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A B S T R A C T   

In the last years the agricultural sector has been evolving and new technologies, like Unmanned Aerial Vehicles 
(UAV) and satellites, were introduced to increase crop management efficiency, reducing environmental costs and 
improving farmers’ income. MAIA-S2 sensor is presently one of the most performing optical sensors operating on 
a Remotely Piloted Aircraft Systems (RPAS); given its spectral features, it aims at supporting a scaling process 
where monoscopic satellite data (namely Copernicus S2) with high temporal and limited geometric resolution 
can be integrated with stereoscopic data from RPAS having a very high spatial resolution. In this work, data from 
MAIA-S2 sensor were used to detect the effects of different fertilization types on corn with reference to a test field 
located in Carignano (Piemonte region, NW-Italy). Different amounts of top dressing fertilization were applied on 
corn and an RPAS acquisition operated on 14th June 2021 (corresponding date to the corn stem elongation stage) 
to explore if any effects could be detectable. Three spectral indices, namely Normalized Difference Vegetation 
Index, Normalized Difference Red Edge index and Canopy Height Model, computed from at-the-ground reflec-
tance calibrated MAIA-S2 data, were compared to evaluate the correspondent response to the different fertil-
ization rates. Results show that: (i) NDVI poorly detect N-related differences zones; (ii) NDRE and CHM 
reasonably reflect the different N fertilization doses; (iii) Only CHM proved to be able to detect crop height and, 
consequently, biomass differences that are known to be induced by different rates of fertilization.   

1. Introduction 

Precision agriculture (PA) has been defined as a new type of agri-
culture that looks for climate, environmental, economic, productive and 
social sustainability. This is said to be possible supporting traditional 
agriculture with new technologies like Geographic Information System 
(GIS), Global Navigation Satellites Systems (GNSS), digital photogram-
metry and remote sensing. PA can therefore support farmers to maxi-
mize the cost-benefit ratio in yield production (Abdullahi et al., 2015; 
Lambert and Lowenberg-De Boer, 2000; Yousefi and Razdari, 2015). 
Prescription maps (PMs) are widely used in PA to map crop intra-field 
anomalies to better address fertilisation (Casa et al., 2011; Peerlinck 
et al., 2018; Radočaj et al., 2022), irrigation (Evett et al., 2020) and 
phytosanitary treatments (Hedley, 2015; Yang, 2020). The aim is 
minimizing negative externalities (i.e. water, air and soil pollution) and 
maximising yield (Sishodia et al., 2020). As far as remote sensing is 
concerned, multispectral information from aerial or space platforms can 
effectively support PMs generation (Chen et al., 2022; Lamb and Brown, 
2001), depending on a proper choice of the adopted sensor in terms of 

