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Since its early formulations, co-clustering has gained popularity and interest both within and outside the ma- 
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explainability properties. The simultaneous partitioning of all the modes of the input data tensors (rows and 
columns in a data matrix) is both a method for improving clustering on one mode while performing dimen- 
sionality reduction on the other mode(s), and a tool for providing an actionable interpretation of the clusters 
in the main mode as summaries of the features in each other mode(s). Hence, it is useful in many complex 
decision systems and data science applications. In this article, we survey the the co-clustering literature by 
reviewing the main co-clustering methods, with a special focus on the work done in the past 25 years. We 
identify, describe, and compare the main algorithmic categories and provide a practical characterization with 

respect to similar unsupervised techniques. Additionally, we try to explain why it is still a powerful tool de- 
spite the apparent recent decreasing interest shown by the machine learning community. To this purpose, we 
review the most recent trends in co-clustering research and outline the open problems and promising future 
research perspectives. 
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 Introduction 

inding homogeneous clusters of objects is an important task in data analysis, with applications
n a wide range of fields, such as text analysis [ 20 ], bioinformatics [ 105 ], e-commerce [ 38 ], astron-
my [ 64 ], and psychology [ 24 ]. Several clustering techniques and algorithms have been developed,
nd their applications have given effective results in many scenarios. However, when the data are
igh-dimensional and/or very sparse, the traditional methods struggle in finding meaningful clus-
ering solutions due to the well-known problem of the curse of dimensionality. Solutions to this
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roblem range from applying dimensionality reduction or matrix factorization approaches prior
o clustering [ 174 ], to searching clusters in subspaces [ 1 ]. Co-clustering, among others, has gained
opularity in the past 30 years: It consists in the simultaneous partitioning of the rows and columns
f a data matrix [ 53 ]. Due to its intrinsic capability of exploiting the latent relationships between
bjects and their own attributes, it enables the discovery of coherent clusters of similar rows and
heir interplay with corresponding attribute clusters. In a nutshell, it applies clustering in one mode
e.g., the rows) of a matrix while performing dimensionality reduction on the other mode (e.g., the
olumns) and vice versa. When applied to high-dimensional data, not only does co-clustering im-
rove the clustering performances, but it also increases the interpretability of the results, showing
hich attributes or groups of attributes are the most important for each cluster of objects. More

nterestingly, such interpretation is not obtained ex post , but drives directly the partitioning of the
atrix, thus making co-clustering among the few intrinsically explainable clustering methods for

igh-dimensional data. 
Although some early formulations were proposed in 1972 with the name of direct clustering [ 78 ]

nd in 1980 with the name of simultaneous clustering [ 23 ], it is in the mid-’90s that co-clustering
tarted to be studied and developed more intensively, also under different names such as: simul-
aneous clustering [ 70 ], biclustering [ 42 ], two-mode partitioning [ 143 ] or clustering [ 118 ], block
lustering [ 71 ], and double k-means [ 117 ]. The term “co-clustering” was first used by Dhillon et al.
n 2001 [ 53 ] and, since then, it has been almost universally adopted to cover all similar methods.
here exist many co-clustering techniques, tailored for different data types and application sce-
arios [ 74 , 116 , 137 ]. Among the others, co-clustering has proven its effectiveness when applied on
ene expression data—i.e., matrices reporting the level of expression of genes in different biological
onditions/samples—and contingency tables—i.e., matrices reporting the co-occurrences between
wo sets of categorical values, such as documents/words, customers/products or users/movies data
bjects. In particular, the latter are typically high-dimensional and extremely sparse and, thus, they
annot be handled by classical clustering methods. Furthermore, the columns of these matrices
epresent instances of the same categorical feature (words, products, or movies, in the examples
bove), thus grouping them in clusters makes sense and provides additional useful information.
ene expression data matrices, instead, although can be also viewed as a special case of contin-
ency tables, have different mathematical properties. They, in fact, are typically dense and, in most
ases, their entries are not related to co-occurrences (frequencies or counts), but consist of generic
eal (or sometimes integer) numbers. 

Many extensions of the traditional co-clustering problem have been studied: For example, there
re algorithms to perform co-clustering in a distributed-scenario [ 127 ], constrained, and semi-
upervised methods [ 107 , 134 , 139 , 153 ], and algorithms for co-clustering heterogeneous data [ 67 ,
8 ]. Tensor co-clustering can be also viewed as an extension of 2-way co-clustering. Just as rela-
ions between two sets of categorical values can be expressed in a contingency table, so relations
mong three or more sets can be represented via tensors (or n-way data). These contingency ten-
ors are usually even more complex to cluster than matrices, and tensor co-clustering (i.e., simul-
aneous partitioning of all the modes of a tensor) becomes a fundamental tool to give a compact
epresentation of the embedded clusters [ 80 , 130 ]. 

Despite the good properties shown by co-clustering, it seems that the research interest of the
cientific community for this topic is decreasing in the past five years, as shown in Figure 1 , where
e plot the number of papers mentioning “co-clustering” (or closely related terms, such as “coclus-

ering,” “co-cluster,” “simultaneous clustering,” or “two-mode clustering”) in the title, according
o the bibliographic database Scopus. However, if we consider the number of papers citing ar-
icles mentioning the same terms (see Figure 2 ), then the trend is still increasing, meaning that
o-clustering is till conveying significant scientific interest in the research communities. 
CM Comput. Surv., Vol. 57, No. 2, Article 48. Publication date: November 2024. 
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Fig. 1. Number of research articles published yearly and mentioning co-clustering-related keywords in their 

title (source: Scopus). In the left plot, the number of articles is presented for different types of venues (journal 

articles and conference proceeding papers). In the right plot, the number of articles is shown according to the 

subject area (computer science only, computer science with mathematics and engineering, non–computer 

science venues, and venues other than computer science, mathematics, and engineering). 

Fig. 2. Number of research articles published yearly and citing papers mentioning co-clustering-related key- 

words in their title (source: Scopus). In the left plot, the number of articles is presented for different types of 

venues (journal articles and conference proceeding papers). In the right plot, the number of articles is shown 

according to the subject area (computer science only, computer science with mathematics and engineering, 

non–computer science venues, and venues other than computer science, mathematics, and engineering). 
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In this article, we survey the scientific contributions in the field of co-clustering, with a special
mphasis on those following the work done by Dhillon et al. in 2001 [ 53 ]. We present the different
ategories of algorithms proposed so far from a theoretical and application point of view. Fur-
hermore, we analyze the main reasons for the apparent decline in the interest for proposing new
pproaches or extensions of existing ones. In doing so, we also point out scarcely addressed issues
nd promising research directions. Rather than briefly enumerating and describing the different
tate-of-the-art methods, we provide an in-depth presentation of the theoretical foundations of the
ifferent categories of approaches. We discuss the main methods for each of them, also surveying
heir extensions designed for multi-view and n-way data. So, the utility of our survey is twofold:
t can be used by the inexperienced researchers to learn when to use co-clustering for their data
cience applications and which class of methods is best suited for them; however, the expert read-
rs could find in our survey a guide for driving their future research work on the topic or to gain
ACM Comput. Surv., Vol. 57, No. 2, Article 48. Publication date: November 2024. 
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ore insights on some specific methods. In both cases, to the best of our knowledge, this is the
rst comprehensive review specifically dedicated to general co-clustering algorithms. 
Our article is organized as follows: In Section 2 , we briefly present some closely related surveys

n similar domains. We report the formal definition of co-clustering and what distinguishes it from
ther similar approaches in Section 3 . In Section 4 , we review the main categories of approaches
or matrix co-clustering. A theoretical comparison of the different categories of methods is dis-
ussed in Section 5 . Tensor and multi-view co-clustering methods are presented in Section 6 . In
ection 7 , we discuss the most recent research trends, the open problems, and some future research
irections. In Section 8 , we draw some conclusions. 

 Related Work 

lustering is almost as old as artificial intelligence and, consequently, its related algorithms have
een extensively studied in many reviews by the computer science community since the ’80s.
ost surveys focus on specific algorithmic aspects of data clustering or on clustering of particular

ata types. One of the first books addressing many general aspects of clustering algorithms is
he one by Jain and Dubes [ 91 ]. Ten years later, Jain published an extensive review on clustering
 92 ], while the most recent relevant example of general review on clustering algorithms and their
pplications is Reference [ 173 ]. As said before, other more recent reviews address more specific
opics, such as fuzzy clustering [ 16 , 17 ], clustering of time series [ 5 , 111 ] or data streams [ 51 ],
lustering for high-dimensional data [ 100 , 151 ], or special algorithmic solutions [ 63 , 83 ]. Among
he last published surveys, Reference [ 12 ] focuses on interactive clustering techniques, Reference
 10 ] addresses spatiotemporal data clustering, References [ 49 , 89 , 188 ] survey parallel and efficient
lustering solutions for data streams and big data in general, and Reference [ 31 ] focuses on semi-
upervised clustering. 

Despite this great interest for clustering, very few papers are specifically devoted to surveying
o-clustering approaches. The first notable example is the 2004 survey on biclustering by Madeira
nd Oliveira [ 116 ], where the authors focus on co-clustering and biclustering solutions for gene
xpression data (and biological data in general). However, as we will point out in Section 3 , biclus-
ering has completely different goals (and methods) as compared to co-clustering. Nonetheless, the
eview also considers and describes some of the earlier co-clustering approaches. More recently,
adeira has contributed to the field with other surveys addressing the problem of the search of

oherent triclusters (extension of biclusters in higher-order data) [ 80 ] and the impact of metrics in
dentifying biclusters [ 124 ]. Co-clustering is not the focus of these reviews, but a few approaches
re mentioned as well. 

A recent survey paper more specifically tailored on co-clustering algorithms is the one by Lin
t al. [ 112 ], which, however, only focuses on approaches based on matrix factorization. In their
aper, the authors present six co-clustering algorithms and conduct experiments by applying them
n some real-world datasets. The goal of this overview is to present the strengths and limitations
f existing approaches based mainly on non-negative matrix factorization. Another more recent
urvey is fully dedicated to a detailed and in-depth analysis of the latent block model for co-
lustering [ 22 ]. Our survey, instead, also considers other categories of approaches. 

Another important work specifically addressing co-clustering methods is the 2013 book au-
hored by Govaert and Nadif [ 74 ]. It presents the theoretical and algorithmic details of many
ifferent approaches, focusing on model-based algorithms in particular. Other approaches, includ-
ng information theoretic methods, are also considered, but, for instance, algorithms based on

atrix-factorization are not extensively analyzed. Nonetheless, the book also presents some ex-
erimental results showing the comparative performances of different approaches. Since the book

s not recent, it does not include relevant recent work on co-clustering or significant extensions to
CM Comput. Surv., Vol. 57, No. 2, Article 48. Publication date: November 2024. 
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igher-order data. It must be said that it is not a survey but a textbook presenting some popular
nd less popular algorithms on co-clustering. As such, it also includes an introductory chapter on
tandard clustering. 

