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ABSTRACT 

In this work, the square root of the matrix of variances in stochastic point kinetics is analytically deduced using 

Cholesky decomposition. The system under study is solved numerically using the implicit Milstein scheme, the variance of 

the neutron population density and the concentration of precursors can be reduced, and better approximations of the 

expected values are obtained through the implementation of a new independent Brownian motion. The results obtained 

comprise different configurations of the reactivity parameters, precursor population, time steps, Brownian motion and 

initial conditions. The results were compared with those reported in the literature, being consistent with them, which is a 

manifestation of the efficiency of the proposed method. 

 
Keywords: cholesky decomposition, stochastic point kinetics, nuclear reactors, implicit Milstein scheme, neutron population. 

 

INTRODUCTION 

Stochastic point kinetics was first introduced 

using the SPCA (Stochastic Piecewise Constant 

Approximation) and MC (Monte Carlo) methods [1], in 

this publication there is a matrix formulation consisting of 

the product of the square root of the variance matrix and a 

vector of independent Brownian motion. Later works used 

the same covariance matrix but using the EM (Euler-

Maruyama) method and the T 1.5 (Taylor 1.5) method 

[2,3], in a subsequent work -without calculating the 

covariance matrix- a Markov process is assumed to obtain 

a form called SSPK (Simplified Stochastic Point Kinetics 

Equations) [4]. Subsequently, other methods were 

considered making different approaches in the covariance 

matrix AEM (Analytical Exponential Model) [5], Double 

DDM (Double Diagonalization-Decomposition Method) 

[6], ESM (Efficient Stochastic Model) [7], IEM (Implicit 

Euler-Maruyama) [8], and the recent article published 

Milstein method from Itô Lemma [9]. 

In this work, the analytical calculation of the 

variance matrix is performed using the Cholesky 

decomposition [10], subsequently, the elements of the 

square root of the variance matrix are simplified in order 

to reduce the variance values of the populations of 

neutrons and precursors, which generates a better 

approximation in the calculation of expected values. The 

results obtained have been calculated using the implicit 

Milstein scheme, these in turn will be compared with those 

reported in the literature. 

 

THEORETICAL ASPECTS 

 

Stochastic point kinetic equations 

As mentioned earlier, stochastic point kinetics 

was first introduced in [1], the matrix expression deduced 

by these authors is: 

 
𝑑

𝑑𝑡
|𝑃(𝑡)⟩ =  �̂�|𝑃(𝑡)⟩ + |𝑄(𝑡)⟩ + �̂�

1
2⁄

𝑑

𝑑𝑡
|𝜔(𝑡)⟩        (1) 

 

Where|𝑃(𝑡)⟩is the vector of random variables 

defined by the equation (2)which accounts for the 

populations of neutrons and precursors, �̂� is the matrix of 

expected values defined in the equation (3), |𝑄(𝑡)⟩ is the 

source vector defined in the equation (4), �̂� is the matrix 

of variances defined in the equation (5), |𝜔(𝑡)⟩ is the 

Wiener process vector defined in the equation (6)or by 

√∆𝑡|η⟩, these processes are continuous time stochastic 

with statistically independent and stationary increases, not 

differentiable in time 

 

|𝑃(𝑡)⟩ =

[
 
 
 
 
n(t)
𝐶1(t)

𝐶2(t)
⋮

𝐶𝑚(t)]
 
 
 
 

     (2) 

 

�̂� =

[
 
 
 
 
 
 
𝜌(𝑡)−𝛽

Λ
𝜆1 𝜆2 ⋯ 𝜆𝑚

𝛽1

Λ
−𝜆1 0 ⋯ 0

𝛽2

Λ
0 −𝜆2 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮
𝛽𝑚

Λ
0 0 ⋯ −𝜆𝑚]

 
 
 
 
 
 

   (3) 

 

|𝑄(𝑡)⟩ =

[
 
 
 
 
q(t)
0
0
⋮
0 ]

 
 
 
 

     (4) 

 

�̂� =

[
 
 
 
 

𝜉 𝑎1 𝑎2 … 𝑎𝑚

𝑎1 𝑟1 𝑏2,3 … 𝑏2,𝑚

𝑎2 𝑏3,2 𝑟2 … 𝑏3,𝑚

⋮ ⋮ ⋮ ⋱ ⋮
𝑎𝑚 𝑏𝑚,2 𝑏𝑚,3 … 𝑟𝑚 ]