spatial, spectral, radiometric and temporal resolution (Boccardo et al., 
2003; Mondino et al., 2012). Besides those mentioned above, an addi-
tional element involved in the constitution of PM is the solar radiation 
reflected by the plants, which is strictly related to the chemical and 
morphological characteristics of the plant itself (Xue and Su, 2017). 
Therefore, plant type, water content, and canopy characteristics affect 
the light reflected (visible, ultraviolet, near and mid infrared portion) in 
a different way in each spectral band. Different sections of the electro-
magnetic spectrum, were commonly used to develop vegetation indices 
(VI) that provide useful information on plant structure and conditions 
(Samuele Petris et al., 2024; Xue and Su, 2017). VIs are mathematical 
expressions which combine the reflectance measured by the sensors in 
many spectral bands in order to generate a value, that summarises 
vegetation related information such as development, biomass and 
chlorophyll content (McKinnon and Hoff, 2017). It is well known in the 
literature that mapping VIs can support the analysis of crops spatio- 
temporal variability, which is key for PA applications. However, costs 
associated to aerial and RPAS (Remotely Piloted Aircraft Systems)-based 
acquisitions are known to be difficult to be estimated since strongly 
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dependent on the required data processing level and size of the imaged 
area (Borgogno Mondino and Gajetti, 2017; De Petris et al., 2020; Perz 
and Wronowski, 2019; Sarvia et al., 2021b). Fortunately, in addition to 
the spectral component, they can provide a very high spatial resolution 
typically ranging from 0.5 m to 1 cm and make possible 3D measures 
thanks to their stereoscopic capabilities (Ehlert et al., 2008; Hoffmeister 
et al., 2010). This peculiarity can be proficiently exploited to integrate 
spectral information. This can be generally achieved assuming digital 
surface models (or directly point clouds) as additional discriminants 
effective for deriving information about canopy and biomass of surveyed 
crops. In literature is well know that the canopy height model (CHM), 
representing the upper boundary of a cultivated field, can be useful for 
several PA applications (Hämmerle and Höfle, 2014). For example, by 
normalizing a CHM with a digital terrain model (DTM) representing the 
elevation of the bare soil, the crop height distribution can be derived and 
used in order to derive grain yield estimations (Lumme et al., 2008), leaf 
area index distribution (Dammer et al., 2008), assess crop fertilization 
status (Eitel et al., 2014; Viljanen et al., 2018) and generate crop 
biomass model (Tilly et al., 2014). 

As far as multispectral features from RPAS sensors are concerned 
they certainly represent a potential breakthrough in PA. As we 
mentioned above, several spectral VI can be, in fact, generated for 
providing valuable vegetation-related information. Two of the mostly 
used VIs in PA are the Normalized Difference Vegetation Index (NDVI) 
and the Normalized Difference Red Edge Index (NDRE) (Rouse et al., 
1974). They are known to be effective for monitoring of vegetation 
physiology (S. De Petris et al., 2024; Farbo et al., 2024; Li et al., 2019; 
Seo et al., 2019; Suwanlee et al., 2024, 2023), estimation of crop pro-
duction (Huang et al., 2014; van Klompenburg et al., 2020; Wang et al., 
2005), ecosystems characterization (Sarvia et al., 2021a), monitoring of 
crop nitrogen (N) content (Boiarskii and Hasegawa, 2019; Li et al., 2018; 
Song et al., 2020) and support the crop damage estimation within the 
insurance policies context (Borgogno-Mondino et al., 2019; F et al., 
2020). An extensive list of multispectral imaging sensors can be easily 
found on market the most of them acquiring bands in the VNIR 
(400–1000 nm) spectral range. MAIA S2 (MS2) is one of the most per-
forming ones in terms of spectral resolution. MS2 acquires 9 bands in the 
range 390–950 nm using 9 separated optical systems equipped with 
filters (Marinello, 2017) that are aligned to the ones of the Sentinel 2 
MSI sensor (Ryan et al., 2018). Moreover, according to Segarra et al., 
(Segarra et al., 2020) MS2 and S2 data can be integrated for agricultural 
field analysis in a precision agriculture context. 

Within this framework, in this work a corn field was analysed with 
the MAIAS2 (MS2) sensor equipped on a quadcopter RPAS. The field was 
previously sub-divided into three sections and a different nitrogen fer-
tilisation dose was applied. Starting from MS2 multispectral image block 
bundle adjustment the NDVI, NDRE and CHM maps were used to assess 
the effects of fertilization treatments. For each map, an unsupervised 
classification was performed to generate a zoned maps. Since analysed 
subfields are affected by similar environmental conditions (i.e. soil, 
rainfall, temperature) but a different fertilisation doses was applied, the 
clusters obtained are expected to reflect the fertilization gradient. The 
consistency between the cluster maps (hereafter called CM) and fertil-
ization treatments was finally tested. 