When the broader problem of clustering high-dimensional data is considered, subspace cluster-
ng is a method that shares some similar characteristics with co-clustering, as we will point out in
ection 3 . However, the most valuable surveys that explore this specific research field [ 100 , 126 ,
31 , 151 ] only sporadically mention co-clustering algorithms as examples of related methods. It
s worth considering that subspace clustering has more similarities with biclustering than co-
lustering, as clearly specified in Reference [ 124 ]. Differently from all the works mentioned above,
e specifically focus on co-clustering. Nonetheless, we stress the differences between it and sub-

pace clustering to help the reader dispel any doubts about this matter. 

 Problem Formulation 

n this section, we formally define the problem of co-clustering. However, before entering the
etails of the definitions, we introduce the notation needed to unify the formal presentation of the
ain categories of co-clustering approaches. Since a matrix is a special case of tensors with only

wo modes (the rows and the columns), our notation will refer to the problem of co-clustering for
 generic n-way tensor. 

.1 Notation 

ata tensors are denoted by Euler script letters, e.g., X or T . The generic entry of a tensor X is
enoted by x i 1 . . . i N 

, where N is the number of modes of tensor X and, for j = 1 , . . . , n, i j is the ith
lement on the jth mode. Thus, denoted by I j the dimension of the tensor on the jth mode, the
ensor can also be written as 

X = (x i 1 . . . i N 

) i j = 1 , . . . , I j 
j = 1 , . . . , N 

. 

Notice that a data matrix can be considered as a two-way tensor. As a consequence, the notation
sed for matrices is the same used for tensors. For instance, let X be a matrix of dimension (n, m);

ts (i, j)th element is denoted by x i j , where i = 1 , . . . , n, j = 1 , . . . , m and the matrix will be also
enoted as 

X = (x i j ) i = 1 , . . . , n 
j = 1 , . . . , m 

. 

dditional matrices used by the co-clustering algorithms for their computation (other than the
nput matrix) are denoted by capital letters, e.g., W and D. 

Given a set I with n elements, the set of all the possible partitions of the n elements is denoted
y P n . A partition (or clustering ) is denoted by a calligraphic uppercase letter, e.g., P, R. Since
 partition P ∈ P n is a collection of a certain number k of sets (or clusters ), we will also write
 = (P 1 , . . . , P k ). To indicate that the ith element of I belongs to the h th cluster of P, we will
rite that i ∈ P h or that P(i) = h . Thus, with abuse of notation, we will use the same symbol P to
enote both the partition and the function I −→ P that assigns each element of I to the cluster
o which the element belongs. 

.2 Definition of Co-clustering 

efore giving a rigorous definition of co-clustering, it is necessary to make a brief digression re-
arding the terms used to identify this problem. The problem of simultaneously clustering rows
nd columns is usually called by different names by different authors: co-clustering , biclustering ,
imultaneous clustering , or subspace clustering . Sometimes all or part of these names are used to
ACM Comput. Surv., Vol. 57, No. 2, Article 48. Publication date: November 2024. 
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ndicate the same problem, while other authors use different names to indicate slightly different
roblems. Although there is no agreement between the authors, in this manuscript, we will make
he following distinction: 

—Co-clustering is the simultaneous clustering of the rows and the columns of a data matrix.
The idea behind co-clustering is to exploit the duality between objects and features to
identify better partitions on both the dimensions of the matrix. It is especially effective
when applied to high-dimensional and sparse contingency tables (or co-occurrences tables)
to solve problems such as document clustering or customer segmentation. 

—Biclustering consists in the identification of one (or more) subset of entries in the data
matrix that exhibits a coherent behavior. It is principally used in bioinformatics, on gene
expression data, especially for discovering functionally related gene sets under different
subsets of experimental conditions. The output of this kind of algorithm is a subset of the
rows of the data matrix (for instance, genes) and a subset of columns (conditions) according
to which the selected rows show a similar behavior (and/or vice versa). For a review of the
main biclustering approaches, see References [ 116 , 136 , 170 ]. 

—Subspace Clustering is based on the idea that the rows of the data matrix belong to differ-
ent subspaces, and the task is to identify these subspaces and to cluster the rows according
to the subspace they belong to. The output of such algorithms is a partition of the rows
and a basis of the subspaces the clusters belong to. The main methods and concepts for
subspace clustering are reviewed in References [ 1 , 101 , 131 , 160 ]. 

The three problems just defined are highly related and sometimes their definitions coincide. For
xample, in the co-clustering problem, usually the partitions on rows and columns are asked to
e exhaustive and exclusive (i.e., each row/column belongs to one and only one cluster); however,
f we relax these conditions and we look for non-exhaustive clustering solutions on rows and
olumns, then the formulation of co-clustering is similar to the one of biclustering. However, also
iclustering and subspace clustering are often used as synonyms. The distinction between the two
s mainly in the problem formulation: Subspace clustering focus is on the space from which the
ata are extracted, and the goal is to give a geometrical/algebraic description of the space as union
f subspaces. Instead, biclustering methods are thought and used to identify submatrices inside
he data matrix with constant or coherent values. 

In this manuscript, we will focus only on the first problem, co-clustering, in its stronger defini-
ion: simultaneous hard clustering of both the dimensions of a data matrix. 1 For a formal definition,
et us denote with P n the space of all the possible partitions of n elements. A partition P ∈ P n is
 collection of k sets P 1 , . . . , P k (also called clusters) such that 

∪ 

k 
i= 1 P i = I n ; (1)

P i ∩ P j = ∅, for i, j = 1 , . . . , k, i � j (2)

P i � ∅, for each i = 1 , . . . , k, (3)

here I n is a generic set with n elements. A co-clustering of a matrix A with n rows and m columns
s a pair of partitions (R, C ), where R ∈ P n and C ∈ P m 

. 
Although the requirement of exhaustive and exclusive clusters (conditions ( 1 ) and ( 2 )) might

eem too strict and not easy to apply in real-word scenarios, there are many applications in which
t can be used with effective results, as we will show in the next section. We now present a
 For the sake of simplicity, we introduce the co-clustering problem on matrices first. Tensor co-clustering will be addressed 

n Section 6 . 

CM Comput. Surv., Vol. 57, No. 2, Article 48. Publication date: November 2024. 
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otivational example to explain the rationale behind the definition of co-clustering and why it
an be a useful tool for high-dimensional data analysis. 

Example 3.1. The purchase habits of the customers of a shop can be expressed by a co-occurrence
atrix A, whose rows represent the customers and whose columns are the products sold in the

hop. Each entry a uv is the number of items of a particular product v bought by a specific customer
. Imagine that two customers, i and j, have the following purchase vectors: 

a i = ( 1 1 0 1 1 0 0 0 0 0 )
a j = ( 0 1 1 0 0 1 1 0 0 0 ). 

The two vectors are not similar at all: There is only one product bought by both customers, i.e.,
he second one. Now, let us suppose that the first seven columns of the matrix represent different
ooks, while the last three columns represent two video-games. If we group together all the books
nd all the video-games and we represent the purchases of i and j in this new less granular feature
pace, then we obtain 

a i = ( 4 0 )
a j = ( 4 0 ). 

ence, in this new representation, it is clear that the two customers have very similar purchase
abits (they both buy many books and no video-games) and they should be assigned to the same
roup when performing clustering. This fact was impossible to understand without having an
xternal knowledge about the meaning of the features (or columns of the matrix). 

The example above is intended to show that knowing a high-quality partition on one mode of a
ata matrix helps improve the quality of the partition also on the other dimension. Thus, looking
or both row and column partitions simultaneously should lead to higher-quality partitions on
oth the dimensions. 
From Example 3.1 also emerges another important property of co-clustering, i.e., its intrinsic ex-

lainability. The advantage of co-clustering in this sense is twofold: (i) It provides a representation
f the data in a low-dimensional space, and (ii) the particular dimensionality reduction operated
y co-clustering (where all similar features are grouped together) is usually easy to interpret. In
act: 

—The dimensionality reduction makes the clustering results easier to read. For instance, sup-
pose to have a set of points in a 100-dimensional space and to run k-means clustering to
partition them in few clusters. Since the centroids identified by the k-means are points in a
100-dimensional space, they cannot be plotted and it is difficult to understand their mean-
ing. On the contrary, if they are represented in a l-dimensional space, with l small enough,
then they can be plotted (if l = 2 or 3) or at least analyzed more easily. 

—The partition on the rows can be used to explain the partition on the columns and vice
versa. For instance, following Example 3.1 , the presence of two customers in the same
cluster can be explained observing that they buy with approximately the same frequency
products belonging to the same groups. Conversely, two products are grouped together
when bought by the same “kind” of customers. In other words, co-clustering gives as output
a clustering of the objects and an explanation of the obtained clusters in the form of a
clustering of the features. At the end of a co-clustering algorithm, the large data matrix
can be summarized by a reduced number of blocks of data: Such a representation can be
obtained by rearranging the rows and columns according to their clustering assignment
(see, as an example, Figure 1 in the Supplemental Material). This compact representation
ACM Comput. Surv., Vol. 57, No. 2, Article 48. Publication date: November 2024. 



48:8 E. Battaglia et al. 

 

3

C  

[  

[  

a  

o  

[
 

c  

t  

t  

b  

9  

[  

c  

i  

d  

a  

p  

f
 

s  

a  

a  

t  

m  

d
 

e  

m  

a  

r  

c  

a  

c  

o

4

T  

g  

p  

p  

a  

r  

o  

A

permits to understand, at a glance, the relationships between row clusters and column
clusters and facilitates any further analysis. 

.3 Different Data Types and Applications 

o-clustering has successfully proven its efficacy in different applications, such as text mining
 41 , 53 , 54 ], web mining [ 37 , 110 ], recommendation systems [ 60 , 68 ], gene expression analysis
 42 , 44 ], graph mining [ 35 ], image segmentation [ 96 , 137 ]. It can represent a task itself or be used
s a preliminary step to solve other tasks such as anomaly detection [ 128 , 177 ], classification of out-
f-domain documents [ 50 ], transfer learning [ 165 , 181 ], object detection, and scene categorization
 32 , 96 ]. 

The input of a co-clustering algorithm is a data matrix or tensor; in principle, any kind of data
ollection that can be represented as n-way tensor can be analyzed using a co-clustering algorithm:
extual data arranged in document/term matrices, (temporal) gene expression data, adjacency ma-
rices of graphs, geo-referenced time series, images, and so on. However, different algorithms have
een tailored for different data types. There exist co-clustering algorithms for ordinal data [ 46 ,
0 ], temporal and directional data [ 146 , 187 ], and even functional data [ 152 ] and mixed type data
 149 ]. Anyway, the vast majority of the co-clustering methods in literature are thought to handle
ontinuous data or binary/categorical data arranged in co-occurrence data tables. The first group
ncludes, among others, gene expression data and images. As pointed out before, for this kind of
ata the conditions of co-clustering (i.e., exhaustive and exclusive partitions on both dimensions)
re often too strict and biclustering or triclustering algorithms allowing the discovery of overlap-
ing and non-exhaustive clusters are preferred [ 80 , 116 ]. However, some co-clustering algorithms
or continuous data do exist [ 44 , 78 , 97 , 117 , 119 ]. 