 
 
 
 

    (5) 
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|𝜔(𝑡)⟩ =

[
 
 
 
 

𝜔1

𝜔2

𝜔3

⋮
𝜔𝑚+1]

 
 
 
 

     (6) 

 

Where n is the density of neutrons, 𝐶𝑚 is the 

concentration of precursors of the m-th group, 𝜌 is the 

reactivity which accounts for the production of neutrons, 𝛽 

is the total fraction of precursors of delayed neutrons, Λ is 

the average time of neutron generation, 𝜆𝑚 is the decay 

constant of the m-class of delayed neutron precursors, q is 

the magnitude of the external source of neutrons, 𝜔𝑚are 

the Wiener processes that are characterized by being 

stochastic processes of continuous time and independent 

stationary increases. The elements of the matrix �̂�are 

described below: 

 

ξ =  γn(t) + ∑ λiCi(t)
m
i=1 + q(t)   (7) 

 

𝜉𝛾 =
−1−𝜌+𝜐(1−𝛽)2+2𝛽

Λ
      (8) 

 

𝑎𝑚 =
𝛽𝑚[𝜈(1−𝛽)−1]

Λ
𝑛(𝑡) − 𝜆𝑚𝐶𝑚(𝑡)    (9) 

 

rm =
ν βm

2

Λ
n(t) + λmCm(t)    (10) 

 

bi,j =
νβi−1βj−1

Λ
n(t)     (11) 

 

Where 𝜐 is the average number of neutrons 

generated per fission event. 

 

Square root of the varianza matrix 

The matrix of variances given by equation (5) is 

Hermitic [10] and real and since every real Hermitic 

matrix is diagonalizable, its eigenvalues are real and its 

eigenvectors are orthogonal. If �̂� is a real Hermitic matrix, 

then its square root �̂�
1

2⁄ is also real Hermitic. This makes 

it possible to apply the Cholesky decomposition. That is, 

write �̂� as the product of the transpose of an upper 

triangular matrix by the upper triangular matrix, as 

follows: 

 

�̂� = �̂�𝑇�̂�     (12) 

 

Using the property (�̂�𝑇)
𝑛

= (�̂�𝑛)
𝑇
we get  

 

B̂
1

2⁄ = R̂
1

2⁄
T
R̂

1
2⁄      (13) 

 

Where 

 

R̂ =

[
 
 
 
 
r1,1 r1,2 r1,3 ⋯ r1,j

0 r2,2 r2,3 ⋯ r2,j

0 0 r3,3 ⋯ r3,j

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ ri,j ]

 
 
 
 

   (14) 

 

In this way, the calculation of the square root of 

the variance matrix is reduced to the calculation of the 

square root of a simpler matrix (�̂�). 

Performing the calculation suggested in equation 

(12), we find that the elements of the matrix  �̂�are: 

 
r1,1 = √ξ

r1,i =
ai−1

√ξ
                              ; i = 2,3,4,…

ri,i = √ri−1 − ∑ rk,i
2i−1

k=1                      ; i = 2,3,4,…

ri,j =
1

ri,i
(bi,j − ∑ rk,irk,j

i−1
k=1 )               ;   i < 𝑗,      𝑖 = 2,3,4,…

      (15) 

 

Since �̂�is a triangular matrix and since every 

triangular matrix is diagonalizable, provided that no 

element of its diagonal is zero, every diagonalizable 

matrix has a square root, then the square root of a 

triangular matrix is a triangular matrix. 

The above allows one to write equations for �̂� 

and �̂�
1

2⁄ as 

 

R̂ = ÛD̂Û−1      (16) 

 

R̂
1

2⁄ = ÛD̂
1

2⁄ Û−1     (17) 

 

Where �̂�is the matrix of change of base of the 

eigenvectors of �̂�, �̂�−1 is the matrix of change of 

canonical base to the base of eigenvectors of �̂� and �̂� is 

the diagonal matrix of eigenvalues of �̂�. 
The calculation of the eigenvalues of  �̂�is carried 

out by the equation of eigenvalues  (�̂� − 𝜇𝐼)|𝜎⟩. In this 

way, the matrix  �̂�is defined as follows: 

 

D̂ =

[
 
 
 
 
μ1 0 0 ⋯ 0
0 μ2 0 ⋯ 0
0 0 μ3 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ μm+1]

 
 
 
 

     (18) 

 

Where 𝜇𝑖 = 𝑟𝑖,𝑖for 𝑖 = 1,2,3, … ,𝑚 + 1. 

