
Vol.:(0123456789)

The Journal of Supercomputing
https://doi.org/10.1007/s11227-024-06069-x

1 3

Analyzing FOSS license usage in publicly available software
at scale via the SWH‑analytics framework

Alessia Antelmi1,3 · Massimo Torquati2,3 · Giacomo Corridori5 ·
Daniele Gregori4 · Francesco Polzella5 · Gianmarco Spinatelli5 ·
Marco Aldinucci1,3

Accepted: 12 March 2024
© The Author(s) 2024

Abstract
The Software Heritage (SWH) dataset represents an invaluable source of open-
source code as it aims to collect, preserve, and share all publicly available software
in source code form ever produced by humankind. Although designed to archive
deduplicated small files thanks to the use of a Merkle tree as the underlying data
structure, querying the SWH dataset presents challenges due to the nature of these
structures, which organize content based on hash values rather than any locality
principle. The magnitude of the repository, coupled with the resource-intensive
nature of the download process, highlights the need for specialized infrastructure
and computational resources to effectively handle and study the extensive dataset
housed within SWH. Currently, there is a lack of infrastructures specifically tailored
for running analytics on the SWH dataset, leaving users to handle these issues man-
ually. To address these challenges, we implemented the SWH-Analytics (SWHA)
framework, a development environment that transparently runs custom analytic
applications on publicly available software data preserved over time by SWH. Spe-
cifically, this work shows how SWHA can be effectively exploited to study usage
patterns of free and open-source software licenses, highlighting the need to improve
license literacy among developers.

Keywords  Software Heritage · Free and open-source software · License conflicts ·
License management · Large-scale analytics

1  Introduction

Over the past two decades, open-source software (OSS) has undergone remarkable
development, now enjoying widespread adoption. What commenced as a grassroots
movement marked by the introduction of the first free OSS operating system has
since evolved into a pervasive trend within the developer community [1, 2]. This

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-024-06069-x&domain=pdf

	 A. Antelmi et al.

1 3

momentum, in turn, has led to the widespread integration of open-source solutions
by enterprises worldwide, ultimately capturing the attention of major players within
the software industry, as exemplified by IBM’s acquisition of Red Hat [3]. As high-
lighted in the 2022 GitHub report [4], open source serves as the cornerstone of over
90% of the world’s software infrastructure. According to the same report, the year
2022 alone witnessed the inception of an astounding 52 million new (possibly open-
source) projects on the GitHub platform, underscoring the thriving ecosystem. Fur-
thermore, according to estimates from the European Commission, the adoption of
open-source software is contributing to annual savings of approximately 114 bil-
lion euros in direct development costs, thereby significantly bolstering the European
economy [5].

At its essence, OSS refers to software whose source code is made available to the
public, allowing for viewing, modification, and distribution by anyone without any
cost [6]. To be effectively considered open-source, the software must be accompa-
nied by a license that makes its source code legally available to end-users. In this
context, the Software Heritage (SWH) initiative represents a valuable source as it
aims to archive, preserve, and make accessible all software publicly available in
source code form ever produced by humankind [7]. SWH enables a whole series
of analyses to gain precious insights into the evolution of the open-source com-
munity and its practices over time. By leveraging SWH data, researchers can delve
into how developers contribute to OSS and explore the distinctive aspects of public
code contributions, thus enabling a comprehensive exploration of the dynamics and
nuances inherent in the landscape of open-source development. The SWH dataset
is experiencing rapid growth, reaching close to 1PB of archived software source
code files and boasting a metadata graph of nearly 20TB as of July 2023, with a
monthly expansion rate of several TB. While designed to archive deduplicated small
files (with an average size of less than 4kB) thanks to the use of a Merkle tree as
the underlying data structure, querying the SWH dataset presents challenges due to
the nature of these structures, which organize content based on hash values rather
than any locality principle. This storing approach makes efficient processing in Big
Data MapReduce frameworks (e.g., Spark) or AI training/inference systems chal-
lenging. Traversing the 20TB metadata hash tree and navigating across 1PB of stor-
age objects without spatial locality hampers the efficiency of iterative operations, as
files from the same directory may not be stored in contiguous memory areas. Con-
sequently, SWH queries, which can request entire projects or specific elements (e.g.,
all README files), may require significant time to retrieve the desired data. For this
reason, SWH may not be directly suitable for systems prioritizing efficiency in data
retrieval.

Motivation. The vast scale of the SWH repository poses a formidable challenge
for analysis using conventional tools. Attempting to download content from SWH
not only demands a significant investment of time but also necessitates ample stor-
age resources. Therefore, the prospect of downloading the entire dataset onto a
proprietary machine and subsequently analyzing it on a personal laptop becomes
impractical and unfeasible. The magnitude of the repository, coupled with the
resource-intensive nature of the download process, highlights the need for special-
ized infrastructure and computational resources to effectively handle and study the

1 3

Analyzing FOSS license usage in publicly available software…

extensive dataset housed within SWH. Currently, there is a lack of infrastructures
specifically tailored for running analytics on the SWH dataset, leaving users to han-
dle the various challenges mentioned manually. In this context, the Software Herit-
age Analytics framework (SWHA) comes into play. The first design goal of SWHA
is to enhance the analytics process by providing a structured platform, thereby
relieving users from the explicit management of the challenges mentioned earlier.
The second objective is to facilitate the seamless updating of existing analyses, espe-
cially in monitoring the evolution of specific aspects. In scenarios where users need
to track changes or updates, SWHA allows them to download and process only the
new data effortlessly. This transparency in handling updates is made possible by the
architecture of SWHA, allowing users to efficiently build upon their analyses with-
out unnecessary duplication of efforts or extensive manual intervention.

Contribution. This article extends our previous work [8], where we introduced
the SWHA framework, the first specialized development and runtime environment
designed to facilitate the analysis of software archives preserved over time by SWH.
SWHA is a free and open-source project available on GitHub1, developed within
the context of the ADMIRE European project2. In this work, we focus on present-
ing the application of SWHA in analyzing software archives stored by SWH. Spe-
cifically, we illustrate SWHA’s functionalities by delving into a practical scenario:
the examination of free and OSS (FOSS) licenses within publicly available software
artifacts. Through this exploration, we offer insights into the efficacy and scalability
of SWHA, showcasing its performance in real-world contexts. Our novel contribu-
tions can be summarized as follows.

⋅ To illustrate the practical utility of SWHA, we present an application dedicated
to examining FOSS license usage within publicly available software artifacts.
Specifically, we considered publicly available GitHub repositories indexed by
SWH. Focusing on software licenses is particularly significant, given that one of
the defining characteristics of open-source software is the presence of a license
that dictates the legal accessibility of its source code to end-users.
⋅ We perform an in-depth analysis to assess how licenses are expressed in prac-
tice, quantifying the prevalence of multi-licensed projects and license conflicts
detected in the most used GitHub repositories.
⋅ We evaluate the performance of our license analytics application and the overall
scalability performance of SWHA.

In line with the terminology used by SWH, when we use the term (software) project
in this article, we are referring to a software artifact in its source code form. Given
the complex data model underlying SWH, we take care to specify whether we are
referring to SWH or GitHub projects throughout the article when not clear from
the context. In cases where we are discussing GitHub projects, we also use the term
repository interchangeably.

1  https://​github.​com/​alpha-​unito/​Softw​are-​Herit​age-​Analy​tics
2  https://​admire-​euroh​pc.​eu

https://github.com/alpha-unito/Software-Heritage-Analytics
https://admire-eurohpc.eu

	 A. Antelmi et al.

1 3

The remainder of the paper is organized as follows. Section 2 details the archi-
tecture of SWHA, and introduces the SWH initiative on which it is based. Section 3
overviews related works concerning the analysis of license usage. Section 4 presents
the analytic application built on top of SWH to analyze FOSS license usage in pub-
licly available software artifacts. Section 5 discusses the insights obtained, the appli-
cation’s performance and framework’s scalability, and the limitations of our work.
Section 6 concludes this work.

2 � Background

In this section, we provide an overview of the Software Heritage dataset by delin-
eating its main characteristics to provide the reader with the essential knowledge to
understand specific architectural details of SWHA. We then describe the Software
Heritage Analytics framework by detailing its components.

2.1 � Software Heritage

Software Heritage [7, 9, 10] is a globally recognized nonprofit initiative dedicated
to archiving, preserving, and making accessible all software publicly available in
source code form ever produced by humankind. Launched in 2016, it currently con-
tains around 16.6 billion unique source files and 3.5 billion unique commits from
more than 258 million publicly available software projects, for a total of 1PB data3,
crawled from code repositories like GitHub and GitLab4. The SWH archive has been
exploited to analyze geographic and gender diversity in public code contributions
[11–13], license text variants [14], repository forks identification [15], and various
code usage statistics, such as the most likely filenames [16], commits patterns [17],
and average size of the most popular file types [15].

The SWH graph dataset. To facilitate the traceability of software artifacts and
minimize storage requirements, SWH projects are stored as a Merkle directed acy-
clic graph (DAG) [18]. Specifically, a Merkle DAG is a DAG where each node has
an identifier resulting from the hashing of the node’s content and the list of identi-
fiers of its children using a cryptographic hash function like SHA256. This inherent
peculiarity of Merkle DAGs makes these structures a versatile and efficient solu-
tion for data integrity verification, deduplication, synchronization, and security in
diverse applications.

The SWH DAG [19] is organized in six logical layers represented in Fig. 1. In
more detail, the SWH data model supports:

⋅ Contents or blobs, which represent the graph’s leaves and contain the raw con-
tent of source code files;
⋅ Directories, namely source code trees;

3  As in July 2023.
4  https://​archi​ve.​softw​arehe​ritage.​org

https://archive.softwareheritage.org

1 3

Analyzing FOSS license usage in publicly available software…

⋅ Revisions or commits which are point-in-time captures of the entire source tree
of a development project;
⋅ Releases or tags which are project-related revisions that have been marked;
⋅ Snapshots which are point-in-time captures of the full state of a project develop-
ment repository. In other words, when the SWH framework crawls projects from
a software development repository, it makes a snapshot of its current state;
⋅ Origin nodes which represent software distribution repositories, such as public
Git repositories identified by URLs. These nodes represent the graph roots point-
ing into the Merkle DAG.

The Merkle DAG is encoded in the dataset as a set of relational tables. Further, the
dataset also includes crawling data in the form of triples, capturing details about
where a specific snapshot was encountered (origin URL) and when it was encoun-
tered (timestamp). We refer the reader to the SWH’s official documentation for more
details on its data model [20].

2.2 � The SWH‑Analytics infrastructure

The Software Heritage Analytics (SWHA) framework has been designed and
developed in the context of the ADMIRE European project, whose main objec-
tive was to produce software solutions to enhance the throughput of HPC systems
and the performance of individual applications. In addition, the project aimed to
decrease energy consumption while offering quality of service and resilience. In
particular, SWHA was built as a development and runtime environment tailored
for applications created to analyze the software preserved over time by SWH. In
other words, SWHA provides an environment that empowers users to perform any
query allowed by SWH on its dataset. This encompasses not only SWH software

Fig. 1   The SWH data model, stored as a Merkle DAG

	 A. Antelmi et al.

1 3

projects but also extends to projects’ subdirectories, files (such as retrieving all
README files in the entire dataset), or even all versions of a project within a
specific timeframe. SWHA was created to address the challenges posed by query-
ing and analyzing the vast scale of the SWH dataset by

1.	 Providing a structured platform for querying and storage management. SWHA
offers a structured platform that alleviates users from explicitly managing queries
to the SWH repository and handling storage resources. This functionality simpli-
fies accessing and extracting information from the SWH dataset, allowing users
to concentrate on their analyses without the need to handle the technical aspects
of querying and storage.

