonal half plane belongs to Gsloc(R
n).

Hence, with slight abuse of notation we still denote the n-dimensional section by w ∈ Gsloc(R
n).

By Corollary 1.3.10, since for every k > 0 and t ∈ (0,+∞)

N(Pk, uk, t) ≤ N(Pk, uk,+∞)

= N(0, uk,+∞) = A+ εk

we get from Proposition 1.2.4 and Proposition 1.3.9 that for every R > 0

N(0, w,R) = lim
rk→0

N(0, wk,R) = lim
rk→0

N(Pk, uk, rkR) ≤ A+ εk. (48)

Finally, as in Proposition 1.4.1, we reach the contradiction applying a blow-down analysis on the
limit function w ∈ Gsloc(R

n). Indeed, applying the same procedure, we get by the gap condition
in the lower dimensional case Rn that

s ≤ N(0, w, r) ≤ N(0, w,+∞) = s.

In other words, by the monotonicity result Proposition 1.3.9, the Almgren monotonicity formula
satis�es N(0, w, r) = s for every r > 0, i.e. up to a rotation w = (w1,w2, 0, . . . , 0) where

w1(x, y) = C1


√
x2

1 + y2 − x1

2

s and w2(x, y) = C1


√
x2

1 + y2 + x1

2

s , (49)
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for some positive constant C1 > 0 such that ‖w‖L2,a(∂+B+
1 ) = 1. The contradiction follows

immediately by (47). The second part of the proof is a direct consequence of the results in [85].
In this paper, the authors proved in the case n = 2 the existence of some segregated pro�les
possessing some natural symmetry. Such solutions are constructed as limit of a competition-
di�usion problem and starting from the eigenvalue problem (39) and in particular they proved
that they have growth rate at in�nity which is arbitrarily close to the critical one, that is, 2s.

1.5 regularity and flatness of the regular set

In this Section, we will provide an estimate of the Hausdor� dimension of the whole nodal set

Γ(u) =
{
X ∈ ∂0B+

1 : u(X) = 0
}

,

and, regarding its regularity, we will split Γ(u) in two parts:

• the singular part S(u), which we will show to be a local �nite collection point in ∂0B+
1 ;

• the regular partR(u), which is relatively open in Γ(u) and satis�es a �atness type condi-
tion.

Hence, let us start introducing the notion of regular and singular set in the planar case.

De�nition 1.5.1. Given s ∈ (0, 1),n = 2 and u ∈ Gs(B+
1 ), we de�ne its regular and singular

sets respectively as

R(u) =
{
X0 ∈ Γ(u) : N(X0, u, 0+) = s

}
and S(u) =

{
X0 ∈ Γ(u) : N(X0, u, 0+) > s

}
.

Corollary 1.5.2. For s ∈ (0, 1) and n = 2 the set R(u) is relatively open in Γ(u) and S(u) is
closed in ∂0B+

1 , whenever u ∈ Gs(B+
1 ).

Proof. This result is a direct consequence of Proposition 1.4.1 together with the upper semi-
continuity of the Almgren frequency function X 7→ N(X, u, 0+) stated in Corollary 1.2.6.

Next we state and prove some estimates regarding the Hausdor� dimensions of two strata
previously de�ned by using the version of the Federer’s Reduction principle in [78]. Hence, let us
take a class of functions F invariant under rescaling and translation and S a map which associate
to each function Φ ∈ S a subset of Rn+1. Thus, this principle establishes conditions on F and S
which imply that to control the Hausdor� dimension of S(Φ) for every Φ ∈ S , we just need to
control the Hausdor� dimension of S(Φ) for elements which are homogeneous of some degree.
In Chapter 3, we will state the Federer’s Reduction principle in its most general version.
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Theorem 1.5.3. Given s ∈ (0, 1) and n = 2, let u ∈ Gs(B+
1 ) and Γ(u) be its nodal set. Then if

Γ(u) 6≡ Σ, then dimH(Γ(u)) ≤ 1 and

dimH(R(u)) = 1 dimH(S(u)) = 0.

Moreover for any given compactK ⊂⊂ ∂0B+
1 we that S(u) ∩K is a �nite set.

Proof. A preliminary remark is that we only need to prove the Hausdor� dimensional estimates
for the localization of the sets in K ⊂⊂ B+

1 , since the general statement follows because a
countable union of sets with Hausdor� dimension less than or equal to some n ∈ R+

0 also has
Hausdor� dimension less than or equal to n. Moreover, since the Hausdor� dimension of the
nodal set of a function is invariant under rescaling, in order to simplify the notations we claim
that

dimH(Γ(u) ∩ ∂0B+
1 ) ≤ 1 dimH(S(u) ∩ ∂0B+

1 ) = 0.

Let us consider the class of functions F de�ned as

F =

{
u ∈

(
L∞loc(R

2+1
+ )

)h
: u ∈ Gs(B+

r (X0)), for r ∈ R, X0 ∈ Σ such that B+
r (X0) ⊂ B+

1

}
.

By the linearity of the La operator, we already know that the closure under rescaling, translation
and normalization and assumption (F1) are all satis�ed.
On the other hand, letX0 ∈ ∂0B+

1 , rk ↓ 0+ andu ∈ F , and choose ρk = ‖u(X0 + rk · x)‖L2,a(∂+B+
1 ).

Theorem 1.3.3 and Proposition 1.3.11 yield the existence of a blow-up limit u ∈ F , i.e. up
to a subsequence uk → u in F and u is a homogeneous entire segregated pro�le of degree
k = N(X0, u, 0+) ≥ s. Hence also (F2) holds.
Next we choose the map S in (F3) according to our needs.

1. Dimensional estimate of the nodal set Γ(u)
First, let us consider S : u 7→ Γ(u). By the continuity of u, we already know that the set
Γ(u) ∩B+

1 is obviously closed in B+
1 and it is quite straightforward to check the two hypotheses

in (F3).
Hence, in order to conclude the analysis, the only thing left to prove is that the integer d in (131)
is equal to 1. Suppose by contradiction that d = 2, then this would imply the existence of v ∈ F
with S(v) = R2 i.e., v ≡ 0 on Σ, which contradicts the de�nition of Gs.
Actually, taking V = R1 × {(0, 0)} and v = (v1, v2, 0, . . . , 0) where

v1(x1,x2, y) =


√
x2

1 + y2 − x1

2

s and v2(x1,x2, y) =


√
x2

1 + y2 + x1

2

s ,

we obtain the claimed estimate on d.
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2. Dimensional estimate of the regular setR(u)
Let us consider S : u 7→ R(u). By the inclusion in Γ(u), we already know that

dimH(R(u) ∩ ∂0B+
1 ) ≤ 1.

Finally, we can apply the Reduction principle since (F3) is completely satis�ed. More precisely,
for X0 ∈ ∂0B+

1 , ρ > 0 and t > 0 if X ∈ R(ρuX0,t) then obviously X0 + tX ∈ R(u), i.e.
N(X0 + tX, u, 0+) = 1. Secondly, given uk, u ∈ F as in (F3), suppose by contradiction that
there exists a sequence Xi ∈ ∂0B+

1 and ε > 0 such that

N(Xk, uk, 0+) = s

and dist(Xk,S(u)) ≥ ε. Since, up to a subsequence, Xk → X , by the upper semi-continuity
of the Almgren frequency formula, we already know that N(X, u, 0+) ≥ 1. Moreover, up to a
subsequence, Xk → X ∈ Γ(u) ∩ Σ ∩B1 by the L∞loc convergence of ui → u.

Now, since Γ(u) is a conical set, i.e. for every λ > 0 and X ∈ Γ(u) we have λX ∈ Γ(u),
we deduce that if we can proveX ∈ R(u)∩ ∂0B+

1 we provide a contradiction, more precisely we
get dist(X,S(u) ∩ ∂0B+

1 ) = 0. Since there exists Ω ⊂⊂ ∂0B+
1 such that (X0 + riXi)i ⊂ Ω, if

we consider

R1 = min
p∈∂0Ω+

dist(p,S1 × {0}),

C = sup
p∈∂0Ω+

N(p, u,R1),

we easily get from Corollary 1.2.7 that there exists C > 0 and r > 0 such that for p ∈ Ω ∩R(u)
and r < min{r,R1} we have

N(p, u, r) ≤ N(p, u,R1)

(
R1
r

)2+a−1+2C
≤ C 1

r2+a−1+2C
.

In particular, from the previous inequality we get that there exists R = R(a) > 0 su�ciently
small, such that for r < R we have

s ≤ N(Xk, uk, r) ≤ s+
δ

2.

Since limkN(Xk, uk, r) = N(X, u, r) for su�ciently small r, we directly obtain from Proposi-
tion 1.4.1 that N(X, u, 0+) = s, as we claimed.
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As before, let us suppose now that there exist v ∈ F and a d-dimensional subspace V ⊂ Σ, with
d ≤ 1, and k ≥ 0 such that

vY ,r = rkv for all Y ∈ V , r > 0 and R(ϕ) ∩ ∂0B+
1 = V ∩ ∂0B+

1

Since v ∈ Bs(R2+1) is homogenous of degree k with respect to any Y ∈ V = R(ϕ), namely
N(Y , v, 0+) = k, we get that necessary k = s and thatR(ϕ) is d-dimensional. Since the only
entire segregated pro�les with degree s is, up to rotation, of the form v = (v1, v2, 0, . . . , 0) where

v1(x1,x2, y) =


√
x2

1 + y2 − x1

2

s and v2(x1,x2, y) =


√
x2

1 + y2 + x1

2

s ,

we get thatR(ϕ) must be 1-dimensional, and consequently that

dimH(R(u) ∩ ∂0B+
1 ) = 1.

3. Dimensional estimate of the singular set S(u)
Let us focus on the singular strata, namely given S : u 7→ S(u), the map satis�es the �rst part of
(F3) thanks to (18), since for X0 ∈ ∂0B+

1 , ρ > 0 and t > 0, if X ∈ S(ρuX0,t) we get

N(X, ρuX0,t, 0+) > s←→ N(X0 + tX, u, 0+) > s,

which is equivalent to X0 + tX ∈ S(u). Now, given uk = ρkuX0,rk , u ∈ F as in (F3), suppose
by contradiction that there exists a sequenceXk ∈ ∂0B+

1 and ε > 0 such that, up to a subsequence,
Xk → X and

N(Xk, uk, 0+) ≥ s+ δ (50)

and dist(Xk,S(u)) ≥ ε. Then, following the same reasoning in Corollary 1.2.6, by Proposition
1.2.4 there exists a constant C > 0 and r > 0 such that, for r ∈ (0, r)

N(Xk, u, r) = e−CΨ(r)eCΨ(r) (N(Xk, u, r))− 1 > e−CΨ(r)(s+ 1 + δ)− 1

and hence, since for r ∈ (0, r) it holds N(Xk, uk, r)→ N(X, u, r)→, we get N(X, u, 0+) ≥
s+ δ, which implies a contradiction.

Since S(u) ⊆ Γ(u), we already know that

dimH(S(u) ∩ ∂0B+
1 ) ≤ 1, (51)

which is not the optimal bound for the singular set. Indeed, suppose d = 1, then must exist v ∈ F
homogeneous with respect to every point in R× {(0, 0)}, i.e. there exists k > 0 such that

v(Y + λX) = λkv(X) for all Y ∈ R× {(0, 0)}, X ∈ R2+1
+ ,
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such that S(v) = R× {(0, 0)}. Hence, given Y0 ∈ S(v), we get for every µ > 0 that v(µY0 +

X) = v(X), which implies that v ∈ Bs(R1+1
+ ) with N(0, v, 0+) = k > s and S(v) = 0.

The absurd follows from the fact that necessary N(0, v, 0+) = 2s and hence v ≡ 0 on Σ, in
contradiction with the de�nition of F and the upper bound (51).

At this point, combining Corollary 1.3.12 and Corollary 1.5.2 we can state the following
results about the �atness of the regular part R(u) of the nodal set Γ(u). More precisely, the
following result prove that R(u) veri�es the so called vanishing Reifenberg �at condition, i.e.
the (δ,R)-Reifenberg �at condition for every δ ∈ (0, 1) and some R = R(δ) > 0.

Proposition 1.5.4. Given s ∈ (0, 1) and n = 2 consider u ∈ Gs(B+
1 ). Then, �xed Ω+ ⊂⊂ B+

1 ,
for any given δ ∈ (0, 1) there exists R > 0 such that X ∈ R(u) ∩ ∂0Ω+ and 0 < r < R there
exists an hyper-plane H = HX,r passing through X such that

dH(Γ(u) ∩ ∂0B+
r (X),HX,r ∩ ∂0B+

r (X)) ≤ δr,

where dH is the Hausdor� distance de�ned in (33).

The idea of the proof is similar to the one in Corollary 1.3.12 since, roughly speaking, they
are both a consequence of Proposition 1.3.11. Indeed, by Theorem 1.3.3 we already know the
topology in which the blow-up sequence converges and Proposition 1.3.11 ensure the existence
of an homogeneous blow-up limit for a speci�c choices of Xk, which are the ones considered in
Proposition 1.3.12 and in this result.

Proof of Proposition 1.5.4. Arguing by contradiction, let us suppose there exists δ > 0 and a
sequence (Xk)k ⊂ R(u) ∩ ∂0Ω+, rk → 0 such that

dH(Γ(u) ∩ ∂0B+
rk
(Xk),H ∩ ∂0B+

rk
(Xk)) > δrk.

for every hyper-plane H passing through Xk. If we consider the blow-up sequence centered in
(Xk)k associated to rk, i.e. let

uk(X) =
u(Xk + rkX)√
H(Xk, u, rk)

,

then “rescaling” the contradiction statement we get

dH(Γ(uk) ∩ ∂0B+
1 ,H ∩ ∂0B+

1 ) > δ,

whenever H is a hyper-plane that passes through the origin.
Hence, since up to a subsequence Xk → X ∈ Γ(u) ∈ ∂0Ω+, Theorem 1.3.3 together with
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property Proposition 1.3.11 implies the existence of a blow-up limit u whose nodal set Γ(u) is a
hyper-plane containing the origin. Hence we obtain a contradiction once we are able to prove
that

dH(Γ(uk) ∩ ∂0B+
1 , Γ(u) ∩ ∂0B+

1 )→ 0.

Equivalently, the claimed result is to prove that for every ε > 0 there exists k > 0 such that for
every k ≥ k

Γ(uk) ∩ ∂0B+
1 ⊆ Nε

(
Γ(u) ∩ ∂0B+

1

)
Γ(u) ∩ ∂0B ⊆ Nε

(
Γ(uk) ∩ ∂0B+

1

)
.

Supposing by contradiction that the �rst inclusion is not true, then there exist ε > 0 and a
sequence Xk ∈ Γ(uk) ∩ ∂0B+

1 such that dist
(
Xk, Γ(u) ∩ ∂0B+

1
)
> ε. Moreover, up to a sub-

sequence, Xk → X ∈ Γ(u) ∩ ∂0B+
1 by the L∞loc convergence of uk → u. Since by Proposition

1.3.11 the nodal set Γ(u) is a conical set, i.e. for every λ > 0 and X ∈ Γ(u) we have λX ∈ Γ(u)
and 0 ∈ Γ(u), we deduce that dist(X, Γ(u) ∩ ∂0B+

1 ) = 0, which provides the contradiction.

Finally, we have to prove that for every ε > 0 there exists k̄ > 0 such that

Γ(u) ∩ ∂0B ⊆ Nε

(
Γ(uk) ∩ ∂0B+

1

)
for every k ≥ k̄.

We start by proving that given X ∈ Γ(u) ∈ ∂0B+
1 and δ > 0, the vector valued function uk must

have a zero in ∂0B+
δ (X), for k su�ciently large. If not, by recalling that ui,k · uj,k|y=0≡ 0 for

every i 6= j, we would have that there exists an index 0 < i < h such that−Laui,k = 0 in B+
δ (X)

−∂ayui,k = fi(ui,k) on ∂0B+
δ (X)

, ui,k > 0 on ∂0B+
δ (X)

and uj,k ≡ 0 in ∂0B+
δ (X), for every j 6= i. Passing to the limit, this would imply that−Laui = 0 in B+

δ (X)

−∂ayui = 0 on ∂0B+
δ (X)

, ui ≥ 0 on ∂0B+
δ (X)

and uj ≡ 0 on ∂0B+
δ (X) for every j 6= i. Since X ∈ Γ(u) it follows from the Hopf princi-

ple (see [13, 43]) that u ≡ 0 in ∂0B+
δ (X), a contradiction with the fact the Γ(u) has empty interior.

Now, arguing by contradiction, suppose the existence of ε̄ > 0 and (Xk)k ∈ Γ(u) ∩ ∂0B+
1

such that Xk → X ∈ Γ(u) ∩ ∂0B+
1 and dist(Xk, Γ(uk) ∩ ∂0B+

1 ) > ε̄. Since Γ(u) is a con-
ical set passing through the origin, let us take X̃ ∈ Γ(u) ∩ ∂0B+

1 such that
∣∣∣X̃ −X∣∣∣ ≤ ε̄/4.
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Furthermore, we can take, by using the result proved in the previous paragraph, a sequence
(Xk)k ∈ Γ(uk) ∩ ∂0B+

1 such that
∣∣∣Xk − X̃

∣∣∣ ≤ ε̄/4 for su�ciently large k. The �nal contradic-
tion follows noticing that

dist(Xk, Γ(uk) ∩ ∂0B+
1 ) ≤

∣∣∣Xk −Xk

∣∣∣ ≤ ∣∣∣Xk −X
∣∣∣+ ∣∣∣X − X̃∣∣∣+ ∣∣∣X̃ −Xk

∣∣∣ ≤ 3ε̄
4 ≤ ε̄,

for su�ciently large k.

With the vanishing Reifenberg property we are able to prove a local separation result. We
remark that the following result follows the idea of Proposition 5.4 in [81].

Proposition 1.5.5. Given s ∈ (0, 1) and n = 2 consider u ∈ Gs(B+
1 ). Then, givenX0 ∈ Γ∗ there

exists a radius R0 > 0 such that ∂0B+
R0
(X0) ∩R(u) = ∂0B+

R0
(X0) ∩ Γ(u) and ∂0B+

R0
(X0) \

Γ(u) = ∂0B+
R0
(X0) ∩ {u > 0} has exactly two connected components, i.e.

∂0B+
R0
(X0) ∩R(u) = Ω+ ∪Ω−.

More precisely, there exists δ > 0 such that, given Y ∈ Γ(u) ∈ ∂0B+
R (X0) and r ∈ (0,R0 −

|Y −X0|) there exists a hyperplane HY ,r and a vector νY ,r ∈ Sn−1 orthogonal to HY ,r such that

{X ± tνY ,r ∈ ∂0B+
r (Y ) : X ∈ HY ,r, t ≥ δr} ⊂ Ω±.

Proof. Fixed X0 ∈ R(u), since R(u) is a relatively open set in Γ(u), there exists τ such that
∂0B+

2τ (X0) ∩R(u) = ∂0B+
2τ (X0) ∩ Γ(u) and �x δ < 1/6. Using the notations of Proposition

1.5.4, for Ω+ = B+
τ (X0) there exists R > 0 such that Γ(u) ∩ ∂0B+

τ (X0) satis�es the (δ,R)-
Reifenberg �atness condition. Let us prove our result with R0 := min{R, τ}.
By Proposition 1.5.4, there exists a hyperplane HX0,R0 containing X0 and such that

dH(Γ(u) ∩ ∂0B+
R0
(X0),HX0,R0 ∩ ∂0B+

R0
(X0)) ≤ δR0. (52)

Hence the subset ∂0B+
R0
(X0) \N2δR0(HX0,R0) has exactly two connected components, namely

D1 and D2, which do not intersect the nodal set Γ(u). Hence, let us de�ne the function

σ(X) =

1 if X ∈ D1,
−1 if X ∈ D2.

Take now a pointX1 ∈ Γ(u)∩∂0B+
R0
(X0) ⊆ NδR0(HX0,R0)∩∂0B+

R0
(X0). As we did before, by

using Proposition 1.5.4, considering a ball of radiusR0/2 centered atX1 there exists a hyperplane
HX1,R0/2 such that

dH(Γ(u) ∩ ∂0B+
R0/2(X1),HX1,R0/2 ∩ ∂0B+

R0/2(X1)) ≤ δ
R0
2 .
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This inequality combined with (52) yields that

NδR0/2(HX1,R0/2) ∩ ∂0B+
R0/2(X1) ∩ ∂0B+

R0
(X0) ⊆ N2δR0(HX0,R0) ∩ ∂0B+

R0
(X0).

Hence ∂0B+
R0
(X0) ∩ ∂0B+

R0/2(X1) \NδR0(HX1,R0/2) has exactly two connected components,
each one intersecting D1 or D2 and not both. Thus the set ⋃

X1∈Γ(u)∩∂0B+
R0

(X0)

∂0B+
R0
(X0) ∩ ∂0B+

R0/2(X1) \NδR0(HX1,R0/2)

∪D1 ∪D2 (53)

has exactly two connected components which do not interest the nodal set Γ(u) and hence we
can continuously extend σ to this set.
Iterating this argument to a ball of radiusR0/2k centered at a point of Γ(u) we �nd two connected
and disjoint set Ω+, Ω− such that ∂0B+

R0
(X0) \ Γ(u) = Ω+ ∪Ω−, with D1 ⊆ Ω+ and D2 ⊆

Ω−. Furthermore, the map σ : ∂0B+
1 \ Γ(u)→ {+1,−1} such that

σ : X 7→ χΩ+(X)− χΩ−(X)

is continuous and thus ∂0B+
R0
(X0) \ Γ(u) has exactly two connected components.

In order to check the continuity, take X ∈ ∂0B+
R0
(X0) such that dist(X, Γ(u)∩ ∂0B+

R0
(X0)) =

γ > 0, with X ∈ Γ(u) ∩ ∂0B+
R0
(X0) the point of minimum distance, and k so large that

R0/2k+1 ≤ γ < R0/2k; then X ∈ BR0/2k(X) \NδR0/2k(HX,R0/2k−1), due to the choice of δ,
and hence σ is constant in a small neighborhood of X .

1.6 singular limit of a competition-diffusion problem

In this last Section we consider the class of segregated pro�les arising from a competition-
di�usion problem with nonlocal di�usion and variational competition. In particular, we motivate
our de�nition of the class Gs(B+

1 ) and we give some result in the context of self-segregation,
comparing them with the ones known for the local case.

As we mentioned in the introduction, in the papers [83, 84] the authors proved that given
β > 0 and (fi,β)β a collection of continuous functions uniformly bounded with respect to β on
bounded sets, the sequence (uβ)β ∈ H1,a(B+

1 ; Rh) of solutions uβ = (u1,β, . . . ,uh,β) of the
problems −Laui,β = 0 in B+

1

−∂ayui,β = fi,β(ui,β)− βui,β
∑
j 6=i aiju

2
j,β on ∂0B+

1 .
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uniformly bounded in L∞(B+
1 ) with respect to β, does converge uniformly on compact sets and

strongly in H1,a(K ∩B+
1 ), for every K ⊂ B1, to a vector valued function u = (u1, . . . ,uh) ∈

H1,a
loc (B

+
1 ; Rh) whose components are all non negative, continuous functions such that

(1) u ∈ H1,a(K ∩B+
1 )∩C0,α(K ∩B+

1 ), for every compact setK ⊂ B and everyα ∈ (0,α∗);

(2) ui · uj |y=0≡ 0 for every i 6= j and u 6= 0 on B1 ∩Σ. Moreover, for i = 1, . . . ,h it satis�es−Laui = 0 in B+
1

ui
(
∂ayui + fi(ui)

)
= 0 on ∂0B+

1

where fi : R+ → R are the nonnegative C1 limits of fi,β , such that fi(s) = O(s) for
s→ 0;

(3) for every X0 = (x0, 0) ∈ ∂0B+
1 and r ∈ (0, dist(X0, ∂B)), the following Pohožaev type

identity holds

(1− a− n)
ˆ
B+
r (X0)

|y|a |∇u|2 dX + r

ˆ
∂B+

r (X0)
|y|a |∇u|2 dσ+

+2n
ˆ
∂0B+

r (X0)

h∑
i=1

Fi(ui)dx− 2r
ˆ
Sn−1
r (X0)

h∑
i=1

Fi(ui)dx = 2r
ˆ
∂+B+

r (X0)
|y|a (∂ru)2dσ

where F(s) = (F1(s), . . . ,Fh(s)) with Fi(s) =
´ s

0 fi(t) dt for every i = 1, . . . ,h.

In particular, they proved that for s = 1/2 the limit pro�le are C0,1/2
loc (B+

1 ) while in general they
estimate the solutions in the Hölder spaces by the use of a fractional versions of the Alt-Ca�arelli-
Friedman and Almgren monotonicity formula. More precisely, let us recall the fractional version
of the spectral problem beyond the Alt-Ca�arelli-Friedman formula used in [84, 83]. Consider the
set of 2-partitions of Sn−1 as

P2 :=
{
(ω1,ω2) : ωi ⊆ Sn−1 open, ω1 ∩ ω2 = ∅, ω1 ∪ ω2 = Sn−1

}
,

the optimal partition value νACFs is de�ned as

νACFs :=
1
2 inf

(ω1,ω2)∈P2

2∑
i=1

γs(λ
s
1(ωi)). (54)

It is easy to see, by a Schwarz symmetrization argument, that νACFs is achieved by a pair of
complementary spherical caps (ωθ,ωπ−θ) ∈ P2 with aperture 2θ and θ ∈ (0,π) (for a detailed
proof of this kind of symmetrization we refer to [85]), that is:

νACFs = min
θ∈[0,π]

Γs(θ) = min
θ∈[0,π]

γs(θ) + γs(π− θ)
2 .
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Then, for s ∈ (0, 1) the previous statement for the limiting pro�le holds true for

α∗ =

νACFs , 0 < s ≤ 1
2 ,

min{νACFs , 2s− 1}, 1
2 < s < 1.

As we mentioned, the threshold s = 1/2 is due to the presence of the phenomenon of self-
segregation of nonlocal problem with s ∈ (1/2, 1), namely centered on the nodal set Γ(u) there
exists a ball B̃+ ⊂ Rn+1

+ su�ciently small and an index i = 1, . . . ,h such that all the components
uj of u with j 6= i are identically zero on the ball make exception of ui which is not identically
zero and such that

∂0B̃+ \ Γ(u) = {X ∈ ∂0B̃+ : ui(X) > 0}.
The presence of self-segregation in the context of competition-di�usion problem is a phenomenon
well known in the literature, even in the local case. Indeed, in [81] the authors dealt with the case
of self-segregated pro�le relabeling the restrictions of the pro�le on each connected component
of the positive set. Since in that case the operator is local, the restriction itself satis�es the
assumption of the segregated pro�le, but unfortunately the nonlocal attitude of our operator does
not allow this strategy. Moreover, we mention the work [35], where the authors proved that the
self-segregation is a phenomenon that does not appear as singular limit of the local counterpart
of our competition-di�usion problem (3).
In the context of the fractional Laplacian (−∆)s, as pointed out in [84], the main point is that the
fundamental solution turns out to be bounded near 0 and inH1,a(B+

1 ) whenever s > 1/2,n = 1.
This implies that, when s ∈ [1/2, 1) and n ≥ 2, the function

u(x, y) =
(
x2

1 + y2
) 2s−1

2

is a positive La-harmonic function in Rn+1
+ with non trivial trace on Σ and ∂ayu = 0 on Σ. In

particular, its trace on Σ is self-segregated since it has two disconnected positivity regions.

The following result is a re�nement of the Liouville theorem [83, Theorem 7.1] for every s ∈ (0, 1)
and it is based on the division of the nodal set in its segregated and self-segregated part, in such a
way we can apply our result obtained in the previous Sections to the segregated part of Γ(u).
De�nition 1.6.1. Let s ∈ (0, 1) and u ∈ Gs(B1). Then the nodal set Γ(u) is said to be either
“segregated” in K ∩ Σ if

Γ(u) = ∂0K+ \
h⋃
i=1

int
(
{ui > 0}

)
or “self-segregated” in K ∩ Σ if

Γ(u) =
h⋃
i=1

∂{ui > 0} \ int
(
{ui > 0}

)
.
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xs+ = max(x, 0)s

(−∆)sxs+

C0,s regularity
(−∆)sxs+ = −csx−s−
u(−∆)su = 0 in R

culo

|x|2s−1

C0,2s−1 regularity
(−∆)s |x|2s−1 = δ0

u(−∆)su = 0 in R

Figure 3: One-dimensional con�gurations in Gsloc(R) respectively segregated and self-segregated

In general, the nodal set is said to be segregated (self-segregated) in Σ if it is segregated (self-
segregated) on every compact set K ∩ Σ.

Theorem 1.6.2. Let s ∈ (0, 1). If

• either Γ(u) is segregated in Σ and u ∈ Gsloc(R
n+1
+ ) ∩C0,α(Rn+1

+ ) for α ∈ (0, s),

• or Γ(u) is self-segregated in Σ and u ∈ Gsloc(R
n+1
+ ) ∩C0,α(Rn+1

+ ) for α ∈ (0, 2s− 1),

then u is constant.

In the remaining part of the Chapter we prove this result following the procedure in [83]. This
result implies a re�nement in theory of the regularity of segregated pro�les near the nodal set.

Corollary 1.6.3. Let s ∈ (0, 1) and u ∈ Gs(B+
1 ) be limit of a sequence (uβ)β of solutions of (3).

Then u ∈ C0,α
loc (B

+
1 ) for every α ∈ (0, s) if and only if Γ(u) is segregated in B1 ∩ Σ.

The proof of this Corollary is based on our Liouville type theorem and on the techniques
developed in the mentioned works [83, 84].
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Proof of Theorem 1.6.2. Since by assumption u ∈ Gsloc(R
n+1
+ ) ∩ C0,α(Rn+1

+ ), we easily get by
[84, Corollary 2.12] that u is homogeneous of degree γ with respect to any of its possible zeros.
Thus, for α > 0 and for every dimension n, as in [83], let us introduce the critical value

νLiouv
s (n) = inf

{
α > 0 : Bs(Rn+1) ∩C0,α

loc (R
n+1
+ ) is non empty

}
.

Since for every s ∈ (0, 1) and n ≥ 1 the function (y2s, 0, ·, 0) ∈ Bs(Rn+1) ∩ C0,2s
loc (Rn+1

+ ),
we get νLiouv

s ≤ 2s. However, since we need to take care of the structure of the nodal set we
introduce the following critical value

ν1
s (n) = inf

{
α > 0

∣∣∣∣∣ Bs(Rn+1) ∩C0,α
loc (R

n+1
+ ) is non empty

Γ(u) is segregated in Σ

}

such that ν1
s (n) ≤ νLiouv

s (n). The main idea is to reduce such problem to the ones of estimating
νLiouv
s (1) and ν1

1 (1), which can be computed explicitly: let us prove that for any dimension n ≥ 2
it holds

νLiouv
s (n) ≥ νLiouv

s (n− 1).

Since u ∈ Bs(Rn+1), as we previously remarked, we have that Γ(u) is a cone with vertex at the
origin and N(0, u, r) = α, for every r ∈ (0,+∞).
We can easily exclude the case Γ(u) = Σ, since in that case all the components of u have trivial
trace on Σ. As a consequence, the odd extension of u through Σ is a nontrivial vector of harmonic
functions on Rn+1, forcing α ≥ 2s ≥ νLiouv

s (n− 1).
Similarly, since n ≥ 2 and for dim Γ(u) ≤ n− 2s we obtain that Γ(u) has null La-capacity, we
can exclude the case Γ(u) = {0}.
Now, given X0 ∈ Γ(u) ∩ Sn−1, let us introduce the blow-up sequence of u associated to rk > 0
as

uk(X) =
u(X0 + rkX)

ρk
with ρ2

k = H(X0, u, rk).

Now, following the same ideas in the proof of Lemma 1.3.5, given C > 0 and r > 0 be such that
Proposition 1.2.4, Proposition 1.2.7 and Lemma 1.3.4 hold true then, up to taking k so large that
rk, rkR ≤ r, we get for every R > 0 that

ˆ
∂+B+

R

|y|a u2
kdσ =

1
ρ2
kr
n+a
k

ˆ
∂+B+

Rrk
(X0)
|y|a u2

kdσ

= Rn+a
H(X0, u,Rrk)
H(X0, u, rk)

≤ Rn+a
(
Rrk
rk

)2C
,
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which implies, by the La-subharmonicity of the odd extension of uk through Σ, that

sup
B+
R/2

uk ≤ 2C(n, s)
(

1
Rn+1+a

ˆ
B+
R

|y|a u2
kdX

)1/2

≤ 2C(n, s)
(
H(0, uk,R)
n+ a+ 1

)1/2

is uniformly bounded for k > 0. By Proposition 1.3.8, there exists a blow-up limit u ∈ Gsloc(R
n+1)

with ‖u‖L2,a(∂+B+
1 ) = 1.

Since the blow-up sequence (uk)k is constructed starting from a family of homogeneous entire
segregated pro�les in Bs

loc(R
n+1), we can prove that u is constant along the direction parallel to

X0 ∈ Sn−1 and that its restriction on the orthogonal half plane belongs to Gsloc(R
n). Moreover,

since the blow-up sequence (uk)k is centered in a �xed point X0, by Proposition 1.2.4, Corollary
1.2.6 and Proposition 1.3.11 we get that u ∈ Bs(Rn) ∩C0,γ

loc (R
n+1), with N(0, u, 1) = γ ≤ α.

Finally, sinceα is arbitrary choose in νLiouv
s (n), the thesis follows from the bound νLiouv

s (n−1) ≤
α.
If instead, we consider the critical values ν1

s (n), the result of dimensional descent still holds since
the uniform convergence on compact sets of the blow-up sequence (uk)k ensures that the nodal
set Γ(u) is still segregated in Σ, and hence

ν1
s (n) ≥ ν1

s (n− 1),

for every s ∈ (0, 1) and n ≥ 2. Thus, by a complete classi�cation of the elements in Bs(R2
+),

see [88, Section 5], we can �nally reach the claimed result since

νLiouv
s (1) =

s, if
(
0, 1

2

)
2s− 1, if s ∈

[
1
2 , 1
) and ν1

s (1) = s for any s ∈ (0, 1).
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O N S - H A R M O N I C F U N C T I O N S O N C O N E S

2.1 introduction

Let n ≥ 2 and C be an open cone in Rn with vertex in 0, for a given s ∈ (0, 1), we consider
the problem of the classi�cation of nontrivial functions which are s-harmonic inside the cone
and vanish identically outside, that is:


(−∆)sus = 0 in C,
us ≥ 0 in Rn

us ≡ 0 in Rn \C.
(55)

By [5, Theorem 3.2], it is known that there exists a homogeneous, nonnegative and nontrivial
solution to (55) of the form

us(x) = |x|γsus
(
x

|x|

)
,

where γs := γs(C) is a de�nite homogeneity degree (characteristic exponent), which depends
on the cone. Moreover, such a solution is continuous in Rn and unique, up to multiplicative
constants. We can normalize it in such a way that ‖us‖L∞(Sn−1) = 1. We consider the case when
s approaches 1, wondering whether solutions of the problem do converge to a harmonic function
in the same cone and, in case, which are the suitable spaces for convergence.

Our problem (55) can be linked to a speci�c spectral problem of local nature in the upper half
sphere by using the extension technique popularized in [23] by Ca�arelli and Silvestre, which
characterize the fractional Laplacian in Rn as the Dirichlet-to-Neumann map for a variable v
depending on one more space dimension.
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Hence, let us consider an open region ω ⊆ Sn−1 = ∂Sn+, with Sn+ = Sn ∩ {y > 0}, and de�ne
the eigenvalue

λs1(ω) = inf



ˆ
Sn+

y1−2s|∇Snu|2dσ
ˆ
Sn+

y1−2su2dσ
: u ∈ H1(Sn+; y1−2sdσ) \ {0} and u ≡ 0 in Sn−1 \ ω

 .

Next, de�ne the characteristic exponent of the cone Cω spanned by ω (see De�nition 2.2.1) as

γs(Cω) = γs(λ
s
1(ω)) , (56)

where the function γs(t) is de�ned by

γs(t) :=

√√√√(n− 2s
2

)2

+ t− n− 2s
2 .

We recall the existence of a remarkable link between the nonnegative λs1(ω)-eigenfunctions
and the γs(λs1(ω))-homogeneous La-harmonic functions. As pointed out in Proposition 1.3.14,
given ϕs the �rst nonnegative eigenfunction to λs1(ω) and vs its γs(λs1(ω))-homogeneous exten-
sion to Rn+1

+ , i.e.
vs(r, θ) = rγs(λ

s
1(ω))ϕs(θ),

we easily get that vs isLa-harmonic in the upper half-space, with a = 1− 2s ∈ (−1, 1). Moreover
its trace us(x) = vs(x, 0) is s-harmonic in the cone Cω spanned by ω, vanishing identically
outside: in other words us is a solution of our problem (55). In a symmetric way, for the standard
Laplacian, we consider the problem of γ-homogeneous functions which are harmonic inside the
cone spanned by ω and vanish outside:

−∆u1 = 0 in Cω,
u1 ≥ 0 in Rn

u1 = 0 in Rn \Cω.
(57)

Is is well known that the associated eigenvalue problem on the sphere is that of the Laplace-
Beltrami operator with Dirichlet boundary conditions:

λ1(ω) = inf


ˆ
Sn−1

|∇Sn−1u|2dσ
ˆ
Sn−1

u2dσ
: u ∈ H1(Sn−1) \ {0} and u = 0 in Sn−1 \ ω

 ,
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and the characteristic exponent of the cone Cω is

γ(Cω) =

√√√√(n− 2
2

)2

+ λ1(ω)−
n− 2

2 = γs|s=1(λ1(ω)) . (58)

In the classical case, the characteristic exponent enjoys a number of nice properties: it is minimal
on spherical caps among sets having a given measure. Moreover for the spherical caps, the
eigenvalues enjoy a fundamental convexity property with respect to the colatitude θ (see the
results in [3, 47]). We remark that the convexity plays a major role in the proof of the Alt-Ca�arelli-
Friedman monotonicity formula, a key tool in the Free boundary theory (see [21] for a general
excursus on the subject).

Since the standard Laplacian can be viewed as the limiting operator of the family (−∆)s as
s↗ 1, some questions naturally arise:

Problem 2.1.1. Is it true that

(1) lims→1 γs(C) = γ(C)?

(2) lims→1 us = u1 uniformly on compact sets, or better, in Hölder local norms?

(3) for spherical caps of opening θ is there any convexity of the map θ 7→ λs1(θ) at least, for s
near 1?

We therefore addressed the problem of the asymptotic behavior of the solutions of problem
(55) for s↗ 1, obtaining a rather unexpected result: our analysis shows high sensitivity to the
opening solid angle ω of the cone Cω , as evaluated by the value of γ(C). In the case of wide
cones, when γ(C) < 2 (that is, θ ∈ (π/4,π) for spherical caps of colatitude θ), our solutions do
converge to the harmonic homogeneous function of the cone; instead, in the case of narrow cones,
when γ(C) ≥ 2 (that is, θ ∈ (0,π/4] for spherical caps), then limit of the homogeneity degree
will be always two and the limiting pro�le will be something di�erent, though related through a
correction term. Similar transition phenomena have been detected in other contexts for some
types of free boundary problems on cones (see [74]). Moreover, we will see that an important
quantity which appears in this estimates and plays a fundamental role is

C(n, s)
2s− γs(C)

,

where C(n, s) > 0 is the normalization constant given in (62). It will be therefore very important
to bound this quantity uniformly in s. Our main result is the following Theorem.
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Theorem 2.1.2. Let C be an open cone with vertex at the origin. There exist �nite the following
limits:

γ(C) := lim
s→1−

γs(C) = min{γ(C), 2}

and

µ(C) := lim
s→1−

C(n, s)
2s− γs(C)

=

0 if γ(C) ≤ 2,
µ0(C) if γ(C) ≥ 2,

where C(n, s) is de�ned in (62) and

µ0(C) := inf


ˆ
Sn−1

|∇Sn−1u|2 − 2nu2dσ(ˆ
Sn−1

|u|dσ
)2 : u ∈ H1(Sn−1) \ {0} and u = 0 in Sn−1 \C

 .

Let us consider the family (us) of nonnegative solutions to (55) such that ||us||L∞(Sn−1) = 1. Then,
as s↗ 1, up to a subsequence, we have

1. us → u in L2
loc(R

n) to some u ∈ H1
loc(R

n) ∩L∞(Sn−1).

2. The convergence is uniform on compact subsets of C , u is nontrivial with ||u||L∞(Sn−1) = 1
and is γ(C)-homogeneous.

3. The limit u solves −∆u = µ(C)

ˆ
Sn−1

udσ in C,

u = 0 in Rn \C .
(59)

Uniqueness of the limit u and therefore existence of the limit of us as s ↗ 1 holds in the
case of connected cones and, in any case, whenever γ(C) > 2. We will see in Remark 2.4.2 that
under symmetry assumptions on the cone C , the limit function u is unique and hence it does not
depend on the choice of the subsequence.

A further motivation to our study of (55), as shown in [83, 84] and in the blow-up analysis in
Chapter 1, is its deep relation with the exponent of the optimal Hölder regularity of segregated
pro�les and the geometric analysis of the segregation phenomenon. In [84, 83], estimates in
Hölder spaces have been obtained by the use of fractional versions of the Alt-Ca�arelli-Friedman
and Almgren monotonicity formulas. Let us state here the fractional version of the spectral
problem beyond the �rst monotonicity formula: consider the set of 2-partitions of Sn−1 as

P2 :=
{
(ω1,ω2) : ωi ⊆ Sn−1 open, ω1 ∩ ω2 = ∅, ω1 ∪ ω2 = Sn−1

}
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and de�ne the optimal partition value as:

νACFs :=
1
2 inf

(ω1,ω2)∈P2

2∑
i=1

γs(λ
s
1(ωi)). (60)

It is easy to see, by a Schwarz symmetrization argument, that νACFs is achieved by a pair of
complementary spherical caps (ωθ,ωπ−θ) ∈ P2 with aperture 2θ and θ ∈ (0,π) (for a detailed
proof of this kind of symmetrization we refer to [85]), that is:

νACFs = min
θ∈[0,π]

Γs(θ) = min
θ∈[0,π]

γs(θ) + γs(π− θ)
2 .

This gives a further motivation to our study of (55) for spherical caps. A classical result by Friedland
and Hayman, [47], yields νACF = 1 for the case s = 1, and the minimal value is achieved for
two half spheres; this equality is the core of the proof of the classical Alt-Ca�arelli-Friedman
monotonicity formula.

θ

y

0 π/4 π/2 3π/4 π

1
s

y = Γ(θ)

y = Γs(θ)

Figure 4: Possible values of Γs(θ) = Γs(ωθ,ωπ−θ) for s < 1 and s = 1 and n = 2.

It was proved in [84] that νACFs is linked to the threshold for uniform bounds in Hölder norms
for competition-di�usion systems, as the interspeci�c competition rate diverges to in�nity, as well
as the exponent of the optimal Hölder regularity for their limiting pro�les. It was also conjectured
that νACFs = s for every s ∈ (0, 1). Unfortunately, the exact value of νACFs is still unknown, and we
only know that 0 < νACFs ≤ s (see [84, 83]). Our contribution to this open problem is a byproduct
of Theorem 2.1.2.
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Corollary 2.1.3. In any space dimension we have

lim
s→1

νACFs = 1 .

Moreover, exploiting the connection between s-harmonic functions on cones and the traces
on Rn of the blow-up limits in Bs(Rn+1), discussed in Proposition 1.3.14 in Chapter 1, we can
reasonably state the following remark on the asymptotic limit of the segregated con�gurations in
Gsloc(B

+
1 ).

More precisely, given for s ∈ (0, 1) the class Bs(Rn) of the traces of the blow-up limit in
Bs(Rn+1), we directly get, from Theorem 2.1.2 that

sup
{
N(0,u, 1) : u ∈ Bs(Rn+1)

}
≤ sup

θ∈(0,π)
γs(θ) ≤ 2s ≤ 2

for every s ∈ (0, 1). This simple bound suggests that the possible blow-up limits of the segregated
pro�les arising from a competition-di�usion problem with nonlocal di�usion and variational
competition can not converge to the ones of the segregated solutions studied in [18, 81]. This
remark suggests that even for the case of segregated con�gurations we have to expect, for s↗ 1,
a rather unexpected result.

The Chapter is organized as follows. In Section 2.2 we introduce our setting and we state the
relevant known properties of homogeneous s-harmonic functions on cones. After this, we will
obtain local C0,α-estimates in compact subsets of C and local Hs-estimates in compact subsets
of Rn for solutions of (55). In Section 2.3 we analyze the asymptotic behaviour of γs(C) as s
converges to 1, in order to understand the quantities γ(C) and µ(C). To do this, we will establish
a distributional semigroup property for the fractional Laplacian for functions which grow at
in�nity. In Section 2.4 we prove Theorem 2.1.2 and Corollary 2.1.3. Eventually, in Section 2.5, we
prove a nontrivial improvement of the main Theorem concerns uniform bounds in Hölder spaces
holding uniformly for s→ 1.

