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Operators Arising as Second Variation of Optimal
Control Problems and Their Spectral Asymptotics

Stefano Baranzini1

Abstract
We compute the asymptotic for the eigenvalues of a particular class of compact operators
deeply linked with the second variation of optimal control problems. We characterize this
family in terms of a set of finite dimensional data and we apply this results to a particular
class of singular extremal to get a nice description of the spectrum of the second variation.
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1 Introduction

The main focus of this paper is the study of a particular class of compact operators K on
the Hilbert space L2([0, 1],Rk) with the standard Hilbert structure. They are characterized
by the following properties:

• there exists a finite dimensional subspace of L2([0, 1],Rk), which we call V , on which
K becomes a self-adjoint operator, i.e. :

〈u,Kv〉 = 〈Ku, v〉 ∀ u, v ∈ V, (1)

• K is an Hilbert-Schmidt operator with an integral kernel of a particular form, namely:

K(v)(t) =
∫ t

0
V (t, τ )v(τ )dτ, v ∈ L2([0, 1],Rk), (2)

where V (t, τ ) is a matrix whose entries are L2 functions. We call the class of operator
satisfying this last condition Volterra-type operators.

The main results of this paper are a fairly general study of the asymptotic distri-
bution of the eigenvalues of K when restricted to any subspace V which satisfies (1)
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(Theorem 1) and a characterization result for operators satisfying the two properties stated
above (Theorem 2).

The first result is proved in Section 3. We first restrict ourself to operators K̃ of the form:

K̃(v)(t) = −
∫ t

0
σ(Zτ vτ , Zt ·)dτ . (3)

Here, Zt is an analytic in t , 2n × k matrix and σ the standard symplectic form on R
2n (see

Remark 1). A similar asymptotic formula was proved in [3, Theorem 1], it was shown that
if we consider {λn(K̃)}n∈Z the decreasing (resp. increasing) arrangement of positive (resp.
negative) eigenvalues of K̃ we have either:

λn(K̃) = ξ

πn
+ O(n−5/3) or λn(K̃) = O(n−2), (4)

for n ∈ Z sufficiently large and for some ξ > 0. The number ξ is called capacity and
depends only on the matrix Zt in the definition of K̃ .

If ξ = 0, we go further with the expansion in (4). We single out the term giving the
principal contribution to the asymptotic representing the quadratic form associated to K̃ as:

Q(v) = 〈v, K̃v〉 = −
∫ 1

0

∫ t

0
σ(Zτ vτ , Ztut )dτdt =

k−1∑
i=1

Qi(v) + Rk(v).

The result mentioned above corresponds to the case Q1 �= 0; in Theorem, 1 we give the
asymptotic for the general case.

From the point of view of geometric control theory, Theorem 1 can be seen as an asymp-
totic analysis of the spectrum of the second variation for particular classes of singular
extremals and a quantitative version of some necessary optimality conditions.

Precise definitions will be given in Section 5. Standard references on the second variation
are [7, Chapter 20] and [1]. For now, it is enough to know that the second variation Q of
an optimal control problem on a manifold M is a linear operator on L2([0, 1],Rk) of the
following form:

〈Qv, u〉 = −
∫ 1

0
〈Htvt , ut 〉 −

∫ 1

0

∫ t

0
σ(Zτ vτ , Ztut )dτdt, (5)

where Ht is a symmetric k × k matrix, σ is the standard symplectic form on TηT
∗M and

Zt : R
k → Tη(T

∗M) is a linear map with values in the tangent space to a fixed point
η ∈ T ∗M .

For totally singular extremal, the matrix Ht appearing in (5) is identically zero and the
second variation reduces to an operator of the same form as in (3).

In Section 4, we prove Theorem 2. We first show that any K satisfying (1) and (2) it
is completely determined by its (finite rank) skew-symmetric part A and can always be
represented as in (3). Then we relate the capacity of K to the spectrum of A.

In Section 5, we recall some basic notions from control theory and we reformulate The-
orem 2 in a more control theoretic fashion, and use it to characterize the operators coming
form the second variation of an optimal control problem. Moreover, we give a geometric
interpretation of the capacity ξ appearing in (4) in terms of the Hessian of the maximized
Hamiltonian coming from Pontryagin Maximum Principle.
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2 Overview of theMain Results

We begin this section recalling some general facts about the spectrum of compact operators,
then we fix some notation and give a precise statement of the main results. Given a com-
pact self-adjoint operator K on an Hilbert space H, we can define a quadratic form setting
Q(v) = 〈v, K(v)〉. The eigenvalues of Q are by definition those of K and we will denote
�±(Q) the positive and negative parts of the spectrum of Q.

By the standard spectral theory of compact operators (see [12]), the non-zero eigenval-
ues of K are either finite or accumulate at zero and their multiplicity is finite. Consider the
positive part of the spectrum of Q, �+(Q) and λ ∈ �+(Q). Denote by mλ the multiplicity
of the eigenvalue λ. We can introduce a monotone non-increasing sequence {λn}n∈N index-
ing the eigenvalues of K , requiring that the cardinality of the set {λn = λ} = mλ for every
λ ∈ �+(Q).

This will be called the monotone arrangement of �+(Q). We can perform the same
construction indexing by −n, n ∈ N, the negative part of the spectrum �−(Q). This time
we require that the sequence {λ−n}n∈N is non-decreasing. Provided that �±(Q) are both
infinite, we obtain a sequence {λn}n∈Z.

Definition 1 Let Q be a quadratic form Q on a Hilbert spaceH and j ∈ N

• if j is odd, Q has j−capacity ξ > 0 with reminder of order ν > 0 if �+(Q) and
�−(Q) are both infinite and:

λn = ξ

(πn)j
+ O(n−ν−j ) as n → ±∞,

• if j is even, Q has j−capacity (ξ+, ξ−) of order ν > 0 if both �+(Q) and �−(Q) are
infinite and:

λn = ξ+
(πn)j

+ O(n−ν−j ) as n → +∞,

λn = ξ−
(πn)j

+ O(n−ν−j ) as n → −∞,

where ξ± ≥ 0 or if at least one between �+(Q) and �−(Q) is infinite and the relative
monotone arrangement satisfies the corresponding asymptotic relation;

• if the spectrum is finite or λn = O(n−ν) as n → ±∞ for any ν > 0, we say that Q has
∞−capacity.

The behaviour of the sequence {λn}n∈Z is closely related to the following counting
functions:

C+
j (n) = #{l ∈ N : 0 <

1
j
√

λl

< n} C−
j (n) = #{l ∈ N : −n >

−1
j
√|λ−l | > 0}

The requirement of Definition 1 for the j−capacity can be translated into the following
asymptotic for the functions C±

j (n):

C±
j (n) = ξ±

π
n + O(n1−ν) as n → ±∞

We illustrate here some of the properties of the j−capacity. The proofs are given in
Section 3, Proposition 3. Without loss of generality we state the properties for the positive
part of the spectrum, analogue results hold for the negative one.

• (Homogeneity) if Q1 and Q2 are quadratic forms on two Hilbert spaces H1 and H2 of
j−capacity ξ1 and ξ2 respectively with the same remainder ν, then aQ1 has j−capacity
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aξ1 and the sum Q1 ⊕ Q2 on H1 ⊕ H2 has j−capacity
(

j
√

ξ1 + j
√

ξ2
)j both with

remainder ν.
• (Independence of restriction) If V ⊆ H is a subspace of finite codimension then Q has

j−capacity ξ with remainder ν if and only if its restriction to V has j−capacity ξ with
remainder ν.

• (Additivity) if Q1 has j−capacity ξ with remainder ν and Q2 has 0 j−capacity with
remainder of the same order ν, then their sum Q1 + Q2 has the same capacity with
remainder ν′ = (j+ν)(j+1)

j+ν+1

The remaining part of this section will be dealing with quadratic forms Q coming from
operators of the form given in (3). Suppose that Zt is a 2n × k matrix which depends
piecewise analytically on the parameter t ∈ [0, 1] and define the following 2n × 2n skew-
symmetric matrix:

J =
(

0 −Idn

Idn 0

)
. (6)

As Q consider the following quadratic form on L2([0, 1],Rk):

Q(v) = 〈v, K(v)〉 =
∫ 1

0

∫ t

0
〈Ztv(t), JZτ v(τ )〉dτdt . (7)

Remark 1 The operator K and the bilinear form Q(u, v) = 〈u,K(v)〉 are not symmetric.
However, the operator:

K(v) =
∫ t

0
Z∗

t JZτ v(τ )dτ,

satisfies (1) and becomes symmetric on a finite codimension subspace V . It is enough to
require that the integral

∫ 1
0 Ztv(t)dt lies in a Lagrangian subspace of (R2n, σ ) for any v ∈ V .

For instance, if we consider the fibre (or vertical subspace), i.e. the following:


 = {(p, 0) : p ∈ R
n} ⊂ R

2n. (8)

Here, σ denotes the standard symplectic form on R
2n defined as σ(x, x′) = 〈Jx, x′〉.

Let f be a smooth function on [0, 1] and let k ∈ N, denote by f (k) = dkf

dtk
the k−th

derivative with respect to t . For j ≥ 1 define the following matrix valued functions:

Aj (t) =
⎧⎨
⎩
(
Z

(k)
t

)∗
JZ

(k)
t if j = 2k − 1(

Z
(k−1)
t

)∗
JZ

(k)
t if j = 2k

(9)

We use ρt to denote any eigenvalue of the matrix Aj (t). If j = 2k, define:

μ+
t,2k :=

∑
ρt :ρt>0

2k
√

ρt μ−
t,2k :=

∑
ρt :ρt<0

2k
√|ρt |.

For odd indices, A2k−1 is skew-symmetric and thus the spectrum is purely imaginary. So
we define the function:

μt,2k−1 =
∑

ρt :−iρt>0

2k−1
√−iρt .

We are now ready to state the first main result of the section.

Theorem 1 Let Q be the quadratic form in (7). Q has either ∞−capacity or j−capacity
with remainder of order ν = 1/2. More precisely, let j ≥ 1 be the lowest integer such that
Aj (t) is not identically zero, then
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• if j = 2k − 1, the (2k − 1)−capacity ξ is given by:

ξ =
(∫ 1

0
μt,2k−1dt

)2k−1

,

and thus for n ∈ Z sufficiently large:

λn =
(∫ 1

0 μt,2k−1dt
)2k−1

(πn)2k−1
+ O(n−2k+1/2).

