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ABSTRACT
The actual evapotranspiration (AET) could be forecasted using me-
teorological variables to manage and plan water resources even
though it is challenging to choose the relevant variables for pre-
diction. The Pearson correlation method was applied to select can-
didate variables and further, tolerance and VIF scores are imple-
mented to avoid multicollinearity problems among variables. As
a result, �ve relevant variables are selected for training the AET
prediction models. In this paper, we proposed three methods for
forecasting AET: (i) deep learning-based (LSTM, GRU, and CNN),
(ii) classical machine learning (SVR and RF), and (iii) a statistical
technique (SARIMAX). The performance of each model is measured
with statistical indicators (RMSE, MSE, MAE, and '2). The results
showed that relatively high performance is measured in the LSTM
model.
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1 INTRODUCTION
Actual evapotranspiration (AET) is the loss of water that occurs
via evaporation from surfaces of soil and water bodies and via
the transpiration from the plant that comes into the air as water
vapor [6, 15]. When there is low rainfall on average and high evap-
otranspiration in a region, agricultural development depends on
irrigation due to water scarcity in the soil. To handle the water re-
source challenges, AET forecasting is an essential tool for farmers
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and water resource managers [16]. AET can be measured directly
from devices [1, 3] using either eddy covariance or a lysimeter.
It is challenging to obtain direct measure data of AET [1] so the
estimation of AET should replace the direct measurement. Again,
the estimation made by ��$ � 56%" equation [17] is challenging
due to the di�culty of gathering or measuring about eight variables
used by the equation. Hence, designing an AET forecasting model
is essential to formulate an e�ective plan to prevent water resource
challenges and manage irrigation water requirements. The works
in [11, 13, 15, 18] used the most available meteorological variables
as predictors and implement a suitable model to forecast AET.

Di�erent Machine Learning and statistical methods are proposed
in the literature. Seasonal Auto-Regressive Integrated Moving Av-
erage model with eXogenous factors (SARIMAX) is employed for
time series AET prediction [7] to consider the e�ect of seasonality
and exogenous variables in improving the prediction accuracy. Ac-
cording to [3], Temporal Convolutional Neural network (TCN) and
Long-Short Memory Neural Network (LSTM) outperformed the
Deep Neural Network (DNN), the Support-Vector Machines (SVM)
and the Random-forest (RF) in the temperature-based features of
AET forecast. In [6] Convolutional Neural Networks (CNN) with
di�erent structures were employed to forecast the daily AET that
outperformed the SARIMA model and the seasonal naive. In [8]
the authors used LSTM, one-dimensional CNN (1D CNN) and a
combination of the two previous models (CNN-LSTM) [2, 9], as well
as Arti�cial Neural Network (ANN), Decision Tree (DT) and RF.
They showed that the deep learning models slightly outperformed
the Machine Learning ones and among the deep learning models,
the CNN - LSTM combination outperforms the AET forecasting.

This paper aims to assess an AET forecasting model (SARIMAX,
LSTM, GRU, CNN, SVM, and RF) at a speci�c site: Cogne (Valle
d’Aosta, Italy). An eddy covariance station measured AET in an
abandoned pasture, which is today an increasingly spread land
cover type. The task is challenging since it is well-known that
forecasting many days in advance, or using the mean value of AET
in a speci�c time interval (e.g., a month), shows a low accuracy.

The remainder of this article is organized as follows. Section 2
provides a systematic literature review. Section 3 introduced the
material and methods. Section 4 presents the results of empirical
experiments, and Section 5 draws the conclusion.

2 SYSTEMATIC LITERATURE REVIEW
We perform a systematic literature review of the topic of analysis
of evapotranspiration by automatic techniques. Several Machine
Learning algorithms have been applied to pursue evapotranspi-
ration prediction research. In this study, a Systematic Literature
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Review (SLR) is conducted to extract and synthesize the Machine
Learning algorithms, the variables used (also referred to as features
as synonymous), and the evaluation parameters used in evapo-
transpiration forecasting studies. Five electronic databases (Google
Scholar, Wiley Online Library, ACM Digital Library, Elsevier, and
IEEEexplore) have been used to extract data from the literature for
this SLR. We retrieved 1854 papers from which we have selected 27
studies (18 of which are in the bibliography). We excluded the re-
maining 1829 studies using criteria based on relevance, the broadly
used language (we preferred English over others), elimination of
duplications, full-text unavailability, and excluding surveys.