2.2 homogenous s-harmonic functions on cones

In this Section, we focus our attention on the local properties of homogeneous s-harmonic
functions on regular cones. Since in Section 2.3 we will study the behaviour of the characteristic
exponent as s approaches 1, in this section we recall some known results related to the boundary
behaviour of the solution of (55) restricted to the unitary sphere Sn−1 and some estimates of the
Hölder and Hs seminorm.

De�nition 2.2.1. Let ω ⊂ Sn−1 be an open set, that may be disconnected. We call unbounded
cone with vertex in 0, spanned by ω the open set

Cω = {rx : r > 0, x ∈ ω}.
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Moreover we say that C = Cω is narrow if γ(C) ≥ 2 and wide if γ(C) < 2. We call Cω regular
cone if ω is connected and of class C1,1. Let θ ∈ (0,π) and ωθ ⊂ Sn−1 be an open spherical cap
of colatitude θ. Then we denote by Cθ = Cωθ the right circular cone of aperture 2θ.

Hence, let C be a �xed unbounded open cone in Rn with vertex in 0 and consider(−∆)sus = 0 in C,
us ≡ 0 in Rn \C.

with the condition ‖us‖L∞(Sn−1) = 1. By Theorem 3.2 in [5] there exists, up to a multiplicative
constant, a unique nonnegative function us smooth in C and γs(C)-homogenous, i.e.

us(x) = |x|γs(C) us

(
x

|x|

)
where γs(C) ∈ (0, 2s). As it is well know (see for example [8, 76]), the fractional Laplacian (−∆)s

is a nonlocal operator well de�ned in the class of integrability L1
s := L1 (dx/(1 + |x|)n+2s),

namely the normed space of all Borel functions u satisfying

‖u‖L1
s

:=
ˆ

Rn

|u(x)|
(1 + |x|)n+2sdx < +∞. (61)

Hence, for every u ∈ L1
s, ε > 0 and x ∈ Rn we de�ne

(−∆)sεu(x) = C(n, s)
ˆ

Rn\Bε(x)

u(x)− u(y)
|x− y|n+2s dy,

where
C(n, s) =

22ssΓ(n2 + s)

πn/2Γ(1− s)
∈
(

0, 4Γ
(
n

2 + 1
)]

. (62)

and we can consider the fractional Laplacian as the limit

(−∆)su(x) = lim
ε↓0

(−∆)sεu(x) = C(n, s) P.V.
ˆ

Rn

u(x)− u(y)
|x− y|n+2s dy.

We remark that u ∈ L1
s is such that u ∈ L1

s+δ for any δ > 0, which will be an important tool
in this part of the manuscript, in order to compute high order fractional Laplacians. Another
de�nition of the fractional Laplacian, which can be constructed by a double change of variables
as in [38], is

(−∆)su(x) =
C(n, s)

2

ˆ
Rn

2u(x)− u(x+ y)− u(x− y)
|y|n+2s dy
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which emphasize that given u ∈ C2(D) ∩L1
s , we obtain that x 7→ (−∆)su(x) is a continuous

and bounded function on D, for some bounded D ⊂ Rn.

By [67, Lemma 3.3], if we consider a regular unbounded cone C symmetric with respect to
a �xed axis, there exists two positive constant c1 = c1(n, s,C) and c2 = c2(n, s,C) such that

c1|x|γs−sdist(x, ∂C)s ≤ us(x) ≤ c2|x|γs−sdist(x, ∂C)s (63)

for every x ∈ C . We remark that this result can be easily generalized to regular unbounded cones
Cω with ω ⊂ Sn−1 which is a �nite union of connectedC1,1 domain ωi, such that ωi ∪ωj = ∅ for
i 6= j, since the reasonings in [67] rely on a Boundary Harnack principle and on sharp estimates
for the Green function for bounded C1,1 domain non necessary connected (for more details [28]).

Through the paper we will call the coe�cient of homogeneity γs as "characteristic exponent", since
it is strictly related to an eigenvalue partition problem.
As we already mentioned, our solutions are smooth in the interior of the cone and locally C0,s

near the boundary ∂C \ {0} (see for example [67]), but we need some quantitative estimates
in order to better understand the dependence of the Hölder seminorm on the parameter s ∈ (0, 1).

Before showing the main result of Hölder regularity, we need the following estimates about
the fractional Laplacian of smooth compactly supported functions: this result can be found in [8,
Lemma 3.5] and [37, Lemma 5.1], but here we compute the formula with a deep attention on the
dependence of the constant with respect to s ∈ (0, 1).

Proposition 2.2.2. Let s ∈ (0, 1) and ϕ ∈ C2
c (R

n). Then

|(−∆)sϕ(x)| ≤ c

(1 + |x|)n+2s , ∀x ∈ Rn, (64)

where the constant c > 0 depends only on n and the choice of ϕ.

Proof. Let K ⊂ Rn be the compact support of ϕ and k = maxx∈K |ϕ(x)|. There exists R > 1
such that K ⊂ BR/2(0).
Let |x| > R.

|(−∆)sϕ(x)| =

∣∣∣∣C(n, s)
ˆ

Rn

ϕ(x)−ϕ(y)
|x− y|n+2s dy

∣∣∣∣ = ∣∣∣∣C(n, s)
ˆ
K

ϕ(y)

|x− y|n+2sdy
∣∣∣∣

≤ C(n, s)k
|x|n+2s

ˆ
K

1
(1−

∣∣ y
x

∣∣)n+2sdy ≤ C(n, s)k2n+2s|K|
|x|n+2s

≤ C(n, s)k22(n+2s)|K|
(1 + |x|)n+2s ≤ c

(1 + |x|)n+2s ,
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where c > 0 depends only on n and the choice of ϕ.

Let now |x| ≤ R. We use the fact that any derivative of ϕ of �rst and second order is uni-
formly continuous in the compact set K and the fact that in BR(0) the function (1 + |x|)n+2s

has maximum given by (1 +R)n+2s. Hence there exist 0 < δ < 1 and a constant M > 0, both
depending only on n and the choice of ϕ such that

|ϕ(x+ z) + ϕ(x− z)− 2ϕ(x)| ≤M |z|2 ∀z ∈ Bδ(0).

Hence

|(−∆)sϕ(x)| =

∣∣∣∣∣C(n, s)
ˆ

Rn\Bδ(x)

ϕ(x)−ϕ(y)
|x− y|n+2s dy+C(n, s)

ˆ
Bδ(x)

ϕ(x)−ϕ(y)
|x− y|n+2s dy

∣∣∣∣∣
≤ 2kC(n, s)

ˆ
Rn\Bδ(x)

1
|x− y|n+2sdy+ C(n, s)

2

ˆ
Bδ(0)

|ϕ(x+ z) + ϕ(x− z)− 2ϕ(x)|
|z|n+2s dz

≤ 2kC(n, s)ωn−1

ˆ +∞

δ
r−1−2sdr+ C(n, s)ωn−1M

2

ˆ δ

0
r1−2sdr

=
kC(n, s)ωn−1

sδ2s +
C(n, s)ωn−1Mδ2−2s

4(1− s)

≤ c

δ2 + c = c
(1 + |x|)n+2s

(1 + |x|)n+2s ≤
c(1 +R)n+2

(1 + |x|)n+2s =
c

(1 + |x|)n+2s ,

where c > 0 depends only on n and the choice of ϕ. This concludes the proof.

By the previous calculations we have also the following result.

Remark 2.2.3. Let s ∈ (0, 1) and ϕ ∈ C2
c (R

n). Then there exists a constant c = c(n,ϕ) > 0
and a radius R = R(ϕ) > 0 such that

|(−∆)sϕ(x)| ≤ c C(n, s)
(1 + |x|)n+2s , ∀x ∈ Rn \BR(0). (65)

The following result provides interior estimates for the Hölder norm of our solutions.

Proposition 2.2.4. Let C be a cone andK ⊂ C be a compact set and s0 ∈ (0, 1). Then there exist
a constant c > 0 and α ∈ (0, 1), both dependent only on s0,K,n,C , such that

||us||C0,α(K) ≤ c
(

1 + C(n, s)
2s− γs(C)

)
,

for any α ∈ (0,α] and any s ∈ [s0, 1).
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By a standard covering argument, there exists a �nite number of balls such that K ⊂⋃k
j=1Br(xj), for a given radius r > 0 such that

⋃k
j=1B2r(xj) ⊂ C . Thus, it is enough to

prove

Proposition 2.2.5. Let B2r(x) ⊂ C be a closed ball and s0 ∈ (0, 1). Then there exist a constant
c > 0 and α ∈ (0, 1), both dependent only on s0, r,x,n,C , such that

||us||C0,α(Br(x))
≤ c

(
1 + C(n, s)

2s− γs(C)

)
,

for any α ∈ (0,α] and any s ∈ [s0, 1).

In order to achieve the desired result, we need to estimate locally the value of the fractional
Laplacian of us in a ball compactly contained in the cone C .

Lemma 2.2.6. Let η ∈ C∞c (B2r(x)) be a cut-o� function such that 0 ≤ η ≤ 1 with η ≡ 1 in
Br(x). Under the same assumptions of Proposition 2.2.5,

||(−∆)s(usη)||L∞(B2r(x)) ≤ C0

(
1 + C(n, s)

2s− γs(C)

)

for any s ∈ [s0, 1), where C0 > 0 depends on s0,n,x, r,C, and the choice of the function η.

Proof. Let R > 1 such that B2r(x) ⊂ BR/2(0). Hence, let �x a point x ∈ B2r(x). We can
express the fractional Laplacian of usη in the following way

(−∆)s(usη)(x) = η(x)(−∆)sus(x) +C(n, s)
ˆ

Rn
us(y)

η(x)− η(y)
|x− y|n+2s dy

= C(n, s)
ˆ
BR(0)

us(y)
η(x)− η(y)
|x− y|n+2s dy+

+C(n, s)
ˆ

Rn\BR(0)
us(y)

η(x)− η(y)
|x− y|n+2s dy.
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We recall that us(x) = |x|γs(C)us(x/|x|) and that for any s ∈ (0, 1) the functions us are
normalized such that ||us||L∞(Sn−1) = 1. Moreover we remark that η(x)− η(y) = η(x) ≥ 0 in
B2r(x)× (Rn \BR(0)). Hence, using Proposition 2.2.2 and the fact that γs(C) < 2s, we obtain

|(−∆)s(usη)(x)| ≤ C(n, s)
∣∣∣∣∣
ˆ
BR(0)

us(y)
η(x)− η(y)
|x− y|n+2s dy

∣∣∣∣∣+
+C(n, s)

∣∣∣∣∣
ˆ

Rn\BR(0)
us(y)

η(x)− η(y)
|x− y|n+2s dy

∣∣∣∣∣
≤ Rγs(C)|(−∆)sη(x)|+C(n, s)2n+2s

ˆ
Rn\BR(0)

1
|y|n+2s−γs(C)

dy

≤ cR2

(1 + |x|)n+2s +C(n, s)2n+2ωn−1

ˆ +∞

R
r−1−2s+γs(C)dr

≤ cR2

(1 + |x|)n+2s +
cC(n, s)

R2s−γs(C)(2s− γs(C))

≤ C0

(
1 + C(n, s)

2s− γs(C)

)
.

Proof of Proposition 2.2.5. Let as before η ∈ C∞c (B2r(x)) be a cut-o� function such that 0 ≤ η ≤ 1
with η ≡ 1 in Br(x). First, we remark that there exists a constant c0 > 0 such that for any
s ∈ (0, 1), it holds

||usη||L∞(Rn) ≤ c0, (66)

where c0 depends only on n,x, r. In fact, let R > 0 be such that B2r(x) ⊂ BR(0). Then, for any
x ∈ Rn, we have 0 ≤ usη(x) ≤ Rγs(C) ≤ R2. Using the bound (66) and the previous Lemma, we
can apply [24, Theorem 12.1] obtaining the existence of α ∈ (0, 1) and C > 0, both depending
only on n, s0 and the choice of Br(x) such that

||usη||C0,α(Br(x))
≤ C(||usη||L∞(Rn) + ||(−∆)s(usη)||L∞(B2r(x)))

≤ C
(
c0 +C0

(
1 + C(n, s)

2s− γs(C)

))
,

for any s ∈ [s0, 1) and any α ∈ (0,α]. Since η ≡ 1 in Br(x) we obtain the result.

Similarly, now we need to construct some estimate related to theHs seminorm of the solution
us, Since the functions do not belong to Hs(Rn), we need to truncate the solution with some cut
o� function in order to avoid the problems related to the growth at in�nity. In such a way, we
can use

[v]2Hs(Rn) =
∥∥∥(−∆)s/2v

∥∥∥2

L2(Rn)
=

ˆ
Rn
v(−∆)svdx. (67)
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which holds for every v ∈ Hs(Rn). So, let η ∈ C∞c (B2) be a radial cut o� function such that
η ≡ 1 in B1 and 0 ≤ η ≤ 1 in B2, and consider ηR(x) = η(x−x0

R ) the rescaled cut o� function
de�ned in B2R(x0), for some R > 0 and x0 ∈ Rn.

Proposition 2.2.7. Let s0 ∈ (0, 1) and ηR ∈ C∞c (B2R(x0)) previously de�ned. Then

[usηR]
2
Hs(Rn) ≤ c

(
1 + C(n, s)

2s− γs(C)

)
for any s ∈ [s0, 1), where c > 0 is a constant that depends on x0,R,C, s0 and η.

Proof. Let η ∈ C∞c (B2) be a radial cut o� function such that η ≡ 1 in B1 and 0 ≤ η ≤ 1 in
B2, and consider the collection of (ηR)R with R > 0 de�ned by ηR(x) = η(x−x0

R ) with some
x0 ∈ Rn. By (67), for every R > 0 we obtain

[usηR]
2
Hs(Rn) =

∥∥∥(−∆)s/2(usηR)
∥∥∥2

L2(Rn)
=

ˆ
Rn
usηR(−∆)s(usηR)dx.

By de�nition of the fractional Laplacian we have
ˆ

Rn
usηR(−∆)s(usηR)dx = C(n, s)

ˆ
Rn×Rn

us(x)ηR(x)
us(x)ηR(x)− us(y)ηR(y)

|x− y|n+2s dydx

=

ˆ
Rn
η2
Rus(−∆)susdx+C(n, s)

ˆ
Rn×Rn

ηR(x)− ηR(y)
|x− y|n+2s us(x)us(y)ηR(x)dydx

=
C(n, s)

2

ˆ
Rn×Rn

|ηR(x)− ηR(y)|2

|x− y|n+2s us(x)us(y)dydx

where the last equation is obtained by the symmetrization of the previous integral with respect to
the variable (x, y) ∈ Rn ×Rn. Before splitting the domain of integration into di�erent subset, it
is easy to see that

ηR(x)− ηR(y) ≡ 0 in BR(x0)×BR(x0) ∪ (Rn \B2R(x0))× (Rn \B2R(x0))

|ηR(x)− ηR(y)| ≡ 1 in BR(x0)× (Rn \B2R(x0)) ∪ (Rn \B2R(x0))×BR(x0).

where all the previous balls are centered at the point x0. Hence, given the sets Ω1 = B3R(x0)×
B3R(x0) and Ω2 = B2R(x0)× (Rn \B3R(x0)) ∪ (Rn \B3R(x0))×B2R(x0) we have

ˆ
Rn×Rn

|ηR(x)− ηR(y)|2

|x− y|n+2s us(x)us(y)dydx ≤
ˆ

Ω1

|ηR(x)− ηR(y)|2

|x− y|n+2s us(x)us(y)dydx+

+

ˆ
Ω2

|ηR(x)− ηR(y)|2

|x− y|n+2s us(x)us(y)dydx.
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In particular
ˆ

Ω1

|ηR(x)− ηR(y)|2

|x− y|n+2s us(x)us(y)dydx ≤ sup
B3R(x0)

u2
s

ˆ
B3R(x0)×B3R(x0)

‖∇ηR‖2L∞(Rn)

|x− y|n+2s−2 dydx

≤ ‖∇ηR‖2L∞ sup
B3R(x0)

u2
s

ˆ
B3R(0)

dx
ˆ
B6R(x)

1
|x− y|n+2s−2 dy

≤ ‖∇η‖
2
L∞

R2 sup
B3R(x0)

u2
s |B3R|

∣∣∣Sn−1
∣∣∣ (6R)2−2s

2(1− s)

≤ C ‖∇η‖2L∞
Rn−2s

2(1− s) max{|x0|2γs , (3R)2γs} ‖us‖L∞(Sn−1)

where in the second inequality we use the changes of variables x− x0 and y− x0 and the fact
that B3R(0)×B3R(0) ⊂ B3R(0)×B6R(x) for every x ∈ B3R(0). Similarly we have
ˆ

Ω2

|ηR(x)− ηR(y)|2

|x− y|n+2s us(x)us(y)dydx ≤ 2
ˆ
B2R(x0)

us(x)

(ˆ
Rn\B3R(x0)

us(y)

|x− y|n+2sdy
)

dx

≤ 2
ˆ
B2R(0)

us(x+ x0)

ˆ
Rn\B3R(0)

us(y+ x0)

|y|n+2s
(
1− |x||y|

)n+2sdy

dx

≤ 2 · 3n+2s
ˆ
B2R(0)

us(x+ x0)

(ˆ
Rn\B3R(0)

C(|y|+ |x0|)γs

|y|n+2s dy
)

dx

≤ C sup
B2R(x0)

us |B2R|
∣∣∣Sn−1

∣∣∣ 2γsG(x0,R)

with

G(x0,R) =


|x0|γs

2s− γs
(3R)−2s if |x0| ≥ 3R

(3R)γs−2s

2s− γs
if |x0| ≤ 3R

≤ (3R)−2s

2s− γs
max{|x0| , 3R}γs .

Finally, we obtain the desired bound for the seminorm [usηR]2Hs(Rn) summing the two terms and
recalling that ‖us‖L∞(Sn−1) = 1.

2.3 characteristic exponent γs(c) : properties and asymptotic behaviour

In this Section we start the analysis of the asymptotic behaviour of the homogeneity degree
γs(C) as s converges to 1. The main results are two: �rst we get a monotonicity result for the
map s 7→ γs(C), for a �xed regular cone C , which ensures the existence of the limit and, using
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some comparison result, a bound on the possible value of the limit exponent. Secondly we study
the asymptotic behaviour of the quotient C(n,s)

2s−γs(C) .

In order to prove the �rst result and compare di�erent order of s-harmonic functions for di�erent
power of (−∆)s, we need to introduce some results which give a natural extension of the classic
semigroup property of the fractional Laplacian, for function de�ned on cones which grow at
in�nity.

2.3.1 Distributional semigroup property

It is well known that if we deal with smooth functions with compact support, or more gener-
ally with functions in the Schwartz space S(Rn), a semigroup property holds for the fractional
Laplacian, i.e. (−∆)s1 ◦ (−∆)s2 = (−∆)s1+s2 , where s1, s2 ∈ (0, 1) with s1 + s2 < 1. Since
we have to deal with functions in L1

s that grow at in�nity, we have to construct a distributional
counterpart of the semigroup property, in order to compute high order fractional Laplacians for
solutions of the problem given in (55).

First of all, we remark that a solution us to (55) for a �xed cone C belongs to L1
s since 0 ≤

us(x) ≤ |x|γs(C) in Rn with γs(C) ∈ (0, 2s). Moreover, by the homogeneity one can rewrite
the norm (61) in the following way

‖us‖L1
s
=

ˆ
Rn

us(x)

(1 + |x|)n+2sdx =

ˆ
Sn−1

usdσ
ˆ ∞

0

ρn−1+γs(C)

(1 + ρ)n+2sdρ

=
Γ(n+ γs(C))Γ(2s− γs(C))

Γ(n+ 2s)

ˆ
Sn−1

usdσ.

In the recent paper [40] the authors introduced a new notion of fractional Laplacian applying to a
wider class of functions which grow more than linearly at in�nity. This is achieved by de�ning
an equivalence class of functions modulo polynomials of a �xed order. However, it can be hardly
exploited to the solutions of (55) as they annihilate on a set of nonempty interior.

As shown in [8, De�nition 3.6], if we consider a smooth function with compact support ϕ ∈
C∞c (Rn)(or ϕ ∈ C2

c (R
n)), we can de�ne the distribution k2s by the formula

(−∆)sϕ(0) = (k2s,ϕ).

By this de�nition, it follows that (−∆)sϕ(x) = k2s ∗ϕ(x).
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De�nition 2.3.1. [8, De�nition 3.7] For u ∈ L1
s we de�ne the distributional fractional Laplacian

(−∆̃)su by the formula

((−∆̃)su,ϕ) = (u, (−∆)sϕ), ∀ϕ ∈ C∞c (Rn).

In particular, since given an open subset D ⊂ Rn and u ∈ C2(D) ∩ L1
s , the fractional

Laplacian exists as a continuous function of x ∈ D and (−∆̃)su = (−∆)su as a distribution in
D [8, Lemma 3.8], through the Chapter we will always use (−∆)s both for the classic and the
distributional fractional Laplacian. The following is a useful tool to compute the distributional
fractional Laplacian.

Lemma 2.3.2. [8, Lemma 3.3] Assume that
¨
|y−x|>ε

|f(x)g(y)|
|y− x|n+2sdxdy < +∞ and

ˆ
Rn
|f(x)g(x)| dx < +∞, (68)

then ((−∆)sεf , g) = (f , (−∆)sεg). Moreover if f ∈ L1
s and g ∈ Cc(Rn) the assumptions (68) are

satis�ed for every ε > 0.

Before proving the semigroup property, we prove the following lemma which ensures the
existence of the δ-Laplacian of the s-Laplacian, for 0 < δ < 1.

Lemma 2.3.3. Let us be solution of (55) with C a regular cone. Then we have (−∆)sus ∈ L1
δ for

any δ > 0, i.e. ˆ
Rn

|(−∆)sus(x)|
(1 + |x|)n+2δ dx < +∞.

Proof. Since the function us is s-harmonic in C , namely (−∆)sus(x) = 0 for all x ∈ C , we can
restrict the domain of integration to Rn \C .
By homogeneity and the results in [8], we have that the function (−∆)sus is (γs−2s)-homogeneous
and in particularx 7→ (−∆)sus(x) is a continuous negative function, for everyx ∈ D ⊂⊂ Rn \C .
In order to compute the previous integral, we focus our attention on the restriction of the fractional
Laplacian to the sphere Sn−1, in particular, we prove that there exists ε̄ > 0 and C > 0 such that

|(−∆)sus(x)| ≤
C

dist(x, ∂C)s ∀x ∈ Nε̄(∂C) ∩ Sn−1, (69)

where Nε(∂C) = {x ∈ Rn \C : dist(x, ∂C) ≤ ε} is the tubular neighborhood of ∂C .
Hence, �xed R > 0 small enough, consider initially ε < R and x ∈ Sn−1 ∩Nε(∂C): since
us(y) ≤ |y|γs in Rn and by (63) there exists a constant C > 0 such that for every y ∈ C we have

us(y) ≤ C |y|γs−s dist(y, ∂C)s,
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it follows, de�ning δ(x) := dist(x, ∂C) > 0, that

|(−∆)sus(x)| = C(n, s)
ˆ
C∩BR(x)

us(y)

|x− y|n+2sdy+C(n, s)
ˆ
C\BR(x)

us(y)

|x− y|n+2sdy

≤ C(n, s)
ˆ
C∩BR(x)

C |y|γs−s dist(y, ∂C)s

|x− y|n+2s dy+C(n, s)
ˆ
C\BR(x)

|y|γs

|x− y|n+2sdy.

Since C ∩BR(x) ⊂ BR(x) \Bδ(x)(x), we have

|(−∆)sus(x)| ≤ C
ˆ
R≥|x−y|≥δ(x)

|y|γs−s

|x− y|n+s
dy+

ˆ
|x−y|≥R

(|x− y|+ 1)γs

|x− y|n+2s dy

≤ C
ˆ
R≥|x−y|≥δ(x)

1
|x− y|n+s

dy+ ωn−1

ˆ ∞
R

(t+ 1)γs
t1+2s dt

≤ C
ˆ R

δ(x)

1
r1+sdr+M

≤ C 1
dist(x, ∂C)s +M .

Moreover, again since s ∈ (0, 1), up to consider a smaller neighborhood Nε(∂C), we obtain that
there exists a constant ε̄ > 0 small enough and C > 0 such that

|(−∆)sus(x)| ≤
C

dist(x, ∂C)s for every x ∈ Nε̄(∂C) ∩ Sn−1.

Now, �xed δ > 0 and considered ε̄ > 0 of (69), we have

ˆ
Rn\C

|(−∆)sus(x)|
(1 + |x|)n+2δ dx =

ˆ
Rn\C

|x|γs−2s
∣∣∣∣(−∆)sus

(
x
|x|

)∣∣∣∣
(1 + |x|)n+2δ dx

=

ˆ ∞
0

ˆ
Sn−1∩(Rn\C)

rγs−2s |(−∆)sus(z)|
(1 + r)n+2δ rn−1dσ(z)dr

=

ˆ ∞
0

rn−1+γs−2s

(1 + r)n+2δ dr
ˆ
Sn−1∩(Rn\C)

|(−∆)sus(z)|dσ.

Since γs ∈ (0, 2s) and s ∈ (0, 1), it follows
ˆ

Rn\C

|(−∆)sus(x)|
(1 + |x|)n+2δ dx ≤ C

ˆ
Sn−1∩Nε̄(∂C)

|(−∆)sus(z)| dσ+C

ˆ
((Rn\C)\Nε̄(∂C))∩Sn−1

|(−∆)sus(z)| dσ

≤ C
ˆ
Sn−1∩Nε̄(∂C)

1
dist(z, ∂C)sdσ+M

< +∞
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where in the second inequality we used that z 7→ (−∆)sus(z) is continuous in every A ⊂⊂
Sn−1 ∩ (Rn \C) and in the last one that dist(x, ∂C)−s ∈ L1(Sn−1 ∩Nε̄(∂C), dσ).

Proposition 2.3.4 (Distributional semigroup property). Let us be a solution of (55) with C a
regular cone and consider δ ∈ (0, 1− s). Then

(−∆)s+δus = (−∆)δ[(−∆)sus] in D′(C)

or equivalently

((−∆)s+δus,ϕ) = ((−∆)δ[(−∆)sus],ϕ), ∀ϕ ∈ C∞c (C).

Proof. Since |us(x)| ≤ |x|γs , with γs ∈ (0, 2s), it is easy to see that us ∈ L1
s ∩C2(C). Moreover,

as we have already remarked, if us ∈ L1
s then us ∈ L1

s+δ for every δ > 0. In particular, (−∆)s+δus
does exist and it is a continuous function of x ∈ C , for every δ ∈ (0, 1− s). By de�nition of the
distributional fractional Laplacian, we obtain

((−∆)s+δus,ϕ) = (us, (−∆)s+δϕ),

and since for ϕ ∈ C∞c (C) ⊂ S(Rn) in the Schwarz space, the classic semigroup property holds,
we obtain that

((−∆)s+δus,ϕ) = (us, (−∆)s[(−∆)δϕ]).

On the other hand, since by Lemma 2.3.3 we have (−∆)sus ∈ L1
δ , it follows

((−∆)δε[(−∆)sus],ϕ) = ((−∆)sus, (−∆)δεϕ) (70)

for every ε > 0. Since (−∆)sus ∈ L1
δ and ϕ ∈ C∞c (Rn), the δ-Laplacian of (−∆)sus does exists

in a distributional sense and hence the left hand side in (70) does converge to ((−∆)δ[(−∆)sus],ϕ)
as ε → 0. Moreover the right hand side in (70) does converge to ((−∆)sus, (−∆)δϕ) by the
dominated convergence theorem, using Proposition 2.2.2 and Lemma 2.3.3 which give

ˆ
Rn

(−∆)sus(x)(−∆)δεϕ(x)dx ≤
ˆ

Rn

|(−∆)sus(x)|
(1 + |x|)n+2δ dx < +∞.

By the previous remarks,

((−∆)δ[(−∆)sus],ϕ) = ((−∆)sus, (−∆)δϕ).

In order to conclude the proof of the distributional semigroup property, we need to show that

(us, (−∆)s[(−∆)δϕ]) = ((−∆)sus, (−∆)δϕ), (71)
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which is not a trivial equality, since (−∆)δϕ ∈ C∞(Rn) is no more compactly supported.

Let η ∈ C∞c (B2(0)) be a radial cuto� function such that η ≡ 1 in B1(0) and 0 ≤ η ≤ 1
in B2(0), and de�ne ηR(x) = η(x/R), for R > 0. Obviously, since usηR ∈ Cc(Rn) and
(−∆)δϕ ∈ L1

s , by Lemma 2.3.2 we have

(usηR, (−∆)sε[(−∆)δϕ]) = ((−∆)sε(usηR), (−∆)δϕ) (72)

for every ε,R > 0. First, for R > 0 �xed, we want to pass to the limit for ε → 0. For the left
hand side in (72), we get the convergence to (usηR, (−∆)s[(−∆)δϕ]) since we can apply the
dominated convergence theorem. In fact

ˆ
Rn
usηR(−∆)sε[(−∆)δϕ] ≤ c

ˆ
K
(−∆)s+δϕ < +∞,

where K denotes the support of usηR. For the right hand side in (72) we observe that, for any
x ∈ Rn

(−∆)sε(usηR)(x) = ηR(x)(−∆)sεus(x) + us(x)(−∆)sεηR(x)− Iε(us, ηR)(x),

where

Iε(us, ηR)(x) = C(n, s)
ˆ

Rn\Bε(x)

(us(x)− us(y))(ηR(x)− ηR(y))
|x− y|n+2s dy.

Obviously the �rst term ((−∆)sεus, ηR(−∆)δϕ) → ((−∆)sus, ηR(−∆)δϕ) by de�nition of
the distributional s-Laplacian, since us ∈ L1

s and ηR(−∆)δϕ ∈ C∞c (Rn). The second term
(us(−∆)sεηR, (−∆)δϕ)→ (us(−∆)sηR, (−∆)δϕ) by dominated convergence, since

ˆ
Rn
us(−∆)sεηR(−∆)δϕdx ≤ c

ˆ
Rn

us(x)

(1 + |x|)n+2sdx.

Finally, the last term (Iε(us, ηR), (−∆)δϕ)→ (I(us, ηR), (−∆)δϕ) by dominated convergence,
since ˆ

Rn
Iε(us, ηR)(−∆)δϕdx ≤ C

ˆ
Rn

∣∣∣(−∆)δϕ
∣∣∣ dx,

which is integrable by Proposition 2.2.2. Finally, passing to the limit for ε→ 0, from (72) we get

(usηR, (−∆)s[(−∆)δϕ]) = ((−∆)s(usηR), (−∆)δϕ), (73)

for every R > 0.
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Now we want to prove (71), concluding this proof, by passing to the limit in (73) for R→ +∞.
Since we know, by dominated convergence, that the left hand side converges to (us, (−∆)s(−∆)δϕ)
for R→∞, we focus our attention on the other one. At this point, we need to prove that for any
ϕ ∈ C∞c (C), ˆ

Rn
(−∆)s(usηR)(−∆)δϕ −→

ˆ
Rn

(−∆)sus(−∆)δϕ, (74)

as R → +∞. First of all, we remark that (−∆)s(usηR) → (−∆)sus in L1
loc(R

n). In fact,
let K ⊂ Rn be a compact set. There exists r > 0 such that K ⊂ Br. Then, considering
any radius R > r, ηR(x) = 1 for any x ∈ K . Hence, for any R > r, using the fact that
us(x) = |x|γsus(x/|x|), we obtain
ˆ
K
|(−∆)s(usηR)(x)− (−∆)sus(x)|dx =

ˆ
K

dx
∣∣∣∣C(n, s)P.V

ˆ
Rn

us(x)ηR(x)− us(y)ηR(y) + us(y)− us(x)
|x− y|n+2s dy

∣∣∣∣
= C(n, s)

ˆ
K

dx
(

P.V
ˆ
C\BR

us(y)[1− ηR(y)]
|x− y|n+2s dy

)

≤ C(n, s)
ˆ
K

dx
(

P.V
ˆ
C\BR

|y|γs
(|y| − r)n+2sdy

)

≤ C(n, s)
ˆ
K

dx
(

P.V
ˆ
C\BR

|y|γs

|y|n+2s(1− r
R )

n+2sdy
)

= C

(
R

R− r

)n+2s
lim

ρ→+∞

ˆ ρ

R

1
r2s−γs+1 dr

= C

(
R

R− r

)n+2s 1
R2s−γs −→ 0,

as R→ +∞. Hence we obtain also pointwise convergence almost everywhere. Moreover, we
can give the following expression

(−∆)s(usηR)(x) = ηR(x)(−∆)sus(x) +C(n, s)P.V.
ˆ

Rn
us(y)

ηR(x)− ηR(y)
|x− y|n+2s dy. (75)

We remark that ηR(x)(−∆)sus(x) → (−∆)sus(x) and
´

Rn
us(y)

ηR(x)−ηR(y)
|x−y|n+2s dy → 0 point-

wisely. Moreover we can dominate the �rst term in the following way

ηR(x)(−∆)sus(x) ≤ (−∆)sus(x),

and ˆ
Rn

(−∆)sus(x)(−∆)δϕ(x)dx < +∞
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since (−∆)sus ∈ L1
δ and using Proposition 2.2.2 over ϕ ∈ C∞c (C). In order to prove (74), we

want to apply the dominated convergence theorem, and hence we need the following condition
for any R > 0

I :=
∣∣∣∣ˆ

Rn
(−∆)δϕ(x)

(
P.V.

ˆ
Rn
us(y)

ηR(x)− ηR(y)
|x− y|n+2s dy

)
dx
∣∣∣∣ ≤ c.

Therefore, we will obtain a stronger condition; that is, the existence of a value k > 0 such that
for any R > 1

I ≤ c

Rk
.

We split the region of integration Rn ×Rn into �ve di�erent parts; that is,

Ω1 := (Rn \B2R)×Rn, Ω2 := B2R ×B2R, Ω3 := (B2R \BR)× (B3R \B2R),

Ω4 := (B2R \BR)× (Rn \B3R), Ω5 := BR × (Rn \B2R).

First of all, we remark that (−∆)sηR(x) = R−2s(−∆)sη(x/R) and also that ||(−∆)sη||L∞(Rn) <

+∞. For the �rst term, using the fact that ηR(x)− ηR(y) = 0 if (x, y) ∈ (Rn \B2R)× (Rn \
B2R)

I1 :=
ˆ

Rn\B2R

|(−∆)δϕ(x)|
∣∣∣∣ˆ

Rn
us(y)

ηR(x)− ηR(y)
|x− y|n+2s dy

∣∣∣∣ dx
≤

ˆ
Rn\B2R

∣∣∣(−∆)δϕ(x)
∣∣∣ ∣∣∣∣∣
ˆ
B2R

us(y)
ηR(x)− ηR(y)
|x− y|n+2s

∣∣∣∣∣ dx
≤

ˆ
Rn\B2R

|(−∆)δϕ(x)|
(

sup
B2R

us

)
|(−∆)sηR(x)|dx

≤ c

R2s−γs

ˆ
Rn

1
(1 + |x|)n+2δ dx ≤ c

R2s−γs .

For the second term, using the fact that ηR(x)− ηR(y) ≥ 0 if (x, y) ∈ B2R × (Rn \B2R), we
obtain as before

I2 :=
ˆ
B2R

|(−∆)δϕ(x)|
∣∣∣∣∣
ˆ
B2R

us(y)
ηR(x)− ηR(y)
|x− y|n+2s dy

∣∣∣∣∣ dx
≤

ˆ
B2R

|(−∆)δϕ(x)|
(

sup
B2R

us

)
|(−∆)sηR(x)|dx

≤ c

R2s−γs

ˆ
Rn

1
(1 + |x|)n+2δ dx ≤ c

R2s−γs .
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For the third part

I3 :=
ˆ
B2R\BR

|(−∆)δϕ(x)|
∣∣∣∣∣
ˆ
B3R\B2R

us(y)
ηR(x)− ηR(y)
|x− y|n+2s dy

∣∣∣∣∣ dx,

we consider the following change of variables ξ = x/R ∈ B2 \B1 and ζ = y/R ∈ B3 \B2.
Hence, using the γs-homogeneity of us and the de�nition of our cut-o� functions, we obtain

I3 ≤
R2n

Rn+2s−γs

¨
(B2\B1)×(B3\B2)

|(−∆)δϕ(Rξ)|us(ζ)
η(ξ)− η(ζ)
|ξ − ζ|n+2s dξdζ.

We use the fact that us ∈ C0,s(B3 \ B1) (see (63) proved in [67]) and the cut o� function
η ∈ Lip(B3 \B1); that is, there exists a constant c > 0 such that

|us(ξ)− us(ζ)| ≤ c|ξ − ζ|s and |η(ξ)− η(ζ)| ≤ c|ξ − ζ|, (76)

for every ξ, ζ ∈ B3 \B1. Hence,

I3 ≤ R2n

Rn+2s−γs

¨
(B2\B1)×(B3\B2)

|(−∆)δϕ(Rξ)| |us(ζ)− us(ξ)| |η(ξ)− η(ζ)|
|ξ − ζ|n+2s dξdζ

+
R2n

Rn+2s−γs

¨
(B2\B1)×(B3\B2)

|(−∆)δϕ(Rξ)|us(ξ)
|η(ξ)− η(ζ)|
|ξ − ζ|n+2s dξdζ

= J1 + J2.

By (76), we obtain

J1 ≤ c
R2n

Rn+2s−γs

¨
(B2\B1)×(B3\B2)

|(−∆)δϕ(Rξ)| |ξ − ζ|
s+1

|ξ − ζ|n+2sdξdζ

≤ c
R2n

Rn+2s−γs

¨
(B2\B1)×(B3\B2)

1
(1 +R|ξ|)n+2δ

1
|ξ − ζ|n+s−1 dξdζ

≤ c

R2s+2δ−γs

¨
(B2\B1)×(B3\B2)

1
|ξ − ζ|n+s−1 dξdζ ≤ c

R2s+2δ−γs .
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Moreover, using other two changes of variable (ξ, ζ) 7→ (ξ, ξ + h) and (ξ, ζ) 7→ (ξ, ξ − h), we
obtain

J2 ≤ R2n

Rn+2s−γs

¨
(B2\B1)×(B3\B2)

|(−∆)δϕ(Rξ)|us(ξ)
η(ξ)− η(ζ)
|ξ − ζ|n+2s dξdζ

≤ R2n

Rn+2s−γs

¨
(B2\B1)×(B3\B2)

1
(1 +R |ξ|)n+2δ us(ξ)

η(ξ)− η(ζ)
|ξ − ζ|n+2s dξdζ

≤ c

R2s+2δ−γs

¨
(B2\B1)×(B3\B2)

η(ξ)− η(ζ)
|ξ − ζ|n+2s dξdζ

≤ c

R2s+2δ−γs

(
c+

¨
(B2\B1)×Bε

< ∇2η(ξ)h,h >
|h|n+2s dξdh

)
≤ c

R2s+2δ−γs .

For the fourth part

I4 :=
ˆ
B2R\BR

|(−∆)δϕ(x)|
∣∣∣∣∣
ˆ

Rn\B3R

us(y)
ηR(x)− ηR(y)
|x− y|n+2s dy

∣∣∣∣∣ dx,

we consider, as before, the following change of variables ξ = x/R ∈ B2 \B1 and ζ = y/R ∈
Rn \B3. Hence,

I4 ≤ c
R2n

Rn+2s−γs

¨
(B2\B1)×(Rn\B3)

|(−∆)δϕ(Rξ)| |ζ|γs
|ζ − ξ|n+2sdξdζ

≤ c
R2n

Rn+2s−γs

¨
(B2\B1)×(Rn\B3)

1
(1 +R|ξ|)n+2δ

|ζ|γs

|ζ − 2ζ
|ζ| |n+2s

dξdζ

≤ c

R2s+2δ−γs

¨
(B2\B1)×(Rn\B3)

|ζ|γs
|ζ|n+2s(1− 2

|ζ| )
n+2sdξdζ

≤ c

R2s+2δ−γs

¨
(B2\B1)×(Rn\B3)

1
|ζ|n+2s−γs dξdζ ≤ c

R2s+2δ−γs .

Eventually, we consider the last term

I5 :=
ˆ
BR

|(−∆)δϕ(x)|
∣∣∣∣∣
ˆ

Rn\B2R

us(y)
ηR(x)− ηR(y)
|x− y|n+2s dy

∣∣∣∣∣ dx.
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Hence we obtain

I5 ≤ c

ˆ
BR

|(−∆)δϕ(x)|
(ˆ

Rn\B2R

|y|γs
|y− x|n+2sdy

)
dx

≤ c

ˆ
BR

|(−∆)δϕ(x)|

ˆ
Rn\B2R

|y|γs

|y− Ry
|y| |n+2s

dy

dx

≤ c

ˆ
BR

|(−∆)δϕ(x)|
(ˆ

Rn\B2R

1
|y|n+2s−γs dy

)
dx

≤ c

(ˆ
Rn

1
(1 + |x|)n+2δ dx

)(ˆ +∞

2R

1
r1+2s−γs dr

)
c

R2s−γs ,

which it implies the desired result.

At this point, �xed s ∈ (0, 1), by the distributional semigroup property we can compute
easily high order fractional Laplacians (−∆)s+δ viewing it as the δ-Laplacian of the s-Laplacian.

Corollary 2.3.5. Let C be a regular cone. For every δ ∈ (0, 1− s), the solution us of (55) is
(s+ δ)-superharmonic in C in the sense of distribution, i.e.

((−∆)s+δus,ϕ) ≥ 0

for every test function ϕ ∈ C∞c (C) nonnegative in C .
Moreover, us is also superharmonic in C in the sense of distribution, i.e.

(−∆us,ϕ) ≥ 0

for every test function ϕ ∈ C∞c (C) nonnegative in C .

Proof. As said before, the facts that us ∈ L1
s+δ and us ∈ C2(A) for every A ⊂⊂ C ensure

the existence of the (−∆)s+δus and the continuity of the map x 7→ (−∆)s+δus(x) for every
x ∈ A ⊂⊂ C . Hence at this point, the only part we need to prove is the positivity of the
(s+ δ)-Laplacian in the sense of the distribution, which is a direct consequence of the previous
result. Indeed, since us is a solution of the problem (55), by Proposition 2.3.4 we know that for
every ϕ ∈ C∞c (C) we have

((−∆)s+δus,ϕ) = ((−∆)δ[(−∆)sus],ϕ)

=

ˆ
C
ϕ(x) P.V.

ˆ
Rn

(−∆)sus(x)− (−∆)sus(y)
|x− y|n+2δ dydx.
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where (−∆)δ[(−∆)sus] is well de�ned since that (−∆)sus ≡ 0 ∈ C2(A) for every A ⊂⊂ C

and, by Lemma 2.3.3, (−∆)sus ∈ L1
δ for every δ ∈ (0, 1− s).

Consider now nonnegative test function ϕ ≥ 0 in C , since (−∆)sus(x) = 0 for every x ∈ C , we
have for every x ∈ Rn \C

(−∆)sus(x) = −
ˆ
C

us(y)

|x− y|n+2sdy ≤ 0.

Similarly,

((−∆)δ[(−∆)sus],ϕ) =
ˆ
C
ϕ(x)

ˆ
Rn

−(−∆)sus(y)
|x− y|n+2δ dydx ≥ 0,

since the support of ϕ is compact in the cone C , and so there exists ε > 0 such that |x− y| > ε in
the above integral. We have obtained that for any δ ∈ (0, 1− s) and any nonnegativeϕ ∈ C∞c (C)

((−∆)s+δus,ϕ) ≥ 0,

then, passing to the limit for δ → 1− s, the function us is superharmonic in the distributional
sense

0 ≤ lim
δ→1−s

((−∆)s+δus,ϕ) = lim
δ→1−s

(us, (−∆)s+δϕ) = (us,−∆ϕ) = (−∆us,ϕ).

2.3.2 Monotonicity of s 7→ γs(C)

The following proposition is a consequence of Corollary 2.3.5 and it follows essentially the
proof of Lemma 2 in [9].

Proposition 2.3.6. For any �xed regular cone C with vertex in 0, the map s 7→ γs(C) is monotone
non decreasing in (0, 1).

Proof. Fixed the cone C , let us denote with γs and γs+δ respectively the homogeneities of us and
us+δ . Let us suppose by contradiction that γs > γs+δ for a δ ∈ (0, 1− s), and let us consider the
function

h(x) = us+δ(x)− us(x) in Rn,

where us is the homogeneous solution of (55) and us+δ is the unique, up to multiplicative constants,
nonnegative nontrivial homogeneous and continuous in Rn solution for(−∆)s+δu = 0, in C,

u = 0, in Rn \C,
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of the form
us+δ(x) = |x|γs+δus+δ

(
x

|x|

)
.

