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Abstract: Iron is an essential element for brain metabolism. However, its imbalance and accumulation
are implicated in the processes featuring neurodegenerative diseases, such as Alzheimer’s disease
(AD). The brain barrier’s system maintains the sensitive homeostasis of iron in the brain. However,
the impairment of the mechanisms of iron passage across the brain barrier is not clearly established.
A mathematical model is proposed to macroscopically describe the iron exchange between blood
and cerebral compartments. Numerical simulations are performed to reproduce biological values
of iron levels in physiological and pathological conditions. Moreover, given different scenarios
(neurological control and AD patients), a particle swarm optimization (PSO) algorithm is applied
to estimate the parameters. This reverse work could be important to allow the understanding of
the patient’s scenario. The presented mathematical model can therefore guide new experiments,
highlighting further dysregulated mechanisms involved in neurodegeneration as well as the novel
disease-modifying therapies counteracting the progression of neurodegenerative diseases.

Keywords: compartmental model; iron; optimization

MSC: 92; 92b05

1. Introduction
1.1. Biological Background

Iron is an essential element for brain functions, but iron accumulation can induce
oxidative stress and consequent neurotoxicity. Recent studies revealed a role of iron
in neurodegenerative diseases [1–3] and in age-related cognitive decline [4]. However,
contrasting results are present in the literature about iron and iron-related protein levels
in biological fluids. Furthermore, the understanding of the mechanisms for brain iron
import/export is still limited, requiring further investigation.

The sensitive balance of iron levels in the central nervous system (CNS) is mainly
maintained by the brain barriers system, coordinating an efficient transport and recycling
in the brain. Impairments in iron influx/efflux mechanisms at brain barrier interfaces can
contribute to altered levels of iron in cerebrospinal fluid (CSF) and brain tissue, leading to
pathological conditions.

Blood iron entrance in the brain is controlled by the blood–brain barrier (BBB) [5] and,
to a lesser extent, by the blood–cerebrospinal fluid barrier (BCSFB) [6]. The BBB is a highly
selective barrier, composed of endothelial cells with specialized tight junctions, separating
blood from brain.

The BCSFB separates the systemic circulation from the CSF, filling the cerebral spaces.
The CSF is produced and finely controlled by the choroid plexus (CP) located in the
ventricles, and it is strictly in contact with the CNS, exchanging relevant compounds,
including metals. Beyond the restriction of the access of substances from blood to CSF, the
BCSFB is known to remove substances from the CSF to the blood [7]. It is reported that
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metals such as iron and copper may influx in the interstitial fluid (ISF) of the brain via BBB
and be transported back into the blood via the efflux mechanism at the BCSFB, removing
substances from the CSF circulation [8].

Materials in the CSF and in the brain ISF can freely exchange, in a bidirectional way,
due to the lack of structural barrier between these two fluid compartments [9].

Since CSF collects waste substances from the brain, it is important to consider the role
of CSF–ISF exchange, linked to the efflux and clearance of interstitial solutes. Growing
interest is aimed at the glymphatic system, a brain-wide network of perivascular pathways
supporting the exchange of CSF and ISF and contributing to clearing waste in the brain [10].

The temporal dynamic of iron exchange from blood to brain affects both influx and
efflux rates. The iron content in the brain depends on aging [11] and it was shown that an
imbalance of iron influx and efflux causes brain iron accumulation over time in the healthy
adult rat [12].

1.2. Previous Mathematical Models

The mammalian organism maintains a complex network to regulate iron uptake,
excretion, and distribution into the organs. Theoretical models aiming to describe iron
metabolism are present in the literature [13–15]. For example, Lopes et al. presented
a kinematic model of the dynamic system of iron pools and fluxes, reflecting systemic
properties of iron metabolism [13]. Based on systematic measurements, quantitative values
of rate constants for the iron flux from plasma into 15 peripheral organs of the body
were estimated, evaluating the kinematic properties of iron-containing compartments,
such as hierarchy of iron residence times and iron distribution in different organs [13].
Furthermore, focusing on the iron exchange from blood to brain, ordinary differential
equations were formulated based on the first-order reaction kinetics to model the iron
transport, effectively reproducing the experimental data of iron through BBB endothelial
cells for many in vitro studies [16].