2.	 Offering an efficient data update. Another key aspect of SWHA is its ability to
facilitate the updating of existing data and analyses. This capability is particu-
larly beneficial when users need to track changes or updates in the SWH dataset.
Rather than reprocessing the entire dataset, SWHA enables users to download
and process only the new data. This functionality enhances efficiency by allowing
users to incorporate the latest information, saving time and resources in situations
where only incremental updates are required.

The SWHA architecture is made up of three main software layers, namely stor-
age, data orchestration, and application layers. Figure 2 schematically represents
how layers communicate, while Fig. 3 details the execution and data flow within
the framework. A description of each layer follows.

Storage layer. This layer primarily comprises a data cache named Cachemire,
which speeds up the data retrieval and computation process. Cachemire imple-
ments a distributed key value storage system, where the key corresponds to a pro-
ject’s unique identifier assigned by SWH, while the associated value encapsulates
the project package in a compressed tgz format, along with any potential analysis
outcomes related to the project. Precisely, depending on the specific application,
the project identifier corresponds to the identifier of any of the project’s main
directories in the SWH Merkle tree (see Sect. 2.1). The Cachemire interface pro-
vides a simple API that exposes PUT and GET functions, and their implementa-
tion relies on locking mechanisms offered by Posix-compliant file system prim-
itives. Cachemire adopts the LRU algorithm (least recently used) as the cache
replacement policy. To manage cache size effectively, an external script runs at

Fig. 2   The SWHA architecture

1 3

Analyzing FOSS license usage in publicly available software…

regular intervals, actively monitoring and maintaining the size within the prede-
fined threshold.

A pivotal feature facilitating workload balancing is the ability to launch additional
Cachemire instances across multiple nodes dynamically, provided each node offers a
mounting point to a distributed file system. This storage infrastructure is seamlessly
delivered by the ADMIRE framework through specialized storage systems like Gek-
koFS or Hercules. The synergy between a cache component optimized for use with
such ad hoc storage systems significantly augments the efficiency and reduces the
completion time of applications developed within the SWHA framework.

Data orchestration layer. This layer incorporates a pool of data stream genera-
tors (app controllers), which cooperate with Cachemire and the user-defined appli-
cations in a parallel computing environment. In particular, the orchestration and
application layers communicate via the Apache Spark Streaming Framework5 (see
Fig. 2). In more detail, each app controller within a computing node is responsi-
ble for managing a user application that may be distributed across multiple comput-
ing nodes. Upon receiving a query for the SWH repository to execute, the control-
ler initially checks whether the requested data or computation is already present in
Cachemire. If not, the controller then queries the SWH dataset and awaits the arrival
of the required data. Once SWH begins transmitting the data, the application con-
troller directs this data flow to the Apache Spark Streaming framework, as illustrated
in Fig. 3.

Apache Spark is an open-source, distributed computing framework designed for
big data processing and analytics, with widespread use and a highly active developer

Fig. 3   The SWHA data flow

5  https://​spark.​apache.​org/​strea​ming

https://spark.apache.org/streaming

	 A. Antelmi et al.

1 3

community. It was developed in response to the limitations of the Hadoop MapRe-
duce model, offering significant performance improvements and enhanced capabili-
ties for various data processing tasks. In this project, we leveraged the Spark Stream-
ing version to build low-latency applications and, thereby, enhance the efficiency
of the data retrieval to the computation cycle. In particular, stream-based analytics
enabled the real-time processing of data, allowing on the fly analysis without the
need to store the complete dataset locally. This approach allowed us to tackle the
limitations posed by the vastness of SWH while offering a scalable and effective
method for extracting valuable insights from the repository without overwhelming
local storage resources and computation capabilities.

Application layer. SHWA offers the capability to run custom analytics applica-
tions written in Scala. In addition to Java and Python, Scala is among the program-
ming languages compatible with the Apache Spark framework. Employing custom
applications written in Scala ensures seamless compatibility with the underlying
streaming mechanism, as we chose the Scala version of Apache Spark. This design
choice was driven by the fact that, during the implementation of SWHA, the Python
version did not support multiple parallel input streams, limiting the computational
capabilities of the framework.

Each application can analyze a set of SWH data specified via a recipe defined by
the user. Essentially, these recipes serve as queries formatted according to the SWH
specifications and can request SWH projects, specific subdirectories, or groups of
files. Recipes include essential information, such as the SWH identifier of the pro-
jects to analyze and additional metadata when needed, like the projects’ program-
ming language. The term “recipe” in SWHA is inherited from SWH due to its asso-
ciation with the process of preparing a set of data to download, which is colloquially
referred to as “cooking”. The cooking process involves the preparation of a tar.gz
archive containing all the files associated with the requested data. This naming con-
vention helps maintain consistency and aligns with the terminology used in SWH.
Simply put, SWHA executes the user-defined query, manages the download process
by caching the necessary data, and runs the user-defined application.

The application layer serves as the bridge for communication between an authen-
ticated user and the SWHA system via a web-based console accessible through a
web browser application. In this interface, users can perform various actions,
including:

⋅ Project search. Users can search for one or more projects within the SWH
archive by name. Additionally, they have the option to add these projects to a
recipe file for further processing.
⋅ Upload of custom analytic application. Users can upload custom analytic appli-
cations in JAR format. These applications are designed to perform specific analy-
ses on selected projects.
⋅ Specify the association between applications and recipes. Users can associate
an uploaded application with a recipe, specifying which projects the application
should analyze. Both recipe files and application JAR files are stored in a local
repository for easy management and accessibility. The system is designed to offer
flexibility, allowing users to utilize the same application with multiple recipes or

1 3

Analyzing FOSS license usage in publicly available software…

the same recipe with different applications. This versatility enables users to tailor
their analyses by mixing and matching recipes and applications as needed, pro-
viding a powerful and adaptable framework for data processing and analytics.
⋅ Application execution. Users can initiate the execution of their application, trig-
gering the analysis process.

This web console simplifies user interaction with the SWHA system, enabling
efficient project searching, application management, and execution within a user-
friendly browser environment.

3 � Related work

Open-source licensing and the detection of potential license and copyright violations
have been subjects of research in both industry and academia for many years [21]. In
2011, Hemel et al. introduced a system for identifying code clones in binary files to
gauge the extent of this issue [22]. A decade later, the same researchers reevaluated
their work and its influence [23]. They discovered that the industry and academia
have progressed in the realm of license compliance and detection, largely due to
recent tools like FOSSology [24] and findOSSLicense [25], as well as open-source
compliance initiatives, such as OpenChain [26, 27] and SPDX [28, 29]. These
resources have made it more convenient to recognize and adhere to open-source
licenses, significantly reducing the likelihood of inadvertent license violations [30].
However, recent studies indicate that violations of open-source licenses continue to
be a widespread problem, affecting a majority of software and hardware products
containing open-source components [21, 30, 31].

The roots of such a problem may lie in two primary causes: a lack of understand-
ing of license usage and code duplication. In the first case, Almeida et al. [32, 33]
found empirical evidence that software developers generally grasp how to apply
individual open-source licenses in straightforward and complex development sce-
narios. However, they tend to face difficulties when dealing with situations involving
combinations of open-source licenses. Additionally, Kapitsaki et al. [21] categorized
problems related to open-source software based on user queries on the Open Source
Stack Exchange platform, showing that posts related to license texts/conditions and
license/copyright notices were more prevalent, while posts discussing differences
between licenses were the most widely viewed by other users. The second factor
contributing to this issue can be attributed to the substantial amount of duplicated
code on platforms like GitHub. In particular, Lopes et al. [34] demonstrated that
out of 428 million files hosted on GitHub, only 85 million were distinct, while the
remaining files were either copied from larger repositories or represented new forks
of abandoned repositories. Moreover, Rousseau et al. [35] observed a high replica-
tion factor in the raw byte sequence of files. These observations indicate that license
inconsistencies can likewise be replicated and propagated on a larger scale.

Over the past few years, researchers focused on analyzing license inconsistencies
patterns within specific programming languages. For instance, Moraes et al. [36]

	 A. Antelmi et al.

1 3

conducted a study on (multi-)license usage in JavaScript repositories, analyzing a
sample of 1,552 projects. Their findings revealed that, on average, these projects had
4.7 licenses, with 61% of them employing more than one license. Moreover, nearly
40% of the multi-licensed projects experienced compatibility issues (i.e., licenses
contained incompatible legal clauses; for instance, the Apache 2.0’s license part-
ner rights make it incompatible with GPL v2). Upon further investigation involving
communication with project maintainers, it became evident that developers often
lack an understanding of the interplay between licenses and the implications of uti-
lizing multiple licenses. Similarly, Makari et al. [37] empirically studied the evolu-
tion, popularity, and compliance with dependency licenses in the npm and Ruby-
Gems software package ecosystems. Their research revealed that 7.3% of npm and
13.9% of RubyGems packages had direct or indirect dependencies with incompat-
ible licenses. Notably, GPL dependencies emerged as the primary source of these
incompatibilities. These findings further suggested the substantial variations that
can exist between different software ecosystems concerning this issue.

Golubev et al. [38] focused on Java projects, considering the language’s wide-
spread use in the industry, where plagiarism issues hold particular significance due
to potential legal consequences. Their study involved the analysis of 23,378 Java
repositories sourced from GitHub, encompassing a dataset of 94 licenses. They
examined the distribution of these licenses among files and estimated the likeli-
hood of code borrowing and license violations between them. In their investiga-
tion of potential license violations within specific code segments, the authors found
that approximately 29.6% of these segments might be linked to potential code bor-
rowing, with 9.4% possibly violating the original licenses. The most recent work
about open-source license inconsistencies on GitHub comes from Wolter et al. [30].
Their investigation involved the analysis of a sample comprising 1000 open-source
GitHub repositories. Their findings indicated that nearly half of these repositories
did not comprehensively declare all the licenses present in the code. Furthermore,
among these cases, approximately 10% exhibited a mismatch between permissive
and copyleft licenses. Based on this outcome, the authors advise that users of open-
source code should not rely solely on the declared licenses but should also inspect
the software to gain a clear understanding of its actual licensing.