• if j = 2k, the 2k−capacity (ξ+, ξ−) is given by:

ξ± =
(∫ 1

0
μ±

t,2kdt

)2k

,

and thus for n ∈ Z sufficiently large:

λn =
(∫ 1

0 μ±
t,2kdt

)2k
(πn)2k

+ O(n−2k−1/2).

• if Aj (t) ≡ 0 for any j then Q has ∞−capacity.

Remark 2 It is worth remarking that in Theorem 1 of [3] the order of the remainder for the
1−capacity was a little better, 2/3 and not 1/2.

The proof of this result is given in Section 3. The next theorem gives a characterization
of the operators satisfying (1) and (2) and a geometric interpretation of the 1−capacity.
Before going to the statement let us introduce the following notation. Let A denote the
skew-symmetric part of K:

A = 1

2

(
K − K∗) .

Let � be the spectrum ofA and Im(A), the image ofA.

Theorem 2 Let be K an operator satisfying (1) and (2). Then, A has finite rank and
completely determines K . More precisely, ifA has rank 2m and is represented as:

A(v)(t) := 1

2
Z∗

t A0

∫ 1

0
Zτv(τ)dt,

for a skew-symmetric 2m × 2m matrixA0 and a 2m × k matrix Zt then:

K(v)(t) =
∫ t

0
Z∗

t A0Zτv(τ)dτ . (10)

Let � be the spectrum of A, if the matrix Zt can be chosen to be piecewise analytic the
1−capacity of K can be bound by

ξ ≤ 2
√

m

√ ∑
ρ∈�:−iρ>0

−ρ2 ≤ 2
√

m
∑

ρ∈�:−iρ>0

|ρ|.
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3 Proof of Theorem 1

Before going to the proof of Theorem 1 we still need some auxiliary results. We start with
Lemma 1 to single out the main contributions to the asymptotic of the eigenvalues of Q (the
quadratic form defined in (7)). The first non-zero term of the decomposition we give will
determine the rate of decaying of the eigenvalues (see Proposition 4).

Before showing this and prove the precise estimates, we need to carry out the explicit
computation of the asymptotic in some model cases, namely when the matrices Aj are
constant. Then, we have to show how the j−capacity behaves with respect to natural oper-
ations such as direct sum of quadratic form or restriction to finite codimension subspaces
(Proposition 3).

Let us start with some notation:

vk(t) =
∫ t

0
vk−1(τ )dτ, v0(t) = v(t) ∈ L2([0, 1],Rm)

Suppose that the map t �→ Zt is real analytic (or at least regular enough to perform the
necessary derivatives) and integrate by parts twice:

Q(v) =
∫ 1

0
〈Ztv(t),

∫ t

0
JZτv(τ)dτ 〉dt

=
∫ 1

0
〈Ztv(t), JZtv1(t)〉 − 〈Ztv(t),

∫ t

0
J Żτ v1(τ )dτ 〉dt

=
∫ 1

0
〈Ztv(t), JZtv1(t)〉 + 〈Ztv1(t), J Żt v1(t)〉dt +

+
∫ 1

0
〈Żt v1(t), J

∫ t

0
Żτ v1(τ )dτ 〉dt −

[
〈
∫ 1

0
Ztv(t)dt, J

∫ 1

0
Żt v1(t)dt〉

]

If we impose the condition
∫ 1
0 vtdt = 0 ( ⇐⇒ v1(1) = 0), the term in brackets vanishes:

〈
∫ 1

0
Ztv(t)dt, J

∫ 1

0
Żt v1(t)dt〉 = 〈

∫ 1

0
Ztv(t)dt, JZ1v1(1)〉−〈

∫ 1

0
Ztv(t)dt, J

∫ 1

0
Ztv(t)dt〉

and we can write Q as a sum of three terms

Q(v) = Q1(v) + Q2(v) + R1(v)

In analogy, we can make the following definitions:

Q2k−1(v) =
∫ 1

0
〈Z(k−1)

t vk−1(t), JZ
(k−1)
t vk(t)〉 =

∫ 1

0
〈vk−1(t), A2k−1(t)vk(t)〉

Q2k(v) =
∫ 1

0
〈Z(k−1)

t vk(t), JZ
(k)
t vk(t)〉dt =

∫ 1

0
〈vk(t), A2k(t)vk(t)〉dt

Rk =
∫ 1

0
〈Z(k)

t vk(t), J

∫ t

0
Z(k)

τ vk(τ )dτ 〉dt

Vk = {v ∈ L2([0, 1],Rm) : vl(1) = 0, ∀ 0 < l ≤ k}
Here, the matrices Aj (t) are exactly those defined in (9).
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Lemma 1 For every j ∈ N, on the subspace Vj , the form Q can be represented as

Q(v) =
2j∑

k=1

Qk(v) + Rj (v) (11)

The matrices A2k(t) are symmetric provided that
d
dt

A2k−1(t) ≡ 0. On the other hand A2k−1
is always skew symmetric.

Proof It is sufficient to notice that R1(v) has the same form as Q(v) but with v1 instead of v

and Żt instead ofZt . Thus, the same scheme of integration by parts gives the decomposition.
Notice that A2k(t) = A∗

2k(t) + d
dt

A2k−1(t); thus, the skew-symmetric part of A2k(t) is
zero if A2k−1 is zero or constant. A2k−1(t) is always skew-symmetric by definition.

Now, we would like to compute explicitly the spectrum of the Qj when the matrices Aj

are constant. Unfortunately, describing the spectrum with boundary conditions given by the
Vj is quite hard. Already for Q4 the equation determining it cannot be solved explicitly.

We will derive the Euler-Lagrange equation for Qj and turn instead to periodic boundary
conditions for which everything becomes very explicit and show how to relate the solution
for the two boundary value problems we are considering. Let us write down the Euler-
Lagrange equations for the forms Qj . If j = 2k integration by parts yields:

Q2k(v) − λ||v||2 =
∫ 1

0
〈vk(t), A2kvk(t)〉 − λ〈v0(t), v0(t)〉dt

=
∫ 1

0
〈v0(t), (−1)kA2kv2k(t) − λv0(t)〉dt +

+
k−1∑
r=0

(−1)r
[〈vk−r (t), A2kvk+r+1(t)〉

]1
0

Notice that the boundary terms vanish identically if we impose the vanishing of vj for
1 ≤ j ≤ k at boundary points.

We change notation and define w(t) = v2k(t) and w(j)(t) = dj

dtj
(w(t)). The new

equations are:

w(2k)(t) = (−1)k

λ
A2kw(t)

We can perform a linear change of coordinates that diagonalizes A2k to reduce to m

1−dimensional systems. Imposing periodic boundary conditions, we are thus left with the
following boundary value problem:

w(2k)(t) = (−1)kμ

λ
w(t) w(j)(0) = w(j)(1) for 0 ≤ j ≤ 2k − 1 (12)

The case of odd j is very similar, in fact Q2k−1(v) can be rewritten as:

Q2k−1(v) − λ||v||2 =
∫ 1

0
〈vk−1(t), A2k−1vk(t)〉 − λ〈v0(t), v0(t)〉dt

=
∫ 1

0
〈v0(t), (−1)k−1A2k−1v2k−1(t) − λv0〉dt + b.t.

Here, by b.t . we mean boundary terms as the one appearing in the previous equation.
They again disappear if we assume that vj ∈ Vj . Thus, we end up with a boundary value
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problem similar to the one we had before with the difference that now the matrix A2k−1 is
skew-symmetric.

w(2k−1)(t) = (−1)k−1

λ
A2k−1w(t)

If we split the space into the kernel and invariant subspaces on which A2k−1 is non-
degenerate, we can decompose Q2k−1 as a direct sum of two-dimensional forms. Imposing
periodic boundary conditions, we end up with the following boundary value problems:{

w
(2k−1)
1 (t) = − (−1)(k−1)μ

λ
w2

w
(2k−1)
2 (t) = (−1)(k−1)μ

λ
w1

{
w

(j)

1 (0) = w
(j)

1 (1),

w
(j)

2 (0) = w
(j)

2 (1)
for 0 ≤ j ≤ 2k − 2. (13)

Lemma 2 The boundary value problem in (12) has a solution if and only if

λ ∈
{

μ

(2πr)2k
: r ∈ N

}
.

Moreover, any such λ has multiplicity 2. In particular, the decreasing sequence of λ for
which (12) has solutions satisfies:

λr = μ

(2π�r/2�)2k = μ

(πr)2k
+ O(r−(2k+1)), r ∈ N

Similarly, the boundary value problem in (13) has a solution if and only if:

λ ∈
{ |μ|

(2πr)2k−1
: r ∈ Z

}

and any such λ has again multiplicity 2. The monotone rearrangement of λ for which there
exists a solution to the boundary value problem is:

λr = |μ|
(2π�r/2�)2k−1

= |μ|
(πr)2k−1

+ O
(
r−(2k)

)
, r ∈ Z

Proof Any solution of the equation w(2k)(t) = (−1)kμ
λ

w(t) can be expressed as a
combination of trigonometric and hyperbolic functions with the appropriate frequencies.

Without loss of generality we can assume μ > 0, we have to consider two separate cases:

Case 1: k even and λ > 0 or k odd and λ < 0

In this case, the quantity (−1)kμλ−1 > 0. If we define a2k = (−1)kμλ−1 > 0 for a > 0,
we have to solve:

w(2k)(t) = a2kw(t), w(j)(0) = w(j)(1), 0 ≤ j < 2k. (14)

A base for the space of solutions to the ODE is then {eωj at : ω = eiπ/k}. For us, it will
be more convenient to switch to a real representation of the space of solutions. Notice the
following symmetry of the even roots of 1, if η is a root of 1 different form ±1,±i then
{η, η̄,−η,−η̄} are still distinct roots of 1 (this is also a Hamiltonian feature of the problem).

