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Abstract: Bark beetle outbreaks are responsible for the loss of large areas of forests and in recent years
they appear to be increasing in frequency and magnitude as a result of climate change. The aim of
this study is to develop a new standardized methodology for the automatic detection of the degree
of damage on single fir trees caused by bark beetle attacks using a simple GIS-based model. The
classification approach is based on the degree of tree canopy defoliation observed (white pixels) in the
UAV-acquired very high resolution RGB orthophotos. We defined six degrees (categories) of damage
(healthy, four infested levels and dead) based on the ratio of white pixel to the total number of pixels
of a given tree canopy. Category 1: <2.5% (no defoliation); Category 2: 2.5–10% (very low defoliation);
Category 3: 10–25% (low defoliation); Category 4: 25–50% (medium defoliation); Category 5: 50–75%
(high defoliation), and finally Category 6: >75% (dead). The definition of “white pixel” is crucial,
since light conditions during image acquisition drastically affect pixel values. Thus, whiteness was
defined as the ratio of red pixel value to the blue pixel value of every single pixel in relation to the
ratio of the mean red and mean blue value of the whole orthomosaic. The results show that in an area
of 4 ha, out of the 1376 trees, 277 were healthy, 948 were infested (Cat 2, 628; Cat 3, 244; Cat 4, 64; Cat
5, 12), and 151 were dead (Cat 6). The validation led to an average precision of 62%, with Cat 1 and
Cat 6 reaching a precision of 73% and 94%, respectively.

Keywords: bark beetles; infestation; defoliation; degree of damage; UAV; white pixel value

1. Introduction

Bark beetle outbreaks are responsible for the loss of large areas of forests all over the
world with irreversible changes on the landscape and significant economical loses. Bark bee-
tle outbreaks reduce wood quality and production and influence the water/nutrient/carbon
cycle, affecting ecosystem biodiversity [1,2]. In recent years, such pest outbreaks in forests
appear to be increasing in frequency and magnitude all over the world as a result of
climate change [2]. The probability of bark beetle attacks increases after long periods of
drought, storms, windthrows [3,4], heavy snow, and other extreme weather conditions that
weaken trees, making them ideal breeding grounds [5–7]. Once they have reached high
population levels, bark beetles are even able to attack and infest healthy trees, as is the case
of mountain pine beetles, which can cause the mortality of apparently healthy trees over
millions of hectares [8]. In Japan, as in the rest of Asia, including Eurasia in Russia, the main
common bark beetle is Polygraphus proximus [9], which is a non-aggressive phloephagous
reaching a size of up to 12 mm. In 2013, a large-scale outbreak of P. proximus took place in
Zao Mountains in northeastern Japan that, by 2016, had already devastated hundreds of
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hectares of pristine fir forests [10]. Since the area affected is part of a Quasi-National Park,
the application of chemicals or any harmful material is forbidden and thus, the spread of
bark beetles has been left undisturbed. This in turn, offers an excellent ground to monitor
the natural process of bark beetle spread, forest resilience, and the role of abiotic factors in
ameliorating or enhancing its effect. There are two common approaches that are used to