The academic community has recently begun investigating the use of software
bills of materials (SBOM) files. These documents comprise a structured inven-
tory listing all open-source and proprietary software components, such as libraries
and frameworks, contained within a software product, along with their licenses,
versions, and vendors [39]. SBOMs are critical in ensuring transparency, thereby
enhancing software supply chain security [40]. In particular, these files enable devel-
opers to identify, track, and mitigate not only reliability and security risks but also
legal concerns arising from integrating software with incompatible licenses [41]. In
this regard, the work from Zahan et al. [42] marks an initial effort to systematically
classify the advantages and obstacles associated with implementing SBOMs. Spe-
cifically, their approach involved analyzing 200 online resources to delineate these
categories, including articles, blogs, videos, and webpages. Meanwhile, Xia et al.
[40] focused on examining the adoption of SBOMs among industry practitioners. In
particular, they gathered data from 17 interviewees and 65 survey respondents from

1 3

Analyzing FOSS license usage in publicly available software…

15 countries across five continents to gauge practitioners’ perspectives on SBOMs.
Their findings highlight the importance of addressing several key factors to acceler-
ate SBOM adoption, including enhancing the quality of SBOM automatic (AI-sup-
ported) generation, elucidating the benefits and practical applications of SBOMs,
and reducing barriers to SBOM sharing. Nocera et al. [41] offer another perspective
on the topic by exploring the utilization of SBOM generation tools and the publica-
tion of SBOMs within open-source projects. Their study involved an analysis of 186
public repositories on GitHub, revealing a gradual but notable increase in SBOM
adoption among software creators and consumers, likely influenced by heightened
attention and demand from prominent entities like the United States Government.
However, their findings indicate that SBOM files are present in only 46% of the soft-
ware projects examined, pointing out the current low prevalence of SBOM integra-
tion into repository or release versions.

In our work, we focus on unraveling the usage patterns of FOSS licenses across
a collection of GitHub projects indexed by SWH. We specifically investigate poten-
tial correlations between license usage and various project attributes, such as project
size, the main programming language employed, and the application domain. Our
analysis extends to both explicitly declared licenses and those identified within the
project’s source code, as well as the combination of these two types. In essence, our
contribution encompasses the development of a dedicated tool, the license analytics
application built on top of SWHA, and a comprehensive methodology for identify-
ing discrepancies and conflicts in project licenses.

4 � The license checker analytic app

Today, open-source software has been widely adopted, and its licensing terms and
conditions can significantly influence community involvement and contributions
[43]. In particular, project licensing plays a critical role in companies as any viola-
tions of licenses can lead to substantial legal risks [30]. Given the extensive use of
open-source software from public repositories in products, gaining a strategic under-
standing of multi-licensing becomes essential.

Although not directly related to the analyses performed in this work, the follow-
ing two examples motivate the importance of license literacy. The case of BusyBox
represents an illustrative incident highlighting the complexities arising from license
inconsistencies [44]. In 2007, the Software Freedom Law Center (SFLC) initiated
the first-ever US copyright infringement lawsuit rooted in violating the GNU Gen-
eral Public License (GPL). This legal action was on behalf of two principal develop-
ers of BusyBox, an open-source software comprising standard Unix utilities com-
monly used in embedded systems and licensed under the GPL version. The lawsuit
targeted Monsoon Multimedia, Inc., which admitted using BusyBox in its products
and firmware on its website but did not comply with GPL’s requirement to provide
recipients access to the source code. Although the BusyBox vs. Monsoon case con-
cluded within a month, Monsoon had to invest significant organizational and finan-
cial resources to resolve the conflicts [45]. Another recent example dates back to
March 2021, when the mimemagic software library, initially distributed under a

	 A. Antelmi et al.

1 3

declared MIT license, was integrated within the shared-mime-info library, which
carries the more restrictive GPL license. However, the copyright notice from the
shared-mime-info library was inadvertently removed during a merge operation. As
a result, users of the mimemagic library had to examine the library in the repository
to find the (in-code) license. This license mismatch had far-reaching consequences:
the mimemagic library was an essential component of the Ruby on Rails web frame-
work and impacted 172 other software packages, affecting approximately 577,000
software repositories. This situation led to an urgent collaborative effort to rectify
the issue. These instances are merely a couple of illustrations highlighting the chal-
lenges associated with violations of FOSS licenses. However, the proliferation of
generative deep learning models, which have been trained using openly accessible
resources like ChatGPT and Copilot, is expected to exacerbate these issues [46, 47].

In general, with the desirable advance of the principles of open science and open-
source software, it becomes of utmost importance to improve license literacy among
developers for several reasons, including legal, financial, and practical considera-
tions. Software licensing is a critical component for both software developers and
users, providing a legal and financial framework that ensures fair use, protection
of intellectual property, and sustained development and support for the software.
Hence, considering the crucial role of proper licensing in software projects, our goal
is to unveil recurring license patterns by answering the following research questions.

•	 RQ1 : Are there clearly identifiable patterns in the use of multi-class licenses or
the appearance of conflicts within publicly available software projects?

	  When we mention a multi-class licensed project, we refer to situations where
a single software project incorporates (at least) two licenses with differing levels
of restrictiveness. Such situations do not automatically imply the presence of a
conflict, which occurs when two licenses contain contradictory rights or incom-
patible obligations.

	  This question intends to measure the prevalence of multi-class licenses and
conflicts within publicly available projects indexed by SWH. To address this, we
examine how frequently such potential issues arise and whether their incidence
correlates (in particular, positively grows) with the size of the projects. Addi-
tionally, we conduct a qualitative exploration of conflict instances to identify the
types of licenses most likely to give rise to conflicts.

	  Understanding the distribution of multi-class licenses and the most common
conflicts is crucial for comprehending the common errors that may occur and for
providing warnings when incorporating or reusing existing software. By answer-
ing such a question, we aim to offer users valuable insights and knowledge about
common license discrepancies and conflicts that frequently arise within open-
source projects, ultimately facilitating informed decision-making in software
inclusion or reuse scenarios.

•	 RQ2 : Is the emergence of the number of (multi-class) licenses and conflicts cor-
related with the use of a given programming language or a specific application
domain?

	  This question investigates whether there is a recognizable relationship
between the frequency of FOSS license usage and the occurrence of multi-

1 3

Analyzing FOSS license usage in publicly available software…

class licenses and conflicts with the choice of programming language or the
targeted application domain. To answer this question, we analyze a collec-
tion of publicly available projects indexed by SWH and examine whether the
prevalence of license, multi-class licenses, and conflicts varies depending on
the programming language employed or the specific domain for which the
software is developed.

	  The objective is to explore whether certain languages or application
domains exhibit a statistically higher likelihood of encountering problems
related to multi-class licenses or conflicts. For instance, our objective is to
evaluate whether projects using the C language demonstrate a statistically
distinct distribution of the considered features compared to other languages.
Similarly, we seek to determine if a particular prolific application domain
(e.g., software related to operating systems) shows a statistically different
pattern in the distribution of these features compared to other domains.

	  Understanding potential correlations between the choice of programming
language or application domain and the likelihood of license-related prob-
lems could provide valuable insights for developers, project managers, and
policymakers. This knowledge may inform best practices and guide consid-
erations when developing software in a specific programming language (e.g.,
when including external code) or for particular application domains to mini-
mize the risk of license conflicts, thereby fostering a more efficient and com-
pliant open-source ecosystem.

4.1 � Application pipeline

An asset of SWHA is that it allows the execution of custom analytic applica-
tions. Specifically, in this work, we demonstrate the effective utilization of
SWHA to investigate license inconsistencies. This analysis can extend to cover
all revisions of every source code ever created or focus on specific partitions,
showcasing the platform’s versatility and analytical potential.

The application pipeline comprises three main steps: (i) dataset creation, (ii)
license identification, and (iii) license compliance verification, including the
detection of any multi-class licenses and conflicts. While the data orchestration
layer transparently handles the data retrieval phase, the core logic of the applica-
tion—which includes the tasks of license identification and verification of their
compliance—is managed by the analytical application. The application output is
a JSON file that provides information for each project, including the number and
types of licenses detected, their categories, and the presence of any conflicts.
Additionally, the application can generate a summary detailing the quantity and
types of the identified multi-class licenses, as well as pairs of licenses causing
conflicts. A more detailed description of each phase of the application workflow
follows.

	 A. Antelmi et al.

1 3

4.1.1 � Dataset creation

The initial stage involves providing the application with the designated set of
SWH projects a user wishes to examine. Specifically, in this use case, for each
project, we considered only the directory associated with the last revision (i.e.,
commit) of the last snapshot (e.g., SWH capture of the full state of a project
development repository) in the SWH Merkle tree (see Sect. 2.1). This project set
is defined using an arbitrarily complex and customizable ‘recipe’ to query the
SWH archive via web API (see Sect. 2.2 §Application layer). Each app controller
is responsible for querying the dataset and streaming each project’s files (one file
per time) to the analytic application (see Sect. 2.2 §Data Orchestration layer).

•	 In our work, we analyzed 835 unique GitHub repositories indexed by SWH.
Specifically, we included the top 100 most starred and the top 100 most-forked
projects. To this initial set, we added the top 100 most-starred projects for
each of the following programming languages: C, Java, JavaScript, Julia,
Kotlin, Python, R, and Rust. We retrieved the list of these projects from the
GitHub project https://​github.​com/​EvanLi/​Github-​Ranki​ng, which consist-
ently updates and maintains a list of the most-starred and most-forked GitHub
repositories on a daily basis. Our initial dataset originally consisted of 1000
projects, but we refined it by removing duplicate entries and focusing solely
on those that SWH indexes. It is important to emphasize that the projects
within our sample are publicly accessible repositories, but not all are neces-
sarily OSS. Some may lack any license, while others might contain a non-free
license.

4.1.2 � License identification

Building upon prior research [30], we specified two primary methods through
which software licenses can be specified: declared and in-code.

⋅ A declared license is explicitly designated for the entire project, often located
in a license file within the project’s root directory.
⋅ An in-code license is a license discovered within the project’s directory struc-
ture, either as stand-alone license files or within source code files, typically
located within the header file.

Both declared and in-code licenses are considered explicit licenses since they are
visibly provided as part of the repository. However, it is essential to acknowledge
that a repository’s declared license may differ from one or more in-code licenses.
Such discrepancies can arise when a repository incorporates an external software
library without appropriately documenting the associated license as a declared
license. Consequently, users might not be aware of the license terms and inadvert-
ently overlook the obligations outlined in the in-code licenses.

https://github.com/EvanLi/Github-Ranking

1 3

Analyzing FOSS license usage in publicly available software…

•	 In our work, licenses are automatically detected with ScanCode6, one of the most
popular open-source license scanners available today. For the license detection
task, ScanCode uses a (large) number of license texts and license detection rules
that are compiled in a search index. During the scanning process, the text of the
target file is extracted and used to query the license search index and find license
matches7. Our application looks for one or more declared licenses and in-code
licenses attached directly to files by running ScanCode on each streamed file.
Specifically, we search for the presence of one or more declared licenses in the
root directory of the repository by explicitly checking for the existence of any
of the following files: LICENSE, LICENSE.txt, COPYING, COPYING.TXT,
NOTICE, README, and README.md. If none of these files are found, we
assume the project lacks any declared license.

4.1.3 � License compliance verification

The final step in the application workflow involves categorizing license restrictive-
ness for projects with more than two licenses, either declared or in-code. If a project
includes multi-class licenses, the application assesses whether there is a license con-
flict by querying a license compatibility matrix. A detailed explanation of the evalu-
ation process for inconsistencies and conflicts follows.

Detecting multiple licenses. Real-world software projects usually include more
than one license, leading to what we term multi-licensed projects. When these pro-
jects encompass licenses with varying restrictiveness, we classify them as multi-
class licensed projects. It is crucial to note that the presence of multi(-class) licenses
does not automatically imply conflicts, as the involved licenses may still be com-
patible. However, the inclusion of multi-class licenses does heighten the possibil-
ity of conflicts. In general, multi-licensing can potentially escalate into significant
license conflicts, especially if undisclosed in-code licenses are more restrictive than
declared ones [30].

