
02 May 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Tensor-Train Decomposition in Presence of Interval-Valued Data

Published version:

DOI:10.1109/TKDE.2021.3135715

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/1893691 since 2023-09-05T16:47:34Z



TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

Tensor-Train Decomposition
in Presence of Interval Data

Francesco Di Mauro, K Selçuk Candan, and Maria Luisa Sapino

Abstract—In many fields of computer science, tensor decomposition techniques are increasingly being adopted as the core of many
applications that rely on multi-dimensional datasets for implementing knowledge discovery tasks. Unfortunately, a major shortcoming of
state-of-the-art tensor analyses is that, despite their effectiveness when the data is certain, these operations become difficult to apply,
or altogether inapplicable, in presence of uncertainty in the data, a circumstance common to many real-world scenarios. In this paper
we propose a way to address this issue by extending the known Tensor-Train technique for tensor factorization in order to deal with
uncertain data, here modeled as intervals. Working with interval-valued data, however, presents many challenges, since many
algebraic operations that form the building blocks of the factorization process, as well as the properties that make these procedures
useful for knowledge discovery, cannot be easily extended from their scalar counterparts, and often require some approximation
(including, though it is not only the case, for keeping computational costs manageable). These challenges notwithstanding, our
proposed techniques proved to be reasonably effective, and are supported by a thorough experimental validation.

Index Terms—Tensor Factorization, Tensor-Train, Uncertain Data, Interval Valued Data.

F

1 INTRODUCTION

T ENSORS, as a generalization of matrices, are com-
monly used for representing multidimensional data,

such as user-centered document collections in the web and
user interactions in social networks [1]. As for matrices,
many tensor factorization operations (such as the CANDE-
COMP/PARAFAC [2], [3], the Tucker [4] and, more recently,
the Tensor-Train [5] decompositions) have been introduced
to implement various data analysis tasks, from clustering,
trend and anomaly detection [1], to correlation analysis [6]
and pattern discovery [7]. Initially originated in the field of
psychometrics [2], tensor decomposition has been used in
a large number of domains of computer science, including
signal processing, computer vision, and data mining.

In simple terms, the main idea behind the matrix fac-
torization process is the interpretation of a matrix as the
mapping of a set of objects (the rows of the matrix) in the
space identified by a set of features (the columns), such that
each element of the matrix (i.e, the value that that object
assumes for that particular feature) represents the projection
of that object on the dimension identified by that feature.
The factorization process, which can be extended also to
tensors, helps identify a new set of features, initially hidden
(and, as such, often referred to as forming a latent space)
that provide a better representation of the objects, and helps
identify the patterns among them that can facilitate their
interpretation and analysis.

Unfortunately, a major shortcoming of matrix and tensor
factorization based analyses is that, despite their effective-
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ness when the data is certain (i.e., scalar), these opera-
tions cannot be straightforwardly applied to those scenarios
where data need to be represented as ranges (or intervals) of
possible values.

Extending state-of-the-art factorization techniques in or-
der to handle interval-valued data presents numerous chal-
lenges, since many of the basic algebraic operations needed
to implement this processes are not as straightforward for
intervals as they are for scalars. In this paper, building
on our previous work on matrices [8], we address these
challenges by presenting and evaluating the effectiveness
of original decomposition techniques for tensors (following
the Tensor-Train representation), while also ing to avoid an
excessive increase in the computational complexity of the
problem.

1.1 Background and Related Works

In the context of this paper, a tensor is intended as a multi-
dimensional array, i.e., a generalization of a matrix with
order (its number of dimensions, or modes) greater than
2. In terms of notation, we follow the convention [9] of
denoting tensors (order three or higher) by boldface Euler
script letters, e.g., X, Y.

The fibers of a tensor are the higher order analogue of ma-
trix rows and columns, namely one-dimensional sections of
the tensor along each of the modes. For a generic third-order
tensor X ∈ RI1×I2×I3 , the fibers are referred to as columns
(mode-1), rows (mode-2) and tubes (mode-3), and can be
denoted (fixing two of the three indices) as x[:,i2,i3], x[i1,:,i3]
and x[i1,i2,:] respectively. Slices, instead, are two-dimensional
sections, in a third-order tensor referred to as horizontal,
lateral and frontal, defined by fixing one of the three indices,
and denoted as X[i1,:,:], X[:,i2,:] and X[:,:,i3].

In the literature, many decomposition techniques have
been applied to tensors, forming the basis for many data
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Fig. 1. Candecomp/Parafac (CP) Decomposition of a three-mode tensor
X.

analysis and knowledge discovery tasks. The most com-
monly adopted are the CANDECOMP/PARAFAC (CP) [2],
[3] and the Tucker [4] factorizations. Tensor-Train [5] decom-
position is recently introduced to take the complexity of the
Tucker decomposition.

1.1.1 CANDECOMP/PARAFAC (CP) Decomposition
The CANDECOMP [2] (CANonical DECOMPosition) and
PARAFAC [3] (PARAllel FACtors) decompositions (together
known as the CP decomposition) introduced the idea of
expressing a generic higher-order tensor as the sum of a
finite number of rank-one tensors (polyadic form). More
specifically, the CP Decomposition of a d-mode tensor,
X ∈ RI1×I2×···×Id , is a weighted sum of rank-one tensors,
expressed as

X '
r

∑
k=1

λkA(1)
[:,k] ◦A(2)

[:,k] ◦ · · · ◦A(d)
[:,k], (1)

where the columns of the factor matrices A(i) ∈ Ii × r (with
i = 1, · · · , d and r = rank(X)), combined by means of
the outer product, ◦, form the component rank-one tensors
in the summation, with λ = [λ1, λ2, . . . , λr] absorbing the
normalizing factors of each column vector.

An alternative way to view the CP decomposition is in
the form of a diagonal tensor and a set of factor matrices,
one for each dimension of the input tensor (see Fig. 1 for a
three-mode example).

When there is an equality in (1), the equation represents
an exact decomposition (also referred to as rank decompo-
sition), where the rank of the tensor X corresponds to the
smallest number of rank-one tensors that generate X as
their sum. It is important to notice, however, that (unlike
with matrices) there usually is no straightforward way to
determine the rank of a given tensor (the problem is, in fact,
NP-hard [10]). Thus, the most common approach to obtain a
decomposition of an input tensor with good approximation,
is to rely on an Alternating Least Squares (ALS) based method
[2], [3]: the factor matrices associated to the modes of the
input tensor are randomly initialized and, at each iteration,
the algorithm finds a better estimation for one of the factor
matrices while maintaining the others fixed; the process is
then repeated for each factor matrix until a convergence
condition is reached.