The function h is continuous in Rn and h(x) = 0 in Rn \C . We want to prove that h(x) ≤ 0 in
Rn \ (C ∩B1). Since h = 0 outside the cone, we can consider only what happens in C \B1. As
we already quoted, we have

c1(s)|x|γs−sdist(x, ∂C)s ≤ us(x) ≤ c2(s)|x|γs−sdist(x, ∂C)s, (77)

for any x ∈ C \ {0}, and there exist two constants c1(s+ δ), c2(s+ δ) > 0 such that

c1(s+ δ)|x|γs+δ−(s+δ)dist(x, ∂C)s+δ ≤ us+δ(x) ≤ c2(s+ δ)|x|γs+δ−(s+δ)dist(x, ∂C)s+δ.

We can choose us and us+δ so that c := c1(s) = c2(s + δ) since they are de�ned up to a
multiplicative constant. Then, for any x ∈ C \B1, since |x|γs+δ ≤ |x|γs , we have

h(x) ≤ c|x|γsdist(x, ∂C)s
[

dist(x, ∂C)δ

|x|δ
− 1

]
≤ 0. (78)

In fact, if we take x such that dist(x, ∂C) ≤ 1, then (78) follows by

dist(x, ∂C)δ

|x|δ
− 1 ≤ dist(x, ∂C)δ − 1 ≤ 0.

Instead, if we consider x so that dist(x, ∂C) > 1, then dist(x, ∂C)δ < |x|δ and hence (78) follows.

Now we want to show that there exists a point x0 ∈ C ∩ B1 such that h(x0) > 0. Let us
take a point x ∈ Sn−1 ∩C and let α := us+δ(x) > 0 and β := us(x) > 0. Hence, there exists
a small r > 0 so that αrγs+δ > βrγs , and so, taking x0 with |x0| = r and so that x0

|x0| = x, we
obtain h(x0) > 0.

If we consider the restriction of h to C ∩B1, which is continuous on a compact set, for the
considerations done before and for the Weierstrass Theorem, there exists a maximum point
x1 ∈ C ∩B1 for the function h which is global in Rn and is strict at least in a set of positive
measure. Hence,

(−∆)s+δh(x1) = C(n, s) P.V.
ˆ

Rn

h(x1)− h(y)
|x1 − y|n+2(s+δ) dy > 0,

and since (−∆)s+δh is a continuous function in the open cone, there exists an open set U(x1)

with U(x1) ⊂ C such that

(−∆)s+δh(x) > 0 ∀x ∈ U(x1).
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But thanks to Corollary 2.3.5 we obtain a contradiction since for any nonnegativeϕ ∈ C∞c (U(x1))

((−∆)s+δh,ϕ) = ((−∆)s+δus+δ,ϕ)− ((−∆)s+δus,ϕ) = −((−∆)s+δus,ϕ) ≤ 0.

With the same argument of the previous proof we can show also the following useful upper
bound.

Proposition 2.3.7. For any �xed regular cone C with vertex in 0 and any s ∈ (0, 1), γs(C) ≤
γ(C).

Proof. Seeking a contradiction, we suppose that there exists s ∈ (0, 1) such that γs > γ. Hence
we de�ne the function

h(x) = u(x)− us(x) in Rn,

where us and u are respectively solutions to (55) and−∆u = 0, in C,
u = 0, in Rn \C.

(79)

We recall that these solutions are unique, up to multiplicative constants, nonnegative nontrivial
homogeneous and continuous in Rn of the form

u(x) = |x|γu
(
x

|x|

)
, us(x) = |x|γsus

(
x

|x|

)
.

for some γs ∈ (0, 2s) and γ ∈ (0,+∞). The function h is continuous in Rn and h(x) = 0 in
Rn \C . We want to prove that h(x) ≤ 0 in Rn \ (C ∩B1). Since h = 0 outside the cone, we
can consider only what happens in C \B1. So, there exist two constants c1(s), c2(s) > 0 such
that, for any x ∈ C \ {0}, it holds (77). Moreover there exist two constants c1, c2 > 0 such that,

c1|x|γ−1dist(x, ∂C) ≤ u(x) ≤ c2|x|γ−1dist(x, ∂C).

We can choose us and u so that c := c1(s) = c2 since they are de�ned up to a multiplicative
constant. Then, for any x ∈ C \B1, since |x|γ ≤ |x|γs , we have

h(x) ≤ c|x|γsdist(x, ∂C)s
[

dist(x, ∂C)1−s

|x|1−s
− 1

]
≤ 0,

with the same arguments of the previous proof.

Now we want to show that there exists a point x0 ∈ C ∩ B1 such that h(x0) > 0. Let us
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take a point x ∈ Sn−1 ∩C and let α := u(x) > 0 and β := us(x) > 0. Hence, there exists a
small r > 0 so that αrγ > βrγs , and so, taking x0 with |x0| = r and so that x0

|x0| = x, we obtain
h(x0) > 0.

If we consider the restriction of h to C ∩B1, which is continuous on a compact set, for the
considerations done before and for the Weierstrass Theorem, there exists at least a maximum
point in C ∩B1 for the function hwhich is global in Rn. Moreover, since h cannot be constant on
C ∩B1 and it is of class C2 inside the cone, there exists a global maximum y ∈ C ∩B1 such that,
up to a rotation, ∂2

xixih(y) ≤ 0 for any i = 1, ...,n and ∂2
xjxjh(y) < 0 for at least a coordinate

direction. Hence
∆h(y) =

n∑
i=1

∂2
xixih(y) < 0.

By the continuity of ∆h in the open cone, there exists an open set U (y) with U(y) ⊂ C such that

∆h(x) < 0 ∀x ∈ U(y).

Since, by Corollary 2.3.5 for any nonnegative ϕ ∈ C∞c (U(y))

(−∆us,ϕ) ≥ 0,

hence
(∆h,ϕ) = (∆u,ϕ)− (∆us,ϕ) = (−∆us,ϕ) ≥ 0,

and this is a contradiction.

2.3.3 Asymptotic behavior of C(n,s)
2s−γs(C)

Let us de�ne for any regular cone C the limit

µ(C) = lim
s→1−

C(n, s)
2s− γs(C)

∈ [0,+∞].

Obviously, thanks to the monotonicity of s 7→ γs(C) in (0, 1), this limit does exist, but we want
to show that µ(C) can not be in�nite. At this point, this situation can happen since 2s− γs(C)
can converge to zero and we do not have enough information about this convergence. The study
of this limit depends on the cone C itself and so we will consider separately the case of wide cones
and narrow cones, which are respectively when γ(C) < 2 and when γ(C) ≥ 2. In this Section,
we prove this result just for regular cones, while in Section 2.4 we will extend the existence of a
�nite limit µ(C) to any unbounded cone, without the monotonicity result of Proposition 2.3.6.
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Wide cones: γ(C) < 2

We remark that, �xed a wide cone C ⊂ Rn, then there exists ε > 0 and s0 ∈ (0, 1), both
depending on C , such that for any s ∈ [s0, 1)

2s− γs(C) ≥ ε > 0.

In fact we know that s 7→ γs(C) is monotone non decreasing in (0, 1) and 0 < γs(C) ≤ γ(C) <
2. Hence, de�ning γ(C) = lims→1 γs(C) ∈ (0, 2) we can choose

s0 :=
γ(C)− 2

4 + 1 ∈ (1/2, 1) and ε :=
2− γ(C)

2 > 0,

obtaining
2s− γs(C) ≥ 2s0 − γ(C) = ε > 0.

As a consequence we obtain µ(C) = 0 for any wide cone.

Narrow cones: γ(C) ≥ 2

Before addressing the asymptotic analysis for any regular cone, we focus our attention on the
spherical caps ones with "small" aperture. Hence, let us �x θ0 ∈ (0,π/4) and for any θ ∈ (0, θ0],
let

λ1(θ) := λ1(ωθ) = min
u∈H1

0 (S
n−1∩Cθ)

u6=0

´
Sn−1 |∇Sn−1u|2 dσ´

Sn−1 u2dσ .

We have that λ1(θ) > 2n, and hence the following problem is well de�ned

µ0(θ) := min
u∈H1

0 (S
n−1∩Cθ)

u6=0

´
Sn−1 |∇Sn−1u|2 − 2nu2dσ(´

Sn−1 |u|dσ
)2 . (80)

This number µ0(θ) is strictly positive and achieved by a nonnegative ϕ ∈ H1
0 (S

n−1 ∩Cθ) \ {0}
which is strictly positive on Sn−1 ∩Cθ and is obviously solution to−∆Sn−1ϕ = 2nϕ+ µ0(θ)

ˆ
Sn−1

ϕdσ in Sn−1 ∩Cθ,

ϕ = 0 in Sn−1 \Cθ,
(81)

where −∆Sn−1 is the Laplace-Beltrami operator on the unitary sphere Sn−1.
Let now v be the 0-homogeneous extension of ϕ to the whole of Rn and r(x) := |x|. Such a
function will be solution to−∆v = 2nv

r2 + µ0(θ)
r2

ˆ
Sn−1

vdσ in Cθ,

v = 0 in Rn \Cθ.
(82)
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Since the spherical cap Cθ ∩ Sn−1 is an analytic submanifold of Sn−1 and the data (∂Cθ ∩
Sn−1, 0, ∂νϕ) are not characteristic, by the classic theorem of Cauchy-Kovalevskaya we can
extend the solution ϕ of (81) to a function ϕ̃, which is de�ned in a enlarged cone and it satis�es−∆Sn−1ϕ̃ = 2nϕ̃+ µ0(θ)

ˆ
Sn−1

ϕdσ in Sn−1 ∩Cθ+ε,

ϕ̃ = ϕ in Sn−1 ∩Cθ,

for some ε > 0. As in (82), we can de�ne ṽ as the 0-homogenous extension of ϕ̃. Finally, we
introduce the following function

vs(x) := r(x)γ
∗
s (θ)v(x),

where the choice of the homogeneity exponent γ∗s (θ) ∈ (0, 2s) will be suggested by the following
important result.

Theorem 2.3.8. Let θ ∈ (0, θ0], then there exists s0 = s0(θ) ∈ (0, 1) such that

(−∆)svs(x) ≤ 0 in Cθ,

for any s ∈ [s0, 1).

Proof. By the γ∗s (θ)-homogeneity of vs, it is su�cient to prove that (−∆)svs ≤ 0 on Cθ ∩ Sn−1,
since x 7→ (−∆)svs is (γ∗s (θ)− 2s)-homogenous. In order to ease the notations, through the
following computations we will simply use γ instead of γ∗s (θ) and o(1) for the terms which
converge to zero as s goes to 1. Hence, for x ∈ Sn−1 ∩Cθ , we have

(−∆)svs(x) = |x|γ (−∆)sv(x)+ v(x)(−∆)srγ(x)−C(n, s)
ˆ

Rn

(rγ(x)− rγ(y))(v(x)− v(y))
|x− y|n+2s dy.

First for R > 0,

(−∆)srγ(x) =C(n, s)
ˆ
BR(x)

|x|γ − |y|γ

|x− y|n+2sdy+C(n, s)
ˆ

Rn\BR(x)

|x|γ − |y|γ

|x− y|n+2sdy

=
C(n, s)

2

ˆ
BR(0)

2 |x|γ − |x+ z|γ − |x− z|γ

|z|n+2s dz +C(n, s)
ˆ

Rn\BR(x)

1− |y|γ

|x− y|n+2sdy

= − C(n, s)
2

ˆ R

0

ρ2ρn−1

ρn+2s dρ
ˆ
Sn−1

〈∇2 |x|γ z, z〉dσ+ o(1)+

+C(n, s)
∣∣∣Sn−1

∣∣∣ ˆ ∞
R

1
ρ1+2sdρ−C(n, s)

ˆ
Rn\BR(x)

|y|γ

|x− y|n+2sdy

=− C(n, s)
2

R2−2s

2− 2s

ˆ
Sn−1

〈∇2 |x|γ z, z〉dσ+

−C(n, s)
ˆ ∞
R

ρn−1+γ

ρn+2s

ˆ
Sn−1

∣∣∣∣xρ − ϑ
∣∣∣∣γ dœ(ϑ)dρ+ o(1).
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Since for every symmetric matrix A we haveˆ
Sn−1

〈Az, z〉dσ =
trA
n
ωn−1

where ωn−1 is the Lebesgue measure of the (n− 1)-sphere Sn−1, we can simplify the �rst term
since tr∇2 |x|γ = ∆(|x|γ) and checking that

∣∣∣xρ − ϑ∣∣∣γ = 1 + γρ−1〈ϑ,x〉+ o(ρ−1) as ρ→∞ it
follows

(−∆)srγ(x) =− C(n, s)
2

R2−2s

2− 2s
∆(|x|γ)ωn−1

n
−C(n, s)ωn−1

ˆ ∞
R

ρn−1+γ

ρn+2s dρ+ o(1)

=− C(n, s)ωn−1
4n(1− s) γ(n− 2 + γ) |x|γ−2R2−2s − C(n, s)

2s− γ ωn−1R
γ−2s + o(1)

=− C(n, s)ωn−1
4n(1− s) γ(n− 2 + γ)R2−2s − C(n, s)

2s− γ ωn−1R
γ−2s + o(1)

=− C(n, s)ωn−1
4n(1− s) γ(n− 2 + γ)− C(n, s)

2s− γ ωn−1 + o(1),

where in the last equality we choose γ = γ∗s (θ) such that γ∗s (θ)− 2s→ 0 as s goes to 1.
Similarly, if ṽ is the 0-homogenous extension of v in an enlarged cone, which is such that v ≥ ṽ
and v = ṽ on Cθ ∩ Sn−1, it follows

(−∆)sv(x) =
C(n, s)

2

ˆ
|z|<1

2v(x)− v(x+ z)− v(x− z)
|z|n+2s dz +C(n, s)

ˆ
|x−y|>1

v(x)− v(y)
|x− y|n+2s dy

≤C(n, s)
2

ˆ
|z|<1

2ṽ(x)− ṽ(x+ z)− ṽ(x− z)
|z|n+2s dz +C(n, s)

ˆ ∞
1

ρn−1

ρn+2s

ˆ
Sn−1

v(x)− v(y)dσdρ

=− C(n, s)
2

ˆ 1

0

ρn−1ρ2

ρn+2s

ˆ
Sn−1

〈∇2ṽ(x)z, z〉dσdρ+ o(1)

=
C(n, s)ωn−1

4n(1− s) (−∆)ṽ(x) + o(1),

where we can use that ṽ solves

−∆ṽ = 2nṽ+ µ0

ˆ
Sn−1

vdσ

in the enlarged cap Sn−1 ∩Cθ+ε. Finally,

C(n, s)
ˆ

Rn

(|x|γ − |y|γ)(v(x)− v(y))
|x− y|n+2s dy =C(n, s)

[ˆ
|y|<1

(1− |y|γ)(v(x)− v(y))
|x− y|n+2s dy+

+

ˆ
|y|>1

(1− |y|γ)(v(x)− v(y))
|x− y|n+2s dy

]
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where the �rst term is o(1) since
ˆ 1

0
(1− ργ)ρn−1

ˆ
Sn−1

v(x)− v(y)
|x− ρy|n+2sdσdρ =

ˆ 1

0
(1− ργ)ρn−1

ˆ
Sn−1

(v(x)− v(y))(1 + o(ρ))dσdρ

+

ˆ R

0
(1− ργ)ρn−1

ˆ
Sn−1

(v(x)− v(y))(n+ 2s)ρ〈x, y〉dσdρ.

Hence, we obtain

C(n, s)
ˆ

Rn

(|x|γ − |y|γ)(v(x)− v(y))
|x− y|n+2s dy =C(n, s)

ˆ
|y|>1

(1− |y|γ)(v(x)− v(y))
|x− y|n+2s dy+ o(1)

=o(1)−C(n, s)
ˆ
|y|>1

|y|γ (v(x)− v(y))
|x− y|n+2s dy+ o(1)

=o(1)−C(n, s)
ˆ ∞

1
ργρn−1

ˆ
Sn−1

v(x)− v(y)
|x− ρy|n+2sdσdρ

=o(1)−C(n, s)
ˆ ∞

1
ρ−1+γ−2s

ˆ
Sn−1

(v(x)− v(y))(1 + o(ρ−1))dσdρ+

−C(n, s)
ˆ ∞

1
ρ−1+γ−2s

ˆ
Sn−1

(v(x)− v(y))(n+ 2s)〈y,x〉ρ−1dσdρ

=o(1)− C(n, s)ωn−1
2s− γ v(x) +

C(n, s)
2s− γ

ˆ
Sn−1

v(y)dσ.

Hence, recalling that γ = γ∗s (θ), for x ∈ Sn−1 ∩Cθ we have

(−∆)svs(x) ≤
(
µ0(θ)

C(n, s)ωn−1
4n(1− s) −

C(n, s)
2s− γ∗s (θ)

) ˆ
Sn−1

vsdσ+
C(n, s)ωn−1

4n(1− s) (n+ γ∗s (θ))(2− γ∗s (θ))vs

≤
(
µ0(θ)−

C(n, s)
2s− γ∗s (θ)

) ˆ
Sn−1

vsdσ+ o(1)

where o(1) is uniform with respect to γ∗s (θ) as s→ 1. In order to obtain a negative right hand
side, it is su�cient to choose γ∗s (θ) < 2s in such a way to make the denominator 2s− γ∗s (θ)
small enough and the quotient C(n,s)

2s−γ∗s (θ)
still bounded.

The previous result suggestes the following choice of the homogeneity exponent

γ∗s (θ) := 2s− sC(n, s)
µ0(θ)

.

We can �nally prove the main result of this Section.

Corollary 2.3.9. For any regular cone C we get µ(C) < +∞.
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Proof. We will show that µ(θ) < +∞ for any θ ∈ (0, θ0]. Then, �xed an unbounded regular
cone C , there exists a spherical cone Cθ such that θ ∈ (0, θ0] and Cθ ⊂ C . Since by inclusion
γs(C) < γs(θ), we obtain

µ(C) ≤ µ(θ) < +∞.

We want to show that �xed θ ∈ (0, θ0], γs(θ) ≤ γ∗s (θ) for any s ∈ [s0(θ), 1), where the choice
of s0(θ) ∈ (0, 1) is given in Theorem 2.3.8. The proof of this fact is based on considerations done
in Proposition 2.3.6. By contradiction, γs(θ) > γ∗s (θ). Let

h(x) = vs(x)− us(x).

The function h is continuous in Rn and h(x) = 0 in Rn \Cθ . We want to prove that h(x) ≤ 0
in Rn \ (Cθ ∩B1). Since h = 0 outside the cone, we can consider only what happens in Cθ \B1.
By (77), there exist two constants c1(s), c2(s) > 0 such that, for any x ∈ Cθ \ {0},

c1(s)|x|γs−sdist(x, ∂Cθ)s ≤ us(x) ≤ c2(s)|x|γs−sdist(x, ∂Cθ)s,

and there exist two constants c1, c2 > 0 such that

c1|x|γ
∗
s−1dist(x, ∂Cθ) ≤ vs(x) ≤ c2|x|γ

∗
s−1dist(x, ∂Cθ).

We can choose vs so that c := c1(s) = c2 since it is de�ned up to a multiplicative constant. Then,
for any x ∈ Cθ \B1, since |x|γ∗s ≤ |x|γs , we have

h(x) ≤ c|x|γsdist(x, ∂Cθ)s
[

dist(x, ∂Cθ)1−s

|x|1−s
− 1

]
≤ 0.

Now we want to show that there exists a point x0 ∈ Cθ ∩B1 such that h(x0) > 0. Let us consider
for example the point x ∈ Sn−1 ∩Cθ determined by the angle ϑ = θ/2, and let α := vs(x) > 0
and β := us(x) > 0. Hence, there exists a small r > 0 so that αrγ∗s > βrγs , and so, taking x0
with angle ϑ = θ/2 and |x0| = r, we obtain h(x0) > 0.

If we consider the restriction of h to Cθ ∩B1, which is continuous on a compact set, for the
considerations done before and for the Weierstrass Theorem, there exists a maximum point
x1 ∈ Cθ ∩B1 for the function h which is global in Rn and is strict at least in a set of positive
measure. Hence,

(−∆)sh(x1) = C(n, s) P.V.
ˆ

Rn

h(x1)− h(y)
|x1 − y|n+2s dy > 0,

and since (−∆)sh is a continuous function in the open cone, there exists an open set U(x1) with
U (x1) ⊂ Cθ such that

(−∆)sh(x) > 0 ∀x ∈ U(x1).
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But thanks to Theorem 2.3.8 we obtain a contradiction since for any nonnegative ϕ ∈ C∞c (U(x1))

((−∆)sh,ϕ) = ((−∆)svs,ϕ)− ((−∆)sus,ϕ) = ((−∆)svs,ϕ) ≤ 0,

where the last inequality holds for any s ∈ [s0(θ), 1). Hence, for any θ ∈ (0, θ0]

µ(θ) = lim
s→1−

C(n, s)
2s− γs(θ)

≤ lim
s→1−

C(n, s)
2s− γ∗s (θ)

= µ0(θ) < +∞. (83)

2.4 the limit for s↗ 1

In this Section we prove the main result, Theorem 2.1.2, emphasizing the di�erence between
wide and narrow cones. Then we improve the asymptotic analysis proving uniqueness of the
limit under assumptions on the geometry and the regularity of C .

Let C ⊂ Rn be an open cone and consider the minimization problem

λ1(C) = inf


ˆ
Sn−1

|∇Sn−1u|2dσ
ˆ
Sn−1

u2dσ
: u ∈ H1(Sn−1) \ {0} and u = 0 in Sn−1 \C

 , (84)

which is strictly related to the homogeneity of the solution of (79) by λ1(C) = γ(C)(γ(C) +

n− 2).
Moreover, if γ(C) > 2, equivalently if λ1(C) > 2n, the problem

µ0(C) := inf


ˆ
Sn−1

|∇Sn−1u|2 − 2nu2dσ(ˆ
Sn−1

|u|dσ
)2 : u ∈ H1(Sn−1) \ {0} and u = 0 in Sn−1 \C


(85)

is well de�ned and the number µ0(C) is strictly positive.

By a standard argument due to the variational characterization of the previous quantities, we
already know the existence of a nonnegative eigenfunction ϕ ∈ H1

0 (S
n−1 ∩C) \ {0} associated

to the minimization problem (84) and a nonnegative function ψ ∈ H1
0 (S

n−1 ∩ C) \ {0} that
achieves the minimum (85), since the numerator in (85) is a coercive quadratic form equivalent to
the one in (84).
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Since the cone C may be disconnected, it is well known that ϕ is not necessarily unique. Instead,
the function ψ is unique up to a multiplicative constant, since it solves−∆Sn−1ψ = 2nψ+ µ0(C)

ˆ
Sn−1

ψdσ in Sn−1 ∩C,

ψ = 0 in Sn−1 \C.
(86)

In fact, due to the integral term in the equation, the solution ψ must be strictly positive in every
connected component of C and localizing the equation in a generic component we can easily get
uniqueness by maximum principle.

A fundamental toll in order to reach as s→ 1 the space H1
loc, is the following result

Proposition 2.4.1. [10, Corollary 7] Let Ω ⊂ Rn be a bounded domain. For 1 < p < ∞, let
fs ∈W s,p(Ω), and assume that

[fs]W s,p(Ω) ≤ C0.

Then, up to a subsequence, (fs) converges in Lp(Ω) as s → 1(and, in fact, in W t,p(Ω), for all
t < 1) to some f ∈W 1,p(Ω).

In [10] the authors used a di�erent notation since in our manuscript the normalization constant
C(n, s) is incorporate in the seminorm [·]Hs , in order to obtain a continuity of the norm ‖·‖Hs

for s ∈ (0, 1].

Proof of Theorem 2.1.2. Let C be an open cone and CR be a regular cone with Section on Sn−1 of
class C1,1 such that CR ⊂ C and ∂CR ∩ ∂C = {0}.

By monotonicity of the homogeneity degree γs(·) with respect to the inclusion, we directly
obtain γs(C) < γs(CR) and consequently, up to consider a subsequence, we obtain the existence
of the following �nite limits

γ(C) = lim
s→1

γs(C), µ(C) = lim
s→1

C(n, s)
2s− γs(C)

. (87)

Since γs(C) < 2s, then γ(C) ≤ 2 and similarly µ(C) ∈ [0,+∞).

Let K ⊂ Rn be a compact set and consider x0 ∈ K and R > 0 such that K ⊂ BR(x0). Given
η ∈ C∞c (B2), a radial cut o� function such that η ≡ 1 in B1 and 0 ≤ η ≤ 1 in B2, consider the
rescaled function ηK(x) = η(x−x0

R ) which satis�es ηK ≡ 1 on K .
By Proposition 2.2.7, we have

[usηK ]
2
Hs(B2R(x0))

≤ [usηK ]
2
Hs(Rn) ≤M(n,K)

[
C(n, s)
2(1− s) +

C(n, s)
2s− γs

]
,
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and similarly

‖usηK‖2Hs(B2R(x0))
≤ ‖usηK‖2L2(Rn) + [usηK ]

2
Hs(Rn)

≤M(n,K)

[
C(n, s)
2(1− s) +

C(n, s)
2s− γs

+ 1
]

≤M(n,K)

[ 2n
ωn−1

+ cµ(C) + 1
]

.

By applying Proposition 2.4.1 with Ω = B2R(x0), we obtain that, up to a subsequence, usηK →
uηK in L2(B2R(x0)) and

‖uηK‖2H1(B2R(x0))
≤M(n,K)

up to relabeling the constant M(n,K).
By construction, since ηK ≡ 1 on K and ηK ∈ [0, 1], we obtain that us → u in L2(K) and
similarly

‖u‖H1(K) ≤ ‖uηK‖H1(K) ≤ ‖uηK‖H1(B2R(x0))
<∞,

which gives us the local integrability in H1(Rn).

By Proposition 2.2.4 and Corollary 2.3.9 we obtain, up to pass to a subsequence, uniform in s bound
in C0,α

loc (C) for (us). Then, since we obtain uniform convergence on compact subsets of C , the
limit must be necessary nontrivial with ||u||L∞(Sn−1) = 1, nonnegative and γ(C)-homogeneous.

Let ϕ ∈ C∞c (C) be a positive smooth function compactly supported such that supp ϕ ⊂ Bρ,
for some ρ > 0. By de�nition of the distributional fractional Laplacian

0 =

ˆ
Rn
ϕ(−∆)susdx =

ˆ
Rn
us(−∆)sϕdx =

ˆ
Rn\Bρ

us(−∆)sϕdx+
ˆ
Bρ

us(−∆)sϕdx.

Since
1

|x− y|n+2s =
1

|x|n+2s

1− (n+ 2s) y
|x|

ˆ 1

0

x
|x| − t

y
|x|∣∣∣ x|x| − ty

|x|

∣∣∣n+2s+2 dt

 ,

by de�nition of the fractional Laplacian for regular functions, it follows
ˆ

Rn\Bρ
us(−∆)sϕdx =C(n, s)

ˆ
Rn\Bρ

us(x)

ˆ
supp ϕ

−ϕ(y)
|y− x|n+2sdydx

=C(n, s)
ˆ

Rn\Bρ

us(x)

|x|n+2s

ˆ
supp ϕ

−ϕ(y)dydx+

+C(n, s)(n+ 2s)
ˆ

Rn\Bρ

us(x)

|x|n+2s+1ψ(x)dx,
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for some ψ ∈ L∞. Moreover, since us is γs(C)-homogeneous with γs(C) < 2s, we have

C(n, s)
ˆ

Rn\Bρ

us(x)

|x|n+2sdx =
C(n, s)

2s− γs(C)
ργs(C)−2s

ˆ
Sn−1

us(θ)dσ

and similarly

C(n, s)
∣∣∣∣∣
ˆ

Rn\Bρ

us(x)

|x|n+2s+1ψ(x)dx
∣∣∣∣∣ ≤ C(n, s) ‖ψ‖L∞

2s− γs(C) + 1ρ
γs(C)−2s−1

ˆ
Sn−1

us(θ)dσ = o(1).

Hence, for each s ∈ (0, 1)ˆ
Bρ

us(−∆)sϕdx =

ˆ
Rn\Bρ

us(−∆)sϕdx

= C(n, s)
ˆ

Rn\Bρ
us(x)

ˆ
supp ϕ

ϕ(y)

|x− y|n+2sdydx

=
C(n, s)

2s− γs(C)

ˆ
supp ϕ

ϕ(x)dx
ˆ
Sn−1

usdσ+ o(1)

and passing through the limit, up to a subsequence, we obtainˆ
Bρ

u(−∆)ϕdx = µ(C)

ˆ
Sn−1

udσ
ˆ

supp ϕ
ϕ(x)dx

=

ˆ
Bρ

(
µ(C)

ˆ
Sn−1

udσ
)
ϕ(x)dx,

which implies, integrating by parts, that

−∆u = µ(C)

ˆ
Sn−1

udσ in D′(C).

Since the function u is γ(C)-homogenous, we get

− ∆Sn−1u = λu+ µ(C)

ˆ
Sn−1

udσ on Sn−1 ∩C, (88)

where λ = γ(C)(γ(C) + n− 2) is the eigenvalue associated to the critical exponent γ(C) ≤ 2.

Consider now a nonnegative ϕ ∈ H1
0 (S

n−1 ∩ C) \ {0}, strictly positive on Sn−1 ∩ C which
achieves (84). Then

− ∆Sn−1ϕ = λ1(C)ϕ, in H−1(Sn−1 ∩C). (89)
By testing this equation with u and integrating by parts, we obtain(

λ1(C)− λ
) ˆ

Sn−1
uϕdσ = µ(C)

ˆ
Sn−1

udσ
ˆ
Sn−1

ϕdσ ≥ 0 (90)

which implies that in general γ(C) ≥ γ(C) and γ(C) = γ(C) if and only if µ(C) = 0.



2.4 the limit for s↗ 1 87

Wide cones: γ(C) < 2

By the previous remark we have γ(C) < 2 and by de�nition of µ(C), it follows µ(C) = 0.
Since ϕ is the trace on Sn−1 of an homogenous harmonic function on C , we obtain that γ(C) =
γ(C) and u is an homogeneous nonnegative harmonic function on C such that ‖u‖L∞(Sn−1) = 1.

Narrow cones: γ(C) ≥ 2

If γ(C) < 2 we have µ(C) = 0 and consequently λ1(C) = λ, which is a contradiction since
γ(C) ≥ 2 > γ(C). Hence, if C is a narrow cone we get γ(C) = 2. Since γ(C) = 2 is trivial and
it follows directly from the previous computations, consider now µ0(C) as the minimum de�ned
in (85), which is well de�ned and strictly positive since we are focusing on the remaining case
γ(C) > 2. We already remarked that it is achieved by a nonnegative ψ ∈ H1

0 (S
n−1 ∩C) \ {0}

which is strictly positive on Sn−1 ∩C and solution of

−∆Sn−1ψ = 2nψ+ µ0(C)

ˆ
Sn−1

ψdσ in H−1(Sn−1 ∩C).

As we already did in the previous cases, by testing this equation with uwe obtain µ(C) = µ0(C).
By uniqueness of the limits γ(C) and µ(C), the result in (87) holds for s→ 1 and not just up to
a subsequence.

Remark 2.4.2. The possible obstruction to the existence of the limit of us as s converge s to one
lies in the possible lack of uniqueness of nonnegative solutions to (59) such that ‖u‖L∞(Sn−1) = 1.
This is the reason why we need to extract subsequences in the asymptotic analysis of Theorem
2.1.2. More precisely, uniqueness of (84) implies uniqueness of the limit u in the case γ(C) ≤ 2
and uniqueness of (85) in the case γ(C) > 2. When C is connected (84) is attained by a unique
normalized nonnegative solution via a standard argument based upon the maximum priciple. On
the other hand, as we already remarked, when γ(C) > 2, problem (85) always admits a unique
solution. Ultimately, the main obstacle in this analysis is the disconnection of the cone C when
γ(C) ≤ 2: in this case we cannot always ensure the uniqueness of the solution of the limit
problem and even the positivity of the limit function u on every connected components of C .

The following example shows uniqueness of the limit function u due to the nonlocal nature
of the fractional Laplacian under a symmetry assumption on the cone C .

Proposition 2.4.3. Let C = C1 ∪ · · · ∪ Cm be a union of disconnected cones such that C1 is
connected and there are orthogonal maps Φ2, . . . , Φm ∈ O(n) (e.g. re�ections about hyperplanes)
such that Ci = Φi(C1) and and Φi(C) = (C) for i = 2, . . . ,m. Let (us) be the family of
nonnegative solutions to (55) such that ‖us‖L∞(Sn−1) = 1. Then there exists the limit of us as s↗ 1
in L2

loc(R
n) and uniformly on compact subsets of C .
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Proof. We remark that, for any element of the orthogonal group Φ : Rn → Rn,

(−∆)s (u ◦Φ) (x) = C(n, s) P.V.
ˆ

Rn

u(Φ(x))− u(y)
|Φ(x)− y|n+2s dy = (−∆)su (Φ(x)) .

By the uniqueness result [5, Theorem 3.2 ] of s-harmonic functions on cones, we infer that
us ≡ us ◦Φi, for every i = 2, . . . ,m. Therefore, there holds convergence to u, where satis�es
‖u‖L∞(Sn−1) = 1, and it is a solution of


−∆u = µ(C)

ˆ
Sn−1

udσ in C,

u ≥ 0 in C,
u = 0 in Rn \C ,

(91)

such that u ≡ u ◦Φi for every i = 2, . . . ,m. Finally, connectedness of C1 yields uniqueness of
such solution also for narrow cones.

θ

y

0 π/4 π/2 3π/4 π

1
s

y = Γ(θ)

y = Γs(θ)

y = Γ(θ)

Figure 5: Values of the limit Γ(θ) = lims→1 Γs(θ) and Γ(θ), for n = 2.

Proof of Corollary 2.1.3. Corollary 2.1.3 is an easy application of our main Theorem 2.1.2, since
it is a consequence of the Dini’s Theorem for a monotone sequence of continuous functions
which converges pointwisely to a continuous function on a compact set. In fact, �xed s ∈ (0, 1),
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the function θ 7→ γs(θ) is continuous in [0,π) with γs(0) = 2s and γs(π) = 0. Moreover this
function is also monotone decreasing in [0,π] and since there exists the limit

lim
θ→π−

γs(θ) =

2s−1
2 if n = 2 and s > 1

2 ,
γs(π) = 0 otherwise,

we can extend θ 7→ γs(θ) to a continuous function in [0,π] (see [67]). Nevertheless, the limit
γ(θ) = lims→1 γs(θ) = min{γ(θ), 2} is continuous on [0,π] with

γ(π) =

1
2 if n = 2,
0 otherwise.

Eventually, for any �xed θ ∈ [0,π], the function s 7→ γs(θ) is monotone nondecreasing in (0, 1).
By the Dini’s Theorem the convergence is uniform on [0,π]. This fact obviously implies the
uniform convergence

Γs(θ) =
γs(θ) + γs(π− θ)

2 −→ Γ(θ) =
γ(θ) + γ(π− θ)

2

in [0,π], and hence

νACFs = min
θ∈[0,π]

Γs(θ) −→ min
θ∈[0,π]

Γ(θ) = νACF .

2.5 uniform estimates in c0,α on annuli

We have already remarked in Section 2.2 that, if you take a cone C = Cω with ω ⊂ Sn−1 a
�nite union of connected C1,1 domain ωi, such that ωi ∪ ωj = ∅ for i 6= j, by [67, Lemma 3.3]
we have (63).
Hence solutions us to (55) are C0,s(Sn−1) and for any �xed α ∈ (0, 1), any solution us with
s ∈ (α, 1) is C0,α(Sn−1); that is, there exists Ls > 0 such that

sup
x,y∈Sn−1

|us(x)− us(y)|
|x− y|α

= Ls.

Let us consider an annulus A = Ar1,r2 = Br2 \Br1 with 0 < r1 < r2 < +∞. We have the
following result.
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Lemma 2.5.1. Let α ∈ (0, 1), s0 ∈ (max{1/2,α}, 1) and A an annulus centered at zero. Then
there exists a constant c > 0 such that any solution us to (55) with s ∈ [s0, 1) satis�es

sup
x,y∈A

|us(x)− us(y)|
|x− y|α

≤ cLs.

Proof. First of all we remark that

sup
x,y∈Sn−1

r

|us(x)− us(y)|
|x− y|α

≤ cLs, (92)

for any r ∈ (r1, r2). In fact, by the γs-homogeneity of our solutions, we have

sup
x,y∈Sn−1

r

|us(x)− us(y)|
|x− y|α

= Lsr
γs−α,

and since (2s0−1)/2 ≤ γs(C) < 2 for any s ∈ [s0, 1) by the inclusionC ⊂ Rn \{half − line from 0},
we obtain (92).

Now we can show what happens considering x, y ∈ A which are not on the same sphere. We can
suppose without loss of generality that x ∈ Sn−1

R , y ∈ Sn−1
r with r1 < r < R < r2. Hence let us

take the point z obtained by the intersection between Sn−1
r and the half-line connecting 0 and x

(z may be y itself). Hence

|us(x)− us(y)| ≤ |us(x)− us(z)|+ |us(z)− us(y)|
≤ us(x/|x|)||x|γs − |z|γs |+ cLs|z − y|α

≤ cLs|x− y|α.

In fact we remark that ||us||L∞(Sn−1) = 1. Moreover, since the angle β = x̂zy ∈ (π/2,π],
obviously |z − y|α ≤ |x− y|α. Moreover by the α-Hölder continuity of t 7→ tγs in (r1, r2) and
the bounds (2s0 − 1)/2 ≤ γs(C) < 2, one can �nd a universal constant c > 0 such that

||x|γs − |z|γs | ≤ c||x| − |z||α ≤ c|x− z|α ≤ c|x− y|α,

where the last inequality holds since z is the point on Sn−1
r which minimizes the distance

dist(x,Sn−1
r ).

A nontrivial improvement of the main Theorem concerns uniform bounds in Hölder spaces
holding uniformly for s→ 1.

Theorem 2.5.2. Assume the cone is C1,1. Let α ∈ (0, 1), s0 ∈ (max{1/2,α}, 1) andA an annulus
centered at zero. Then the family of solutions us to (55) is uniformly bounded in C0,α(A) for any
s ∈ [s0, 1).
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Proof. Seeking a contradiction,

max
x,y∈Sn−1

|usk(x)− usk(y)|
|x− y|α

= Lsk = Lk → +∞, as sk → 1. (93)

We can consider the sequence of points xk, yk ∈ Sn−1 which realizes Lk at any step. It is easy to
see that this couple belongs to C ∩ Sn−1. Moreover we can always think xk as the one closer
to the boundary ∂C ∩ Sn−1. Therefore, to have (93), we have rk = |xk − yk| → 0. Hence,
without loss of generality, we can assume that xk, yk belong defenetively to the same connected
component of C and

|usk(yk)− usk(xk)|
rαk

= Lk,
yk − xk
rk

→ e1.

Let us de�ne

uk(x) =
usk(xk + rkx)− usk(xk)

rαkLk
, x ∈ Ωk =

C − xk
rk

.

We remark that uk(0) = 0 and uk((yk − xk)/rk) = 1.

Moreover we can have two di�erent situations.

Case 1 : If
rk

dist(xk, ∂C)
→ 0,

then the limit of Ωk is Rn.

Case 2 : If
rk

dist(xk, ∂C)
→ l ∈ (0,+∞],

then the limit of Ωk is an half-space Rn ∩ {x1 > 0}.

In any case let us de�ne Ω∞ this limit set. Let us consider the annulus A∗ := B3/2 \B1/2. By
Lemma 2.5.1 and the de�nition of uk, we obtain, for any k,

sup
x,y∈A∗

k

|uk(x)− uk(y)|
|x− y|α

≤ c, (94)

where A∗k := A∗−xk
rk
→ Rn and the constant c > 0 depends only on α and A∗. Let us consider a

compact subsetK of Ω∞. Since for k large enoughK ⊂ A∗k , functions uk areC0,α(K) uniformly
in k. This is due also to the fact that they are uniformly in L∞(K), since |uk(x)−uk(0)| ≤ c|x|α
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on K . Hence uk → u uniformly on compact subsets of Ω∞. Moreover u is globally α-Hölder
continuous and it is not constant, since u(e1)− u(0) = 1. To conclude, we will show that u is
harmonic in the limit domain Ω∞; that is, for any φ ∈ C∞c (Ω∞)ˆ

Ω∞
φ(−∆)udx = 0,

and this fact will be a contradiction with the global Hölder continuity. In fact we can apply
Corollary 2.3 in [72], if Ω∞ = Rn directly on the function u and if Ω∞ = Rn ∩ {x1 > 0}, since
u = 0 in ∂Ω∞, we can use the same result over its odd re�ection. Hence we want to proveˆ

Ω∞
φ(−∆)udx =

ˆ
Ω∞

u(−∆)φdx = lim
k→+∞

ˆ
BR

uk(−∆)skφdx = 0,

where BR contains the support of φ and the second equality holds by the uniform convergences
uk → u and (−∆)skφ → (−∆)φ on compact subsets of Ω∞, since φ is a smooth function
compactly supported. Moreover, since uk is sk-harmonic on Ωk, and for k large enough the
support of φ is contained in this domain, we haveˆ

Rn
uk(−∆)skφdx =

ˆ
Rn
φ(−∆)skukdx = 0.

In order to conclude we want

lim
k→+∞

ˆ
Rn\BR

uk(−∆)skφdx = 0.

Hence, de�ning η = xk + rkx and using Remark 2.2.3, we obtain∣∣∣∣∣
ˆ

Rn\BR
uk(−∆)skφdx

∣∣∣∣∣ ≤ C(n, sk)
Lk

r2sk−α
k

ˆ
|η−xk|>Rrk

|usk(η)− usk(xk)|
|η− xk|n+2sk

dη.

For k large enough, we notice that we can choose ε > 0 such that the set {η ∈ Rn : Rrk <
|η− xk| < ε} is contained in A∗. So, we can split the integral obtaining

ˆ
|η−xk|>Rrk

|usk(η)− usk(xk)|
|η− xk|n+2sk

dη ≤
ˆ
Rrk<|η−xk|<ε

|usk(η)− usk(xk)|
|η− xk|n+2sk

dη+
ˆ
|η−xk|>ε

|usk(η)− usk(xk)|
|η− xk|n+2sk

dη

where we have

C(n, sk)r2sk−α
k

Lk

ˆ
Rrk<|η−xk|<ε

|usk(η)− usk(xk)|
|η− xk|n+2sk

dη ≤ C(n, sk)r2sk−α
k cωn−1

ˆ ε

Rrk

t−1+α−2skdt

=
C(n, sk)cωn−1

2sk − α

(
Rα−2sk −

r2sk−α
k

ε2sk−α

)
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and similarly

C(n, sk)r2sk−α
k

Lk

ˆ
|η−xk|>ε

|usk(η)− usk(xk)|
|η− xk|n+2sk

dη ≤ C(n, sk)r2sk−α
k cωn−1
Lk

ˆ ∞
ε

(1 + t)γsk

t1+2sk
dt

=
C(n, sk)r2sk−α

k cωn−1
Lk

(
1 + εγsk−2sk

2sk − γsk

)
.

Finally, recalling that rk → 0, C(n, sk) → 0, Lk → ∞ and 2sk − α > 0 taking s0 > 1/2, we
obtain ∣∣∣∣∣

ˆ
Rn\BR

uk(−∆)skφdx
∣∣∣∣∣ ≤

(
C(n, sk) +

C(n, sk)
2sk − γsk

r2sk−α
n

Lk

)
M

which converges to zero as we claimed, since

C(n, sk)
2sk − γsk(C)

→ µ(C) ∈ [0,+∞)

in any regular cone C ⊂ Rn.
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3

N O DA L S E T O F S O L U T I O N S O F D E G E N E R AT E - S I N G U L A R
E Q UAT I O N S

3.1 introduction

In literature, the subject of nodal sets, or level sets in general, is an important research topic
for solutions of PDEs. Recently in [41, 56, 57, 66] much attention has been paid on the structure
of the singular set and on its (n− 2)-Hausdor� measure, and, as pointed out in [48, 49, 66], a
starting point of this analysis is the validity of a strong unique continuation principle, in order to
ensure the existence of a �nite vanishing order.

In this Chapter we consider the nodal set in Rn+1 of solution of a peculiar class of degenerate-
singular operator, �rstly studied in the pioneering works [44, 43]. In the 80s Fabes, Jerison, Kening
and Serapioni introduced a general class of degenerate operators L = div(A(X)∇·) whose
coe�cient A(X) = (aij(X)) are de�ned starting from a symmetric matrix valued function such
that

λω(X) |ξ|2 ≤ (A(X)ξ, ξ) ≤ Λω(X) |ξ|2 , for some λ, Λ > 0,

where ω may either vanish, or be in�nite, or both. In particular, the prototypes of weights
considered in their analysis where in the Muckenhoupt A2-class, i.e. such that

sup
B⊂Rn+1

( 1
|B|

ˆ
B
ω(X)dX

)( 1
|B|

ˆ
B
ω−1(X)dX

)
<∞.