•	 We based our analysis on the existing license categories listed in the ScanCode
dataset8 to identify multi-class licenses. In particular, we considered the follow-
ing (standard) license classes:

–	 Public domain: These licenses grant unrestricted freedom to use and modify
the software.

–	 Permissive: This category encompasses licenses with minimal restrictions
or requirements for distributing or modifying the software. (i.e., code can be
modified and can be redistributed under a different license);

–	 Copyleft: This is a more restrictive class of licenses, further classified into
two subcategories:

6  https://​github.​com/​nexB/​scanc​ode-​toolk​it
7  https://​scanc​ode-​toolk​it.​readt​hedocs.​io/​en/​stable/​refer​ence/​overv​iew.​html
8  https://​scanc​ode-​licen​sedb.​about​code.​org/​index.​json

https://github.com/nexB/scancode-toolkit
https://scancode-toolkit.readthedocs.io/en/stable/reference/overview.html
https://scancode-licensedb.aboutcode.org/index.json

	 A. Antelmi et al.

1 3

* Copyleft Limited or Weak Copyleft: In this category, changes made to exist-
ing code must be published under the same license. However, code utiliz-
ing the existing code does not necessarily have to follow the same require-
ment.

* Copyleft or Strong Copyleft: This category mandates that changes to exist-
ing code and all code using the existing code must be published under the
same license.

–	 Proprietary or Commercial: These licenses impose the most stringent restric-
tions, rendering the software ineligible for copying, modification, or distribu-
tion. They serve as the most protective type of software license, safeguarding
the developer or owner from unauthorized software use.

–	 Unstated and Unknown: The first category pertains to licenses that have been
indexed by ScanCode, but their specific category or type has not been explic-
itly identified or specified. In other words, these licenses are recognized by
ScanCode, but it is unclear which particular category they belong to. The sec-
ond category involves licenses that are not indexed by ScanCode. This situa-
tion often occurs when a project employs a combination of licenses, making it
challenging for ScanCode to accurately classify or categorize them.

Detection of license conflicts. A conflict occurs when two licenses contain contra-
dictory rights or incompatible obligations. Lack of compliance with these terms can
lead to a spectrum of issues, ranging from relatively straightforward disputes to pro-
tracted legal conflicts [43, 48]. In the most severe scenarios, court-issued injunctions
can order the immediate stop of the product sales [30].

•	 Our analysis focused on the compatibility of FOSS licenses. Hence, we iden-
tified possible license conflicts exclusively when both inconsistent licenses fell
within this category of licenses. Specifically, we relied on the OSADL Open
Source License Checklist project9 for the conflict detection task. This initiative
was launched with the objective of creating comprehensive checklists that deline-
ate the obligations associated with widely adopted open-source software licenses
that were accepted and trusted by distributors, copyright holders, and users. The
project’s website hosts materials, including detailed obligations and use cases for
each FOSS license. Additionally, it provides supplementary information such as
references to copyleft clauses, patent-related insights, and assessments of com-
patibility (or incompatibility) with other licenses. In particular, we exploited a
compatibility matrix between licenses available on the project’s website10.

Enumerating combinations of multi-class licenses and conflicts. We employed the
following methodology to quantify the occurrence of multi-class license pairs and
conflicts within our analysis. Consider a project equipped with one declared license
of type A and five in-code licenses of type B. In the presence of a conflict between
types A and B (indicating that one type imposes more restrictions than the other),

9  https://​www.​osadl.​org/​OSADL-​Open-​Source-​Licen​se-​Check​lists.​oss-​compl​iance-​lists.0.​html
10  https://​www.​osadl.​org/​filea​dmin/​check​lists/​matri​xseqe​xpl.​json

https://www.osadl.org/OSADL-Open-Source-License-Checklists.oss-compliance-lists.0.html
https://www.osadl.org/fileadmin/checklists/matrixseqexpl.json

1 3

Analyzing FOSS license usage in publicly available software…

we compute 5 pairs of multi-class licenses and 5 conflicts (since multi-class licenses
can potentially lead to conflicts). The rationale behind adopting this approach is
rooted in our intent to consider all potential warnings and issues within our data-
set. In other words, we scrutinize all licenses within a project to identify potential
problems.

This approach can furnish valuable insights into the license health of a project
in a real-world scenario, such as within a company’s project dashboard. Specifi-
cally, our method provides information about the resolution of license class mis-
matches that give rise to conflicts. For instance, in the aforementioned example, if
the declared license is modified to align with type B, the count of conflicts drops
to 0. Similarly, adjusting one of the five in-code licenses to align with the declared
license of type A results in a reduction of conflicts to 4. This demonstrates how our
approach facilitates a nuanced understanding of the license status and aids in devis-
ing strategies to mitigate conflicts within a project.

Table 1   Distribution of the
projects’ size (in terms of
number of source code files),
the number of (unique) declared
licenses, and the amount of
(unique) in-code licenses

Data Quantiles

0.1 0.25 0.5 0.75 0.9

Project size 20 69.3 235 899.5 4267.7
Project licenses 2 4 13 137.5 1400.6
Unique project licenses 1 2 3 6.75 17
Project declared licenses 1 2 3 9 33.1
Unique project declared licenses 0 1 1 2 3
Project in-code licenses 0 1 8 115 1372
Unique project in-code licenses 0 1 2 5 14

Table 2   Distribution of the number of multi-class license pairs and conflicts among declared licenses,
in-code licenses, and between them. The first number in the parentheses represents a lower bound in the
calculation since it only accounts for known licenses while excluding the unknown or unstated categories

Type Data Quantiles

0.1 0.25 0.5 0.75 0.9

Multi-class
license
occurrences

Between declared licenses (0, 0) (0, 0) (0, 0) (0, 0) (0, 2)
Between in-code licenses (0, 0) (0, 0) (0, 1) (5, 7.75) (45.2, 62.2)
Between declared/in-code licenses (0, 0) (0, 0) (0, 1) (3, 4) (19, 27.1)

Conflicts Between declared licenses (0, 0) (0, 0) (0, 0) (0, 0) (2, 3)
Between in-code licenses (0, 0) (0, 0) (1, 1) (6, 8.75) (51.2, 80.1)
Between declared/in-code licenses (0, 0) (0, 0) (1, 1) (4, 4.75) (23, 31)

	 A. Antelmi et al.

1 3

5 � Results and discussion

In this section, we walk through the outcomes of our analyses, exploring the pres-
ence of any noticeable patterns in the occurrence of multi(-class) licensing and
license conflicts. We also examine whether these patterns exhibit any correlation
with the projects’ programming language or application domain. The code to repro-
duce the analyses presented in this article can be found on Zenodo and GitHub [49].

5.1 � Patterns of multi(‑class) license usage and conflicts

The first aspect we looked into was assessing the proportion between the size of
the projects and the total number of licenses, either declared and in-code, available
in the projects’ repositories while also examining the prevalence of multi(-class)
licensing and conflicts. Table 1 summarizes part of these results, showing the dis-
tribution of the number of files per project as well as the number of the projects’
(unique) declared and in-code licenses. The table also reports the distribution of
the overall number of licenses per project, regardless of their type. Table 2 focuses
on the distribution of pairs of multi-class licenses and conflicts among declared
licenses, in-code licenses, and between them. It is worth noting that the number of
multi-class license pairs reported in the table is lower than the number of conflicts.
In the former case, we consider the license categories, while in the latter, we identify
conflicts by examining the specific licenses involved (see §Enumerating occurrences
of multi-class licenses and conflicts).

As highlighted in Table 1, we found a significant presence of huge projects within
the dataset, which aligns with our expectations, as we specifically retrieved projects
with the highest number of stars and forks, indicating their popularity and poten-
tially larger dimensions. Interestingly, only 25% of the projects possess a unique
license, denoting a relatively low incidence of single-licensed projects. It is not
surprising that in cases where a single license is present, it is typically a declared
license. In contrast, 10% of projects demonstrate a notable complexity with over 17
unique licenses. Within this subset, the complexity is primarily attributed to 14 in-
code licenses and three declared licenses, implying a substantial degree of intricacy
within these projects. The majority of the dataset, constituting at least 50% of the
projects, falls within the range of 2 to almost 7 unique licenses. In this category, pro-
jects typically utilize at most two unique declared licenses and five in-code licenses,
thus highlighting a prevalent licensing pattern commonly followed in practice. One
striking observation concerns the prevalence of in-code licenses, as their number is
significantly higher in comparison to declared licenses. This disparity arises because
each project may incorporate external code, often accompanied by its distinct license
terms. Consequently, the cumulative number of in-code licenses tends to surpass the
count of declared licenses, reflecting the complexities of managing diverse code
components within a single project. Despite the lower values, this relation holds true
when examining the count of unique in-code licenses. Overall, this analysis revealed
varying degrees of licensing complexity among projects, with a significant portion

1 3

Analyzing FOSS license usage in publicly available software…

adhering to a common practice of incorporating a moderate number of both declared
and in-code licenses.

Within our dataset, we identified three projects lacking any FOSS licenses and
119 projects featuring at least one non-FOSS license. Notably, within this latter
group, the majority (61 out of 119) employ commercial licenses, while an additional
24% (29 out of 119) specify a ’Source-available’ license type. Six out of the 119
projects are patented. The remaining projects exhibit a blend of commercial, pat-
ented, and source-available licenses.

Looking at the results in Table 2, we can note how approximately half of the sam-
ples in our study are multi-class licensed projects. These multi-class license pairs
occur in two primary categories: between in-code licenses and between declared and
in-code licenses (cross-combinations). We can observe a significant increase in the
use of multi-class licensing in 25% of the projects. In this subset, the number of
multi-class license pairs significantly escalates, with 7.75 multi-class license pairs
between in-code licenses and 4 cross-combinations. In 10% of the projects, these
numbers reach a surprising 62.2 multi-class license pairs between in-code licenses
and 27.1 cross-combinations, revealing the existence of a minority of projects strug-
gling with substantial licensing intricacies. As expected, most conflicts within the
projects occur among in-code licenses. This trend is unsurprising given the volume
of in-code licenses and the inherent difficulty in their verification, often necessitat-
ing a thorough examination of the source code. Nevertheless, it is noteworthy that
10% of the projects within our dataset experience a notable level of conflict in the
form of at least 3 declared license conflicts. This finding emphasizes that, despite
the prevalence of in-code conflicts, declared license conflicts remain relevant and
warrant attention.

In particular, we observed that the size of such projects ranged from 155 to
over 80,000 files, with 50% having more than 4,600 source code files. To inves-
tigate the potential correlation between project size and the number of (unique)
licenses, as well as the occurrence of multi-class license pairs and conflicts, we
correlated such values via the Pearson and Spearman correlation coefficients.
Figure 4 graphically illustrates the relationships between these values. In all
plots, a notable upward trend is evident, indicating that as the number of source
code files in a project increases, there is a corresponding increase in the occur-
rences of licenses, multi-class license pairs, and conflicts. Such a monotonic
increasing trend is substantiated by the strong Spearman correlation coefficients
obtained (0.77, 0.71, 0.69, 0.70, respectively; p values < 0.0001)11.