Most co-clustering algorithms are explicitly designed to work on binary and discrete tensors
uch as contingency tables (also called co-occurrences tables). Some examples are document/term
nd customer/product matrices or user/movie/tag tensors. Although these algorithms are usually
pplied to contingency tables, the only condition required is the input to be positive real-valued,
hus, in theory, they can also work on other types of data (such as images or gene expression
atrices). However, this class of co-clustering algorithms expresses its full potential on sparse

ata matrices or tensors and hence its usage is not recommended on that kind of data. 
It is important to notice that not all matrix methods can be adapted to work on tensors. In fact,

ven though the general problem of co-clustering can be naturally formulated on tensors, every
ethod has its own specificity, such as the optimization function and/or partition update strategy,

nd they cannot be straightforwardly extended to their hypothetical n-way formulation. Another
eason limiting the direct reformulation of matrix methods to work on tensors is that they would be
omputationally too expensive when applied on n-ary ( n > 2 ) data. Consequently, in this article, we
ddress the two problems separately, and we start by presenting, in the following section, the main
o-clustering approaches for (sparse) positive valued data matrices, whose primary application is
n contingency tables, as explained above. 

 Co-clustering Approaches 

he main methods for contingency matrix co-clustering can be roughly divided into four
roups: spectral methods [ 53 , 97 ], which transform the co-clustering problem into a partitioning
roblem on a bipartite graph; matrix factorization–based methods, such as Block Value Decom-
osition [ 115 ] and Non-Negative Matrix Tri-Factorization [ 56 ]; model-based or probabilistic
pproaches [ 7 , 73 ], which assume the data to be generated by a probabilistic model and try to
ecover the underlying model parameters; methods that formulate the co-clustering problem as an
ptimization problem for some measure of the quality of the co-clustering solution [ 6 , 14 , 54 , 141 ].
CM Comput. Surv., Vol. 57, No. 2, Article 48. Publication date: November 2024. 
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inally, a few methods relying on different paradigms, such as a deep learning model for co-
lustering [ 171 ], have been recently proposed. 

.1 Spectral Co-clustering 

pectral Co-clustering [ 53 ] was proposed by Dhillon in 2001 as a method to simultaneously cluster
ocuments and terms, but it can be used to co-cluster any contingency table. It is an extension of
he normalized cut spectral clustering [ 161 ], a class of algorithms that compute the eigenvalues of
he adjacency matrix of the data similarity graph to perform clustering on fewer dimensions. 

A good partition of a graph is one where the edges within each group have high weight, while
he edges between different groups have low weights. Hence, a method to partition a graph is to
nd the node partition P = (P 1 , . . . , P k ) that minimizes the Normalized cut function, defined as 

N c u t(P) = 
k ∑

c= 1 

W (P c , P̄ c )
w e iдht(P c )

, 

here W (P c , P̄ c ) is the sum of the weights of all the edges between a node belonging to P c and
 node outside P c , and w e iдht(P c ) is the sum of the weights of all the edges having at least one
ode inside P c . It turns out that solving the minimum normalized cut problem is equivalent to
nding the cluster assignment matrix H = (h ic ), where h ic = 

1 √ 

w e iд ht (P c )
if the ith node belongs

o cluster P c and h ic = 0 otherwise, which minimizes 

min 

H 

tr (H 

T LH ) subject to H 

T DH = I , (4)

here L is the Laplacian matrix of the graph. Denoting with D the degree matrix of the graph and
ith W the weights’ matrix, the Laplacian of a graph is defined as 

L = D −W . (5)

inally, it can be proved that, if the conditions about H are relaxed and H can be any real valued
atrix, then the solution of Equation ( 4 ) is the matrix U composed by the first k eigenvectors

orresponding to the k smallest eigenvalues λ of the generalized eigenvalue problem 

Lu = λDu . (6)

ecause of the relaxation of the problem, the resulting matrix U is not a cluster incidence matrix
nymore. Thus, the cluster assignment is obtained by applying the k-means clustering algorithm
ver matrix U . 

All the reasoning above can be used to co-cluster a contingency table as follows: Let A be a
ontingency table with n rows (representing, for instance, documents) and m columns (for instance,
ords). It is possible to represent the same data as a bipartite graph, where rows and columns

orrespond to nodes and an edge between a row i and a column j exists if a i j > 0 . The weight
f the edge between row i and column j is a i j . Then, a clustering of this graph can be obtained
ith the procedure just described, i.e., the problem is reduced to solving the generalized eigenvalue
roblem Lu = λDu. From the graph partition it is possible to obtain a co-clustering, but this method
equires the construction of a Laplacian matrix of shape (n +m) × (n +m). Instead, it is possible to
xploit the bipartite structure of the graph and obtain an algorithm that works directly on matrix

. In fact, letting D R 

and W R 

be, respectively, the degree matrix and the weights matrix relative
o the rows only and D C 

and W C 

those relative to the columns only, the Laplacian of the bipartite
raph can be written as 

L = D −W = 

[
D R 

0 
0 D C 

]
−

[
0 A 

A 

T 0 

]
= 

[
D R 

−A 

−A 

T D C 

]

ACM Comput. Surv., Vol. 57, No. 2, Article 48. Publication date: November 2024. 
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A

nd the generalized eigenvalue problem ( 6 ) can be re-written as [
D R 

−A 

−A 

T D C 

] [
u R 

u C 

]
= λ

[
D R 

0 
0 D C 

] [
u R 

u C 

]
. 

nder the nonsingularity assumption of D R 

and D C 

, the above equations can be rewritten as 

D 

1 
2 

R 

u R 

− D 

− 1 
2 

R 

Au C 

= λD 

1 
2 

R 

u R 

−D 

− 1 
2 

C 

A 

T u R 

+ D 

1 
2 

C 

u C 

= λD 

1 
2 

C 

u C 

, 

nd with few additional algebraic manipulations, it can be shown that solving the problem above
s equivalent to solve {

Bu = σv 

B 

T v = σu 

, (7)

here B = D 

− 1 
2 

R 

AD 

− 1 
2 

C 

, u = D 

1 
2 

R 

u R 

, v = D 

1 
2 

C 

u C 

, and σ = 1 − λ. Equations ( 7 ) are precisely the equa-
ions that describe the Singular Value Decomposition of matrix B. Thus, a spectral co-clustering
f matrix A can be obtained as follows: 

(1) Compute matrix B = D 

− 1 
2 

R 

AD 

− 1 
2 

C 

; 

(2) Compute the singular value decomposition B = U ΣV 

T ; 

(3) Create matrix Z = 

[ 
D 

1 
2 
R 

U 

D 

1 
2 

C 
V 

] 
; 

(4) Apply k-means on Z to obtain k clusters. 

The final output of the algorithm is a set of k clusters, and each one of them contains both
ows and columns. By selecting only the nodes relative to rows (respectively, columns) in each
luster, we obtain the row (respectively, column) clustering. Obviously, the partitions on the two
imensions have the same number of clusters and it is not possible to specify different numbers of
lusters in the two dimensions. Even if interested in the clustering results in a single dimension, the
lustering of both rows and columns in a unique partition can be useful to interpret the clustering
esults: For instance, applying the spectral co-clustering algorithm to a document/term matrix,
he resulting clusters contain sets of similar documents and the words characterizing each set of
ocuments, making easier to extract the main concepts/topics associated to each document cluster.
In some application scenarios, such as co-clustering of gene expression data, the requirement

f specifying the same number of clusters on both the dimensions of the data matrix (genes and
onditions) is considered too strict and impractical. For this reason, Kluger et al. [ 97 ] propose
 slightly different spectral co-clustering algorithm, tailored for this kind of data. It consists in
hree consecutive steps: First, the matrix A is normalized to make the checkerboard pattern more
bvious; then, the first few singular vectors are computed, just as in Reference [ 53 ]; finally, the
igenvectors are post-processed to find the two partitions. 

The idea of using a spectral relaxation of the discrete optimization problem of co-clustering led
o the definition of other spectral co-clustering methods [ 102 , 114 , 138 ], although none of these
ethods have achieved the same popularity of the two reviewed above. 

.2 Nonnegative Matrix Factorization–based Co-clustering 

he relation between Nonnegative Matrix Factorization (NMF) and one-side clustering has
een extensively studied (some reviews of the topic do exist; see for instance Reference [ 168 ]).
MF factorizes an input nonnegative matrix into two nonnegative matrices of lower rank. Thus,
CM Comput. Surv., Vol. 57, No. 2, Article 48. Publication date: November 2024. 
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iven a matrix A ∈ R 

n×m 

+ , the task is to find two matrices W ∈ R 

n×k 
+ and H ∈ R 

m×k 
+ such that 

A ≈W H 

T . (8)

he product of the two low rank matrices is not required to exactly equal the input matrix A,
ut it should approximate it as closely as possible. Thus, a cost function is necessary to quantify
he quality of the approximation; the solutions W and H are found by solving a minimization
roblem of such a function. The most common cost function is the sum of squared errors (SSE)

| | A −W H 

T | | 2 , but other functions such as the I -divergence have been used as well. 
NMF provides a general framework for one-side clustering: The columns of H can be considered

s k centroids corresponding to k clusters, and each row of matrix A can be assigned to the closest
entroid. However, it has been noticed that the basic NMF provides almost casual clustering [ 30 ];
ence, the NMF-based clustering methods usually impose additional orthogonality constraints
o W or H to obtain more realistic and interpretable clusters. It can be proved that NMF, with
pportune cost objective functions and some orthogonality conditions on the factors W and H , is
quivalent to well-known clustering problems [ 55 ]: For instance, when the cost function is the SSE,
-orthogonal NMF is equivalent to k-means clustering, orthogonal symmetric NMF is equivalent

o Kernel k-means when applied directly to the data matrix, while it is equivalent to spectral
lustering when applied to the adjacency matrix of a graph. NMF with I -divergence objective
unction, instead, is equivalent to Probabilistic Latent Semantic Analysis. 

As explained above, NMF is used to cluster the rows of a nonnegative matrix A and the columns
f H are interpreted as the cluster centroids. However, if one is interested in column clustering in-
tead of row clustering, then the result can be obtained by solving the same problem ( 8 ), possibly by
hanging the matrix on which the orthogonality constraints are imposed. At the end, it is sufficient
o interpret the columns of matrix W as column clusters’ centroids. Given its intrinsic propensity
o clustering both rows and columns, and given the excellent results obtained in one-side cluster-
ng, the attempt to extend the use of NMF to co-clustering came naturally. Simultaneous clustering
f both rows and columns of matrix A could be done by requiring both H and W to be orthogonal.
owever, this double constraint is considered too restrictive, resulting in poor low-rank approx-

mation of the data matrix [ 30 ]. Instead, it is possible to formulate the co-clustering problem in
erms of Nonnegative Matrix Tri-Factorization (NMTF) , also known as Nonnegative Block

alue Decomposition (NBVD) . These two equivalent co-clustering approaches were indepen-
ently presented by Ding et al. [ 56 ] and Long et al. [ 115 ] and consist in the factorization of a data
atrix A ∈ R 

n×n 
+ in three factors W ∈ R 

n×k 
+ , B ∈ R 

k×l 
+ , and H ∈ R 

m×l 
+ , i.e., 

A ≈W BH 

T . (9)

hile Reference [ 115 ] only asks the factors to be nonnegative and considers the rows of W and
as cluster indicator vectors for rows and columns, respectively (it means that the ith row is

ssigned to the cluster corresponding to the maximum value of W i , i.e., R(i) = argmax j W i j , where
is the row partition), Reference [ 56 ] also imposes orthogonality constraints on W and H : The

ptimization problem becomes 

min 

W ≥0 ,B≥0 ,H ≥0 
| | A −W BH 

T | | 2 , subject to W 

T W = I , H 

T H = I . (10)

he columns of W and H can be interpreted as the centroids of the columns and row clusters, and
ach row (and column) can be assigned to the closest centroid. 