2. Materials and methods 

2.1. Study area and experimental plots 

The study area (AOI) is in Carignano (Piemonte region – Italy) and 
sizes about 5 ha. AOI is characterized by a typical temperate climate 
with continental character. Furthermore, since the area is placed within 
the North-Western Alps, there is generally a gradual decrease in tem-
perature with increasing altitude. Thermal inversion phenomena, 
caused by cold air, can often affect the area, especially in the valleys. 
Average annual temperature and precipitation are 11.9 ◦C and 1050 

mm, respectively. The Piemonte region is highly devoted to agriculture 
and in particular in cereal production (Boori et al., 2019; Farbo et al., 
2022; Ghilardi et al., 2022). 

AOI corresponds to a corn field and an experimental test involving 
different nitrogen application during the development of the crop was 
carried out in 2021. Specifically, AOI has been divided into three plots 
(hereafter called A, B and C) that were fertilized with different doses of 
N-based mineral fertilizers: 0 kg • ha-1N, 120 kg • ha-1N and 240 kg • ha- 

1N, respectively (Fig. 1). AOI was selected as representative of local 
agricultural corn management, being corn the most important crop in 
the area (Sarvia et al., 2022). 

2.2. Aerial survey 

An aerial survey was performed on 14th June 2021 using a quad-
copter (DJI Matrice 300 RTK) equipped with MS2 sensor. At the same 
time, the phenological stage of corn can be identified as the stem elon-
gation (BBCH scale 39). MS2 technical features are the following: focal 
length = 7.5 mm, physical pixel size = 3.75 μm, sensor size = 1280 ×
960 mm. Forward and side overlap were set equal to 95 % and 90 % 
respectively and the aerial survey was performed @ 80 m AGL (above 
the ground level). The free software Mission Planner v1.3.58 was used to 
plan the flight and set up the autopilot for the flight. Flight time resulted 
to be 15 min. Imaged area was about 10.30 ha corresponding to 1600 
frames (raw format). 

2.3. Ground surveys 

To generate good photogrammetric point clouds (PPCs), an accurate 
image bundle adjustment is required (Triggs et al., 2000). This requires 
an adequate number of ground control points (GCPs), accurately sur-
veyed and appropriately distributed in the area. For this reason, five 
GCPs were surveyed during the flight by GNSS (Fig. 2) operated in VRS- 
NRTK (Virtual Reference Station – Network Real Time Kinematic) mode 
supported by the Interregional Piemonte-Lombardia SPIN-GNSS service 
(https://www.spingnss.it/spiderweb/frmIndex.aspx). A GNSS receiver 
Leica GX1200 system was used for this task. The average 3D-positional 
accuracy was 35 mm and the final reference frame was WGS84/UTM 
32 N. Moreover, to locally model with adequate accuracy the local 
ground level, 28 additional points, namely Terrain Points (TP), were 
surveyed and used to compute a digital terrain model needed for CHM 
generation. This was achieved spatially interpolating TPs by Delaunay 
triangulation in SAGA GIS 7.9 (Olaya and Conrad, 2009) obtaining a 
gridded digital terrain model (DTM) having a grid size of 0.1 m. Also in 
this case the reference frame was WGS84/UTM 32 N. 

2.4. Data processing 

The main conceptual steps of the proposed methodology are reported 
in Fig. 3. Involved steps are deeply explained in the following sections. 