Taking a closer look at the types of multi-class license pairs, we identified
that a significant proportion of those stem from the discrepancies between FOSS
licenses and licenses categorized as “unstated” or “unknown” by ScanCode, the
license detection tool we used. The prevalence of such instances stresses the
tool’s critical role in identifying licenses. Additionally, this situation emphasizes
the existence of numerous custom licenses, further complicating the already
intricate licensing landscape. Another not negligible portion of license combina-
tions happens with all licenses that fall outside the realm of FOSS, for instance,

11  This relation does not change if we do not consider unstated and unknown licenses in the calculation.

	 A. Antelmi et al.

1 3

between a permissive and a commercial license. These combinations are of par-
ticular concern due to their potential to trigger legal disputes, disrupt established
business models, and introduce operational and technical complexities in the
management and integration of software components. One prominent finding of
our analysis is the prevalence of multi-licensing between permissive and strong
copyleft licenses, aligning with prior research in this domain [30]. Permissive
licenses, such as the MIT License and the Apache License, grant considerable
freedom for using, modifying, and distributing the licensed software. In con-
trast, strong copyleft licenses, such as the GNU General Public License (GPL),
mandate that any derivative works or software incorporating GPL-licensed code
must adhere to the same GPL terms. Combining or linking code under strong
copyleft licenses with code governed by permissive licenses typically results in
the strong copyleft license dominating the entire work. A substantial percent-
age of multi-class license pairs also occur between permissive licenses and weak
copyleft licenses. Weak copyleft, or copyleft limited licenses, impose fewer con-
straints compared to strong copyleft licenses. However, these combinations may

Fig. 4   Correlation between the project size and the following factors: the number of licenses (upper left),
unique licenses (upper right), occurrences of multi-class license pairs (bottom left), and occurrences of
license conflicts (bottom right)

1 3

Analyzing FOSS license usage in publicly available software…

still lead to conflicts. Surprisingly, we found that combinations between weak
and strong copyleft licenses are less common. Table 3 summarizes the percent-
age of license combinations for each pair of license categories. The missing per-
centage refers to combinations between non-FOSS licenses.

Focusing on the license conflicts detected in our dataset, we found out that the
most common involve the permissive licenses Apache 2.0 and MIT versus the
strong copyleft licenses GPLv2 and GPLv3, as also found out by Makari et al.
[37]. As already discussed, the incompatibility between these licenses primarily
arises from the different goals and terms of these licenses, specifically regarding
the openness and redistribution of derivative works. The Free Software Founda-
tion, which maintains the GPL, introduced provisions in the GPLv3 to address
compatibility issues with other licenses. Nevertheless, it is important to note
that compatibility is often unidirectional, implying that code governed by the
GPLv3 can be incorporated into projects using certain permissive licenses (such
as the Apache License 2.0), but the reverse may not hold true. We also observed
common conflicts arising from discrepancies between various versions of the
GPL license and the blending of different existing licenses into a new one.

5.2 � Correlation between license usage and issues with programming languages
and application domains

In the previous section, we discussed the existing robust positive correlation
between project size and the quantities of (multi-class) licenses, and conflicts. This
outcome aligned with our expectations, as larger projects tend to be more intricate,

Table 3   Percentage of types of multi-class licensing

Values from top to bottom refer to multi-class pairs between declared licenses, in-code licenses, and
cross-combinations

Permissive Copyleft limited
(weak Copyleft)

Copyleft
(strong Copy-
left)

Proprietary/
commercial

Unstated/
unknown

Permissive – 4.28 10.08 8.31 38.28
– 6.64 6.68 9.52 22.41
– 7.82 8.12 12.29 27.76

Copyleft limited 4.28 – 2.77 1.26 5.04
6.64 – 3.80 4.80 9.43
7.82 – 3.18 2.29 7.76

Copyleft 10.08 2.77 – 1.51 13.6
6.68 3.80 – 4.41 9.34
8.12 3.18 – 3.47 9.53

Proprietary/commercial 8.31 1.26 1.51 – 14.11
9.52 4.80 4.41 – 19.62
12.29 2.29 3.47 – 16.24

	 A. Antelmi et al.

1 3

encompassing additional code with its unique licensing terms, which, in turn,
heightens the likelihood of causing conflicts. Building upon this finding, we inves-
tigated whether specific inherent characteristics of projects might interplay with the
emergence of these issues. Specifically, we considered the projects’ main program-
ming language and application domain. To rule out the potential influence of pro-
ject sizes, we normalized the number of licenses, multi-class license instances, and
conflicts by the respective project sizes. This normalization process allowed us to
account for variations in project scale, ensuring a fair assessment of the associations
between the mentioned variables, thus avoiding larger projects driving the results
and hindering actual patterns.

To verify the existence of any potential correlation, we employed the
Kruskal–Wallis H test [50], which assesses the null hypothesis that the population
medians of all groups are equal. This test is the nonparametric alternative to the
ANOVA test, used when the data to examine do not follow a normal distribution.
In particular, if the null hypothesis is rejected, it indicates a statistically significant
difference between groups without specifying which groups differ. To discern which
groups exhibited statistically significant differences from one another, we utilized
the Mann–Whitney U test, a nonparametric test that evaluates the null hypothesis
that the distribution underlying sample x is identical to the distribution underlying
sample y.

Correlation between programming languages and license usage and
issues. Within our dataset, we initially had 29 distinct programming languages12.
However, to fulfill the prerequisites of the Kruskal-Wallis-H test13, we focused our
analysis solely on languages associated with more than 5 projects. As a result, we
conducted our analysis on the following languages: C, C++, Go, HTML, Java,
JavaScript, Julia, Kotlin, Python, R, Rust, Shell, and TypeScript. In the following,
we only report the results associated with the programming languages having more
than 80 projects each in our dataset (corresponding to the 75 percentile).

Figure 5 illustrates the distribution of the average number of licenses, multi-
class license instances, and conflicts per project across programming languages.
From the top plot, it is evident that C, Java, and Kotlin projects exhibit the high-
est median in the average number of licenses per project. This implies that in over
half of the projects for each of these languages, approximately 40% of the files
are associated with a license (a value of 1 means that every file in the project has
a license attached). Further, these languages also present the highest variability
in the distribution. Interestingly, the higher average number of licenses in these
projects does not necessarily correspond to a higher average number of multi-
class license instances and conflicts. A closer examination of the middle and bot-
tom plots reveals that C projects tend to have a greater distribution of the average
number of multi-class license instances and conflicts, while Java and Kotlin pro-
jects exhibit a median value trending toward a smaller quantity. This observation
suggests that C projects experience a relatively higher prevalence of multi-class

12  We indistinctly refer to programming languages, although some of them are markup or scripting lan-
guages.
13  https://​docs.​scipy.​org/​doc/​scipy/​refer​ence/​gener​ated/​scipy.​stats.​krusk​al.​html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kruskal.html

1 3

Analyzing FOSS license usage in publicly available software…

license instances and conflicts compared to Java and Kotlin projects. The ration-
ale behind this outcome necessitates further investigation, as it may be influenced
by several factors other than the project size and complexity, which should be
identified through surveys administered to developers and ad hoc experiments.
Possible causes include:

⋅ Library and dependency ecosystem. Different programming languages have
varying ecosystems of libraries, frameworks, and dependencies, each with its
own set of licensing terms. When projects integrate various libraries with var-
ying licenses, conflicts can arise.
⋅ Licensing awareness and culture. The level of awareness and understanding
of open-source licensing can vary among developers and project maintainers.
Some languages and communities may prioritize license compliance and edu-
cation. Further, communities (from companies) with a strong focus on licens-
ing are more likely to identify and resolve conflicts promptly.
⋅ Legal and compliance resources. Organizations with dedicated legal and
compliance resources may be better equipped to identify and address licensing
issues.
⋅ Tools and automation. The availability of tools and automation for license com-
pliance checking can also affect the likelihood of conflicts.
⋅ Historical precedents. Some programming languages may have had more
license-related issues in the past, leading to increased awareness and efforts to
avoid conflicts in newer projects.

Fig. 5   Distribution of the average number of licenses (top), multi-class license instances (center), and
conflicts (bottom) normalized by the projects’ size for each programming language

	 A. Antelmi et al.

1 3

The statistical tests we ran provided numerical confirmation of the observed
visual distinction in the distribution depicted by the box plots. Specifically,
our analysis revealed statistically significant differences among these groups in
terms of licenses, multi-class license instances, and conflicts (all with p-values
< 0.001 ). Table 4 provides a summary of the pairwise differences in programming
languages regarding license conflicts (with p-values < 0.001 ). Similar results
were obtained for the number of licenses and multi-class license instances. In
conjunction, these outcomes suggest an inherent connection between the average
number of licenses in a project and the programming language employed for its
development. Moreover, our results indicate an increased likelihood of encoun-
tering statistically significant higher numbers of multi-class license occurrences
and conflicts when examining C projects within the most highly starred projects.

Correlation between application domains and license usage and issues
To identify the application domain of each project, we relied on the set of key-

words provided by the project’s authors on its GitHub repository. Specifically,
we assigned each project to an application domain according to the following
protocol:

•	 Initially, three researchers individually examined the entire pool of keywords in
the dataset, each creating their own lists of potential application domains based
on the identified keywords. For instance, terms such as Android and iOS were
linked to the Mobile domain. Then, the researchers collaborated to merge their
individual lists, resulting in a refined final list of application domains (detailed in
Table 5).

•	 Then, each reviewer independently assigned each project to one of the applica-
tion domains identified in the previous step based on the keywords present in the
project’s GitHub repository;

Table 4   Summary of statistical difference in the distribution of conflicts across programming languages

The symbol indicates that the two languages statistically differ regardless of the number of projects
considered and the projects’ size

1 3

Analyzing FOSS license usage in publicly available software…

•	 Finally, the definitive application domain for each project was determined
through a majority rule. In cases of ties, decisions were reached through discus-
sions among the researchers.

As for the programming languages, we filtered out application domains with fewer
than five associated projects. Table 5 lists the domains we analyzed with a brief
description. In the following, we only report the results associated with the applica-
tion domains having more than 30 projects each in our dataset (corresponding to the
75 percentile).

Figure 6 illustrates the distribution of average number of licenses, multi-class
license instances, and conflicts per project across application domains. The first
point to note is that projects in the Mobile application domain exhibit the highest
average number of licenses per project (with half of the projects having around 40%
of files associated with a license). We can generally observe a high variability in
this dimension across all domains shown in the plot (except the Dev and Education
domains). Once again, a higher number of licenses does not necessarily imply an
increased incidence of multi-class license instances and conflicts. This is exempli-
fied by the Mobile domain, which, despite having the highest median value in terms
of licenses, does not exhibit a proportionately higher number of multi-class licenses
and conflicts. Conversely, the OS domain shows the highest incidence of multi-class
license pairs and conflicts, even though it has a relatively low median value in terms
of licenses. The statistical tests numerically confirmed the visual differences in the
distribution represented by the box plots. Specifically, these tests indicate that the
distribution of multi-class license occurrences and conflicts in the Events and OS

Table 5   Application domains and their description

Application Domain Brief Explanation

Blockchain Applications related to blockchain technologies.
Db Database-related applications or database implementations.
Dev Development tools and environments. This category generally includes all

libraries and applications for data analysis and artificial intelligence.
DevOps Development and operations (DevOps) tools.
Education Educational applications and platforms, tutorials, and educational mate-

rial.
Events Event-related repositories, such as Hackathons.
Framework Frameworks for building applications, such as Visual Studio Code.
IoT Internet of Things (IoT) applications.
Mobile Mobile applications for smartphones and tablets.
Networking Networking-related applications and tools.
OS Operating system applications, such as command-line tools.
Other Applications falling into other categories.
Search-engine Implementation of search engines or plugins.
Visualization Libraries and applications for data visualization.
Web Web applications and development.