In Table 1 we show the most used features for the task of evapo-
transpiration prediction. From the detailed analysis of the selected
studies, we found that temperature, relative humidity, solar radi-
ation, and wind speed are the widely used ones for evapotran-
spiration prediction. This justi�es our choice for the features we
collected and used in the present work.

Table 1: Most used features in the prediction of ET

Feature name # of papers

Temperature (minimum and Maximum) 19
Relative humidity (RH) 15
Solar radiation (Rs) 13
Wind speed 10
Evapotranspiration only (in univariate time serie) 7
Sunshine duration 4

In Table 2 we show the most used Machine learning methods
and their performance evaluation parameters in the literature for
evapotranspiration prediction. We observe that the most widely ap-
plied Machine Learning algorithms are LSTM, CNN, SVM, SARIMA,
and RF. The most used evaluation parameters are RMSE, MAE, and
the coe�cient of determination ('2). They were selected and used
for the present work.

These �ndings justify the choice we made in this work about
the Machine Learning methods, the features, and the evaluation
measures.

Table 2: Most used methods and evaluation parameters in
prediction of ET

ML Method # of papers Evaluation measure # of papers

LSTM 11 RMSE (Root mean squared error) 23
SVM 9 MAE (Mean absolute error) 17
ANN and CNN 7 R2 (Coe�cient of determination) 12
RF 6 MSE (Mean Squared Error) 5
SARIMA 4 -

3 MATERIALS AND METHODS
3.1 Data collection and Cleaning
The four years (2014 - 2017) growing season (June - September)
dataset is collected from the Cogne site, in Italy (1.534m altitude,

45 ° 36031.4700N7 °21021.6800⇢ of latitude and longitude) in every
30 minutes as shown in Table 3 with some missing values. Those
missing values that existed randomly were imputed or predicted
using a linear regression algorithm. We applied multiple iterative
regression imputation starting from the two independent features
that do not havemissing values as shown in Table 3 but strongly cor-
related as shown in Table 4. First, we imputed Mean temperature

having missing value (0.828%) due to its high correlation value
with the variables Sensible heat flux and Net CO2 which have
no missing values. Then we trained another regression model for
Relative humidity using as regressors Sensible heat flux, Net
CO2 and Mean temperature and so on. The dataset is published at
”⌘CC?B : //68C⌘D1 .2></A>B8<4>/⇢E0?>CA0=B?8A0C8>= � 30C0B4C”.

Table 3: missing values in (%) and correlation with AET

Variables - Missed Correlation
total observations = 23424 observations(%) with AET

Evapotranspiration (AET) 0 1
Sensible heat �ux 0 0.82
Net CO2 0 0.84
Mean Temperature 0.828 0.64
Air pressure 10.135 0.01
Wind speed 10.135 0.51
Wind direction 10.135 0.38
Soil surface temperature 4.568 0.41
Net solar radiation 1.878 0.89
Relative humidity 0.845 0.63
Water content 0.726 0.03

Prior to splitting the dataset into training and testing sets, the
dataset was normalized into the [0, 1] interval using the min-max
normalization due to the application of the Sigmoid function on the
deep learning recurrent neural network algorithms. The min-max
normalization performs a linear transformation on the original data
preserving their relationships. The variables having a correlation
greater than 0.5 are taken as relevant candidate features for the
model and are studied again the multicollinearity problem among
selected variables and justi�ed the irrelevant and redundancy vari-
ables presence among the selected variables as shown in Table 4 that
degrades the model performance. The tolerance and VIF scores [4]
were applied to solve this problem. When the VIF is higher than 10
(or tolerance is lower than 0.1), there is a signi�cant multicollinear-
ity that needs to be corrected [14]. This occurs in this study for the
net radiation as shown in Table 5.

For the aim of this study, the chosen models were initially �t
on the training set (14054), re�ned on the validation set (3514)
by tuning the model parameters, and then evaluated on the test
set (5856) for a total of 23424 observations referred to the �ve
meteorological variables in the stamp of time series.