1.1.2 Tucker Decomposition
The Tucker decomposition can be seen as a generaliza-
tion of the Singular Value Decomposition (SVD) [11] for
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Fig. 2. Tucker Decomposition of a three-mode tensor X.

higher-order arrays. More in detail, a d-mode tensor X ∈
RI1×I2×···×Id can be expressed, by means of the Tucker
decomposition, as a core tensor multiplied by a matrix along
each mode:

X ' G×1 A(1) ×2 A(2) · · · ×d A(d) =

=
r1

∑
k1=1

r2

∑
k2=1
· · ·

rd

∑
kd=1

G[k1,k2,...,kd ]
A(1)
[:,k1]
◦A(2)

[:,k2]
◦ · · · ◦A(d)

[:,kd ]
,

where A(i) ∈ RIi×ri are d factor matrices that can be
thought of as the principal components along each mode of
X (capturing the “group membership” relationship for the
modes), while the entries of the core tensor G ∈ Rr1×r2×···×rd

represent the level of interaction between the different com-
ponents (capturing the relationships among the “groups”).
The operator ×n, referred to as the n-mode product, is used
to multiply a tensor (specifically, its mode-n matricization)
for a matrix. The mode-n matricization (or unfolding) is the
operation that turns a given tensor X ∈ RI1×I2×···×Id into
a matrix X(n) ∈ RIn×(I1·...·In−1·In+1·...·Id), namely turning the
mode-n fibers of X into the columns of X(n).

Fig. 2 illustrates the Tucker factorization for a three-mode
tensor. The resemblance to Fig. 1 is no coincidence: the CP
decomposition, in fact, can be viewed as a special case of
Tucker, where the core tensor is super-diagonal (i.e., all its
elements are zero, except on the main diagonal) and r1 =
r2 = · · · = rd.

An efficient way to compute the Tucker decomposition
of a tensor, referred to as the Higher-Order Singular Value
Decomposition (HOSVD for short) [12], relies on the SVD of
the matricizations of the tensor along each mode to evaluate
the factor matrices, which can then be used (along with the
input tensor) to evaluate the core. However, while being
simple, this process does not necessarily lead to an optimal
decomposition, although it can be improved by using an
ALS method to find better estimates of the factor matrices
[13], thus increasing the overall accuracy.

1.1.3 Tensor-Train Decomposition

The growing importance of tensor analysis in the fields of
computational mathematics and computer science over the
years has prompted the search for an efficient representation
of a tensor by means of a small number of parameters, in
order to tackle d-dimensional problems efficiently. As the
number of dimensions increases, in fact, these problems
cannot be handled by standard numerical methods due to
the curse of dimensionality: everything (memory, number of
operations, time of execution) grows exponentially in d.
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Fig. 5. The Tensor-Train factorization process.

The CP and Tucker decompositions of a tensor, illustrated
in the previous sections, allow for effective representations,
however, both suffer from several drawbacks.

CP guarantees a low parametric format (by means of
factor matrices) but, as stated above, has the disadvantage
of requiring the computation of the tensor rank (an NP-hard
problem [10]), which not only is not guaranteed to be found,
but also its numerical approximation is proven to be an ill-
posed problem [14], leading to algorithms that can be stuck
in local minima and might fail in providing a reliable answer
even if a good approximation is known to exist.

The Tucker decomposition has the advantage of being
more stable, but it suffers from requiring a number of
parameters that grows exponentially with the number of
dimensions of the input tensor. Thus, while proven suitable
when dealing with a low number of dimensions (especially
three [15]), it is rarely a good option when d gets larger.
The Tensor-Train decomposition [5] tackles this issues by (a)
relying entirely on the matrix Singular Value Decomposition
(SVD) for its operations and (b) by representing any given
d-dimensional tensor by means of d three-dimensional ones.
More in detail, a d-mode tensor X ∈ Rn1×n2×···×nd is said
to be in Tensor-Train form if it is expressed as d three-
mode core tensors Gk ∈ Rrk−1×nk×rk , with k = 1, . . . , d and
r0 = rd = 1. The ranks rk, referred to as the compression
ranks, define the accuracy of the decomposition.

Fig. 3 illustrates the process to compute the Tensor-Train

form of a given tensor X. The procedure is based on the SVD
of the auxiliary matrices Ck, obtained by reshaping1 (a step
notated as in figure) either the input tensor, to obtain C1,
or the product of the factor matrices Σk and VT

k (resulting
from the SVD of Ck), to obtain the following Ck+1.

The compression ranks rk, with k = 1, . . . , d− 1 (as stated
above, r0 = rd = 1), are defined as the target ranks for the
SVDs of the auxiliary matrices Ck: a full-rank decomposition
at each SVD step in the process will yield an exact (and thus
fully reversible) Tensor-Train decomposition of X, while
lower-rank choices will result in less accurate core tensors,
with the benefit, however, of reducing their overall sizes,
thus sacrificing accuracy over efficiency.

Fig. 4 illustrates the process that, taking the d cores
G1, . . . ,Gd from the Tensor-Train decomposition, recon-
structs an approximation, X̃, The procedure relies again
on the reshape (either of tensors or matrices) into auxiliary
matrices that are then combined by means of matrix multi-
plication (notated as in figure).

The property of the Tensor-Train decomposition of rely-

1. Rather than a mathematical operation, the reshape function, com-
mon to many programming languages (MATLAB is among them),
implements a way of rearranging the elements of an array (of two or
more dimensions) into a new one of different size (and/or different
number of dimensions), but without changing neither its number of
elements nor their linear index (i.e., their index when treating the array
as if its elements were strung out in a long column vector).
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ing on simple matrix operations, such as the Singular Value
Decomposition and the matrix product, proved particularly
useful for the extension of the factorization analysis to
interval-valued tensors, as will be described in Section 2.

Tensor train (TT) decomposition, designed to avoid the
explosion of intermediary data, seeks a sequence of three-
mode cores, without considering any guidelines to select
the decomposition sequence, and without considering noisy
data. In [?], a method for guiding the tensor train in se-
lecting the decomposition sequence (in non noisy tensors)
is introduced. The proposed GTT method leverages the
data characteristics (including number of modes, length
of the individual modes, density, distribution of mutual
information, and distribution of entropy) as well as the
target decomposition rank to pick a decomposition order
that will preserve information.