	 A. Antelmi et al.

1 3

domains exhibits a statistically significant difference from all other domains pre-
sented. Surprisingly, within the Education domain, which is primarily comprised
of instructional materials such as guides, tutorials, and annotated API collections,
there is a notable absence of significant multi-class license instances and conflicts
despite the possibility that the creators may have deliberately integrated other soft-
ware projects. This observation implies that repositories focused on training or edu-
cation tend to have straightforward licensing terms. This simplicity may arise either
from authors intentionally omitting license information or from the absence of any
encountered issues related to licensing.

Fig. 6   Distribution of the average number of licenses (top), multi-class license instances (center), and
conflicts (bottom) normalized by the projects’ size for each application domain

Fig. 7   Distribution of pro-
gramming languages across
application domains. The report
includes only programming
languages associated with a
minimum of 80 projects in
our dataset. The unaccounted
percentage refers to the other
languages in our sample

1 3

Analyzing FOSS license usage in publicly available software…

As previously mentioned, further investigation is required to fully understand the
reasons behind these outcomes. These reasons align with those discussed for specific
programming languages, as the choice of a programming language is closely tied to
the given application domain. Figure 7 shows the distribution of the programming
languages with more than 80 projects in our dataset across the application domains
considered. Notably, C projects contribute to 26.7% of the composition in the OS
domain, marking the highest percentage among all domains. Based on this result, it
is plausible to attribute a significant portion of the multi-class license instances and
conflicts in this domain to these C projects. We can further speculate on additional
motivations why a given application domain has a higher prevalence of (possible)
license issues (e.g., Events domain):

•	 Software component diversity. Different application domains may necessitate
varying levels of software component diversity. Projects that use a wide vari-
ety of third-party libraries and components are more likely to encounter license
conflicts. This complexity is particularly evident in Mobile projects, which often
necessitate the integration of numerous diverse libraries.

•	 Presence of copyleft licenses. Some licenses, like the GNU General Public
License (GPL), contain copyleft provisions that require any derivative work to
also be licensed under the same terms. Projects using components with copyleft
licenses can face compatibility issues if they intend to avoid releasing their entire
codebase under those same terms.

•	 License updates. Over time, the licenses of software components can change. If a
project fails to keep pace with these alterations or neglects to update its depend-
encies accordingly, it might encounter license conflicts as new component ver-
sions introduce different licensing terms. This dynamic may be particularly true
for rapidly evolving technologies, such as web technologies.

•	 Incompatible goals. Projects developed for specific applications may have dis-
tinct goals and constraints. If the goals of different components are not aligned,
their licenses might not be compatible. For instance, a project-oriented toward
commercial usage may clash with a component employing a more restrictive
open-source license.

5.3 � Performance evaluation

In this section, we detail the performance of our application by first focusing on the
application’s running time and then on the scalability performance of SWHA. All
tests have been run on 16 Broadwell nodes (hosted by the HPC4AI infrastructure),
each equipped with two Intel(R) Xeon(R) CPU E5-2697 v4 processors, coupled
with the Lustre parallel file system and interconnected via the OmniPath network.

5.3.1 � Application’s running times

The total running time comprises two primary tasks: querying and downloading
projects from SWH and executing the application’s core logic. Table 6 presents the

	 A. Antelmi et al.

1 3

application’s average running time to handle 100 projects. These times represent
the average across ten runs, each with a distinct set of projects. The measured vari-
ance was negligible. In particular, the table quantifies the positive impact of caching
on the overall performance of the system. It provides information on whether the
requested projects have been previously cached, indicating if they were stored in the
SWH cache due to a previous query or, in Cachemire, the caching system embedded
within SWHA. Additionally, the table indicates whether the application’s output,
precisely the results generated by ScanCode in our scenario, were also been stored
in Cachemire.

The running times reported in the last column reveal that the bottleneck in the
application lies in the execution of the ScanCode tool, primarily due to its need to
examine all source code files within a project (as highlighted by the significant dis-
parity between the first three rows and the others). In particular, ScanCode required
approximately 3.5 h to scan each set of 100 projects, equivalent to around 200 min.
This process involved an average scanning time of 6 s per file, considering an aver-
age file size of 26.6 KB and a standard deviation of 87 KB (averaged over all ten
data batches).

The advantage of pre-requesting a recipe from SWH becomes evident as well
since it resulted in a time savings of 18% (comparing the first and second rows)
due to SWH’s cache for recently requested projects. Furthermore, storing projects
in Cachemire resulted in a time savings of 21% (comparing the first and third rows).
To better quantify the benefits of locally caching SWH projects, we systematically
investigated the time required to download projects from the SWH dataset. Specifi-
cally, we tracked the retrieval time for projects within our dataset by querying SWH
at various times and days over a week. Each query involved requesting data for 100
projects. The download process took approximately 160 s on average, with a stand-
ard deviation of around 250 s for larger projects. Downloading times were compa-
rable across queries. However, we also experienced service disruption due to a high
workload of requests to the SWH dataset, leading to processing delays of several
days for our queries. For each query, the project sizes ranged from a few kilobytes
(around 20kb) to as much as 4 gigabytes, with a median size of around 70 mega-
bytes and a 95th percentile size of approximately 500 megabytes.

Table 6   Average time required
to complete the overall
computational pipeline,
comprising the projects’
download phase and their
analysis

Recipe cooked (projects
cached by SWH)

SWHA Cache (Cachemire) Time
(approx.
minutes)SWH projects

cached
Application
output

– - – 297.6
✓ - – 244.0
✓ ✓ – 236.3
✓ - ✓ 2.9
✓ ✓ ✓ 2.6

1 3

Analyzing FOSS license usage in publicly available software…

5.3.2 � Framework scalability

The scalability performance of the SWHA framework is depicted in Fig. 8. This
figure illustrates the speedup achieved by executing the license application on 2,
4, 8, and 16 computing nodes. The experiment was conducted on two distinct sets
of SWH projects, comprising 100 and 1000 SWH projects, respectively. In this
experimental setting, both the projects and the application’s results were stored in
Cachemire. Interestingly, a speedup closely aligning with the ideal scenario is evi-
dent in both project sets up to 8 computing nodes. Despite a degradation in scal-
ability performance with more nodes, we can still note a significant speedup with
a higher workload. This result aligns with expectations considering the distributed
nature of the SWHA environment. In such situations, a larger workload tends to
enhance the computation-to-communication ratio, leading to an overall performance
improvement. Conversely, with a smaller workload, the communication and syn-
chronization overhead of the framework, coupled with reduced data locality, consti-
tutes a more significant proportion of the overall computing time, thus reducing the
system’s performance.

5.4 � Threats to validity

This section identifies key limitations of our case study.
Construct validity. The biggest challenge we faced in our work was defining the

amount of repositories to analyze to obtain representative results. To ensure the
construct validity of our findings, we crawled the most popular projects on GitHub,
specifically the top 100 most starred and the top 100 most-forked projects overall.
Additionally, we included the top 100 most-starred projects for each of the follow-
ing programming languages: C, Java, JavaScript, Julia, Kotlin, Python, R, and Rust.
The rationale behind choosing these projects lies in their high usage, making them
more likely to (i) have a reasonable size, (ii) state one or more licenses, and (iii)
exhibit license compatibility issues. The decision to initially select 1000 projects,
later reduced to 835 after eliminating duplicates and the projects not indexed by

Fig. 8   Evaluation of SWHA
scalability

	 A. Antelmi et al.

1 3

SWH, was driven by the limited computing hours available on the cluster used for
our experiments.

A major limitation of this use case comes from the license detection tool we used.
Although ScanCode is considered a state-of-the-art tool for this task, it is not always
able to recognize the exact license attached to a file because of missing version num-
bers, spelling errors, or altered licensing text. To mitigate such an issue, we opted
to incorporate only those licenses for which ScanCode provided a confidence score
exceeding 95%. We still considered the categories Unstated/Unknown in our statis-
tics to give the reader the full picture of the licensing landscape and the limitations
of ScanCode.

Internal validity. To ensure the reliability and accuracy of the findings about the
connection between license utilization and the emergence of potential issues in pro-
gramming languages and application domains, we tried to mitigate the impact of
confounding factors. Specifically, we normalized the number of licenses, multi-class
license instances, and conflicts by the project size to avoid larger projects influenc-
ing the results and hindering actual patterns. This normalization process enabled us
to account for variations in project scale, ensuring a fair assessment of the asso-
ciations between the mentioned variables. Nevertheless, other hidden factors may
impact the relations observed.

The statistical tests used in our analysis only allowed us to verify the presence of
a correlation between two observed variables, such as the project size and the num-
ber of licenses. These tests also enabled us to determine whether distinct groups of
projects, categorized by programming languages or application domains, exhibited
statistically significant differences, meaning that the observed differences between
the groups were unlikely to have occurred by random chance alone. Consequently,
our conclusions were limited to discussing potential explanations for the observed
patterns, and we refrained from making any inferences about causal relationships
other than arguing about possible causes for the findings we had. Establishing cau-
sality should be explicitly addressed through surveys administered to developers and
ad hoc experiments.

External validity. As previously mentioned, our dataset is limited to the most
popular projects on GitHub indexed by SWH. While we crawled the top projects
associated with the most admired languages based on the 2023 StackOverflow
developer survey [51], broadening the dataset has the potential to provide a more
comprehensive perspective on the relation between license usage and a language’s
developer community. The same consideration holds for the application domains.

One last reflection relates to the inherently highly dynamic nature of OS pro-
jects and licensing patterns. Our work analyzed a partial snapshot of the current OS
licensing landscape, but it will surely evolve in the next few years, as also confirmed
by the study run by Hemel et al. [23]. An interesting future work is running a large-
scale follow-up study to delve into the temporal dimension of open-source projects
and uncover trends, and implications that may not be apparent in a static snapshot.
This temporal setting would enable an in-depth analysis of how the most problem-
atic projects identified in our current study have evolved over time.

1 3

Analyzing FOSS license usage in publicly available software…

6 � Conclusion

Over the past twenty years, open-source software has experienced a remarkable
evolution, now enjoying extensive adoption. In this context, the SWH initiative
represents a valuable source as it aims to archive, preserve, and make all software
publicly available in source code form ever produced by humankind accessible. The
SWH dataset experiences rapid growth, accumulating several terabytes of data each
month. Although designed to archive deduplicated small files thanks to the use of
a Merkle tree as the underlying data structure, querying the SWH dataset presents
challenges due to the nature of these structures, which organize content based on
hash values rather than any locality principle. The magnitude of the repository, cou-
pled with the resource-intensive nature of the download process, highlights the need
for specialized infrastructure and computational resources to effectively handle and
study the extensive dataset housed within SWH. Currently, there is a lack of infra-
structures specifically tailored for running analytics on the SWH dataset, leaving
users to handle these issues manually. To address these challenges, we presented the
SWHA framework, a development environment that transparently runs custom ana-
lytic applications on publicly available software data preserved over time by SWH.
Specifically, this work showed how SWHA can be effectively exploited to study
usage patterns of open-source licenses, highlighting the need to improve license lit-
eracy among developers.