In past years, many other variants of NMTF-based co-clustering have been developed: Reference
 178 ] proposes an orthogonal nonnengative matrix tri-factorization algorithm with multiplicative
pdates; in Reference [ 162 ], the factor matrices are constrained to be cluster indicator matrices;
ther methods impose sparsity constraints on the factor matrices [ 155 ] or introduce some form of
ACM Comput. Surv., Vol. 57, No. 2, Article 48. Publication date: November 2024. 
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egularization to reduce the sensitivity of the model to the noise [ 52 ]; others focus on the efficiency
f the algorithm and propose scalable and/or parallel implementations of NMTF [ 41 , 45 ]. For other
MTF-based co-clustering methods, the reader is referred to Reference [ 112 ]. 
A further extension of NMTF-based methods that considers geometric aspects of the data is

orth mentioning. As noted by Reference [ 76 ], the high-dimensional space most real data are rep-
esented in could be considered as an embedding of a nonlinear low-dimensional manifold. Hence,
oth rows and columns of a matrix can be considered as discrete samplings from some manifolds.
 way to address this problem is by considering the geometric structure of the manifolds requir-

ng that row and column cluster labels are smooth w.r.t. their respective manifolds. To address this
roblem, Gu extends orthogonal non-negative matrix tri-factorization by introducing graph regu-

arization for both row and column k-nearest neighbors graphs [ 76 ]. Regularization is introduced
y adding two regularization terms to Equation ( 9 ), computed according to the graph Laplacians
f the row and column k-NN graph. The optimization problem then becomes: 

min 

W ≥0 ,H ≥0 
| | A −W BH 

T | | 2 + λtr (H 

T L H 

H ) + μtr (W 

T L W 

W ), (11)

here L H 

and L W 

are the graph Laplacians of the row k-NN graph and of the column k-NN graph,
espectively. Notice that the objective function does not impose any constraint on the positivity
f B. Consequently, the algorithm can be applied to general data. Furthermore, the method does
ot require the orthogonality constraints on W and H . 
Other approaches have been defined to deal with manifolds and the geometric structure of the

ata in general. For instance, the authors of Reference [ 106 ] approximate the problem using a con-
ex combination of some candidate manifolds, thus improving the co-clustering performance via
anifold ensemble learning. In Reference [ 9 ], the authors further elaborate on this idea and pro-

ose a multi-manifold matrix tri-factorization algorithm for co-clustering that exploits the geomet-
ic structures of the row and column manifolds simultaneously and combines various manifold-
ased dimensionality reduction methods, such as multi-dimensional scaling (MDS) , isometric

eature mapping (ISOMAP) , and stochastic neighbor embedding (SNE) . Finally, in Reference
 157 ], the authors extend Gu’s work by introducing the orthogonality constraints on the factor
atrices, thus improving the efficiency of the co-clustering algorithm. 

.3 Model-based Co-clustering 

any data analysis methods rely on probabilistic models, i.e., they assume a suitable model for
he data generation process and estimate model parameter values from the data. In the context
f data clustering, it is assumed that the data arise from a mixture of k underlying probability
istributions, where each component of the mixture represents a cluster. Hence, the rows of the
ata matrix are assumed to be i.i.d. and generated from a probability distribution with density 

f (x ; θ ) = 
k ∑

c= 1 

πc f c (x ; αc ), (12)

here f c is the density of the cth component and it depends on a set of parameters αc ; generally, the
ensities f 1 , . . . , f k belong to the same parametric family. πc is the probability that an observation
elongs to the cth component and it is assumed to be known. Thus, the distribution f depends on a
et of parameters θ = (π1 , . . . , πk , α1 , . . . , αk ), and the goal of a model-based clustering algorithm
s to infer the value of these parameters from the data. This is usually done by maximizing the
ikelihood of θ via the EM algorithm. 

As for the spectral and matrix factorization–based clustering, also the model-based clustering
pproach has been extended to provide a simultaneous partitioning of rows and columns of a
CM Comput. Surv., Vol. 57, No. 2, Article 48. Publication date: November 2024. 
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atrix. In this case, it is assumed that the data matrix is generated by a probabilistic model in the
lass of the so-called Latent Block Models (LBM) . 

In the Latent Block Model [ 71 ], each row of a matrix A is assumed to be a sample from a
ixture of k probability distributions and, analogously, each column is a sample from a mixture of
probability distributions. Let us denote with f the distribution of the rows and д the distribution
f the columns, both defined as in Equation ( 12 ). Each entry a i j of matrix A can be interpreted
s a sample from the joint distribution of rows and columns. Under the hypothesis of conditional
ndependence between rows and columns, the entries of A are i.i.d. and generated from probability
ith density 

h (a i j ; θ ) = h ((x i , y j ); θ ) = f (x i ; γ )д(y j ; λ)

= 

( 
k ∑

r= 1 

πr f r (x i ; αr )
) ( 

l ∑
c= 1 

πc f c (y j ; αc )
) 

= 
∑
(r,c)

πr πc f r (x i ; αr )f c (y j ; αc ), (13)

epending on a parameter θ = ((πr )k r= 1 , (πc )l c= 1 , (αr )k r= 1 , (αc )l c= 1 ), where x i and y j are, respectively,
he ith row and the jth column of A. In Reference [ 71 ], the authors solve the problem using the clas-
ification likelihood approaches aimed at maximizing the following classification log-likelihood
ssociated to the block mixture model: 

L(A, X , Y ; θ ) = log h (A, X , Y ; θ )

= 
∑

r 

∑
i 

u ir log πr +
∑

c 

∑
j 

v jc log πc 

+
∑

r 

∑
i 

u ir log f r (x i ; αr ) +
∑

c 

∑
j 

v jc log f c (y j ; αc ), (14)

here u ir and v jc are the entries of the cluster incidence matrices for rows and columns, respec-
ively, i.e., u ir = 1 iff row i is assigned to cluster r (0 otherwise), and v jc is defined accordingly. 

Several model-based co-clustering algorithms have been proposed, differing in the family of dis-
ributions considered for the Latent Block Model; the choice of the distribution, in turn, depends
n the type of the data matrix. Typical choices are the Bernoulli distribution for binary data ma-
rices [ 71 , 103 ], Gaussian distribution for continuous data [ 119 ], Poisson, [ 73 ] and Multinomial
 47 , 95 ] for contingency tables, but also other distributions, such as the BOS distribution [ 90 ] and
he von Mises-Fisher distribution [ 147 ]. The Latent Block model has also been extended to handle
ixed type datasets, obtaining the so-called Multiple Latent Block Model (MLBM) [ 149 ], in
hich each component of the mixture model has a different probability distribution. 
The model-based co-clustering algorithms also differ for the algorithm chosen for the parameter

stimation, usually EM-like procedures to find an approximate solution of the maximum likelihood
nference problem: The three most used approximation schemes are Variational EM [ 74 ], Classifi-
ation EM [ 74 ], Stochastic EM with Gibbs sampler [ 95 ], and Stochastic Variational EM [ 140 ]. 

.4 Information Theoretic Co-clustering and Similar Approaches 

n this section, we present a class of co-clustering algorithms based on the iterative optimization of
ome quality measure for the co-clustering solution. Informally, the idea behind all these methods
s that a co-clustering (R, C ) over a data matrix A is good if the column partition C is useful to
xplain or describe the row partition R and vice versa. The functions used to quantify the strength
ACM Comput. Surv., Vol. 57, No. 2, Article 48. Publication date: November 2024. 
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f the relation between the row and column partitions are usually borrowed from the field of
nformation Theory. 

Suppose there are two categorical variables, X with k possible values and Y with l possible val-
es. Let p X 

and p Y be the probability distributions of X and Y , respectively, and p X Y their joint
robability. There are several ways to measure the association between X and Y , i.e., the depen-
ence between the two variables. Early approaches, such as the one of Hartigan [ 78 ] and Govaert
 70 ], adopts the least-squared criterion, similar to the k-means objective in one-mode clustering.
ock, instead, adopts a variance-based criterion [ 23 ], similar to the one used by Cheng and Church

or their biclustering algorithm [ 42 ]. More recent approaches use information-theoretic functions,
uch as the mutual information between X and Y [ 48 ] that quantifies the amount of information
btained about one random variable by observing the other, and it is defined as 

I (X , Y ) = 
k ∑

i= 1 

l ∑
j= 1 

p X Y (i, j) log 

(
p X Y (i, j)
p X 

(i)p Y (j)

)
. (15)

Another well-known measure is the Φ2 Pearson’s coefficient of mean squared contingency [ 132 ]:

Φ2 (X , Y ) = 
k ∑

i= 1 

l ∑
j= 1 

(p X Y (i, j) − p X 

(i)p Y (j))2 

p X 

(i)p Y (j)
. (16)

oth these association measures are symmetric, i.e., I (X , Y ) = I (Y , X ) and Φ2 (X , Y ) = Φ2 (Y , X ).
nstead, Goodman and Kruskal’s τ [ 69 ] is an asymmetric measure that quantifies the association
f X to Y measuring the proportional reduction of the error in predicting X when Y is known. It
s defined as 

τX |Y (X , Y ) = 
∑k 

i= 1 

∑l 
j= 1 

p X Y (i, j)2 
p Y (j) −

∑k 
i= 1 p X 

(i)2 

1 −
∑k 

i= 1 p X 

(i)2 
. (17)

nalogously, the association of Y to X is the proportional reduction of the error in predicting Y 

hen X is known and is defined as 

τY |X 

(X , Y ) = 
∑k 

i= 1 

∑l 
j= 1 

p X Y (i, j)2 
p X 

(i) −
∑l 

j= 1 p Y (j)2 

1 −
∑l 

j= 1 p Y (j)2 
. (18)

All these measures (and possibly others) can be used to evaluate the quality of a co-clustering
olution over a contingency table A ∈ R 

n×m 

+ . Since the input matrix A is a co-occurrence table
etween a set of n categorical values (one per row) and m other categorical values (one per col-
mn), we can interpret our data as a sample S of 

∑
i j a i j objects from a population; the objects are

escribed by two different categorical attributes, the first with n classes and the second with m
lasses. Hence, if we denote by X the random variable reporting the value of the first attribute for
 randomly extracted object and Y the random variable reporting the value of the second attribute,
able A is the contingency table of the two categorical random variables X and Y over the sample
. Giving a co-clustering of matrix A means finding a partition of the values of X and another
artition of the values of Y . Let R and C be these partitions. They correspond to a new pair of
andom variables, R and C , where R returns the cluster in partition R of a randomly picked object
nd C returns the cluster of an object according to partition C . The contingency table of R and C
n the same sample S is T = T (A, R, C ), whose generic entry is 

t rc = 
∑

i |R(i )= r 

∑
j |C(j )= c 

a i j (19)
CM Comput. Surv., Vol. 57, No. 2, Article 48. Publication date: November 2024. 
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nd the probability associated to R, C and (R, C) are, respectively, p R 

(r ) = 
∑|C| 

c= 1 t r c 

T 
, p C 

(c) = 
∑|R | 

r= 1 t r c 

T 

nd p RC 

(r , c) = t r c 

T 
, where T = 

∑k 
r= 1 

∑l 
c= 1 t rc . Thus, the quality of the co-clustering (R, C ) can be

uantified by measuring the association between the random variables R and C , using one of the as-
ociation measures introduced above. Different association measures lead to different co-clustering
lgorithms: Information Theoretic co-clustering (ITCC) [ 54 ] maximizes the mutual informa-
ion I (R, C); an algorithm maximizing Φ2 (R, C) is given in Reference [ 74 ]; a family of algorithms
hat simultaneously maximize τR |C 

and τC |R 

has been presented in References [ 88 , 135 , 141 ]. In
hese papers, the co-clustering problem is formulated as an optimization problem of the respec-
ive objective function, solved by an alternating optimization of partition R, keeping C fixed, and
hen of partition C , keeping R fixed. 