If we write η = η1 + iη2, this symmetry implies that the space generated by
{eηt , eη̄t , e−ηt , e−η̄t } is the same as the space generated by

{sin(η2t) sinh(η1t), sin(η2t) cosh(η1t), cos(η2t) sinh(η1t), cos(η2t) cosh(η1t)}.
Let us rescale these functions by a (so that they solve (14)) and call their linear span Uη,

we then define U1 to be the span of {sinh(t), cosh(t)} and Ui = {sin(t), cos(t)}. Note that
Ui appears if and only if k is even.
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Thus, the solution space for our problem is the space
⊕

η Uη where η ranges over the set

E = {η : �(η) ≥ 0,�(η) ≥ 0, η2k = 1}.
Now, we have to impose the boundary conditions. Notice that, if k is even thenUi is made

of periodic functions, so they are always solutions. We can look for more on the complement⊕
η �=i Uη. Suppose by contradiction that w is one of such solutions. Write w = ∑

η wη

with wη ∈ Uη and let b be the sup{�(η) : η ∈ E, wη �= 0}. It follows that either sinh(b at)

or cosh(b at) is present in the decomposition of w. It follows that:

w(t) = sinh(b at)
w(t)

sinh(b at)
= sinh(b at)g(t), 0 �≡ |g(t)| < C for t large enough

and so |w| is unbounded as t → +∞ (or −∞) and thus w is not periodic. It follows that

there are periodic solutions only if k is even (and thus λ > 0) and a = 2πr = 2k
√

μ
λ
. Notice

that we have two independent solutions, so if we arrange the solution in a decreasing order,
we have:

λr = μ

(2π�r/2�)2k , r ∈ N

Case 2: k odd and λ > 0 or k even and λ < 0

In this case, we have to look at the roots of −1 but the argument is very similar. If k is
even there are no solutions, since you lack purely imaginary frequencies. If k is odd, set
|μλ−1| = a2k , then the boundary value problem is:

w(2k)(t) = −a2kw(t) w(j)(0) = w(j)(1), 0 ≤ j < 2k.

The roots of −1 are just the roots of 1 rotated by i. Now, the space of solutions is⊕
η �=1 Uη. We find again two independent solutions; if we arrange them in order, we get:

λr = μ

(2π�r/2�)2k , r ∈ N

Notice that positive μ gives rise to positive solutions. Thus, if we consider μ < 0, we get
the same result but with switched signs.

We can reduce the odd case (13) to the even one. Consider the 1−dimensional equation
of twice the order, i.e.:

w
2(2k−1)
1 (t) = −μ2

λ2
w1

Now, the discussion above tells us that there are exactly two independent solutions with

periodic boundary conditions whenever λ satisfies 2k−1
√

μ
|λ| = 2rπ . It follows that again

there are two independent solutions, this times for both signs of λ. If we arrange them in
order, we get:

λr = μ

(2π�r/2�)2k−1
, λ−r = μ

(2π�r/2�)2k−1
, r ∈ N

Proposition 1 Let μ > 0 and s ∈ (0,+∞), denote by ηs the number of solutions of (12)
with λ greater than s and similarly denote by ωs be the number of solutions with λ bigger
than s of:

w(2k)(t) = (−1)kμ

λ
w(t), w(j)(0) = w(j)(1) = 0, k ≤ j ≤ 2k − 1 (15)

Then, |ωs − ηs | ≤ 2k. The same conclusion holds for (13).

667Operators Arising as Second Variation of Optimal Control Problems...



Proof The result follows from standard results about Maslov index of a path in the Lagrange
Grassmannian. References on the topic can be found in [2, 5, 6]. Let us illustrate briefly the
construction. Let (�, σ ) be a symplectic space, the Lagrange Grassmannian is the collection
of Lagrangian subspaces of� and it has a structure of smooth manifold. For any Lagrangian
subspace L0, we define the train of L0 to be the set: TL0 = {L Lagrangian : L ∩ L0 �=
(0)}. TL0 is a stratified set; the biggest stratum has codimension 1 and is endowed with a
co-orientation. If γ is a smooth curve with values in the Lagrangian Grassmannian (i.e. a
smooth family of Lagrangian subspaces) which intersects transversally TL0 in its smooth
part, one defines an intersection number by counting the intersection points weighted with
a plus or minus sign depending on the co-orientation. Tangent vectors at a point L of the
Lagrange Grassmannian (which is a subspace of �) are naturally interpreted as quadratic
forms on L. We say that a curve is monotone if at any point its velocity is either a non-
negative or a non-positive quadratic form. For monotone curves, Maslov index counts the
number of intersections with the train up to sign. For generic continuous curves, it is defined
via a homotopy argument.

Denote by MiL0(γ ) the Maslov index of a curve γ and L1 be another Lagrangian
subspace. In [2], the following inequality is proved:

|MiL0(γ ) −MiL1(γ )| ≤ dim(�)

2
(16)

Let us apply this results to our problem. First of all let us produce a curve in the Lagrange
Grassmannian whose Maslov index coincides with the counting functions ωs and ηs . The

right candidate is the graph of the fundamental solution of w(2k)(t) = (−1)kμ
λ

w(t).
We write down a first order system on R

2k equivalent to our boundary value problem, if
we call the coordinates on R

2k xj , set:

xj+1(t) = w(j)(t) ⇒ ẋj = xj+1 for 1 ≤ j ≤ 2k − 1, ẋ2k = (−1)kμ

λ
x1.

For simplicity call (−1)kμ
λ

= a, the matrix we obtain has the following structure:

Aλ =

⎛
⎜⎜⎜⎝

0 a

1 0
. . .

. . .
1 0

⎞
⎟⎟⎟⎠

This matrix is not Hamiltonian with respect to the standard symplectic form on R
2k but is

straightforward to compute a similarity transformation that sends it to an Hamiltonian one
(recall that we already used that Aλ has the spectrum of an Hamiltonian matrix). Moreover,
the change of coordinates can be chosen to be block diagonal and thus preserves the sub-
space B = {xj = 0, k ≤ j}, which remains Lagrangian too. Since later on we will have
to show that the curve we consider is monotone, we will give this change of coordinates
explicitly. Define the matrix S setting Si,k−i+1 = (−1)i−1 and zero otherwise. It is a matrix
that has alternating ±1 on the anti-diagonal. Define the following 2k × 2k matrices:

G =
(
1 0
0 S

)
G−1 =

(
1 0
0 (−1)kS

)
Âλ = GAλG

−1
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Set N to be the lower triangular k × k shift matrix (i.e. the left upper block of Aλ above)
and E the matrix with just a 1 in position (1, k) (i.e. the left lower block of Aλ). The new
matrix of coefficients is:

Âλ =
(

N a(−1)kES

SE −N∗
)

ES = diag(0, . . . , 0, 1), SE = diag(1, 0, . . . , 0).

Now, we are ready to define our curve. First of all, the symplectic space we are going to use
is (R4k, σ⊕(−σ))where σ is the standard symplectic form, in this way graphs of symplectic
transformation are Lagrangian subspaces. Sometimes, we will denote the direct sum of the
two symplectic forms with opposite signs with σ � σ too. Let �λ be the fundamental
solution of �̇t

λ = Âλ�
t
λ at time t = 1. Consider its graph:

γ : λ �→ �(�1
λ) = �(�λ), λ ∈ (0,+∞)

Once we prove that γ is monotone, it is straightforward to check that MiB×B(γ |[s,+∞))

counts the number of solutions to boundary value problem given in (15) for λ ≥ s and
similarly Mi�(I)(γ |[s,+∞)) counts the solutions of (12) for λ ≥ s. Here, �(I) stands for the
graph of the identity map (i.e. the diagonal subspace).

Let us check that the curve is monotone. As already mentioned, tangent vectors in the
Lagrange Grassmannian can be interpreted as quadratic forms. Being monotone means that
the following quadratic form is either non-negative or non-positive:

(∂λγ ) (ξ) = σ(�λξ, ∂λ�λξ), ξ ∈ R
2k

We use the ODE for �λ(t) to prove monotonicity:

σ(�λξ, ∂λ�λξ) =
∫ 1

0

d

dt

(
σ(�t

λξ, ∂λ�
t
λξ)
)
dt + σ(�0

λξ, ∂λ�
0
λξ)

=
∫ 1

0
σ(Âλ�

t
λξ, ∂λ�

t
λξ) + σ(�t

λξ,
(
∂λÂλ �t

λ + Âλ∂λ�
t
λ

)
ξ)dt

=
∫ 1

0
σ(�t

λξ, ∂λÂλ �t
λξ)dt

where we used the facts that ∂λ�
0
λ = ∂λId = 0 and that Âλ is Hamiltonian and thus J Âλ =

−Â∗
λJ to cancel the first and third term. It remains to check J∂λÂλ. It is straightforward

to see that it is a diagonal matrix with just a non-zero entry; thus, it is either non-negative
or non-positive. So ∂λγ is either non-positive or non-negative being the integral of a non-
positive or non-negative quantity (the sign is independent of ξ ).

Now, the statement follows from inequality (16).

We are finally ready to compute the asymptotic for Qj when the matrix Aj is constant.
The next Proposition translates the estimate on the counting functions ηs and ωs defined in
Proposition 1 to an estimate for the eigenvalues.

Proposition 2 Let Qj be any of the forms appearing in (11).

• Suppose j = 2k and Q2k(v) = ∫ 10 〈A2kvk, vk〉dt with A2k symmetric and constant and
let �2k be its spectrum. Define

ξ+ =
⎛
⎝ ∑

μ∈�2k,μ>0

j
√

μ

⎞
⎠

j

and ξ− =
⎛
⎝ ∑

μ∈�2k,μ<0

j
√|μ|

⎞
⎠

j

.
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Then,Q2k has capacity (ξ+, ξ−) with remainder of order one. Moreover, ifA2k ism×m

and r ∈ N, for r ≥ mk

ξ+
πj (r − 2mk − p(r))j

≥ λr ≥ ξ+
πj (r + 2mk + p(r))j

(17)

where p(r) = 0 if r is even or p(r) = 1 if r is odd. Similarly for negative r with ξ−.
• Suppose j = 2k+1 andQ2k+1(v) = ∫ 10 〈A2k+1vk−1, vk〉dt withA2k+1 skew-symmetric

and constant and let �2k+1 be its spectrum. Define

ξ =
⎛
⎝ ∑

μ∈�2k+1,−iμ>0

j
√−iμ

⎞
⎠

j

.

Then, Q2k+1 has capacity ξ with remainder of order one. Moreover, if A2k is m × m

and r ∈ Z, for |r| ≥ mk

ξ

πj (r − 2mk − p(r))j
≥ λr ≥ ξ

πj (r + 2mk + p(r))j
. (18)

Proof First of all we, consider 1−dimensional system and we write the inequality |ηs −ωs |
as an inequality for the eigenvalues. Notice that if we have two integer valued function
f, g : R → N and an inequality of the form:

g(s) ≥ #{λ solutions of (15) : λ ≥ s} ≥ f (s),

it means that we have at least f (s) solutions bigger than s and at most g(s). This implies
that the sequence of ordered eigenvalues satisfies:

λf (s) ≥ s, λg(s) ≤ s.