The matrix of eigenvectors �̂� is: 

 

ρÛ =

[
 
 
 
 
k1,1g1 k1,2g2 k1,3g3 ⋯ k1,m+1gm+1

0 k2,2g2 k2,3g3 ⋯ k2,m+1gm+1

0 0 k3,3g3 ⋯ k3,m+1gm+1

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ km+1,m+1gm+1]

 
 
 
 

  (19) 

 

Where the 𝑘𝑖,𝑗are normalization constants defined as: 
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ki,i+1 = 1                              ; i = 1,2,3, … ,m

 ki,i = (1 − δ1,i) [(
ri,i−ri−1,i−1

ri−1,i
) − 1] + 1   ;  i = 1,2,3, … ,m + 1

ki,j =
1

rj,j−ri,i
∑ ri,sks,j

j
s=i+1                ;

i ≠ j
i = 1,2, … ,m + 1 ;  j = 2,3, … ,m + 1

    (20) 

 

It is not necessary to calculate the 𝑔𝑖elements 

since these disappear when the calculation of (16)is 

performed. 

Given that a triangular matrix is invertible if and 

only if all the elements of the main diagonal are non-zero, 

the inverse of an upper triangular matrix is another upper 

triangular matrix. The elements of �̂�−1 can be calculated 

through the relation �̂�−1�̂� = 𝐼. The 𝑢𝑖,𝑗elements are: 

 

ui,j =
1

giki,i
[1 + (δi,j − 1)[1 + ∑ gski,sus,j

j
s=i+1 ]]   ; i, j = 1,2,3, … ,m + 1          (21) 

 

Now, it is possible to calculate equation (17). 

Taking into account that the product of two triangular 

matrices is a superior triangular matrix, �̂�
1

2⁄ is a superior 

triangular matrix with elements 𝑀𝑖,𝑗defined as follows: 

 

Mi,j = ∑ √μsgski,sus,j
j
s=i     ; i, j = 1,2,3, … ,m + 1    (22) 

 

In this way, the calculation suggested in equation 
(13) can be performed; The square root of the variance 

matrix is: 

 

B̂
1

2⁄ =

[
 
 
 
 

B1,1 B1,2 B1,3 ⋯ B1,m+1

B2,1 B2,2 B2,3 ⋯ B2,m+1

B3,1 B3,2 B3,3 ⋯ B3,m+1

⋮ ⋮ ⋮ ⋱ ⋮
Bm+1,1 Bm+1,2 Bm+1,3 ⋯ Bm+1,m+1]

 
 
 
 

    (23) 

 

Where the elements 𝐵𝑖,𝑗 are defined by: 

 

𝐵𝑖,𝑗 = ∑ 𝑀𝑠,𝑖𝑀𝑠,𝑗
𝑖
𝑠=1  ; 𝑖, 𝑗 = 1,2,3, … ,𝑚 + 1 (24) 

 

In this way, the square root of the analytical 

variance matrix is calculated. This method allows for a 

higher computational efficiency and better numerical 

approximations of stochastic point kinetics. However, for 

simplicity in the writing of the elements 𝐵𝑖,𝑗it has been 

decided to approximate these to their dominant term, thus 

the elements 𝐵𝑖,𝑗will be: 

 

B1,1 = √ξ

Bi,i = √ri−1 −
ai−1

2

ξ
;       i = 1,2,3,… ,m + 1

B1,i = Bi,1 =
ai−1

√ξ
;       i = 1,2,3,… ,m + 1

        Bi,j =
bi,j−

ai−1aj−1

ξ

(ri−1rj−1)
1

4⁄  + r
i−1

1
2⁄

    ;      i > j,
i = 2,3,… ,m + 1
j = 3,4,… ,m + 1

(25) 

 

Next, the implicit Milstein scheme is presented, 

which will give a numerical solution to the stochastic point 

kinetics. 