1.2 Tensor Decomposition in the Presence of Uncer-
tainty

One major problem facing the tensor decomposition ap-
proaches illustrated in the previous sections is that the
factorization process can be negatively affected by noise and
low quality in the data. Specifically, avoiding over-fitting to
the noisy data (especially if very sparse) can be a significant
challenge, particularly for large web-based user data. Recent
research has shown that this issues can be addressed by
modeling the decomposition as a probabilistic tensor fac-
torization problem [16], relying on Bayesian techniques to
avoid over-fitting.

This approach, however, has the significant drawbacks
of assuming that all the data processed can fit in the main
memory, while also ignoring the possible non-uniformities
in the distribution of noise in the given input tensor. To
address these issues, the authors in [17] propose a Noise-
profile adaptive Tensor Decomposition (nTD) method which
leverages a priori information about the noise in the data
to partition the input tensor into multiple sub-tensors,
proceeding then to decompose each of the sub-tensors by
means of Bayesian probabilistic techniques, assigning the
computational resources that are better suited for each sub-
task. In [?] authors propose a Noise-Profile Adaptive Tensor
Train Decomposition method, NTTD, which leverages a
model-based noise adaptive strategy. In particular, if a priori
knowledge about the noise profiles of the tensor is available,
it is used as the basis for a sample assignment strategy that
best suits the noise distribution of the given tensor, which
allows to distribute computational resources in a noise driven
way in the decomposition process.

Other proposed methods to handle uncertainty and im-
precision in the data, besides probabilistic approaches, rely
on fuzzy set theory [18], where imprecise data are modeled
by means of degree of membership to a given set (or interval)
instead of crisp values. The author in [19], for example, pro-
poses a generalization of the CP and Tucker decomposition
techniques to imprecise data that are transformed into fuzzy
sets by means of a fuzzification process.

What we propose here, instead, is a way for directly
working with interval-valued high-dimensional data, a
problem not yet thoroughly investigated in the literature,
by relying on the findings of our work with interval-valued
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Fig. 6. Representation of a bidimensional interval latent space.

matrices [8], as the next section will explain. As we will
see in the following, the proposed approach shows that in
tensor train decomposition, in the presence of noisy data,
also the decomposition order has an impact on the quality
of the results.

2 INTERVAL TENSOR-TRAIN FACTORIZATION

As introduced in Section 1.1.3, the Tensor-Train factoriza-
tion process has the purpose of representing any given d-
dimensional tensor by means of d three-dimensional ones.
Likewise, for an interval-valued scenario2, we can consider
the factorization of a d-mode tensor Ẍ = [X∗,X∗], where
X∗,X∗ ∈ Rn1×n2×···×nd , as the set of d three-mode core ten-
sors, such that G̈k = [G∗k,G∗k ], where G∗k,G∗k ∈ Rrk−1×nk×rk ,
with k = 1, . . . , d and r0 = rd = 1.

However, while the standard Tensor-Train Decompo-
sition relies on the classical SVD algorithm (see Fig. 3),
here, we first of all need to devise an extension of the
Singular Value Decomposition in order to deal with the
interval-valued auxiliary matrices that we encounter along
the process.

2.1 Interval-Valued Matrix Factorization

In [8], we proposed a set of tools to tackle interval valued
matrix factorisation by extending both eigenvector-based
algorithms (such as the Singular Value Decomposition [11],
or SVD, and the Non-negative Matrix Factorization [20],
or NMF) as well as probabilistic state-of-the-art techniques
(such as the Probabilistic Matrix Factorization [21], or PMF)
to interval-valued data.

In particular, regarding the SVD, the approach follows
a generalization of the factorization process to interval-
valued matrices such that all the resulting factor matrices
are interval-valued, i.e.:

M̈→
[
Ü, Σ̈, V̈

]
.

2. In terms of notation, we indicate an interval ä as a pair of scalars
ä = [a∗, a∗], with a∗, a∗ ∈ R and a∗ ≤ a∗, where a∗ represents the
minimum value and a∗ the maximum value of the interval ä.
Similarly, a generic array (either a matrix or a tensor), Ä, can be defined
as Ä = [A∗, A∗], with A∗, A∗ ∈ RI1×I2×···×Id and A∗i1 ,...,in ≤ A∗i1 ,...,in
∀i1, . . . , in.
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Fig. 7. Matching of the components of an interval latent semantic space.

A naive way to solve this task could be to separately
apply the scalar SVD to the endpoint matrices, such that

M∗ = U∗Σ∗VT
∗ and M∗ = U∗Σ∗V∗T.

However, this leads to the following issues:

1) An important property of the standard SVD is
that both the left and right singular vectors (i.e.,
the columns of U and V, respectively) are mu-
tually orthogonal. However, after an independent
decomposition of M∗ and M∗, each interval latent
component (i.e., each column vector of the factor
matrix V̈) is identified by a pair of vectors, one for
the minimum and one for the maximum values.
Fig. 6, which represents a bidimensional interval
latent space projected over the feature space which
maps the objects of an interval-valued matrix M̈,
shows intuitively how the orthogonality constraint
on the interval latent components cannot be re-
spected, unless both are scalar. In the paper, we
presented a formal demonstration of this issue, that
leads us to conclude that the interval decomposition
process cannot be exact, and some approximation is
inevitable.

2) A second problem that arises from an independent
decomposition is that the minimum and maximum
singular vectors that express the same concepts may
be mismatched, since their order depends on the
magnitude of the relative singular values, which
may be different. Fig. 6 illustrates this issue, iden-
tifying the latent components that express the same
concepts with the same colors.

3) A third issue is related to the fact that what matters
in defining a latent space is the direction of its basis
vectors, but not their orientation. This means that
two vectors that form an interval latent component
could be very close in direction, expressing a similar
semantics, but their direction could be opposite.

4) Lastly, the endpoints of the factor matrices result-
ing from the independent decomposition process
may not necessarily form valid intervals, where

each minimum value is actually less or equal to
the maximum. For the decomposition process to
be consistent, we need all the entries of the factor
matrices to form valid intervals.

In order to solve these issues, the main idea behind our
approach is that of guaranteeing that the latent semantic
components in the minimum and maximum factor matrices
resulting from the decomposition of an interval-valued ma-
trix are always correctly matched and aligned, a goal that
can be achieved by means of our proposed Interval Latent
Semantic Alignment (ILSA, for short) procedure.