Given a ∈ (−1, 1) and X = (x, y) ∈ Rn
x ×Ry we consider the cases of ω(X) = |y|a, with

La = div(|y|a∇),

where obviously we denote with div and∇ respectively the divergence and the gradient operator
in Rn+1. Our main purpose is to fully understand the local behaviour of La-harmonic function
near their nodal set and to develop a geometric analysis of its structure and regularity in order to
comprehend how the presence of a nontrivial set where the coe�cients of an elliptic equation
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may either vanishes or be in�nite can a�ect the local picture of its solution.
Inspired by this last claim, we introduce the notion of “characteristic manifold” Σ associated to
the operator La, as the set of points where the coe�cient either vanishes or blows up, and we
studied the properties of the nodal set Γ(u) of solutions of

−Lau = 0 in B1 ⊂ Rn+1.

In particular, since the operator La is locally uniformly elliptic on Rn+1 \Σ, we restrict our atten-
tion on the structure of the nodal set in a neighbourhood of the manifold Σ, trying to understand
the di�erence between the whole nodal set Γ(u) and its restriction on the characteristic manifold Σ.

At �rst sight, our approach seems to be based upon the validity of an Almgren and Weiss type
monotonicity formulas, which guarantee the uniqueness of a non trivial tangent map at every
point of the nodal set, and on a complete classi�cation of the possible homogenous con�gurations
appearing at the blow-up limit. Instead, the crucial result of our analysis relies in the decom-
position of La-harmonic function with respect to the orthogonal direction to the characteristic
manifold Σ. More precisely, we prove

Proposition 3.1.1. Given a ∈ (−1, 1) and u an La-harmonic function in B1, there exist two
unique functions uae ∈ H1,a(B1),u2−a

e ∈ H1,2−a(B1) symmetric with respect to Σ respectively La
and L2−a harmonic in B1 and locally smooth, such that

u(X) = uae(X) + u2−a
e (X)y |y|−a in B1.

Heuristically, the presence of a characteristic manifold Σ imposes a quantization of the possible
ways in which the nodal set can di�use across Σ.
With the previous decomposition in mind, we can reduce the classi�cation of the possible blow-up
limits to the symmetric ones ad �nally recover all the possible cases. In particular, in our analysis
we introduce the new notion of “tangent �eld” ΦX0 of u at a nodal point, which takes care of the
di�erent behaviour of both the symmetric and antisymmetric part of an La-harmonic function.
Namely, by the decomposition and the De�nition 3.5.7 of the notion of tangent map, i.e. the
unique nonzero map ϕX0 ∈ Ba

k(u) such that

uX0,r(X) =
u(X0 + rX)

rk
−→ ϕX0(X),

with k the vanishing order of u at X0, we introduce the following concept.

De�nition 3.1.2. Let a ∈ (−1, 1),u be an La-harmonic function in B1 and X0 ∈ Γk(u) ∩ Σ,
for some k ≥ min{1, 1− a}. We de�ne as tangent �eld of u at X0 the unique nontrivial vector
�eld ΦX0 ∈ (H1,a

loc (R
n+1))2 such that

ΦX0 = (ϕX0
e ,ϕX0

o ),



3.1 introduction 97

where ϕX0
e and ϕX0

o are respectively the tangent map of the symmetric part ue of u and of the
antisymmetric one uo.

This new object allows to overcame the obstacle of the degeneracy-singularity of the coe�cient
and it allows to understand the topology of the nodal set by proving in Proposition 3.5.19 a
“vectorial” counterpart of the classic result of upper semi-continuity of the vanishing order.
Hence, given now the regularR(u) and singular part S(u) as

R(u) =
{
X ∈ Γ(u) : |∇xu(X)|2 +

∣∣∣∂ayu(X)
∣∣∣2 6= 0

}
,

S(u) =
{
X ∈ Γ(u) : |∇xu(X)|2 +

∣∣∣∂ayu(X)
∣∣∣2 = 0

}
,

we developed a blow-up analysis in order to fully understand the structure of Γ(u) in Rn+1 and
its restriction on Σ. The following is a summary of the main result on the regular and singular set.

Theorem 3.1.3. Let a ∈ (−1, 1), a 6= 0 and u be an La-harmonic function inB1. Then the regular
setR(u) is locally a Ck,r hypersurface on Rn+1 in the variable (x, y |y|−a) with

k =

⌊ 2
1− a

⌋
and r =

2
1− a −

⌊ 2
1− a

⌋
.

On the other hand, it holds
S(u) ∩ Σ = S∗(u) ∪ Sa(u)

where S∗(u) is contained in a countable union of (n− 2)-dimensional C1 manifolds and Sa(u) is
contained in a countable union of (n− 1)-dimensional C1 manifolds. Moreover

S∗(u) =
n−2⋃
j=0
S∗j (u) and Sa(u) =

n−1⋃
j=0
Saj (u),

where both S∗j (u) and Saj (u) are contained in a countable union of j-dimensional C1 manifolds.

In the last part of Chapter 3 we present an applications of our theory in the context of nonlocal
elliptic equations. In particular, inspired by [23, 27, 80], we exploit the local realisation of the
fractional Laplacian, and more generally of fractional power of divergence form operator L with
Lipschitz leading coe�cient, in order to study the structure and the regularity of the nodal set of
(−L)s-harmonic functions, for s ∈ (0, 1). More precisely, we combine the extension developed
in [80] with a geometric reduction introduced in [4] and deeply popularized in [48, 49].
This last Section allows to extend our analysis to fractional powers (−∆M )s of the Laplace-
Beltrami operator on a Riemannian manifold M , also for the case of Lipschitz metric, and
moreover to conformal fractional Laplacian on conformally compact Einstein manifolds and
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asymptotically hyperbolic manifold, thanks to the extension technique developed in [27] and the
asymptotic expansion of their geodesic boundary de�ning function. These examples suggest that
our choice of weight collects a wilder class of degenerate-singular elliptic problems.

Moreover, our results show some purely nonlocal feature on the possible local expansion of
(−L)s-harmonic map near their zero set and on the structure of the nodal set itself. One one
side we prove that �rst term of the Taylor expansion of an (−L)s-harmonic function is either an
homogeneous harmonic polynomial or any possible homogeneous polynomial. In particular, it
implies

Theorem 3.1.4. Given s ∈ (0, 1) and L a divergence form operator with Lipschitz leading coe�-
cients, let u be (−L)s-harmonic in B1. Then it holds

S(u) = S∗(u) ∪ Ss(u)

where S∗(u) is contained in a countable union of (n− 2)-dimensional C1 manifolds and Ss(u) is
contained in a countable union of (n− 1)-dimensional C1 manifolds. Moreover

S∗(u) =
n−2⋃
j=0
S∗j (u) and Ss(u) =

n−1⋃
j=0
Ssj (u),

where both S∗j (u) and Ssj (u) are contained in a countable union of j-dimensional C1 manifolds.

In the end, we prove what could be seen as the nonlocal counterpart of a conjecture that Lin
proposed in [66]. Following his strategy, we give an explicit estimate on the (n− 1)-Hausdor�
measure of the nodal set Γ(u) of s-harmonic functions in terms of the Almgren monotonicity
formula previously introduced. Finally, we propose an interesting direction of research in order
to improve that stated result.

This Chapter is organized as follows. In Section 3.2 we prove some general result about La-
harmonic function, �rst of all the decomposition with respect to the direction orthogonal to Σ.
After that in Section 3.3 we prove the validity of an Almgren’s type monotonicity formula which
allows in Section 3.4 to prove the existence of blow-up limit in every point of the nodal set Γ(u).
Finally, in Section 3.5 we prove a Weiss type monotonicity formula, which allows to introduce
the notion of tangent map and tangent �eld at every point of the nodal set. In Section 3.6 we
present some useful result on the strati�cation of the nodal set and �nally in Section 3.7 we
prove a general result on the regularity of the whole nodal set Γ(u) and on its restriction on the
characteristic manifold Σ. In the last two Sections we consider an application of the previous
results for solutions of fractional powers of divergence form operator, with Lipschitz leading
coe�cient. In particular, in Section 3.8 we apply our technique in order to study the nodal set of
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s-harmonic function and, more generally, of solutions of (−L)s operators, and in Section 3.9 we
give a new estimate of the Hausdor� measure of the nodal set of s-harmonic functions.

3.2 decomposition of La -harmonic functions

In this Section we states some general results onLa-harmonic function and we introduce some
basic additional concept that will be often use through this Chapter in order to better understand
the structure of the nodal set Γ(u).
In particular, we give a de�nition of characteristic manifold Σ for a degenerate-singular operator
and we prove a crucial decomposition of La-harmonic function with respect to the orthogonal
direction to Σ. Thanks to this property, we can state a general regularity result on La-harmonic
functions.

As already remarked, in the pioneering works [44, 43] the authors introduced a class of degenerate-
singular operator strictly correlated to some weighted Sobolev spaces with Muckenhoupt Ap-
weights. In [43, Section 2] they gave six general properties that the weight must satisfy in order to
have existence of weak solutions, Sobolev embeddings, Poincaré inequality, Harnack inequality,
local solvability in Hölder spaces and estimates on the Green’s function and in particular they
found a su�cient condition in the de�nition of the MuckenhouptA2-class. Hence, they introduced
for a ∈ (−1, 1) the weighted Sobolev spacesH1,a(B1) as the closure ofC∞(B1) functions under
the norm

‖u‖2H1,a(B1)
=

ˆ
B1

|y|a u2dX +

ˆ
B1

|y|a |∇u|2 dX.

Anyway, as the authors in [43] pointed out in the study of a special classes of elliptic problem
associated to quasi-conformal maps, properties as the Sobolev embeddings, Poincaré inequality,
Harnack inequality and local solvability in Hölder spaces still hold for every a ∈ (−1,+∞).
Thus, the following de�nition is well de�ned for every a ∈ (−1,+∞).

De�nition 3.2.1 ([43]). Given F = (f1, · · · , fn) on B1 such that |F | ∈ L2,−a(B1), we say that
u ∈ H1,a(B1) is a solution of Lau = divF if for every ϕ ∈ C∞c (B1) we haveˆ

B1

|y|a 〈∇u,∇ϕ〉dX =

ˆ
B1

〈F ,∇ϕ〉dX.

Similarly, a function u ∈ H1,a(B1) is said to be La-harmonic in B1 if for every ϕ ∈ C∞c (B1)

we have ˆ
B1

|y|a 〈∇u,∇ϕ〉dX = 0.

Now, we can �nally state the concept of characteristic manifold associated to the operator La.
We obviously remark that the following de�nition can be easily generalized to the whole class of
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Muckenhoupt A2-weights, where in general Σ can be any possible non-smooth subset of Rn+1

with dimension 0 ≤ d ≤ n.

De�nition 3.2.2. Let a ∈ (−1, 1) and La the weighted divergence form operator in Rn+1

associated to the weight ω(X) = |y|a. Then we call as “characteristic manifold” associated to
La the collection of points Σ ⊂ Rn+1 where the weight takes value zero (degeneracy, a > 0) or
in�nite (singularity, a < 0).

We remark that in a more general case, on the characteristic manifold the weight could attains
both zero and in�nite values.
Since the operator La is uniformly elliptic on every compact subset of Rn+1 \ Σ, the challenging
part of our work is the one related to the study of the nodal set near the characteristic manifold Σ
associated to La. Inspired by this remark, through the Chapter we will focus on the case X0 ∈ Σ
and we will simply compare the result on Σ with the case Rn+1 \ Σ, avoiding all the technical
details.

In order to better understand the structure of the nodal set and the local behaviour of the
La-harmonic function, we decided to decompose these functions with respect to the characteristic
manifold Σ. More precisely, we construct, starting from an La-harmonic function, its parts
respectively symmetric and antisymmetric with respect to the orthogonal direction to Σ, since we
can imagine that the latter a�ects the way this functions cross the space of degeneracy-singularity.

De�nition 3.2.3. Let a ∈ (−1, 1) and u ∈ H1,a(B1) be an La-harmonic function in B1. Then,
u is said to be symmetric with respect to Σ if

u(x,−y) = u(x, y) in Rn+1.

Conversely, the function u is said to be antisymmetric with respect to Σ if

u(x,−y) = u(x, y) in Rn+1.

It is easy to see that given an La-harmonic function u in B1, the functions

ue(x, y) = u(x, y) + u(x,−y)
2 and uo(x, y) = u(x, y)− u(x,−y)

2

are respectively symmetric and antisymmetric with respect to Σ and such that

u(X) = ue(X) + uo(X).

At �rst sight, the previous decomposition seems to be innocuous and independent on the oc-
currence of degeneracy of the operator, but with the following Propositions would be clear the
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complete picture of how the presence of a set where the coe�cients take value zero of in�nite
a�ect the local behaviour of the solutions.
First, the following result allows us to focus the characterization of the blow-up limits to just the
symmetric La-harmonic function

Proposition 3.2.4. Let a ∈ (−1, 1) and u be an La-harmonic function in B1 antisymmetric with
respect to Σ. Thus, there exists a unique L2−a-harmonic function v symmetric with respect to Σ such
that

u(x, y) = v(x, y)y |y|−a in Rn+1.

Proof. Given v(x, y) = u(x, y) |y|a y−1, let us �rst prove that v ∈ H1,2−a(B1), where 2− a ∈
(1, 3). By direct computations we get

ˆ
B1

|y|2−a v2dX =

ˆ
B1

|y|a u2dX, (95)

and similarly
ˆ
B1

|y|2−a |∇v|2 dX =

ˆ
B1

|y|a |∇u|2 dX + (a− 1)2
ˆ
B1

|y|a u
2

y2 dX

≤ C
(ˆ

B1

|y|a u2dX +

ˆ
B1

|y|a |∇u|2 dX
)

,

where in the last inequality we used the validity of an Hardy type inequality (see [42]). Since that
for a.e. X ∈ B1 we have

L2−av = div(|y|2−a∇v) = (a− 1)∂yu+ div(y∇u) = y |y|−a Lau, (96)

let us prove v is L2−a-harmonic in B1 in the sense of De�nition 3.2.1.
For every ϕ ∈ C∞c (B1) and 0 < δ < 1 let ηδ ∈ C∞(B1) be a family of compactly supported
cut-o� functions such that 0 ≤ ηδ ≤ 1 and

ηδ(x, y) =

0 on {(x, y) ∈ B1 : |y| ≤ δ},
1 on {(x, y) ∈ B1 : |y| ≥ 2δ},

with |∇ηδ| ≤ 1/δ. Thus, by testing (96) with ϕηδ we get for every δ ∈ (0, 1)
ˆ
B1

|y|2−a 〈∇v,∇(ηδϕ)〉dX = −
ˆ
B1

ηδϕL2−avdX

= −
ˆ
B1

(
y |y|−a ηδϕ

)
LaudX = 0,
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where in the last equality we used that y |y|−a ηδϕ ∈ C∞c (B1). Now, by integration by parts
ˆ
B1

|y|2−a 〈∇v,∇(ηδϕ)〉dX =

ˆ
B1

|y|2−a ηδ〈∇v,∇ϕ〉dX +

ˆ
B1

|y|2−a ϕ〈∇v,∇ηδ〉dX, (97)

where by Dominated convergence we get that

lim
δ→0+

ˆ
B1

|y|2−a ηδ〈∇v,∇ϕ〉dX =

ˆ
B1

|y|2−a 〈∇v,∇ϕ〉dX

and by Hölder inequality

ˆ
B1

|y|2−a ϕ〈∇v,∇ηδ〉dX ≤ ‖ϕ‖L∞(B1)

(ˆ
B1

|y|2−a |∇v|2 dX
)1/2(ˆ

B1

|y|2−a |∇ηδ|2 dX
)1/2

≤ C ‖ϕ‖L∞(B1)
‖v‖H1,a(B1)

1
δ

(ˆ 2δ

δ
|y|2−a dy

)1/2

≤ C ‖ϕ‖L∞(B1)
‖v‖H1,a(B1)

(
23−a − 1

3− a

)1/2

δ
1−a

2 ,

which imply, passing through δ → 0 in (97), that
ˆ
B1

|y|2−a 〈∇v,∇ϕ〉dX = 0 for ϕ ∈ C∞c (B1),

since we are dealing with a < 1.

Hence, for a ∈ (−1, 1) and every La-harmonic function u ∈ H1,a(B1) there exist uae ∈
H1,a(B1) and u2−a

e ∈ H1,2−a(B1) two symmetric function with respect to Σ respectively La
and L2−a harmonic in B1 such that

u(X) = uae(X) + u2−a
e (X)y |y|−a in B1. (98)

Thus, through the following Sections we will restrict the classi�cation of the blow-up limit, i.e.
the entire homogenous La-harmonic functions, to the symmetric with respect to Σ and in the
�nal part of the work we will collect all the result for a generic La-harmonic function.
Secondly, the previous decomposition combined with the following result gives a complete picture
of the regularity of an La-harmonic function.

Proposition 3.2.5 ([87]). Let a ∈ (−1, 1) and u be an La-harmonic function in B1. Then it holds:

• if u is symmetric with respect to Σ, we get u ∈ C1,α
loc (B1), for any α ∈ (0, 1);
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• if u is antisymmetric with respect to Σ, we get u ∈ C0,α
loc (B1), for any α ∈ (0,α∗) with

α∗ = min{1, 1− a}.

Moreover, if a ∈ (−1,+∞) and u is symmetric with respect to Σ, we even get that u ∈ C∞loc(B1).

Proposition 3.2.6 ([87]). Let a ∈ (−1, 1) and u beLa-harmonic inB1. Then for every i = 1, . . . ,n
we get that ∂xiu is La-harmonic in B1 and ∂ayu is L−a-harmonic in B1, where

∂ayu =

|y|
a ∂yu if X 6∈ Σ

limy→0 |y|a ∂yu(x, y) if X ∈ Σ
.

These results have been recently obtained in [87] using some new approximation technique
and Liouville type theorem for a wilder class of degenerate-singular elliptic problems. The main
idea is to consider degenerate-singular operator as asymptotic limit of a speci�c class of uniformly
elliptic operator, where the exponent of Hölder regularity can be reached by a blow-up argument
combined with some Almgren’s type monotonicity formula.

We recall here some general result about La-harmonic functions. First we introduce the fol-
lowing Caccioppoli inequality, which enables us to give a priori estimates of the L2,a norm of the
derivatives of the solution u in terms of the L2,a-norm of u.

Proposition 3.2.7. Let a ∈ (−1, 1) and u an La-harmonic function in B1. Then, for each X0 ∈
B1 ∩ Σ and 0 < r < R ≤ 1− |X0| we have

ˆ
Br(X0)

|y|a |∇u|2 dX ≤ C

(R− r)2

ˆ
BR(X0)\Br(X0)

|y|a |u− λ|2 dX, (99)

for every λ ∈ R.

Proof. Fix 0 < r < R ≤ 1− |X0| and consider a smooth cut-o� function η ∈ C∞c (B1) such that
0 ≤ η ≤ 1 and η ≡ 1 on Br(X0) and η ≡ 0 on BR(X0) \Br(X0). Moreover, it is not restrictive
to suppose that

|∇η| ≤ 2
R− r

in BR(X0).

Now, by testing the equation −Lau = 0 with the test function ϕ = (u− λ)η2 and integrating
by parts, we get

ˆ
B1

|y|a η2 |∇u|2 dX + 2
ˆ
B1

|y|a η〈∇η,∇u〉(u− λ)dX = 0,
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and using the Hölder inequality

ˆ
BR(X0)

|y|a η2 |∇u|2 dX ≤
(ˆ

BR(X0)
|y|a η2 |∇u|2 dX

)1/2(ˆ
BR(X0)

4 |y|a |u− λ|2 |∇η|2 dX
)1/2

.

Hence, dividing by the �rst term in the right hand side and taking into account the properties of
η we obtain

ˆ
Br(X0)

|y|a |∇u|2 dX ≤
ˆ
BR(X0)

|y|a η2 |∇u|2 dX

≤ 16
(R− r)2

ˆ
BR(X0)\Br(X0)

|y|a |u− λ|2 dX.

Now, for a ∈ (−1, 1) let us �x

|Sn|a =
ˆ
∂B1

|y|a dσ,

which implies

|Snr |a = rn+a |Sn|a and
∣∣∣Bn+1

r

∣∣∣
a
=

rn+a+1

n+ a+ 1 |S
n|a .

Lemma 3.2.8 ([88, Lemma A.1]). Let a ∈ (−1, 1) ad u be an La-harmonic function in B1. Then,
for each ball Br(X0), with X0 ∈ Σ and r ∈ (0, 1− |X0|), we have

u(X0) =
1

|Sn|a rn+a

ˆ
∂Br(X0)

|y|a udσ =
1

|Bn+1|a rn+a+1

ˆ
Br(X0)

|y|a udX.

Proof. Let us consider the caseX0 = 0 since the problem is invariant under translation onB1 ∩Σ.
Set

Φ(r) =
1

rn+a

ˆ
∂Br

|y|a udσ =

ˆ
∂B1

|y|a u(rx)dσ,

then
d

dr
Φ(r) =

1
rn+a

ˆ
∂Br

|y|a ∂rudσ.

Since Lau = 0 on B1, by a Gauss-Green formula we get
ˆ
∂Br

|y|a ∂rudσ =

ˆ
Br

LaudX = 0
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which directly implies that r 7→ Φ(r) is constant and consequently
1

rn+a

ˆ
∂Br

|y|a udσ = lim
r→0

ˆ
∂B1

|y|a lim
r→0

u(rx)dσ

= u(0) |Sn|a .

Similarly, by integrating from 0 to r the function Φ(r), we getˆ r

0

ˆ
∂Bt

|y|a udσdt =
ˆ
Br

|y|a udx

and secondly ˆ r

0

(ˆ
∂Bt

|y|a udσ
)

dt = u(0) |Sn|a
ˆ r

0
tn+adt,

from which we get the claimed result.

We remark that in the case of La-subharmonic function, i.e. −Lau ≤ 0, the previous result
holds true in the form of inequality. Finally, by standard Moser’s iteration, we also have the
following bound

Lemma 3.2.9 ([88, Lemma A.2.]). Let a ∈ (−1, 1) and u be a La-subharmonic function in B1.
Then, for X0 ∈ B1 ∩ Σ and r ∈ (0, 1− |X0|) we get

‖u‖L∞(Br/2(X0))
≤ C(n, a)

(
1

rn+1+a

ˆ
Br(X0)

|y|a u2dX
)1/2

,

where C(n, a) is a constant depending only on n and a.

3.3 almgren type monotonicity formula

In this Section we introduce the degenerate-singular counterpart of the classical Almgren
monotonicity formula for harmonic functions. This computations are more manageable with
respect to the ones in Chapter 1 since peculiar phenomena like the problem of the codimension
of the nodal set does not manifest in the case of La-harmonic functions.
Since we want to understand the structure and regularity of the nodal set of La-harmonic function
near the characteristic manifold Σ, let us considerX0 = (x0, 0) ∈ Σ. Hence, for every r ∈ (0,R),
where R > 0 will be de�ned later, consider

E(X0,u, r) = 1
rn+a−1

ˆ
Br(X0)

|y|a |∇u|2 dX

H(X0,u, r) = 1
rn+a

ˆ
∂Br(X0)

|y|a u2dσ
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and the Almgren type monotonicity formula

N(X0,u, r) = E(X0,u, r)
H(X0,u, r) =

r

ˆ
Br(X0)

|y|a |∇u|2 dX
ˆ
∂Br(X0)

|y|a u2dσ
. (100)

Since u ∈ H1,a
loc (B1), both the functional r 7→ E(X0,u, r) and r 7→ H(X0,u, r) are locally

absolutely continuous on (0,+∞), that is that both them derivatives are in L1
loc((0,+∞)).

Proposition 3.3.1. Let a ∈ (−1, 1) and u be an La-harmonic function on B1. Then, for every
X0 ∈ B1 ∩ Σ we have that the map r 7→ N(X0,u, r) is absolutely continuous and monotone
nondecreasing on (0, 1− |X0|).
Hence, there always exists �nite the limit

N(X0,u, 0+) = lim
r→0+

N(X0,u, r) = inf
r>0

N(X0,u, r),

which we will call as the Almgren frequency formula.

Proof. Obviously the denominator is nonnegative and at least strictly positive on a nonempty
interval (r1, r2), otherwise we get u ≡ 0. First, passing to the logarithmic derivatives, the
monotonicity of r 7→ N(X0,u, r) is a direct consequence of the claim

d

dr
logN(X0,u, r) = 1

r
+

d

dr

ˆ
Br(X0)

|y|a |∇u|2 dX
ˆ
Br(X0)

|y|a |∇u|2 dX
−

d

dr

ˆ
∂Br(X0)

|y|a u2dσ
ˆ
∂Br(X0)

|y|a u2dσ
≥ 0

for r ∈ (r1, r2). Deriving the numerator and using the Pohožaev identity, i.e. for any X0 ∈ Rn+1

and r > 0

1− n− a
2

ˆ
Br(X0)

|y|a |∇u|2 dX +
r

2

ˆ
∂Br(X0)

|y|a |∇u|2 dσ = r

ˆ
∂Br(X0)

|y|a (∂ru)2dσ+

− ay0
2

ˆ
Br(X0)

|y|a |∇u|
2

y
dX
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we easily get

d

dr

ˆ
Br(X0)

|y|a |∇u|2 dX =

ˆ
∂Br(X0)

|y|a |∇u|2 dσ

= 2
ˆ
∂Br(X0)

|y|a (∂ru)2dσ+
n+ a− 1

r

ˆ
Br(X0)

|y|a |∇u|2 dX

− ay0
r

ˆ
Br(X0)

|y|a |∇u|
2

y
dX

(101)
and similarly

d

dr

ˆ
∂Br(X0)

|y|a u2dσ =
d

dr

(
rn

ˆ
∂B1

|y0 + ry|a u2(X0 + rX)dσ
)

= 2
ˆ
∂Br(X0)

|y|a u∂rudσ− ay0
r

ˆ
∂Br(X0)

|y|a

y
u2dσ+

+
n+ a

r

ˆ
∂Br(X0)

|y|a u2dσ.

(102)

As a consequence, by the Cauchy-Schwarz inequality, if X0 ∈ Σ, i.e. y0 = 0, we get

d

dr
E(X0,u, r) = 2

rn+a−1

ˆ
∂Br(X0)

|y|a (∂ru)2dσ

d

dr
H(X0,u, r) = 2

rn+a

ˆ
∂Br(X0)

|y|a u∂rudσ

and consequently

1
2
d

dr
logN(X0,u, r) =

ˆ
∂Br(X0)

|y|a (∂ru)2dσ
ˆ
∂Br(X0)

|y|a u∂rudσ
−

ˆ
∂Br(X0)

|y|a u∂rudσ
ˆ
∂Br(X0)

|y|a u2dσ
≥ 0

for r ∈ (r1, r2). By the previous di�erentiation, we have

d

dr
logN(X0,u, r) ≥ 0 for r ∈ (r1, r2)

and
d

dr
logH(X0,u, r) = 2

r
N(X0,u, r). (103)

Following the same reasoning in [84], it is quite easy to conclude that the maximum interval is
the one with r1 = 0.
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As a direct consequence of the monotonicity result, we get that the Almgren frequency for-
mula X 7→ N(X,u, 0+) on Σ is upper semi-continuous since it is de�ned as the in�mum of
continuous function.

A simple consequence of the monotonicity result and (103) is the following comparison property
(which, with r2 = 2r1, is the so called doubling property).

Corollary 3.3.2. Let a ∈ (−1, 1) and u be La-harmonic on B1. Hence, there given N =

N(X0,u, 1− |X0|) such that for every X0 ∈ B1 ∩ Σ,

H(X0,u, r2) ≤ H(X0,u, r1)

(
r2
r1

)2N

for 0 < r1 < r2 < 1− |X0|.

Proof. Fixed R = 1− |X0| we have that N(X0,u, r) ≤ N(X0,u,R) for every r ∈ (0,R) and
integrating (103) between r1 and r2, with 0 < r1 < r2 ≤ R, we obtain

H(X0,u, r2)

H(X0,u, r1)
≤
(
r2
r1

)2N

whit N = N(X0,u,R).

In other words, for every X0 ∈ B1 ∩ Σ

1
Rn+a

ˆ
∂BR(X0)

|y|a u2dσ ≤
(
R

r

)2N 1
rn+a

ˆ
∂Br(X0)

|y|a u2dσ

with 0 < r < R < 1−|X0| andN = N(X0,u, 1−|X0|), and integrating the previous inequality
we get

1
Rn+a+1

ˆ
BR(X0)

|y|a u2dX ≤
(
R

r

)2N−1 1
rn+a+1

ˆ
Br(X0)

|y|a u2dX. (104)

In order to justify the analysis of the local behaviour of La-harmonic functions, we prove the
validity of the strong unique continuation property for the degenerate-singular operator La. In
general, a function u, is said to vanish of in�nite order at a point X0 ∈ Γ(u) ifˆ

|X−X0|<r
u2dX = O(rk), for every k ∈N,

as r → 0. Given an elliptic operator L, L is said to have the strong unique continuation property
in B1 if the only solution of Lu = 0 in H1

loc(B1) which vanishes of in�nite order at a point
X0 ∈ Γ(u) is u = 0. Moreover, L is said to have the unique continuation property in B1 if the
solution of Lu = 0 in H1

loc(B1) which can vanish in an open subset of B1 is u = 0. (see [48, 49]
for more details for the uniformly elliptic case).
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Corollary 3.3.3 ([49, Theorem 1.4]). Let a ∈ (−1, 1) and u be La-harmonic in B1. Then u cannot
vanish of in�nite order at X0 ∈ Γ(u) ∩B1 unless u ≡ 0 in B1.

In [49] the authors stated the proof for analytic nonnegative weights and pointed out the
validity for more general, even degenerate, weighted elliptic equations.

The previous result implies that the nodal set Γ(u) has empty interior in Rn+1. As a conse-
quence of our blow-up analysis, we will prove a posteriori unique continuation property for the
restriction of Γ(u) on Σ.

Corollary 3.3.4. Let a ∈ (−1, 1) and u be an La-harmonic function on B1. Then, for every
X0 ∈ B1 ∩ Σ given R = 1− |X0| we get

1
n+ a+ 1 + 2N

ˆ
∂BR(X0)

|y|a u2dσ ≤
ˆ
BR(X0)

|y|a u2dX ≤ 1
n+ a+ 1

ˆ
∂BR(X0)

|y|a u2dσ,

where N = N(X0,u,R).

Proof. Let R = 1− |X0| and r ∈ (0,R), we get by (103)

H(X0,u,R) = H(X0,u, r)exp
{

2
ˆ R

r

N(X0,u, t)
t

dt
}
≥ H(X0,u, r)

or simply ˆ
∂Br(X0)

|y|a u2dσ ≤ H(X0,u,R)rn+a.

Finally, integrating the previous inequality in (0,R) we obtain
ˆ
BR(X0)

|y|a u2dX =

ˆ R

0

ˆ
∂Br(X0)

|y|a u2dσdr

≤ H(X0,u,R)
ˆ R

0
rn+adr = 1

n+ a+ 1H(X0,u,R).

On the other hand, for any r ∈ (0,R), we have

H(X0,u,R) = H(X0,u, r)exp
{

2
ˆ R

r

N(X0,u, t)
t

dt
}

≥ H(X0,u, r)exp {−2N(X0,u, r) log r}

and consequently
H(X0,u, r) ≥ r2N(X0,u,R)H(X0,u,R).
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Thus, as before
ˆ
BR(X0)

|y|a u2dX =

ˆ R

0

ˆ
∂Br(X0)

|y|a u2dσ ≥ 1
n+ a+ 1 + 2N(X0,u,R)H(X0,u,R).

The following result can be viewed as the degenerate-singular counterpart of [55, Theorem
1.6], which gives us a su�cient condition for the presence of the nodal set in the unitary ball.

Proposition 3.3.5. Let a ∈ (−1, 1) and u be an La-harmonic function on B1. Then, for any
R ∈ (0, 1) there exists N0 = N0(R)� 1 such that the following holds:

1. if N(0,u, 1) ≤ N0, then u does not vanish in BR;

2. if N(0,u, 1) > N0, then

N

(
X0,u, 1−R

2

)
≤ CN(0,u, 1) for any X0 ∈ BR ∩ Σ,

where C is a positive constant depending only on n, a and R.

Moreover, the vanishing order, i.e. the Almgren frequency formula, of u at any point of BR never
exceeds CN(0,u, 1).

Proof. This prof will follows directly the one in [55, 66]. Moreover, the previous result is known
to be true if we restrict our study to the set B1 \ Σ, by the local uniform ellipticity of the operator
La outside the characteristic manifold. First, the monotonicity of r 7→ N(0,u, r) implies that the
vanishing order of u at 0 never exceeds N(0,u, 1), more precisely

1
(λR)n+1+a

ˆ
BλR

|y|a u2dX ≤ λ2N(0,u,1) 1
Rn+1+a

ˆ
BR

|y|a u2dX

for every R ∈ (0, 1) and λ ∈ (1, 1/R). Through this proof we will use the following notation to
identify the average of the integrals 

Br(X0)
|y|a u2dX =

1
rn+1+a

ˆ
Br(X0)

|y|a u2dX,

and in order to simplify the notations we will use N = N(0,u, 1) as the frequency of u in B1.
Under these notations, the previous inequalities become 

∂BλR

|y|a u2dσ ≤ λ2N
 
∂BR

|y|a u2dσ
 
BλR

|y|a u2dX ≤ λ−1λ2N
 
BR

|y|a u2dX
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where the second one is a consequence of Corollary 3.3.2.
Now, let us prove the claimed result for the case R = 1/4 since in the general case it follows by
scaling. By de�nition, we have that B3/4(X0) ⊂ B1 and B1/4 ⊂ B1/2(X0) for any X0 ∈ B1/4.
Hence, we have

 
B3/4(X0)

|y|a u2dX ≤ c(n, a)42N
 
B1/2(X0)

|y|a u2dX

for any X0 ∈ B1/4. Now, let us prove that
 
∂B5/8(X0)

|y|a u2dσ ≤ c(n, a)42N
 
∂B1/2(X0)

|y|a u2dσ. (105)

Since by (103) the map r 7→ H(X0,u, r) is monotone non decreasing on (0, 1− |X0|), and hence
ˆ
B3/4(X0)

|y|a u2dX ≥
ˆ
B3/4(X0)\B5/8(X0)

|y|a u2dX

=

ˆ 3/4

5/8
rn+aH(X0,u, r)dr

≥ C(n, a)H (X0,u, 5/8) ,

and similarly
ˆ
B1/2(X0)

|y|a u2dX =

ˆ 1/2

0
rn+aH(X0,u, r)dr ≤ C(n, a)H

(
X0,u, 1

2

)
.

Finally, integrating (103) between the previous radii, we obtain

logH(X0,u, r)
∣∣∣∣∣
5/8

1/2
=

ˆ 5/8

1/2

2N(X0,u, r)
r

dr ≥ 2C(n)N(X0,u, 1/2).

Combining the previous inequality with the claimed (105), we get

c(n, a)N(X0,u, 1/2) ≤ log
(
c(n, a)42N(0,u,1)

)
or equivalently N(X0,u, 1/2) ≤ c(n, a)N(0,u, 1) + c(n, a). Finally, let us consider the second
part of the statement. Hence, given ε = ε(n, a), su�ciently small, such that N(0,u, 1) ≤ ε, let
us prove that u(X0) 6= 0 for any X0 ∈ B1/4. It is not restrictive to assume that H(0,u, 1) = 1,
which implies by the de�nition of the Almgren monotonicity formula that

ˆ
B1

|y|a |∇u|2 dX ≤ ε.
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By the La-harmonicity of u, for every i = 1, . . . ,n the derivative ∂xiu and ∂ayu are respectively
La and L−a-harmonic in B1. Hence, by [88, Lemma A.2], we get the following interior estimates

sup
B1/2

|∂xiu| ≤ c(n, a)
(

1
rn+a+1

ˆ
B1

|y|a |∂xiu|
2 dX

)1/2

≤ c(n, a)
√
ε

sup
B1/2

∣∣∣∂ayu∣∣∣ ≤ c(n,−a)
(

1
rn−a+1

ˆ
B1

|y|−a
∣∣∣∂ayu∣∣∣2 dX

)1/2

≤ c(n, a)
√
ε.

By the normalization assumption, we have

1 =

ˆ
∂B1

|y|a u2dσ ≤ c1(n, a)
ˆ
∂B1/2

|y|a u2dσ,

and consequently the existence of X0 ∈ ∂B1/2 such that

|u(X0)|2 ≥
2

c1(n, a)2n+a

ˆ
∂B1

|y|a dσ.

Up to relabeling with c1(n, a) the previous lower bound, we get that for every X ∈ B1/2 that

c1(n, a) ≤ |u(X0)| ≤ |u(X)|+ c(n, a)
√
ε,

which yields |u(X)| > 0 of B1/2, for ε = ε(n, a) su�ciently small.

Corollary 3.3.6. Let u be La-harmonic on B1, then for every X0 ∈ Γ(u) ∩ Σ we have

N(X0,u, 0+) ≥ min{1, 1− a}. (106)

More precisely

• if u is symmetric with respect to Σ, we have N(X0,u, 0+) ≥ 1,

• if u is antisymmetric with respect to Σ we have N(X0,u, 0+) ≥ 1− a.

Proof. This result follows by Proposition 3.2.5. More precisely, et α∗ = min{1, 1− a} be the
coe�cient of optimal Hölder regularity for La-harmonic function, and suppose by contradiction
that (106) is not satis�ed.
Since the limit N(X0,u, 0+) exists, we obtain the existence of R > 0 and ε > 0 such that
N(X0,u, r) ≤ α∗ − ε for all 0 ≤ r ≤ R. By (103), up to consider a smaller interval of (0,R), we
have

d

dr
logH(X0,u, r) = 2

r
N(X0,u, r) ≤ 2

r
(α∗ − ε).
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Integrating this inequality between r and R yields

H(X0,u,R)
H(X0,u, r) ≤

(
R

r

)2(α∗−ε)

which, together with the fact that u is α∗-Hölder continuous and u(X0) = 0, implies

C1r
2(α∗−ε) ≤ H(X0,u, r) ≤ C2r

2α∗ .

The contradiction follows for small value of r > 0.

If an addition we suppose that u is symmetric or antisymmetric with respect to Σ, we get
respectively that u is Lipschitz continuous or (1− a)-Hölder continuous, and the lower bound
on the Almgren frequency formula follows immediately.

In all the �rst part of this Section, we had supposed that X0 ∈ B1 ∩ Σ, since the degenerate-
singular attitude of the operator La is constrained to the characteristic manifold Σ. Instead, if
X0 = (x0, y0) ∈ B1 \ Σ, since the operator is uniformly elliptic on BR(X0) ⊂ Rn+1, with
R = |y0|, the structure and the regularity of the nodal set of u is well known.

At this point, we want to remark how the di�erent scaling of the operator on Σ and on Rn+1 \ Σ
a�ects the Almgren monotonicity formula.
Let X0 = (x0, y0) ∈ B1 and r > 0 and consider u and La-harmonic function in B1. If we de�ne
uX0,r(X) = u(X0 + rX) we directly see that

|y0 + ry|a

r2

(
∆XuX0,r +

ar

y0 + ry
∂yuX0,r

)
= 0 for X ∈ B1 −X0

r
,

and
ˆ
Br(X0)

LaudX =


rn−1+a

ˆ
B1

div (|y|a∇uX0,r) dX if X0 ∈ Σ

rn−1
ˆ
B1

div (|y0 + ry|a∇uX0,r) dX if X0 6∈ Σ
.

Inspired by the di�erent scalings of La operator, for X0 ∈ B1 \ Σ, i.e. y0 6= 0, and r ∈ (0, |y0|),
let us introduce the following functionals

E(X0,u, r) = 1
rn−1

ˆ
Br(X0)

|y|a |∇u|2 dX,

H(X0,u, r) = 1
rn

ˆ
∂Br(X0)

|y|a u2dσ,
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and consequently the Almgren type monotonicity formula

N(X0,u, r) = E(X0,u, r)
H(X0,u, r) =

r

ˆ
Br(X0)

|y|a |∇u|2 dX
ˆ
∂Br(X0)

|y|a u2dσ
. (107)

As we can see, the expression of the Almgren monotonicity formula is not a�ected by the position
of the point X0 ∈ Rn+1, i.e if either X0 ∈ B1 ∩ Σ or X0 ∈ B1 \ Σ. Instead, the rescaling factor
in the de�nitions of E(X0,u, r) and H(X0,u, r) are strictly related to the di�erent attitudes of
the operator La. By [48, 49] we already know the existence of an Almgren type monotonicity
formula and the structure/regularity of the nodal set associated to uniformly elliptic operator.
For completeness, we give some results on the Almgren type monotonicity result which holds for
every X0 ∈ Rn+1 without using the change of coordinates introduced in [48, 49].

Proposition 3.3.7. Let a ∈ (−1, 1) and u be an La-harmonic function on B1. Then, for every
X0 ∈ B1 \ Σ there exists C > 0 such that r 7→ eCrN(X0,u, r) is absolutely continuous and
monotone nondecreasing on (0, |y0|).
Hence, there always exists �nite the limit

N(X0,u, 0+) = lim
r→0+

N(X0,u, r),

which we will call as the Almgren type frequency formula.

Proof. The strategy of the proof is similar to the one for the caseX0 ∈ B1 ∩Σ. By (101) and (102),
we already know that passing to the logarithmic derivatives we get from the Cauchy-Schwarz
inequality

d

dr
logN(X0,u, r) =1

r
+

d

dr

ˆ
Br(X0)

|y|a |∇u|2 dX
ˆ
Br(X0)

|y|a |∇u|2 dX
−

d

dr

ˆ
∂Br(X0)

|y|a u2dσ
ˆ
∂Br(X0)

|y|a u2dσ

≥
ay0

ˆ
∂Br(X0)

|y|a

y
u2dσ

r

ˆ
∂Br(X0)

|y|a u2dσ
−
ay0

ˆ
Br(X0)

|y|a

y
|∇u|2 dσ

r

ˆ
Br(X0)

|y|a |∇u|2 dσ

for r ∈ (r1, r2). This remainders come out since the Muckenhoupt A2-weight ω(X) = |y|a is
homogenous with respect to Σ. Obviously if a = 0, by the translation invariance of the Laplacian,
we don’t need to care anymore about the position of X0 and also, just substituting a = 0, we
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obtain the classic Almgren type monotonicity formula of the Laplacian, e.g. [19, 81].
Now, for every r ∈ (r1, r2)

d

dr
logN(X0,u, r) ≥


ay0
r

(
min∂Br(X0)

1
y −maxBr(X0)

1
y

)
if a · y0 > 0

−ay0
r

(
minBr(X0)

1
y −max∂Br(X0)

1
y

)
if a · y0 < 0

which is equivalent to

d

dr
logN(X0,u, r) ≥ − 2 |ay0|

y2
0 − r2 ≥ −

2 |ay0|
y2

0 − r2
2

for r ∈ (r1, r2),

from which we learn that necessary r2 < |y0|. Consider now

H(X0,u, r) = 1
rn−1

ˆ
∂Br(X0)

|y|a u2dσ

such that

d

dr
logH(X0,u, r) = 2

r
N(X0,u, r) + a

r

1− y0

ˆ
∂Br(X0)

|y|a

y
u2dσ

ˆ
∂Br(X0)

|y|a u2dσ

 .

Let us prove the existence of the limit of the Almgren frequency formula as r → 0+, so suppose
by contradiction that r1 = inf{r > 0 : H(X0,u, r) > 0 on (r, |y0|)} > 0 and consider
r ∈ (r1, |y0|). By the previous inequality, we have that there exists a positive constant C > 0
such that

r 7→ eCrN(X0,u, r)

is monotone nondecreasing on (r1, |y0|). Then, let r1 < r < 2r1 ≤ |y0|, since

ay0

ˆ
∂Br(X0)

|y|a

y
u2dσ

r

ˆ
∂Br(X0)

|y|a u2dσ
≥


1
r

ay0
y0 + 2r1

if a · y0 > 0

1
r

ay0
y0 − 2r1

if a · y0 < 0
(108)

we have
d

dr
logH(X0,u, r) ≤ 2

r
e2Cr1N(X0,u, 2r1) (109)

By integrating (109), it follows

H(X0,u, 2r1)

H(X0,u, r) ≤
(2r1
r

)2e2Cr1N(X0,u,2r1)
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and since r 7→ H(X0,u, r) is continuous, H(X0,u, r1) > 0 and we seek the contradiction.

As before, a simple consequence of the monotonicity result and (103) is the following compar-
ison property (which, with r2 = 2r1, is the so called doubling property).

Corollary 3.3.8. Let u be an La-harmonic function in B1. For every X0 ∈ B1 \ Σ, there exists
C > 0 and R > 0 such that

H(X0,u, r2) ≤ H(X0,u, r1)

(
r2
r1

)2C

for every 0 < r1 < r2 < R.

Proof. Let us consider R < |y0| and 0 < r1 < r2 ≤ R. In order to use the monotonicity of
r 7→ N(X0,u, r) in this case we need to �x C,R > 0 depending on the distance of X0 from Σ.
By (108) we get

d

dr
logH(X0,u, r) ≤ 2

r
e2CRN(X0,u,R).

Now, by integrating the previous inequality we get the claimed result.

Moreover, since the operator La is uniformly elliptic outside Σ, we can apply the same
reasoning using the Lipschitz optimal regularity in Rn \ Σ and proving

Corollary 3.3.9. Let u be an La-harmonic function in B1. For every X0 ∈ Γ(u) \ Σ we have
N(X0,u, 0+) ≥ 1.