Now, we compute this quantities explicitly. In virtue of Proposition 1, we can take as
upper/lower bounds for the counting function g(s) = ηs + 2k and f (s) = ηs − 2k. We
choose the point s = μ

(2πr)j
. It is straightforward to see that:

ηs

∣∣∣∣s= μ

(2πr)j
= 2#

{
l ∈ N : μ

(2πl)j
≥ μ

(2πr)j

}
= 2r .

And thus we obtain:

λ2(r−k) ≥ μ

(2πr)j
, λ2(r+k) ≤ μ

(2πr)j
.

Now, if we change the labelling, we find that , for l ≥ k:

μ

(2π(l − k))j
≥ λ2l ≥ μ

(2π(l + k))j
.

By definition λ2l ≥ λ2l+1 ≥ λ2l+2 and thus we have a bound for any index r ∈ N.
Now, we consider m−dimensional system; notice that we reduced the problem, via diag-

onalization, to the sum of m 1−dimensional systems. Thus, our form Qj is always a direct
sum of 1− dimensional objects. We show now how to recover the desired estimate for the
sum of quadratic forms.

First of all, observe that counting functions are additive with respect to direct sum. In
fact, if Q = ⊕m

i=1Qi , λ is an eigenvalue of Q if and only if it is an eigenvalue of Qi for
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some i. We proceed as we did before. Suppose that Qa is 1−dimensional and Qa(v) =∫ 1
0 μa |vk(t)|2dt . Let us compute ηs in the point s0 =

(∑m
i=1

j
√

μi

)j
/(2πl)j :

2#

{
r ∈ N : μa

(2πr)j
≥
(∑m

i=1
j
√

μi

)j
(2πl)j

}
= 2#

{
r ∈ N :

j
√

μa(∑m
i=1

j
√

μi

)
r
≥ 1

l

}

Set for simplicity ca = j
√

μa

(
∑m

i=1
j
√

μi)
, it is straightforward to see that the cardinality of the

above set is #{r ∈ N : r ≤ cal} = �cal�. Now, we are ready to prove the estimates for the
direct sum of forms. Adding everything we have:

2
m∑

a=1

(�cal� + k) ≥ #

{
eigenvalues of Q ≥ (

∑m
i=1

j
√

μi)
j

(2πl)j

}
= 2

m∑
a=1

(�cal� − k)

It is clear that
∑m

a=1 ca = 1 and that l + mk ≥∑m
a=1(�cal� + k), similarly

∑m
a=1(�cal� +

k) ≥ l − m(k + 1) since �cal� ≥ cal − 1. Rewriting for the eigenvalues with l ≥ mk we
obtain: (∑m

i=1
j
√

μi

)j
(2π(l − mk))j

≥ λ2l ≥
(∑m

i=1
j
√

μi

)j
(2π(l + mk))j

.

It is straightforward to compute the bounds in (17) and (18) observing again λ2l ≥ λ2l+1 ≥
λ2l+2.

Remark 3 The shift m appearing in (17) and (18) is due to the fact we are considering the
direct sum of m quadratic forms. It is worth noticing that this does not depend on the fact
that we are considering a quadratic form on L2([0, 1],Rm) and the estimates in (17) and
(18) hold whenever we consider the direct sum of m 1−dimensional forms with constant
coefficients. This consideration will be used in the proof of Theorem 1 below.

Now, we prove some properties of the capacities which are closely related to the explicit
estimate we have just proved for the linear case. As done so far, we state the proposition for
ordered positive eigenvalues. An analogous statement is true for the negative ones.

Proposition 3 Suppose that Q is a quadratic form on an Hilbert space and let {λn}n∈N be
its positive ordered eigenvalues. Suppose that:

λn = ζ

nj
+ O(n−j−ν) ν > 0, j ∈ N as n → +∞.

1. Then, for any such Qi on a Hilbert spaceHi , the direct sum Q = ⊕m
i=1Qi satisfies:

λn =
(

m∑
i=1

j
√

ζi

n

)j

+ O(n−j−ν) ν > 0, j ∈ N as n → +∞.

2. Suppose that U is a subspace of codimension d < ∞ then

λn(Q|U) = ζ

nj
+ O(n−j−ν) ⇐⇒ λn(Q) = ζ

nj
+ O(n−j−ν),

as n → +∞.
3. Suppose that Q and Q̂ are two quadratic forms. Suppose that Q is as at the beginning

of the proposition and Q̂ satisfies:

λn(Q̂) = O(nj+μ) μ > 0, as n → +∞.

671Operators Arising as Second Variation of Optimal Control Problems...



Then, the sum Q′ = Q + Q̂ satisfies:

λn(Q
′) = ζ

nj
+ O(nj+ν′), ν′ = min

{
j + μ

j + μ + 1
(j + 1), j + ν

}
.

Proof The asymptotic relation can be written in terms of a counting function. Take the j th
root of the eigenvalues of Qi , then it holds that

#

{
n ∈ N | 0 ≤ 1

j
√

λn

≤ k

}
= j
√

ζik + O(k1−ν)

So summing up all the contribution we get the estimate in i).
The min-max principle implies that we can control the nth eigenvalue of Q|U with the

nth and (n + d)th eigenvalue of Q i.e.:

λn(Q|U) ≤ λn(Q) ≤ λn−d(Q|U) ≤ λn−d(Q)

So, if the codimension is fixed, it is equivalent to provide and estimate for the eigenvalues
Q or for those of Q|U .

For the last point we use Weyl law. We can estimate the i + j th eigenvalue of a sum of
quadratic forms with the sum of the ith and the j th eigenvalues of the summands. Write, as
in [3], Q′ as Q+Q̂ and Q as Q′+(−Q̂). and choose i = n − �nδ� and j = �nδ� in the first
case and i = n and j = �nδ� in the second. This implies:

λn+�nδ�(Q) + λ�nδ�(Q̂) ≤ λn(Q
′) ≤ λn−�nδ�(Q) + λ�nδ�(Q̂)

The best remainder is computed as ν′ = maxδ∈(0,1) min{(j + μ)δ, j + 1− δ, j + ν}.
Collecting all the facts above we have the following estimate on the decaying of the

eigenvalues of Qj , independently of any analyticity assumption of the kernel.

Proposition 4 Take Qj as in the decomposition of lemma Eq. 1. Then, the eigenvalues of
Qj satisfy:

λn(Qj ) = O

(
1

nj

)
as n → ±∞

Moreover, for any k ∈ N and for any 0 ≤ s ≤ k, the forms Q2k+1 and Q2k have the same
first term asymptotic as the forms:

Q̂2k+1,s (v) = (−1)s
∫ 1

0
〈A2k+1vk+1+s(t), vk−s(t)〉dt

Q̂2k,s(v) = (−1)s
∫ 1

0
〈A2kvk+s(t), vk−s(t)〉dt

Proof Let us start with even case, j = 2k. It holds that:

|Q2k(v)| = |
∫ 1

0
〈Atvk(t), vk(t)dt | ≤ C

∫ 1

0
〈vk(t), vk(t)〉dt

whereC = maxt ||At ||. By comparison with the constant coefficient case, we get the bound.
Suppose now that j = 2k − 1. As before there is a constant C such that

|Q2k(v)| = |
∫ 1

0
〈Atvk(t), vk+1(t)dt | ≤ C‖vk‖2‖vk+1‖2
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Consider now the following quadratic forms on L2([0, 1],Rk):

Fk(v) =
∫ 1

0
||vk(t)||2dt = ‖vk‖22, Fk+1(v) =

∫ 1

0
||vk+1(t)||2dt = ‖vk+1‖22

Define Vn = {v1, . . . , vn}⊥ where vi are linearly independent eigenvectors of Fk associated
to the first n eigenvalues λ1 ≥ · · · ≥ λn. Similarly define Un = {u1, . . . , un}⊥ to be the
orthogonal complement to the eigenspace associated to the first n eigenvalues of Fk+1. It
follows that:

λ2n(Q2k+1) ≤ max
v∈Vn∩Un

C‖vk‖2‖vk+1‖2 ≤ C max
v∈Vn

‖vk‖2 max
v∈Un

‖vk+1‖2
We already have an estimate for the eigenvalues of Fk and Fk+1 since we have already

dealt with constant coefficients case. In virtue of the choice of the subspace Vn and Un, the
maxima in the right hand side are the square roots of the nth eigenvalues of the respective
forms. Thus, one gives a contribution of order n−k and the other of order n−k−1 and the first
part of the proposition is proved.

For the second part, without loss of generality suppose that j = 2k. The other case is
completely analogous.

Q2k(v) =
∫ 1

0
〈vk, Atvk〉dt =

∫ 1

0
〈vk,

∫ t

0
Aτvk−1(τ ) + Ȧτ vk(τ )dτ 〉dt

= −
∫ 1

0
〈vk+1(t), Atvk−1(t) +

∫ 1

0
〈vk+1(t), Ȧt vk(t)〉dt

The second term above is of higher order by the first part of the lemma and so iterating the
integration by parts on the first term at step s we get that:∫ 1

0
〈vk+s(t), Atvk−s(t)〉dt = −

∫ 1

0
〈vk+s+1(t), Atvk−s−1(t)〉dt

+
∫ 1

0
〈vk+s+1(t), Ȧτ vk−s(t)〉dt

The second term of the right hand side is again of order n2k+1; this can be checked in the
same way as in the first part of the proposition. This finishes the proof.

Now, we prove the main result of this section:

Proof of Theorem 1 Suppose that j = 2k is even. We work on Vk = {v ∈ L2([0, 1],Rm) :
vj (0) = vj (1) = 0, 0 < j ≤ k}. Then

Q(v) = Q2k(v) + Rk(v) =
∫ 1

0
〈Atvk(t), vk(t)〉dt + Rk(v)

Since the matrix At is analytic, we can diagonalize it piecewise analytically in t (see
[11]). Thus, there exists a piecewise analytic orthogonal matrix Ot such that O∗

t AtOt is
diagonal. By the second part of Proposition 4, if we make the change of coordinates vt �→
Otvt we can reduce to study the direct sum of m 1− dimensional forms. Without loss of
generality, we consider forms of the type:

Q2k(v) =
∫ 1

0
at ||vk(t)||2dt =

∫ 1

0
atvk(t)

2dt

where now at is piecewise analytic and vk a scalar function.
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For simplicity, we can assume that at does not change sign and is analytic on the whole
interval. If that were not the case, we could just divide [0, 1] in a finite number of intervals
and study Q2k separately on each of them.