More in detail, given an interval-valued matrix M̈ =
[M∗, M∗], our proposed Interval-Valued Singular Value De-
composition (ISVD) approach can be briefly summarized in
the following steps:

1) Independently decompose the minimum and max-
imum matrices, such that M∗ = U∗Σ∗VT

∗ and
M∗ = U∗Σ∗V∗T.

2) Align the components expressing to the same latent
semantic by means of the ILSA procedure.

3) Restore the interval-valued entries of the factor ma-
trices such that U∗[i,j] ≤ U∗[i,j], V∗[i,j] ≤ V∗[i,j] ∀i, j
and σ∗i ≤ σ∗i ∀i (where the inequalities do not hold,
we replace the wrong ordered entries with their
average).

2.2 Interval Tensor-Train Decomposition
Once the factorization problem for interval-valued matri-
ces has been tackled, we are ready to define a general
strategy for computing the Tensor-Train form of a given
interval-valued tensor. Fig. 8 illustrates our Interval Tensor-
Train Decomposition procedure that, taking a d-dimensional
interval-valued tensor Ẍ as input, returns d interval-valued
core tensors G̈k, with k = 1, . . . , d:

2.2.1 ReShape

The ReShape function, already introduced for the scalar
scenario (see Section 1.1.3), can be readily extended to the
interval-valued case, where it just operates separately for
the minimum and maximum endpoints of the matrix (or
tensor) that needs to be reshaped (i.e., whose entries need
to be rearranged to obtain an array of a different size).

2.2.2 ReCombination

The ReCombination function represents the extension
of the standard matrix product to the interval-valued factor
matrices Σ̈k and V̈k (obtained from the ISVD of C̈k), that
need to be recombined in order to obtain the next auxiliary
matrix, C̈k+1, and proceed with the next step of the de-
composition procedure. More specifically, we contemplate
four alternatives, according to whether we want to keep
the factor matrices interval-valued or scalar (in which case
the average of their endpoints is considered, by evaluating
Vk =

Vk∗+Vk∗
2 and Σk =

Σk∗+Σ∗k
2 ):

(a) C̈k+1 = Σ̈k ⊗ V̈k;

(b) C̈k+1 =
[
Σk∗ ·Vk, Σ∗k ·Vk

]
;
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(c) C̈k+1 =
[
Σk ·Vk∗, Σk ·V∗k

]
;

(d) Ck+1 = Σk ·Vk.

2.2.3 Validation

The AVerage function has the purpose of validating the
interval-valued entries of the output core tensors (i.e., guar-
anteeing that Gk∗[l,m,n] ≤ G∗k[l,m,n]∀k, l, m, n) and operates by
replacing the wrongly ordered entries in each core tensor G̈k
with their average:

Gk∗[l,m,n] := G∗k[l,m,n] :=
Gk∗[l,m,n] + G∗k[l,m,n]

2
,

for each entries such that Gk∗[l,m,n] > G∗k[l,m,n].

The MiNimization function has been devised as an
optimization of the decomposition process, and has the pur-
pose of reducing the number of entries of a factor matrix that
need to be forced as scalar during the validation process.
Let us consider a pair of interval-valued factor matrices
Ü = [U∗, U∗], with U∗, U∗ ∈ Rn×r, and V̈ = [V∗, V∗],
with V∗, V∗ ∈ Rm×r, and let us suppose that some of their
entries do not represent valid intervals (i.e., the endpoints of
these entries are misordered and would need to be replaced
with their average). We can then define the following two

quantities, one for each column vector k of Ü and V̈, for
k = 1, . . . , r:

∆U
k =

n

∑
i=1

U∗[i,k] −U∗[i,k],

∆V
k =

n

∑
i=1

V∗[i,k] −V∗[i,k].

The signs (either positive or negative) of ∆U
k and ∆V

k can
give us an idea of whether, in the validation process, we
would preserve more of the interval information by leaving
the k column vectors of Ü and V̈ as they are, or if it would
be better to swap their signs (a legitimate operation, since
it is a property of the singular value decomposition that the
directions of a corresponding pair of left and right singular
vectors can be swapped without compromising the overall
decomposition process3).

However, precisely because each adjustment on Ü would
necessarily affect also V̈, we have to either prioritize one of
the two (sacrificing the interval information in the other),
or try to reach a compromise, loosing as least interval
information as possible from both by looking locally at each
pair of singular vectors, Ü[:,k] and V̈[:,k], prioritizing either
the left or the right one according to how much interval

3. Note that, for every i = 1, . . . , k,

σi · ui · vT
i ≡ σi · (−ui) · (−vT

i ).
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information each one carries (namely, not just looking at the
signs of ∆U

k and ∆V
k , but also at their magnitude).

More specifically, for every k = 1, . . . , r, we have the
following three options for deciding when it is best to swap
the direction of a pair of column vectors Ü[:,k] and V̈[:,k]:

1) Prioritize Ü:

if ∆U
k < 0 then Ü[:,k] := −1 · Ü[:,k] ∧ V̈[:,k] := −1 · V̈[:,k]

2) Prioritize V̈:

if ∆V
k < 0 then Ü[:,k] := −1 · Ü[:,k] ∧ V̈[:,k] := −1 · V̈[:,k]

3) Compromise between Ü and V̈:

if
(
|∆U

k | > |∆
V
k | ∧ ∆U

k < 0
)
∨
(
|∆V

k | > |∆
U
k | ∧ ∆V

k < 0
)

then Ü[:,k] := −1 · Ü[:,k] ∧ V̈[:,k] := −1 · V̈[:,k]

The decision on which option to choose at each MiN-
imization step of the Interval Tensor-Train Decomposition
(see Fig. 3) is application-specific and is related to whether
we expect the bulk of the interval information to be collected
in one of the resulting core tensors over the others. In this
case, supposing G̈k being the core of interest, the best thing
to do is to prioritize for V̈ (option 2) along each step of the
decomposition process that leads to its extraction, in this
way helping the interval information trickle down each step
of the procedure, and lastly prioritize for the factor matrix
Ük (option 1) that will be reshaped as the core tensor G̈k that
we are actually interested in.

If, instead, we presume that all the interval informa-
tion would be equally spread over all the cores (or, more
generally, no one in particular), the best choice is to try to
lower the overall number of entries that need to be averaged
between both Ü and V̈ (option 3) along each step of the
decomposition procedure.