Under the hypothesis that imbalance in iron transport mechanisms at the BCSFB
and/or BBB can be a factor for the elevated iron levels in the brain, we developed two
mathematical models to macroscopically describe the passage of iron from blood to brain
environment and its potential alteration in neurodegenerative conditions [17,18]. Starting
from experimental measurements and literature data for the parameters estimation, we
sequentially proposed a two-compartmental model (blood and CSF compartments) [17]
and a three-compartmental model, implementing the previous one with the addition of the
brain ISF compartment [18]. These models can simulate the iron concentrations found in
biofluids in different conditions (such as dementia, and neurological controls).

However, our models need to be supported by ad hoc experimental data (i.e., longi-
tudinal data and/or specific measurements in brain ISF) for a more realistic and accurate
estimation of the parameters. Then, the uncertainty of the parameters due to high intrinsic
biological variability of iron measurements requires future experimental data to set the
range of the parameters more precisely, for a better discrimination between physiological
and pathological condition.

1.3. Aim of the Work

In order to improve the limitations of our previous models, the aim of this work is to
test the robustness of the proposed three-compartmental model for iron transport, exploit-
ing an optimization algorithm to estimate the parameters. The parameters estimation will
show if the model is able to macroscopically describe the passage of iron across blood and
brain environment in different scenarios, i.e., in physiological and pathological conditions.
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2. Methods
2.1. Mathematical Model

A three-compartmental model based on a nonhomogeneous system of first-order
ordinary differential equations (ODEs), described by (1), (2), and (3), was used to simulate
the passage of iron from blood to the brain.
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Sensitivity analysis was performed to rank the relevance of the parameters based on 
potential ranges of variations [18]. Global sensitivity analysis (GSA) investigates the vari-
ations in the model output when all parameters can vary simultaneously over specified 
ranges. Noninfluential parameters are supposed to be fixed at any value within the range 
of variability without significantly affecting the model response. Different methods of 
GSA were previously used on this model and described in [18].  

The three compartments describe the blood, the CSF, and the ISF surrounding the
brain. The variables describe the iron concentration in blood (IB), CSF (ICSF), and ISF (IISF),
respectively, expressed in mg/L. For more details on the equation terms, see [17,18]. The
parameter values are summarized in Table 1. These values were estimated based on the
literature, as explained in previous works [17,18].

Table 1. Description and value of parameters used for the equations.

Parameter Description Normal Value High Rate Value

E Iron intake into the blood from
food (mg/L) 0.22 0.22

k Iron consumption from blood and
excretion mechanisms 0.23 0.23

a12
Kinetic constant rate for iron entering

from blood to CSF across BCSFB 0.0002 0.001

α21
Kinetic constant rate for iron returning

from CSF and brain to blood 0.05 0.08

a23
Kinetic constant rate for iron passing

from CSF to ISF 0.8 0.8

a32
Kinetic constant rate for iron passing

from ISF to CSF 1 1

b13

Kinetic constant rate for iron entering
from blood to brain (consequently ISF),

across BBB
0.002 0.005

b31
Kinetic constant rate for iron returning

from the brain to blood 1 × 10−6 5 × 10−6

Sensitivity analysis was performed to rank the relevance of the parameters based
on potential ranges of variations [18]. Global sensitivity analysis (GSA) investigates the
variations in the model output when all parameters can vary simultaneously over specified
ranges. Noninfluential parameters are supposed to be fixed at any value within the range
of variability without significantly affecting the model response. Different methods of GSA
were previously used on this model and described in [18].