For convenience, in this class of methods, we insert also other algorithms that use the same al-
ernated optimization schema but consider objective functions that are not probabilistic measures
f association. For instance, Reference [ 6 ] uses an objective function usually employed in graph
lustering, the Newman’s Modularity [ 120 ]. The modularity can be used to measure the quality of
 diagonal co-clustering (R, C ) over a contingency table A. A co-clustering is diagonal if the row
nd column partitions have the same number of clusters, i.e., | R| = | C | = k . In the co-clustering
ontext, modularity is defined as 

Q(A, R, C ) = 1 ∑n 
i= 1 

∑m 

j= 1 a i j 

n ∑
i= 1 

m ∑
j= 1 

k ∑
h= 1 

( 
a i j −

∑m 

j= 1 a i j 
∑n 

i= 1 a i j ∑n 
i= 1 

∑m 

j= 1 a i j 
δR 

ih δ
C 

jh 

) 
, (20)

here δR 

ih 
= 1 if R(i) = h and 0 otherwise, and analogously δC 

jh 
= 1 if C (j) = h and 0 otherwise. 

Another algorithm that can be included in this class of co-clustering methods is the one proposed
n Reference [ 44 ], which is a sort of generalization of the Lloyd’s algorithm for k-means: It adopts,
s objective function, the sum of the squared residues, where the residue of element a i j is the
istance between a i j and the co-cluster to which a i j is assigned. However, although this method
ollows an optimization schema similar to the other algorithms mentioned in this section, it is
esigned to work with continuous data. 
We will now examine in more detail how the optimization scheme of these algorithms works.

xcluding the approach based on the optimization of Goodman and Kruskal’s τ , which will be
iscussed later, all other algorithms have a similar “k-means like” structure: They start with an
nitial co-clustering (R 

0 , C 

0 )with k and l clusters, respectively (when required, k = l ), and compute
 cluster prototype for each row cluster in R. Then, using an appropriate function to measure the
imilarity between rows and cluster prototypes, they assign each row to the closest prototype.
ext, the same procedure is applied to the columns to update the column clustering. The way

n which the cluster prototypes are computed and the similarity measure are different for each
lgorithm: They are opportunely designed to guarantee that the objective function increases at
ach iteration. 

Instead, the co-clustering method based on the optimization of τ , which we will call τCC from
ow on, rather than optimizing a unique objective function, maximizes two objective functions
t the same time, τR |C 

and τC |R 

. Thus, co-clustering is formulated as a multi-objective optimiza-
ion problem, and a stochastic local search approach is used to solve each maximization problem:
t each iteration, only one row and one column are moved from their original cluster to a new,
ore suitable, cluster: This is different from the other methods that, at each iteration, re-assign

ll the rows and all the columns using a prototype-based optimization. Furthermore, the objective
unction τ has an upper bound that does not depend on the number of clusters. This fact enables
lgorithm τCC to compare co-clustering configurations with a different number of clusters and
ACM Comput. Surv., Vol. 57, No. 2, Article 48. Publication date: November 2024. 
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hoose the best one: As a consequence, τCC is able to identify the final number of clusters on its
wn. Recently, a de-normalized version of τ has been used in Fast- τCC [ 18 ], a faster and consid-
rably more scalable version of τCC adopting a prototype-based optimization strategy similar to
he one of ITCC. 

.5 Other Co-clustering Methods 

here are other co-clustering approaches that do not fall into any of the above classes. Recently, a
eep learning model for co-clustering called DeepCC was proposed in Reference [ 171 ]. It uses
wo separated autoencoders to reduce the dimensionality of both the rows and the columns
nd then two separated inference networks to infer the parameter of two Gaussian Mixture

odels (GMM) , one for the rows and one for the columns. The autoencoders and the inference
etworks are trained together: DeepCC jointly minimizes the reconstruction error of the deep au-
oencoder and maximizes the variational lower bound of the log-likelihood in GMM. Furthermore,
n instance-feature cross loss term based on Mutual Information is added to the objective function
o make the training of instances and features intertwined. The structure of the overall deep model
i.e., the number of levels, the number of neurons for the two autoencoders and the two inference
etworks, and the activation function) are parameters required by the algorithm, together with
hree weights for the different terms composing the objective function. These parameters also in-
lude the number of clusters on rows and columns, corresponding to the number of neurons in
he last level of the inference network. 

A different approach is co-clustering through Optimal Transport (CCOT) , presented in
eference [ 104 ]. The paper poses the co-clustering problem as the task of transporting the em-
irical measure defined on the data instances to the empirical measure defined on the data
eatures. Given two sets of objects X and Y and their empirical discrete probability measures

X 

= 1 
|X | 

∑ |X | 
i= 1 δx i and μY = 

1 
|Y | 

∑ |Y | 
j= 1 δy j , the optimal transportation problem consists in finding

 coupling γ , defined as a joint probability measure over X × Y with marginals μX 

and μY , min-
mizing the cost of transport. In the context of co-clustering, X and Y are, respectively, the rows
nd the columns of a squared matrix A ∈ R 

n×n 
+ , and the cost of transport is defined as 

T λ(γ ) = T r (MγT ) − 1 

λ
E(γ ), (21)

here M is a dissimilarity matrix computed as m i j = | | x i − y j | | 2 , λ is a positive real number, and
(γ ) = −

∑
i, j γi j log (γi j ) is the entropy of matrix γ . It can be proved that there exists a unique

olution γ ∗
λ

minimizing Equation ( 21 ) and has the form 

γ ∗
λ = d iaд(α)ξλd iaд(β), 

here ξλ = e 
−λM is the Gibbs kernel, and α and β are unique up to a multiplicative factor. The

olutions α and β can be found using using the Sinkhorn-Knopp algorithm. 
Notice that, although formulated in terms of an optimization problem, CCOT is different from

he methods presented in the previous section: In fact, its objective function (see Equation ( 21 ))
oes not depend on the co-clustering solution but only on the input data matrix (through the
issimilarity matrix M). The result of the optimization is a coupling matrix γ ∗, which is later fac-
orized into three terms where one of them, ξλ , reflects the posterior distribution of the data given
he co-clusters, while two other terms, α and β , represent the approximated distributions of the
ata instances and features, respectively. These approximated distributions are used to obtain the
nal partitions. An interesting property of this co-clustering approach is that the method used
o extract the clustering assignment from vectors α and β automatically detects the final number
f clusters, using a procedure (originally introduced for multiscale denoising of piecewise smooth
CM Comput. Surv., Vol. 57, No. 2, Article 48. Publication date: November 2024. 
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ignals) to detect steps in the approximated distributions α and β . The rows (respectively, columns)
orresponding to the values of α (respectively, β) lying between two consecutive steps belong to
he same cluster. Thus, the algorithm does not need the specification of the number of clusters k
nd l as input parameters. However, the objective function (Equation ( 21 )) depends on a parame-
er λ; moreover, since the proposed optimization method only applies to matrices with the same
umber of rows and columns, to work with generic rectangular matrices, the algorithm involves
 first step in which n s squared matrices are subsampled from the data and then the co-clustering
rocedure is applied to each one of the sampled matrices. The final clustering results are obtained
hrough the majority vote over all samples. The number of samples n S must be large enough to
uarantee that each row and column of the original data matrix is picked in at least one sample and
s a further parameter of the co-clustering algorithm. To avoid this, the authors also proposed a ker-
elized version of their algorithm, called CCOT-GW, based on the notion of Gromov-Wasserstein
istance. 
Two common problems of the optimal transport-based approaches are that co-clustering is not

he main objective of the optimization process and that they have high computational costs, in
erms of both memory and time complexity. A recent work [ 61 ] addresses these issues by propos-
ng an algorithm, called BCOT (Biclustering using Optimal Transport) , that integrates the
o-clustering objective from the beginning, thus providing a general formulation to several co-
lustering methods. The problem is then formulated as a bilinear program, solved using an effi-
ient block coordinate descent algorithm where the row assignments are computed by fixing the
olumn assignments, and then vice versa iteratively, until convergence is achieved. The optimal
ransport for each row and column assignment step is formulated as the Earth Mover’s Distance

EMD) problem, optimized using a minimum-cost flow algorithm. 
To conclude this section, we mention a bunch of methods to perform ensemble co-clustering

 2 , 84 , 180 ]. The idea exploited by these methods is that different co-clustering algorithms grasp
ifferent aspects from the data and, thus, combining different co-clustering algorithms should lead
o better results in terms of consistency and quality. The key and most difficult issue in ensemble
co-)clustering is how to combine the clusters that are generated by the individual clustering mod-
ls, as this cannot be done through simple voting or averaging as in classification. Reference [ 84 ]
roposes a spectral co-clustering ensemble algorithm (SCCE) formulated as a double graph
artition problem: The vertices of the graph are the rows and columns of the input matrix, and
he weight of the edge between two nodes (rows or columns) depends on how many co-clustering
olutions in the ensemble put the nodes in the same cluster. The final co-clustering solution is com-
uted via a spectral clustering of the graph. Also, the algorithm in Reference [ 180 ] uses a spectral
o-clustering of a graph representation of the multiple co-clustering results, but, differently from
he previous method that only considers row-to-row and column-to-column edges, the resulting
raph also exploits the row-to-column relations captured by the different co-clustering solutions.
Instead, in Reference [ 2 ], the problem of combining multiple co-clustering solutions is modeled

s an optimization problem, solvable through the factorization of an affinity matrix created by com-
ining the contingency matrices of all the co-clustering solutions of the ensemble. Interestingly,
he method can be used to combine co-clustering solutions with different number of co-clusters,
ut the number of desired co-clusters in the final solution is passed to the algorithm as a param-
ter. Furthermore, this method only returns diagonal co-clustering solutions (i.e., solutions with
he same number of clusters on rows and columns). 