MS2 raw images were pre-processed by MultiCam Stitcher Pro v 1.4- 
Beta 2 (MCS). Images were geometrically corrected to remove/minimize 
distortions related to sensor lens system and design using the available 
automatic procedure in MCS. Nominal calibration parameters, different 
for each band, are recorded within MCS and automatically applied 
during processing (Nocerino et al., 2017). A co-registration step aiming 
at aligning bands was successively achieved and a multi-layer image, 
stacking 9 co-registered and undistorted bands was generated. During 
the process, radiance to reflectance conversion was operated using data 
from the MS2-coupled incident light sensor (ILS). Image block bundle 
adjustment was operated by Agisoft Metashape v 1.7.4 (APS) using the 
above mentioned 5 GCPs. Camera auto-calibration was activated, fixing 
the focal length at its nominal value and estimating cx, cy, k1, k2, k3, k4 
(“Agisoft PhotoScan User Manual − Professional Edition, Version 1.4,” 
n.d.). A Leave One Out approach (Brovelli et al., 2008) was used to test 
3D accuracy of image block orientation and vertical and horizontal 
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RMSE computed. A photogrammetric point cloud (PPC) sizing 
17,013,157 points was generated and filtered to remove outliers. A 
raster Digital Surface Model (DSM) was then computed by regulariza-
tion setting a GSD of 0.1 m. Finally, the correspondent MO was gener-
ated with a GSD of 0.05 m. The default images blending mode was used, 
admitting that native radiometry of images would have been distorted. 
Nevertheless, since the main task was zoning, authors preferred to 
guarantee a better spatial continuity of images that only a blending 
mode can guarantee. MO was projected into the WGS84 UTM 32 N 
reference frame. CHM, mapping the local crop height above the ground 
level, was computed by grid differencing between local DSM (from 
RPAS) and DTM (from GNSS survey). NDVI and NDRE (Bannari et al., 
1995) maps were computed from the calibrated bands of MO by raster 
calculation. Given the high geometric resolution of MO and CHM, plants 
inter-row (equal to 0.75 m) was also detected thus introducing noise in a 
wall-to-wall mapping of crop properties. To reduce this limiting factor 
while zoning, a vector graticule sizing 1 m x 1 m was generated and 

zonal statistics computed with reference to the above mentioned NDVI, 
NDRE and CHM raster maps. Specifically, the local mean value was 
computed for NDVI and NDRE, while the local 95th percentile was 
computed from CHM. This was intended to transfer to the 1 m x 1 m 
graticule cell the information about the top of the canopy, thus 
excluding plants inter-rows related heights. Downsampled NDVI, NDRE 
and CHM were used to derive a zonation of the field possibly corre-
sponding to the three doses of N. Resulting maps can be somehow 
intended as the basis for deriving prescription maps − PMs (Bates et al., 
2018) useful for a variable rate-based field management. Zonation was 
achieved by unsupervised classification of NDVI, NDRE and CHM 
(singularly considered). The K-means clustering was applied looking for 
3 clusters (expected to reflect crop high, medium and low vigour con-
ditions). Since in a cluster analysis class meaning is not a-priori known, 
to recover it, the mean and standard deviation values (NDVI, NDRE and 
CHM) were a-posteriori computed for each cluster and interpreted with 
the following interpretation keys: (i) high vigour class is the one 

Fig. 1. Area of Interest (AOI) within Piemonte Region (N-W Italy) is represented by a red polygon. AOI was subdivided into three plots (A, B and C) which were 
treated with three levels of fertilization at the stem elongation stage (0, 120, 240 Kg N respectively). (Reference system WGS84 / UTM 32 N, EPSG: 32632). 

Fig. 2. Terrain Points and Ground Control Points acquired within the AOI. (Reference System WGS84/UTM 32 N, EPSG: 32632).  
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showing the highest mean NDVI, NDRE and CHM values; (ii) low vigour 
class is the one showing the lowest NDVI, NDRE and CHM values; (iii) 
medium vigour class is the intermediate one. Differences affecting corn 
field development can be reasonably ascribed to the N fertilization since 
environmental conditions can be assumed similar over AOI sub-plots. 
For this reason: field A (N = 0 kg • ha− 1), field B (N = 120 kg • ha− 1) 
and field C (N = 240 kg • ha− 1) were expected to correspond to the low, 
medium and high vigour class, respectively. It is worth to remind that a 
corn field is an open and unlimited context where nutrient exchange at 

soil level and among-plants competition during the growth phase can 
occur (Cahill Jr, 1999). To test truthfulness of their hypothesis, authors 
proceeded by polygon intersection locally comparing CMs classes with 
A, B and C plots and looking for the highest occurrences. 

Fig. 3. Main conceptual steps of the proposed methodology.  