The estimation for iron levels in the compartments is based on iron data from a popu-
lation of patients affected by different forms of dementia and neurological control [18,19]
and on the biological structures described in the introduction.

We hypothesized different values for the parameters according to physiological or
pathological conditions. Starting from different initial conditions, numerical simulations
were performed [18].
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2.2. Parameters Estimation

In order to estimate the robustness of the model, parameters estimation is performed.
Indeed, in a robust model the estimated parameters will be similar to the chosen ones (see
Table 1). Mathematically, the problem consists of finding the minimum of the norm:

‖yt −Yt‖2 (4)

where t is the discretization in time of the measures, yt are the real data at each time, t, and
Yt is the output model, with unknown parameters, at time t. The minimum of (4), indeed,
is the point in the parameters’ space D in which the model is closer to real data, i.e., the
point of which coordinates are the chosen model’s parameters.

To solve such a problem, the cooperative method called particle swarm optimization
(PSO) is chosen. It is based on the mutual interaction and exchange of information between
individuals of a swarm (e.g., birds or bees) and it was introduced by Kennedy (social
psychologist) and Eberhart (electrical engineer) [20].

Let us consider a group of particles (or birds) which are represented as points in the
space D. Each particle tries to find the place with the maximum availability of food, i.e., the
minimum, balancing its own experience (or selfish behavior, which is the ability of the
particle to randomly fly away from the swarm to reach the food) with the shared experience
of the other particles (social behavior, which is the ability of the bird to stay in the group).
When a good trade-off between the two behaviors is reached, the swarm gradually changes
its direction until reaching the best “place”, i.e., the minimum of the norm.

Formally, each particle has a velocity vj
i and a position pj

i , where j = 1, . . . Nmax is
the iteration number and i = 1, . . . , n is the bird’s index. Initially, the n particles are
randomly initialized in the search-space D with random initial velocities and positions.
Then, directions and velocities gradually change when each individual moves to the best
previous position of itself or of other birds, searching in a neighborhood for a better position,
accordingly with these formulas [21,22]:

vj
i = ω jvj−1

i + φ
j
l

(
l j−1
i − pj−1

i

)
+ φ

j
g

(
gj−1

i − pj−1
i

)
(5)

pj
i = ω j pj−1

i + vj
l (6)

where l j−1
i is the previous local best position, gj−1

i is the previous global best position, ω j is

the inertia weight, and φ
j
l , φ

j
g are the cognitive and social components.

Moreover, multiple runs of this algorithm are implemented in order to choose, as
final solution, the best one (i.e., the one with minimum (4)). In particular, 10 runs were
established to estimate one parameter, while 30 runs were established to estimate two or
more parameters.

As yt, the output of a model with fixed parameters is used. Finally, in order to test
the robustness of the algorithm, white noise (σ = 0.001,0.01) is also added at input data.
Indeed, the perturbed data should simulate biological observations that can contain errors
and variability.

3. Results

Based on the results of the sensitivity analysis and on the biological assumptions
reported in [18], we focused our work on the parameters α21, a23, a32, b13. Simulations
of both normal and hypothesized pathological conditions were performed, using the
parameters values listed in Table 1.

Starting from random initial conditions, numerical simulations were performed, show-
ing that the model is able to simulate the biological values of iron concentration in CSF
(Figure 1).
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Figure 1. Numerical simulations of iron concentration (mg/L) in CSF ICSF (a) and ISF IISF (b) starting
from random initial conditions. CSF: cerebrospinal fluid; ISF: interstitial fluid; PC: physiological
condition; HRC: high rate condition.

In Table 2, the results of multiple runs of the PSO algorithm are summarized. In
particular, two set of parameters were used (normal and high rate) with different random
noise (σ = 0.001,0.01). The mean error of (4) is reported. In the next subsections, the results
are detailed for each number of estimated parameters.