 Theoretical Comparison of the Main Co-clustering Methods 

n this section, we compare the main categories of co-clustering algorithms according to different
heoretical and practical aspects. More in detail, we provide a characterization of the algorithms
ACM Comput. Surv., Vol. 57, No. 2, Article 48. Publication date: November 2024. 
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ccording to their theoretical aspects, including time complexity. In the Supplemental Material
Appendix B), we also include an experimental comparison of the main categories of co-clustering

ethods to help the practitioners assess the applicability of each method to their own problems. 
Although classified in several groups for the sake of clarity, the various co-clustering methods

resented in this section are often related to each other and present more similarities than the
trict classification given above would suggest. For instance, the relation between spectral co-
lustering methods and nonnegative matrix factorization is quite evident, since both are based on
ome matrix decomposition: An analysis of the relationship between the two methods is given
n Reference [ 55 ]. Instead, in Reference [ 75 ] the authors propose a unified theoretical framework
nto which Information Theoretic co-clustering algorithms as ITCC and Φ2 -CC and model-based
lgorithms such as the Poisson Latent Block Model can be incorporated. 

Here, we report a comparison of the mentioned co-clustering models, focused on the param-
ters and assumptions on the data generation process they need to be applied. As seen, the vast
ajority of co-clustering methods require the number of clusters on rows and columns to be set

n advance. Setting a different number of clusters can lead to very distant co-clustering solutions.
owever, in realistic application scenarios, the actual number of clusters is not known. Sometimes,

he choice of a congruent number of clusters is done using the computationally expensive exhaus-
ive search over a large number of possible pairs of row and column clusters: For model-based
o-clustering, Reference [ 95 ] gives a model selection criterion based on the maximization of the
ntegrated Completed Likehood; in Reference [ 6 ], the authors argue that the algorithm ModCC
hey propose, based on the optimization of the Modularity (Equation ( 20 )), can be used to identify
he correct number of co-clusters embedded in the data matrix. In fact, Modularity is a function
ith values in [0 , 1 ] and its upper bound does not depend on the number of clusters. Thus, the
umber of co-clusters can be selected by applying algorithm ModCC several times changing the
alue of the parameter k (the number of co-clusters) and, finally, choosing the number k corre-
ponding to the co-clustering solution with highest Modularity. Notice that, despite its objective
unction does not depend on the number of clusters, ModCC is not a parameter-free algorithm, i.e.,
t requires the specification of the correct number of clusters. Furthermore, ModCC can only return
iagonal co-clustering solutions. The Modularity criterion for the selection of k is used also in the
o-clustering ensemble method [ 2 ] to infer the number of co-clusters of the consensus solution. A
unch of alternative approaches for the evaluation of latent block model-based and non-negative
atrix tri-factorization–based co-clustering have been developed within the specific domain of
ord-document co-occurrence matrices [ 2 , 8 , 144 ]. 
The repeated application of the same co-clustering algorithm varying the input parameters k

nd l with the goal of selecting the parameter configuration that maximizes the objective function
s not always applicable. This is due to the fact that, usually, the magnitude of the co-clustering
bjective functions strongly depends on the number of clusters. Consequently, two solutions with
wo different numbers of clusters can not be compared directly. This is, for instance, the case of
he mutual information used in ITCC: It is always maximum for the discrete partition, i.e., when
ach cluster contains exactly one data instance. For this kind of algorithms, the only available
ay to identify a realistic number of clusters is to use some exploratory data analysis method,

uch as the Elbow method or the Silhouette method. These criteria are developed to select the
umber of clusters in one-side clustering, but can be used on rows and columns separately to find
n appropriate value for k and l . 

The only two methods that do not require the specification of the number of clusters are τCC
see Section 4.4 ) and CCOT (see Section 4.5 ). The former maximizes an objective function τ whose
ptima do not depend on the number of clusters; instead, the latter compute an approximate dis-
ribution for the rows and columns of the input matrix and then use a procedure to detect jumps
CM Comput. Surv., Vol. 57, No. 2, Article 48. Publication date: November 2024. 
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Table 1. Summary of the Characteristics of the Main Co-clustering Methods for Contingency Tables, 

with a Focus on the Parameters Required and the Time Complexity 

Algorithm 

Diagonal 
( k = l ) 

Requires k
and l

Further parameters and 
other assumptions 

Obj. Function 
enabling comparison 

of different (k, l )
Time complexity 

SpectralCC [ 53 ] Yes Yes 
# of eigenvectors 

(optional) 
- 

O (m n t log (r )) (dense) 
O (zt log (r )) (sparse) 

SpectralBiC [ 97 ] No Yes 
Normalization # of 

eigenvectors 
- 

O (m n t log (r )) (dense), 
O (zt log (r )) (sparse) 

NMTF 
[ 56 , 115 , 162 ] 

No Yes 
Factorization rank 

(optional) 
- 

O (tm 

2 n) [ 56 ], 
O (m n t (k + l )) [ 115 ], 

O (n m kt ) [ 162 ] 

LBM 

[ 72 , 73 , 95 , 103 ] 
No [ 72 , 73 , 95 ] 

Yes [ 103 ] 
Yes Distribution family Yes 

O (m n klt ) (dense), 
O (zklt ) (sparse) 

ITCC [ 54 ] No Yes None No 
O (m n t (k + l )) (dense), 
O (zt (k + l )) (sparse) 

Φ2 -CC [ 73 ] No Yes None No O (m n t (k + l ))

ModCC [ 6 ] Yes Yes None Yes 
O (m n tk) (dense), 
O (ztk) (sparse) 

τ CC [ 88 , 141 ] No No None Yes O (tm n )
Fast- τ CC [ 18 ] No No None Yes O (tkl (m + n))

DeepCC [ 171 ] No Yes 
Network structure 
weights of the loss 

- O (tn(m + P ))

CCOT [ 104 ] No No λ, n s (cf. Section 4.5 ) - 
O (n s (n +m)) (CCOT) 

O (n 2 m +m 

2 n) (CCOT-GW) 

BCOT [ 61 ] No Yes 
Row/column weights, 
exemplar distributions 

Yes O (kz + t (n + k)nk log (n + k))

k and l indicate, respectively, the number of clusters on the rows and on the columns. n and m are the dimension of A, 

while z is the number its non-zero entries and r is the number of eigenvalues. t is the total number of iterations and P

is the number of trainable parameters of the deep neural network. 
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n the approximated distributions. However, as pointed out before, CCOT depends on two further
arameters. 
As CCOT, many of the algorithms considered in this review are based on some assumptions,

hich consist in further parameters for the model: The most demanding algorithm in this sense
s DeepCC, which, as seen in Section 4.5 , requires the setting of several hyper-parameters; in the
pectral methods, a further parameter is the number of retained eigenvectors (many algorithms,
owever, set this number equal to log 2 n or equal to k); in the model-based methods, the choice
f the distribution used to model the data is a strong assumption and different distributions lead
o different co-clustering solutions; in the matrix factorization–based algorithms, sometimes the
hape of the latent factors is left as a model parameter (when set different from the number of
lusters, a final run of k( l )-means is used to recover the clustering assignments). Table 1 summa-
izes the main characteristics of the main co-clustering described in this section. We also report
he time complexity of each category of algorithm, as reported by the authors themselves in the
espective papers or inferred by us. In general, the vast majority of algorithms (with the excep-
ion of CCOT [ 104 ] and orthogonal NMTF [ 56 ]) scales linearly w.r.t. the number of rows ( n) and
olumns ( m) of the input matrix or the number of non-zeros ( z). Those algorithms whose com-
lexity also depends on the number of clusters, in general, scales linearly w.r.t. the sum of k and
or the largest of the two values. The time complexity of the spectral methods, instead, is in the

ogarithm of r , where r is the number of eigenvalues as computed in the SVD step [ 53 , 97 ]. A more
n-depth discussion is required for the number of iterations, as almost all algorithms consist of iter-
tive steps. The main difference is the semantic of an individual iteration. While many algorithms
ACM Comput. Surv., Vol. 57, No. 2, Article 48. Publication date: November 2024. 
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lternate the optimization of the row partition and the optimization of the column one, for other
lgorithms, the number of iterations has different meanings. For instance, in LBM [ 72 , 73 , 95 ] and
ast- τCC , the overall number of iterations depends on the number of inner optimization steps,
ultiplied by the number of outer steps, while in τCC [ 88 , 141 ] it is the overall number of moves

f a single row or column, which is typically some orders of magnitude higher than the typical
umber of iterations required in other algorithms. 
Finally, it is worth spending a few words on the time complexity of DeepCC [ 171 ], the only

pproach based on a deep learning architecture. In this case, the complexity depends on stochastic
radient descent, whose single iteration on an individual data sample is linear in the number of
verall parameters of the network (noted with P , in Table 1 , according to Reference [ 25 ]. However,
could be as large as several hundred million parameters in rather small matrices. 

 Tensor Co-clustering 

he majority of the data produced by human activities and modern cyber-physical systems in-
olves complex relations among their features. Such relations can often be represented by means
f tensors, widely used mathematical objects that well represent complex information such as
ene expression data [ 185 ], social networks [ 82 ], heterogenous information networks [ 59 , 179 ],
ime-evolving data [ 11 ], behavioral patterns [ 79 ], and multi-lingual text corpora [ 129 ]. 

Tensors can be viewed as generalizations of matrices and, as such, can be analyzed by using
igher-order extensions of existing machine learning methods, many of which are tensor decom-
osition models and algorithms [ 98 ]. As an example, both singular value decomposition [ 183 ] and
on-negative matrix factorization [ 150 ] have been extended to work with high-order tensor data.
urthermore, knowledge discovery and exploratory data mining techniques, including closed item-
et mining [ 33 , 34 ] and association rule discovery [ 121 ], have been successfully applied to N -way
ata as well. 
Also, clustering and co-clustering have been naturally extended to handle tensors. In this sec-

ion, we briefly review the main tensor co-clustering method, but, before that, we give a formal
efinition of what a tensor is and which kind of relations among the data it is able to capture. 

.1 Tensors vs. Multi-view Datasets 

sually, data come in the form of a set of objects described by a set of attributes (also called fea-
ures). These features can be heterogeneous for type and underlying properties. When the features
re all numeric, the dataset consists in a matrix A ∈ R 

n×m , where n is the number of objects and
the number of features. However, in this survey, we only consider datasets with homogeneous

ttributes: Only in this case, in fact, the problem of clustering the columns of the matrix makes
ense. Another way to define this kind of matrices is as mathematical objects used to describe
inary relation between two sets of discrete objects, A = { a 1 , . . . , a n } and B = { b 1 , . . . , b m 

} . From
his perspective, a matrix M is the co-domain of a function m : A × B −→ R , i.e., m i j = m((a i , b j )).
or instance, we obtain a document/terms matrix from the function m : D ×T −→ R , where D
s a set of documents and T a dictionary of terms, that associates to each pair (d, t) the number
f occurrences of the term t in document d . As another example, a gene expression matrix is the
o-domain of the function e : G ×C −→ R , where G is a set of genes and C a set of conditions,
ending the pair (д, c) to the expression level of the gene д under condition c . 