Suppose you pick a point t0 in (0, 1) and consider the following subspace of codimension
mk in Vk:

Vk ⊃ V
t0
k = {v ∈ Vk : vj (0) = vj (t0) = vj (1) = 0, 0 < j ≤ k}

For t ≥ t0, define v
t0
j := ∫ t

t0
v

t0
j−1(τ )dτ and v0 = v ∈ Vk . It is straightforward to check

that on V
t0
k the form Q2k splits as a direct sum:

Q2k(v) =
∫ t0

0
〈Atvk(t), vk(t)〉dt +

∫ 1

t0

〈Atv
t0
k (t), v

t0
k (t)〉dt

Now, by Proposition 3 (points (i) and (ii)), we can introduce as many points as we want
and work separately on each segment and the asymptotic will not change (as long as the
number of point is finite).

Now, we fix a partition 
 of [0, 1], 
 = {t0 = 0, t1 . . . tl−1, tl = 1}. Consider the
subspace V
 = {v ∈ L2 | vs(ti ) = vs(ti+1) = 0, 0 < s ≤ k, ti ∈ 
} which has codi-
mension equal to k|
|. Set a−i = mint∈[ti ,ti+1] at and a+i = maxt∈[ti ,ti+1] at . Finally, define
v

ti
k (t) = ∫ t

ti
. . .
∫ τ1
ti

v(τ )dτ . . . dτk−1. It follows immediately that on V
:

∑
i

a−i
∫ ti+1

ti

v
ti
k (t)2dt ≤ Q2k(v) ≤

∑
i

a+i
∫ ti+1

ti

v
ti
k (t)2dt

Now, we already analysed the spectrum for the problem with constant at on [0, 1]. The
last step to understand the quantities on the right and left hand side is to see how the
eigenvalues rescale when we change the length of [0, 1].

If we look back at the proof of Lemma 2, it is straightforward to check that the length
is relevant only when we impose the boundary conditions, we find that the eigenvalues are:

λ = a�2k

(2πn)2k
and again double.

In particular, the estimates in (17) and (18) are still true replacing μi with a±i �2k .
If we replace now � by |ti+1 − ti | and sum the capacities according to Proposition 3, we

have the following estimate on the eigenvalues on V
, for n ≥ 2k|
|:
( ∑

i (a
−
i )

1
2k (ti+1 − ti )

π(n + 2|
|k + p(n))

)2k

≤ λn

(
Q2k

∣∣
V


) ≤
( ∑

i (a
+
i )

1
2k (ti+1 − ti )

π(n − 2|
|k − p(n))

)2k

Moreover, the min-max principle implies that, for n ≥ k|
|:
λn

(
Q2k

∣∣
V


) ≤ λn (Q2k) ≤ λn−k|
|
(
Q2k

∣∣
V


)

In particular, for n ≥ 3k|
|, we have:
( ∑

i (a
−
i )

1
2k (ti+1 − ti )

π(n + 2|
|k + p(n))

)2k

≤ λn(Q2k) ≤
( ∑

i (a
+
i )

1
2k (ti+1 − ti )

π(n − 3|
|k − p(n))

)2k

(19)

We address now the issue of the convergence of the Riemann sums. Set I±a =∑
i

(
a±i
) 1
2k (ti+1 − ti ) and Ia = ∫ 1

0 a
1
2k dt . It is well known that I±a → Ia as long as
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supi |ti − ti+1| goes to zero. We need a more quantitative bound on the rate of convergence.
Using results from [9] for and equispaced partition, we have that:

|Ia − I±a | ≤ C±
a

1

|
| =
C(a, k,±)

codim(V
)

where C(a, k,±) is a constant that depends only on the function a and on k and the
inequality holds for |
| ≥ n0 sufficiently large, where n0 depends just on a and k.

Consider the right hand side of (19), adding and subtracting Ia

(πn)2k
, we find that for

n ≥ max{n0, k|
|}:

λn(Q2k) ≤
(

Ia

πn

)2k
+
(

I+a
π(n − 3|
|k − p(n))

)2k

−
(

Ia

πn

)2k

.

A simple algebraic manipulation shows that there are constants C1, C2 and C3 such that
the difference on the right hand side is bounded by

C1n
2k|
|−1 + C2(n

2k − |
|2k(n/|
| − 1)2k)

C3(n − 3k|
|)2kn2k
for n ≥ max{3k|
|, n1|
|, n0} where n1 is a certain threshold independent of |
|.

The idea now is to choose for n a partition 
 of size |
| = �nδ� to provide a good
estimate of λn(Q). The better result in terms of approximation is obtained for δ = 1

2 .
Heuristically this can be explained as follows: on one hand the first piece of the error term
is of order n−2k−δ , comes from the convergence of the Riemann sums and gets better as
δ → 1. On the other hand the second term comes from the estimate on the eigenvalues and
get worse and worse as nδ becomes comparable to n.

A perfectly analogous argument allows to construct an error function for the left side of
(19) which decays as n−2k−1/2 for n sufficiently large.

We have proved so far that, for one dimensional forms, Q2k has 2k−capacity ξ+ =
(
∫ 1
0

2k
√

atdt)2k . Now, we apply point (i) of Proposition 3 to obtain the formula in the state-
ment for forms on L2([0, 1],Rm). Finally notice that by Proposition 4 the eigenvalues of
Rk(v) decay as n−2k−1. If we apply point (iii) of Proposition 3, we find thatQ2k(v)+Rk(v)

has the same 2k−capacity as Q2k with remainder of order 1/2.
Now, we consider the case j = 2k− 1. The idea is to reduce to the case of j = 4k− 2 as

in the proof of Lemma 2 and use the symmetries of Q2k−1 to conclude. In the same spirit as
in the beginning of the proof let us diagonalize the kernel A2k−1. We thus reduce everything
to the two dimensional case, i.e. to the quadratic forms:

Q(v) =
∫ 1

0
〈vk(t),

(
0 −at

at 0

)
vk−1(t)〉dt at ≥ 0 (20)

It is clear that the map v0 �→ Ov0 where O =
(
0 1
1 0

)
is an isometry of L2([0, 1],R2)

and Q(Ov0) = −Q(v0) and so the spectrum is two sided and the asymptotic is the same
for positive and negative eigenvalues.

Now, we reduce the problem to the even case. Let us consider the square of Q2k−1. By
proposition Eq. 4 Q2k−1 has the same asymptotic as the form:

Q̂2k−1 = (−1)k+1
∫ 1

0
〈Atv2k−1(t), v0(t)〉dt F (v0)(t) = (−1)k+1Atv2k−1(t)
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So we have to study the eigenvalues of the symmetric part of F . It is clear that:

(F + F ∗)2

4
= F 2 + FF ∗ + F ∗F + (F ∗)2

4
Thus, we have to deal with the quadratic form:

4Q̃(v) = 〈[2F 2 + F ∗F + FF ∗](v), v〉
= 2〈F(v), F ∗(v)〉 + 〈F ∗(v), F ∗(v)〉 + 〈F(v), F (v)〉

The last term is the easiest to write, it is just:

〈F(v), F (v)〉 =
∫ 1

0
〈−A2

t v2k−1(t), v2k−1(t)〉dt

which is precisely of the form of point (i) and gives 1
4 of the desired asymptotic. The

operator F ∗ acts as follows:

F ∗(v) = (−1)k+1
∫ t

0

∫ t2k−1

0
. . .

∫ t1

0
At1v0(t1)dt1 . . . dt2k−1

Using integration by parts one can single out the term Atv2k−1. To illustrate the procedure,
for k = 1 one gets:

F ∗(v) = Atv1(t) −
∫ t

0
Ȧτ v1(τ )dτ

〈F ∗(v), F ∗(v)〉 =
∫ 1

0
〈−A2

t v1(t), v1(t)〉dt + 2
∫ 1

0
〈Atv1(t),

∫ t

0
Ȧτ v1(τ )dτ 〉dt +

+
∫ 1

0
〈
∫ t

0
Ȧτ v1(τ )dτ,

∫ t

0
Ȧτ v1(τ )dτ 〉dt

The other terms thus do not affect the asymptotic since by Proposition 4 they decay at
least as O(n3). The proof goes on the same line for general k.

The same reasoning applies to the term 〈F(v), F ∗(v)〉. Summing everything one gets
that the leading term is

∫ 1
0 〈−A2

t v2k−1(t), v2k−1(t)〉dt and so this is precisely the same case
as point (i). Recall that At is a 2 × 2 skew-symmetric matrix as defined in (20); thus, the
eigenvalues of the square coincide and are a2t . It follows that, for n sufficiently large, the
square of the eigenvalues of Q̃ satisfy:

λn(Q̃) =

(∫ 1
0 2

4k−2
√

a2t dt

)4k−2

π4k−2n4k−2
+ O(n−4k−2− 1

2 )

It is immediate to see that

(∫ 1
0 2

4k−2
√

a2t dt
)4k−2

(πn)4k−2 =
(∫ 1

0
2k−1√at dt

)4k−2

(πn/2)4k−2 . This mirrors the fact
that the spectrum of Q2k−1 is double and any couple λ,−λ is sent to the same eigenvalue

λ2. Thus, the (2k − 1)−capacity of Q2k−1 is
(∫ 1

0
2k−1
√

atdt
)2k−1

.

Moreover, given two sequences {an}n∈N and {bn}n∈N,
√

a2n + b2n = an

√
1+ b2n

a2n
≈

an

(
1+ bn

an
+ O

(
bn

an

))
so the remainder is still 2k − 1+ 1

2 .

Arguing again by point (i) of Proposition 3 one gets the estimate in the statement.
The last part about the ∞−capacity follow just by Proposition 4. If Aj ≡ 0 for any j

then for any ν ∈ R, ν > 0 we have λnn
ν → 0 as n → ±∞.
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4 Proof of Theorem 2

Proof of Theorem 2 The proof of the first part of the statement follows from a couple
of elementary considerations. In the sequel, we will use the short-hand notation A for
Skew(K).