3.1. Estimation of One Parameter

The algorithm works very well in estimating one parameter. The worst performance is
given by the parameter b13 , probably because its value is smaller than the other parameters.
Without noise on input data, the error at each run is negligible, i.e., only one run is necessary
to estimate the parameter. With white noise, in only a few cases the run gives a high error;
ten runs for each parameter are sufficient to estimate the correct value.

Table 2. Results of parameters’ estimation with PSO, considering one, two, and three parameters
estimated at each time, with different noise. PC: physiological condition; HRC: high rate condition.

N◦ of Estimated
Parameters Noise Parameter Estimation for

PC
Mean Error in PC
‖yt−Yt‖2

Estimation for
HRC

Mean Error in
HRC ‖yt−Yt‖2

1

0 α21 0.0500 4.2689 × 10−15 0.0800 3.8223 × 10−15

a32 1.0000 1.1465 × 10−15 1.0000 7.0460 × 10−13

a23 0.8000 2.3891 × 10−11 0.8000 8.4539 × 10−15

b13 0.0020 0.6540 0.0050 0.9318

0.001 α21 0.0501 5.8056 × 10−6 0.0799 1.9159 × 10−6

a32 1.0014 1.2567 × 10−6 1.0041 2.8066 × 10−5

a23 0.7926 3.5431 × 10−5 0.7977 1.0568 × 10−5

b13 0.0020 0.5723 0.0050 0.4659

0.01 α21 0.0491 4.9117 × 10−4 0.0818 0.0011

a32 0.9356 0.0023 0.9647 0.0019

a23 0.7457 0.0024 0.7780 0.0010

b13 0.0020 0.4909 0.0050 0.9318
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Table 2. Cont.

N◦ of Estimated
Parameters Noise Parameter Estimation for

PC
Mean Error in PC
‖yt−Yt‖2

Estimation for
HRC

Mean Error in
HRC ‖yt−Yt‖2

2

0 α21 0.0500 3.3379 × 10−14 0.0800 7.9000 × 10−15

a32 1.0000 1.0000

α21 0.0500 3.4623 × 10−15 0.0800 1.2001 × 10−4

a23 0.8000 0.8000

a23 0.8000 0.0079 0.5998 0.0013
a32 1.0000 0.7692

α21 0.0930 0.0542 0.0800 0.0428
b13 0.0037 0.0050

a32 1.0000 0.3967 0.9909 0.5573
b13 0.0020 0.0050

0.001 α21 0.0503 3.5199 × 10−5 0.0800 1.2536 × 10−5

a32 0.9900 1.0007

α21 0.0499 5.0687 × 10−6 0.0798 1.0124 × 10−5

a23 0.7968 0.7967

a23 0.0865 0.0324 0.6639 0.2220
a32 0.1594 0.8440

α21 0.0503 0.2401 0.0861 0.1399
b13 0.0020 0.0054

a32 1.0223 0.1548 0.9963 0.5516
b13 0.0020 0.0050

0.01 α21 0.0530 0.0052 0.0824 0.0044
a32 0.9310 0.9339

α21 0.0505 0.0232 0.0791 0.1628
a23 0.7411 0.7824

a23 0.0036 1.0892 × 10−4 0.0767 5.0163 × 10−4

a32 0.0610 0.1621

α21 0.1105 0.1275 0.0850 0.0238
b13 0.0043 0.0053

a32 0.8054 0.2116 0.9838 0.4631
b13 0.0019 0.0049

3

0 α21 1.4080 6.4164 × 10−4 1.5710 0.0920
a32 2.6049 2.7064
b13 0.0620 0.1121

α21 0.0500 0.1364 0.0800 0.0157
a32 1.2887 0.9199
a23 1.0443 0.7302

0.001 α21 0.8329 41.6743 0.6466 0.1379
a32 1.9264 1.6499
b13 0.0366 0.0459

α21 0.0500 4.5772 × 10−5 0.0799 0.4450
a32 1.3334 0.3549
a23 1.0806 0.2391

0.01 α21 1.9090 9.6464 1.0405 0.0699
a32 3.1090 2.0884
b13 0.0844 0.0743

α21 0.0486 0.0030 0.0809 0.5067
a32 0.1231 2.2613
a23 0.0451 1.9322
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3.2. Estimation of Two Parameters