When there exist multiple relations between the two sets of objects A and B, a simple matrix
s no longer sufficient to represent the data. The problem becomes even more complicated when
he sets of objects are more than two, and multiple relations among all or part of these sets are
resent. Such a complex scenario requires more sophisticated data representation: two possible
CM Comput. Surv., Vol. 57, No. 2, Article 48. Publication date: November 2024. 
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xtensions of data matrices to handle multiple relations among sets of objects are tensors and
ulti-view datasets. 
Tensors and multi-view datasets are different objects representing different relations among

everal sets of objects. Given three sets A, B, and C with, respectively, n, m, and l objects, a 3-way
ensor with shape n ×m × l can be used to describe a measurable relation among all the possible
riples of objects (a i , b j , c k ). More formally, a tensor T ∈ R 

n ×m ×l is the co-domain of a function 

t : A × B ×C −→ R , 

.e., T = t(A × B ×C), and its generic entry is t i jk = t((a i , b j , c k )). Importantly, T represents a
ernary relation over A × B ×C . Instead, a multi-view dataset can be used to express multiple
inary measurable relations. For instance, two functions 

д : A × B −→ R , 

h : A ×C −→ R 

efine a multi-view dataset D = (G, H ), where G ∈ R 

n×m д and H ∈ R 

n×m h . Their generic ele-
ents are д i j = д((a i , b j )) and h ik = h ((a i , c k )). Notice that a tensor can be re-arranged to become
 multi-view dataset, while the contrary is not necessarily true. In fact, given the ternary function
defining tensor T , it is always possible to obtain two binary functions 

д : A × B −→ R ; (a i , b j ) � −→ 

l ∑
k= 1 

t((a i , b j , c k )), 

h : A ×C −→ R ; (a i , c k ) � −→ 

m ∑
j= 1 

t((a i , b j , c k ))

nd thus a multi-view dataset (д(A × B), h (A ×C)). Instead, given two functions д : A × B −→ R
nd h : A ×C −→ R , they do not automatically extend to a function over A × B ×C . 

Summarizing, an N -way (or N -mode) tensor is used to express an N -ary relation among N 

ets of objects. Instead, a multi-view dataset is a collection of N − 1 matrices and is used to ex-
ress N different binary relations between one set of items and N − 1 other discrete sets. We will
se the following notation: Given an N -way tensor T ∈ R 

n 1 ×···×n N , its generic entry is t i 1 . . . i N 

,
ith i r = 1 , . . . , n r for each r = 1 , . . . , N . Instead, given a multi-view dataset D = (D 

1 , . . . , D 

N−1 ),
here D 

r ∈ R 

n×m r for each r = 1 , . . . , N − 1 , a generic entry is d r i j , where r indicates the view,

 = 1 , . . . , n indicates the row, and j = 1 , . . . , m r indicates the column in the r th view. Figure 2 in
he Supplemental Material graphically shows the difference between multiple views and tensors. 

Going back to the main topic of this article, co-clustering can be extended to work with both
hese data objects, tensors, and multi-view datasets: 

—Tensor Co-clustering is the simultaneous partitioning of all the N modes of a tensor.
Thus, a co-clustering of an N -way tensor T is a tuple of N partitions (P 1 , . . . , P N 

) and,
as in the 2-way case, each partition must be exhaustive and exclusive, i.e., each object on
each mode i = 1 , . . . , N must belong to one and only one cluster of the ith partition P i .
Notice that also the notion of biclustering introduced at the beginning of this chapter can be
extended to tensors: The problem of N -way clustering a tensor T with shape n 1 × · · · × n N 

is the problem of finding a subtensor A of T with shape k 1 × · · ·k N 

, where k i < n i for
all i , such that the entries of A satisfy some criteria of homogeneity or coherence. A is
called an “N -way” cluster and the problem can be generalized to identifying many N -way
clusters inside T . Differently from the tensor co-clustering problem, here, the clusters can
ACM Comput. Surv., Vol. 57, No. 2, Article 48. Publication date: November 2024. 
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be overlapping and non-exhaustive. However, the N -way clustering task is out of the scope
of this work; for more details and a detailed survey about this topic, see Reference [ 80 ]. 

—Multi-view Co-clustering consists in the simultaneous partitioning of the rows and of all
the N − 1 sets of attributes of a multi-view dataset. Thus, also a multi-view co-clustering
solution is a set of N partitions. The difference with tensor co-clustering lies in the relation-
ships between the N clustering tasks: While in tensor co-clustering every clustering task
benefits from the others, in the sense that a high-quality partition on N − 1 modes helps in
finding a better partition also in the N th mode, in multi-view co-clustering, having good
clustering on the different sets of attributes helps in finding a better partition on the row,
but the partition on a particular set of attributes does not play any role in the choice of the
partition on the other sets of attributes, or, more exactly, their relationship is only mediated
by the row partition. 

In the next section, we will go through the main tensor co-clustering algorithms in the litera-
ure. Instead, even if many multi-view co-clustering algorithms do exist, they are, usually, exten-
ions of the co-clustering methods for a single matrix: For instance, Reference [ 172 ] extends ITCC,
eference [ 88 ] is a multi-view co-clustering based on the optimization of Goodman and Kruskal’s
, Reference [ 85 ] uses multi-view spectral co-clustering, Reference [ 122 ] performs multi-view co-
lustering via nonnegative matrix factorization, and Reference [ 28 ] adopts an approach based on
parse probabilistic latent block model. We refer the reader to Reference [ 36 ], a recent survey on
ulti-view clustering that reviews some multi-view co-clustering as well. 
Actually, multi-view co-clustering is a more prosperous research field than tensor co-clustering.

his can probably be explained by the fact that tensors can be rearranged to form multi-view
atasets, and then multi-view co-clustering can be used to cluster tensor data. In contrast, many
atasets that can be represented with multiple views cannot be expressed in the form of tensors (be-
ause they lack a relation between each pair of sets of attributes); hence, multi-view co-clustering
s a more generic task that can be applied to a broader range of datasets. However, when deal-
ng with tensors, tensor co-clustering is more suitable than multi-view co-clustering, because it
aptures more sophisticated relations among all the dimensions describing the data. 

.2 Main Approaches to Tensor Co-clustering 

he main tensor co-clustering methods are often based on tensor decomposition models, such
s CANDECOMP/PARAFAC (CP) [ 77 ] or Non-negative Tucker decomposition [ 158 ]. These ap-
roaches can be seen as an extension of factorization-based and spectral co-clustering methods:
n fact, both CP and Tucker decomposition are higher-order generalizations of Singular Value De-
omposition. Additionally, the usage of nonnegativity constraints in the tensor decompositions
esembles the nonnegative matrix factorization methods. 

In more detail, following the notation of Reference [ 98 ], the CP decomposition factorizes a tensor
nto a sum of component rank-one tensors. Given a third-order tensor T ∈ R 

n ×m ×l , it can be
ewritten as 

T ≈
R ∑

r= 1 

u r ◦v r ◦ z r , (22)

here ◦ is the matrix outer product, R is a positive integer (the rank of the decomposition), and u r ∈
 

n , v r ∈ R 

m , and z r ∈ R 

l for r = 1 . . . R. According to this notation, matrices U = [u 1 u 2 · · · u R 

],
 = [v 1 v 2 · · · v R 

], and Z = [z 1 z 2 · · · z R 

] are the rank- R factor matrices. 
For the same generic three-mode tensor T , instead, the Tucker decomposition factorizes it into

 core tensor W ∈ R 

P×Q×R multiplied by a factor matrix along each mode, i.e., 

T ≈ W ×1 U ×2 V ×3 Z , (23)
CM Comput. Surv., Vol. 57, No. 2, Article 48. Publication date: November 2024. 
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here ×n is the n-mode matrix product, and U ∈ R 

n×P , V ∈ R 

m×Q , and U ∈ R 

l×R are the (usually
rthogonal) factor matrices. Additionally, when the input tensor T is non-negative, non-negativity
onstraints can be imposed on all the factor matrices and the core tensor as well. 

For both CP and Tucker models, the basic tensor co-clustering approaches work similarly: Once
he factor matrices are computed using some optimization algorithms, such as the Alternating
east Square or the (Stochastic) Gradient Descent methods, the objects in each mode are assigned
y processing the corresponding factor matrix with k-means. Alternatively, each object can be
ssigned to the cluster corresponding to the index of the largest factor value. 

In Reference [ 186 ], the authors use tensor-based latent factor analysis to address co-clustering
n the context of web usage mining; their algorithm is executed via the CANDECOMP/PARAFAC
ecomposition. Reference [ 130 ] formulates co-clustering as a constrained multi-linear decom-
osition with sparse latent factors. It consists in a basic multi-way co-clustering algorithm ex-
loiting multi-linearity using Lasso-type coordinate updates. Additionally, a line search optimiza-
ion approach based on iterative majorization and polynomial fitting is proposed. The authors of
eference [ 184 ] present an extension of the Nonnegative Matrix Tri-factorization model [ 56 ] to a

ensor decomposition model performing adaptive dimensionality reduction by integrating the sub-
pace identification and the (hard or soft) clustering process into a single process. Their algorithm
omputes two basis matrices representing the common characteristics of the samples and one 3-D
ensor denoting the peculiarities of the samples. The model can be used to perform dimensionality
eduction as well. Instead, Reference [ 169 ] introduces a spectral co-clustering method based on a
ew random walk model for nonnegative square tensors; finally, in Reference [ 43 ], the tensors are
epresented as weighted hypergraphs, which are cut by an algorithm based on random sampling.

Another class of recent approaches [ 26 , 27 ] relies on an extension of the Latent Block Model. In
hese works, co-clustering for sparse tensor data is viewed as a multi-way clustering model where
ach slice of the third mode of the tensor represents a relation between two sets. The same authors
lso developed a Python library for tensor clustering and co-clustering, called TensorClus [ 29 ],
ncluding their model-based tensor co-clustering algorithms. Finally, Reference [ 164 ] presents a
o-clustering approach for tensors that uses a least-square estimation procedure for identifying
n N -way block structure that applies to binary, continuous, and hybrid data instances. 

In contrast, there are very few works that model tensor co-clustering as an optimization problem
f an Information Theoretic measure, extending some of the algorithms presented in Section 4.4 :
eference [ 13 ] performs clustering using a relation graph model that describes all the known re-

ations between the modes of a tensor. The tensor clustering formulation captures the maximal
nformation in the relation graph by exploiting a family of loss function known as Bregman di-
ergences. The authors also present several structurally different multi-way clustering schemes
nvolving a scalable algorithm based on alternate minimization. A more recent work [ 65 ] follows
he same research line based on the optimization of a Bregman divergence. 

The only other work based on Information Theoretic measures are References [ 18 , 19 ]: The
ethods proposed there are extensions of τCC and Fast- τCC , reviewed in Section 4.4 , and, as

uch, they are also parameter-less. 