evaluate the effect of bark beetles on forests, fieldwork observations and satellite images
(usually hyperspectral ones). The first one is limited in space and the second one, even
though it covers large areas at once, is limited in its precision since the medium resolution
used ranges from 10 m to 100 m as is the case for Landsat images, although high resolution
data (1–10 m) have been commonly used for further supporting detail mapping of the
temporal effect of bark beetles [11], with very few of these studies conducted in Asia [12]. In
order to monitor the development of damage at the individual tree level and the mapping
of the whole affected forest area, it is necessary to quantify the number of infested trees
and classify the degree of damage of each one of them. The most frequently used indexes
for mapping bark beetle disturbances are the Enhanced Wetness Difference Index (EWDI),
followed by the Normalized Burn Ratio (NBR) and Disturbance Index (DI) [11]. From these
indexes, classifications, such as severely infested or almost dead, provide a qualitative but
not a quantitative description of the damage and they cannot be used easily for comparison
with other forest stands. It is also inaccurate to point to areas of infestation in coarse
resolution images (>100 m) when the areas enclosed in large pixels could still include
healthy trees [2,13]. Furthermore, the classification of the degree of damage of individual
trees during field observations is subject to human criteria, experience, and accessibility
to the tree canopy being classified, especially in highly dense forests [14,15]. Thus, the
results are usually difficult to validate and compare with other forest stands, unless the
same person and the same conditions are met, which is physically impossible, especially
when the limited area the assessor can cover is considered. From fieldwork surveys as well
as remote sensing studies, there is no standard criteria that can be used for comparison,
first, because the patterns of damage are not discussed, and second, because there is no
quantification of the degree of damage of single trees in time or space. In recent years,
there have been several studies using unmanned aerial vehicles (UAV)-acquired images to
evaluate and monitor forest pest infestation, mainly using hyperspectral cameras [16,17]
and rarely RGB cameras [10,18]. In these latter two studies, the obtained data were also
used to train deep learning models for tree health status detection. In both studies, the
question was whether trees were healthy, infested, or dead. UAVs have shown an immense
potential to close the gap between field observations and satellite imagery [19], since its
low elevation flights produce very high-resolution images (0.02–0.03 m) and can cover
areas of several tens to hundreds of hectares. The very high-resolution data have renewed
interest in the use of a wide variety of data processing techniques, which include computer
vision, soft computing, and deep learning [10,14,20–22] among others. Furthermore, pixel
counting in satellite images to estimate classes in a given area [23] can be used at a micro
level for counting pixels to estimate defoliation in a given tree canopy area from very-high
resolution images. Thus, the aims of this study are: (1) to identify the health condition
of fir trees from UAV-acquired RGB images; and (2) quantify and classify the degree of
damage caused by bark beetle infestation in single fir trees inferred from the white pixels
of partially or completely defoliated tree branches.