3.4 compactness of blow-up sequences

All techniques presented in the following Sections involve a local analysis of the solutions,
which will be performed via a blow-up procedure. Fix a ∈ (−1, 1) and u an La-harmonic function
in B1. Consider now X0 ∈ Γ(u) a point on the nodal set of u, then for any rk ↓ 0+ we de�ne as
the blow-up sequence the collection

uk(X) =
u(X0 + rkX)√
H(X0,u, rk)

for X ∈ X ∈ BX0,rk =
B1 −X0

rk
,

such thatLauk = 0 and ‖uk‖L2,a(∂B1)
= 1. Through this Chapter we will always apply a blow-up

analysis centered in point of the nodal set Γ(u) on the characteristic manifold Σ, since as we
already remarked the local behaviour of La-harmonic function is known outside the characteristic
manifold.
In this Section we will prove the convergence of the blow-up sequence and the classi�cation of
the blow-up limits starting from the following convergence result.
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Theorem 3.4.1. Let a ∈ (−1, 1) and α∗ = min{1, 1− a}. Given X0 ∈ Γ(u) ∩ Σ and a blow-up
sequence uk centered in X0 and associated to some rk ↓ 0+, there exists p ∈ H1,a

loc (R
n) such that,

up to a subsequence, uk → p in C0,α
loc (R

n) for every α ∈ (0,α∗) and strongly in H1,a
loc (R

n). In
particular, the blow-up limit is and entire La-harmonic function, i.e.

Lap = 0 in Rn+1.

In particular, the previous result can be easily improved in the case of La-harmonic function
purely symmetric with respect to Σ. More precisely, inspired by Proposition 3.2.5, in the �rst case
the convergence holds in C1,α

loc for every α ∈ (0, 1), and this di�erence relies on the Liouville
type theorems introduced in [87].
As in Chapter 1, the proof will be presented in a series of lemmata.

Lemma 3.4.2. Let X0 ∈ Γ(u) ∩ Σ. For any given R > 0, we have

‖uk‖H1,a(BR)
≤ C and ‖uk‖L∞(BR)

≤ C,

where C > 0 is a constant independent on k > 0.

Proof. Let us consider ρ2
k = H(X0,u, rk), then by de�nition of the blow-up sequence uk and

Corollary 3.3.2 we get
ˆ
∂BR

|y|a u2
kdσ =

1
ρ2
k

ˆ
∂BR

|y|a u2(X0 + rkX)dσ

=
1

ρ2
kr
n+a
k

ˆ
∂BRrk (X0)

|y|a u2dσ

= Rn+a
H(X0,u,Rrk)
H(X0,u, rk)

≤ Rn+a
(
Rrk
rk

)2C̃

which gives us ‖uk‖2L2,a(∂BR)
≤ C(R)Rn+a. Similarly

ˆ
BR

|y|a |∇uk|2 dσ = N(0,uk,R)
1
R

ˆ
∂BR

|y|a u2
kdσ

≤ C(R)Rn−1+aN(X0,u,Rrk)
≤ C(R)Rn−1+aN(X0,u,R)

(110)
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where in the last inequality we used the monotonicity result of Proposition 3.3.1. Since the map
uk is La- harmonic, by [88, Lemma A.2] we get

sup
BR/2

uk ≤ C(n, s)
(

1
Rn+1+a

ˆ
BR

|y|a u2
kdX

)1/2

≤ C(n, s)
(
H(0,uk,R)
n+ a+ 1

)1/2
,

where in the second inequality we used the monotonicity of r 7→ H(0,uk, r) in (0,R). Finally,
the estimate follows directly from the one the L2,a(∂BR)-norm.

So far we have proved the existence of a nontrivial function p ∈ H1,a
loc (R

n+1) ∩L∞loc(R
n+1)

such that, up to a subsequence, we haveuk ⇀ pweakly inH1,a
loc (R

n+1) andLap = 0 inD′(Rn+1).

The next step is to prove that for X0 ∈ Γ(u) ∩ Σ the convergence uk → p is indeed strong
in H1,a

loc and in C0,α
loc for α ∈ (0,α∗).

Lemma 3.4.3. For every R > 0, up to a subsequence, uk → p strongly in H1,a(BR).

Proof. We already know the existence of a blow-up limit p ∈ H1,a
loc (R

n), which solves Lap = 0
in D′(Rn). Let ϕ ∈ C∞c (B2R) be a cut-o� function such that 0 ≤ ϕ ≤ 1, ϕ ≡ 1 in BR. By the
La-harmonicity of u, we get

ˆ
B2R

|y|a ϕ |∇(uk − p)|2 dX +

ˆ
B2R

|y|a (uk − p)〈∇(uk − p),∇ϕ〉dX = 0

and consequently, we can conclude just by observing that∣∣∣∣∣
ˆ
B2R

|y|a (uk − p)〈∇(uk − p),∇ϕ〉dX
∣∣∣∣∣ ≤ C ‖uk − p‖L∞(B2R)

‖∇uk‖L2,a(B2R)
→ 0.

Lemma 3.4.4. For every R > 0 there exists C > 0, independent of k, such that

[uk]C0,α(BR)
= sup

X1,X2∈BR

|u(X1)− u(X2)|
|X1 −X2|α

≤ C

for every α ∈ (0,α∗).
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Proof. The proof follows essentially the ideas of the similar results in [83, 84]. Without loss of
generality, let R = 1 and suppose by contradiction that up to a subsequence

Lk = sup
X1,X2∈B1

|η(X1)uk(X1)− η(X2)uk(X2)|
|X1 −X2|α

→∞

where η ∈ C∞c (B1) is a smooth function such that
η(X) = 1, 0 ≤ |X| ≤ 1/2
0 < η(X) ≤ 1, 1/2 ≤ |X| ≤ 1
η(X) = 0, |X| = 1.

Since we may assume that Lk is achieved by (X1,k,X2,k) ∈ B1 ×B1, given rk = |X1,k −X2,k|
we can prove, as k →∞, that

• rk → 0

• dist(X1,k, ∂B1)
rk

→∞, dist(X2,k, ∂B1)
rk

→∞.

Before to continue, let us �x the notations X1,k = (x1,k, y1,k) and X2,k = (x2,k, y2,k). Now,
since by Lemma 3.4.2 the norm ‖uk‖L∞(B+) is uniformly bounded, we have

Lk ≤
‖uk‖L∞(B1)

rαk
(η(X1,k)− η(X2,k)) , (111)

which immediately implies that rk → 0. Now, since η is compactly supported in B1, for every
X ∈ B1 we have

η(X) ≤ dist(X, ∂B1)Lip(η),

where obviously Lip(η) denotes the Lipschitz constant of η. Finally, the inequality (111) becomes

dist(X1,k, ∂B)

rk
+

dist(X2,k, ∂B)

rk
≥

Lkr
α−1
k

Lip(η) ‖uk‖L∞(B1)

→∞

and the result follows by recalling that α < α∗ = min{1, 1− a} ≤ 1. As in [83, 84], our proof is
based on two di�erent blow-up sequences, indeed we introduce the auxiliary sequences

wk(X) = η(Pk)
uk(Pk + rkX)

Lkr
α
k

and wk(X) =
(ηuk)(Pk + rkX)

Lkr
α
k
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for X ∈ BPk,rk and Pk = (px,k, py,k) a suitable sequence of points. On one hand, following the
same strategy of the blow-up analysis in Chapter 1, wk has an uniform bound on the α-Hölder
seminorm, i.e.

sup
X1 6=X2∈BPk,rk

|wk(X1)−wk(X2)|
|X1 −X2|α

≤
∣∣∣∣wk (X1 − Pk

rk

)
−wk

(
X2 − Pk

rk

)∣∣∣∣ = 1,

while on the other hand

−Lkawi,k = 0 in BPk,rk , with Lka = div
((

y+
py,k
rk

)a
∇
)

. (112)

The importance of these two sequences lies in the fact that they have asymptotically equivalent
behaviour. Namely, since

|wk(X)−wk(X)| ≤
‖uk‖L∞(B1)

rαkLk
|η(Pk + rkX)− η(Pk)|

≤
Lip(η)r1−α

k

Lk
‖uk‖L∞(B1)

|X|
(113)

we get, for any compact K ⊂ Rn+1, that

max
X∈K∩BPk,rk

|wk(X)−wk(X)| −→ 0. (114)

Moreover, since wk(0) = wk(0) we note by (113) that

|wk(X)−wk(0)| ≤ |wk(X)−wk(X)|+ |wk(X)−wk(0)|

≤C
(
r1−α
k

Lk
|X|+ |X|α

)

and consequently, there exists C = C(K) such that |wk(X)−wk(0)| ≤ C , for every X ∈ K .
Let us prove that it is not restrictive to choose Pk ∈ Σ in the de�nition of wk,wk , sinceX1,k,X2,k
must converge to B1 ∩ Σ, i.e. there exists C > 0 such that, for k su�ciently large,

dist(X1,k,B1 ∩ Σ) + dist(X2,k,B1 ∩ Σ)
rk

≤ C.

Arguing by contradiction, suppose

dist(X1,k,B1 ∩ Σ) + dist(X2,k,B1 ∩ Σ)
rk

−→∞
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and let us choose Pk = X1,k in the de�nition of wk,wk so thatBPk,rk → Rn+1 and p−1
y,krk → 0+.

By de�nition, since wk is a sequence of functions which share the same α-Hölder seminorm and
uniformly bounded in every compact K ⊂ Rn+1, by the Ascoli-ArzelÃă theorem, there exists a
limit w ∈ C(K) which, up to a subsequence, is the uniform limit of wk. By (114), we also �nd
that wk → w uniformly con compact sets.
In order to reach a contradiction we can prove that w is a nonconstant globally Hölder harmonic
function To this purpose, let ϕ ∈ C∞c (Rn+1) be a compactly supported smooth function and k
be su�ciently large so that suppϕ ⊂ BPk,rk , for all k ≥ k. Fixed i = 1, . . . ,h, by testing the �rst
equation in (112) with ϕ we get

ˆ
Rn+1

div
((

1 + y
rk
py,k

)a
∇ϕ

)
wkdX = 0.

Passing to the uniform limit and observing that(
1 + y

rk
py,k

)a
→ 1 in C∞ (suppϕ) ,

we deduce that w is actually harmonic and the contradiction follows naturally by the classical
Liouville Theorem, once we have shown thatw is globally α - Hölder continuous and not constant.
since Pk = X1,k then, up to a subsequence,

X2,k − Pk
rk

=
X2,k −X1,k
|X2,k −X1,k|

→ X2 ∈ ∂B1.

Finally, by the equicontinuity and the uniform convergence, we conclude∣∣∣∣wk (X1 − Pk
rk

)
−wk

(
X2 − Pk

rk

)∣∣∣∣ = 1 −→ |w(0)−w(X2)| = 1.

At this point, the choice Pk = X1,k for every k ∈N guarantees the convergence of the domains
BPk,rk → Rn+1, while for any compact set K ⊂ Rn+1

max
X∈K∩BPk,rk

|wk(X)−wk(X)| −→ 0.

Hence, we are left with two possibilities:

• for any compact set K ⊂ Σ we have wk(X) 6= 0 for every k ≥ k0 and X ∈ K ;

• there exists a sequence (Xk)k ⊂ Σ such that wk(Xk) = 0 for every k ∈N.
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In the �rst case, if we de�ne Wk = wk −wk(0) and W k = wk −wk(0) we obtain that the last
sequence is uniformly bounded in C0,α and hence (Wk)k converges uniformly on compact set
to a nonconstant globally α-Hölder continuous La-harmonic function W and similarly in the
second case the sequence (wk)k does converge to a nonconstant globally α-Hölder continuous
La-harmonic function.
In both cases, the contradiction follows from the Liouville theorem for La-harmonic functions
since α ∈ (0,α∗), with α∗ = min{1, 1− a}. Now, since α ∈ (0,α∗) with α∗ = min{1, 1− a},
the contradiction follows immediately from the Liouville theorem for La-harmonic functions.

If instead we consider the general case X0 ∈ Γ(u) we can prove the following general result

Theorem 3.4.5. Let u be an La-harmonic function in B1 and X0 ∈ Γ(u) a point on its nodal set.
Given the blow-up sequence uk centered in X0 and associated to rk ↓ 0+ we have this two cases:

1. if X0 ∈ Σ, there exists p ∈ H1,a
loc (R

n) such that uk → p in C0,α
loc (R

n) for every α ∈ (0,α∗)
and strongly in H1,a

loc (R
n). In particular the blow-up limit solves

−Lap = 0 in Rn.

2. if X0 6∈ Σ, there exists p ∈ H1
loc(R

n) such that uk → p in C0,α
loc (R

n) for every α ∈ (0, 1)
and strongly in H1

loc(R
n). In particular the blow-up limit solves

−∆p = 0 in Rn.

Now we will mention some counterpart of the previous results for the case X0 ∈ Γ(u) \ Σ.

Lemma 3.4.6. Let X0 ∈ Γ(u) \ Σ. For any given R > 0, we have ‖uk‖H1(BR)
≤ C where C is

independent on k > 0.

Proof. Since for X0 ∈ Γ(u) \ Σ we have

ρ2
k = H(X0,u, rk) =

1
rn−1
k

ˆ
∂Brk (X0)

|y|a u2dσ =

ˆ
∂B1

|y0 + rky|a u2
kdσ,

we get by Corollary 3.3.8 thatˆ
∂BR

|y0 + rky|a u2
kdσ =

1
ρ2
k

ˆ
∂BR

|y0 + rky|a u2(X0 + rkX)dσ

=
1

ρ2
kr
n−1
k

ˆ
∂BRrk (X0)

|y|a u2dσ

= Rn−1H(X0,u,Rrk)
H(X0,u, rk)

≤ Rn−1
(
Rrk
rk

)2C̃
.
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Consequently, by the Almgren monotonicity formula, for k so large that rk,Rrk < |y0|, we have
ˆ
BR

|y0 + rky|a |∇uk|2 dX ≤ C(R)Rn−2N(X0,u,R).

Since X0 ∈ Rn \ Σ and rk ↓ 0+ we have

inf
BR
|y0 + rky|a = inf

∂BR
|y0 + rky|a ≥ |y0|a min{|1 + r0|a , |1− r0|a}

and �nally
1

Rn−1

ˆ
∂BR

u2
kdσ+

1
Rn−2

ˆ
BR

|∇uk|2 dX ≤ C ′(R)

|y0|a

which gives the claimed bound.

For completeness we just remarked the uniform bound in H1 for the blow-up sequence cen-
tered outside Σ, but the convergence result for the blow-up sequence centered inX0 6∈ Σ is a direct
consequence of [81, Theorem 3.3]. Indeed, for every k > 0 we have that div(|y0 + rky|a∇uk) = 0
or equivalently

−∆uk = a
rk

|y0 + rky|
∂yuk,

which implies the existence of a nontrivial function p ∈ H1
loc(R

n+1) ∩L∞loc(R
n+1) such that, up

to a subsequence, we have uk ⇀ p weakly in H1
loc(R

n+1) and −∆p = 0 in D′(Rn+1).

Proposition 3.4.7. LetX0 ∈ Γ(u) \Σ and p be the blow-up limit of u centered inX0, as previously
de�ned. Then the following Almgren monotonicty formula

N(Z0, p, r) =

1
rn−2

ˆ
Br(Z0)

|∇p|2 dX

1
rn−1

ˆ
∂Br(Z0)

p2dσ

is well de�ned for Z0 ∈ Rn+1 and r > 0. In particular the map r 7→ N(Z0, p, r) is monotone
nondecreasing for every Z0 ∈ Rn+1 and r ∈ (0,+∞).
Moreover, N(0, p, r) = N(X0,u, 0+) =: k for every r > 0, namely p is k-homogeneous

p(X) = |X|γ p
(
X

|X|

)
for every X ∈ Rn+1,

with k ∈N, k ≥ 1.

Now we focus our attention on the blow-up limit itself in the challenging case X0 ∈ Γ(u)∩Σ
and the relationship between the value of the Almgren frequency formula and its local behaviour.
More precisely, we have
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Proposition 3.4.8. LetX0 ∈ Γ(u)∩Σ and p be a blow-up limit of u centered inX0, as previously
de�ned. Then N(0, p, r) = N(X0,u, 0+) =: k for every r > 0 and p is k-homogeneous, i.e.

p(X) = |X|k p
(
X

|X|

)
for every X ∈ Rn+1.

Proof. First of all we prove that r 7→ N(0, p, r) is constant. Let us observe that N(0,uk, r) =
N(X0,u, rrk) and that Theorem 3.4.1 yields that N(0, p, r) = limkN(0,uk, r). Similarly, for
the right hand side we get limkN(X0,u, rrk) = N(X0,u, 0+) by Proposition 3.3.1.

We now compute the derivative of r 7→ N(0, p, r), in order to prove that p is k-homogeneous,
where obviously k = N(X0,u, 0+) is the Almgren frequency formula. As in the proof of
Proposition 3.3.1, we know that

d

dr
H(0, p, r) = 2

rn+a−1

ˆ
∂Br

|y|a p∂rpdσ

and by integration by parts that

d

dr
E(0, p, r) = 1

rn+a−1

ˆ
∂Br

|y|a (∂rp)2 dσ.

Hence, this two equalities imply

0 =
d

dr
N(0, p, r) = 2

r2n+2a−2
1

H2(0, p, r)

ˆ
∂Br

|y|a p2dσ
ˆ
∂Br

|y|a |∂rp|2 dσ−
(ˆ

∂Br

|y|a p∂rpdσ
)2


for r > 0. This equality yields the existence of C = C(r) > 0 such that ∂rp = C(r)p for every
r > 0. Using this fact in (103) we get

2C(r) =
´
∂Br
|y|a p∂rpdσ´

∂Br
|y|a p2dσ =

d

dr
logH(0, p, r) = 2

r
N(0, p, r) = 2

r
k

and thus C(r) = k/r and p is k-homogenous as we claimed.

In the �nal part of this Section we classify the possible values of the Almgren frequency
formula on the restriction Γ(u) ∩ Σ and consequently the possible blow-up limits, in order to
better understand the structure and the strati�cation of the nodal set of u.

A crucial Corollary of this analysis is that a blow-up limit of u in a point of the nodal set
on Σ is either symmetric or antisymmetric with respect Σ: this attitude is due to the fact that
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near the characteristic manifold the local behaviour of La-harmonic function symmetric with
respect to Σ is di�erent to the one of antisymmetric La-harmonic function, which it is a feature
of the degenerate-singular case for a ∈ (−1, 1) and a 6= 0.

At this point, we already know that given an La-harmonic function u on B1, for every X0 ∈
Γ(u) ∩ Σ and rk ↓ 0+ we have, up to a subsequence, that

uk(X) =
u(X0 + rkX)√
H(X0,u, rk)

→ p(X),

where p ∈ H1,a
loc (R

n+1) is an nonconstant entire La-harmonic function homogenous of order
k ∈ R with ‖p‖L2,a(∂B1)

= 1. In particular, by Proposition 3.4.8 we already know that k =

N(X0,u, 0+).
Inspired by Proposition 3.2.4, let us consider separately the case when u is symmetric with respect
to Σ and the antisymmetric one.

Lemma 3.4.9. Let a ∈ (−1, 1) and u be an La-harmonic function symmetric with respect to Σ.
Then, for every X0 ∈ Γ(u) ∩ Σ, we have

N(X0,u, 0+) ∈ 1 + N.

Proof. Let X0 ∈ Γ(u) ∩ Σ and k = N(X0,u, 0+) be the Almgren frequency formula in X0. For
every rk → 0+ we already know that, up to a subsequence, by Theorem 3.4.1 and Proposition
3.4.8 that

uk(X) =
u(X0 + rkX)√
H(X0,u, rk)

→ p(X),

where p is an La-harmonic k-homogenous function symmetric with respect to Σ.
Since, by Corollary 3.3.6 we already know that k ≥ 1, let us suppose by contradiction that there
exists an homogenous La-harmonic function of order k > 1 such that k 6∈ N. Since for every
i = 1, . . . ,n, we have

La(∂xip) = ∂xiLap = 0,

�xed k = bkc, by Euler’s homogeneous function Theorem, we already know that any k-order
partial derivative of p with respect to the variables x1, . . . ,xn must be an homogenous La-
harmonic of order α = k− bkc ∈ (0, 1). The contradiction follows from Proposition 3.3.6, since
the homogeneity of an homogenous function is equal to the Almgren frequency formula evaluated
in the origin, hence in the symmetric case it must be greater or equal to 1.
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Lemma 3.4.10. Let a ∈ (−1, 1) and u be an La-harmonic function antisymmetric with respect to
Σ. Then, for every X0 ∈ Γ(u) ∩ Σ, we have

N(X0,u, 0+) ∈ 1− a+ N.

Proof. As in the previous Lemma, let X0 ∈ Γ(u) ∩ Σ and k = N(X0,u, 0+) be the Almgren
frequency formula inX0. For every rk → 0+ we already know that, up to a subsequence, we have
by Theorem 3.4.1 and Proposition 3.4.8 that uk → p where p is an La-harmonic k-homogenous
function antisymmetric with respect to Σ.
By Proposition 3.2.4, there exists q ∈ H1,2−a

loc (Rn+1) and L2−a-harmonic function symmetric
with respect to Σ, such that p = qy |y|−a. Since p is k-homogenous, we already know that q must
be (k− 1 + a)-homogenous, i.e.

q(X) = p(X)y−1 |y|a = |X|k−1+a p

(
X

|X|

)
y−1 |y|a

|X|−1+a = |X|k−1+a q

(
X

|X|

)
for every X ∈ Rn+1.
Obviously if q(0) 6= 0, then k = 1− a and q is zero-homogenous, i.e. q ≡ q(0) on Rn+1, instead,
if q(0) = 0, by Lemma 3.4.9 we know thatN(0, q, 0+) ∈ 1+N and consequently k ∈ 2− a+N.
Similarly, since these two cases correspond to N(0, q, 0+) = 0 and N(0, q, 0+) ∈ 1 + N, the
�nal result on k can be formulated as N(X0,u, 0+) ∈ 1− a+ N.

Proposition 3.4.11. Let a ∈ (−1, 1) and u be an La-harmonic function. Given X0 ∈ Γ(u) ∩ Σ
and a blow-up sequence uk centered in X0 and associated to some rk ↓ 0+. Then the blow-up limit
p ∈ H1,a

loc (R
n+1) is either symmetric or antisymmetric with respect to Σ and

N(X0,u, 0+) ∈

1 + N, if p is symmetric,
1− a+ N, if p is antisymmetric.

Proof. The proof is a direct consequence of the previous Lemmas. Indeed, let X0 ∈ Γ(u) ∩ Σ
and k = N(X0,u, 0+) be the Almgren frequency formula in X0. For every rk → 0+ we already
know that, up to a subsequence, we have by Theorem 3.4.1 and Proposition 3.4.8 that

uk(X) =
u(X0 + rkX)√
H(X0,u, rk)

→ p(X),

where p is an La-harmonic k-homogenous function. By Proposition 3.2.4 and (98), there ex-
ist a unique La-harmonic function pe ∈ H1,a

loc (R
n+1) and an L2−a-harmonic function qe ∈

H1,2−a
loc (Rn+1) both symmetric with respect to Σ, such that

p(x, y) = pe(x, y) + qe(x, y)y |y|−a , for every (x, y) ∈ Rn+1.
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Since p is k-homogeneous, we already know by the De�nition 3.2.3 that also pe and qey |y|−a are
k-homogeneous, i.e.

N(0, pe, 0+) = k = N(0, qe, 0+) + 1− a. (115)

If p is purely symmetric or antisymmetric with respect to Σ, the result follows respectively by
Lemma 3.4.9 and Lemma 3.4.10. Instead, suppose by contradiction that pe 6≡ 0 and qe 6≡ 0, then
by (115) the two homogeneity of pe and qe can not be simultaneously in N + 1, in contradiction
with the previous Lemmas.

In order to understand the local behaviour of the La-harmonic function, we need to con-
struct explicitly the homogenous La-harmonic function. As before, we start by classifying the
homogeneous solution symmetric with respect to Σ in order to classify all the possible ones.

Lemma 3.4.12. Let p ∈ H1,a
loc (R

n+1) be a nonconstant homogeneous La-harmonic function, sym-
metric with respect to Σ. Then p does not depend on the variable y if and only if it is harmonic in the
variable x1, . . . ,xn.

The proof is trivial and the main consequence is that for every k ∈ 1 + N an homogenous
harmonic function in the variable x1, . . . ,xn of order k is an admissible blow-up limit. For this
reason, let us concentrate our attention on the case of blow-up limits that depend on the variable
y.

Lemma 3.4.13. [22, Lemma 2.7] Let p ∈ H1,a
loc (R

n+1) be an entireLa-harmonic function symmetric
with respect to Σ, such that

|p(X)| ≤ C
(
1 + |X|k

)
in Rn+1,

for some k ∈N. Then p is a polynomial.

In order to give an explicit formulation of the blow-up limits, at least for n+ 1 = 2, we remark
that if p is a k-homogenous La-harmonic function, then for every i = 1, . . . ,n the functions ∂xiu
are (k− 1)-homogeneous La-harmonic function and ∂2

yyu+ ay−1∂yu is a (k− 2)-homogenous
La-harmonic function. More precisely,

Lemma 3.4.14. Let p ∈ H1,a
loc (R

n+1) be an La-harmonic homogenous polynomial of degree k ≥ 2
symmetric with respect to Σ. Then p is La-harmonic if and only if ∂xip and ∂

2
yyp+ ay−1∂yp are

La-harmonic, for every i = 1, . . . ,n.

Proof. Since the derivatives commute, we get

|y|−a La∂xip = ∂xi

(
|y|−a Lap

)
, ∀i = 1, . . . ,n

La
(
∂2
yyp+ ay−1∂yp

)
= ∂2

yyLap+ ay−1∂yLap.
(116)
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The �rst implication is obvious since replacing Lap = 0, we get the conditions on the derivatives.
Now let us suppose that (116) holds true, since p is an homogenous polynomial of degree k, the
function (x, y) 7→ |y|−a (Lap)(x, y) is an homogenous polynomial of degree k− 2 symmetric
with respect to Σ. Moreover, since ∂xip is La-harmonic, for every i = 1, . . . ,n, from the �rst
conditions in (116) we have Lap = q(y), with q(y) = q(−y) and

∂2
yyq+ ay−1∂yq = 0, (117)

from the last condition on the derivatives with respect to y.
Since the general solution of (117) is q(y) = c1 + c2 |y|−a, we immediately get, from the con-
strained of symmetry, that q(y) ≡ 0 and hence that Lap = 0 on Rn+1.

The following Proposition gives a complete picture of the possible entire con�gurations in
R2. This pro�les will be useful in the strati�cation result of Section 3.7.

Proposition 3.4.15. Let p ∈ H1,a
loc (R

2) be a nonconstant entire La-harmonic function symmetric
with respect to Σ such that N(0, p, r) = k for every r > 0. Suppose that p depends on the variable
y, then if k ∈ 2N we have

p(x, y) =
(−1)

k
2 Γ
(1

2 +
a

2

)
2kΓ

(
1 + k

2

)
Γ
(1

2 +
a

2 +
k

2

) 2F1

(
−k2 ,−k2 −

a

2 +
1
2, 1

2,−x
2

y2

)
yk, (118)

and if k ∈ 2N + 1 we get

p(x, y) = −
(−1)

k
2 +

1
2 Γ
(1

2 +
a

2

)
2k−1Γ

(1
2 +

k

2

)
Γ
(
a

2 +
k

2

) 2F1

(
1
2 −

k

2 , 1− k

2 −
a

2 , 3
2,−x

2

y2

)
xyk−1, (119)

where 2F1 is the hypergeometric function.

Proof. The proof is by induction and based on the properties related to the derivatives of ho-
mogenous La-harmonic functions. By Lemma 3.4.13, we already know that every homogenous
La-harmonic function symmetric with respect to Σ is a polynomial p(x, y) such that, for every
x ∈ Σ the map y 7→ p(x, y) is a polynomial of even degree.
Fix k = 2m with m ∈N, consider

c(m, a, t) = (−1)m−t

2t!
1

2m−t(m− t)!

m−t∏
i=1

1
2i+ a− 1 =

(−1)m−tΓ
(1

2 +
a

2

)
2t!(m− t)!22m−2tΓ

(
m− t+ 1

2 +
a

2

)
(120)
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and consequently

p(x, y) = x2m

2m!
+

m−1∑
t=0

c(m, a, t)x2ty2m−2t.

which is equivalent to (118). By a direct computation, it is easy to see that Lap(x, y) = 0 for
every (x, y) ∈ R2. Now, let us prove by induction on k ≥ 2 that every homogenous La-harmonic
function is of the form (118). Since the case k = 0 is trivial, let us take k = 2. Since p must be
of degree 2 and even in the variable y, the polynomial must be like p(x, y) = a1x

2 + a2y
2 and

consequently
Lap = 0 ←→ a2 = − 1

1 + a
a1,

and for a1 = 1/2 we obtain the formula in (120).
Suppose (120) are true for k ∈ 2N, and consider a La-harmonic polynomial p of degree k+ 2, i.e.

p(x, y) = am+1x
2m+2 +

m∑
t=0

atx
2ty2m−2t.

Since ∂2
xp is a La-harmonic polynomial of degree k, we must have by the inductive hypothesis

am+1(2m+ 2)(2m+ 1) = 1
2m!

, 2t(2t− 1)at = c(m, a, t− 1) for t = 1, . . . ,m.

which imply, by de�nition (120), that

am+1 =
1

(2m+ 2)! , at =
c(m, a, t− 1)

2t(2t− 1) = c(m+ 1, a, t)

for t = 1, . . . ,m. Finally, let w = −∂2
yyp− ay−1∂yp be a polynomial of degree k. By Lemma

3.4.14 w is La-harmonic and, by the inductive hypothesi, we get by linearity that

−∂2
yy(a0y

2m+2)− ay−1∂y(a0y
2m+2) = c(m, a, 0)y2m,

or in other words that −(2m+ 2)(2m+ 1 + a)a0 = c(m, a, 0), which implies that

a0 =
c(m, a, 0)

2(m+ 1)(2m+ 1 + a)
= c(m+ 1, a, 0).

We have already proved the formula for the case k ∈ 2N, while the other one is obtained via an
integration respect to the variable x.

Before to consider the general case n ≥ 3, we complete the Section with some concrete
examples of blow-up pro�les in 2-dimensional case. This example, and more generally the class
of homogeneous function described by the previous Proposition, will summarize all the possible
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behaviour of the (n− 2)-dimensional singular set, as we will see in Section 3.7. For n ≥ 3, we
can not give an explicit formula for the blow- up limits which depend on the variable y, but we
can prove that every polynomial in Rn admits a unique La-harmonic extension symmetric with
respect to Σ. Since we want to classify the possible blow-up limit of s-harmonic functions on the
nodal set, this result suggests that s-harmonic functions can vanish like any polynomial. We will
discuss in the following Sections the implication of this classi�cation.

Lemma 3.4.16. [51, Lemma 5.2] Let p(x) be an homogeneous polynomial of degree d in Rn.Then,
there exists a unique polynomial q(X) = q(x, y) of degree d in Rn+1 such that

Laq = 0 in Rn+1

q(x, y) = q(x,−y) in Rn+1

q(x, 0) = p(x) on Rn.

In particular, it can proved that this extension is obtained by

q(x, y) =
d/2∑
k≥0

(−1)kc2k∆k
xα

α!
y2k

(2k!)
, c2k =

k∏
i=1

2i− 1
2i− 2s ,

where α = (α1, . . . ,αn) ∈Nd, xα = xα1
1 · · ·xαnn and α! = α1! · · ·αn!.

Inspired by the previous results, let us introduce the following classes of blow-up limit.

De�nition 3.4.17. Given a ∈ (−1, 1) and k ∈ R, we de�ne the set of all possible blow-up limit
of order k, i.e. the set of all La-harmonic symmetric polynomials of degree k, as

Ba
k(R

n+1) =

p ∈ H1,a
loc (R

n+1)

∣∣∣∣∣∣∣
Lap = 0 in Rn+1

p(X) = |X|k p
(
X

|X|

)
in Rn+1

 .

Similarly, the set of blow-up limit of order k respectively symmetric or antisymmetric with respect
to Σ are de�ned as

sBa
k(R

n+1) =

{
p ∈ Ba

k(R
n+1) | p symmetric with respect to Σ

}
,

aBa
k(R

n+1) =

{
p ∈ Ba

k(R
n+1) | p antisymmetric with respect to Σ

}
.

By Proposition 3.2.4 and Lemma 3.4.12 we can classify even more the structure of the previous
classes emphasizing two subclasses of blow-up limit.
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De�nition 3.4.18. Given a ∈ (−1, 1) and k ∈ R, let us de�ne sB∗k(R
n+1) = B0

k(R
n
x) the set

of functions p ∈ Ba
k(R

n+1) such that ∆xp = 0, namely p(x, y) = p(x) in Rn+1 = Rn
x ×Ry .

By the previous Section, we already know that for a ∈ (−1, 1) we have Ba
1(R

n+1) =

B∗1(R
n+1) and for k ≥ 2 we have sBa

k(R
n+1) \B∗k(Rn+1) 6= ∅ and it consists of all blow-up

limit which depends on the variable y. Finally

Corollary 3.4.19. For a ∈ (−1, 1), let u be an La-harmonic function in B1 and X0 ∈ Γk(u), for
some k ∈ 1 + N or k ∈ 1− a+ N. Then, every blow-up limit p centered in X0 ∈ Γk(u) is either
in sBa

k(R
n+1) or in aBa

k(R
n+1). Moreover, for every a ∈ (−1, 1) we have

aBa
k(R

n+1) = sB2−a
k+a−1(R

n+1)y |y|−a .

3.5 uniqueness and continuity of tangent maps and tangent fields

In this Section we start introducing a Weiss type monotonicity formula, which is a fundamental
tool well suited for the blow-up analysis at the nodal points X0 ∈ Γ(u) where N(X0,u, 0+) = k.
Starting from this result we will improve our knowledge of the blow-up convergence by proving
the existence of a unique no-zero blow-up limit at every point of the nodal set Γ(u), which will
be called the tangent map ϕX0 of u at X0.
In particular, inspired by the decomposition in (98), we introduce the notion of tangent “�eld” at
the nodal point ΦX0 , which take the main role in our blow-up analysis.

De�nition 3.5.1. Given u an La-harmonic function in B1, for k ≥ min{1, 1− a}, we de�ne

Γk(u) := {X0 ∈ Γ(u) : N(X0,u, 0+) = k}.

One has to point out that the sets Γk(u) may be nonempty only for k in a certain set of
values. Indeed, by Proposition 3.4.11, we already know that Γk(u) ∩ Σ is nonempty if and only if
k ∈ 1 + N or k ∈ 1− a+ N. We remark that all the following results are well known for the
case X0 ∈ Γk(u) \ Σ since the La operator is uniformly elliptic outside Σ.

Proposition 3.5.2. Let u be a nontrivial La-harmonic function in B1. For X0 ∈ Γk(u) ∩ Σ, we
introduce the k-Weiss type formula

Wk(X0,u, r) = 1
rn+a−1+2k

ˆ
Br(X0)

|y|a |∇u|2 dX − k

rn+a+2k

ˆ
∂Br(X0)

|y|a |u|2 dσ.

For r ∈ (0, 1− |X0|) we have

d

dr
Wk(X0,u, r) = 2

rn+a+1+2k

ˆ
∂Br(X0)

|y|a (〈∇u,X −X0〉 − ku)2 dσ. (121)
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which implies that r 7→Wk(X0,u, r) is monotone nondecreasing in (0, 1− |X0|).
Furthermore, the map r 7→Wk(X0,u, r) is constant if and only if u is homogeneous of degree k.

Proof. By the de�nition of the Almgren monotonicity formula, we have

Wk(X0,u, r) = H(X0,u, r)
r2k (N(X0,u, r)− k) (122)

which directly implies that
d

dr
Wk(X0,u, r) = −2k

r2k+1 (E(X0,u, r)− kH(X0,u, r)) + 1
r2k

(
d

dr
E(X0,u, r)− k d

dr
H(X0,u, r)

)
=
−4k
r2k+1E(X0,u, r) + 2k2

r2k+1H(X0,u, r) + 1
r2k

d

dr
E(X0,u, r)

=
2

rn+a+1+2k

ˆ
∂Br(X0)

|y|a (〈∇u,X −X0〉 − ku)2 dσ

as we previously claimed.

By a integration by parts, we can rewrite the k-Weiss monotonicity formula as

Wk(X0,u, r) = 1
rn+a+2k

ˆ
∂Br(X0)

|y|a u (〈∇u,X −X0〉 − u) dσ.

Proposition 3.5.3. Let a ∈ (−1, 1) and u be an La-harmonic function inB1 andX0 ∈ Γk(u)∩Σ.
For every homogenous La-harmonic polynomial p ∈ Ba

k(R
n+1), the map

r 7→ H(X0,u− pX0 , r)
r2k =

1
rn+a+2k

ˆ
∂Br(X0)

|y|a (u− pX0)
2 dσ

is monotone non decreasing in (0, 1− |X0|), where pX0(X) = p(X −X0).

Through the following Section, we will use the notation r 7→ M(X0,u, pX0 , r) for the
previous map.

Proof. Since X0 ∈ Γk(u) ∩ Σ and p is a k-homogenous La-harmonic function, we already know
that Wk(X0,u, r) ≥ 0 and Wk(X0, pX0 , r) = 0 for every r ∈ (0, 1− |X0|). Let w = u− pX0 ,
then

Wk(X0,u, r) = Wk(X0,u, r) +Wk(X0, pX0 , r)

=
1

rn+a−1+2k

(ˆ
Br(X0)

|y|a |∇w|2 + 2 |y|a 〈∇w,∇p〉dX − k

r

ˆ
∂Br(X0)

|y|aw2 + 2 |y|awpdσ
)

= Wk(X0,w, r) + 2
rn+a+2k

ˆ
∂Br(X0)

|y|aw(〈∇pX0 ,X −X0〉 − kp)dσ

= Wk(X0,u− pX0 , r).
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Hence , by (122), we �nally get

d

dr

H(X0,u− pX0 , r)
r2k = 2H(X0,u− pX0 , r)

r2k+1 (N(X0,u− pX0 , r)− k)

=
2
r
Wk(X0,u− pX0 , r) ≥ 0.

Now, we apply the previous monotonicity formulas to study the growth rate of the La-
harmonic function at the points of the nodal set. In particular, we prove a nondegeneracy and
uniqueness result of the blow-up limit, for every points of the nodal set.

Lemma 3.5.4. Let a ∈ (−1, 1) and u be an La-harmonic function in B1. Then, for every X0 ∈
Γk(u) ∩ Σ, there exists C > 0 such that

|u(X)| ≤ C |X −X0|k in BR/2(X0).

where R = 1− dist(X0, ∂B1).

Proof. Since whenever X0 ∈ Γk(u) we have N(X0,u, r) ≥ N(X0,u, 0+) = k, then for every
r ∈ (0,R)

d

dr
logH(X0,u, r) ≥ 2

r
N(X0,u, r) ≥ 2k

r
and similarly

log H(X0,u,R)
H(X0,u, r) ≥ 2k log 1

r
,

which implies H(X0,u, r) ≤ H(X0,u,R)r2k. Now, by [88, Lemma A.2.] and the previous
estimate, we get for every r ∈ (0,R)

sup
Br/2

u ≤ C(n, a)
(

1
rn+1+a

ˆ
Br

|y|a u2dX
)1/2

≤ C(n, a)
(
H(0,u,R)
n+ a+ 1

)1/2
,

where in the second inequality we used the monotonicity of r 7→ H(0,uk, r) in (0,R).

Lemma 3.5.5 (Nondegeneracy). Let a ∈ (−1, 1) and u be an La-harmonic function in B1. Then,
for every X0 ∈ Γk(u) ∩ Σ there exists C > 0 such that

sup
∂Br(X0)

|u(X)| ≥ Crk for 0 < r < R

where R = 1− dist(X0, ∂B1).



134 nodal set of solutions of degenerate - singular equations

Proof. Fix X0 ∈ Γk(u) and suppose by contradiction, given a decreasing sequence rj ↓ 0, that

lim
j→∞

H(X0,u, rj)1/2

rkj
= lim

j→∞

(
1

rn+a+2k
j

ˆ
∂Brj (X0)

|y|a u2 dσ

)1/2

= 0.

Consider now the blow-up sequence

uj(X) =
u(X0 + rjX)

ρj
where ρj = H(X0,u, rj)1/2

constructed starting from rj and centered in X0 ∈ Γk(u). By Theorem 3.4.1, up to a subsequence
uj → p uniformly, where p is a nontrivial La-harmonic homogenous polynomial of degree k
such that H(0, p, 1) = 1.
Let us focus our attention on the functional M(X0,u, pX0 , r) with pX0 as above. By the assump-
tion on the growth of u it follows

M(X0,u, pX0 , 0+) = lim
r→0

1
rn+a+2k

ˆ
∂Br(X0)

|y|a (u− pX0)
2 dσ

= lim
r→0

ˆ
∂B1

|y|a
(
u(X0 + rX)

rk
− p(X)

)2
dσ

=

ˆ
∂B1

|y|a p2 dσ

=
1

rn+a+2k

ˆ
∂Br(X0)

|y|a p2
X0 dσ.

By the monotonicity result of Proposition 3.5.3 on the map r 7→M(X0,u, pX0 , r), we obtain

1
rn+a−1+2k

ˆ
∂Br(X0)

|y|a (u− pX0)
2 dσ ≥ 1

rn+a−1+2k

ˆ
∂Br(X0)

|y|a p2
X0 dσ

and similarly ˆ
∂Br(X0)

|y|a (u2 − 2upX0) dσ ≥ 0.

On the other hand, rescaling the previous inequality and using the blow-up sequence uj de�ned
as above, we get

ˆ
∂B1

|y|a
(
H(X0,u, rj)u2

j − 2H(X0,u, rj)1/2rkj ujp
)
dσ ≥ 0

and ˆ
∂B1

|y|a
(
H(X0,u, rj)1/2

rkj
u2
j − 2ujp

)
dσ ≥ 0.
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The absurd follows passing to the limit for j →∞, indeed by the previous inequality we get
ˆ
∂B1

|y|a p2 dσ ≤ 0

in contradiction with p 6≡ 0.

Theorem 3.5.6 (Uniqueness of the blow-up limit). Given a ∈ (−1, 1) and u be an La-harmonic
function in B1, let us consider X0 ∈ Γk(u) ∩ Σ, i.e. N(X0,u, 0+) = k. Then there exists a unique
nonzero p ∈ Ba

k(R
n+1) blow-up limit such that

uX0,r(X) =
u(X0 + rX)

rk
−→ p(X). (123)

Proof. Up to a subsequence rj → 0+, we have that uX0,rj → p in C0,α
loc . The existence of such

limit follows directly from the previous growth estimate |u(X)| ≤ C |X|k and by Lemma 3.5.5
we have p is not identically zero. Now, for any r > 0 we have

Wk(0, p, r) = lim
j→∞

Wk(0,uX0,rj , r) = lim
j→∞

Wk(X0,u, rrj) = Wk(X0,u, 0+) = 0.

In particular, Proposition 3.5.2 implies that the La-harmonic function p is k-homogeneous and
consequently p ∈ Ba

k(R
n+1). By Proposition 3.5.3 the limit M(X0,u, pX0 , 0+) exists and can

be computed by

M(X0,u, pX0 , 0+) = lim
j→∞

M(X0,u, pX0 , rj)

= lim
j→∞

M(0,uX0,rj , p, 1)

= lim
j→∞

ˆ
∂B1

|y|a (uX0,rj − p)2 dσ = 0.

Moreover, let us suppose by contradiction that for any other sequence ri → 0+ we have that the
associated sequence converges to another blow-up limit, i.e. uX0,ri → q ∈ Ba

k(R
n+1), q 6≡ p,

then

0 =M(X0,u, pX0 , 0+) = lim
i→∞

M(X0,u, pX0 , ri)

= lim
i→∞

ˆ
∂B1

|y|a (uri − p)2 dσ

=

ˆ
∂B1

|y|a (q− p)2 dσ.

As we claim, since q and p are both homogenous of degree k they must coincide in Rn.
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Inspired by the previous uniqueness and nondegeneracy results, we introduce the notion of
tangent map at every point on the nodal set Γ(u).

De�nition 3.5.7. Given a ∈ (−1, 1), let u be an La-harmonic function in B1 and X0 ∈ Γk(u)∩
Σ, for k ≥ min{1, 1 − a}. We de�ne as tangent map of u at X0 the unique nonzero map
ϕX0 ∈ Ba

k(u) such that

uX0,r(X) =
u(X0 + rX)

rk
−→ ϕX0(X).

Moreover, we de�ne as normalized tangent map of u atX0, the unique nonzero map pX0 ∈ Ba
k(u)

normalized with respect to the L2,a(∂B1) norm, i.e. the map obtained as

uX0,r(X) =
u(X0 + rX)√
H(X0,u, r)

−→ pX0 .