Fact 1: Equation (1) holds if and only if A has finite rank

Suppose that K|V is symmetric. Consider the orthogonal splitting of L2[0, 1] as V⊕V⊥.
Equation (1) can be reformulated as A(V) ⊆ V⊥, thus Im(A(L2[0, 1])) ⊆ V⊥ + A(V⊥)

which is finite dimensional.
Conversely, if the range of A is finite dimensional, we can decompose L2[0, 1] as

Im(A) ⊕ ker(A), where the decomposition is orthogonal by skew-symmetry. Thus, on
ker(A), K is symmetric.

Fact 2: A determines the kernel of K

It is well known that, if K is Hilbert-Schmidt, then K∗ is Hilbert-Schmidt too. Since we
are assuming (2) it is given by:

K∗(v)(t) =
∫ 1

t

V ∗(τ, t)v(τ )dτ .

So we can write down the integral kernel A(t, τ ) ofA as follows:

A(t, τ ) =
{

1
2V (t, τ ) if τ < t

− 1
2V

∗(τ, t) if t < τ .

The key observation now is that the support of the kernel of K is disjoint form the support
of the kernel of K∗. Thus, the kernel ofA determines the kernel of K (and vice versa).

Now, since we are assuming that A has finite dimensional image, we can present its
kernel as:

A(t, τ ) = 1

2
Z∗

t A0Zτ ,

where A0 is a skew-symmetric matrix and Zt is a dim(Im(A)) × k matrix that has as rows
the elements of some orthonormal base of Im(A). Without loss of generality we can assume
A0 = J . In fact, with an orthogonal change of coordinates, A0 decomposes as a direct
sum of rotation with an amplitude λi . Rescaling the coordinates by

√
λi yields the desired

canonical form J .
The first part of the statement is proved so we pass to second one. First of all notice that,

now that we have written down any operator satisfying (1) and (2) in the same form as those
in (3), we can apply all the results about the asymptotic of their eigenvalues. In particular,
if we assume that the space Im(A) ⊂ L2([0, 1],Rk) is generated by piecewise analytic
functions, the ordered sequence of eigenvalues satisfies:

λn = ξ

πn
+ O(n−5/3), as n → ±∞.

Notice that we are using a better estimates on the reminder (for the case of the
1−capacity) then the one given in Theorem 1 that was given in [3]. We denote by M† = M̄∗
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the conjugate transpose. Set 2m = dim(Im(A)), since the map t �→ Zt is analytic, there
exists a piecewise analytic family of unitary matrices Gt such that:

G
†
t Z

∗
t JZtGt =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

iζ1(t)

. . .
iζl(t)

−iζ1(t)

. . .
−iζl(t)

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Without loss of generality we can assume that the function ζi are analytic on the whole inter-
val and everywhere non-negative. Recall that the coefficient ξ appearing in the asymptotic
was computed as ξ = ∫ 10 ζ(t)dt = ∫ 10 ∑l

i=0 ζi(t)dt .
Let us work on the Hilbert space L2([0, 1],Ck) with standard hermitian product. Notice

that G : L2([0, 1],Ck) → L2([0, 1],Ck), v �→ Gtv is an isometry; thus, the eigenvalue of
Skew(K) = A remains the same if we consider the similar operator G−1 ◦ A ◦ G which
acts as follows:

G−1 ◦A ◦ G(v) = 1

2
G

†
t Z

∗
t J

∫ 1

0
ZτGτv(τ)dτ

To simplify notation let us forget about this change of coordinates and still call Zt the
matrix ZtGt . Write Zt as:

Zt =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

y∗
1 (t)
...

y∗
m(t)

x∗
1 (t)
...

x∗
m(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We introduce the following notation: for a vector function vi the quantity (vi)j stands for
j th component of vi .

We can now bound the function ζ(t) in terms of the components of the matrix Zt :

2ζ(t) =
k∑

j=1

∣∣∣(Z†
t JZt )jj

∣∣∣ ≤
m∑

i=1

k∑
j=1

|(xi)j (ȳi )j − (yi)j (x̄i )j |(t)

=
m∑

i=1

k∑
j=1

2|Im((xi)j (ȳi )j )| ≤
m∑

i=1

k∑
j=1

2|(xi)j ||(yi)j | =
m∑

i=1

2〈|xi |, |yi |〉(t)

where the vector |v| is the vector with entries the absolute values the entries of v. Integrating
and using Hölder inequality for the 2 norm, we get:

ξ =
∫ 1

0
ζ(t)dt =

m∑
i=1

||xi ||2 ||yi ||2.

The next step is to relate the quantity on the right hand side to the eigenvalues ofA. The
strategy now is to modify the matrix Zt in order to get an orthonormal frame of Im(A).
Keeping track of the transformations used we get a matrix representingA, then it is enough
to compute the eigenvalues of the said matrix.
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We can assume, without loss of generality that 〈xi, xj 〉L2 = δij . This can be achieved
with a symplectic change of the matrix Zt . Then, we modify the yj in order to make them
orthogonal to the space generated by the xj . We use the following transformation:

(
Yt

Xt

)
�→
(
1 M

0 1

)(
Yt

Xt

)
=
(

Yt + MXt

Xt

)

where M is defined by the relation
∫ 1
0 YtX

∗
t + MXtX

∗
t dt = ∫ 1

0 YtX
∗
t dt + M = 0. The

last step is to make yj orthonormal. If we multiply Yt by a matrix L we find the equa-

tion L
∫ 1
0 YtY

∗
t dtL∗ = 1 , so L = (

∫ 1
0 YtY

∗
t dt)− 1

2 . Thus, the matrix representing A in this
coordinates is one half of:

A0 =
(

L−1 0
−M∗ 1

)(
0 −1
1 0

)(
L−1 −M

0 1

)
=
(

0 L−1

−L−1 M∗ − M

)

If we squareA0 and compute the trace, we get:

−1

2
tr
(
A2

0

)
= tr(L−2) − 1

2
tr((M∗ − M)2) ≥ tr

(∫ 1

0
YtY

∗
t dt

)
=

m∑
i=1

||yi ||22

Call �(A) the spectrum ofA, sinceA is skew-symmetric it follows that:

−1

2
tr(A2

0) = 4
∑

μ∈�(A),−iμ>0

−μ2 ≥ 0.

Recalling that ||xi || = 1 and putting all together we find that:

ξ ≤
m∑

i=1

||yi ||2 ≤ √
m

√√√√ m∑
i=1

||yi ||22 = 2
√

m

√ ∑
μ∈�(A),−iμ>0

−μ2.

Example 1 Consider a matrix Zt of the following form:

Zt =
[

ξ1(t) ξ3(t)

0 ξ2(t)

]
Z∗

t JZt =
[

0 −ξ1ξ2(t)

ξ2ξ1(t) 0

]

The capacity of K is given by ζ = ∫ 1
0 |ξ1ξ2|(t)dt . We can assume that 〈ξ2, ξ3〉 =

0 and ||ξ2|| = 1. A direct computation shows that the eigenvalue of SkewK are
±i
2

√
(||ξ1||2 + ||ξ3||2). This shows that the two quantities behave in a very different way. If

we choose ξ2 very close to ξ1 and ξ3 small, capacity and eigenvalue square are compara-
ble. If we choose ξ3 to be very big, the capacity remains the same whereas the eigenvalues
explode. In particular, there cannot be any lower bound of ζ in terms of the eigenvalues
of K .

Remark 4 There is a natural class of translations that preserves the capacity. Take any path
�t of symplectic matrices (say L2 integrable), the operators constructed with Zt and �tZt

have the same capacity (but the respective skew-symmetric part clearly do not have the same
eigenvalues).
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Set K�(v) = ∫ t

0Z∗
t J�−1

t �τZτ vτ dτ and �+(K�) the set of eigenvalues of Skew(K�)

satisfying −iσ ≥ 0. It seems natural to ask if:

ζ(K) = 2 inf
�t∈Sp(n)

√ ∑
σ∈�+(K�)

−σ 2

Take for instance the example above and suppose for simplicity that ξ1 and ξ2 are positive
and never vanishing. Using the following transformation we obtain:

Z′
t =

⎡
⎣
√

ξ2
ξ1

−ξ3√
ξ1ξ2

0
√

ξ1
ξ2

⎤
⎦
[

ξ1 ξ3
0 ξ2

]
=
[√

ξ1ξ2 0
0

√
ξ1ξ2

]

and in this case the eigenvalue became ±i
2 〈ξ1, ξ2〉, precisely half the capacity.

5 The Second Variation of an Optimal Control Problem

We start this section collecting some basic fact about optimal control problems, first and
second variation. Standard references on the topic are [3, 4, 7, 10] and [8].

5.1 Symplectic Geometry and Optimal Control Problems

Consider a smooth manifold M , its cotangent bundle T ∗M is a vector bundle on M whose
fibre at a point q is the vector space of linear functions on TqM , the tangent space of M at q.

Let π be the natural projection, π : T ∗M → M which takes a covector and gives back
the base point:

π : T ∗M → M, π(λq) = q.

Using the the projection map we define the following 1−form, called tautological (or Liou-
ville ) form: take an element X ∈ Tλ(T

∗M), sλ(X) = λ(π∗X). One can check that
σ = ds is not degenerate in local coordinates. We obtain a symplectic manifold considering
(T ∗M,σ).

Using the symplectic form we can associate to any function on T ∗M a vector field.
Suppose that H is a smooth function on T ∗M , we define %H setting:

σ(X, %Hλ) = dλH(X), ∀X ∈ Tλ(T
∗M)

H is called Hamiltonian function and %H is an Hamiltonian vector field.
On T ∗M we have a particular instance of this construction which can be used to lift

arbitrary flows on the base manifold M to Hamiltonian flows on T ∗M . For any vector field
V on M consider the following function:

hV (λ) = 〈λ, V 〉, λ ∈ T ∗M .

It is straight forward to check in local coordinates that π∗ %hV = V .
The next objects we are going to introduce are Lagrangian subspaces. We say that a

subspace W of a symplectic vector space (�, σ ) is Lagrangian if the restriction of the sym-
plectic form σ is degenerate, i.e. if {v ∈ � : σ(v,w) = 0, ∀w ∈ W } = W . An example of
Lagrangian subspaces is the fibre, i.e. the kernel of π∗. More generally we can consider the
following submanifolds in T ∗M:

A(N) = {λ ∈ T ∗M : λ(X) = 0, ∀X ∈ T N, π(λ) ∈ N}
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where N ⊂ M is a submanifold. A(N) is called the annihilator of N and its tangent space
at any point is a Lagrangian subspace.