2. Material and Methods
2.1. Study Site

The study area is located in Zao Mountains, a volcano in southeastern Yamagata, Japan
(38◦09′05′′ N, 140◦25′03′′ E). The site covers an area of 25 ha with a tree density of about
200 trees/ha. The age of fir trees in the area ranges from 41 to 103 years old. The study area
is divided into five sites in which the degree of insect damage along an elevation gradient
of 1332 m to 1670 m (Figure 1) is evaluated. Site 1 (3.9 ha) is in the lower elevation and
site 5 (6 ha) is in the highest elevation. Site 1 and site 2 are composed of Maries fir mixed
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with other deciduous tree species such as: Acer spp., Fagus crenata and Sorbaria sorbifolia.
However, with increasing altitude, the number of deciduous tree species decreases and fir
becomes the dominant tree species. Thus, in sites 3 (5.1 ha) and 4 (4 ha), fir is the dominant
tree species. In site 5 (1508–1670 m), 95% of all fir trees are dead [11].
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Figure 1. Study area in Zao Mountains with the five sites, ranging from 1360 to 1660 m.a.s.l. in
southeastern Yamagata, Japan.

2.2. Data Acquisition

Sets of RGB aerial photos were collected during the growing season of the years 2020
and 2021. Several flight-missions were conducted with a DJI Mavic 2 pro Hasselblad
L1D-20c camera. The UAV acquired 20-megapixel images, following routes designed on
DJI GS pro software (DJI Inc., Shenzhen, China). The camera sensor is a 1-inch CMOS with
fixed focal length of 10 mm and aperture f/3.2. The UAV flew at 70 m altitude from take-off
points, nadir view, 3 m/s and shutter interval of 2 s. The photos were acquired with 90%
side and front overlap. The camera was set at S priority (ISO-100) with shutter speed at
1/240–1/320 s in the case of strong sun and wind and at 1/80–1/120 in more favorable
weather conditions. This setup kept exposure values (EV) of around 0 to +0.7 providing a
ground sampling distance (GSD) of 1.5–2.1 cm/pixel. Other missions used a DJI Phantom
4 Quadcopter. The camera sensor in this UAV is 1/2.3-inch CMOS with fixed focal length
of 24 mm. The UAV flew at speed 2 m/s, with a shutter interval of 2 s. The camera was set
in automatic mode at a shutter speed of 1/120 s, ISO-100, EV at 0. This set up resulted in a
GSD of 2.6 cm/pixel. The number of RAW images of each flight mission ranged from 150
to 390 [11].

2.3. Data and Programs

The orthomosaics had a pixel size of 0.014 m to 0.02 m and were delivered in JPG-
format or tiff. They had 3–4 bands, but were generalized by a program to a 3-band data.
Moreover, the sizes were standardized to a size of 0.02 m time 0.02 m. The coordinate
system was Tokyo_UTM_Zone_54N. The programs that were used in this study were
ArcGIS Pro version 2.7.0, python 3.7, and spyder 3.3.6. All programs were run under a
Microsoft Windows 10 64-bit operating system. Nineteen different orthomosaics were
collected under different environmental conditions for this study (Table 1).
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Table 1. Orthomosaics used in this study, with the date of image collection and their mean
RGB-values.

Orthomosaic Date Red Green Blue

Site 1 1 March 2020 159.96 166.15 161.51
Site 1 1 August 2020 159.52 165.43 130.20
Site 1 6 September 2021 149.83 170.69 136.03
Site 1 6 September 2021 150.68 171.55 136.89
Site 1 16 September 2021 149.83 170.69 136.03
Site 2 1 March 2020 175.00 178.83 169.47
Site 2 1 August 2020 166.38 172.93 138.60
Site 3 14 August 2020 78.56 92.55 72.44
Site 3 17 November 2020 161.17 165.69 153.75
Site 3 6 September 2021 160.02 169.02 140.95
Site 3 5 October 2021 167.83 178.61 143.64
Site 4 15 October 2020 192.67 193.64 168.54
Site 4 26 October 2020 192.01 199.02 179.28
Site 4 27 June 2020 136.82 135.18 97.92
Site 4 27 June 2020 189.80 194.10 174.58
Site 4 26 October 2020 178.26 176.08 126.58
Site 4 5 August 2021 178.88 201.51 170.82
Site 4 5 October 2021 207.46 211.07 192.16
Site 5 18 August 2021 189.77 194.02 174.54

2.4. Definition of Tree Health Category

Based on these images, the degree of defoliation in individual trees is evaluated. The
most relevant visual symptom of tree infestation from UAV-acquired images is the whitish
looking leafless branches in random areas within the canopy. The percentage of white
pixels increases with the degree of tree defoliation (health decline), from full green when the
tree is healthy (non-infested) to full white when the tree is dead or completely defoliated
(Figure 2).
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Thus, the canopy area of each tree is divided into pixels of 0.02 × 0.02 m size each, of
which the white pixels represent the defoliated branches in each tree. The proportion of
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white pixels to the total number of pixels (white and non-white) within the tree canopy is
calculated and classified into six different categories, representing the degree of defoliation
of any given tree: Cat 1: <2.5% (healthy, no defoliation); Cat 2: 2.5–10% (very low defolia-
tion); Cat 3: 10–25% (low defoliation); Cat 4: 25–50% (medium defoliation); Cat 5: 50–75%
(high defoliation), and finally Cat 6: >75% (dead), based on the classification of [15].