 

 

 

IMPLICIT MILSTEIN SCHEME 

This section presents the Implicit Milstein 

scheme [11], written in a discreet manner: 

 

𝑥𝑛+1 = 𝑥𝑛 + 𝑎𝑛+1h + 𝑏𝑛Δ𝜔 +
1

2
𝑏𝑛

𝜕

𝜕𝑥𝑛
𝑏𝑛[(Δ𝜔)2 − h]  (26) 

 

where 

 

h = 𝑡𝑛+1 − 𝑡𝑛     (27) 

 

Δ𝜔 = 𝜔𝑛+1 − 𝜔𝑛     (28) 

 

Equation (28) represents a Wiener process, with 

the following characteristics: 𝜔𝑡=0 = 0 with probability 1 

and 𝜔𝑡 − 𝜔𝑠 ~ ℵ(0, 𝑡 − 𝑠)for 0 ≤ 𝑠 ≤ 𝑡, where 

ℵ(𝜇, 𝜎2)denotes the normal distribution with expected 

value 𝜇 and variance 𝜎2 [12]. 

Applied to stochastic point kinetics 

 

𝑃𝑘+1 = 𝑃𝑘 + [𝐴𝑘+1𝑃𝑘+1 + 𝑄𝑘+1]ℎ + 𝐵𝑘
1/2

Δ𝜔𝑘 +
1

2
𝐵𝑘

1/2 𝑑

𝑑𝑃𝑘
𝐵𝑘

1/2[(Δ𝜔𝑘)
2 − ℎ]   (29) 

 

Resolving for 𝑃𝑘+1 we get: 

 

𝑃𝑘+1 = (𝐼 − ℎ𝐴𝑘+1)
−1 [𝑃𝑘 + 𝑄𝑘+1ℎ + 𝐵𝑘

1/2
Δ𝜔𝑘 +

1

2
𝐵𝑘

1/2 𝑑

𝑑𝑃𝑘
𝐵𝑘

1/2[(Δ𝜔𝑘)
2 − ℎ]]   (30) 

 

Where 𝐼 is the identity matrix. The calculation of 

the inverse of 𝐼 − ℎ𝐴𝑘+1has already been presented 

analytically [8] and its result will be used in this work. 

Thus, equation (30)turns out to be: 

 

𝑃𝑘+1 = 𝑆𝑘+1 [𝑃𝑘 + 𝑄𝑘+1ℎ + 𝐵𝑘
1/2

Δ𝜔𝑘 +

1

2
𝐵𝑘

1/2 𝑑

𝑑𝑃𝑘
𝐵𝑘

1/2[(Δ𝜔𝑘)
2 − ℎ]]   (31) 
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Where  

  Ŝ =   

[
 
 
 
 

S1,1 S1,2 S1,3 ⋯ S1,m+1

S2,1 S2,2 S2,3 ⋯ S2,m+1

S3,1 S3,2 S3,3 ⋯ S3,m+1

⋮ ⋮ ⋮ ⋱ ⋮
Sm+1,1 Sm+1,1 Sm+1,1 ⋯ Sm+1,m+1]

 
 
 
 

       (32) 

 

With 

 

S1,j =
1

ζk+1
[1 + (

λj−1Δ

1+λj−1Δ
− 1) (1 − δ1,j)] ;  j = 1,2,3, … ,m + 1

ζk+1 = 1 −
ρk+1−β

Λ
Δ −

Δ2

Λ
∑

λiβi

1+λiΔ

m
i=1

Si,j =
1

1+λj−1Δ
[
βi−1Δ

Λ
S1,j + δ1,j]   ;

i = 2,3,4, … m + 1
j = 1,2,3, … ,m + 1

     (33) 

 

Furthermore, 𝐵𝑘
1/2

can be expressed as  

 

Bk
1/2

= 

[
 
 
 
 
 