Fig. 4. (a) False colour composite from MO (R: NIR band, G: Red band, B: Green band). (b) Digital surface model. (Reference System WGS84/UTM 32 N, 
EPSG: 32632). 
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3. Results and discussions 

3.1. Data processing 

Accuracy of bundle adjustment was found to be 0.02 m (horizontal) 
and 0.03 m (vertical). These accuracy values well fits PA requirements 
(Rokhmana, 2015) especially when the geometric 3D content of images 
is expected to be exploited to derive useful information about crops. The 
obtained dense cloud (PPC) sizing 17,013,157 points. It was then 
regularized with a GSD = 0.1 m to generate the correspondent DSM 
(Fig. 4b). Finally, DSM was used to generate MO having a GSD = 0.1 m, 
as well. This was used to generate the NDVI and NDRE maps. 

With reference to the DTM from ground surveyed TPs it was used to 
derive crop CHM (Fig. 5). The mean CHM value in AOI was found to be 
2.5 m in agreement with the expected corn height reached in the 
heading phenological phase (June). Similar results were also found by 
Tirado et al. in which the height of 12 different maize hybrids was 
measured and estimated with a UAV (Tirado et al., 2020). Their research 
results highlighted an average corn height of 2.5 m, confirming corn 
vigour observed in this work. 

Zonal statistics were applied with reference to the above mentioned 
1 m x 1 m cell graticule to downsample NDVI, NDRE and CHM maps, 
thus minimizing local effects (on both radiometry and geometry) from 
plants inter-row. K-means clustering (3 clusters) was singularly applied 
for the obtained downsampled NDVI, NDRE and CHM maps (Fig. 5). To 
recover cluster meaning, an intersection was achieved between clusters 
and management zones (A,B,C). Meaning correspondence was obtained 
looking at occurrences of combinations. Corn development and relative 
biomass were expected to be high, medium and low for the respective A, 
B and C areas. Occurrences (%), mean and standard deviation values of 
class combinations are reported in Table 1. CM from NDVI shows that A, 
B and C were characterised by a mean NDVI value of 0.88, 0.94 and 
0.97, respectively (Tab.1). CM from NDRE, differently, shows that A, B 
and C were characterised by having an average NDRE value of 0.22, 0.25 
and 0.27 respectively. CM from CHM shows that A, B and C were 
characterised by an average canopy height value of 2.21 m, 2.58 m and 
2.96 m respectively. Based on these results, CM vigour levels (managed 
plots) can be associated to the corresponding clusters. Specifically, 
vigour levels appear to be high, medium and low respectively for C, B 
and A in all CMs. Finally, the effects of fertilisation detected by CMs were 
evaluated and the relative statistical distribution reported in Fig. 6. 

According to Fig. 6a, CM from NDVI appears to be mainly dominated 
by the high vigour class. Specifically, plot A, B and C are characterized 
by having predominance of high vigour class (53 %, 70 % and 92 % 
respectively). Concerning CM form NDRE, plot A, B and C are, respec-
tively, characterized by mid-low, medium and high vigour classes 

(46–40 %, 46 % and 60 %). Finally, CM from CHM shows that plot A, B 
and C are, respectively, characterized by low, medium and medium-
–high vigour classes (61 %, 51 % and 50–41 %). 

Based on this results, one can deduce that CM from NDVI appears to 
poorly detect N-related differences rising some doubts about NDVI ap-
plications in CM generation during corn late phenological phases. 
Conversely, NDRE- and CHM-derived CMs reasonably reflect the 
different N fertilizations rates. It is worth to remind that whatever 
cluster map would never perfectly fit the N-fertilization plots, since 
transition zones between treatments (Chekli et al., 2017; Kim et al., 
2019) are always present as a natural consequence of treatments dy-
namics in the environment. 