3.2 Machine Learning Methods
The six machine learning techniques used in this study for AET
prediction are explained in this section.
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Table 4: Pearson correlation among the selected features

Net solar Net Sensible Mean Relative Wind
radiation CO2 heat �ux temp humidity speed

Net solar radiation 1.00

Net CO2 -0.83 1.00

Sensible heat �ux 0.92 -0.80 1.00

Mean temp 0.61 -0.49 0.48 1.00

Relative humidity -0.60 0.51 -0.52 -0.67 1.00

Wind speed 0.64 -0.51 0.62 0.28 -0.48 1.00

Table 5: Tolerance, and VIF scores of independent variables

Variables VIF Tolerance Re-VIF Re-Tolerance
Net solar radiation 10.959 0.091 - -
Net CO2 3.384 0.296 2.911 0.344
Sensible heat �ux 7.150 0.140 3.414 0.293
Mean temperature 2.366 0.423 1.956 0.511
Relative humidity 2.167 0.461 2.167 0.461
Wind speed 1.927 0.519 1.751 0.571

Note: Re-VIF and Re-Tolerance means recalculated VIF and tolerance

Long-short term memory Neural Network (LSTM). LSTM has
been widely used recently for time series forecasting. For the anal-
ysis carried on in this paper, the LSTM model was designed using
the �ve selected features as explained in Section 3.1. Each of these
features is forming a time series, divided into windows whose size is
48 representing the observations of one day (one observation every
half an hour). Each window is given as input to the �rst hidden
layer of the LSTM network. At any time step, the window advances
to the successive one so that the windows given in input at two
consecutive times are overlapping for 47 observations of each time
series. The target variable in output to the LSTM network is the
dependent AET. The multivariate training set is used to train the
LSTM model of the target AET variable using the Adam optimizer.
Finally, the model performance is tested using the test set.

Gated Recurrent Unit (GRU). GRU is a special type of optimized
LSTM-based recurrent neural network [12]. For this study, the re-
current neural network consists of a one-layer GRU of 32 units,
followed by two dense layers of 16 units with ReLU activation func-
tion and single units with linear activation. A dropout of 0.2 was
applied to the non-recurrent connections. The learning rate was
set to 0.001. as recommended by [12]. As regards the setting of
the above hyper-parameters of the model, we tried many di�er-
ent combinations of values guided by a grid search over the most
common selection. For instance, the number of input units varied
among [8, 16, 32, 48, 64]. For dropout, we tried with values among
[0.2, 0.5, 0.8]. The mean squared error loss function was minimized
using the Adam optimizer. Finally, the test set was used to evaluate
the model.

Convolutional Neural Network (1D-CNN). CNN is a deep learn-
ing model already implemented to investigate the prediction of AET

time series [6]. For the analysis carried on in this paper, one convo-
lutional layer and two fully connected layers are used. In particular,
the setup of the convolution layer �lter is 32, the ReLU activation
kernel size is 2, and the padding is set to “same”1. The number of
neurons in the �rst fully connected layer is set equal to 8 and the
ReLU activation function is used. In the second fully connected
layer instead, it is the output layer that uses one neuron and a linear
activation function.

Support Vector Machine (SVM). Xianming Dou and Yongguo
Yang in [5] employed the SVM model with three kernel algorithms
(Radial Basis Function (RBF), Polynomial (Poly) function, and Sig-
moid function) for AET forecasting: the experimental result showed
that the SVM with the RBF kernel function outperforms the Sig-
moid and Poly kernel functions. In this paper, the internal function
of the SVM is arranged with the kernel function of RBF and the
epsilon parameter2 with the value of 0.5. This model is tested with
the same test data assigned to the other models.

Random Forest (RF). RF is a decision tree-based algorithm. Ac-
cording to RF, various subsets of the training data are �tted with a
suitable decision tree [8]. In this paper, since the AET data is contin-
uous, the implemented RF is addressed to solve the regression prob-
lems of AET forecast. Hence, the hyper-parameter n_estimators
that corresponds to the number of trees used in the ensemble model,
is chosen equal to 100 after we applied a grid search technique
spanning the values of [50, 100, 150, 200]. The random_state is set
equal to zero and the other hyper-parameters are set to their default
values.