Suppose we are given a family of complete and smooth vector fields fu which depend
on some parameter u ∈ U ⊂ R

k and a Lagrangian, i.e. a smooth function ϕ(u, q) on
U × M . We use the vector fields fu to produce a family of curves on M . For any function
u ∈ L∞([0, 1], U) we consider the following non-autonomous ODE system on M:

q̇ = fu(t)(q), q(0) = q0 ∈ M (21)

The solution are always Lipschitz curves. For fixed q0, the set of functions u ∈
L∞([0, 1], U) for which said curves are defined up to time 1 is an open set which we call
Uq0 . We can let the base point q0 vary and consider U = ∪q0∈MUq0 . It turns out that this set
has a structure of a Banach manifold (see [6]). We call the L∞ functions obtained this way
admissible controls and the corresponding trajectories on M admissible curves.

Denote by γu the admissible curve obtained form an admissible control u. We are
interested in the following minimization problem on the space of admissible controls:

min
u admissible

J (u) = min
u admissible

∫ 1

0
ϕ(u(t), γu(t))dt (22)

We often reduce the space of admissible variations imposing additional constraints on
the final and initial position of the trajectory. For example, one can consider trajectories that
start and end at two fixed points q0, q1 ∈ M , or trajectory that start from a submanifold
N0 and reach a second submanifold N1. More generally we can ask that the curves satisfy
(γ (0), γ (1)) ∈ N ⊆ M × M .

We often consider the following family of functions on T ∗M:

hu : T ∗M → R, hu(λ) = 〈λ, fu〉 + νϕ(u, π(λ)).

We use them to lift vector fields on M to vector fields on T ∗M . They are closely relate with
the function defined above and still satisfy π∗(%hu) = fu.

In particular, if γ̃ is and admissible curve, we can build a lift, i.e. a curve λ̃ in T ∗M such
that π(λ̃) = γ̃ , solving λ̇ = %hu(λ). The following theorem, known as Pontryagin Maximum
Principle, gives a characterization of critical points ofJ , for any set of boundary conditions.

Theorem (PMP) If a control ũ ∈ L∞([0, 1], U) is a critical point for the functional in (22)
there exists a curve λ : [0, 1] → T ∗M and an admissible curve q : [0, 1] → M such that
for almost all t ∈ [0, 1]
1. λ(t) is a lift of q(t):

q(t) = π(λ(t));
2. λ(t) satisfies the following Hamiltonian system:

dλ

dt
= %hũ(t)(λ);

3. the control ũ is determined by the maximum condition:

hũ(t)(λ(t)) = max
u∈U

hu(λ(t)), ν ≤ 0;
4. the non-triviality condition holds: (λ(t), ν) �= (0, 0);
5. transversality condition holds:

(−λ(0), λ(1)) ∈ A(N).

We call q(t) an extremal curve (or trajectory) and λ(t) an extremal.
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There are essentially two possibility for the parameter ν, it can be either 0 or, after
appropriate normalization of λt , −1. The extremals belonging to the first family are called
abnormal whereas the ones belonging to second normal.

5.2 The Endpoint Map and its Differentiation

We will consider now in detail the minimization problem in equation (22) with fixed
endpoints.

As in the previous section we denote by Uq0 ⊂ L∞([0, 1], U) be the space of admissible
controls at point q0 and define the following map:

Et : Uq0 → M, u �→ γu(t)

It takes the control u and gives the position at time t of the solution of (21) starting from q0.
We call this map Endpoint map. It turns out that Et is smooth, we are going now to compute
its differential and Hessian. The proof of these facts can be found in the book [7] or in [1].

For a fixed control ũ consider the function hũ(λ) = hũ(t)(λ) and define the following
non-autonomous flow which plays the role of parallel transport in this context:

d

dt
�̃t = %hũ(�̃t ) �̃0 = Id (23)

It has the following properties:

i) It extends to the cotangent bundle the flow which solves q̇ = f t
ũ
(q) on the base. In

particular, if λt is an extremal with initial condition λ0, π(�̃t (λ0)) = qũ(t) where qũ

is an extremal trajectory.
ii) �̃t preserves the fibre over each q ∈ M . The restriction �̃t : T ∗

q M → T ∗
�̃t (q)

M is an

affine transformation.

We suppose now that λ(t) is an extremal and ũ a critical point of the functional J . We
use the symplectomorphism �̃t to pull back the whole curve λ(t) to the starting point λ0. We
can express all the first and second order information about the extremal using the following
map and its derivatives:

bt
u(λ) = (ht

u − ht
ũ) ◦ �̃t (λ)

Notice that:

• bt
u(λ0)|u=ũ(t) = 0 = dλ0 bt

u|u=ũ(t) by definition.

• ∂ub
t
u|u=ũ(t) = ∂u

(
ht

u ◦ �̃t

)
|u=ũ(t) = 0 since λ(t) is an extremal and ũ the relative

control.

Thus, the first non-zero derivatives are the order two ones. We define the following maps:

Zt = ∂u
%bt
u(λ0)|u=ũ(t) : Rk = Tũ(t)U → Tλ0(T

∗M)

Ht = ∂2ubt (λ0)|u=ũ(t) : Rk = Tũ(t)U → T ∗
ũ(t)

U = R
k

(24)

We denote by 
 = kerπ∗ the kernel of the differential of the natural projection π :
T ∗M → M .
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Proposition 5 (Differential of the endpoint map) Consider the endpoint map Et : Uq0 →
M . Fix a point ũ and consider the symplectomorphism �̃t and the map Zt defined above.
The differential is the following map:

dũE(vt ) = dλ(t)π ◦ dλ0�̃t

(∫ t

0
Zτvτ dτ

)
∈ Tqt M

In particular, if we identify Tλ0(T
∗M) with R

2m and write Zt =
(

Yt

Xt

)
, ũ is a regular

point if and only if vt �→ ∫ t

0Xτvτ dτ is surjective. Equivalently if the following matrix is
invertible:

�t =
∫ t

0
XτX

∗
τ dτ ∈ Matn×n(R), det(�t ) �= 0

If dũE
t is surjective, then (Et )−1(qt ) is smooth in a neighbourhood of ũ and its tangent

space is given by:

Tũ(E
t )−1(qt ) = {v ∈ L∞([0, 1],Rk) :

∫ t

0
Xτvτ dτ = 0}

= {v ∈ L∞([0, 1],Rk) :
∫ t

0
Zτvτ dτ ∈ 
}

When the differential of the Endpoint map is surjective a good geometric description of
the situation is possible. The set of admissible control becomes smooth (at least locally) and
our minimization problem can be interpreted as a constrained optimization problem. We are
looking for critical points of J on the submanifold {u ∈ U : Et(u) = q1}.

Definition 2 We say that a normal extremal λ(t) with associated control ũ(t) is strictly
normal if the differential of the endpoint map at ũ is surjective.

It makes sense to go on and consider higher order optimality conditions. At critical points
is well defined (i.e. independent of coordinates) the Hessian of J (or the second variation).
Using chronological calculus (see again [7] or [1]) it is possible to write the second variation
of J on ker dEt ⊆ L∞([0, 1],Rk).

Proposition 6 (Second variation) Suppose that (λ(t), ũ) is a strictly normal critical point
of J with fixed initial and final point. For any u ∈ L∞([0, 1],Rk) such that

∫ 1
0 Xtutdt = 0

the second variation of J has the following expression:

d2
ũJ (u) = −

∫ 1

0
〈Htut , ut 〉dt −

∫ 1

0

∫ t

0
σ(Zτuτ , Ztut )dτdt

The associated bilinear form is symmetric provided that u, v lie in a subspace that projects
to a Lagrangian one via the map u �→ ∫ 1

0 Ztutdt .

d2
ũJ (u, v) = −

∫ 1

0
〈Htut , vt 〉dt −

∫ 1

0

∫ t

0
σ(Zτuτ , Ztvt )dτdt
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One often makes the assumption, which is customarily called strong Legendre condition,
that the matrix Ht is strictly negative definite and has uniformly bounded inverse. This
guarantees that the term: ∫ 1

0
− 〈Htut , vt 〉dt

is equivalent to the L2 scalar product.

Definition 3 Suppose that the set U ⊂ R
k is open, we say that (λ(t), ũ) is a regular critical

point if strong Legendre condition holds along the extremal. If Ht ≤ 0 but (λ(t), ũ) does
not satisfy Legendre strong condition, we say that (λ(t), ũ) is singular. If Ht ≡ 0 we say
that it is totally singular.

Even if the extremal (λ(t), ũ) is abnormal or not strictly normal it is possible to produce
a second variation for the optimal control problem. To do so, one considers the extended
control system:

f̂(v,u)(q) =
(

ϕ(u, q) + v

fu(q)

)
∈ R× TqM

and the corresponding endpoint map Êt : (0,+∞) × Uq0 → R × M . To differentiate it,
we use the same construction explained above and employ the following Hamiltonians on
R
∗ × T ∗M:

ĥ(v,u)(ν, λ) = 〈λ, fu〉 + ν(ϕ(u, q) + v)

One has just to identify which are the right controls to consider, PMP implies that ν̇ = 0,
ν ≤ 0 and v = 0. In the end, one obtains formally the same expression as in Proposition
6 involving the derivatives of the functions ĥ(v,u) and recover the same expression as in
Proposition 6 for strictly normal extremals (see [7, Chapter 20] or [8]).

5.3 Reformulation of theMain Results

In this section, we reformulate Theorem 2 as a characterization of the compact part of the
second variation of an optimal control problem at a strictly normal regular extremal (see
Definitions 2 and 3).

Theorem 3 Suppose V ⊂ L2([0, 1],Rk) is a finite codimension subspace and K and oper-
ator satisfying (1) and (2). Then, (K,V) can be realized as the second variation of an
optimal control problem at a strictly normal regular extremal. To any such couple, we can
associate a triple ((�, σ ),
, Z) consisting of:

• a finite dimensional symplectic space (�, σ );
• a Lagrangian subspace 
 ⊂ �;
• a linear mapZ : L2([0, 1],Rk) → � such that Im(Z) is transversal to the subspace
.

This triple is unique up to the action of stab
(�, σ), the group of symplectic transforma-
tions that fix 
. Any other triple is given by ((�, σ ),
, � ◦ Z) for � ∈ stab
(�, σ).