 
 B1,1

d

dnk
B1,1 B1,2

d

dnk
B1,2 B1,3

d

dnk
B1,3 ⋯ B1,m+1

d

dnk
B1,m+1

B2,1
d

dC1 k
B2,1 B2,2

d

dC1 k
B2,2 B2,3

d

dC1 k
B2,3 ⋯ B2,m+1

d

dC1 k
B2,m+1

B3,1
d

dC2 k
B3,1 B3,2

d

dC2 k
B3,2 B3,3

d

dC2 k
B3,3 ⋯ B3,m+1

d

dC2 k
B3,m+1

⋮ ⋮ ⋮ ⋱ ⋮

Bm+1,1
d

dCmk
Bm+1,1 Bm+1,2

d

dCmk
Bm+1,2 Bm+1,3

d

dCmk
Bm+1,3 ⋯ Bm+1,m+1

d

dCmk
Bm+1,m+1]

 
 
 
 
 
 
 

 (34) 

 

Equation (31) is the Milstein's implicit scheme 

applied to stochastic point kinetics through which the 

results presented in this work will be obtained. However, it 

is necessary to consider a way to reduce the variance of 

neutron and precursor populations, which can improve the 

approximation to the expected values of these populations. 

This is achieved by considering a new independent 

Brownian motion that multiplies the terms of the main 

diagonal of the square root of the variance matrix, in the 

following manner: 

 

B1,1 = dω(t)√ξ

Bi,i = dω(t)√ri−1 −
ai−1
2

ξ
;    i = 1,2,3, … ,m + 1

  (35) 

 

Since stochastic point kinetics is a generalization 

of point kinetics, one way to decrease the variance values 

is to attenuate the contribution of the term that 

differentiates these two formulations of the physical 

system. This is why the modification given by equation 

(35) is made, taking into account that these terms have the 

greatest contribution. Another way of decreasing variance 

values is by equating the variance matrix to that of 

expected values, as in [7]. In the next section, the different 

numerical experiments will be presented, considering 

different cases for the form of the reactivity, to obtain the 

values of the neutron population density and the 

concentration of delayed neutron precursors. 

 

RESULTS AND DISCUSSIONS 

Various numerical experiments are presented for 

different configurations of reactivity, population of 

precursors, time steps, Brownian motion and initial 

conditions. The results obtained by the numerical 

experiments are compared on mean with the deterministic 

model (DM) of the point kinetics which is calculated by 

the implicit Euler scheme, since the deterministic 

formulation does not have standard deviation values in the 

tables represented by do Not Apply (NA). They will also 

be compared with respect to the mean and standard 

deviation with other stochastic schemes reported in the 

literature, such as:  SPCA (Stochastic piecewise Constant 

Approximation) and MC (Monte Carlo) [1], EM (Euler-

Maruyama) and T 1.5 (Taylor 1.5) [2], FSNPK (Fractional 

stochastic point kinetics equations) [3], SSPK (Simplified 

Stochastic Point Kinetics Equations) [4], AEM (Analytical 

Exponential Model) [5], Double DDM (Double 

Diagonalization-Decomposition Method) [6], ESM 

(Efficient Stochastic Model) [7], IEM (Implicit Euler-

Maruyama) [8]. The values reported in the literature have 

been written with four significant figures, in cases where 

fewer significant figures are reported it has been 

completed with zeros. In this work, the results in the tables 

are presented by the acronym IM and IMwDB denoting 

Implicit Milstein and Implicit Milstein with Diagonal 

Brownian, respectively.  

 

Experiment 1 

This experiment uses a group of precursors and 

the following physical parameters: reactivity 𝜌 =

−1
3⁄ 𝑝𝑐𝑚, neutron generation time Λ = 2

3⁄ (𝑠), decay 

constant 𝜆1 = 0.1(𝑠−1), fraction of delayed neutron 

precursors 𝛽 = 0.05, average number of neutrons 

generated by each fission event 𝜐 = 2.5, external source of 
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neutrons 𝑞(𝑡) = 200, initial condition 𝑛(0) = 400, 

𝐶(0) = 300. This example is done with 40 iterations in a 

time of [0,2]s, using 5000 Wiener processes. The results 

obtained for this experiment are shown in Table-1, which 

clearly shows how the IM scheme achieves good 

approximations for the expected values of the neutron and 

precursor populations, the standard deviation values are 

found in accordance with those reported by other schemes. 