Exploiting the deep connection between the existence and uniqueness of the tangent map
and the Taylor expansion of an La-harmonic function, we can �nd another characterization of
the sets Γk(u).

Corollary 3.5.8. For a ∈ (−1, 1), let u be an La-harmonic function in B1 and X0 ∈ Γk(u) ∩ Σ,
with k ≥ min{2, 2− a}. Then

• if k ∈ 2 + N, we have Dνu(X0) = 0 for every |ν| ≤ k− 1 and there exists |ν0| = k such
that Dν0u(X0) 6= 0;

• if k ∈ 2− a+ N, we have Dν(uy |y|−a)(X0) = 0 for every |ν| ≤ k − 1 and there exists
|ν0| = k such that Dν0(uy |y|−a)(X0) 6= 0.

Finally, we can prove the validity of the weak unique continuation principle for the restriction
of Γ(u) on Σ. This result will improve the study of the nodal set of u by showing that its restriction
on the characteristic manifold Σ is either with empty interior in Σ or is Σ itself. While in [73] the
author proved a similar weak unique continuation property using a boot strap argument based
on some regularity estimates for the La-operator, in our case we want to emphasize how our
blow-up analysis and the classi�cation of the tangent maps allow to study several local property
of La-harmonic function.

Proposition 3.5.9. Let a ∈ (−1, 1) and u be an La-harmonic function in B1. If there exists
X0 ∈ B1 ∩ Σ and R < 1− |X0| such that u = 0 on BR(X0) ∩ Σ, then u ≡ 0 on B1 ∩ Σ.

Proof. LetX0 ∈ Γ(u)∩Σ andR < 1−|X0|. Since we are focusing the attention on the restriction
of the nodal set on Σ, by de�nition of the symmetric part of u with respect to Σ, we can assume
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that u = ue is purely symmetric with respect to Σ.
The idea of the proof is to prove that u is identically zero in the whole ball BR(X0) in order to
apply the Strong Unique continuation property Corollary 3.3.3, which is actually a stronger result
since it does not only concern the trace of u on Σ.
Suppose by contradiction that u 6≡ 0 on BR(X0), then

H(X0,u, r) = 1
rn+a

ˆ
∂Br(X0)

|y|a u2dX > 0

for all r ∈ (0,R). Now, since X0 ∈ Γ(u), there exists by Theorem 3.5.6 a unique nontrivial
tangent map ϕX0 ∈ Ba

k(R
n+1) of u at X0, where k = N(X0,u, 0+). Since u is symmetric with

respect to Σ, by Corollary 3.4.9 we know that ϕX0 ∈ sBa
k(R

n+1), with k ∈ 1 + N.
Let us see the points inBR(X0)∩Σ as the collection of pointX0 + rν for r < R and ν ∈ Sn ∩Σ.
By the L∞loc convergence of the blow-up sequence we get that ϕX0(ν) = 0 for all ν ∈ Sn ∩ Σ,
i.e. ϕX0 ≡ 0 on Σ. Let us prove now that ϕX0 ≡ 0 on Rn+1 by induction on the homogeneity
k = N(0,ϕX0 , 0+).
Let k = 1, then up to a rotation ϕX0(x, y) = C〈X, e1〉 = Cx1, where x = (x1, · · · ,xn) and
consequently C = 0. Now let us suppose that every k-homogenous La-harmonic polynomial
symmetric with respect to Σ which is zero on Σ is actually identically zero in Rn+1 and consider
the case k+ 1. Given vi = ∂xiϕ

X0 ∈ H1,a(B1) we have that


Lavi = 0 in Rn+1,
vi = 0 on Σ,
N(0, vi, 0+) ≤ k.

By the induction hypothesi we have that for every i = 1, · · · ,n vi ≡ 0 on Rn+1, i.e. ∂xiϕX0 ≡ 0
and consequently ϕX0 does not depend on x ∈ Σ. The absurd follows immediately since the only
La-harmonic polynomial in the y-variable is purely antisymmetric and equal, up to a multiplicative
constant, to f(y) = y |y|−a.

Inspired by the doubling estimate in [73], we get

Proposition 3.5.10. Let a ∈ (−1, 1) and u a La-harmonic function in B1. Then Γ(u) has empty
interior in Rn+1 and its restrictions Γ(u) ∩ Σ is either equal to Σ or it has empty interior in Σ itself.
More generally,

Γ(u) ∩ Σ = Γ(ue) ∩ Σ.
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Proof. Assume by contradiction that there exists X0 ∈ Γ(u) such that d = dist(X0, ∂Γ(u)) < R,
where R = 1− |X0|. By de�nition of d, we have H(X0,u, r) > 0 for r ∈ (d, d+ ε), for some
ε > 0. By (103), the map r 7→ H(X0,u, r) solves the Cauchy problemH ′(r) = a(r)H(r), for r ∈ (d, d+ ε)

H(d) = 0,
(124)

where a(r) = 2N(X0,u, r)/r, which is continuous at d by the monotonicity result of r 7→
N(X0,u, r), i.e. Proposition 3.3.1. Then by uniqueness, H(r) ≡ 0 for r > d, which contradicts
the de�nition of d and the assumption that u is not identically zero in B1.
Now, let us consider Γ(u) ∩ Σ. By de�nition of ue,uo we easily get

Γ(u) ∩ Σ = Γ(ue) ∩ Σ.

Hence, let us suppose that u 6≡ uo, i.e. Γ(u) ∩ Σ  Σ, and assume as before that there exists
X0 ∈ Γ(u) ∩ Σ = Γ(ue) ∩ Σ such that d = dist(X0, ∂Γ(ue) ∩ Σ) < R, where R = 1− |X0|. In
other words, the symmetric part ue of u solves for every r < d,

Laue = 0 on Br(X0)

ue = 0 on Br(X0) ∩ Σ

∂ayue = 0 on Br(X0) ∩ Σ,

which implies that ue ≡ 0 in Bd(X0), i.e. H(X0,ue, d) = 0. As before, by the uniqueness of
the Cauchy problem (124), we get that ue is identically zero in B1, in contradiction with the
assumption Γ(u) ∩ Σ  Σ.

Looking again to the blow-up sequence, we can establish an auxiliary result concerning the
convergence with respect to the Hausdor� distance dH. In particular, we will prove that given the
blow-up sequence (uX0,r)r of u at X0, then the nodal sets Γ(uX0,r) converge to Γ(ϕX0) with
respect to the Hausdor� distance. More precisely, given two sets A,B, the Hausdor� distance
dH(A,B) is de�ned as

dH(A,B) := max
{

sup
a∈A

dist(a,B), sup
b∈B

dist(A, b)
}

.

Notice that dH(A,B) ≤ ε if and only if A ⊆ Nε(B) and B ⊆ Nε(A), where Nε(·) is the closed
ε-neighborhood of a set, i.e.

Nε(A) =
{
X ∈ Rn+1 : dist(X,A) ≤ ε

}
.
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Proposition 3.5.11. Let u be an La-harmonic function in B1 and X0 ∈ Γk(u) ∩ Σ. Given, uX0,r
the blow-up sequence at X0, i.e.

uX0,r(X) =
u(X0 + rX)

rk
→ ϕX0(X).

Then Γ(uX0,r) ∩ Σ→ Γ(ϕX0) ∩ Σ with respect to the Hausdor� distance dH in B1. More precisely,
for every k ≥ min{1, 1− a} we have that

Γk(uX0,r) ∩ Σ→ Γk(ϕX0) ∩ Σ

with respect to the Hausdor� distance dH in B1

Proof. Let ri → 0+ and ui = uX0,ri be the blow-up sequence of u at X0 associated to ri and
Γk(ui) be the sequence of nodal sets associated to the blow-up sequence. Through the proof,
we will omit the fact that we are just focusing on the restriction of the nodal sets on Σ and we
will call Γk(ϕX0) as the tangent cone of Γk(u) at X0. By Theorem 3.5.6 we already know that
ϕX0 and Γ(ϕX0) do not depend on the choice of the sequence rk. By the de�nition of Hausdor�
distance, the claimed result

dH
(

Γk(ui) ∩B1, Γk(ϕX0) ∩B1
)
→ 0

is equivalent to prove that for every ε > 0 there exists i > 0 such that for every i ≥ i

Γk(ui) ∩B1 ⊆ Nε

(
Γk(ϕX0) ∩B1

)
Γk(ϕX0) ∩B1 ⊆ Nε (Γk(ui) ∩B1) .

Supposing by contradiction that the �rst inclusion is not true, then there exist ε > 0 and a
sequence Xi ∈ Γk(ui) ∩ B1 such that dist

(
Xi, Γk(ϕX0) ∩B1

)
> ε. Up to a subsequence,

Xi → X ∈ Γ(ϕX0)∩B1 by the L∞loc convergence of ui → ϕX0 . Since Xi ∈ Γk(ui) is equivalent
to X0 + riXi ∈ Γk(u), given Ω ⊂⊂ B1 such that (X0 + riXi)i ⊂ Ω, let us consider

R1 =min
p∈Ω

dist(p, ∂B1) < 1,

C̃ = sup
p∈Ω

N(p,u,R1).

Hence, by the monotonicity result Proposition 3.3.1 and Corollary 3.3.2, for p ∈ Ω ∩ Γk(u) and
r < R1 we get that N(p,u, r) ≥ k and

N(p,u, r) ≤ N(p,u,R1)

(
R1
r

)n+a−1+2C̃
≤ C̃ 1

rn+a−1+2C̃ .
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In particular, from the second inequality we can easily state that for every ε > 0 there exists
R = R(n, a, Ω, ε) > 0 such that

N(p,u, r) ≤ k+ ε,

for every p ∈ Ω ∩ Γk(u) and r < R.

Now, since for i > 0 su�ciently large N(Xi,ui, r) ≤ N(X0 + riXi,u, r), if we take p =

X0 + riXi in the previous inequality, we get that there exists R = R(n, a,X0) > 0 su�ciently
small, such that for r < R we have

k ≤ N(Xi,ui, r) ≤ k+ min
(1

2, 1− a
2 , |a|2

)
.

Since limiN(Xi,ui, r) = N(X,ϕX0 , r) for su�ciently small r, we directly obtain from Propo-
sition 3.4.11 that N(X,ϕX0 , 0+) = k, i.e. X ∈ Γk(ϕX0) ∩ B1. Finally, the absurd follows
immediately since Γk(ϕX0) ∪ {0} is an homogeneous cone passing through the origin and hence
it implies that dist(X, Γk(ϕX0) ∩B1) = 0.

Now let us consider the second inclusion, i.e. for every ε > 0 there exists i > 0 such that
for every i ≥ i

Γk(ϕX0) ∩B1 ⊆ Nε (Γk(ui) ∩B1) .

Let us start by proving that given X ∈ Γk(ϕX0) and δ > 0 such that Bδ(X) ∩ Γ(ϕX0) =

Bδ(X) ∩ Γk(ϕX0) there exiss i > 0 such that for every i ≥ i the function ui must admit a zero
of order k in Bδ(X), Γk(ui) ∩Bδ(X). Suppose it is not true, we would have two possibilities:
�rst that ui > 0 in Bδ(X) for every k > 0 or secondly that every zeros of ui is not of order k. In
the �rst case, the positivity implies that ϕX0 must be an homogeneous La-harmonic function
nonnegative in Bδ(X) with ϕX0(X) = 0, and therefore ϕX0 ≡ 0 in Rn+1. In this case the
contradiction follows by Lemma 3.5.5 and Theorem 3.5.6.
Secondly, since up to a subsequence there exists a sequence Xi ∈ Γh(ui) ∩Bδ(X) for h 6= k, by
arguing as in the proof of the other inclusion, we can prove that Xi → X̃ ∈ Γh(ϕX0) ∩Bδ(X),
in contradiction with the de�nition of δ > 0.
Finally, suppose the existence of ε > 0 and Xi ∈ Γk(ϕX0) ∩B1,Xi → X ∈ Γk(ϕX0) ∩B1,
such that dist(Xi, Γk(ϕX0) ∩B1) > ε. Since X = {0} is a trivial case, let us focus on the case
X ∈ Γk(ϕX0) ∩B1. By de�nition, Γk(ϕX0) ∪ {0} is an homogenous cone passing through the
origin and hence we can take X ∈ Γk(ϕX0) ∩B1 such that

∣∣∣X −X∣∣∣ ≤ ε/4. Moreover, by the
previous paragraph, there exist a sequence Xi ∈ Γ(ui) ∩B1 and i > 0, such that for i ≥ i we
have

∣∣∣Xi −X
∣∣∣ ≤ min{δ, ε}/4 Hence, we get

dist(Xi, Γk(ϕX0) ∩B1) ≤
∣∣∣Xi −Xi

∣∣∣ ≤ |Xi −X|+
∣∣∣X −X∣∣∣+ ∣∣∣X −Xi

∣∣∣ < ε,
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which leads a contradiction for large i > 0.

The following result will be a fundamental tool in the study of Γ(u) ∩ Σ. Indeed, by using
the continuation of the tangent map with respect to the L2,a(∂B1), we will prove a separation
property for the set Γk(u) ∩ Σ, for k ≥ min{2, 2− a}.

Theorem 3.5.12 (Continuation of the tangent map on Γk(u)). Let X0 ∈ Γk(u) ∩ Σ and ϕX0 be
the tangent map of u at X0, such that

u(X) = ϕX0(X −X0) + o(|X −X0|k). (125)

Thus, the map X0 7→ ϕX0 from Γk(u) toBa
k(R

n+1) is continuous.Moreover, for any compact set
K ⊂ Γk(u) ∩B1 there exists a modulus of continuity σK such that σK(0) = 0 and∣∣∣u(X)−ϕX0(X −X0)

∣∣∣ ≤ σK (|X −X0|) |X −X0|k ,

for any X0 ∈ K .

Proof. Since Ba
k(R

n+1) is a convex subset of a �nite-dimensional vector space, namely the space
of all k-homogeneous polynomials in Rn+1, all the norms on such space are equivalent and hence
we can then endow Ba

k(R
n+1) with the norm of L2,a(∂B1).

Fixed X0 ∈ Γ(u) ∩ Σ, by Theorem 3.5.6 we have the following expansion

u(X) = ϕX0(X −X0) + o(|X −X0|k).

where ϕX0 is the unique blow-up limit of u in X0. Given ε > 0, consider rε = rε(X0) such that

M (X0,u,ϕX0 , rε) =
1

rn+a+2k
ε

ˆ
∂Brε

|y|a
(
u(X0 +X)−ϕX0(X)

)2
dσ < ε.

There exists also δε = δε(X0) such that if X1 ∈ Γk(u) ∩ Σ and |X1 −X0| < δε then
1

rn+a+2k
ε

ˆ
∂Brε

|y|a
(
u(X1 +X)−ϕX0(X))2 dσ < 2ε

or similarly ˆ
∂B1

|y|a
(
u(X1 + rεX)

rkε
−ϕX0(X)

)2
dσ < 2ε

From Proposition 3.5.3, we have that M(X1,u,ϕX0 , r) < 2ε for r ∈ (0, rε), which implies

M(X1,u,ϕX0 , 0+) = lim
r→0

M(X1,u,ϕX0 , r)

= lim
r→0

ˆ
∂B1

|y|a
(
u(X1 + rX)

rk
−ϕX0(X)

)2
dσ

=

ˆ
∂B1

|y|a
(
ϕX1 −ϕX0

)2
dσ ≤ 2ε.
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Now, by the previous computations, for |X1 −X0| < δε, 0 < r < rε we get∥∥∥uX1,r −ϕX1
∥∥∥
L2,a(∂B1)

≤
∥∥∥uX1,r −ϕX0

∥∥∥
L2,a(∂B1)

+
∥∥∥ϕX0 −ϕX1

∥∥∥
L2,a(∂B1)

≤ 2
√

2ε,

where uX1,r and uX0,r are the blow-up sequences de�ned in (123) centered respectively in X1
and X0. Now, covering the compact set K ⊂ Γk(u) ∩B1 with �nitely many balls Bδε(Xi

0)
(Xi

0),
for some points Xi

0 ∈ K, i = 1, . . . ,N , we obtain that the previous inequality is satis�ed for all
X1 ∈ K with r < rKε = min{rε(Xi

0) : i = 1, . . . ,N}.
Now, since uX1,r −ϕX1 is an La-harmonic function in B1, by [88, Lemma A.2] and (103), we get

sup
B1/2

∣∣∣uX1,r −ϕX1
∣∣∣ ≤ C(n, a)

(ˆ
B1

|y|a (uX1,r −ϕX1)2dX
)1/2

≤ 2C(n, a)
√

2ε
n+ a+ 1

for all X1 ∈ K, 0 < r < rKε , which immediately implies the second part of the Theorem.

The following de�nition allows us to study the structure of the restriction Γ(u) ∩ Σ. Inspired
by Proposition 3.5.10, since Γ(u) ∩ Σ = Γ(ue) ∩ Σ, where ue is the symmetric part of u with
respect to Σ, we characterize the sets Γk(u) starting from the unique tangent map of ue. Moreover,
since we are dealing with a purely symmetric function, we will see that the structure of the nodal
set on Σ is completely de�ned starting from the blow-up classes sBa

k(R
n+1) and B∗k(R

n+1).

De�nition 3.5.13. Given u an La-harmonic function on B1, for k ≥ min{1, 1− a} we de�ne
on Σ

Γ∗k(u) =
{
X0 ∈ Γk(u) ∩ Σ : ϕX0

e ∈ sB∗k(R
n+1)

}
and Γak(u) = Γk(u) \ Γ∗k(u),

where ϕX0
e ∈ sBa

k(R
n+1) is the unique tangent map of ue at X0.

In particular Γ1(u) = Γ∗1(u) and for k ≥ 2 the points in Γak(u) are the ones whose tangent
map depends on the variable y.

Corollary 3.5.14. For every k ≥ 2 we have that Γ∗k(u) ∩ Γak(u) = ∅ = Γ∗k(u) ∩ Γak(u).

Proof. The proof of this result is based on the continuation of the tangent map of u on Γk(u) ∩ Σ
with respect to the norm L2,a(∂B1).
First, suppose by contradiction that there exists a sequence (Xi)i ⊂ Γ∗k(u) such that Xi → X0 ∈
Γak(u). Let ϕXi = ϕXie and ϕX0 = ϕX0

e be respectively the tangent map of ue at Xi and X0, then
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by Theorem 3.5.12 we get that ϕXi → ϕX0 strongly in L2,a(∂B1), i.e. for every ε > 0 there exists
N = N(ε) > 0 such that if i > N , then

ˆ
∂B1

|y|a
(
ϕXi −ϕX0

)2
dσ ≤ ε.

Hence, �xed wi = ϕXi − ϕX0 we get that Lawi = 0 in B1 and ‖wi‖L2,a(∂B1)
→ 0. Since wi is

homogenous of degree k, we have
ˆ
B1

|y|aw2
i dX =

1
n+ a+ 2k+ 1

ˆ
∂B1

|y|aw2
i dσ

ˆ
B1

|y|a |∇wi|2 dX = k

ˆ
∂B1

|y|aw2
i dσ

which implies that wi → 0 strongly in H1,a(B1). In particular, for every φ ∈ H1,a(B1) we have
ˆ
B1

|y|a 〈∇ϕX0 ,∇φ〉dX = lim
i→∞

ˆ
B1

|y|a 〈∇ϕXi ,∇φ〉dX

If φ = φ(y) ∈ C∞c ((−1, 1)) we get ∇φ = ∂yφ ey and consequently, since ϕXi ∈ sB∗k(R
n+1),

that ˆ
B1

|y|a ∂yϕX0∂yφdX = lim
i→∞

ˆ
B1

|y|a ∂yϕXi∂yφdX = 0,

in contradiction with the fact that ϕX0 ∈ sBa
k(R

n+1) \ sB∗k(Rn+1).
Similarly, suppose now there exists a sequence (Xi)i ⊂ Γak(u) such that Xi → X0 ∈ Γ∗k(u). As
before, letϕXi andϕX0 be respectively the tangent map of ue atXi andX0, �xedwi = ϕXi −ϕX0

we get
ˆ
B1

|y|a φ∆xwidX +

ˆ
B1

|y|a
(
−∂2

yyϕ
Xi − a

y
∂yϕ

Xi

)
φdX = k

ˆ
∂B1

|y|awiφdσ

for every φ ∈ H1,a(B1). The idea now is to reach the contradiction by induction on k, proving
that it is impossible that the sequence of La-harmonic polynomials in sBa

k(R
n+1) \ sB∗k(Rn+1)

converges strongly in the L2,a(∂B1)-topology to a function in sB∗k(R
n+1).

First, for φ ∈ H1,a
0 (B1), we have∣∣∣∣∣

ˆ
B1

|y|a
(
∂2
yyϕ

Xi +
a

y
∂yϕ

Xi

)
φdX

∣∣∣∣∣ ≤ C(n, k, a)
(
‖∇wi‖L2,a(B1)

+ ‖wi‖L2,a(B1)

)
‖φ‖H1,a(B1)

,

which gives us that
ψi = −∂2

yyϕ
Xi − a

y
∂yϕ

Xi ⇀ 0 in L2,a(B1), (126)
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where ψi is a sequence of homogeneous La-harmonic polynomial of degree k − 2 ≥ 0. Since
Xi 7→ ψi is continuous, by Lebesgue’s dominated convergence theorem, we get ‖ψi‖L2,a(B1)

→ 0,
i.e. ψi → 0 strongly in L2,a(B1).

Hence, let k = 2 and ϕXi ∈ sBa
2(R

n+1) \ sB∗2(Rn+1) be the sequence that converges to
some ϕX0 ∈ sB∗2(R

n+1). As in (126), let us consider the associate sequence ψi of La-harmonic
polynomial of degree k− 2 = 0, i.e. a sequence of nonzero constants. Since ϕXi ∈ sBa

2(R
n+1) \

sB∗2(R
n+1), by the reasoning in Section 3.4, there exists, up to a multiplicative constant, a unique

homogeneous polynomial uXi = uXi(x) of degree 2, such that

ϕXi(x, y) = uXi(x)− y2 in Rn+1,

where ∆xuXi = 2(1 + a) in Rn. In particular, by (126) we get ψi ≡ 2(1 + a), and the contradic-
tion follows immediately since a ∈ (−1, 1).

Suppose now that we have proved the statement for every k ≤ K and let us consider the
case K + 1. By contradiction, let us suppose that sBa

K+1(R
n+1) \ sB∗K+1(R

n+1) is not closed
in the L2,a(∂B1) topology and ϕXi → ϕX0 strongly in L2,a(∂B1), with ϕX0 ∈ sB∗K+1(R

n+1).
Thus, we already know that the sequence ψi de�ned by (126) strongly converges to the zero func-
tion with respect to the L2,a(B1) topology. Now, since (ψi)i are (K − 1)-homogenous, we have
that the L2,a(B1) and L2,a(∂B1) topologies are equivalent. Finally, given that 0 < K − 1 ≤ K ,
we have constructed a sequence of (K − 1)-homogenous La-harmonic polynomials ψi that con-
verges to the zero function 0 ∈ sB∗K−1(R

n+1), which contradicts the inductive hypothesis.

In the uniformly elliptic case, the Almgren and Weiss monotonicity formulas allow to prove
the uniqueness and non degeneracy of the tangent map and also to construct the generalized
Taylor expansion of u at X0.
In this degenerate-singular setting, since as we already pointed out that the symmetric and
antisymmetric cases are complementary, we introduce the notion of tangential �eld of u on its
nodal set in order to take care of both this aspect of the solution u.

De�nition 3.5.15. Let a ∈ (−1, 1),u be an La-harmonic function in B1 and X0 ∈ Γk(u) ∩ Σ,
for some k ≥ min{1, 1− a}. We de�ne as tangent �eld of u at X0 the unique nontrivial vector
�eld ΦX0 ∈ (H1,a

loc (R
n+1))2 such that

ΦX0 = (ϕX0
e ,ϕX0

o ),

where ϕX0
e and ϕX0

o are respectively the tangent map of the symmetric part ue of u and of the
antisymmetric one uo.
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The notion of tangent �eld will allows us to better understand the regularity of the nodal set
Γ(u). Indeed, the main weakness of the concept of tangent map in this context is that it take care
either of the symmetric part of u or of the even one since they do not share the same optimal
regularity and even the same possible vanishing orders. More precisely, by De�nition 3.5.7, for
every X0 ∈ Γk(u)

uX0,r(X) =
ue(X0 + rX)

rk
+
uo(X0 + rX)

rk

=
uae(X0 + rX)

rk
+
u2−a
e (X0 + rX)

rk−1+a y |y|−a

where both uae and u2−a
e are symmetric with respect to Σ. By Proposition 3.4.11 we already know

that the tangent map of u at X0 is either the tangent map of ue or the one of uo.

De�nition 3.5.16. Let a ∈ (−1, 1),u be an La-harmonic function in B1 and X0 ∈ Γk(u), for
some k ≥ min{1, 1− a}. We de�ne as Almgren monotonicity formula associated to the tangent
�eld ΦX0 of u at X0 as the vector

N(X, ΦX0 , r) =
(
N(X,ϕX0

e , r),N(X,ϕX0
o , r)

)
.

Obviously, the “vectorial” notion of the Almgren frequency formula can be naturally extended
to the La-harmonic function u as

N(X0,u, r) = (N(X0,ue, r),N(X0,uo, r)) .

for every X0 ∈ Σ, but we will avoid this ambiguity on this notion. However, if the function u is
symmetric or antisymmetric with respect to Σ, the Almgren monotonicity formula associated to Φ
is equal to the one of the tangent map ϕX0 of u at X0 and it does not contain further information
on the local behaviour of u at X0. In general, proving uniqueness result on both the symmetric
and antisymmetric part of u with respect to Σ gives the following generalized Taylor expansion

Corollary 3.5.17. Given a ∈ (−1, 1), let u be an La-harmonic function inB1 andX0 ∈ Γ(u)∩Σ.
Then

u(X) = ϕX0
e (X −X0) + ϕX0

o (X −X0) + o(|X −X0|k)

where ϕX0
e ∈ sBa

k(R
n+1) and ϕX0

o ∈ aBa
k(R

n+1) are respectively the tangent maps of ue and uo
at X0 and k = max{N(0,ϕX0

e , 0+),N(0,ϕX0
o , 0+)}.

Lemma 3.5.18. Let u be an La-harmonic function in B1 andR(u) the set

R(u) =
{
X0 ∈ Γ(u) : N(X0,ue, 0+) = 1 or N(X0,uo, 0+) = 1− a

}
=
{
X0 ∈ Γ(u) : N(X0, ΦX0 , 0+) = (1, 1− a)

}
.
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ThenR(u) ∩ Σ is relatively open in Γ(u) ∩ Σ, while for k ≥ 2 the set Γk(u) is Fσ , i.e. it is a union
of countably many closed sets.

Proof. The �rst part of the Lemma is a direct consequence of the upper semi-continuity of
X 7→ N(X,u, 0+) on Σ. More precisely, since Γ(u) ∩ Σ = Γ(ue) ∩ Σ, we can restrict our
attention on functions symmetric with respect to Σ and hence, we have

R(u) ∩ Σ =
{
X0 ∈ Γ(u) ∩ Σ : N(X0,ue, 0+) = 1

}
Now, by Lemma 3.4.9 we get

{
X0 ∈ Γ(u) : N(X0,ue, 0+) = 1

}
=

{
X0 ∈ Γ(u) : N(X0,ue, 0+) ≤ 3

2

}
.

Hence, let us focus our attention on the case Γk(ue) ∩ Σ, with k ≥ 2. For j ∈ N, let us de�ne
with Ej the set of points of Σ such that

Ej =

{
X0 ∈ Γk(ue) ∩ Σ ∩B1−1/j :

1
j
ρk ≤ sup

|X−X0|=ρ
|ue(X)| < jρk, 0 < ρ < 1− |X0|

}
.

By Lemma 3.5.4 and Lemma 3.5.5 we have that

Γk(u) ∩ Σ =
∞⋃
j=1

Ej .

The result follows immediately once we prove thatEj is a collection of closed sets. GivenX0 ∈ Ej ,
since it satis�es

1
j
ρk ≤ sup

|X−X0|=ρ
|ue(X)| < jρk, (127)

we need only to show that X0 ∈ Γk(u) ∩ Σ, i.e. N(X0,ue, 0+) = k. Since X 7→ N(X,ue, 0+)
is upper semi-continuous on Σ, we readily have N(X0,ue, 0+) ≥ k. On the other hand, if
N(X0,ue, 0+) = k′ > k, we would have

|ue(X)| ≤ C |X −X0|k
′

in B1−|X0|(X0) ∩ Σ,

which contradicts Lemma 3.5.4 and implies that X0 ∈ Ej .

An other important consequence of our analysis of the tangent �eld of u at some nodal point
X0 ∈ Γ(u) ∩ Σ is the following a posteriori result about the “quasi” upper semi-continuity of the
Almgren frequency X → N(X,u, 0+) in the whole Rn+1.
Obviously, the restriction of this map on the characteristic manifold Σ and the one on its com-
plementary are both upper semi-continuous, but in general in the whole space Rn+1 the upper
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semi-continuity is not a immediate consequence of the Almgren monotonicity formula.

This result is based on the decomposition (98) of La-harmonic functions and on the regular-
ity result of Proposition 3.2.5 for La-harmonic function symmetric with respect to Σ.
Moreover, the following result can be seen as the “vectorial” counterpart of the classic one, since it
will establish the validity of an upper semi-continuity property for the Almgren frequency in the
vectorial sense of De�nition 3.5.16. In particular, it allows to relate the notion of vanishing order
on Σ to the one on Rn+1 \ Σ, which is a fundamental step in order to comprehend the complete
topology of the nodal set near Σ.

Proposition 3.5.19. Let u be an La-harmonic function in B1. Given (Xi)i ∈ Γk(u) \ Σ, with
k ∈ 1 + N such that Xi → X0 ∈ Γ(u) ∩ Σ, then

N(Xi,u, 0+) ≤

N(X0,ue, 0+),
N(X0,uo, 0+) + a.

Proof. By De�nition 3.2.3 and Proposition 3.2.4, we already know that there exist f ∈ H1,a(B1), g ∈
H1,2−a(B1) symmetric with respect to Σ and respectively La and L2−a-harmonic in B1, such
that

u(x, y) = f(x, y) + g(x, y)y |y|−a in B1, (128)

where respectively the �rst term is the symmetric part ue of u with respect to Σ and the second
one the antisymmetric part uo.
Through this proof, let us suppose that up to a subsequence yi > 0. Since (Xi)i ∈ Γk(u) \ Σ
and the operator La is locally uniformly elliptic on Rn+1 \ Σ we know that Dνu(Xi) = 0, for
any |ν| < k and there exists |ν0| = k such that Dν0u(Xi) 6= 0. Let us prove the main result by
induction on k ≥ 2. If k = N(Xi,u, 0+) = 2, then for every j = 1, · · · ,n we get from (128)
that

∂xjf(xi, yi) = −∂xjg(xi, yi)y1−a
i ,

−yai ∂yf(xi, yi) = (1− a)g(xi, yi) + yi∂yg(xi, yi),

where the mapsX 7→ ∂xjf(X),X 7→ ∂yf(X),X 7→ ∂xjg(X) andX 7→ ∂yg(X) are all smooth
in B1 thanks to Proposition 3.2.5. Passing through the limit as i→∞ we get

∂xjf(X0) = 0 and − ∂ayf(X0) = (1− a)g(X0).

First, since ∂ayf is antisymmetric with respect to Σ we get that g(X0) = 0 and consequently
N(X0,uo, 0+) = N(X0, g, 0+) + 1− a ≥ 2− a. Similarly, if ϕX0(f) is the tangent map of f at
X0, we get

∣∣∣∇X(ϕX0(f))(X0)
∣∣∣ = 0 and consequently thatN(X0, f , 0+) = N(0,ϕX0 , 0+) ≥ 2,
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as required.
Now, let us prove the inductive step k− 1 7→ k. Let us consider for j = 1, . . . ,n the collection
of symmetric La-harmonic functions vj = ∂xju and the antisymmetric L−a-harmonic function
w = ∂ayu. Since N(Xi,u, 0+) = k, we get

N(Xi, vj , 0+) = k− 1 for i = 1, . . . ,n and N(Xi,w, 0+) = k− 1,

where we remark that since Xi 6∈ Σ it is the same to consider the order of vanishing of ∂yu or of
the covariant derivative w = ∂ayu.
By the inductive hypothesi, passing through the limit as i→∞ we getN(X0, vj,e, 0+) ≥ k− 1
N(X0, vj,o, 0+) + a ≥ k− 1

for j = 1, . . . ,n and

N(X0,we, 0+) ≥ k− 1
N(X0,wo, 0+)− a ≥ k− 1

.

Hence, comparing this result with the notations in (128), since vj = ∂xjf and w = (1− a)g on
Σ, we getN(X0, ∂xjf , 0+) ≥ k− 1
N(X0, ∂xjg, 0+) + a ≥ k− 1

for j = 1, . . . ,n and

N(X0, g, 0+) ≥ k− 1
N(X0, ∂ayf , 0+)− a ≥ k− 1

,

which directly imply that N(X0,ue, 0+) ≥ k and N(X0,uo, 0+) ≥ k− a, as required.

Lemma 3.5.20. Let u be an La-harmonic function in B1 andR(u) the set

R(u) =
{
X0 ∈ Γ(u)

∣∣∣∣∣ N(X0,u, 0+) = 1 if X0 6∈ Σ
N(X0,ue, 0+) = 1 or N(X0,uo, 0+) = 1− a if X0 ∈ Σ

}

=

{
X0 ∈ Γ(u)

∣∣∣∣∣ N(X0,u, 0+) = 1 if X0 6∈ Σ
N(0, ΦX0 , 0+) = (1, 1− a) if X0 ∈ Σ

}
,

is relatively open in Γ(u), while for k ≥ min{2, 2− a} the set Γk(u) is Fσ , i.e. it is a union of
countably many closed sets.

Proof. The �rst part of the Lemma is a direct consequence of the upper semi-continuity of
X 7→ N(X,u, r) restricted to Σ and to Rn+1 \ Σ and of the Proposition 3.5.19. Hence, let us
focus our attention on the case Γk(u), with k ≥ min{2, 2− a}. For j ∈N, let us de�ne with Ej
the set of points of Σ such that

Ej =

{
X0 ∈ Γk(u) ∩ Σ ∩B1−1/j :

1
j
ρk ≤ sup

|X−X0|=ρ
|u(X)| < jρk, 0 < ρ < 1− |X0|

}
.
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By Lemma 3.5.4 and Lemma 3.5.5 we have that

Γk(u) ∩ Σ =
∞⋃
j=1

Ej .

The result follows immediately once we prove thatEj is a collection of closed sets. GivenX0 ∈ Ej ,
since it satis�es

1
j
ρk ≤ sup

|X−X0|=ρ
|u(X)| < jρk,

we need only to show that X0 ∈ Γk(u) ∩ Σ, i.e. N(X0,u, 0+) = k. Since X 7→ N(X,u, 0+)
is upper semi-continuous on Σ, we readily have N(X0,u, 0+) ≥ k. On the other hand, if
N(X0,u, 0+) = k′ > k, we would have

|u(X)| ≤ C |X −X0|k
′

in B1−|X0|(X0),

which contradicts Lemma 3.5.4 and implies that X0 ∈ Ej .

3.6 hausdorff dimension estimates for the nodal set

In this Section we prove di�erent estimates on the Hausdor� dimension of the sets Γ(u) and
Γ(u) ∩ Σ. In the latter, we improve our analysis taking care of the regular and singular part of
the restricted nodal set Γ(u) ∩ Σ.

Hence, given a ∈ (−1, 1) and u be an La-harmonic function in B1, let us split the nodal set Γ(u)
in its regular part

R(u) =
{
X0 ∈ Γ(u)

∣∣∣∣∣ N(X0,u, 0+) = 1 if X0 6∈ Σ
N(X0,ue, 0+) = 1 or N(X0,uo, 0+) = 1− a if X0 ∈ Σ

}
, (129)

and its singular part

S(u) =
{
X0 ∈ Γ(u)

∣∣∣∣∣ N(X0,u, 0+) ≥ 2 if X0 6∈ Σ
N(X0,ue, 0+) ≥ 2 and N(X0,uo, 0+) ≥ 2− a if X0 ∈ Σ

}
.

(130)
The main idea is to apply a version of the Federer’s Reduction Principle due to [78, Appendix
A]. More precisely, given a class F of functions invariant under rescaling and translation and
a map S which associates to each function a subset of Rn, by the Reduction principle we can
establishes conditions on F and S which imply that to control the Hausdor� dimension of S(u)
for every u ∈ F , we just need to control the Hausdor� dimension of S(u) for elements which
are homogeneous of some degree.
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Theorem 3.6.1 (Federer’s Reduction Principle). Let F ⊆ L∞loc(R
n+1) and de�ne, for any given

u ∈ F , X0 ∈ Rn+1 and r > 0, the rescaled and translated function

uX0,r := u(X0 + r ·).

We say that un → u in F if and only if un → u uniformly on every compact set of Rn+1. Moreover,
let us assume that F satis�es the following conditions:

(F1) (Closure under rescaling, translation and normalization) Given any |X0| ≤ 1− r, 0 <

r, ρ > 0 and u ∈ F , we have that ρ uX0,r ∈ F .

(F2) (Existence of a homogeneous blow- up) Given |X0| < 1, rk ↘ 0 and u ∈ F , there exists a
sequence ρk ∈ (0,∞), a real number α ≥ 0 and a function u ∈ F α-homogenous such that,
if we de�ne uk(x) = u(X0 + rkx)/ρk then ,up to a subsequence, we have

uk → u in F .

(F3) (Singular Set hypotheses) There exists a map S : F → C, where

C := {A ⊂ Rn+1 : A∩B1(0) is relatively closed in B1(0)}

such that

(1) Given |X0| ≤ 1− r, 0 < r < 1 and ρ > 0, it holds

S(ρ uX0,r) =
(
S(u)

)
X0,r

:=
S(u)−X0

r
.

(2) Given |X0| < 1, rk ↘ 0 and u,u ∈ F such that there exists ρk > 0 satisfying
uk := ρkuX0,rk → u in F , the following property holds:

∀ε > 0, ∃k = k(ε) > 0 such that for every k ≤ k(ε)
S(uk) ∩B1(0) ⊆ {x ∈ Rn+1 : dist(x,S(u)) < ε}.

Then, if we de�ne

d := max
{

dimV : V is a vector subspace of Rn+1 and there exists u ∈ F and α ≥ 0

such that S(u) 6= ∅ and uy,r = rαu, ∀y ∈ V , r > 0
}

,
(131)

either S(u) ∩B1(0) = ∅ for every u ∈ F or else dimH
(
S(u) ∩B1(0)

)
≤ d for every u ∈ F .

Furthermore in the latter case there exists a function ϕ ∈ F , a d-dimensional subspace V ⊆ Rn+1

and a real number α ≥ 0 such that

ϕY ,r = rαϕ for all Y ∈ V , r > 0 and S(ϕ) ∩B1(0) = V ∩B1(0)

At last if d = 0 then S(u) ∩Bρ(0) is a �ne set for each u ∈ F and 0 < ρ < 1.
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We will apply this general result due to Federer in order to construct some estimates on the
Hausdor� dimension of the nodal set Γ(u) and on its restriction Γ(u)∩Σ. In the second case, we
improve our analysis introducing its regular and singular part on Σ.

Theorem 3.6.2. Let a ∈ (−1, 1) and u be anLa-harmonic function inB1. Then dimH(Γ(u)) ≤ n.

Proof. A preliminary remark is that we only need to prove the Hausdor� dimensional estimates for
the localization of the sets in K ⊂⊂ B1, since the general statement follows because a countable
union of sets with Hausdor� dimension less than or equal to some n ∈ R+

0 also has Hausdor�
dimension less than or equal to n. Let us consider the class of functions F de�ned as

F =

{
u ∈ L∞loc(R

n+1) \{0} : Lau = 0 in Br(X0), for some r ∈ R, X0 ∈ Rn+1 with Br(X0) ⊂ B1

}
.

By the linearity of the La operator, we already know that the closure under rescaling, translation
and normalization and assumption (F1) are all satis�ed.
On the other hand, let |X0| < 1, rk ↓ 0+ and u ∈ F , and choose ρk = ‖u(X0 + rk · x)‖L2,a(∂B1)

.
Theorem 3.4.1 and Proposition 3.4.8 yield the existence of a blow-up limit ϕX0 ∈ F , i.e. nor-
malized tangent map of u at X0, such that, up to a subsequence, uk → ϕX0 in F and ϕX0 is a
homogeneous function of degree k = N(X0,u, 0+) ≥ min{1, 1− a}. Hence also (F2) holds.

Now, let us consider S : u 7→ Γ(u). By the continuity of u, we already know that the set
Γ(u)∩B1 is obviously closed in B1 and it is quite straightforward to check that the two hypothe-
ses in (F3) are satis�ed.
Hence, in order to conclude the analysis, the only thing left to prove is that the integer d in (131)
is equal to n. Suppose by contradiction that d = n+ 1, then this would imply the existence of
ϕ ∈ F with S(ϕ) = Rn+1 i.e., ϕ ≡ 0 on Rn+1, which contradicts the fact the fact the Γ(ϕ) has
empty interior.
Actually, taking V = Rn−1 × {0} ×R and ϕ(X) = 〈X, en〉, we obtain the claimed estimate on
d.

Now, we prove a di�erent strati�cation result for the set Γ(u) ∩ Σ, in order to emphasize the
di�erent structure of the nodal set with respect of the one of the elliptic case. In particular, with
this analysis we want to point out how the di�erent classes of blow-up in�uence the strati�cation
on the characteristic manifold Σ. Obviously, by Proposition 3.5.10 we already know that

Γ(u) ∩ Σ = Γ(ue) ∩ Σ,

and it is either equal to Σ or with empty interior in Σ. Inspired by this fact, since we are dealing
with the restriction of the nodal set on the characteristic manifold Σ, we will concentrate our
attention on the trace of u on Σ, which is actually equal to the trace of ue itself.
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Theorem 3.6.3. Let a ∈ (−1, 1) and u be an La-harmonic function in B1. If Γ(u) ∩ Σ 6= Σ, then,
under the previous notations, we have dimH(Γ(u) ∩ Σ) ≤ n− 1 and more precisely

dimH(R(u) ∩ Σ) = n− 1 and dimH(S(u) ∩ Σ) ≤ n− 1.

Proof. Let us consider the class of functions F de�ned as

F =

u ∈ L∞loc(R
n+1) \ {0}

∣∣∣∣∣∣ Lau = 0 in Br(X0), for some r ∈ R, X0 ∈ Rn+1

u symmetric with respect to Σ

.

Since the functions in F are symmetric with respect to Σ and nontrivial, the condition Γ(u) ∩
Br(X0) ∩ Σ 6= Σ is always satis�ed.
As before, we already know that the closure under rescaling, translation and normalization and
assumption (F1) and (F2) are all satis�ed. Moreover, by (129) and (130) we get

R(u) ∩ Σ = {X0 ∈ Γ(u) ∩ Σ : N(X0,u, 0+) = 1},

S(u) ∩ Σ =
⋃
k≥2

Γk(u) ∩ Σ =
⋃
k≥2

{
X0 ∈ Γ(u) ∩ Σ : N(X0,u, 0+) = k

}
since we are dealing with functions in the class F .
Now, we choose the map S in (F3) according to our needs.

1. Dimensional estimate of Γ(u) ∩Σ
First, let us consider S : u 7→ Γ(u) ∩ Σ. By the continuity of u, we already know that the set
Γ(u)∩Σ∩B1 is obviously closed in B1 and it is quite straightforward to check the two hypothe-
sis in (F3). Therefore, in order to conclude the analysis of Γ(u) ∩ Σ, the only thing left to prove
is that the integer d in (131) is equal to n− 1.
Suppose by contradiction that d = n, this would implies the existence of ϕ ∈ F such that
S(ϕ) = Rn i.e., ϕ ≡ 0 on Σ. Since ϕ solves

Laϕ = 0 in Rn+1

ϕ = 0 on Σ

∂ayϕ = 0 on Σ,

it implies that ϕ ≡ 0 on the whole Rn+1, which contradicts the fact the 0 6∈ F . Actually, by
taking V = Rn−1 × (0, 0) ⊂ Σ and ϕ(X) = 〈X, en〉, we obtain the claimed estimate on d.

2. Dimensional estimate of R(u) ∩Σ
Let us consider S : u 7→ R(u) ∩ Σ. Since we are dealing just with symmetric function with
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respect to Σ, by Lemma 3.4.9 we get that necessary N(X0,u, 0+) = 1 for every X0 ∈ R(u). By
the inclusion, we already know that

dimH(R(u) ∩ Σ ∩B1) ≤ n− 1.