2.5. Calculation of Whiteness

The whiteness of each pixel is defined by the RGB-color system and its values. The
color white consists of an equal proportion of the colors red, green and blue, with relatively
high color values. As these values decrease, keeping the same ratio among them, the white
changes to gray and then to black. However, depending on the light conditions during the
collection of the images that were used for the different orthomosaics, the values and ratios
for the white color varies considerably. Thus, in order to determine white and non-white
pixels within the tree canopy, we carried out the following three steps:

First, a pixel is considered white if the red (R) and blue (B) pixel values are higher than
the average R and B pixel values of the whole orthomosaic. By considering the average
value of the orthomosaic when defining white and non-white, different orthomosaics that
were made with images collected under different light conditions can be compared. The
ratio of the R and B values is used, because from successive tests, it was found that blue is
the decisive value when the pixel is white. When the color value approaches white, the
blue value increases and reaches similar values as the red values.

Since each orthomosaic has different light characteristics, the average R and B values
are different for each of the 19 orthomosaics. In the orthomosaics used in this study, the
average R and B values ranged from 100 to 180 (Figure 3). Thus, for each orthomosaic,
the threshold values were different. Since, after several trial-and-error tests, the threshold
values of the averaged R and B values left some white pixels out, we decided to homoge-
neously decrease the threshold values 15 points in each orthomosaic. As a result, the model
could identify clearly the white pixels in each orthomosaic regardless of the lightning
conditions at which the images for a given orthomosaic were collected.
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Figure 3. Workflow of step 1: calculations of white pixels using the R and B pixels average values.

Second, we focus on the pixels that were considered non-white in the first step. If
the pixel values of R and B, are lower than the average B pixel values divided by 3 and R
pixel values divided by 2, then the pixel is considered as non-white (Figure 4). The reason
for dividing R by 2 and B by 3 is that the red value is usually much higher (pixel values)
than that of blue. Therefore, the dividend must be set lower, resulting in a higher absolute
minimum threshold value. It is important that as many non-white pixels are included as
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possible leaving white pixels out. Non-white pixels include green areas (foliated branches)
of the tree, as well as dark pixels that are not part of the canopy, which might otherwise be
defined as one in the next step.
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Figure 4. Workflow of step 2. Elimination of dark pixels.

For the final step, the ratio between the R and the B pixel value (R/B) is calculated.
First, we determine the average red and green (G) color values and the ratio between them.
If the ratio is higher than 1, red is the dominant color, but if green is the dominant color, the
ratio is lower than 1. Thus, threshold ratios must be adjusted. When the average R is higher
than the average G, and the R/B ratio value of an individual pixel is lower than 1.3, then
the pixel is considered as white. However, if the ratio between R and G pixel values (R/G)
is smaller than 0.9, then the pixel R/B ratio should be lower than 1.2 to be considered as
white. If the average R pixel value is higher than the average G pixel value, then pixels with
an R/B ratio lower than 1.1 are considered as white (Figure 5). Under all other conditions,
the pixel is considered as non-white. The R/B ratio was chosen because there are large
variations between these two colors. Once all pixels have been categorized as white or
non-white, then the model calculates how many white pixels are part of the area of the tree.
Every white pixel is assigned the value 1, while all the non-white pixels are assigned the
value 0. These steps are repeated for each individual pixel of a given orthomosaic. The
result is a grid shape with 1 s and 0 s and then by using steps one, two, and three, the
threshold errors are also minimized.
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of the pixels that were not found in step 1 and 2.

2.6. Polygon Definition

Polygons were drawn around every single fir tree and saved in a shape file. In this
study, the polygons were drawn manually. There was a careful consideration for polygons
to include as much area from the tree and as little of the non-tree area as possible to make
sure that each tree canopy area was correctly represented. The number of white (1) and
non-white pixels (0) are counted for each polygon using Equation (1).