2.3 Interval Tensor-Train Reconstruction
Fig. 9 illustrates the Interval Tensor-Train reconstruction
process, which, similarly to what happens for the scalar sce-
nario (see Fig. 4), takes the d interval-valued cores G̈1, . . . , G̈d
obtained with the Interval Tensor-Train Decomposition pro-
cedure (Section 2) and returns either the original tensor Ẍ,
or an arbitrarily close approximation,

∼
Ẍ, according to the

accuracy of the initial decomposition (i.e., if the decomposi-
tion was either full-rank or low-rank):

For the ReShape function the same observations
made for the decomposition procedure are valid (see Sec-
tion 2).

The AVerage function, again used for validating the
wrong interval-valued entries, is applied in the last step, just
before returning the output tensor.

The ReAssembling function replaces what in the
scalar scenario was represented by the standard matrix
product, and is the equivalent of the ReCombination func-
tion described for the decomposition procedure. Here, we
can again define four options for the merging of the auxil-
iary matrices Ä and B̈, according to which one we want to
keep as interval-valued or scalar:

(α) Ä := Ä⊗ B̈;

(β) Ä :=
[
A∗ · B, A∗ · B

]
;

(γ) Ä :=
[
A · B∗, A · B∗

]
;

(δ) A := A · B.

The decision on which option to use at each Re-
Assembling step of the reconstruction procedure is, again,
application-specific and related to the disposition of the in-
terval information in the input core tensors. The next section
will help clarify this aspect, presenting a general strategy
that leads to high accuracies in the reconstruction process,
according to where the interval information is concentrated
in the input core tensors.

3 DECOMPOSITION AND RECONSTRUCTION
STRATEGIES

In this section, we define general strategies for the assign-
ment of the ReCombination and ReAssembling procedures
(presented in Sections 2.2 and 2.3 respectively) in order to
verify the overall accuracy of our approach in recovering
the interval information after a full-rank decomposition and
reconstruction iteration, taking into account the inherent
imprecision that emerges in the process, as described in
Section 2.1.

3.1 A General Strategy for the TT Reconstruction

One of the conclusions that we draw from the experiments
in our previous work [8] is that, when two interval-valued
matrices need to be multiplied together, it is generally better
to avoid the interval-valued matrix product and choose, if
possible, a scalar product, where one of the two matrices
is averaged. Since in fact, as we mentioned in Section 2.1,
the interval latent components deriving from the decom-
position process are inherently approximated, the interval
matrix product has the effect of aggravating the inaccuracy,
leading to poor reconstruction results. In light of this fact,
in the following experiments we will not take into account
options a and α in the ReCombination and ReAssembling
procedures, respectively.

This decision affects in particular the reconstruction
process: if we want to avoid the interval-valued product
between two auxiliary matrices Ä and B̈, in fact, it is easy to
see that only one core tensor can be taken as interval-valued
in the process, since only one branch of the procedure
represented in Fig. 9 can carry interval-valued variables at
any time in order to avoid any two auxiliary matrices from
being both interval-valued when they need to be combined.

From these considerations, we can define a general strat-
egy to assign the ReAssembling steps of the reconstruction
procedure, precisely according to which core we want to
keep as interval-valued. This strategy is summarized in Ta-
ble 1, which shows, for any core tensor G̈k obtained from the
decomposition procedure that we want to keep as interval-
valued, which set of options for the ReAssembling steps
needs to be assigned. These steps will allow the interval in-
formation, stored in the chosen core tensor, to be preserved
along the branches of the reconstruction procedure and end
up in the output approximation of the initial tensor.
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TABLE 1
ReAssembling options according to which core tensor is selected as

the interval-valued one.

Interval core ReAssembling step options

G̈1 β β β · · · β β

G̈2 γ β β · · · β β

G̈3 δ γ β · · · β β

...
. . .

G̈d δ δ δ · · · δ γ

1 2 3 · · · d−2 d−1

3.2 A General Strategy for the TT Decomposition

Since, following the strategy for the reconstruction pro-
cedure presented above, we assume that only one core
tensor can be taken as interval-valued, we make sure that
already in the decomposition process as much of the interval
information from the original tensor as possible will end up
in that particular core. Our approach to enforce this outcome
is twofold:

1) First of all, we make sure that the interval infor-
mation in the input tensor propagates through each
step in the decomposition by selecting an option for
the ReCombination step that would keep either Σ̈

or V̈ as interval (i.e., option b or c, respectively).
In particular, we expect option c (i.e., keep V̈ as
interval-valued, while averaging the singular values
as Σ) to be best suited in general, since in this
way, though we loose the exact scaling provided
by the singular values, we keep the more important
interval-information stored in the singular vectors,
which defines the interval latent space. Option b
would be more suited in the very special cases in
which the interval information ends up only in the
singular values, while the singular vectors are the
same, namely when the maximum entries in the
input matrix are a multiple (for the same constant)
of the minimum values.
Once, in this way, we reach the ISVD step that
returns the Ük factor matrix that would be reshaped
into the desired core tensor G̈k, then there is no
need for the next steps to still process interval
information (we could actually risk to propagate
unwanted interval information in form of noise), so,
from then on, we can keep both Σ and V as scalar
(after all, the following core tensors would be av-
eraged anyway). We can in this way further reduce
the branching factor regarding the possible options
for the ReCombination steps in the decomposition,
obtaining also in this case a general assignment
strategy, which is reported in Table 2.

2) We also leverage the MiNimization function (intro-
duced in Section 2) to make sure that as less of the
interval information as possible gets lost in the de-
composition process: when we reach the step of the
decomposition procedure wherein we get the factor
matrix Ü that is the one that will end up forming
the core tensor that we intend to keep as interval-

TABLE 2
ReCombination options in the Interval Tensor-Train Decomposition
procedure according to which core tensor we would want to keep as

interval-valued in the reconstruction process.

Interval core ReCombination step options

G̈1 d d d · · · d d

G̈2 c d d · · · d d

G̈3 c c d · · · d d
...

. . .

G̈d c c c · · · c c

1 2 3 · · · d−2 d−1

valued, we prioritize for Ü (so that, as explained in
Section 2, it will loose as less information as possible
in the validation process), otherwise we prioritize
for V̈ (including the case in which we are interested
in keeping the last core tensor as interval-valued,
since it will be the outcome of the recombination of
Σ̈d−1 and V̈d−1).

In the next section, we wil lasess the impact of the
proposed general strategies for TT decomposition and re-
construction.