Findings from this work are supported by recent literature (Feng 
et al., 2016) where (i) NDRE is shown to be correlated with different leaf 
N concentration; (ii) N content of vegetation is better detected by NDRE 
rather than NDVI (Boiarskii and Hasegawa, 2019). Specifically, Barker 
and Sawyer assess corn N fertilization by establishing canopy indices on 
corn fields from 2006 to 2008 (62 site-years) located in Iowa State 
University Research and Demonstration Farms (Barker and Sawyer, 
2010). Their results highlight that several indices related to the canopy 
biomass (such as the CHM) can be used to monitor and generate N rate 
algorithm for applying N fertilizer in-season. Yu, Wand and Leblon 
studied the relationship between the spatial variation of canopy nitro-
gen weight and factors such as plant height, topographic metrics, soil 
chemical properties, and soil moisture conditions within a corn field in 
Southwestern Ontario using multispectral UAV-based imagery (Yu et al., 
2021). Despite they used several variables (geometric, topographic and 
spectral), the most important one turned out to be the height of the corn. 
Therefore, according to findings of this work and the above-mentioned 
literature, what actually is relevant is that the geometric information 
related to crop CHM can be proficiently used as further, or alternative, 
detecting tool suggesting that, for this type of applications, low-cost RGB 
sensors (Grenzdörffer, 2014), properly managed within a digital 
photogrammetric workflow, can provide similar, or complementary, 
information about crops in the PA framework. 

4. Conclusions 

To explore the potentiality of MS2 from drones for generating useful 
information in agriculture, a pilot experience was achieved focusing on a 
corn field managed with three different N fertilisation doses. MS2 were 
geometrically and spectrally pre-processed and the related multispectral 
orthomosaic and digital surface model, derived. The former was used to 
compute the correspondent NDVI and NDRE maps. The latter was 
differently used to derive a corn canopy height model. An unsupervised 
classification approach @3 clusters was then applied to NDVI, NDRE and 
CHM maps to zone the field. Zones from clustering were therefore 
compared with field sections at different N doses to test capacity of the 
above mentioned spectral and geometric discriminants to map differ-
ences. Results suggest that CM from NDVI appears to poorly detect N- 
related differences. Contrarily, CMs from NDRE and CHM reasonably Fig. 5. Canopy Height Model of the imaged corn field. (Reference System 

WGS84/UTM 32 N, EPSG: 32632). 

Table 1 
Number of pixels and relative %, mean and standard deviation values of clusters 
from NDVI, NDRE and CHM maps.  

Index Number of 
Pixels 

Pixels 
(%) 

Mean Standard 
deviation 

Field 
treatment 

NDVI 35,184  75.54 %  0.97  0.01 C 
8632  18.53 %  0.94  0.01 B 
2763  5.93 %  0.88  0.03 A 

NDRE 18,128  38.92 %  0.27  0.01 C 
19,694  42.28 %  0.25  0.01 B 
8757  18.80 %  0.22  0.01 A 

CHM 8218  17.68 %  2.96  0.16 C 
22,650  48.72 %  2.58  0.10 B 
15,625  33.61 %  2.21  0.14 A  
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reflect the different N fertilization doses. Specifically, CHM proved to be 
able to detect crop height and, consequently, biomass differences that 
are known to be induced by different rates of fertilization. What actually 
is relevant is that the geometric information related to crop CHM can be 
proficiently used as further, or alternative, detecting tool suggesting 
that, for this type of applications, low-cost RGB sensors can provide 
similar, or complementary, information about crops in the PA 
framework. 
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Fig. 6. (a) Prescription map generated from the NDVI map. (b) Statistical distribution of vigour classes derived by CM (NDVI) for the different fertilisation test 
applied in the corn field. (c) Prescription map generated starting from the NDRE map. (d) Statistical distribution of vigour classes derived by CM (NDRE) for the 
different fertilisation test applied in the corn field. (f) Statistical distribution of vigour classes derived by CM (CHM) for the different fertilisation test applied in the 
corn field. (Reference System WGS84/UTM 32 N, EPSG: 32632). 
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