Proportion of whiteness =
∑ Pixelwhite

∑ Pixel
(1)

where ∑Pixelwhite is the sum of all white pixels of the canopy area from a single tree
and ∑Pixel is the number of all pixels within the canopy area of the same tree. This
equation calculates the degree of damage (a proxy for defoliation) of an individual fir tree
in percentage based on the proportion of white and non-white pixels (POW).
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The GIS model uses three simplified steps. The first step is the creation of polygons as
well as the extraction of the RGBavg values of the orthomosaic. In the next step, the model
calculates the number of white or non-white pixels and in the third step, the two previous
steps are combined to calculate the POW-values and classified tree health. We used the
orthomosaics from site 1, 2, 3, and 5 to calibrate the model and applied it on Site 4 (year
2021). This procedure is repeated for each tree (polygon) (Figure 6).
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3. Results

From the orthomosaics, we were able to visualize the proportion of defoliation of
trees as an indicator of tree health status but with the results of the GIS-based model,
we were able to automatically calculate the degree of tree damage (health decline) into
six categories. The different levels of defoliation, shown in violet in Figure 7, represent
each category: 1.1 % defoliation (Figure 7a,b) corresponded to Cat 1, while defoliations of
9.2% (Figure 7c,d), 16.4% (Figure 7e,f), 46.9% (Figure 7g,h), 59.1% (Figure 7i,j) and 98.8%
(Figure 7k,l), corresponded to Cat 2–6, respectively. The white color within the canopy of
each tree, in the RGB orthomosaic, is perceived by humans but can hardly be quantified
visually. In comparison to any subjective method used at present, the model provided a
millimetric account of all the defoliated branches in the canopy of any given tree.

In the case of a healthy tree, the maximum number of white pixels found (below
the 2.5% threshold) matched the condition of the tree, as is visualized in the images and
partially in the field. The same could be said about trees in Cat 6, which represented the
dead trees. In this case, the number of white pixels found (above 75%), corresponded to the
characteristics of a dead tree in the orthomosaic and in the field. These figures also show
that the precise definition of the polygon around the tree is of the outmost importance
for the model, avoiding the inclusion of areas that are not part of the tree. Thus, the
more damaged trees need special attention with regard to the polygon definition, since
the canopy areas (branches included) are smaller and their shape does not follow a clear
pattern in comparison to trees in other categories.

It should also be noted that if the white colors (violet in the figure) outside the tree
canopy (Figure 7) are counted, the error of calculating the POW will increase considerably.

In the orthomosaic corresponding to Site 4 in our study area (Figure 8a), the average R
value was 179, while the average G and B values were 202 and 170, meaning that the whole
area was predominantly green. The average R and B values were below 180 but above 160,
which means that when the pixel R and B values were above 145, the pixel was declared
white. When the R and B values of a pixel were below 145, the next step was followed in
order to eliminate darker pixels. When the R pixel value was less than the average R value
divided by 2 and the blue pixel value was lower than the average B value divided by 3, the
pixel was declared as non-white. When the R pixel value was lower than 89.5 (179/2) and
the B pixel value was lower than 56.6 (170/3), the pixel was declared as non-white.



Computation 2022, 10, 63 8 of 12

Computation 2022, 10, x FOR PEER REVIEW 8 of 13 
 

 

(Figure 7c,d), 16.4% (Figure 7e,f), 46.9% (Figure 7g,h), 59.1% (Figure 7i,j) and 98.8% (Figure 
7k,l), corresponded to Cat 2–6, respectively. The white color within the canopy of each 
tree, in the RGB orthomosaic, is perceived by humans but can hardly be quantified visu-
ally. In comparison to any subjective method used at present, the model provided a mil-
limetric account of all the defoliated branches in the canopy of any given tree. 

In the case of a healthy tree, the maximum number of white pixels found (below the 
2.5% threshold) matched the condition of the tree, as is visualized in the images and par-
tially in the field. The same could be said about trees in Cat 6, which represented the dead 
trees. In this case, the number of white pixels found (above 75%), corresponded to the 
characteristics of a dead tree in the orthomosaic and in the field. These figures also show 
that the precise definition of the polygon around the tree is of the outmost importance for 
the model, avoiding the inclusion of areas that are not part of the tree. Thus, the more 
damaged trees need special attention with regard to the polygon definition, since the can-
opy areas (branches included) are smaller and their shape does not follow a clear pattern 
in comparison to trees in other categories. 