 Recent Trends and Open Problems 

n this section, we discuss the most recent trends in co-clustering research, highlighting the main
cientific results of the past three years. Then, we analyze the possible reasons for a perceived
ecreased interest in designing new co-clustering methods. Finally, we point out some open or
carcely addressed problems and provide some promising research directions that are worth in-
estigating in the next few years. 
ACM Comput. Surv., Vol. 57, No. 2, Article 48. Publication date: November 2024. 
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.1 Recent Contributions to the Co-clustering Literature 

s we noted in the previous sections, in the past five years the only novel approach is the one based
n deep neural networks [ 171 ]. Although no further groundbreaking contributions have emerged
n the past three years, the interests of scientists have significantly shifted towards multi-view
pproaches, with several proposals aimed at solving this type of problem. This is consistent with
n overall trend in machine learning and data science, where complex, multi-relational data have
een the object of many studies [ 66 , 175 , 182 ]. Notable examples are References [ 57 , 87 ]. The first
ork is an extension of the deep co-clustering framework to work with sparse multi-view data [ 57 ].
he authors propose a differentiable network with alternating iterative optimization that they call
differentiable bi-sparse multi-view co-clustering.” The second paper combines a k-means strategy
ith local search to iteratively optimize the co-clustering objective function by updating cluster

abels, features, and view weights [ 87 ]. 
Other recent approaches have focused on improving or speeding up matrix factorization algo-

ithms for co-clustering. For instance, in Reference [ 41 ], the authors use the Lagrange multipli-
rs to derive the original optimization problem of NMTF and propose a distributed implementa-
ion of the algorithm that optimizes the Lagrange dual objective function. Instead, the authors of
eference [ 167 ] address the graph co-clustering problem by integrating network embedding and
onnegative matrix factorization, following the idea that graph representation learning implicitly

mplies matrix factorization. They prove the equivalence between NMF and graph embedding for
o-clustering and propose an algorithm that regularizes network embedding into the NMF ob-
ective function. In Reference [ 52 ], the problem of noise sensitivity of the square loss method for
onnegative matrix factorization is addressed. To solve the problem, the authors combine multiple
egularization tricks (e.g., graph regularization, Frobenius norm, and norm) to simultaneously op-
imize the objective function. The proposed method is also able to perform feature selection well
nd enhance the sparseness of the model, thus obtaining less noisy data matrices to approximate
he objective matrix. The authors of Reference [ 157 ], instead, propose an algorithm to solve the
rthogonal dual graph regularized nonnegative matrix tri-factorization problem, which preserves
he geometrical structures of data and feature manifold. Finally, it is worth mentioning [ 163 ], where
he authors address the problem of multiple alternative clusterings, by introducing the first algo-
ithm that generates multiple alternative co-clusterings at the same time. Even in this case, the
atrix tri-factorization approach is considered and exploited to quantify row and column redun-

ancy and enforce diversity among co-clustering solutions. 
Further recent contributions are aimed at improving model-based text co-clustering by

everaging the von Mises-Fisher (vMF) mixture model and a bi-directional multiplicative
egularization [ 3 , 4 ] or enhancing bipartite graph partition-based co-clustering with a more
exible bipartite graph model [ 39 ]. Finally, the problem of correctly evaluating co-clusters has
lso been addressed recently by Robert et al. [ 142 ]. They adapt the the Adjusted Rand Index

ARI) introduced by Hubert and Arabie [ 86 ] to the co-clustering problem together with an
fficient algorithm to compute it. 

.2 Open Problems and Promising Future Research Directions 

s we said in the introduction, despite the continuous interest of the scientific community for
o-clustering, in the past five years there has been a decreasing number of scientific contributions
argeting it. We now provide some possible explanations for this apparent declining engagement
f researchers in contributing to the co-clustering literature with novel approaches. 

(1) Scalability: There are some challenging issues that make the computation of co-
clustering solution unfeasible in very large data. For instance, the inherent time and space
CM Comput. Surv., Vol. 57, No. 2, Article 48. Publication date: November 2024. 
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complexity of eigenvalue decomposition, adopted by spectral methods, limits the appli-
cation of such methods on very large data with many co-clusters. Another significant
problem is that, differently from clustering, designing a distributed or parallel algorithm
for a co-clustering objective function is challenging, since it is strictly connected to both
partitions (or to the partitions on all modes, in case of tensor clustering). Hence, if, for
instance, a horizontally partitioned schema is considered, then one can not simply aggre-
gate local solutions computed in a parallel or distributed fashion, as the column partition
is likely inconsistent among all nodes/threads participating in the computation without
sharing other information, thus increasing the computational overhead and the risk of
privacy leaks. Some solutions to the above-mentioned problems may come from recent
advances in the stochastic optimization of co-representation learning algorithms [ 40 ]. 

(2) Strong requirements: Co-clustering is typically applied on very high-dimensional data
where the input data matrix has approximately the same number of rows and columns
( n ∼m) and, additionally, is very sparse. Consequently having a unique partition on the
whole feature space is somehow too stringent a constraint. In this case, subspace clustering
and biclustering offer a major flexibility, as multiple clusters or partitions are allowed
on different subspaces. Indeed, a very recent approach tackles this issue by proposing
a subspace co-clustering method [ 62 ]. Nonetheless, this limitation also affects one-side
clustering algorithms, which, however, are permanently under the lens of the machine
learning and statistics research communities. Moreover, another problem affecting co-
clustering methods is that, like some one-mode clustering ones, they tend to converge
towards highly skewed solutions with very unbalanced or even empty clusters [ 145 ]. 

(3) Competing methods: Although co-clustering has been proven effective in high-
dimensional data, one-side clustering is still preferred, thanks to its good scalability prop-
erties and to the wide varierty of approaches, including graph-based ones and those
based on matrix factorization and deep neural networks. Furthermore, in the past decade,
correlation clustering [ 15 , 100 ] has emerged as a useful method for partitioning high-
dimensional data, with the additional interesting property of finding the number of clus-
ters automatically. 

Despite all these discouraging aspects, there are still some important open problems that the
cientific community has not addressed or that have not received a significant attention yet. In the
ollowing, we discuss them by also reporting some preliminary attempts for solving them. 

(1) Federated co-clustering: As federated learning has emerged as the de facto standard
for distributed (and private) machine learning [ 94 ], many supervised and unsupervised
federated algorithms have been proposed, mainly based on distributed execution of the
stochastic gradient descent (SGD) algorithm. Clustering and matrix factorization have
been the object of several contributions in this research field as well [ 99 , 108 , 109 ,
133 , 166 ]. However, no federated framework for co-clustering has been proposed so far.
As we already said, this could be in part due to the difficulty in designing a working ag-
gregating schema for the objective functions of co-clustering algorithms, although some
promising research direction could come from some recent advances in deep neural net-
work architectures for co-clustering [ 40 , 176 ], as they could lead to some natural federated
extensions. 

(2) Privacy-preserving co-clustering: Privacy is a major concern today, and many privacy-
preserving machine learning algorithms have been proposed in the past 25 years [ 113 ]. It
has been shown that even one-side clustering algorithms (such as k-means) may harm
the privacy of data subjects [ 123 , 159 ] and, for this reason, some privacy-preserving
ACM Comput. Surv., Vol. 57, No. 2, Article 48. Publication date: November 2024. 
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clustering algorithms, also based on differential privacy [ 58 ], have been proposed [ 93 ,
125 , 154 ]. Although the results of a co-clustering algorithm could provide further harm
to individual privacy, represented by the column clustering solution, only a few works
have addressed the problem of privacy-preserving co-clustering. They are mainly focused
on distributed frameworks [ 81 , 156 ], although co-clustering has been used as a means to
generate differentially private synthetic data [ 21 ]. 

(3) Number of parameters: As we already pointed out in Section 5 , most co-clustering ap-
proaches require a large number of hyper-parameters to be tuned, including the number
of clusters for the rows and for the columns. For instance, a deep learning approach, such
as Reference [ 171 ], requires the correct configuration of at least six input parameters to
make it produce reliable results. Although some parameter-less approaches exist [ 18 , 19 ,
141 ], major efforts could be taken for helping users decide the correct number of clusters
per mode or make algorithms truly parameter-free and computationally efficient. 

(4) Alternative measures for co-clustering. Most co-clustering objective functions rely on
algebraic operations in the Euclidean space or association measures computed on the co-
cluster contingency table, while, in the one-side clustering literature, many algorithms can
be adapted to deal with virtually any definition of pairwise distance and similarity. Thanks
to the recent advances in representation learning using deep neural networks, and the
fact that, as already pointed out, some recent work on co-clustering based on deep learn-
ing has emerged, the next step would be identifying more complex relationships among
row and column partitions, also involving alternative association measures. Interest-
ingly, the notion of density-based co-clusters could also be significant but has never been
investigated. 

(5) Generalization analysis. When co-clustering is used in predictive tasks, it is crucial to
assess its generalization performance. However, only a few works address the problem
of analyzing the generalization error of co-clustering algorithms formally. Among others,
the most notable example is Reference [ 148 ], where two predictive scenarios are consid-
ered: the prediction of the missing entries in data matrices (as in collaborative filtering)
and the estimation of the joint probability distribution of row and column variables in
co-occurrence matrices (as in word-document analysis). The authors analyze and derive
generalization bounds under the PAC-Bayesian framework. Although many algorithms,
especially those based on matrix factorization (see Section 4.2 ) include some regulariza-
tion term in their objective functions, further advances on generalization error analysis
for different co-clustering classes of methods would be beneficial for the development of
the research field. 

We recall that co-clustering can be reconsidered as an intrinsically interpretable clustering
ethod in high-dimensional data and, as such, it meets recently introduced legal requirements

oncerning the explanation of decisions taken with the help of automated machine learning meth-
ds. Consequently, it is reasonable to expect a new research interest peak in the next few years. 

 Conclusion 

n this article, we have surveyed the scientific literature about co-clustering, a popular unsuper-
ised machine learning tool that deals with high-dimensional data. The goal of our survey is
wofold: On the one hand, it is aimed at providing the uninformed reader with a practical overview
f the main categories of methods and algorithms by also distinguishing them from similar ap-
roaches as subspace clustering and biclustering; on the other hand, it can help the expert reader
ith some insights on the limitations of existing approaches, the most recent trends, and possible
CM Comput. Surv., Vol. 57, No. 2, Article 48. Publication date: November 2024. 
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romising future research directions. We have started our journey by presenting the main methods
or matrices, but we have reviewed higher-order co-clustering methods for both N -way tensors
nd multi-view data as well. 

As we have highlighted in our survey, it seems that, after a publication peak in 2019, in the
ast five years, the focus of the machine learning scientific community has shifted towards other
ethods with similar characteristics as those of co-clustering. Despite this, the general attrac-

ion for co-clustering in the overall scientific literature is increasing constantly. Hence, we think
hat it is worth investigating the open research issues on co-clustering topics. In this article, we
ave specifically discussed this, and we have given some suggestions by identifying federated co-
lustering, privacy-preserving co-clustering, and more flexible co-clustering definitions among the
ost worthy future research tracks. 
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