Vice versa any triple ((�, σ ),
, Z) as above determines a couple (K,V). We can define
the skew-symmetric partA of K as:

〈Au, v〉 = σ(Zu,Zv), ∀u, v ∈ L2([0, 1],Rk),

A determines the whole operator K and its domain is recovered as V = Z−1(
).
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Proof The proof is essentially a reformulation of Theorem 2. Given the operator we con-
struct the symplectic space (�, σ ) taking as vector space the image of the skew-symmetric
part Im(A) and as symplectic form 〈A·, ·〉.

The transversality condition correspond to the fact that the differential of the endpoint
map is surjective.

The only thing left to show is uniqueness of the triple. Without loss of generality we can
assume that the symplectic subspace (�, σ ) = (R2n, σ ) is the standard one and that the
Lagrangian subspace 
 is the vertical subspace. In this coordinates

Z(v) =
∫ 1

0
Ztvtdt =

∫ 1

0

(
Yt

Xt

)
vtdt .

Define the following map:

F : L2([0, 1],Matn×k(R)) → L2([0, 1]2,Matk×k(R)), Yt �→ Z∗
t JZτ = X∗

t Yτ − Y ∗
t Xτ .

It is linear if Xt is fixed. To determine uniqueness, we have to study an affine equation thus
is sufficient to study the kernel of F . Suppose for simplicity that Xt and Yt are continuous
in t . We have to solve the equation:

F(Yt ) = Z∗
t JZτ = σ(Zt , Zτ ) = 0.

Consider the following subspace of R2n

V [0,1] =
{

l∑
i=1

Zti νi : νi ∈ R
k, ti ∈ [0, 1], l ∈ N

}
⊂ R

2n

It follows that F(Yt ) = 0 if and only if the subspace V [0,1] is isotropic. Since we are in
finite dimension, we can consider a finite number of instants ti to which we can restrict to
generate the whole V [0,1]. Call I the set of this instants. Without loss of generality we can
assume that

{∑
i∈I Xti νi , νi ∈ R

k, ti ∈ I
} = R

n.

This is so since the image of Z is transversal to 
 and thus � = ∫ 1
0 XtX

∗
t dt is non-

degenerate. In fact, if the subspace
{∑l

i=1 Xti νi | νi ∈ R
k, l ∈ N

}
were a proper subspace

of Rn, there would be a vector μ such that 〈μ, Xtν〉 = 0, ∀t ∈ [0, 1] and ∀ν ∈ R
n. Thus,

an element of the kernel of �. A contradiction.
Now, we evaluate the equation F(Yt ) = 0 ⇐⇒ Y ∗

t Xτ = X∗
t Yτ at the instants t = ti

that guarantee controllability. One can read off the following identities:

Y ∗
t vj = X∗

t cj

where the v′j s are a base of Rn and cj free parameters. Taking transpose we get that Yt =
GXt .

It is straightforward to check that, if Yt = GXt , G must be symmetric, in fact:

ZtJZτ = Y ∗
t Xτ − X∗

t Yτ = X∗
t (G

∗ − G)Xτ = 0 ⇐⇒ G = G∗

And so uniqueness is proved when Xt and Yt are continuous.
The case in which Xt and Yt are just L2 (matrix-)functions can be dealt with similarly.

One has just to replace evaluations with integrals of the form
∫ t+ε

t−ε
Zτ νdτ and

∫ t+ε

t−ε
Xτ νdτ

and interpret every equality t almost everywhere.
The only thing left to show is how to construct a control system with given (K,V) as

second variation. By the equivalence stated above it is enough to show that we can realize
any given map Z : L2([0, 1],Rk) → � with a proper control system. We can assume
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without loss of generality that (�, σ ) is just R2m with the standard symplectic form and 


is the vertical subspace. With this choices the map Z is given by :

v �→
∫ 1

0
Ztvtdt =

∫ 1

0

(
Ytvt

Xtvt

)
dt

The operator K is then given by K(v) = ∫ t

0Z∗
t JZτ vτ dτ and V =

{
v|∫ 10 Xtvtdt = 0

}
.

Consider the following linear quadratic system on R
m:

fu(q) = Btu ϕt (x) = 1

2
|u|2 + 〈�tu, x〉,

where Bt and �t are matrices of size m × k, the Hamiltonian in PMP reads:

hu(λ, x) = 〈λ, Btu〉 − 1

2
|u|2 − 〈�tu, x〉

Take as extremal control ut ≡ 0, it easy to check that the re-parametrization flow �̃t defined
in (23) is just the identity and the matrix Zt for this problem is the following:

Zt =
(

�t

Bt

)

So it is enough to take �t = Yt and Bt = Xt .

We can reformulate also the second part of Theorem 2 relating the capacity of K and the
eigenvalues ofA. We make the following assumptions:

1. the map t �→ Zt is piecewise analytic in t ;
2. the maximum condition in the statement of PMP defines a C2 function Ĥt (λ) =

maxu∈Rk ht
u(λ) in a neighbourhood of the strictly normal regular extremal we are

considering.

Under the above assumptions the following proposition clarifies the link between the
matrices Zt and Ht and the function Ĥt . A proof can be found either in [7, Proposition 21.3]
or [1].

Proposition 7 Suppose that (λ(t), ũ) is an extremal and the function Ĥt is C2, using the
flow defined in (23) defineHt (λ) = (Ĥt − hũ(t)) ◦ �̃t (λ). It holds that:

Hessλ0(Ht ) = JZtH
−1
t Z∗

t J

Define Rt = maxv∈Rk,||v||=1 ||Ztv|| and let {±iζj (t)}lj=1 be the eigenvalues of iZ∗
t JZt

as defined in Section 4. We have the following proposition.

Proposition 8 The capacity ξ of K satisfies:

ξ ≤
√

k ||Rt ||2
2

√∫ 1

0
tr(Hessλ0(Ht ))dt

and in particular, if we arrange the functions ζj (t) in a decreasing order, they satisfy

0 ≤ ζj (t) ≤ Rt

√
λ2j (t), j ∈ {1, . . . l}

where λj (t) are the eigenvalues of Hessλ0(Ht ) in decreasing order.
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Proof We give a sketch of the proof. Without loss of generality we can assume Ht = −Id,

otherwise, we can perform the change of coordinate on L2([0, 1],Rk) v �→ (−Ht)
− 1

2 v and
redefine Zt accordingly.

In this notation Hessλ0(Ht ) corresponds to the matrix JZtZ
∗
t J . If we square At =

Z∗
t JZt we obtain:

A∗
t At = −Z∗

t JZtZ
∗
t JZt = −Z∗

t

(
JZtZ

∗
t J
)
Zt = −Z∗

t Hessλ0(Ht )Zt

Observe that ζj (t) is an eigenvalue of At if and only if −ζ 2
j (t) is a eigenvalue of A∗

t At . The

equation above relates the restriction of Hessλ0(Ht ) to the image of the maps Zt : Rk →
R
2n with the square of the functions ζj (t) defining the capacity.
The idea is to use Cauchy interlacing inequality for the eigenvalues of Hessλ0(Ht ) and

its restriction to a codimension 2n − k subspace. If {λj (t)}2nj=1 are the eigenvalues of the

Hessian, taken in decreasing order, and {μj (t)}2n−k
j=1 the eigenvalues of its restriction we

have:

λj+2n−k(t) ≤ μj (t) ≤ λj (t)

In our case, Zt are not orthogonal projectors but we can adjust the estimates considering
how much the matrices Zt dilate the space, and thus we have to take in account the function
Rt defined just before the statement. Denote by μj (t) the j th eigenvalue of −A2

t , putting
all together we have:

0 ≤ μj (t) ≤ R2
t λ2j (t) j ∈ {1, . . . k}

where we shifted the index by one since μ2k−1(t) = μ2k(t) for all k ≤ l. Taking square
roots and integrating we have:

∫ 1

0
ζj (t)dt ≤

∫ 1

0
Rt

√
λ2j (t)dt

Summing up over j we find that:

ξ =
∫ 1

0

∑
j

ζj (t)dt ≤ 1

2

∫ 1

0

∑
j

Rt

√
λ2j (t)dt ≤

√
k||Rt ||2
2

√∫ 1

0
tr(Hessλ0(Ht ))

We turn now to Theorem 1; we can interpret it as a quantitative version of various nec-
essary optimality conditions that one can formulate for certain classes of singular extremals
(see [7, Chapter 20] or [4, Chapter 12]). Moreover, leaving optimality conditions aside,
Theorem 1 gives the asymptotic distribution of the eigenvalues of the second variation for
totally singular extremals (see definition 3).

As mentioned in the previous section, we can produce a second variation also in the non-
strictly normal case which is at least formally very similar to the normal case. However, a
common occurrence is that the matrix Ht completely degenerates and is constantly equal
to the zero matrix. This is the case for affine control systems and abnormal extremal in
Sub-Riemannian geometry, i.e. systems of the form:

fu =
l∑

i=1

fiui + f0, fi smooth vector fields
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In this case, Legendre condition Ht ≤ 0 (see the previous section) does not give much
information. One, then, looks for higher order optimality conditions. This is usually done
exactly as in Lemma 1: the first optimality conditions one finds are Goh condition and
generalized Legendre condition which prevent the second variation from being strongly
indefinite.

In the notation of Lemma 1, Goh conditions are written as Q1 ≡ 0 i.e. Z∗
t JZt ≡ 0. It

can be reformulated in geometric terms as follows, if λt is the extremal then

λt [∂ufu(q(t))v1, ∂ufu(q(t))v2] = 0, ∀ v1, v2 ∈ R
k

From Theorem 1, it is clear that if Q1 �≡ 0, the second variation has infinite negative index
and that eigenvalues distribute evenly between the negative and positive parts of the spec-
trum. Then, one asks that the second term Q2 is non-positive definite (recall the different
sign convention in Proposition 6); otherwise, the negative part of the spectrum of −Q2
becomes infinite. In our notation, this condition reads

(Z
(1)
t )∗JZt ≤ 0 ⇐⇒ σ(Z

(1)
t v, Ztv) ≤ 0, ∀ v ∈ R

k .

Again, it can be translated in a differential condition along the extremal; however, this time,
it will in general involve more than just commutators if the system is not control affine.

If Q2 ≡ 0, one can take more derivatives and find new conditions. In particular, using
the notation of Lemma 1, one has always to ask that the first non-zero term in the expansion
is of even order and that the matrix of its coefficients is non-positive in order to have finite
negative index.
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