SARIMAX. For the analysis carried on this paper, suitable SARIMA
models are proposed in [7] aiming to minimize the prediction error
by considering seasonality patterns. The SARIMA has seasonal
orders (%,&,⇡) in addition to the orders (?,3,@). To identify the
best SARIMA, the orders are determined by the built-in function of
auto_arima in the pmdarima package. When one further hypothe-
sis is added, those eXogenous variables are supposed to a�ect the
time series prediction of the dependent variables.

4 EXPERIMENTAL RESULTS AND DISCUSSION
For the aim of this paper, the forecasting performance of each
model was measured and compared to identify the best-performing
model. The statistical metrics used to measure the performance of
models are the Root Mean Squared Error (RMSE), mean absolute
error(MAE), Mean Squared Error (MSE), and coe�cient of deter-
mination '2. The higher the value of '2 the better the model is,
while the other measures RMSE, MAE, and MSE are interpreted as
measures of the prediction errors. In these cases, the lower is the
better.

The three deep learning neural network models (LSTM, GRU,
and CNN), the traditional Machine Learning methods (SVR and RF),
and SARIMAX for time series are trained and evaluated on the same
training, validating, and testing datasets, and the performances are

1Using the same padding corresponds to avoiding the use of an aggregation func-
tion that reduces the dimension of the output w.r.t the input size during the �ow of
information towards the successive layers.
2Epsilon controls the tolerance where no penalty is given for the prediction errors.
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evaluated using the statistical metrics. The results are given in
Table 6. With the bold font, we noted the best results.

Table 6: Model performance measures

Models RMSE MSE MAE '2

LSTM 0.0242 0.0006 0.0155 0.8747
CNN 0.0275 0.0008 0.0169 0.8376
GRU 0.0264 0.0007 0.0161 0.8512
SVR 0.0289 0.0008 0.0221 0.8144
RF 0.0281 0.0008 0.0167 0.8250
SARIMAX 0.0266 0.0007 0.0153 0.8457

The prediction accuracy shows that all the tested models are
well-�tted to predict and forecast AET. As shown in Table 6, the deep
learning models performed slightly better than others. Among the
deep learning models, the LSTM performs better ('2 = 0.8747) com-
pared to the other deep learning models such as CNN ('2 = 0.8376)
and GRU ('2 = 0.8512). The GRU performs slightly better than the
CNN according to the results of the performance measurements.
SVM and RF showed slightly lower performance in AET prediction.
Among the six tested models, SVR demonstrated a relatively weak
measure of accuracy ('2 = 0.8144) compared to the remaining �ve
models. The RMSE of deep learning ranges from 0.0242 � 0.0275
and the RMSE of SVM and RF are 0.0289 and 0.0281 respectively.
The RMSE of the SARIMAX is 0.0266 which is comparable with the
GRU RMSE of 0.0264.

Similar studies [3, 8, 16] are conducted and reported that deep
learning outperforms classical machine learning. Ferreira and França
da Cunha [8] experimented with the combination of CNN-LSTM
to show a slightly better performance.

For this study, the experimental results showed the SARIMAX
model ('2 = 0.8457) outperforms the RF ('2 = 0.8250) and the
CNN ('2 = 0.8376) models, a result similar to [10] that shows the
ARIMA model outperforms the Neural network. Our experimental
analysis showed that the LSTM model outperforms the traditional
Machine Learning models and the SARIMAX model; a minor result
is obtained by the SVM model. Comparable results are obtained in
the SARIMAX and GRU models, as shown in Table 6.

5 CONCLUSION
Since obtaining the direct measure of AET is challenging, it is cru-
cial to forecast it using the most readily available meteorological
variables as inputs. For this study, we used the most readily avail-
able meteorological variables by assessing their relevance to the
model development. Six candidate variables were selected for the
model using Pearson correlation and further analysis was made
using tolerance and VIF scores to select the most relevant variables
by avoiding the multicollinear variable. Finally, �ve variables are
considered as input for the models. In conclusion, we obtained �ve
variables (Net CO2, Sensible heat flux, Mean temperature,
Relative humidity, and Wind speed) for training and evaluat-
ing the proposed models for this study. The result of this study
showed that the LSTM and GRU models slightly outperform the
SARIMAX model. In turn, the SARIMAX model outperforms the
traditional Machine Learning models. Among the deep learning ap-
proaches, the LSTM model performs better than the other two deep

learning methods, and the SVM demonstrates relatively diminutive
performance in forecasting AET.
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