Figure 7. Results of white pixel detection and classification of fir tree health; Cat 1 (a,b), Cat 2 (c,d), 
Cat 3 (e,f), Cat 4 (g,h), Cat 5 (i,j), Cat 6 (k,l). 

It should also be noted that if the white colors (violet in the figure) outside the tree 
canopy (Figure 7) are counted, the error of calculating the POW will increase considerably. 

In the orthomosaic corresponding to Site 4 in our study area (Figure 8a), the average 
R value was 179, while the average G and B values were 202 and 170, meaning that the 
whole area was predominantly green. The average R and B values were below 180 but 
above 160, which means that when the pixel R and B values were above 145, the pixel was 
declared white. When the R and B values of a pixel were below 145, the next step was 
followed in order to eliminate darker pixels. When the R pixel value was less than the 
average R value divided by 2 and the blue pixel value was lower than the average B value 
divided by 3, the pixel was declared as non-white. When the R pixel value was lower than 
89.5 (179/2) and the B pixel value was lower than 56.6 (170/3), the pixel was declared as 
non-white. 

Figure 7. Results of white pixel detection and classification of fir tree health; Cat 1 (a,b), Cat 2 (c,d),
Cat 3 (e,f), Cat 4 (g,h), Cat 5 (i,j), Cat 6 (k,l).

Computation 2022, 10, x FOR PEER REVIEW 9 of 13 
 

 

 
Figure 8. (a) Result of the model in Site 4. The black square inserted in this figure is used to depict 
the steps leading to tree damage categorization (b–d) , (b) single trees with polygons, (c) result of 
white detection, (d) result of the model. 

When at least one pixel was above one of these calculated values, 89.5 for R or 56.6 
for B, the ratio between the R and B pixel values needed to be below 1.2 (average R divided 
by average G is below 0.9) to be declared white. Otherwise, the pixel was considered as 
non-white. This was repeated for all pixels in the orthomosaic. In the last step, in each of 
the polygons, representing the canopy of a tree (Figure 8b), the POW value was calculated 
from the white and non-white pixels in the polygons (Figure 8c) and finally, each individ-
ual tree damage category was determined (Figure 8d). The results of analyzing each single 
tree health condition in Site 4 showed that in the 4-ha area there were 1376 trees, of which 
277 were healthy (Cat 1) while 628, 244, 64, and 12 trees were found in different degrees 
of damage (defoliation) corresponding to Cat 2–5, respectively. Finally, the number of 
dead trees (Cat 6) was 151 or 11% of the total number of trees. Besides the number of trees 
in each of the categories, the model also provided the spatial distribution of forest decline 
for the year 2021. 

4. Discussion 
The first bark beetles attack in Zao Mountains was reported in 2012 and by the year 

2016, almost all fir trees near the tree-line were dead (Site 5). Since then, forests in lower 
grounds (Sites 1–4) have not been considered as seriously affected by the spread of bark 
beetle infestation [24]. The lack of detailed analysis on the rate of forest decline have ob-
scured the magnitude of infestation within the fir forest, as was pointed out by Nguyen 
et al. [10]. Bark beetle infestation is usually classified as green-attack stage (very early in-
festation), red-attack (early infestation), and grey-attack (later stage of infestation) in the 
wake of the infestation [25,26]. The results of our study represent the rate of forest decline 
as the grey-attack stage has set in and when trees start showing signs of defoliation after 

Figure 8. (a) Result of the model in Site 4. The black square inserted in this figure is used to depict
the steps leading to tree damage categorization (b–d), (b) single trees with polygons, (c) result of
white detection, (d) result of the model.