In addition, two parameters are well estimated by PSO. A less performant result is
given for the couple α21 and b13 . However, as shown in Figure 2, the reconstructed curves
(dotted lines) are similar to the theoretical ones (straight lines with noise σ = 0.001, 0.01). In
general, the estimation of b13 remains problematic due to its very low value.
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3.3. Estimation of Three Parameters

The presence of the parameter b13 in the estimation set gives bad results. The simu-
lated parameters, in fact, are out of the expected natural range. This is due to the differences
in order between b13 and the other parameters. Indeed, PSO estimates very well the set
(α21, a32, a23) with no noise. Worse results are present in the case of high random noise.

4. Discussion

In this work we presented a method to explore the robustness of the theoretical model
proposed for the iron trafficking across brain barriers. The PSO method was used because
it is also very robust in the case of few and sparse data, in combination with enrichment
techniques such as radial basis functions [23]. Its usage is known in many fields and it is
considered a standard for resolving complex optimization such as image reconstruction [24].
Moreover, the advantages of this method are that it does not require any strong assumptions
and it more robust than other deterministic methods [25,26], also in presence of multiple
local minima.

In our previous paper, the sensitivity analysis showed that the variation of the three
parameters, on which we focused this paper, had a strong impact on the behavior of the
model [18]. In our simulations, the parameters α21 and b13 were hypothesized with slight
changes between the normal and high rate condition. On the contrary, the values of a32
and a23 were considered the same in both conditions. However, in future works different
values could be tested.

These preliminary results show that a good estimation of the parameters from per-
turbed data (simulating real data) is possible, especially considering the estimation of one
or two parameters with 0 or 0.001 of noise added to input data (see Table 2). The parameter
b13 seems to be the most problematic in the estimation. From the sensitivity analysis,
the variations of this parameter showed a higher contribution on the modulation of iron
concentrations in ISF and CSF, especially in the hypothesized pathological condition.

The estimation of three parameters has to be improved. It can be due to the high
number of parameters and consequent higher complexity of the model. However, by
choosing two parameters with no or moderate noise, a good estimation was obtained. This
allows to consider a further step including real longitudinal data of iron concentrations for
the parameter estimation from this compartmental model.

The results of the predictions showed some limitations of the model. Firstly, the model
needs to be supported by ad hoc experimental and longitudinal data for a more accurate
estimation of the parameters set. Future experimental data (for the three compartments:
blood, CSF, and brain) can contribute to confirm the simulated dynamic and to set the
range of the variability more precisely.

Further implementations should take into account additional factors, such as the time
dependence of the parameters and potential correlations between them. In fact, there is
evidence for an accumulation of iron with aging [27], especially in several brain regions [28].
In addition, it was reported that a change in the brain iron accumulation rate suggests
different brain iron dynamics, including import/export of iron over the course of life [12].

Finally, the compartmental model could be extended to other biomarkers of neurode-
generative diseases, i.e., to investigate the transport of Amyloid-beta and Tau proteins, the
well-established hallmarks of AD. In fact, other factors that play a fundamental role in
the disease progression, such as proteins and transporters of brain membranes, i.e., ABC
transporters [29], can be investigated by in silico models.

5. Conclusions

This work is a further step in setting an optimal model of iron transport across the
brain barriers, which will help to understand the role of different factors of the process
in the AD context. In this paper we presented a method to estimate, in a robust way, the
biological parameters based on real data.



Mathematics 2022, 10, 4461 9 of 10

The final target of our research is, indeed, to help innovative and personalized in silico
therapeutic approaches, such as those based on iron chelation.
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