Finally, we can apply the Reduction principle since (F3) is completely satis�ed. More precisely,
for X0 ∈ Σ ∩B1, ρ > 0 and t > 0 if X ∈ R(ρuX0,t) ∩ Σ then obviously X0 + tX ∈ R(u) ∩ Σ,
i.e. N(X0 + tX,u, 0+) = 1. Secondly, given ui,u ∈ F as in (F3), suppose by contradiction that
there exists a sequence Xi ∈ Σ ∩B1 and ε > 0 such that

N(Xi,ui, 0+) = 1

and dist(Xi,S(u)) ≥ ε. Since, up to a subsequence, Xi → X , by the upper semi-continuity
of the Almgren frequency formula, we already know that N(X,u, 0+) ≥ 1. Moreover, up to a
subsequence, Xi → X ∈ Γ(u) ∩ Σ ∩B1 by the L∞loc convergence of ui → u. The contradiction
follows from the same argument of the proof of the second case of Theorem 3.6.2.

More precisely, since Γ(u) ∩ Σ is a conical set, i.e. for every λ > 0 and X ∈ Γ(u) ∈ Σ we
have λX ∈ Γ(u) ∩ Σ, we deduce that if we can prove X ∈ R(u) ∩B1 ∩ Σ we provide a contra-
diction, more precisely we get dist(X,S(u) ∩B1) = 0. Since there exists Ω ⊂⊂ B1 \ Σ such
that (X0 + riXi)i ⊂ Ω, if we consider

R1 = min
p∈Ω

dist(p, ∂B1),

C = sup
p∈Ω

N(p,u,R1),

we easily get from Corollary 3.3.2 that for p ∈ Ω ∩R(u) and r < R1 we have

N(p,u, r) ≤ N(p,u,R1)

(
R1
r

)n+a−1+2C
≤ C 1

rn+a−1+2C
.

In particular, from the previous inequality we get that there exists R = R(n, a,X0, ε) > 0
su�ciently small, such that for r < R we have

1 ≤ N(Xi,ui, r) ≤ 1 + 1
4.

Since limiN(Xi,ui, r) = N(X,u, r) for su�ciently small r, we directly obtain from Lemma
3.4.9 that N(X,u, 0+) = 1, as we claimed.
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As before, let us suppose now that there exist ϕ ∈ F and a d-dimensional subspace V ⊂ Rn+1,
with d ≤ n− 1, and k ≥ 0 such that

ϕY ,r = rkϕ for all Y ∈ V , r > 0 and R(ϕ) ∩ Σ ∩B1 = V ∩B1

Since ϕ ∈ sBa
k(R

n+1) is homogenous of degree k with respect to any Y ∈ V = R(ϕ) ∩ Σ,
namely N(Y ,ϕ, 0+) = k, we get that necessary k = 1 and that R(ϕ) ∩ Σ is d-dimensional.
Since every homogenous La-harmonic function of order k = 1 is one dimensional, i.e. there
exists ν ∈ Sn−1 and C > 0 such that either

ϕ(X) = C〈X, (ν, 0)〉, for every X = (x, y) ∈ Rn+1,

we get thatR(ϕ) ∩ Σ must be (n− 1)-dimensional, and consequently that

dimH(R(u) ∩ Σ ∩B1) = n− 1.

3. Dimensional estimate of S(u) ∩Σ
Let us focus on the singular strata

S(u) ∩ Σ =
⋃
k≥2

{
X0 ∈ Γ(u) ∩ Σ : N(X0,u, 0+) = k

}
Hence, given S : u 7→ S(u), the map satis�es (F3), since for X0 ∈ Σ ∩B1, ρ > 0 and t > 0, if
X ∈ S(ρuX0,t) we get

N(X, ρuX0,t, 0+) = k ←→ N(X0 + tX,u, 0+) = k,

which is equivalent to X0 + tX ∈ Γk(u) ⊂ S(u). Now, given ui = ρiuX0,ri ,u ∈ F as in (F3),
suppose by contradiction that there exists a sequence Xi ∈ B1 and ε > 0 such that, up to a
subsequence, Xi → X and

N(Xi,ui, 0+) = k (132)

and dist(Xi,S(u)) ≥ ε. By the upper semi-continuity of the Almgren frequency formula, we
already know that N(X,u, 0+) ≥ k. Since Xi ∈ Γk(ui), there exists Ω ⊂⊂ B1 \ Σ such that
(X0 + riXi)i ⊂ Ω, if we consider

R1 = min
p∈Ω

dist(p, ∂B1),

C = sup
p∈Ω

N(p,u,R1),
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we easily get from Corollary 3.3.2 that for p ∈ Ω ∩ Γk(u) and r < R1 we have

N(p,u, r) ≤ N(p,u,R1)

(
R1
r

)n+a−1+2C
≤ C 1

rn+a−1+2C
.

In particular, from the previous inequality we get that there exists R = R(n, a,X0, ε) > 0
su�ciently small, such that for r < R we have

k ≤ N(Xi,ui, r) ≤ k+
1
4.

Since limiN(Xi,ui, r) = N(X,u, r) for su�ciently small r, we directly obtain from Lemma
3.4.9 that N(X,u, 0+) = k, as we claimed.

Since S(u) ∩ Σ ⊆ Γ(u) ∩ Σ, we already know that

dimH(S(u) ∩ Σ ∩B1) ≤ n− 1,

which is actually the optimal bound even for the singular set. Indeed, since there exists ϕ ∈ F , a
(n− 1)-dimensional subspace V ⊂ Σ and k ≥ 0 such that

ϕY ,r = rkϕ for all Y ∈ V , r > 0 and S(ϕ) ∩ Σ ∩B1 = V ∩B1.

In particular, for every k ≥ 2, n ≥ 1 it can be seen by taking V = Rn−1 × {0, 0} and

ϕ(X) =
(−1)

k
2 Γ
(1

2 +
a

2

)
2kΓ

(
1 + k

2

)
Γ
(1

2 +
a

2 +
k

2

) 2F1

(
−k2 ,−k2 −

a

2 +
1
2, 1

2,−〈X, en〉2

〈X, ey〉2

)
〈X, ey〉k,

as it was previously proved in Section 3.4.

3.7 regularity of the regular and singular strata

In this Section we show some results about the regularity of the regular and singular strata of
the nodal set Γ(u). As in Section 3.6, we will consider �rst the strati�cation in Rn+1 of the whole
nodal set Γ(u), while in the second case we will focus the attention on the restriction Γ(u) ∩ Σ
of the nodal set on the characteristic manifold.

The main idea of this strati�cation is to classify and then to stratify the nodal set by the spines of
the normalized tangent maps, i.e. the largest vector space that leaves the tangent map invariant.
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Indeed, we will introduce the subset Γjk(u) as the set of points at which every tangent map has at
most j independent directions of translation invariance in order to correlate the nodal set of u
with the dimension of the set where the tangent map ϕX0 vanishes with the same order of u.
Moreover, by Theorem 3.6.2 we already know that Γjk(u) is well de�ned for j ≤ n− 1.

More precisely, if k ≥ min{2, 2− a} given

Γk(u) =
{
X0 ∈ Γ(u) : N(X0,u, 0+) = k

}
for each j = 0, . . . ,n− 1 let us de�ne

Γjk(u) =
{
X0 ∈ Γk(u) : dim Γk(ϕX0) = j

}
,

where ϕX0 is the unique normalized tangent limit of u at X0. Obviously, since the uniformly
elliptic case is well studied, we focus on the structure of the nodal set Γ(u) near Σ.

Before to continue our analysis, let us prove that the concept of dimension in well de�ned.

Lemma 3.7.1. Given a ∈ (−1, 1), for every ϕ ∈ Ba
k(R

n+1), the singular set Γk(ϕ) of order
k ≥ min{2, 2− a} is the largest vector subspace on Σ which leaves ϕ andN(·,ϕ, 0+) invariant, i.e.

Γk(ϕ) =
{
Z ∈ Rn+1 : ϕ(X + Z) = ϕ(X) for every X ∈ Rn+1

}
.

Proof. We can restrict our proof to the case ϕ ∈ sBa
k(R

n+1) for k ≥ 2, since by Corollary 3.4.19
we can easily extend the analysis to the antisymmetric case. Thus, we already know by Corollary
3.5.8 that since ϕ ∈ sBa

k(R
n+1) we have

Γk(ϕ) =
{
X ∈ Rn+1 : Dνϕ(X) = 0 for any |ν| ≤ k− 1

}
.

Obviously 0 ∈ Γk(ϕ) by the homogeneity of ϕ and we claim that for every Z ∈ Γk(ϕ)

ϕ(X) = ϕ(X + Z), for all X ∈ Rn+1,

in other words Γk(ϕ) leaves the map ϕ invariant. Hence, let Z ∈ Γk(ϕ), i.e.

Dνϕ(Z) = 0 for any |ν| ≤ k− 1 (133)

and write the homogenous polynomial ϕ ∈ C∞ as

ϕ(X) =
∑
|ν|=k

aνX
ν ,
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where Xν = xν1
1 · x

ν2
2 · · · yνn+1 and aν ∈ R. By (133) we directly get that

ϕ(X) =
∑
|ν|=k

aν(X −Z)ν ,

which implies the claimed invariance. Since ϕ is k-homogenous, for every λ > 0 and X ∈ Rn+1

ϕ(X) = ϕ(X −Z)

= (λ+ 1)kϕ
(
X −Z
λ+ 1

)
= (λ+ 1)kϕ

(
Z +

X −Z
λ+ 1

)
= ϕ(X + λZ),

therefore, we obtain Dνϕ(λZ) = 0 for any |ν| ≤ k− 1, i.e. λZ ∈ Γk(ϕ).
Similarly, noticing that for any Z,W ∈ Γk(ϕ) we have ϕ(Z +W +X) = ϕ(W +X) = ϕ(X)

for any X ∈ Rn+1, we get Z +W ∈ Γk(ϕ).

De�nition 3.7.2. Let a ∈ (−1, 1) and u be an La-harmonic function in B1. We call dX0 the
dimension of Γk(u) at X0 ∈ Γk(u) as

dX0 = dim Γk(ϕX0)

= dim
{
ξ ∈ Rn+1 : 〈ξ,∇XϕX0(X)〉 = 0 for all X ∈ Rn+1

}
.

Following the previous notations we get Γjk(u) = {X0 ∈ Γk(u) : dX0 = j}.
Hence, given a ∈ (−1, 1) and u be an La-harmonic function in B1. Then, let us split the

nodal set Γ(u) in its regular part

R(u) =
{
X0 ∈ Γ(u)

∣∣∣∣∣ N(X0,u, 0+) = 1 if X0 6∈ Σ
N(X0,ue, 0+) = 1 or N(X0,uo, 0+) = 1− a if X0 ∈ Σ

}
,

and its singular part

S(u) =
{
X0 ∈ Γ(u)

∣∣∣∣∣ N(X0,u, 0+) ≥ 2 if X0 6∈ Σ
N(X0,ue, 0+) ≥ 2 and N(X0,uo, 0+) ≥ 2− a if X0 ∈ Σ

}
.

As we previously remarked the de�nition of the regular setR(u) is well de�ned in such a way,
for every X0 ∈ Γ(u) ∩ Σ such that N(X0,ue, 0+) = 1 or N(X0,uo, 0+) = 1− a must exist a
sequence of point (Xi)i ∈ Γ(u) \ Σ such that N(Xi,u, 0+) = 1 and Xi → X0. The following
result gives a generalization in the context of degenerate-singular operator of the concept of
regular hypersurface as the set of points where the function vanishes away from its critical set.
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Theorem 3.7.3. Let a ∈ (−1, 1), a 6= 0 and u be an La-harmonic function inB1. Then the regular
setR(u) is locally a Ck,r hypersurface on Rn+1 in the variable (x, y |y|−a) with

k =

⌊ 2
1− a

⌋
and r =

2
1− a −

⌊ 2
1− a

⌋
.

Moreover, we have that

R(u) =
{
X ∈ Γ(u) : |∇xu(X)|2 +

∣∣∣∂ayu(X)
∣∣∣2 6= 0

}
. (134)

Proof. Let us start by proving the characterization of the regular set in terms of the derivatives of
theLa-harmonic function u. By (98), there exist uae ∈ H1,a(B1),u2−a

e ∈ H1,2−a(B1) respectively
La and L2−a-harmonic function in B1, symmetric with respect to Σ, such that

u(X) = uae(X) + u2−a
e (X)y |y|−a in B1.

For every i = 1, . . . ,h, di�erentiating the previous equality, we get

∂xiu(X) = ∂xiu
a
e(X) +

(
∂xiu

2−a
e (X)

)
y |y|−a (135)

∂ayu(X) =
(
(1− a)u2−a

e (X) + y∂yu
2−a
e

)
+ ∂ayu

a
e , (136)

where we split the two functions as sum of their symmetric and antisymmetric part. If X0 ∈
R(u) \ Σ the condition in (134) is obviously satis�ed by the local uniformly elliptic regularity
outside Σ. Instead, if X0 ∈ R(u) ∩ Σ, if N(X0,ue, 0+) = 1 it follows

ue(X) = ϕX0
e (νX0)〈X −X0, νX0〉+ o(|X −X0|),

for some νX0 ∈ Sn−1 = Sn ∩ Σ, and by Theorem 3.5.6 and (135) we get

∂xiu(X0) = ∂xiue(X0) = ϕX0
e (νX0)〈ei, νX0〉,

and by the nondegeneracy of the blow-up limit |∇u(X0)| = ϕX0
e (νX0) 6= 0 (for further details,

we remaind to the proof of Theorem 3.7.6). Similarly, taking care of the antisymmetric part, if
N(X0,uo, 0+) = 1− a we get

uo(X) = ϕX0
o (ey)y |y|−a + o(|X −X0|1−a),

and consequently ∂ayu(X0) = ∂ayuo(X0) = (1− a)ϕX0
o (ey) 6= 0, as we claimed.

Now, let us consider the other part of the Theorem and let us study the regularity of the regular
partR(u). Since the implicit function theorem implies that the nodal set of a smooth function is
a smooth hypersurface away from the critical nodal set, we decide to introduce a suitable change
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of variable.
More precisely, let us introduce the change of variable Φ : Rn+1 → Rn+1 such that

Φ : (x, z) 7→
(
x, (1− a)z |z|

a
1−a
)

,

Φ−1 : (x, y) 7→
(
x, y |y|−a

(1− a)1−a

)
,

with Jacobian |JΦ−1(x, y)| = (1− a)a |y|−a and Φ(X0) = X0, for every X0 ∈ Σ. By (98) and
This change of variable is well known in the literature since it allows to correlate our class of
degenerate-singular operator with the class of Baouendi-Grushin Operators (see also [52]). In
particular, since a ∈ (−1, 1), we get by simple computations that Φ ∈ Ck′,r′(Rn+1, Rn+1), with

k′ =

⌊ 1
1− a

⌋
and r′ =

1
1− a −

⌊ 1
1− a

⌋
.

The previous quantity are well de�ned since (1− a)−1 > 2, for every a ∈ (−1, 1) and it blows
up as a approaches 1−.
Now, given v(x, z) = u(Φ(x, z)), we get Γ(u) = Φ(Γ(v)) and by (98), (135) and (136)

v(x, z) = uae(Φ(x, z)) + u2−a
e (Φ(x, z))z

∂xiv(x, z) = (∂xiu)(Φ(x, z)), for every i = 1, . . . ,h
∂zv(x, z) = (∂ayu)(Φ(x, z)),

so in particular |∇v(x, z)|2 = (|∇xu|2 +
∣∣∣∂ayu∣∣∣2)(Φ(x, z)). By (98) and Proposition 3.2.5 we get

that given and La-harmonic function u in B1, since uae(Φ(x, z)),u2−a
e (Φ(x, z)) ∈ Ck′,r′(B1/2)

we obtain that v ∈ Ck′,r′(B1/2).Moreover, as we remarked in Section 3.4, since for every ϕX0 ∈
sBa

k(R
n+1) we have that and our change of variables Φ acts only in the y-direction, we get from

Proposition 3.2.5 and Theorem 3.5.6 that actually v ∈ Ck,r(B1/2) with

k =

⌊ 2
1− a

⌋
≥ 1 and r =

2
1− a −

⌊ 2
1− a

⌋
.

Now, by the �rst part of the statement, since X0 ∈ R(u) ∩ Σ we get by Corollary 3.5.17

|∇v(X0)|2 = |∇xu(X0)|2 +
∣∣∣∂ayu(X0)

∣∣∣2 = ϕX0
e (νX0)2 + (1− a)2ϕX0

o (ey)
2 6= 0,

where ϕX0
e and ϕX0

o are respectively the tangent map of the symmetric and the antisymmetric part
of u with respect to Σ. Since the conclusion follows after an application of the implicit function
theorem on the function v and the relation Γ(u) = Φ(Γ(v)), let us consider three di�erent cases:
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(1) N(X0,ue, 0+) = 1 and N(X0,uo, 0+) > 1− a, which implies that ∂zv(X0) = 0 and
∇xv(X0) = ϕX0(νX0)νX0 . In this case, up to relabeling the x-variables, by the implicit
function theorem we get that there exists ρ > 0 and g ∈ Ck,r(Bρ(X0)) such that x1 =

g(x) = g(x2, . . . ,xn, z) for every (x, z) ∈ Γ(v) ∩ Bρ(X0). Going back to the (x, y)
variables, we get

x1 = g(x2, . . . ,xn, y |y|−a) for every X ∈ Γ(u) ∩Bρ/2(X0);

(2) N(X0,ue, 0+) > 1 and N(X0,uo, 0+) = 1− a, in this case since ∂xiv(X0) = 0 for all
i = 1, . . . ,n and ∂zv(X0) 6= 0 we get that there exists ρ > 0 and g ∈ Ck,r(Bρ(X0))

such that z = g(x) = g(x1, . . . ,xn) for every (x, z) ∈ Γ(v)∩Bρ(X0). Going back to the
(x, y) variables, we get

y |y|−a = g(x) for every X ∈ Γ(u) ∩Bρ/2(X0);

(3) N(X0,ue, 0+) = 1 and N(X0,uo, 0+) = 1− a, we get that if a < 0, by applying the
implicit function theorem with respect to the x-variables as in case (1), we get, up to a
rotation on Σ, that

x1 = g(x2, . . . ,xn, y |y|−a) for every X ∈ Γ(u) ∩Bρ/2(X0);

where in this case y |y|−a ∈ C1,−a
loc (B1). Otherwise, if a > 0 by applying the implicit

function theorem on the z-variable as in (2), we get

y |y|−a = g(x) for every X ∈ Γ(u) ∩Bρ/2(X0),

where in the both cases g ∈ Ck,r(Bρ(X0)).

We remark that the previous records can be changed considering the cases when the minimum
between the Almgren frequency of the symmetric and the antisymmetric part of u is achieved by
the �rst or the second one.
Thus, up to consider a smaller radius on the previous cases, the results on R(u) is a direct
consequence of the local one on Γ(u) near X0, since the regular set is relatively open in Γ(u)
and hence there exists ρ > 0 such that Γ(u) ∩Bρ(X0) = R(u) ∩Bρ(X0).

The previous result explains why the tangent map at a point of the restriction of the nodal set
Γ(u)∩Σ does not allow to fully understand the geometric picture of the nodal set itself, since we
need to take care of both the symmetric and antisymmetric part of u.

Furthermore, we can describe the local behaviour of the regular setR(u) near the characteristic
manifold by using the tangent �eld ΦX0 , which contains all the geometric information of the
regular set. More precisely, as a direct consequence of the previous reports we get
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Corollary 3.7.4. Let a ∈ (−1, 1) and u be an La-harmonic function in B1. Then the regular part
R(u) of the nodal set intersects the characteristic manifold Σ either orthogonally or tangentially.
More precisely, given X0 ∈ R(u) ∩ Σ

• if N(X0,u, 0+) = 1 the direction is orthogonal,

• if N(X0,u, 0+) = 1− a the direction is tangential.

Moreover, independently on a ∈ (−1, 1) and on the value of N(0, ΦX0 , 0+), the restriction on Σ of
R(u) is completely described by ϕX0

e .

Instead, since the structure of the singular set is well known outside of the characteristic man-
ifold Σ, we decided to postpone our analysis and to concentrate our attention to the intersection
of the nodal set on Σ.

Hence, in this last part of the Section, we extend the previous analysis focusing on the restriction
of the regular and singular set on the characteristic manifold. First, since Lemma 3.7.1 relies on
the homogeneity and the regularity of the homogenous polynomial ϕ ∈ sBa

k(R
n+1), we can

reasonably introduce the concept of dimension restricted to Σ.

De�nition 3.7.5. Given a ∈ (−1, 1), let u be an La-harmonic function in B1. We call dX0
Σ the

dimension of Γk(u) ∩ Σ at X0 ∈ Γk(u) ∩ Σ as

dX0
Σ = dim Γk(ϕX0) ∩ Σ

= dim
{
ξ ∈ Σ : 〈ξ,∇xϕX0(x, 0)〉 = 0 for all x ∈ Σ

}
.

Following the previous notations, we de�ne Γjk(u) ∩ Σ = {X0 ∈ Γk(u) ∩ Σ : dX0
Σ = j}.

In the previous Section, we split the restriction on the nodal set on Σ into its regular part

R(u) ∩ Σ = {X ∈ Γ(u) ∩ Σ : N(X,ue, 0+) = 1},

and its singular part

S(u) ∩ Σ = {X ∈ Γ(u) ∩ Σ : N(X,ue, 0+) ≥ 2} =
⋃
k≥2

Γk(u) ∩ Σ.

Theorem 3.7.6. Let a ∈ (−1, 1) and u be an La-harmonic function in B1. Then the regular set
R(u) on Σ is locally a smooth hypersurface on Σ and

R(u) ∩ Σ = {X ∈ Γ(u) ∩ Σ : |∇xue(X)| 6= 0} .



162 nodal set of solutions of degenerate - singular equations

Proof. By Proposition 3.5.10 we already know that

Γ(u) ∩ Σ = Γ(ue) ∩ Σ,

and it is either equal to Σ or with empty interior in Σ. Inspired by this fact, we will concentrate
our attention on the trace of u on Σ, which is actually equal to the trace of ue itself. In order to
simplify we will just write u instead of ue assuming the symmetry with respect to Σ.
Suppose that Γ(ue) 6= Σ, by Theorem 3.5.6 and our blow-up classi�cation, for every X0 ∈
R(u) ∩ Σ there exists a linear map ϕX0 ∈ sBa

1(R
n+1) such that

u(X) = ϕX0(X −X0) + o(|X −X0|) = ϕX0(νX0)〈X −X0, νX0〉+ o(|X −X0|)

for some νX0 ∈ Sn−1 = Sn ∩ Σ.
Moreover, by Theorem 3.5.12 we know that the map X0 7→ ϕX0(νX0)νX0 is continuous. Passing
through its trace on Σ, since ν ∈ Σ we get

u(x, 0) = ϕX0(ν)〈x− x0, ν〉+ o(|x− x0|).

Since by Proposition 3.2.5 the function u ∈ C∞(B1/2), we can use the tangent map in order to
compute the directional derivative of u, which will implies the nondegeneracy of the gradient on
Σ of u at X0. More precisely, for every ξ ∈ Sn−1

〈∇xu(X0), ξ〉 =
d

dt
u(X0 + tξ)

∣∣∣∣
t=0

= lim
t→0

u(X0 + tξ)

t
= ϕX0(νX0)〈ξ, νX0〉,

and hence∇xu(X0) = ϕX0(νX0)νX0 which is nonzero by Theorem 3.5.5. Finally, by the implicit
function theorem we get the claimed result.

As we already mentioned, since for k ≥ 2 we have sBa
k(R

n+1) \B∗k(Rn+1) 6= ∅, we decide
to introduce the following singular sets

S∗(u) =
⋃
k≥2

Γ∗k(u) and Sa(u) =
⋃
k≥2

Γak(u),

where

Γ∗k(u) =
{
X0 ∈ Γk(u) ∩ Σ : ϕX0

e ∈ sB∗k(R
n+1)

}
and Γak(u) = (Γk(u) ∩ Σ) \ Γ∗k(u).

The idea is to stratify the singular set taking care of both the dimension dX0
Σ and the di�erent

classes of tangent map associated to the sets Γ∗k(u) and Γak(u).

Theorem 3.7.7. Given a ∈ (−1, 1), let u be an La-harmonic function in B1. Then for k ∈ 2 + N

and j = 0, · · · ,n− 1 the sets Γjk(u) ∩ Σ is contained in a countable union of j-dimensional C1

manifolds.
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Proof. The proof of this result follows the strategy of [50, Theorem 1.3.8]. Since ϕX0 is a polyno-
mial of degree k on Σ, we can write the following

ϕX0(x, 0) =
∑
|α|=k

aα(x0, 0)
α!

xα,

where the coe�cients X 7→ aα(X) are continuous on Γk(u) ∩ Σ and, since u(X) = 0 on Γk(u)
it holds ∣∣∣ϕX0(X −X0)

∣∣∣ ≤ σ (|X −X0|) |X −X0|k for every X,X0 ∈ K.

For any multi-index |α| ≤ k, let us introduce for any X ∈ Γk(u) the collection

fα(X) =

aα(X) if |α| = k

0 if |α| < k
.

Let us prove that the compatibility conditions for the Whitney’s extension theorem are fully
satis�ed in order to guarantee the existence of a function F ∈ Ck(Rn+1) such that

∂αF = fα on Ej ,

for every α ≤ k. More precisely, following [92] our claim is that for any X0,X ∈ K it holds

fα(X) =
∑

|β|≤k−|α|

fα+β(X0)

β!
(X −X0)

β +Rα(X,X0),

with
|Rα(X,X0)| ≤ σα (|X −X0|) |X −X0|k−|α| (137)

where σα = σKα is a certain modulus of continuity.
If |α| = k, since Rα(X,X0) = aα(X)− aα(X0), we infer from the continuity of X 7→ ϕX on
K that |Rα(X,X0)| ≤ σα (|X −X0|). Instead, for 0 ≤ |α| < k we have

Rα(X,X0) = −
∑
γ>α
|γ|=k

aγ(X0)

(γ − α)!
(X −X0)

γ−α = −∂aϕX0(X −X0). (138)

By contradiction, suppose that there is no modulus of continuity σα such that (137) is satis�ed for
X,X0 ∈ K . Then, must exist δ > 0 and two sequences Xi,Xi

0 ∈ K with ρi =
∣∣Xi −Xi

0
∣∣↘ 0

such that ∣∣∣∣∣∣∣∣
∑
γ>α
|γ|=k

aγ(X0)

(γ − α)!
(X −X0)

γ−α

∣∣∣∣∣∣∣∣ ≥ δ
∣∣∣Xi −Xi

0

∣∣∣k−|α| .
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Thus, consider the blow-up sequence associated to the sequences (Xi
0)i and (ρi)i given by

ui(X) =
u(Xi

0 + ρiX)

ρki
, ξi =

Xi −Xi
0

ρi
,

where it is not restrictive to assume that Xi
0 → X0 ∈ K and ξi → ξ0 ∈ ∂B1. By Theorem 3.5.12

we get ui → ϕX0 ∈ Ba
k(R

n+1) uniformly on compact set and there exist a modulus of continuity
such that ∣∣∣ui(X)−ϕXi

0(X)
∣∣∣ ≤ σ (ρi |X|) |X|k .

In particular, since Xi
0,Xi ∈ K = Ej , the inequalities (127) holds true for ui at 0 and ξi. Thus,

passing to the limit, we obtain that
1
j
ρk ≤ sup

|X−ξ0|=ρ

∣∣∣ϕX0(X)
∣∣∣ < jρk,

for 0 < ρ < +∞, which implies that ξ0 ∈ Γk(ϕX0). Finally, since ∂αϕX0(ξ0) = 0 for |α| < k,
dividing both the left and the right hand side of (138) by ρk−|α|i and passing to the limit, we reach
a contradiction since we get

∣∣∣∂aϕX0(ξ0)
∣∣∣ =

∣∣∣∣∣∣∣∣
∑
γ>α
|γ|=k

aγ(X0)

(γ − α)!
(X −X0)

γ−α

∣∣∣∣∣∣∣∣ ≥ δ.

Finally, under the previous notations, let us consider X0 = (x0, 0) ∈ Γjk(u) ∩Ei, where Ei is
de�ned in Lemma 3.5.20. Hence, by de�nition of dX0

Σ , there exists n− dX0
Σ linearly independent

unit vectors (νi)i ⊂ Sn, such that

〈νi,∇XϕX0〉 6= 0 on Σ,

where dX0
Σ = j. Hence, there exist multi-indices αi or order |αi| = k− 1 such that

∂νiD
αiϕX0(0, 0) 6= 0.

Since ϕX0 is a polynomial of degree k on Σ, we can write the following

ϕX0(x, 0) =
∑
|α|=k

aα(x0, 0)
α!

xα,

where the coe�cients X 7→ aα(X) are continuous on Γk(u) ∩ Σ. Thus, the nondegeneracy
condition on ϕX0 implies

∂νiD
αiF (x0, 0) 6= 0, i = 1, · · · ,n− dX0

Σ . (139)
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Finally, since

Γjk(u) ∩ Σ ∩Ei ⊂
n−j⋂
i=1
{DαiF = 0} ∩ Σ,

in view of the implicit function Theorem, the condition (139) implies that Γjk(u) ∩ Σ ∩ Ei is
contained in a j-dimensional manifold in a neighborhood of X0.
The results follows immediately from Lemma 3.5.20

We remark that in this particular case of La-harmonic function symmetric with respect to Σ,
since by the de�nition of tangent map at a point of the nodal set we have

u(x, 0) =
∑
|α|=k

aα(x0, 0)
α!

xα + o(|x− x0|k)

and u ∈ C∞(B1/2) thanks to Proposition 3.2.5, we get that Dαu(x0, 0) = 0 for |α| = k− 1 and
Dαu(x0, 0) = aα(x0, 0) for |α| = k. Thus, the nondegeneracy condition on ϕX0 implies

∂νiD
αiu(x0, 0) 6= 0, i = 1, · · · ,n− dX0

Σ . (140)

Hence, we can obtain conclusion just looking at the strata {Dαiu = 0}, with i = 1, . . . ,n− j.
Instead, the previous proof is more general and it will be applied to a more general class of
degenerate-singular operators in Section 3.8.

The following is the main Theorem of this strati�cation analysis, in particular it allows to empha-
size the degenerate-singular attitude of the operator La near the characteristic manifold Σ by
showing the presence of a (n− 1)-dimensional singular stratum for a ∈ (−1, 1) with a 6= 0.

Theorem 3.7.8. Given a ∈ (−1, 1), let u be La-harmonic in B1. Then there holds

S(u) ∩ Σ = S∗(u) ∪ Sa(u)

where S∗(u) is contained in a countable union of (n− 2)-dimensional C1 manifolds and Sa(u) is
contained in a countable union of (n− 1)-dimensional C1 manifolds. Moreover

S∗(u) =
n−2⋃
j=0
S∗j (u) and Sa(u) =

n−1⋃
j=0
Saj (u),

where both S∗j (u) and Saj (u) are contained in a countable union of j-dimensional C1 manifolds.

Proof. The proof can be seen as an improvement of Proposition 3.7.7 since it consists on applying
the previous strategy for the dimension and the regularity of the set Γjk(u) taking care on the
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case when the tangent map belongs to sB∗k(R
n+1) or not. Indeed, this two cases in�uence the

upper bound on the dimension dX0
Σ and consequently the dimension of the singular strata.

Hence, let us set

S∗(u) =
n−2⋃
j=0
S∗j (u) =

n−2⋃
j=0

⋃
k≥2
{X ∈ Γ∗k(u) : dX0

Σ = j},

Sa(u) =
n−1⋃
j=0
Saj (u) =

n−1⋃
j=0

⋃
k≥2
{X ∈ Γak(u) : dX0

Σ = j}.

Since for every k ≥ 2 the functions ϕ ∈ sB∗k(R
n+1) are homogeneous polynomial harmonic in

Σ, we have that dim (S(ϕ) ∩ Σ) ≤ n− 2, and consequently dX0
Σ ≤ n− 2 for every X0 ∈ Γ∗k(u).

Similarly, following Proposition 3.4.15 and the remarks in the proof of Theorem 3.6.3, since for
every k ≥ 2 there exists ϕ ∈ sBa

k(R
n+1) \ sB∗k(Rn+1) such that dim (S(u) ∩ Σ) = n− 1 we

get that for X0 ∈ Γak(u) it holds dX0
Σ ≤ n− 1.

Now, by applying the same argument in the proof of Proposition 3.7.7, if we set

S∗j (u) =
⋃
k≥2

{
X ∈ Γ∗k(u) : dX0

Σ = j
}

for j = 0, · · · ,n− 2

Saj (u) =
⋃
k≥2

{
X ∈ Γak(u) : dX0

Σ = j
}

for j = 0, · · · ,n− 1,

we get that S∗j (u) and Saj (u) are contained in j-dimensional C1 manifold.

Furthermore, by Proposition 3.4.15 we get that for any X0 ∈ San−1(u) the leading polynomial
of u at X0, i.e. the �rst term of the Taylor expansion of u at X0, is an homogenous polynomial of
two variables of the form (118) or (119), up to a rotation on Σ.

3.8 fractional power of elliptic operator in divergence form

In this Section, we �nd an application to the previous analysis relating, via the extension
technique, the study of the restriction of the nodal set on the characteristic manifold Σ to the local
properties of solutions of fractional power of elliptic di�erential equations in divergence form.
Initially we start focusing the attention on the case of the fractional Laplacians (−∆)s and then
we discuss the monotonicity formula and its consequences for solutions of fractional elliptic
di�erential equations of the second order with Lipschitz leading coe�cients.

Let s ∈ (0, 1) and u : B1 ⊂ Rn → R be a nontrivial s-harmonic function in B1, that is

(−∆)su(x) = 0 in B1. (141)
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Here we de�ne the s-Laplacian

(−∆)su(x) = C(n, s) P.V.
ˆ

Rn

u(x)− u(y)
|x− y|n+2s dy ,

where

C(n, s) =
22ssΓ(n2 + s)

πn/2Γ(1− s)
∈
(

0, 4Γ
(
n

2 + 1
)]

. (142)

In general, the s-Laplacian can be de�ned in various ways, which we review now. First, in order
to better understand these de�nitions, we introduce the spaces

H̃s(Rn) =
{
u ∈ L2(Rn) : |ξ|s (Fu)(ξ) ∈ L2(Rn)

}
,

where s ∈ (0, 1) and F denotes the Fourier transform. In the literature, the spaces H̃s(Rn) are
called Bessel spaces and in particular they can be equivalently de�ned as a Sobolev-Slobodeckij
spaces. More precisely, �xed Ω ⊆ Rn an open set, for every fractional exponent s ∈ (0, 1) we
de�ne Hs(Ω) as the set of all functions u de�ned on Ω with a �nite norm

‖u‖Hs(Ω) =

(ˆ
Ω
|u|2 dx+ C(n, s)

2

ˆ
Ω

ˆ
Ω

|u(x)− u(z)|2

|x− z|n+2s dxdz
)1/2

,

where the term

[u]Hs(Ω) =

(
C(n, s)

2

ˆ
Ω

ˆ
Ω

|u(x)− u(z)|2

|x− z|n+2s dxdz
)1/2

(143)

is the so-called Gagliardo seminorm of u in Hs(Ω). It can be proved that H̃s(Rn) = Hs(Rn)

and in particular, for every u ∈ Hs(Rn) we get

[u]2Hs(Rn) =

ˆ
Rn
|ξ|2s |Fu(ξ)|2 dξ =

∥∥∥(−∆)s/2u
∥∥∥2

L2(Rn)
.

Note that one can also de�ne the fractional Laplacian acting on spaces of functions with weaker
regularity.
More precisely, following [77], let S be the Schwartz space of rapidly decreasing smooth functions
in Rn and Ss(Rn) be the space of smooth function u such that (1+ |x|n+2s)Dkf(x) is bounded
in Rn, for every k ≥ 0, endowed with the topology given by the family of seminorms

[f ]k = sup
x∈Rn

(
1 + |x|n+2s

)
Dkf(x).
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Under this notations, the fractiona Laplacian of f ∈ S is well de�ned in (−∆)sf ∈ Ss and, by
duality, this allows to de�ne the fractional Laplacian for functions in the space

L1
s(R

n) =

{
u ∈ L1

loc(R
n) :

ˆ
Rn

|u(x)|
(1 + |x|)n+2sdx < +∞

}
= L1

loc(R
n) ∩ S ′s(Rn),

where S ′s(Rn) stands for the dual of Ss(Rn). We remark that necessary a function in L1
s(R

n)

needs to keep an algebraic growth of power strictly smaller than 2s, in order to make the above
expression meaningful, as we pointed out in Chapter 1 and Chapter 2.

In order to study the local behaviour of u, let us look at the extension technique popularized by
Ca�arelli and Silvestre (see [23]), characterizing the fractional Laplacian in Rn as the Dirichlet-
to-Neumann map for a variable v depending on one more space dimension. Namely for every
u ∈ Hs(Rn), let us consider v ∈ H1,a(Rn+1

+ ) satisfyingdiv(ya∇v) = 0 in Rn+1
+ ,

v(x, 0) = u(x) in Σ .
(144)

with a = 1− 2s ∈ (−1, 1). Such an extension exists unique and is given by the formula

v(x, y) = γ(n, s)
ˆ

Rn

y2su(x)

(|x− η|2 + y2)n/2+sdη where γ(n, s)−1 =:
ˆ

Rn

1
(|η|2 + 1)n/2+sdη ,

where the nonlocal operator (−∆)s translates into the Dirichlet-to-Neumann opeartor type

(−∆)s : Hs(Rn)→ H−s(Rn), u 7−→ −C(n, s)
γ(n, s) lim

y→0+
y1−2s∂yv(x, y),

with C(n, s) the normalization constant deeply studied in Chapter 2. By [70], it is known that the
space Hs(Rn) coincides with the trace on ∂Rn+1 of the weighted Sobolev space H1,a(Rn+1

+ )

and in general

[u]2Hs(Rn) =
C(n, s)
γ(n, s)

ˆ
Rn+1

|y|1−2s |∇v|2 dX,

where v is the La-harmonic extension of u de�ned by (144). Since in the context of the extension
problem the equation (141) translates in the homogeneous Neumann condition

∂ayv(x, 0) = −C(n, s)
γ(n, s) lim

y→0+
y1−2s∂yv(x, y) = 0 on B1 ⊂ Σ,
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by applying the even re�ection through Σ, we can study the structure of the nodal set of s-
harmonic function in Rn as the restriction of the nodal set Γ(v) on the characteristic manifold Σ
of the solution 

Lav = 0 in B+
1

v(x,−y) = v(x, y) in B+
1

v(x, 0) = u(x) in B1

(145)

where a = 1− 2s ∈ (−1, 1) and B+
1 is the unitary (n+ 1)-dimensional ball in Rn+1.

Moreover, by [70] is it well known that the class of trace on B+
1 ∩ Σ = B1 of function La-

harmonic in B+
1 is equal to the space Hs(B1).

Through this Section we will always identify as v the La-harmonic extension of u in Rn+1

symmetric with respect to Σ and with Br(x0)+ the ball in Rn+1
+ of radius r > 0 and centered in

the point X0 = (x0, 0) ∈ Σ in the characteristic manifold associated to Σ.
The following results are a direct consequence of the ones obtained for purely symmetric La-
harmonic function. For this reason the proof of the majority of them is skipped when the result is
obtained just passing through the La-harmonic extension.

Proposition 3.8.1. Given s ∈ (0, 1), let u be s-harmonic in B1. Then, there for every x0 ∈ B1,

1
Rn

ˆ
BR(x0)

u2dx ≤ C(n, s)
(
R

r

)2N−1 1
rn

ˆ
Br(x0)

u2dx, (146)

for 0 < r < R < 1− |x0| and N = N(X0, v, 1− |X0|), with v the La-harmonic extension of u.

Proof. Let v ∈ H1,a(B1) be the La-harmonic extension of u in Rn+1, symmetric with respect
to Σ. The idea of this proof is to “move” the doubling condition on Rn+1 to the characteristic
manifold Σ. In [73] the author used a similar strategy to prove a so called “bulk doubling property”.
In our case we improve the proof by using our blow up analysis developed in Section 3.4 and
applying the correct factor of scaling in order to pass from a doubling condition in the dimension
n+ a+ 1 to the one on Σ.
Let X0 ∈ B1 ∩ Σ, and v the La-harmonic extension symmetric with respect to Σ. Integrating the
inequality in Corollary 3.3.2, see (104), we obtain that

ˆ
B+
R(X0)

|y|a v2dX ≤
(
R

r

)2C+n+a ˆ
B+
r (X0)

|y|a v2dX
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for every 0 < r < R < 1− |X0|, with N = N(X0, v, 1− |X0|). By the interpolation estimate
in [73], we get

1
Rn

ˆ
BR(X0)

u2dx ≤ C(n, a)
(

1
Rn+a+1

ˆ
B+
R(X0)

|y|a v2dX +
1

Rn+a−1

ˆ
B+
R(X0)

|y|a |∇v|2 dX
)

≤ C(n, a)
(

1
Rn+a+1

ˆ
B+
R(X0)

|y|a v2dX +
1

Rn+a+1

ˆ
B+

2R(X0)
|y|a v2dX

)

≤ C(n, a)22N+n+a+1 1
Rn+a

ˆ
B+
R(X0)

|y|a v2dX

where in the second inequality we used the Caccioppoli estimate (99) and in the last one the
doubling condition. Since it yields the desired lower bound for the left hand side of the doubling
condition on Σ, we left to prove the upper bound. Let us prove by contradiction the existence of
C > 0 and a radius 0 < r < R such thatˆ

∂B+
r (X0)

|y|a v2dX ≤ C(n, a)ra+1
ˆ
∂Br(X0)

u2dx for all 0 < r ≤ r, (147)

which will �nally implies (146) after a simple integration.
Hence, suppose there exists a sequence rk ↘ 0+ such that

‖v‖L2,a(∂B+
rk

(X0))
≥ krβ/2

k ‖u‖L2(∂Brk (X0))
, (148)

with β = a+ 1. Then let us consider the blow-up sequence of u centered at X0 associated to
(rk)k

vk(X) =
v(X0 + rkX)

ρk
with ρ2

k =
1

rn+ak

ˆ
∂B+

rk
(X0)
|y|a v2dX = H(X0, v, rk).

By de�nition we have ‖vk‖L2,a(∂B+
1 ) = 1, and by Lemma 3.4.2 the sequence (vk)k is uniformly

bounded in H1,a(B+
R ) and L∞(BR), for every R > 0. In particular, by (148), we get

‖uk‖L2(∂B1)
= ‖vk‖L2(∂B1)

=
r
−n−1

2
k ‖v‖L2(∂Brk (X0))

r
−n+a2
k ‖v‖L2,a(∂B+

rk
(X0))

≤ k−1r
a+1−β

2
k = k−1.

Thus, up to a subsequence, by Theorem 3.4.1 the blow-up sequence (vk)k strongly converge
in H1,a

loc (R
n+1) and in C0,α

loc (R
n), for every α ∈ (0, 1) to some homogeneous blow-up limit

v ∈ H1,a
loc (R

n+1) such that v = 0 on B1, ‖v‖L2,a(∂B+
1 ) = 1 and it satis�esLav = 0 in Rn+1

∂ayv = 0 in Σ.

Hence, by Proposition 3.5.10 we get that v ≡ 0 in contradiction with ‖v‖L2,a(B+
1 ) = 1.
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In order to justify the analysis of the local behaviour of s-harmonic functions, it is necessary
to ensure the validity of the strong unique continuation property. It is known by [45] that an
s-harmonic function in B1 enjoys the strong unique continuation property in B1, i.e. the only
solutions which vanishes of in�nite order at a pointX0 ∈ Γ(u) is u ≡ 0. Similarly, an s-harmonic
function in B1 is said to satis�es the unique continuation property in B1 if the only solution of
(−∆)su = 0 in Hs

loc(B1) which can vanish in an open subset of B1 is u ≡ 0. Indeed, as a direct
consequence of Proposition 3.5.10 we prove

Corollary 3.8.2. Let s ∈ (0, 1) and u be s-harmonic in B1. Then the nodal set Γ(u) has either
empty interior in B1 or u ≡ 0.

Hence, it is reasonable to de�ne the notion of vanishing order of u at x0 ∈ Γ(u). More
precisely, the strong unique continuation property guarantees the existence of k ∈ R such that

lim sup
r→0+

1
rn+2k

ˆ
Br(x0)

u2dx > 0.

In order to correlate the notion of vanishing order of s-harmonic functions with the one for their
La-harmonic extension, let us introduce the following common de�nition.

De�nition 3.8.3. Given s ∈ (0, 1), let u be an s-harmonic function in B1 and x0 ∈ Γ(u). The
vanishing order of u in x0 is de�ned as the number O(u,x0) ∈ R such that

lim sup
r→0+

1
rn−1+2k

ˆ
∂Br(x0)

u2dx =

0 if k < O(u,x0)

+∞ if k > O(u,x0).

In particular, from Lemma 3.4.9 and Proposition 3.8.1 we get

Corollary 3.8.4. Let s ∈ (0, 1) and a = 1− 2s ∈ (−1, 1). Given u an s-harmonic function in
B1, then the vanishing order O(u,x0) of u in x0 ∈ Γ(u) satisfy

O(u,x0) = N(X0, v, 0+) = lim
r→0+

r

ˆ
B+
r (X0)

|y|a |∇v|2 dX
ˆ
∂B+

r (X0)
|y|a v2dσ

,

where v is the unique La-harmonic extension of u symmetric with respect to Σ and X0 = (x0, 0).