Computation 2022, 10, 63 9 of 12

When at least one pixel was above one of these calculated values, 89.5 for R or 56.6 for
B, the ratio between the R and B pixel values needed to be below 1.2 (average R divided
by average G is below 0.9) to be declared white. Otherwise, the pixel was considered as
non-white. This was repeated for all pixels in the orthomosaic. In the last step, in each of
the polygons, representing the canopy of a tree (Figure 8b), the POW value was calculated
from the white and non-white pixels in the polygons (Figure 8c) and finally, each individual
tree damage category was determined (Figure 8d). The results of analyzing each single
tree health condition in Site 4 showed that in the 4-ha area there were 1376 trees, of which
277 were healthy (Cat 1) while 628, 244, 64, and 12 trees were found in different degrees of
damage (defoliation) corresponding to Cat 2–5, respectively. Finally, the number of dead
trees (Cat 6) was 151 or 11% of the total number of trees. Besides the number of trees in
each of the categories, the model also provided the spatial distribution of forest decline for
the year 2021.

4. Discussion

The first bark beetles attack in Zao Mountains was reported in 2012 and by the
year 2016, almost all fir trees near the tree-line were dead (Site 5). Since then, forests in
lower grounds (Sites 1–4) have not been considered as seriously affected by the spread
of bark beetle infestation [24]. The lack of detailed analysis on the rate of forest decline
have obscured the magnitude of infestation within the fir forest, as was pointed out by
Nguyen et al. [10]. Bark beetle infestation is usually classified as green-attack stage (very
early infestation), red-attack (early infestation), and grey-attack (later stage of infestation)
in the wake of the infestation [25,26]. The results of our study represent the rate of forest
decline as the grey-attack stage has set in and when trees start showing signs of defoliation
after the severe effect of bark beetle proliferation in the phloem tissues, disrupting the
translocation of water and nutrients in affected trees [27]. Our results showed that in Site 4,
ranging from an altitude of 1435 m to 1495 m, only 20% of the trees of a total of 1376 trees
were found healthy. Most of the trees were slightly damaged, showing a level of defoliation
that extends from 2.5% to 25% (Cat 2–3) in 63% of the trees and only 6% of the trees are in
the last stages of defoliation, and thus seriously damaged (Cat 4–5), while the number of
dead trees (Cat 6) was 151. However, if Cat 4–5 trees are also considered in the long-term,
then the number of dead trees would account for 17% of the total number of trees. Based on
the distribution of tree health condition in the forest, we could observe that infested trees
were distributed all over the site, regardless of the altitude or its proximity to the forest road
or the ropeway line. In the northeastern areas of the study site, small pockets of heavily
infested trees can be found, while most of the healthy trees were found in the southeastern
area of the site. There is no direct method to validate if the more than 1000 trees that
have been classified in the six tree damage categories are in agreement with the subjective
evaluation in the field. Therefore, in order to test our model, the images (polygons around
the canopies) of 67 trees including the six categories were selected randomly from the 4-ha
site, and assessors familiar with the evaluation of insect infested forests were asked to
visually classify the images for comparison with the results of our GIS-based model. The
results of this comparison proved, as expected, high variability in human perception of
tree infestation depending on the subjective criteria of each of the assessors (Table 2). The
comparison between both methodologies showed in general an average agreement of 62%.
The highest precision was observed in Cat 1 and Cat 6 with 79% and 94%, respectively,
while the lowest precision (36%) was reported for Cat 3, showing the difficulty for the
assessors to distinguish the differences between small differences in tree defoliation. Similar
results were found for the sensitivity and specificity values.

Our results showed that this new systematic evaluation method can be easily verified,
shared, and used for comparison with other fir forests in Japan, where they extend from
north to south in a transect of 700 km from center to northern Honshu Island. Thus, in
comparison with other studies [10,16,19], we were able to classify different degrees of
damage and provide a more thorough assessment of forest health decline.
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Table 2. Results of the comparison of visual observation to the model. It shows the sensitivity, speci-
ficity and the precision for each category. Six test subjects got patches of trees, 10 to 13 per category.