The IMwDB scheme achieves better approximations for 

expected values and a considerable decrease in standard 

deviation values. Figure-1 clearly shows how the use of 

the proposed method given by equation (35) reduces 

stochastic variations with respect to the deterministic 

value, this produces a better approximation of the expected 

values of the random variables. 

The following three experiments consider six 

groups of precursors with the following physical 

parameters: neutron generation time Λ = 0.00002(𝑠), 

decay constants 𝜆𝑖 =
[0.0127, 0.0317, 0.1150, 0.3110 1.4000, 3.8700](𝑠−1), 

total fraction of delayed neutron precursors 𝛽 = 0.007, 

fraction of delayed neutron precursors of the i-th group 

βi = [0.000266, 0.001491, 0.001316,0.002849, 0.000896, 0.000182], 

average of neutrons generated by fission event 𝜐 = 2.5, 

external source of neutrons 𝑞(𝑡) = 0, initial condition 

[𝑛(0), 𝐶1(𝑡), 𝐶2(𝑡), … , 𝐶6(𝑡)]
𝑇 =

100 [1,
𝛽1

𝜆1Λ
,

𝛽2

𝜆2Λ
, … ,

𝛽6

𝜆6Λ
]
𝑇

and using 5000 Wiener 

processes. Some of these examples represent reactivities 

for real nuclear reactors. 

 

Table-1. Comparison of results, proposed scheme, reported in the literature and deterministic model  

for the first experiment. 
 

Método 𝑬[𝒏(2𝑠𝑒𝑔)] 𝝈[𝒏(2𝑠𝑒𝑔)] 𝑬[𝑪(2𝑠𝑒𝑔)] 𝝈[𝑪(2𝑠𝑒𝑔)] 

SPCA 395.3200 29.4110 300.6700 8.3564 

MC 400.0300 27.3110 300.0000 7.8073 

EM 412.2300 34.3910 315.9600 8.2656 

T 1.5 412.1000 34.5190 315.9300 8.3158 

AEM 396.2800 31.2120 300.4200 7.9576 

Double DDM 402.3500 28.6100 305.8400 7.9240 

ESM 396.6200 0.9199 300.3900 0.0016 

IEM 399.7100 31.4310 299.7700 7.9411 

IEM* 399.9874 0.5439 299.8730 6.8405 

IM 400.3121 31.4163 299.8705 8.0535 

IMwDB 400.0603 6.8745 299.9968 1.7769 

DM 400.0000 NA 300.0000 NA 
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Figure-1. Neutron density in the stochastic model for the IM and IMwDB schemes  

and the deterministic model (DM) for reactivity 𝜌 = 300 𝑝𝑐𝑚. 
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Experiments 2 and 3. are run for six groups of 

precursors with subcritical and critical reactivities of 𝜌 =
300 𝑝𝑐𝑚 and 𝜌 = 700 𝑝𝑐𝑚, respectively, with a time 

interval in which the nuclear reactor is simulated with 

subcritical and critical reactivity of [0,0.1] and [0,0.001] 
s, respectively. Tables 2 and 3 show the results obtained 

for these two experiments. The greater accuracy of 

IMwDB is highlighted on all reported schemes for both 

expected values and standard deviation. Figure-2 

illustrates how the IMwDB scheme manages to 

approximate with such precision that the IMwDB curve 

overlaps the DM curve. 

 

Table-2. Comparison of results, proposed scheme, reported in the literature and deterministic model  

for the second experiment. 
 

Método 𝑬[𝒏(0.1𝑠𝑒𝑔)] 𝝈[𝒏(0.1𝑠𝑒𝑔)] 𝑬[𝑪(0.1𝑠𝑒𝑔)] 𝝈[𝑪(0.1𝑠𝑒𝑔)] 

SPCA 186.3100 164.1600 4.4910x105 1.9172x103 

MC 183.0400 168.7900 4.4780x105 1.4957x103 

EM 208.6000 255.9500 4.4980x105 1.2333x103 

T 1.5 199.4080 168.5470 4.4970x105 1.2188x103 

SSPK 184.8000 186.9600 4.4890x105 0.9826x103 

AEM 186.3000 164.1400 4.4900x105 1.9119x103 

Double DDM 187.0500 167.8300 4.4880x105 1.4756x103 

ESM 179.9300 10.5550 4.4890x105 0.0947x103 

IEM 178.2700 165.1100 4.4886x105 1.2536x103 

IEM* 179.9461 0.2178 4.4888x105 0.0604x103 

IM 180.3313 171.7072 4.4881x105 2.0415x103 

IMwDB 180.0186 8.6228 4.4888x105 0.1004x103 

DM 179.9485 NA 4.4888x105 NA 

 

Table-3. Comparison of results, proposed scheme, reported in the literature and deterministic model  

for the third experiment. 
 