Our analysis revealed a positive correlation between project complexity, indicated
by its size, and the number of (multi-class) licenses and conflicts ( RQ1 ). In line
with the previous literature, we identified that a substantial portion of (multi-class)
licenses belong to copyleft and strong copyleft licenses [30], with GPL dependencies
emerging as a primary source of conflicts [37] ( RQ1 ). Furthermore, a more in-depth
examination of the relationships between the programming language employed and
the occurrences of (multi-class) licenses and conflicts suggested the existence of a
correlation between the use of programming languages and these observed features
( RQ2 ). These patterns persisted when considering the application domain ( RQ2).

In future work, we aim to provide additional analytical tools and applications to
enhance the capabilities of SWHA users when it comes to examining the extensive
dataset hosted within SWH (for instance, by offering the capabilities to analyze
SBOM files in OSS [41] and analyzing the relationship between FOSS licenses and
software projects under a probabilistic framework). These forthcoming additions
will expand the range of analytical options available to users, allowing them to gain
deeper insights and extract more valuable information from the vast dataset at their
disposal.

7 � Software availability

To reproduce on a local machine the results of this article, please refer to the GitHub
or Zenodo repositories available in [49]. Details about the SWHA framework follow.

	 A. Antelmi et al.

1 3

Software name Software Heritage Analytics
Year of first official release 2022
Programming language C, Python, Scala
System requirements Linux-based system
Availability https://​github.​com/​alpha-​unito/​Softw​are-​

Herit​age-​Analy​tics
Website https://​admire-​euroh​pc.​eu/​33-2/​useca​ses/
License MIT License

Acknowledgements  This work has been partially supported by the EuroHPC JU ADMIRE pro-
ject (G.A. n. 956748) and the spoke “FutureHPC and BigData” of the ICSC—Centro Nazionale di
Ricerca in High-Performance Computing, Big Data and Quantum Computing funded by European
Union—NextGenerationEU.

Author contributions  AA designed the analytic application, performed the experiments, and wrote the
manuscript. AA, MT, and MA supervised the research activity. MT and MA reviewed the manuscript.
DG, GC, GS, and FP implemented the SWHA framework and the analytical application.

Funding  Open access funding provided by Università degli Studi di Torino within the CRUI-CARE
Agreement.

Declarations 

Conflict of interest  The authors declare no Conflict of interest.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

	 1.	 Wu M-W, Lin Y-D (2001) Open source software development: an overview. Computer 34(6):33–38.
https://​doi.​org/​10.​1109/2.​928619

	 2.	 Bordeleau F, Meirelles P, Sillitti A (2019) Fifteen years of open source software evolution. In:
Bordeleau F, Sillitti A, Meirelles P, Lenarduzzi V (eds) Open source systems. Springer, Cham, pp
61–67. https://​doi.​org/​10.​1007/​978-3-​030-​20883-7_6

	 3.	 Kritikos A, Stamelos I (2023) A resilience-based framework for assessing the evolution of open
source software projects. J Softw Evolut Process. https://​doi.​org/​10.​1002/​smr.​2597

	 4.	 GitHub: Octoverse 2022: 10 years of tracking open source. https://​github.​blog/​2022-​11-​17-​octov​
erse-​2022-​10-​years-​of-​track​ing-​open-​source/. Accessed on 28 09 2023 (2022)

	 5.	 European Commission: the economic and social impact of software and services on competitiveness
and innovation. https://​digit​al-​strat​egy.​ec.​europa.​eu/​en/​libra​ry/​econo​mic-​and-​social-​impact-​softw​
are-​and-​servi​ces-​compe​titiv​eness-​and-​innov​ation. Accessed on 28 09 2023 (2017)

	 6.	 Hat R (2022) What is open source software? https://​www.​redhat.​com/​en/​topics/​open-​source/​what-​
is-​open-​source-​softw​are. Accessed on 28 09 2023

https://github.com/alpha-unito/Software-Heritage-Analytics
https://github.com/alpha-unito/Software-Heritage-Analytics
https://admire-eurohpc.eu/33-2/usecases/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/2.928619
https://doi.org/10.1007/978-3-030-20883-7_6
https://doi.org/10.1002/smr.2597
https://github.blog/2022-11-17-octoverse-2022-10-years-of-tracking-open-source/
https://github.blog/2022-11-17-octoverse-2022-10-years-of-tracking-open-source/
https://digital-strategy.ec.europa.eu/en/library/economic-and-social-impact-software-and-services-competitiveness-and-innovation
https://digital-strategy.ec.europa.eu/en/library/economic-and-social-impact-software-and-services-competitiveness-and-innovation
https://www.redhat.com/en/topics/open-source/what-is-open-source-software
https://www.redhat.com/en/topics/open-source/what-is-open-source-software

1 3

Analyzing FOSS license usage in publicly available software…

	 7.	 Di Cosmo R, Zacchiroli S (2017) Software Heritage: Why and how to preserve software source
code. In: iPRES 2017: 14th International Conference on Digital Preservation, Kyoto, Japan. https://​
www.​softw​arehe​ritage.​org/​wp-​conte​nt/​uploa​ds/​2020/​01/​ipres-​2017-​swh.​pdf

	 8.	 Antelmi A, Torquati M, Corridori G, Gregori D, Polzella F, Spinatelli G, Aldinucci M (2023) The
SWH-Analytics Framework. In: Proceedings of the 2nd Italian Conference on Big Data and Data
Science (ITADATA2023), 2023. CEUR Workshop Proceedings, vol. 3606, pp. 1–6. CEUR-WS

	 9.	 Di Cosmo R, Zacchiroli S (2016) Software Heritage. https://​www.​softw​arehe​ritage.​org. Accessed
on 28 09 2023

	10.	 Abramatic J-F, Di Cosmo R, Zacchiroli S (2018) Building the Universal Archive of Source Code.
Commun ACM 61(10):29–31. https://​doi.​org/​10.​1145/​31835​58

	11.	 Rossi D, Zacchiroli S (2022) Geographic diversity in public code contributions: an exploratory
large-scale study over 50 years. In: Proceedings of the 19th International Conference on Mining
Software Repositories. MSR‘22, pp. 80–85. Association for Computing Machinery, New York, NY,
USA. https://​doi.​org/​10.​1145/​35248​42.​35284​71

	12.	 Zacchiroli S (2021) Gender differences in public code contributions: a 50-year perspective. IEEE
Softw 38(2):45–50. https://​doi.​org/​10.​1109/​MS.​2020.​30387​65

	13.	 Rossi D, Zacchiroli S (2022) Worldwide gender differences in public code contributions (and how
they have been affected by the COVID-19 pandemic). In: 2022 IEEE/ACM 44th International Con-
ference on Software Engineering: Software Engineering in Society (ICSE-SEIS), pp. 172–183.
Association for Computing Machinery, New York, NY, USA. https://​doi.​org/​10.​1145/​35104​58.​
35130​11

	14.	 Zacchiroli S (2022) A large-scale dataset of (open source) license text variants. In: Proceedings of
the 19th International Conference on Mining Software Repositories. MSR’22, pp. 757–761. Asso-
ciation for Computing Machinery, New York, NY, USA. https://​doi.​org/​10.​1145/​35248​42.​35284​91

	15.	 Pietri A, Rousseau G, Zacchiroli S (2020) Forking without clicking: on how to identify software
repository forks. In: Proceedings of the 17th International Conference on Mining Software Reposi-
tories. MSR’20, pp. 277–287. Association for Computing Machinery, New York, NY, USA. https://​
doi.​org/​10.​1145/​33795​97.​33874​50

	16.	 Lorentz V, Di Cosmo R, Zacchiroli S (2023) The popular content filenames dataset: deriving most
likely filenames from the software heritage archive. https://​inria.​hal.​scien​ce/​hal-​04171​177

	17.	 Pietri A (2021) Organizing the graph of public software development for large-scale mining. PhD
thesis, Université Paris Cité

	18.	 Merkle RC (1988) A digital signature based on a conventional encryption function. In: Pomerance,
C. (ed.) Advances in Cryptology—CRYPTO ’87, pp. 369–378. Springer, Berlin. https://​doi.​org/​10.​
1007/3-​540-​48184-2_​32

	19.	 Pietri A, Spinellis D, Zacchiroli S (2019) The software heritage graph dataset: public software
development under one roof. In: 2019 IEEE/ACM 16th International Conference on Mining Soft-
ware Repositories. MSR’19, pp. 138–142. IEEE Press, Piscataway, NJ, USA. https://​doi.​org/​10.​
1109/​MSR.​2019.​00030

	20.	 Software Heritage: Software Heritage documentation—data model. https://​docs.​softw​arehe​ritage.​
org/​devel/​swh-​model/​data-​model.​html. Accessed on 06/03/2024 (2018)

	21.	 Kapitsaki GM, Tselikas ND, Kyriakou K-ID, Papoutsoglou M (2022) Help me with this: a categori-
zation of open source software problems. Inf Softw Technol 152:107034. https://​doi.​org/​10.​1016/j.​
infsof.​2022.​107034

	22.	 Hemel A, Kalleberg KT, Vermaas R, Dolstra E (2011) Finding software license violations through
binary code clone detection. In: Proceedings of the 8th Working Conference on Mining Software
Repositories. MSR ’11, pp. 63–72. Association for Computing Machinery, New York, NY, USA.
https://​doi.​org/​10.​1145/​19854​41.​19854​53

	23.	 Hemel A, Kalleberg KT, Vermaas R, Dolstra E (2021) Finding software license violations through
binary code clone detection: a retrospective. SIGSOFT Softw Eng Notes 46(3):24–25. https://​doi.​
org/​10.​1145/​34687​44.​34687​52

	24.	 Gobeille R (2008) The FOSSology Project. In: Proceedings of the 2008 International Working Con-
ference on Mining Software Repositories. MSR’08, pp. 47–50. Association for Computing Machin-
ery, New York, NY, USA. https://​doi.​org/​10.​1145/​13707​50.​13707​63

	25.	 Kapitsaki GM, Charalambous G (2021) Modeling and recommending open source licenses with
findosslicense. IEEE Trans Software Eng 47(5):919–935. https://​doi.​org/​10.​1109/​TSE.​2019.​29090​
21

https://www.softwareheritage.org/wp-content/uploads/2020/01/ipres-2017-swh.pdf
https://www.softwareheritage.org/wp-content/uploads/2020/01/ipres-2017-swh.pdf
https://www.softwareheritage.org
https://doi.org/10.1145/3183558
https://doi.org/10.1145/3524842.3528471
https://doi.org/10.1109/MS.2020.3038765
https://doi.org/10.1145/3510458.3513011
https://doi.org/10.1145/3510458.3513011
https://doi.org/10.1145/3524842.3528491
https://doi.org/10.1145/3379597.3387450
https://doi.org/10.1145/3379597.3387450
https://inria.hal.science/hal-04171177
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1109/MSR.2019.00030
https://doi.org/10.1109/MSR.2019.00030
https://docs.softwareheritage.org/devel/swh-model/data-model.html
https://docs.softwareheritage.org/devel/swh-model/data-model.html
https://doi.org/10.1016/j.infsof.2022.107034
https://doi.org/10.1016/j.infsof.2022.107034
https://doi.org/10.1145/1985441.1985453
https://doi.org/10.1145/3468744.3468752
https://doi.org/10.1145/3468744.3468752
https://doi.org/10.1145/1370750.1370763
https://doi.org/10.1109/TSE.2019.2909021
https://doi.org/10.1109/TSE.2019.2909021