Hence, for k ∈ 1 + N, we de�ne the subsets

Γk(u) := {x0 ∈ Γ(u) : O(u,x0) = k},

which is coherent with the De�nition for the La-harmonic case. Indeed, inspired by the results in
Section 3.4, we can prove a convergence result for the blow-up sequence associated to x0 ∈ Γ(u)
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to some blow-up limit ϕ ∈ Hs
loc(R

n).

Before to prove the main convergence result, let us introduce two di�erent classes of tangent
maps strictly related to the ones introduced in De�nition 3.4.17 and De�nition 3.4.18. In particular,
we will see that the structure of the nodal set is completely de�ned starting from these blow-up
classes.

De�nition 3.8.5. Given s ∈ (0, 1) and k ∈ 1+N, we de�ne the set of all possible blow-up limit
of order k, i.e. the set of the traces of all La-harmonic polynomial of degree k symmetric with
respect to Σ, as

Bs
k(R

n) =
{
ϕ ∈ Hs

loc(R
n) : the La-extension of ϕ ∈ sBa

k(R
n+1)

}
.

Moreover, by Lemma 3.4.12 and Lemma 3.4.16, the space Bs
k(R

n) is the set of all possible
homogenous polynomial of order k in Rn, which is, by the results in [70], the space of traces on
Σ of sBa

k(R
n). Similarly, if we de�ne with B∗k(R

n) the set of function ϕ ∈ Bs
k(R

n) such that
∆ϕ = 0 in Rn, namely the collection of homogeneous harmonic polynomial of order k, it holds
that B∗k(Rn) coincides with the set of traces of blow-up limits in sB∗a(R

n+1).

The following result is a direct application of Theorem 3.4.1, Lemma 3.5.5, Theorem 3.5.6 and
Theorem 3.5.12 on the La-harmonic extension of u symmetric with respect to Σ and it ensure the
existence of a unique non trivial tangent map at every point of the nodal set of u.

Proposition 3.8.6. Given s ∈ (0, 1), let u be an s-harmonic function in B1 and x0 ∈ Γk(u). Then
there exists a unique k-homogenous polynomial ϕx0 ∈ Bs

k(R
n) such that

ux0,r(x) =
u(x0 + rkx)

rk
−→ ϕx0(x),

where the blow-up sequence (ux0,r)r converges strongly in Hs
loc(R

n) and in C1,α
loc (B1), for every

α ∈ (0, 1). Moreover, the unique tangent map ϕx0 is nontrivial and it satis�es the following
generalized Taylor expansion

u(x) = ϕx0(x− x0) + o(|x− x0|k),

where the map x0 7→ ϕx0 from Γk(u) to the spaceBs
k(R

n) is continuous.

Thus, let

R(u) = {x0 ∈ Γ(u) : O(u,x0) = 1},

S(u) =
⋃
k≥2

Γk(u) =
⋃
k≥2
{x0 ∈ Γ(u) : O(u,x0) = k} ,
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be respectively the regular and singular part of Γ(u). Moreover, by Corollary 3.5.8 we can �nd a
di�erent characterization of the singular strata Γk(u) for k ≥ 2, i.e.

Γk(u) =

{
x0 ∈ Γk(u)

∣∣∣∣∣ D
νu(x0) = 0 for every |ν| ≤ k− 1

Dν0u(x0) 6= 0 for some |ν0| = k

}
.

The following are the main theorems related to the regularity and the geometric structure of
the nodal set: while in the �rst result we focus the attention on the regular part of the nodal set,
proving a result similar to its local counterpart (see [56, 66]), in the ones related to the singular
strata we highlight the presence of a singular subset Ss(u) strictly related to the nonlocal attitude
of the fractional Laplacian.

Theorem 3.8.7. Given s ∈ (0, 1), let u be s-harmonic inB1. Then the regular setR(u) is relatively
open in Γ(u) and is locally a smooth hypersurface on Rn. Moreover

R(u) = {x ∈ Γ(u) : |∇u(x)| 6= 0} .

Proof. By Corollary 3.8.2, let us suppose that u 6≡ 0 in B1 and hence Γ(u) has empty interior.
Given v the unique La-harmonic extension of u symmetric with respect to Σ, well de�ned in
H1,a(B+

1 ) by (145), it is obvious to infer that

R(v) ∩ Σ = R(u).

Moreover, by Lemma 3.5.20 we already know that R(u) is relatively open in Γ(u) and by the
application of the Federer reduction principle in Theorem 3.6.3 we get

dimH(R(u)) = n− 1.

Now, by Theorem 3.8.6 and our blow-up classi�cation, for every x0 ∈ R(u) ∩ Σ there exists a
linear map ϕx0 ∈ Bs

1(R
n) such that

u(x) = ϕx0(x− x0) + o(|x− x0|) = ϕx0(νx0)〈x− x0, νx0〉+ o(|x− x0|)

for some νx0 ∈ Sn−1.
Moreover, still by Theorem 3.8.6 we know that the map x0 7→ ϕx0(νx0)νx0 is continuous. By
Proposition 3.2.5, since u ∈ C∞(B1/2) we can use the tangent map in order to compute the
directional derivative of u, which will ensures the nondegeneracy of the gradient of u at x0. More
precisely, for every ξ ∈ Sn−1

〈∇u(x0), ξ〉 =
d

dt
u(x0 + tξ)

∣∣∣∣
t=0

= lim
t→0

u(x0 + tξ)

t
= ϕx0(νx0)〈ξ, νx0〉,

and hence∇u(x0) = ϕx0(νx0)νx0 which is nonzero by the nondegeneracy of the tangent map.
Finally, by the implicit function theorem we get the claimed result.
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As in Section 3.7, initially we will prove a strati�cation result for the singular set S(u).
The main idea of this strati�cation is to stratify the nodal set by the spines of the normalized
tangent maps. Indeed, we will introduce the subset Γjk(u) as the set of points at which every
tangent map has at most j independent directions of translation invariance in order to correlate
the nodal set of u with the dimension of the set where the tangent map ϕX0 vanishes with the
same order of u.

We remark that these result are a direct consequence of Theorem 3.7.7 and Theorem 3.7.8, never-
theless, for the sake of completeness, we present some technical details.
From De�nition 3.7.5, given s ∈ (0, 1) we call dx0 the dimension of Γk(u) at x0 ∈ Γk(u) as

dx0 = dim {ξ ∈ Rn : 〈ξ,∇ϕx0(x)〉 = 0 for all x ∈ Rn} .

Now, �xed k ≥ 2, for each j = 0, . . . ,n− 1 let us de�ne

Γjk(u) = {x0 ∈ Γk(u) : dim Γk(ϕx0) = j} ,

where ϕx0 is the unique tangent limit of u at x0. As we already mentioned, since for k ≥ 2 we
have Bs

k(R
n) \B∗k(Rn) 6= ∅, we decide to introduce the following singular sets

S∗(u) =
⋃
k≥2

Γ∗k(u) and Ss(u) =
⋃
k≥2

Γsk(u),

where
Γ∗k(u) = {x0 ∈ Γk(u) : ϕx0 ∈ B∗k(R

n)} and Γsk(u) = Γk(u) \ Γ∗k(u).

The idea is to stratify the singular set taking care of both the dimension dx0 and the di�erent
classes of tangent map associated to the sets Γ∗k(u) and Γsk(u).

Theorem 3.8.8. Given s ∈ (0, 1) let u be s-harmonic in B1. Then it holds

S(u) = S∗(u) ∪ Ss(u)

where S∗(u) is contained in a countable union of (n− 2)-dimensional C1 manifolds and Ss(u) is
contained in a countable union of (n− 1)-dimensional C1 manifolds. Moreover

S∗(u) =
n−2⋃
j=0
S∗j (u) and Ss(u) =

n−1⋃
j=0
Ssj (u),

where both S∗j (u) and Ssj (u) are contained in a countable union of j-dimensional C1 manifolds.
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Proof. The proof is based on a combination of Theorem 3.7.7 Theorem 3.7.8. Since for every
k ≥ 2 the functions ϕ ∈ sB∗k(R

n+1) are homogeneous polynomial harmonic in Σ, we have that
dim (S(ϕ) ∩ Σ) ≤ n− 2, and consequently dX0

Σ ≤ n− 2 for every X0 ∈ Γ∗k(u).
Similarly, following Proposition 3.4.15 and the remarks in the proof of Theorem 3.6.3, since for
every k ≥ 2 there exists ϕ ∈ sBa

k(R
n+1) \ sB∗k(Rn+1) such that dim (S(u) ∩ Σ) = n− 1 we

get that for X0 ∈ Γak(u) it holds dX0
Σ ≤ n− 1.

Now, by applying the same argument in the proof of Theorem 3.7.8, if we set

S∗j (u) =
⋃
k≥2
{x ∈ Γ∗k(u) : dx0 = j} for j = 0, · · · ,n− 2

Ssj (u) =
⋃
k≥2
{x ∈ Γsk(u) : dx0 = j} for j = 0, · · · ,n− 1,

we get the claimed result.

Furthermore, by Proposition 3.4.15 we get that for any x0 ∈ Ssn−1(u) the leading polynomial
of u at x0 is a monomial of degree k with k ∈ 2 + N depending only on one variable of Rn.

In order to show the optimality of the result, we will now present an explicit example of s-
harmonic function in B1 = (−1, 1) ⊂ R with vanishing order k ≥ 2. More precisely, the
following construction allows to exhibit an s-harmonic in B1 ⊂ Rn with Γ(u) = Ssn−1(u).
Fixed s ∈ (0, 1), letB1 = (−1, 1) ⊂ R be the unitary ball in the real line and f ∈ L1

s(R)∩C(R)

an admissible function. By the classical potential theory is it known that the unique solution of(−∆)su = 0 in B1

u = f in R \B1

an be computed explicitly as

u(x) =

ˆ
R\B1

P (x, y)f(y)dy =
Γ(1/2) sin πs

π3/2

(
1− |x|2

)s ˆ
R\B1

1
(|y|2 − 1)s

f(y)

|x− y|
dy.

We remark that several results and reference about the Poisson kernel can be found in the classical
book of Landkof [63].
Now, given f ∈ L1

s(R) ∩C(R), let us consider fe, fo ∈ L1
s(R) ∩C(R) respectively the even

and odd part of f uniquely de�ned as

fe(x) =
f(x) + f(−x)

2 and fo(x) =
f(x)− f(−x)

2 .

Under this notations, we get for x ∈ (−1, 1)

u(x) =
2Γ(1/2) sin πs

π3/2

(
1− |x|2

)s [ˆ +∞

1

fe(y)y

(|y|2 − 1)s(y2 − x2)
dy+ x

ˆ +∞

1

fo(y)

(|y|2 − 1)s(y2 − x2)
dy
]

.
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Since for every y ∈ R \B1 we have |y| > |x|, using the series expression

1
y2 − x2 =

1
y2

∞∑
n=0

x2n

y2n ,

we obtain

u(x) =
2Γ(1/2) sin πs

π3/2

(
1− |x|2

)s [ ∞∑
n=0

A2n(f)x
2n +

∞∑
n=0

A2n+1(f)x
2n+1

]
,

where for every n ∈N

A2n(f) =

ˆ +∞

1

fe(y)

y(|y|2 − 1)sy2n
dy and A2n+1(f) =

ˆ +∞

1

fo(y)

y(|y|2 − 1)sy2n+1
dy.

In particular, if we consider f(x) = (|x|2 − 1)sg(x−1) we get by a simple change of variables

A2n(f) =

ˆ 1

0

ge(y)

y
y2ndy and A2n+1(f) =

ˆ 1

0
go(y)y

2ndy.

Hence, for every �xed order of vanishing k ∈ 2 + N, there exists a polynomial function g(x)
such that Ai(f) = 0, for every i ≤ k− 1. We remark that all these coe�cients can be computed
explicitly. Moreover, this construction it implies that for every vanishing order k ∈ 2 + N there
exists an s-harmonic function in (−1, 1) which vanishes in zero with order k, which shows the
purely nonlocal attitude of the singular set of s-harmonic functions.

In this part we will generalize the previous result to a more general class of fractional power of
divergence form operator following the change of variables �rst introduced in [4] and deeply
popularized in the works [48, 49] . Inspired by works, we consider solutions of homogeneous
linear elliptic di�erential equations of the second order with Lipschitz leading coe�cients and
no lower order terms. We remark that in general the regularity assumption on the coe�cient is
optimal thanks to the counterexample of [68].

Let A(x) = (aij(x)) be a symmetric n× n matrix-valued function in B1 satisfying the fol-
lowing assumptions:

1. there exists λ ∈ (0, 1) such that

λ |ξ|2 ≤ aij(x)ξiξj ≤ λ−1 |ξ|2 for any x ∈ B1 and ξ ∈ Rn;

2. there exists Γ > 0 such that for any 1 ≤ i, j ≤ n

|aij(x)− aij(z)| ≤ γ |x− z| for any x, z ∈ B1.
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Hence, consider now the uniformly elliptic operator

Lu = div (A(x)∇u(x)) = ∂

∂xi

(
aij(x)

∂

∂xj
u

)
= 0 in B1. (149)

By [80], we already know the existence of characterization for the fractional powers of second
order partial di�erential operators in some suitable class.

Proposition 3.8.9. Let s ∈ (0, 1) and u ∈ L1
s(R

n). Given a = 1− 2s ∈ (−1, 1), a solution of
the extension problem Lv+ a

y∂yv+ ∂2
yyv = 0 in Rn+1

+

v(x, 0) = u(x) in Rn;
(150)

is given by

v(x, y) = 1
Γ(s)

ˆ ∞
0

(etL(−L)sf)(x)e−
y2
4t

dt
t1−s

,

and

(−L)su(x) = − Γ(s)
21−2sΓ(1− s) lim

y→0+
ya∂yu(x, y).

A similar extension can be constructed in the context of fractional powers (−∆M )s of the
Laplace-Beltrami operator on a Riemannian manifold M and to conformal fractional Laplacian on
conformally compact Einstein manifolds and asymptotically hyperbolic manifold, thanks to the
extension technique developed in [27] and the asymptotic expansion of their geodesic boundary
de�ning function.
In this Section, we just consider the case of divergence form operator L in order to show how to
deal with the limit case of Lipschitz coe�cients. Therefore, this analysis will extend the results
also to the case of Laplace-Beltrami with Lipschitz metric.

As we did for the fractional Laplacian, in order to study the local behaviour of solution of
fractional elliptic equation associated to operator L in divergence form, let s ∈ (0, 1) and u be a
solution of the extended problem (150) associated to L, even with respect to the y-direction, i.e.
such that divx,y(|y|aA(x)∇x,yu) = 0, in Rn+1

u(x, y) = u(x,−y), in Rn+1.
(151)

where A(x) is a symmetric (n+ 1)× (n+ 1) matrix-valued function in B1 such that

A(x) =

 A(x) 0

0 1

 . (152)
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Inspired by De�nition 3.2.1 we de�ne the natural generalization of notion of La-harmonicity in
the context of divergence form operator L with Lipschitz leading coe�cient.

De�nition 3.8.10. Let a ∈ (−1, 1), we say u ∈ H1,a(B1) is LAa -harmonic in B1 if for every
ϕ ∈ C∞c (B1) we have ˆ

B1

|y|a 〈A(x)∇u,∇ϕ〉dX = 0,

where A(x) is the symmetric (n+ 1)× (n+ 1) matrix-valued function de�ned in (152).

Through this Section we will state all the result in the contxt of LAa -harmonic function in B1
symmetric with respect to Σ, since the nodal set of the fractional powers (−L)s is completely
de�ned as the restriction of the nodal set of LAa -harmonic function symmetric with respect to Σ,
as we did in the previous part of the Section.
Obviously, in order to better understand the behaviour of general degenerate operator with
Lipschitz leading coe�cient, one could consider general LAa -harmonic solution and apply the
ideas and the decomposition of the previous Sections.

In order to develop a blow-up analysis, let us construct a monotonicity formula base on a geo-
metrical reduction introduce in [4] and deeply used in the local case [48, 49]. Hence, for n ≥ 3,
de�ne a Lipschitz metric g = gij(x, y)dxi ⊗ dxj + gyy(x, y)dy⊗ dy on B1 by setting

gij = aij
(
detA

) 1
n−1 =

aij |A|
1

n−1 , if 1 ≤ i, j ≤ n
|A|

1
n−1 , otherwise

(153)

where ai,j and ai,j denote respectively the entries of A−1 and A−1. Letting similarly gij be the
entries of the inverse metric of g, consider

r(x, y)2 = gij(0)xixj + gyy(0)y2

= |A|
1

n−1
(
aij(0)xixj + y2

)
and

η(x, y) = 1
r2(x, y)

(
gkl(x)gik(0)gjl(0)xixj + gyy(x)gyy(0)gyy(0)y2

)
=
akl(x)a

ik(0)ajl(0)xixj + y2

aij(0)xixj + y2 .

We can easily verify that η is a positive Lipschitz function inB1, whose Lipschitz constant depends
on n,λ, Γ but not on a ∈ (−1, 1).
Next, we introduce a new metric tensor g = gij(x, y)dxi ⊗ dxj + gyy(x, y)dy ⊗ dy in B1 by
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de�ning g = η(x, y)g. In the intrinsic geodesic polar coordinates with pole at zero of the
Riemannian manifold (B1, gij), the metric tensor takes the form

g = dr⊗ dr+ r2bij(r, θ)dθi ⊗ dθj ,

where
bij(0, 0) = δij , |∂rbij(r, θ)| ≤ Λ(n,λ, Γ), for 1 ≤ i, j ≤ n. (154)

Moreover, if we denote |g| = |det g| we get√
|g| = η

n+1
2

√
|g| = η

n+1
2 |A|

1
n−1 . (155)

Here we denote by ∇gu and divgX respectively the intrinsic gradient of a function u and the
intrinsic divergence of a vector �eld X on B1 in the metric g, i.e.

∇gu = gij
∂u

∂xi

∂

∂xj
, divgX =

1√
|g|

(
n∑
i=1

∂

∂xi
(
√
|g|Xi) +

∂

∂y
(
√
|g|Xy)

)
.

Finally, in this new metric we rewrite the divergence form equation in (151) as

divg (|y|a µ∇gu) =
1√
|g|

∂

∂y

[(
1−

√
|g|gyyµ

)
u
∂

∂y
|y|a

]
where µ = µ(x, y) is a positive Lipschitz function given by

µ(x, y) = η(x, y)−
n−1

2

bounded in B1 and such that, in polar coordinates, it satis�es

µ(0, 0) = 1,
∣∣∣∣ ∂∂rµ(r, θ)

∣∣∣∣ ≤ Λ(n,λ, Γ). (156)

By (153), (155) and the de�nition of µ, for every (x, y) ∈ B1√
|g|gyyµ = η

n+1
2 |A|

1
n−1 |A|−

1
n−1 η−1η−

n−1
2 = 1.

To proceed, given u ∈ H1,a(B1, dVg) a solution of

divg (|y|a µ∇gu) = 0 in B1 (157)

symmetric with respect to Σ, let us de�ne for any r ∈ (0, 1)

Eg(u, r) = 1
rn+a−1

ˆ
Bg(r)

|y|a µ |∇gu|2 dVg

Hg(u, r) = 1
rn+a

ˆ
∂Bg(r)

|y|a µu2dV∂Br
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where here Bg(r) represents the geodesic ball in the metric g of radius r centered at the ori-
gin. We remark that by the polar decomposition of g,Bg(r) coincides with the usual Euclidian ball.

In [52] the authors introduced a new monotonicity formula for a class of generalized Baouendi-
Grushin operators. Since it is well known the existence of a connection between this two families
of degenerate elliptic operator, their result gives an analogue counterpart in the context of our
weighted degenerate operator, �rstly introduced in the pioneering papers [43, 44]. More precisely,
let us introduce the change of variable Φ : Rn+1

+ → Rn+1
+ such that

(x, z) = Φ(x, y) =
(
x, y1−a

(1− a)1−a

)
,

with inverse Φ−1(x, z) =
(
x, (1− a)z

1
1−a
)

. Now, given a function u(x, z) de�ned for (x, z) ∈
Rn+1

+ , we de�ne a function ũ(x, y) with (x, y) ∈ Rn+1
+ as ũ(x, y) = u(Φ(x, y)). A simple

computations gives

Lũ(x, y) + ∂yyũ(x, y) + a

y
∂yũ(x, y) = z−

2a
1−a

[
∂zzu(x, z) + z

2a
1−aLu(x, z)

]
.

As we can see, the operator within square brackets in the right-hand side of the previous equation
is a special case of the family of operators in Rn

x ×R1
z known as generalized Baouendi-Grushin

operator.
Nevertheless, our problem does not satifsy the hyphotesis of the remarkable result obtained in
[52] and consequently we need to construct a new monotonicity formula, which “does” extend
the class of generalized Baouendi-Grushin operator for which a unique continuation principle
holds true.

Under the previous notations, for r ∈ (0, 1), we de�ne the Almgren type monotonicity for-
mula as

Ng(u, r) = Eg(u, r)
Hg(u, r) =

r

ˆ
Bg(r)

|y|a µ |∇gu|2 dVg
ˆ
∂Bg(r)

|y|a µu2dV∂Br
.

Theorem 3.8.11. Let a ∈ (−1, 1) and u be a solution of (157) symmetric with respect to Σ. Then
there exist a constant C > 0 such that the map r 7→ eCrNg(u, r) is absolutely continuous and
monotone nondecreasing on (0, 1). Hence, there always exists �nite the limit

Ng(u, 0+) = lim
r→0+

Ng(u, r),

which we will call as the Almgren frequency formula.
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Proof. By assumption, both r 7→ Eg(u, r) and r 7→ Hg(u, r) are locally absolutely continuous
function on (0, 1), that is both their derivative are L1

loc(0, 1). First, passing to the logarithmic
derivatives, the monotonicity of r 7→ Ng(u, r) is a direct consequence of the claim

d

dr
logN(X0,u, r) = 1

r
+

d

dr

ˆ
Bg(r)

|y|a µ |∇u|2 dVg
ˆ
Bg(r)

|y|a µ |∇u|2 dVg
−

d

dr

ˆ
∂Bg(r)

|y|a µu2dV∂Brˆ
∂Bg(r)

|y|a µu2dV∂Br
≥ 0

for r ∈ (0, 1). First, by setting b(r, θ) = |det bij(r, θ)|, we get
√
g(r, θ) = rn

√
b(r, θ) and we

can rewrite the denominator Hg(u, r) of the Almgren monotonicity formula as

Hg(u, r) =
ˆ
∂Bg(1)

|θn|a µ(r, θ)u2(r, θ)
√
b(r, θ)dθ,

where θn is the spherical coordinate associated to the y-direction. By di�erentiating respect to
r ∈ (0, 1, we obtain

d

dr
Hg(u, r) = 2

rn+a

ˆ
∂Bg(r)

|y|a µu∂ρudV∂Br +
1

rn+a

ˆ
∂Bg(r)

|y|a√
b

∂

∂ρ

(
µ
√
b
)
u2dV∂Br

where ∂ρu denotes the radial di�erentiation ∂ρu = 〈∇gu,X/ρ〉 for X ∈ Rn+1. Finally, by (154)
and (156) we get

d

dr
Hg(u, r) = 2

rn+a

ˆ
∂Bg(r)

|y|a µu∂ρudV∂Br +O(1)Hg(u, r), (158)

with O(1) a function bounded in absolute value by a constant C = C(n, Λ). On the other hand,
the divergence theorem givesˆ

Bg(r)
|y|a µ |∇u|2 dVg = −

ˆ
Bg(r)

udivg (|y|a µ∇u) dVg +
ˆ
∂Bg(r)

|y|a µu∂ρudV∂Br

and hence we can rewrite (158) as

d

dr
Hg(u, r) = 2

r
Eg(u, r) +O(1)Hg(u, r). (159)

We now focus on the derivative of r 7→ Eg(u, r), following the idea of the radial deformation in
[48, 49]: for 0 < r, ∆r < 1/2 �xed, we de�ne wt : R+ → R+ by

wt(ρ) =


t, if ρ ≤ r
1, if ρ ≥ r+ ∆r

tr+ ∆r− ρ
∆r + ρ− r

∆r , if r ≤ ρ ≤ r+ ∆r.
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Now, for 0 < t < 1 + ∆r/(r+ ∆r), we de�ne the bi-Lipschitz map lt : Rn+1 → Rn+1 as

lt(X) = wt(ρ(X))X,

with ρ(X) = distg(0,X), and consequently the radial deformation ut of u as

ut(X) = u(l−1
t (X)) ∈ H1,a(B1, dVg).

By de�nition we have ut(Z) = u(X), with Z = lt(X). Since u is a solution of (157), given the
functional I(t) = Eg(ut, 1) we have

d

dt
I(t)

∣∣∣∣∣
t=1

= 0. (160)

In order to ease the notations, through the following computations we will simply use Br instead
of Bg(r). Inspired by the de�nition of w(t), let us set

I(t) =

ˆ
Brt

|y|a µ
∣∣∣∇ut∣∣∣2 dVBr +

ˆ
Br+∆r\Brt

|y|a µ
∣∣∣∇ut∣∣∣2 dVBr +

ˆ
B1\Br+∆r

|y|a µ
∣∣∣∇ut∣∣∣2 dVBr

= I1(t) + I2(t) + I3(t).

It is easy to see that

I3(t) =

ˆ
B1\Br+∆r

|y|a µ
∣∣∣∇ut∣∣∣2 dVBr =

ˆ
B1\Br+∆r

|y|a µ |∇u|2 dVBr

and consequently that I3(t) does not give contribution to the derivative of I(t). Next, we have

I1(t) =

ˆ
Brt

|y|a µ
∣∣∣∇ut∣∣∣2 dVBr

=

ˆ r

0

ˆ
∂B1

ta |(ρ, θn)|a µ(tρ, θ)∂ρu2(ρ, θ)

√
g(tρ, θ)
t

dθdρ

+

ˆ r

0

ˆ
∂B1

ta |(ρ, θn)|a µ(tρ, θ)bij(tρ, θ)∂θiu(ρ, θ)∂θju(ρ, θ)t
√
g(tρ, θ)dθdρ,

where obviously bij are the entries of the inverse of (bij)ij associated to the metric g. By (156),
we get ∣∣∣∣ ∂∂tµ(tρ, θ)

∣∣∣∣ ≤ Λ(n,λ, Γ)ρ.

Furthermore, we can rewrite
√
g(tρ, θ) = tnρn

√
b(tρ, θ)

bij(tρ, θ)
√
g(tρ, θ) = tn−2ρn−2 [δij + εij(tρ, θ)]

(161)
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for some (εij(tρ, θ))ij . Since that (154), we have∣∣∣∣ ∂∂t
√
b(tρ, θ)

∣∣∣∣ ≤ C(n, Λ)ρ,
∣∣∣∣ ∂∂t

√
εij(tρ, θ)

∣∣∣∣ ≤ C(n, Λ)ρ

which gives

I1(t) = tn+a−1
[ˆ r

0

ˆ
∂B1

|(ρ, θn)|a µ(tρ, θ)∂ρu2(ρ, θ)ρn
√
b(tρ, θ)dθdρ

+

ˆ r

0

ˆ
∂B1

|(ρ, θn)|a µ(tρ, θ)ρn−2(δij + ε(tρ, θ))∂θiu(ρ, θ)∂θju(ρ, θ)dθdρ
]

,

and consequently

d

dt
I1(t)

∣∣∣∣∣
t=1

= (n+ a− 1)
ˆ
Br

|y|a µ |∇gu|2 dVg +O(r)

ˆ
Br

|y|a µ |∇gu|2 dVg, (162)

with O(r) a function of (r, θ) whose absolute value is bounded by C(n, Λ)r.

Finally, in order to estimate the second term of I(t), we need to introduce the following notations.
Hence, given X ∈ Br+∆r \Br and Z = lt(X) ∈ Br+∆r \Brt let us consider their expression in
the intrinsic geodesic polar coordinates associated to g, namely X = (ρ, θ) and Z = (γt(ρ), θ),
where

γt(ρ) = distg(Z, 0) = wt(X)ρ = ρ

[
t
r+ ∆r− ρ

∆r
+
ρ− r

∆r

]
.

and
∂

∂ρ
γt(ρ) = t

r+ ∆r− 2ρ
∆r

+
2ρ− r

∆r
.

Then, still using the polar coordinates, we have∣∣∣∇gut(Z)∣∣∣2 =
∣∣∣∂sut(s, θ)∣∣∣2 + 1

s2 b
ij(s, θ)∂θiut(s, θ)∂θjut(s, θ)

∣∣∣∣
s=γt(ρ)

= |∂ρu(ρ, θ)|2
(
∂

∂s
γ−1
t (s)

∣∣∣∣
s=γt(ρ)

)2

+
1

γt(ρ)2 b
ij(γt(ρ), θ)∂θiu(ρ, θ)∂θju(ρ, θ),

= |∂ρu(ρ, θ)|2 ht(ρ)2 +
1

γt(ρ)2 b
ij(γt(ρ), θ)∂θiu(ρ, θ)∂θju(ρ, θ),

and similarly the volume element is given by

dVBr(Z) = γt(ρ)
n
√
g(γt(ρ), θ)

∂

∂ρ
γt(ρ)dρdθ.
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By the previous computations and the expansions in (161), we get

I2(t) =

ˆ
Br+∆r\Brt

|y|a µ
∣∣∣∇ut∣∣∣2 dVBr(Z)

=

ˆ r+∆r

r

ˆ
∂B1

sn |(s, θn)|a ht(ρ)µ(s, θ)∂ρu2(ρ, θ)
√
b(s, θ)

∣∣∣∣∣
s=γt(ρ)

dθdρ

+

ˆ r+∆r

r

ˆ
∂B1

sn−2 |(s, θn)|a
∂

∂ρ
γt(ρ)µ(s, θ)(δij + ε(s, θ))∂θiu(ρ, θ)∂θju(ρ, θ)

∣∣∣∣∣
s=γt(ρ)

dθdρ.

Since
ht(ρ) =

∆r+ tρ− ρ
t(r+ ∆r− ρ) + ρ− r

, ∂

∂t
ht(ρ)

∣∣∣∣
t=1

= −∆r+ r− 2ρ
∆r

,

we can conclude

d

dt
I2(t)

∣∣∣∣∣
t=1

=

ˆ
Br+∆r\Br

|y|a µ
[
(n+ a+O(ρ))

r+ ∆r− ρ
∆r

− r+ ∆r− 2ρ
∆r

]
(∂ρu)

2dVBr

+

ˆ
Br+∆r\Br

|y|a µ
[
(n+ a− 2 +O(ρ))

r+ ∆r− ρ
∆r

+
r+ ∆r− 2ρ

∆r

] (
|∇gu|2 − (∂ρu)

2
)

dVBr .

Finally, by letting ∆r → 0+ we get

d

dt
I2(t)

∣∣∣∣∣
t=1

= 2r
ˆ
∂Br

|y|a µ(∂ρu)2dV∂Br − r
ˆ
∂Br

|y|a µ |∇gu|2 dV∂Br . (163)

From (160), (162) and (163), we obtain

r
d

dr

ˆ
Br

|y|a µ |∇gu|2 dV∂Br − (n+ a− 1 +O(r))

ˆ
Br

|y|a µ (∇gu)2 dVBr = 2r
ˆ
∂Br

|y|a µ(∂ρu)2dV∂Br ,

which implies with (159) that

d

dr
logN(X0,u, r) = O(1)+

2
ˆ
∂Br

|y|a µ(∂ρu)2dV∂Brˆ
∂Br

|y|a µu∂ρudV∂Br
−

2
ˆ
∂Br

|y|a µu∂ρudV∂Brˆ
∂Bg(r)

|y|a µu2dV∂Br
≥ −C(n, Λ),

where the inequality is a consequence of Schwarz’s inequality. It follows immediately that
the map r 7→ exp(C(n, Λ)r)Ng(u, r) is a monotone nondecreasing function on r ∈ (0, 1) as
required.
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Returning to the formulation of the problem in the euclidian metric, for X0 ∈ Σ and r ∈
(0, 1− |X0|) we set

E(X0,u, r) = 1
rn+a−1

ˆ
Br(X0)

|y|a 〈A(X)∇u,∇u〉dX

H(X0,u, r) = 1
rn+a

ˆ
∂Br(X0)

|y|a µ0u
2dσ,

and consequently

N(X0,u, r) = E(X0,u, r)
H(X0,u, r) ,

with µ0 is a positive Lipschitz function bounded in B1 satisfying (154) with Λ depending only on
n,λ and Γ.

Corollary 3.8.12. Let a ∈ (−1, 1) and u be a solution of (151) in B1 symmetric with respect to Σ.
Then there exist a constant C > 0 such that for every X0 ∈ B1 ∩ Σ the map

r 7→ eCrN(X0,u, r)

is absolutely continuous and monotone nondecreasing on (0, 1− |X0|).
Hence, there exists �nite the Almgren frequency formula de�ned as

N(X0,u, 0+) = lim
r→0+

N(X0,u, r) = inf
r>0

N(X0,u, r).

Now, we can �nally apply the previous analysis to the general case (−L)s, by proving the
validity of a doubling condition, a compactness result for blow-up sequences and a general
Theorem on the structure of the nodal set itself.

Proposition 3.8.13. Let a ∈ (−1, 1) and u be a solution of (151) in B1. Hence, there exists a
constant C = C(n, Λ) such that, for every X0 ∈ B1 ∩ Σ,

H(X0,u, r2) ≤ CH(X0,u, r1)

(
r2
r1

)2C̃
for 0 < r1 < r2 < 1− |X0|, where C̃ = N(X0,u,R)eC(n,Λ)R.

Proof. Fixed R = 1− |X0|, by Corollary 3.8.12 we have that N(X0,u, r) ≤ eCRN(X0,u,R) for
every r ∈ (0,R). By (159) we get

d

dr
logH(X0,u, r) = 2

r
N(X0,u, r) +O(1)

≤ 2
r
N(X0,u,R)eC(n,Λ)R +C(n, Λ),
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for every 0 < r < R. Now we integrate between 0 < r1 < r2 < R, obtaining

log H(X0,u, r2)

H(X0,u, r1)
≤ 2N(X0,u,R)eC(n,Λ)R log r2

r1
+C(n, Λ)(r2 − r1)

and �nally
H(X0,u, r2)

H(X0,u, r1)
≤ eC(n,Λ)R

(
r2
r1

)2C̃
with C̃ = N(X0,u,R)eC(n,Λ)R.

Moreover, since we are dealing with the extension LAa of operator uniformly elliptic in
divergence form with Lipschitz coe�cent, we can easily extend Corollary 3.3.6 to our new class
of operator following the technique developed in [85]. Indeed, since the lower bound on the
Almgren frequency formula is based on the Hölder regularity of LAa -harmonic function, we easily
get

Corollary 3.8.14. Let u be LAa -harmonic on B1, then for every X0 ∈ Γ(u) ∩ Σ we have

N(X0,u, 0+) ≥ min{1, 1− a}. (164)

More precisely

• if u is symmetric with respect to Σ, we have N(X0,u, 0+) ≥ 1,

• if u is antisymmetric with respect to Σ we have N(X0,u, 0+) ≥ 1− a.

In particular, since in this Section we are focusing on the symmetric case, we directly get
N(X0,u, 0+) ≥ 1, for any X0 ∈ Γ(u) ∩ Σ. All techniques presented in this manuscript involve
a local analysis of the solutions, which will be performed via a blow-up procedure. The following
result are a generalization of the ones in Section 3.4. Fixed a ∈ (−1, 1) and u an LAa -harmonic
function in B1, for every X0 = (x0, 0) ∈ Γ(u) ∩ Σ and rk ↓ 0+ we de�ne as the blow-up
sequence the collection

uk(X) =
u(X0 + rkX)√
H(X0,u, rk)

for X ∈ X ∈ BX0,rk =
B1 −X0

rk
,

such that LAka uk = 0 and ‖uk‖L2,a(∂B1)
= 1, where

LAka = divx,y
(
|y|aAk(x)∇x,y

)
, with Ak(x) = A(x0 + rkx),

for every X ∈ BX0,rk .



3.8 fractional power of elliptic operator in divergence form 187

Proposition 3.8.15. Let a ∈ (−1, 1). Given X0 ∈ Γ(u) ∩ Σ and a blow-up sequence uk centered
in X0 and associated to some rk ↓ 0+, there exists p ∈ H1,a

loc (R
n) such that, up to a subsequence,

uk → p in C0,α
loc (R

n) for every α ∈ (0, 1) and strongly in H1,a
loc (R

n). In particular, the blow-up
limit is and entire solution of following elliptic equation with constant coe�cient

divx,y
(
|y|aA(x0)∇x,yp

)
= 0 in Rn+1.

The proof of this result is a straightforward adaption of the one of Theorem 3.4.1. In particular,
since the coe�cient of A are Lipschitz continuous and uniformly elliptic, all the computations of
the blow-up argument follows the line of the local counterpart in [56, 66, 49, 48, 81, 4].

Moreover, since for every X0 ∈ Γ(u) ∩ Σ the blow- up limit satis�es a degenerate-singular
equation with constant coe�cients, it is not restrictive to suppose that A(x0) = Id, since by
trivial transformation we can rewrite the equation in a canonical form.
Therefore, all the results on the structure of the singular strata, proved in the previous part of
the Section for the nodal set of s-harmonic functions, remain valid for the nodal set of fractional
power of divergence form operator with Lipschitz leading coe�cients. Indeed, as we already
pointed out, in the proof of Theorem 3.7.7 and Theorem 3.7.8 we never used Proposition 3.2.5 in
order to attain the result on the structure of the singular strata on Σ. The crucial idea is that the
Whitney extension allows to study the structure of the nodal set just by using the generalized
Taylor expansion (3.5.17) for symmetric function without the high-order di�erentiability of the
function itself. In this way the results can be easily generalized to our class of operators.

Proposition 3.8.16. Given s ∈ (0, 1), let u be a solution of

(−L)su = 0 in B1,

with L a uniformly elliptic operator with Lipschitz coe�cient de�ned as (149). Then the nodal set
Γ(u) splits into its regular and singular part

R(u) = {x ∈ Γ(u) : |∇u(x)| 6= 0} and S(u) = {x ∈ Γ(u) : |∇u(x)| = 0}.

Moreover, if u ∈ C1(B1/2) on one handR(u) is locally a smooth hypersurface and on the other one
it holds

S(u) = S∗(u) ∪ Ss(u)

where S∗(u) is contained in a countable union of (n− 2)-dimensional C1 manifolds and Ss(u) is
contained in a countable union of (n− 1)-dimensional C1 manifolds. Moreover

S∗(u) =
n−2⋃
j=0
S∗j (u) and Ss(u) =

n−1⋃
j=0
Ssj (u),

where both S∗j (u) and Ssj (u) are contained in a countable union of j-dimensional C1 manifolds.
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3.9 measure estimates of nodal sets of s-harmonic functions

In this last Section, we estimate the measure of the nodal set Γ(u) in the case of s-harmonic
functions. This result can be seen as the nonlocal counterpart of a conjecture that Lin proposed
in [66]. Indeed, following his strategy, we give an explicit estimate on the (n− 1)-Hausdor�
measure of the nodal set in terms of the Almgren monotonicity formula of its La-extension.

As we already did in the previous Section, since the local structure of the nodal set Γ(u) can be
described using the results on the restriction of the nodal set of La-harmonic function on the
characteristic manifold Σ, we will follow the notations previously introduced. More precisely,
through this Section we will denote with v ∈ H1,a(B+

1 ) the restriction on the unitary ball in
Rn+1

+ of the La-harmonic extension, de�ned by (144), symmetric with respect to Σ (see (145)).

Since the fractional Laplacian (−∆)s admits a representation formula, we directly have that
the analyticity assumption, which is fundamental in order to apply a strategy developed in [66], is
fully satis�ed on every compact set K ⊂⊂ B1. Moreover, by Proposition 3.8.1 we already provide
a quantitative doubling condition for s-harmonic functions strictly correlated to the one in the
extended space Rn+1.

In order to achieve the estimate on the Hausdor� measure of the nodal set Γ(u) we use the
following lemma relating the growth of a complex analytic function with the number of its zeros
introduced in [41].

Lemma 3.9.1. Let f : B1 ⊂ C→ C be an analytic function such that

|f(0)| = 1 and sup
B1

|f | ≤ 2N ,

for some positive constant N . Then for any r ∈ (0, 1)

# {z ∈ Br : f(z) = 0} ≤ cN

and
# {z ∈ B1/2 : f(z) = 0} ≤ N ,

where C is a positive constant depending only on the radius r.

Before to state the main result on the measure of the nodal sets Γ(u) in terms of the Almgren
monotonicity formula of the La-harmonic extension, let us start with an example in the setting
of tangent maps Bs

k(R
n) that emphasizes how the measure of the nodal set is strictly related

to the class of tangent maps that we are considering. More precisely, the classes B∗k(Rn) and
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Bs
k(R

n) \B∗k(Rn) strictly a�ect the local measure of the nodal set.
First, it is not restrictive to assume that ϕ ∈ Bs

k(R
2) for some k ∈ 1 + N. Hence, consider the

case n = 2 with the notation (x, z) ∈ R2. Since every ϕ ∈ B∗k(R
2) is harmonic in R2, it is

known that
H1 (Γ(ϕ) ∩B1) = 2k.

Instead, for ϕ ∈ Bs
k(R

2) \B∗k(R2), with k ≥ 2, the previous bound turn to be not optimal. More
precisely, given the constant k′ = #{t ∈ R : ϕ(t, 1) = 0} , we get

H1 (Γ(ϕ) ∩B1) = 2k′,

where, by the Fundamental Theorem of Algebra, it is obvious to see that 0 ≤ k′ ≤ k.

In general, we prove the following result which is based on an argument �rst introduced in
[66] in the context of solution of second order elliptic equation with analytic coe�cient.
More recently, in [6] the author constructs a similar estimate in a more general context connecting
the Hausdor� measure of the nodal set of smooth functions with their �nite vanishing order,
which can be also applied to our case. Unfortunately, the remarkable di�erence between the
case B∗k(R

n) and Bs
k(R

n) \B∗k(Rn) ( or similarly sB∗k(R
n+1) and sBa

k(R
n+1) \ sB∗k(Rn+1)

) implies the not optimality of the result of Bär in our setting.

Theorem 3.9.2. Given s ∈ (0, 1), let u be an s-harmonic function in B1 and 0 ∈ Γ(u). Then

Hn−1
(

Γ(u) ∩B 1
2

)
≤ C(n, s)N ,

where N = N(0, v, 1) is the frequency of the La-harmonic extension v in B+
1 de�ned by

N =

ˆ
B+

1

|y|a |∇v|2 dX
ˆ
∂B+

1

|y|a v2dσ
.

Proof. Let (BR(pi))i be a �nite cover of B1/2 with R < 1/8 and pi ∈ B1/2. Moreover, up to a
normalization, it is not restrictive to assume that

 
B1

u2dx = 1.

By Proposition 3.3.5 and Proposition 3.8.1, for every pi ∈ B1/2 we have
 
Br(pi)

u2dx ≥ 4−C(n,s)N
 
B2r(pi)

u2dx,
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with 0 < r < 1/4 and N = N(0, v, 1). Moreover, using the normalization hypothesi, we get
 
BR(pi)

u2dx ≥ 4−C(n,s)N .

Given p1, . . . , pj ∈ B1/2 the collection of points associated to the covering, let us consider
(xpi)i ∈ BR(pi) such that

|u(xpi)| ≥ 2−C(n,s)N , for any i = 1, . . . , j.

In order to apply Lemma 3.9.1, for i = 1, . . . , j consider the collection of analytic functions of
one complex variable de�ned as

fi(w, z) = u(xpi + 4Rzw), for w ∈ Sn−1, z ∈ BC
1

Then, by construction, we have

|fi(w, 0)| ≥ 2−C(n,s)N and |fi(w, z)| ≤ C,

for some positive dimensional constant C > 0. Since, by Lemma 3.9.1 we have

Ni(w) = #
{
x ∈ B2R(xpi) : u(x) = 0 for (x− xpj ) ‖ w

}
≤ #

{
z ∈ BC

1/2 : fi(w, z) = 0
}

≤ c(n, s,N)N ,

for every i = 1, · · · , j, by the integral geometric formula in [46, Theorem 3.2.27], we �nally
obtain

Hn−1 (Γ(u) ∩B1/2) ≤
j∑
i=1
Hn−1 (Γ(v) ∩BR(pi)) ≤ c(n, s,N)

j∑
i=1

ˆ
Sn−1

Ni(w)dw ≤ C(n, s,N)N

where in the second inequality we used BR(pi) ⊂ B2R(xpi) for every i = 1, . . . , j.

In the end, since our estimate on the Hausdor� measure is deeply based on the existence of
an La-harmonic extension of u and on the validity of an Almgren’s type monotonicity result, we
expect to improve Theorem ?? exploiting the connection between the Dirichlet energy associated
to the La-extension and the Gagliardo seminorm introduced in (143). This improvement would
show a purely nonlocal version of the result in [66].
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