67 Trees Cat 1 Cat 2 Cat 3 Cat 4 Cat 5 Cat 6

Sensitivity 0.78 0.51 0.47 0.50 0.60 0.85
Specificity 0.95 0.91 0.88 0.91 0.92 0.99
Precision 0.79 0.53 0.36 0.56 0.55 0.94

Considerations When Using the Model

Since the critical pixels of the model are the white pixels, images collected under snow
covered conditions should be avoided. Uniform light conditions in the area where pictures
are being taken are ideal, avoiding as much as possible shadows covering part of the
tree canopy. Preferably, cloudy conditions or late hours in the afternoon provide the best
conditions for homogeneous lightning in large forested areas that are being photographed
sometimes for hours. In general, the model can work relatively well under a wide range of
lightning conditions. Nevertheless, care should be taken to ensure that the orthomosaic
is homogeneous with respect to lighting conditions. For example, a very well-lit slope
and a heavily shaded slope should not be included in the same orthomosaic. This would
otherwise lead to threshold problems and misinterpretations, since an average value is used
for two areas with different conditions. This is because the model uses the average values of
the orthomosaic. By using the average values, different orthomosaics can be compared with
each other, regardless of the different conditions, while one single large orthomosaic with
many different conditions might lead to incorrect results. Different factors during the flight
mission affect significantly light conditions. For example, a forest looks different at 9:00
than at 15:00 h, with seasonal light conditions and slope aspect affecting the orthomosaic
too. In the area of Zao Mountains, the months with the most stable weather conditions
were June and October.

Since counting pixels within the polygon (tree canopy) is the key for the precision of
the model, extreme care should be taken on the precise delineation of it. If the polygon is
done incorrectly, such as too small or too large, pixels will be missed or extra pixels not
belonging to the tree will be included, respectively. Thus, in this study, we have chosen
to establish the polygons manually for each tree, which is at present the limitation for
complete automatization of the model. In the future, the automatic delineation of the
polygons around the multi-shaped tree canopies in a bark beetle infested forests can be
performed with deep learning. Another limitation of the GIS-based model proposed in this
study is that UAV-acquired images captured tree canopies from above, which means that
hidden defoliated branches cannot be detected. Accounting for those missing branches
can be partially solved if we considered the different types of defoliation symptoms of
infested trees. In some cases, defoliation occurs evenly on the top of the tree canopy, while
in other trees defoliation is concentrated on the canopy side from top to bottom, or evenly
distributed in the lower branches of the tree canopy. Sometimes, these types of infestation
are also mixed. Therefore, it is crucial to consider the entire tree canopy area, and not only
the tree top or partial areas of the tree, because if not we will increase the effect of ‘hidden
branches’ and we will be ignoring the patterns of damage, especially those occurring in the
lower branches.

5. Conclusions

The GIS-based model developed in this study estimated the defoliation of single trees
from white pixels in the very high-resolution images from UAVs and used it as a proxy
for the degree of damage of single trees. With this methodology, it was possible to rapidly
evaluate hundreds of trees in a relatively short amount of time. The model is the first
step towards the automatic classification and evaluation of pest infestation of single trees
in fir forests, but it can be adapted for any type of disturbance that causes defoliation in
trees. The model could also be combined with deep learning for an automatic detection
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of the degree of damage in individual trees. The results of the model can be ideally used
as training data for deep learning models, thus, replacing the subjective classification of
humans for a numerical objective calculation.

The model proposed in this study showed the potential to evaluate the spatial effect of
pest infestation in fir forests covering large areas in a difficult terrain. The method that is
proposed can be used by forest managers or scientists with minimum equipment capabilities.
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