	 A. Antelmi et al.

1 3

	26.	 Azhakesan A, Paulisch F (2020) Sharing at scale: an open-source-software-based license compli-
ance ecosystem. In: 2020 IEEE/ACM 42nd International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP), pp 130–131

	27.	 Coughlan S (2020) Standardizing open source license compliance with OpenChain. Computer
53(11):70–74. https://​doi.​org/​10.​1109/​MC.​2020.​30161​07

	28.	 Kapitsaki GM, Kramer F, Tselikas ND (2017) Automating the license compatibility process in open
source software with SPDX. J Syst Softw 131:386–401. https://​doi.​org/​10.​1016/j.​jss.​2016.​06.​064

	29.	 Harutyunyan N (2020) Managing Your Open Source Supply Chain-Why and How? Computer
53(6):77–81. https://​doi.​org/​10.​1109/​MC.​2020.​29835​30

	30.	 Wolter T, Barcomb A, Riehle D, Harutyunyan N (2023) Open source license inconsistencies on
GitHub. ACM Trans Softw Eng Methodol. https://​doi.​org/​10.​1145/​35718​52

	31.	 Feng M, Mao W, Yuan Z, Xiao Y, Ban G, Wang W, Wang S, Tang Q, Xu J, Su H, Liu B, Huo W
(2019) Open-source license violations of binary software at large scale. In: 2019 IEEE 26th Inter-
national Conference on Software Analysis, Evolution and Reengineering (SANER), pp 564–568.
https://​doi.​org/​10.​1109/​SANER.​2019.​86679​77

	32.	 Almeida DA, Murphy GC, Wilson G, Hoye M (2017) Do Software Developers understand open
source licenses? In: 2017 IEEE/ACM 25th International Conference on Program Comprehension
(ICPC), pp 1–11. https://​doi.​org/​10.​1109/​ICPC.​2017.7

	33.	 Almeida DA, Murphy GC, Wilson G, Hoye M (2019) Investigating whether and how software
developers understand open source software licensing. Empir Softw Eng 24(1):211–239. https://​doi.​
org/​10.​1007/​s10664-​018-​9614-9

	34.	 Lopes CV, Maj P, Martins P, Saini V, Yang D, Zitny J, Sajnani H, Vitek J (2017) DéjàVu: a map of
code duplicates on GitHub. Proc ACM Program Lang. https://​doi.​org/​10.​1145/​31339​08

	35.	 Rousseau G, Di Cosmo R, Zacchiroli S (2020) Software provenance tracking at the scale of public
source code. Empir Softw Eng 25(4):2930–2959. https://​doi.​org/​10.​1007/​s10664-​020-​09828-5

	36.	 Moraes JP, Polato I, Wiese I, Saraiva F, Pinto G (2021) From one to hundreds: multi-licensing in the
JavaScript ecosystem. Empir Softw Eng 26(3):39. https://​doi.​org/​10.​1007/​s10664-​020-​09936-2

	37.	 Makari IS, Zerouali A, De Roover C (2022) Prevalence and evolution of license violations in npm
and RubyGems dependency networks. In: Reuse and Software Quality, pp. 85–100. Springer, Cham.
https://​doi.​org/​10.​1007/​978-3-​031-​08129-3_6

	38.	 Golubev Y, Eliseeva M, Povarov N, Bryksin T (2020) A study of potential code borrowing and
license violations in Java projects on GitHub. In: Proceedings of the 17th International Conference
on Mining Software Repositories. MSR’20, pp. 54–64. Association for Computing Machinery, New
York, NY, USA. https://​doi.​org/​10.​1145/​33795​97.​33874​55

	39.	 Linux FOundation: What is an SBOM? https://​www.​linux​found​ation.​org/​blog/​blog/​what-​is-​an-​
sbom. Accessed on 04 03 2024 (2021)

	40.	 Xia B, Bi T, Xing Z, Lu Q, Zhu L (2023) An empirical study on software bill of materials: where we
stand and the road ahead. In: Proceedings of the 45th International Conference on Software Engi-
neering. ICSE ’23, pp 2630–2642. IEEE Press. https://​doi.​org/​10.​1109/​ICSE4​8619.​2023.​00219

	41.	 Nocera S, Romano S, Di Penta M, Francese R, Scanniello G (2023) Software bill of materials adop-
tion: a mining study from GitHub. In: 2023 IEEE International Conference on Software Mainte-
nance and Evolution (ICSME), pp 39–49. https://​doi.​org/​10.​1109/​ICSME​58846.​2023.​00016

	42.	 Zahan N, Lin E, Tamanna M, Enck W, Williams L (2023) Software bills of materials are required.
are we there yet?. IEEE Secur Privacy 21(2):82–88. https://​doi.​org/​10.​1109/​MSEC.​2023.​32371​00

	43.	 Gamalielsson J, Lundell B (2017) On licensing and other conditions for contributing to widely used
open source projects: an exploratory analysis. In: Proc. of the 13th Int. Symp. on Open Collabora-
tion. OpenSym’17. ACM, NY, USA. https://​doi.​org/​10.​1145/​31254​33.​31254​56

	44.	 Software Freedom Law Center: On Behalf of BusyBox Developers, SFLC Files First Ever U.S. GPL
Violation Lawsuit. https://​softw​arefr​eedom.​org/​news/​2007/​sep/​20/​busyb​ox/. Accessed on 03 10
2023 (2007)

	45.	 Software Freedom Law Center: BusyBox Developers and Monsoon Multimedia Agree to Dis-
miss GPL Lawsuit. https://​softw​arefr​eedom.​org/​news/​2007/​oct/​30/​busyb​ox-​monso​on-​settl​ement/.
Accessed on 19 Jan 2024 (2007)

	46.	 New York Times: OpenAI Says New York Times Lawsuit Against It Is ‘Without Merit’. https://​
www.​nytim​es.​com/​2024/​01/​08/​techn​ology/​openai-​new-​york-​times-​lawsu​it.​html. Accessed on 19 Jan
2024 (2024)

https://doi.org/10.1109/MC.2020.3016107
https://doi.org/10.1016/j.jss.2016.06.064
https://doi.org/10.1109/MC.2020.2983530
https://doi.org/10.1145/3571852
https://doi.org/10.1109/SANER.2019.8667977
https://doi.org/10.1109/ICPC.2017.7
https://doi.org/10.1007/s10664-018-9614-9
https://doi.org/10.1007/s10664-018-9614-9
https://doi.org/10.1145/3133908
https://doi.org/10.1007/s10664-020-09828-5
https://doi.org/10.1007/s10664-020-09936-2
https://doi.org/10.1007/978-3-031-08129-3_6
https://doi.org/10.1145/3379597.3387455
https://www.linuxfoundation.org/blog/blog/what-is-an-sbom
https://www.linuxfoundation.org/blog/blog/what-is-an-sbom
https://doi.org/10.1109/ICSE48619.2023.00219
https://doi.org/10.1109/ICSME58846.2023.00016
https://doi.org/10.1109/MSEC.2023.3237100
https://doi.org/10.1145/3125433.3125456
https://softwarefreedom.org/news/2007/sep/20/busybox/
https://softwarefreedom.org/news/2007/oct/30/busybox-monsoon-settlement/
https://www.nytimes.com/2024/01/08/technology/openai-new-york-times-lawsuit.html
https://www.nytimes.com/2024/01/08/technology/openai-new-york-times-lawsuit.html

1 3

Analyzing FOSS license usage in publicly available software…

	47.	 Joseph Saveri Law Firm: GitHub and Copilot Intellectual Property Litigation. https://​www.​saver​
ilawf​irm.​com/​our-​cases/​github-​copil​ot-​intel​lectu​al-​prope​rty-​litig​ation. Accessed on 19 Jan 2024
(2023)

	48.	 Mathur A, Choudhary H, Vashist P, Thies W, Thilagam S (2012) An Empirical Study of License
Violations in Open Source Projects. In: 2012 35th annual IEEE software engineering workshop, pp.
168–176. https://​doi.​org/​10.​1109/​SEW.​2012.​24

	49.	 Antelmi A (2024) SWHA-license-checker-app. https://​zenodo.​org/​recor​ds/​10801​517. Accessed on
10 03 2024. https://​doi.​org/​10.​5281/​zenodo.​10801​517

	50.	 Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc
47(260):583–621

	51.	 Stack Overflow: 2023 Developer Survey. https://​survey.​stack​overf​low.​co/​2023/. Accessed on 28 Jan
2024 (2023)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Authors and Affiliations

Alessia Antelmi1,3 · Massimo Torquati2,3 · Giacomo Corridori5 ·
Daniele Gregori4 · Francesco Polzella5 · Gianmarco Spinatelli5 ·
Marco Aldinucci1,3

 *	 Alessia Antelmi
	 alessia.antelmi@unito.it

	 Massimo Torquati
	 massimo.torquati@unipi.it

	 Giacomo Corridori
	 g.corridori@zerodivision.it

	 Daniele Gregori
	 daniele.gregori@e4company.com

	 Francesco Polzella
	 f.polzella@zerodivision.it

	 Gianmarco Spinatelli
	 g.spinatelli@zerodivision.it

	 Marco Aldinucci
	 marco.aldinucci@unito.it

1	 Department of Computer Science, University of Turin, Turin, Italy
2	 Department of Computer Science, University of Pisa, Pisa, Italy
3	 HPC‑KTT National Lab, CINI, Rome, Italy
4	 E4 Computer Engineering SpA, Scandiano, Reggio Emilia, Italy
5	 Zerodivision Systems Srl, Pisa, Italy

https://www.saverilawfirm.com/our-cases/github-copilot-intellectual-property-litigation
https://www.saverilawfirm.com/our-cases/github-copilot-intellectual-property-litigation
https://doi.org/10.1109/SEW.2012.24
https://zenodo.org/records/10801517
https://doi.org/10.5281/zenodo.10801517
https://survey.stackoverflow.co/2023/

	Analyzing FOSS license usage in publicly available software at scale via the SWH-analytics framework
	Abstract
	1 Introduction
	2 Background
	2.1 Software Heritage
	2.2 The SWH-Analytics infrastructure

	3 Related work
	4 The license checker analytic app
	4.1 Application pipeline
	4.1.1 Dataset creation
	4.1.2 License identification
	4.1.3 License compliance verification

	5 Results and discussion
	5.1 Patterns of multi(-class) license usage and conflicts
	5.2 Correlation between license usage and issues with programming languages and application domains
	5.3 Performance evaluation
	5.3.1 Application’s running times
	5.3.2 Framework scalability

	5.4 Threats to validity

	6 Conclusion
	7 Software availability
	Acknowledgements
	References