4 EXPERIMENTS

In order to validate our approach on the factorization of
interval-valued tensors, we have devised a set of experi-
ments, with real and synthetic data sets, that evaluate the
accuracy of the reconstruction (see Fig. 9) of a d-dimensional
tensor Ẍ from its core tensors G̈1, G̈2, . . . , G̈d obtained from
the decomposition procedure (see Fig. 8). In particular, we
are interested in finding whether the ReCombination and
ReAssembling strategies presented in the previous section
lead to the best reconstruction accuracy, minimizing the
difference between the input tensor Ẍ and its approximation
∼
Ẍ.

4.1 Reconstruction Accuracy

The discrepancy between Ẍ and
∼
Ẍ, can be measured by

means of the normalized Frobenius norm of the difference
of their endpoint tensors, namely,

∆
(
X∗, X̃∗

)
=

∥∥∥X∗ − X̃∗
∥∥∥

F
‖X∗‖F

,

∆
(
X∗, X̃

∗)
=

∥∥∥X∗ − X̃
∗∥∥∥

F
‖X∗‖F

.

These values can be converted into accuracies, and, for
ease of interpretation, clipped between 0 and 1:

Θ
(
X∗, X̃∗

)
= max

[
0, 1− ∆

(
X∗, X̃∗

)]
,

Θ
(
X∗, X̃

∗)
= max

[
0, 1− ∆

(
X∗, X̃

∗)]
.

Finally, these separate measures of accuracy are com-
bined in a single one through their harmonic mean:

ΘHM

(
Ẍ,

∼
Ẍ
)
=


2·Θ(X∗ ,X̃∗)·Θ

(
X∗ ,X̃

∗)
Θ(X∗ ,X̃∗)+Θ

(
X∗ ,X̃

∗) , if Θ(X∗ ,X̃∗)+Θ
(
X∗ ,X̃

∗) 6=0.

0, otherwise.
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In the following, we will refer to this accuracy measure,
ΘHM, simply as harmonic mean (HM for short).

4.2 Experiments on Synthetic Datasets
For this first set of experiments, we relied on a dataset where
the input tensors have been randomly generated, in order
to provide an easy to control testing scenario were various
parameters can be purposefully set, thus allowing us to
evaluate the most interesting aspects of our approach. For
the reported experiments, the following parameters have
been taken into account:

• Tensor size: we considered 5-dimensional 8 × 8 ×
8× 8× 8 tensors (for a total of 32768 entries each).
It is important to notice that, while the input tensor
has the same size for each mode, the core tensors
resulting from the decomposition (according to the
definition presented at the beginning of Section 2)
may vary substantially in size. In particular, consid-
ering this input size and a full-rank factorization (see
point below for details), we get:

– G∗1,G∗1 ∈ R1×8×8 (64 entries).
– G∗2,G∗2 ∈ R8×8×64 (4096 entries).
– G∗3,G∗3 ∈ R64×8×64 (32768 entries).
– G∗4,G∗4 ∈ R64×8×8 (4096 entries).
– G∗5,G∗5 ∈ R8×8×1 (64 entries).

• Interval density: this parameter determines the ra-
tio between scalar and interval-valued entries of a
tensor: here this parameter is set to 50% (half of the
entries in each tensor is set as interval valued).

• Interval intensity: another aspect to take into ac-
count when generating an interval-valued tensor is
how wide the range of each entry should be. Here, to
get an interval-valued entry starting from a scalar
one, given an intensity value X, the range of the
interval is uniformly selected between 0% and X%
of the original scalar entry. Also this parameter is set
to 50% (the range of each interval entry is uniformly
selected between 0% and 50% of the original scalar
value).

• Target rank: this parameter is related to the ISVD de-
composition process, and varies according to objec-
tive of each particular application (generally speak-
ing, full or high rank if we are interested in the
accuracy of the reconstruction, which is the case
here, low if we want to extract just a few latent
semantic components for other kinds of analysis).
Here, at each ISVD step in the procedure, a full-rank
decomposition is performed.

• Interval information disposition: one aspect that
is interesting to explore regarding interval-valued
tensors is how the intervals are disposed in the
data. Here we consider two options, one where the
interval-valued entries are randomly placed in the
tensor, and one where the interval information is lo-
calized along one of the modes. Fig. 13 illustrates this
concept for a 3-dimensional 16× 16× 16 tensor (for
ease of visualization), (a) with random intervals, (b)
with the intervals along mode-1 (i.e., the horizontal

Recombination
strategy

HM according
to strategy

Overall
best HM

Perc. Of
error

G1 d d d d 0,9248 0,9248 0,00%
G2 c d d d 0,9247 0,9249 0,02%
G3 c c d d 0,9380 0,9380 0,00%
G4 c c c d 0,9201 0,9244 0,43%
G5 c c c c 0,9188 0,9245 0,57%

Fig. 14. Reconstruction accuracies for tensors with random interval
information (the greener the cell, the better the result, best option
highlighted in bold – the tables are best viewed in color).

slices of the tensor). The same idea can be extended
to 5-dimensional tensors, where the interval infor-
mation can be localized along any of the five modes,
which we refer to as I, J, K, L and M.

More in detail, given a scalar tensor X ∈ RI×J×K×L×M

(with I = J = K = L = M = 8), whose entries are randomly
generated from a uniform distribution of real values from 1
to 100, we generate the interval-valued tensor Ẍ, according
to the the disposition of the interval information, as follows:

Non-Localized Interval Information
We uniformly select 50% (according to the interval density
parameter) of the scalar entries in X and we replace them
with an interval defined as

Ẍ[i,j,k,l,m] =
[
X[i,j,k,l,m],X[i,j,k,l,m] +X[i,j,k,l,m] · α ∼ U (0, 0.5)

]
.

Localized Interval Information
We uniformly select 50% (according to the interval density
parameter) of the first mode indices, i ∈ [1, . . . , I], and we
replace the scalar slices they identify, X[i,:,:,:,:], with interval-
valued ones

Ẍ[i,:,:,:,:] =
[
X[i,:,:,:,:],X[i,:,:,:,:] · α ∼ U (1, 1.5)

]
;

the same process is then repeated along the other modes
J, K, L and M to generate the rest of the localized interval
information dataset.

For each presented scenario, we created 100 random
tensors and the results reported in the following are the
average of each corresponding run.