Método 𝑬[𝒏(0.001𝑠𝑒𝑔)] 𝝈[𝒏(0.001𝑠𝑒𝑔)] 𝑬[𝑪(0.001𝑠𝑒𝑔)] 𝝈[𝑪(0.001𝑠𝑒𝑔)] 

SPCA 134.5500 91.2420 4.4640x105 19.4440 

MC 135.6700 93.3760 4.4640x105 16.2260 

EM 139.5680 92.0420 4.4630x105 6.0710 

T 1.5 139.5690 92.0470 4.4630x105 18.3370 

AEM 134.5400 91.2340 4.4640x105 19.2350 

Double DDM 135.8600 93.2100 4.4630x105 17.8450 

ESM 134.9600 6.8527 4.4640x105 2.5290 

IEM 134.0200 93.2730 4.4636x105 18.7760 

IEM* 134.9218 5.9661 4.4636x105 6.0686 

IM 136.0061 93.5743 4.4636x105 19.0110 

IMwDB 135.0031 0.4736 4.4636x105 0.3028 

DM 135.0010 NA 4.4636x105 NA 
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Figure-2. Neutron density in the stochastic model for the IM and ImwDB 

schemes and the deterministic model (DM) for reactivity 𝜌 = 0.1𝛽𝑡𝑝𝑐𝑚. 

 

Experiment 4 

This uses a linear reactivity of the form 𝜌 =
0.1𝛽𝑡in a time interval of [0,1]s and using 100 iterations. 

The results of this numerical experiment are in accordance 

with those reported in the literature, as can be seen in 

Table-4. The results improve and are of very good 

precision for the calculation of the expected value of the 

neutron density when using the IMwDB method, in 

addition, the proposed method decreases the variance 

values when only the IM method is used, obtaining lower 

values than the SPCA, AEM and IEM methods.  

In this section, several experiments were carried 

out in which the different configurations of the reactivity 

parameters, precursor population, time steps, Brownian 

motion and initial conditions were tested, in order to 

validate the data, found in this study, such as the analytical 

calculation of the square root of the variance matrix and 

the correct functioning of the proposed schemes to give a 

numerical solution to the stochastic point kinetics. The 

results of these schemes are consistent with the values 

reported in the literature, and in some cases with better 

accuracy. 

 

Table-4. Comparison of results, proposed scheme, reported in the literature and deterministic model 

for the fourth experiment. 
 

Método 𝑬[𝒏(1𝑠𝑒𝑔)] 𝝈[𝒏(1𝑠𝑒𝑔)] 𝑬[𝑪(1𝑠𝑒𝑔)] 𝝈[𝑪(1𝑠𝑒𝑔)] 

SPCA 113.2680 13.3301 4.4823x105 3.0099x103 

AEM 113.2677 13.3272 4.4823x105 3.0026x103 

ESM 113.1164 4.1111 4.4825x105 0.0472x103 

IEM 112.0506 71.3802 4.4826x105 3.0783x103 

IEM* 113.0926 0.2770 4.4825x105 0.1912x103 

IM 112.4026 97.6061 4.4790x105 3.9871x103 

IMwDB 113.3059 10.7728 4.4827x105 1.3718x103 

DM 113.0990 NA 4.4825x105 NA 

 

CONCLUSIONS 

In this work, the square root of the variance 

matrix of stochastic point kinetics has been calculated 

analytically, using the Cholesky decomposition method. A 

new equation of stochastic point kinetics was obtained by 

considering an approximation of the dominant terms in 

some elements of the variance matrix. In order to validate 

the proposed method, different numerical experiments of 

the physical system of study were carried out by 

implementing the implicit Milstein scheme, numerical 

approximations were found according to those reported in 

the literature for different forms of nuclear reactivity. 
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