4.2.1 Non-Localized Interval Information Experiments
Fig. 14 illustrates the results for a run of experiments over
the synthetic dataset with the interval information randomly
placed in each tensor. The figure reports the Harmonic Mean
(HM) results (averaged over 100 runs and color-coded from
white, poor reconstruction, to green, best reconstruction) for
five possible reconstruction schemes, according to which
one of the five core tensors, G̈1 to G̈5, is kept as interval. We
compare the reconstruction accuracy obtained following our
general strategy for the assignment of the ReCombination
steps (see Table 2) with the overall best result obtained by
running all the possible combinations of options b, c and d at
each of the four ISVD steps in the decomposition procedure.
In the last column we then report the difference between the
two results as a percentage of error (color-coded from white
to red, as the error increases).

From the reported results we can conclude that:
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Fig. 11. Random placement of the interval information
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Fig. 12. Localized placement of the interval information (here along mode I)

Fig. 13. Disposition of the interval information in a 3D tensor, represented as the ratio between maximum and minimum data entries.

• when the interval information in the input tensor is
randomly placed, taking any of the core tensors as
interval-valued gives a reasonably good accuracy;

• however, we get a slightly better result (highlighted
in light green in figure) if we take G̈3 as interval-
valued, which seems to be related, intuitively, to the
fact that it is the one with the largest size (and,
consequently, the one with more entries) of all, thus
being able to maintain more of the original interval
information;

• our strategy, though not providing the best option
for each core tensor reconstruction, is optimal in the
overall best case: in order to get the best accuracy,
while keeping G̈3 as interval, it is important to let
the interval information propagate through the ISVD
steps by using option c, i.e., keeping V̈k as interval-
valued and Σ̈k as scalar. After the third ISVD step,
from which we extract the factor matrix Ü3 (which
after a reshape becomes G̈3), both Σ̈k and V̈k might
as well be treated as scalar, choosing option d for the
following ReCombination steps.

4.2.2 Localized Interval Information Experiments

For this set of experiments we considered a synthetic dataset
where the interval information is localized along only one
of the five modes in the input tensors at a time. Specifically,
Fig. 15 reports the reconstruction accuracies (following the
same format as the previous test case scenario) for each set
of experiments where the interval information is localized
along mode I, J, K, L and M, respectively. We again compare
our strategy for the ReCombination options assignment at
each ISVD step of the decomposition with the overall best
combination of options between b, c and d. Finally, Fig. 16
summarizes these results by comparing the best option from
each result set.

These results help us conclude that:

• the localization of the interval information along one
of the input tensor’s mode affects the choice on
which one of the core tensors is best keeping as
interval-valued. In particular, it is always the case
that if the interval information is along mode k, then
it is best to keep G̈k as interval;

• our strategy for choosing the ReCombination op-
tions at each step of the decomposition procedure
is once again confirmed to be guaranteeing the best
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I
Recombination

strategy
HM according

to strategy
Overall
best HM

Perc. Of
error

G1 d d d d 0,9820 0,9820 0,00%
G2 c d d d 0,9504 0,9504 0,00%
G3 c c d d 0,9482 0,9482 0,00%
G4 c c c d 0,9185 0,9189 0,04%
G5 c c c c 0,9164 0,9190 0,27%

J
Recombination

strategy
HM according

to strategy
Overall
best HM

Perc. Of
error

G1 d d d d 0,9290 0,9290 0,00%
G2 c d d d 0,9398 0,9398 0,00%
G3 c c d d 0,9376 0,9376 0,00%
G4 c c c d 0,9113 0,9283 1,70%
G5 c c c c 0,9096 0,9286 1,90%

K
Recombination

strategy
HM according

to strategy
Overall
best HM

Perc. Of
error

G1 d d d d 0,9290 0,9290 0,00%
G2 c d d d 0,9331 0,9331 0,00%
G3 c c d d 0,9690 0,9690 0,00%
G4 c c c d 0,9326 0,9326 0,00%
G5 c c c c 0,9290 0,9290 0,00%

L
Recombination

strategy
HM according

to strategy
Overall
best HM

Perc. Of
error

G1 d d d d 0,9290 0,9290 0,00%
G2 c d d d 0,9331 0,9331 0,00%
G3 c c d d 0,9443 0,9443 0,00%
G4 c c c d 0,9441 0,9441 0,00%
G5 c c c c 0,9137 0,9286 1,50%

M
Recombination

strategy
HM according

to strategy
Overall
best HM

Perc. Of
error

G1 d d d d 0,9290 0,9290 0,00%
G2 c d d d 0,9331 0,9331 0,00%
G3 c c d d 0,9443 0,9443 0,00%
G4 c c c d 0,9449 0,9449 0,00%
G5 c c c c 0,9531 0,9531 0,00%

Fig. 15. Reconstruction accuracies for tensors with interval information
localized along each mode I, J, K, L and M (the greener the cell, the
better the result, best option highlighted in bold – the tables are best
viewed in color).

accuracy in almost any scenario (except for the case
when the interval information is located along mode
L, where, due to the difference in size, choosing G̈3
as interval-valued instead of G̈4 gives a very slight
advantage; the difference however is negligible), ac-
cording to which core tensor we intend to keep as
interval-valued;

• the summary results in Fig. 16 imply that, whenever
possible, keeping the first core as interval-valued
would be the overall optimal strategy, suggesting
that it is better to extract the interval information as
soon as possible in the decomposition procedure. This
would imply, in general, that, given a generic tensor
where the interval information is localized along one
mode, it would be best to first re-orient the tensor in
order to have specific mode as the first one, leading
to the first core resulting from the decomposition
procedure to preserve the interval information in the
input data.

4.3 Experiments on a Real-World Dataset
To test our approach with real-world data, we relied on the
Olivetti Research Laboratory (ORL) face dataset [22], which

I G1 0,9820

J G2 0,9398

K G3 0,9690

L G4 0,9441

M G5 0,9531

Best HM according to interval disposition
(following the recombination strategy)

Fig. 16. Summary for the localized interval information experiments
(best reconstruction accuracy for each mode I, J, K, L and M).

Fig. 17. An example of how the radius matrices are generated from a
set of face images from the ORL dataset.

was used for interval valued matrix factorization evaluation
in [8], [23]. The dataset is composed of a collection of images
portraying the faces (in an upright position and in frontal
view) of 40 different people. For each individual, a total
of 10 photos have been taken, each one under slightly
different conditions, either regarding the light exposure, the
position of the face w.r.t. the center of the image, or the left-
right rotation of the head. We thus have 400 images, each
represented as a 32× 32 pixels matrix, Mk ∈ N32×32

+ , with
k = 1, . . . , 400, where each entry Mk[i,j] represents the pixel
intensity value at the specific coordinates (i, j) in the matrix
(a pixel is encoded as a gray-scale level from 0 to 255).

We then adopt a strategy similar to the one proposed
by the authors in [23] to generate an interval-valued matrix
M̈k starting from Mk, which is based on the assumption
that face analysis can be seriously hindered from a lack of
alignment between the facial features in different pictures of
a same individual. For example, in the first row of pictures
in Fig. 17, we can see how the position of the tip of the
nose (marked with a cross), can be located in different
coordinates in the image. Since standard decomposition
strategies are particularly sensitive to this lack of alignment,
authors in [23] replace the scalar brightness level of the
pixels corresponding to each facial feature (i.e., around their
edges) with an interval, and then applying interval-valued
decomposition techniques, that may be more tolerant to
such alignment errors.

More specifically, in order to generate an interval-valued
entry M̈k[i,j] starting from a scalar value Mk[i,j], a radius δi,j is
evaluated, leading to a larger interval for the pixels whose
surroundings are characterized by a high brightness vari-
ance (i.e., the pixel on a feature’s edge or in its proximity),
as follows

M̈k[i,j] =
[
Mk[i,j] − δi,j, Mk[i,j] + δi,j

]
.

The radius δi,j for a given pixel Mk[i,j] is evaluated as
the brightness variance of the pixels in the surrounding of
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Frontal
Recombination

strategy
HM according

to strategy
Overall
best HM

Perc. Of
error

G1 d d 0,8924 0,8924 0,00%
G2 c d 0,9281 0,9281 0,00%
G3 c c 0,7882 0,7882 0,00%

Lateral
Recombination

strategy
HM according

to strategy
Overall
best HM

Perc. Of
error

G1 d d 0,8924 0,8924 0,00%
G2 c d 0,9226 0,9226 0,00%
G3 c c 0,8134 0,8134 0,00%

Horizontal
Recombination

strategy
HM according

to strategy
Overall
best HM

Perc. Of
error

G1 d d 0,7933 0,7933 0,00%
G2 c d 0,9256 0,9256 0,00%
G3 c c 0,7967 0,7967 0,00%

Fig. 22. Reconstruction accuracies for the three orientations of ORL
faces dataset tensors (the greener the cell, the better the result, best
option highlighted in bold – the tables are best viewed in color.

Mk[i,j]:

δi,j := α · std
({

Mk[i′ ,j′ ]|
(
|i′ − i| ≤ r

)
∧
(
|j′ − j| ≤ r

)})
,

where α ∈ R+ is a multiplicative scale coefficient and r is
the coordinates’ radius circumscribing the surroundings of
Mk[i,j] (for the experiments presented, r = 5 and α = 2.5).

The second row of pictures in Fig. 17 shows the radius
matrices corresponding to each face image on the first row,
with lighter gray level representing a larger radius (and thus
a larger interval in M̈k[i,j]).

We then arranged the 400 interval-valued matrices as
40 tensors by collecting the 10 photos characterizing each
individual and ran a similar set of experiments to the one
reported in Section 4.2 for synthetic data, evaluating the
reconstruction accuracy of our proposed interval Tensor-
Train factorization approach. As Fig. 21 shows, we chose
three different ways of storing each set of images, obtaining
tensors of different sizes that, in turn, end up in the follow-
ing core tensors:

• Frontal: X∗,X∗ ∈ R32×32×10

– G∗1,G∗1 ∈ R1×32×32 (1024 entries).
– G∗2,G∗2 ∈ R32×32×10 (10240 entries).
– G∗3,G∗3 ∈ R10×10×1 (100 entries).

• Lateral: X∗,X∗ ∈ R32×10×32

– G∗1,G∗1 ∈ R1×32×32 (1024 entries).
– G∗2,G∗2 ∈ R32×10×32 (10240 entries).
– G∗3,G∗3 ∈ R32×32×1 (1024 entries).

• Horizontal: X∗,X∗ ∈ R10×32×32

– G∗1,G∗1 ∈ R1×10×10 (100 entries).
– G∗2,G∗2 ∈ R10×32×32 (10240 entries).
– G∗3,G∗3 ∈ R32×32×1 (1024 entries).

Fig. 22 reports the reconstruction accuracies (again as the
Harmonic Mean, HM) for each set of experiments where the
input interval-valued tensors are oriented in on of the three
possible ways (frontal, lateral and horizontal), while Fig. 23
summarizes the best outcomes for each orientation.

From these results, we can conclude that:

Frontal G2 0,9281

Lateral G2 0,9226

Horizontal G2 0,9256

Best HM according to tensor orientation
(following the recombination strategy)

Fig. 23. Summary for the ORL faces dataset tensors reconstruction
accuracy (best outcome for each orientation).

• the strategies that we have devised for the assign-
ment of the ReCombination and ReAssembling
steps in the decomposition and reconstruction pro-
cedures (summarized in Tables 2 and 1, respectively)
consistently lead to best results;

• on a real-world dataset, as expected, the disposition
of the interval-valued information along the tensors’
modes cannot be as clear-cut as the synthetic sce-
narios that we presented in Section 4.2, and, since
the difference in size is pretty relevant, in general
the best outcome is obtained by keeping the largest
core tensors (G̈2 in all three cases) as interval-valued,
similarly to the case where the interval information
is randomly placed;

• the summary results in Fig. 23 also show us that,
keeping the core tensors sizes equal, there is an ad-
vantage in analyzing the faces in their frontal orien-
tation, so that G̈2, besides being the largest core, can
keep more of the interval-information that defines
the characteristic features of each individual.

5 CONCLUSIONS

In this paper, we presented a generalization of the tensor
decomposition technique in order to deal with interval-
valued tensors, the motivation being that, although many
applications involve this kind of data, existing analysis tools
assume in general that all observations are scalar-valued.

Building on our previous work [8] for interval-valued
matrices (based on the main idea of guaranteeing that the
latent semantic components in the minimum and maximum
factor matrices need to be always matched and aligned), we
proposed an extension of the state-of-the-art Tensor-Train
factorization algorithm, and we then proposed strategies
for effective decompositions. These strategies have been
validated through a set of experiments both on synthetic
and real-world datasets. The results of our investigation
show the efficacy of our proposed approach and offer a first
attempt at analyzing how the disposition of the interval in-
formation along the modes of an interval-valued tensor can
help the knowledge discovery tasks based on the analysis of
underlying patterns in the data.
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Fig. 21. The ten pictures of one of the forty subjects stored as a tensor in three different orientations.
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