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Abstract

The future of high-energy particle physics will be soon characterised by a rapid increase in
experimental data precision as it approaches the upcoming high-luminosity phase of the
Large Hadron Collider. To maximise the potential for uncovering new physics phenom-
ena, it is crucial to establish a solid theoretical framework capable of providing highly-
accurate predictions, thus facilitating the identification of any unforeseen deviations from
the Standard Model background. Since strong interactions dominate physical processes
at high-energy particle colliders, perturbative corrections in Quantum Chromodynamics
(QCD) play a central role in this endeavour. In this thesis, we introduce a novel subtrac-
tion scheme designed for the systematic and universal cancellation of higher-order infrared
singularities in massless QCD, paving the way for a general analytic solution to the next-
to-next-to-leading-order (NNLO) infrared problem. Built upon the Local Analytic Sector
Subtraction framework, we first present the construction of a next-to-leading-order (NLO)
subtraction scheme, covering both initial- and final-state radiation. We explain key fea-
tures of the method, including an optimisation procedure to improve numerical stability
without adding analytic complexity, followed by a comprehensive numerical validation.
In the second part of this work, we extend this strategy to construct analytic expressions
implementing a fully-local infrared subtraction at NNLO, applicable to generic coloured
massless final states. We rigorously verify the cancellation of all explicit infrared poles
and analytically evaluate finite contributions using ordinary polylogarithms up to weight
three. The resulting subtraction formula can be readily implemented in any numerical
framework containing the relevant matrix elements up to NNLO.
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Introduction

Walking through a vintage market in the streets of Turin, I came across a forgotten copy
of Le Scienze, the Italian edition of Scientific American, dated back to 1973. Within the
pages of this magazine, an educational article by A. M. Litke and R. Wilson [3, 4] was
reported, addressing the following topic:

Herein, the authors discuss the technology employed in high-energy particle colliders, and
explore the advantages that these experiments offer as unique and controlled environments
that enable researchers to test theoretical predictions in physical domains that would
otherwise be inaccessible through any other means. The enthusiasm surrounding particle
discoveries and the vibrant pursuit of a unified explanation of the observed phenomena can
be clearly perceived, especially in the research area devoted to the production of strongly-
interacting nuclear particles called hadrons. At that time, a comprehensive predictive
theory for this class of events was still in its early stages of development.

As we fast forward to the present day, high-energy physics has made remarkable strides
in our understanding of the fundamental laws of Nature over the past 50 years. One of the
monumental achievements has been the completion of the Standard Model (SM) of particle
physics, the quantum field theory describing elementary constituents of matter and their
interactions [5]. This milestone has been the result of several decades of collaborative
theoretical and experimental efforts, which culminated with the discovery of the last
missing piece, the Higgs boson, in July 2012 at the Large Hadron Collider (LHC) [6, 7].

While the Standard Model has been remarkably successful in describing the behaviour
of known particles and forces, demonstrating an impressive agreement between theoretical
predictions and experimental data, there are clear indications implying that this is not the
final answer. The limitations it presents in explaining certain astrophysical observations,
such as the existence of dark matter, or in addressing fundamental questions like the
origin of neutrino masses and the hierarchy problem, have motivated the development of
numerous innovative theories beyond the Standard Model (BSM), which aim to offer a
more exhaustive understanding of these phenomena.
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2 Introduction

Eleven years after the discovery of the Higgs boson, ongoing experimental searches for
hints of physics beyond the Standard Model at modern energy-frontier colliders have not
yet uncovered any clear indication of new particles or interactions. As a result, various
proposed BSM scenarios have been ruled out. This implies that if new physics does indeed
exist within the currently accessible energy ranges, its effects would likely be extremely
tiny, possibly requiring a large volume of experimental data to become evident. To detect
these effects, which are expected to manifest as small deviations from SM predictions, it
results imperative to enhance our control over Standard Model background processes.

To maximise the potential for discoveries on the experimental front, a significant up-
grade is scheduled for the LHC, expected to take place around 2029. This upcoming
phase, known as High Luminosity LHC (HL-LHC), will boost the integrated luminosity
of this hadron collider by a factor of 10 compared to its previous design, resulting in a
substantial reduction in statistical uncertainties due to the vast amount of collected data.
Meanwhile, the field of particle physics is actively exploring another promising avenue of
research: the development of future lepton colliders [8–14]. Thanks to the cleaner en-
vironment resulting from the collision of elementary particles, these experiments enable
highly precise measurements and offer a significant reduction in background noise when
compared to the more intricate hadron interactions. Long-term projects for future hadron
colliders [15] are also under consideration.

In light of this forthcoming experimental progress, the availability of highly-accurate
theoretical predictions covering a wide spectrum of scattering processes and relevant col-
lider observables becomes of paramount importance. This precision is definitely crucial
for enabling meaningful comparisons with ever-more precise experimental data, thereby
ensuring their reliable interpretation. Within the context of high-energy colliders, where
physical processes are primarily dominated by strong interactions, Quantum Chromody-
namics (QCD) assumes a central role. In this theoretical framework, physical observables
are evaluated as perturbative expansions in the strong coupling constant αS, and missing
higher-order corrections in the corresponding computations stands out as one of the pri-
mary source of theoretical uncertainties. While leading-order (LO) calculations offer little
more than rough estimates for physical observables, next-to-leading-order (NLO) correc-
tions are essential for assessing scale dependence and obtaining reliable results. However,
calculations at this perturbative order frequently struggle to achieve the level of precision
required by current data. Consequently, predictions at the next-to-next-to-leading order
(NNLO) in the strong coupling are rapidly becoming the standard for meeting the few
percent-level precision demanded by collider measurements.

The computation of higher-order QCD corrections for fully-differential observables
relies on the existence of effective and automated methods for handling infrared (IR) sin-
gularities that manifest in quantum field theories beyond the Born approximation. These
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singularities, which stem from long-distance interactions such as soft or collinear emis-
sions of massless particles, impact intermediate stages of the calculation and must be
systematically removed to recover a finite and physically meaningful result. During the
1990s, an improved understanding of the universal infrared behaviour of scattering ampli-
tudes paved the way for the development of general frameworks aimed at addressing the
singularity problem at NLO in perturbation theory [16–21]. These frameworks, or rather
subtraction schemes, played a pivotal role in the accuracy revolution that significantly
contributed to the high-energy physics programmes at the LHC and other experiments.

The scenario takes a significant turn at NNLO, where tackling the infrared-subtraction
problem becomes an extremely demanding task, driven by a sharp increase in technical
complexity. Beyond the NLO regime, calculations of QCD perturbative corrections are
hindered by two primary sources of complexity: a rapid proliferation of overlapping singu-
lar regions and the intricate interplay between virtual poles and phase-space singularities.
Consequently, endeavours to attain the same degree of universality and computational
efficiency achieved at NLO have spanned nearly two decades. The availability of two-loop
amplitudes and the technology for producing differential NNLO calculations, established
by a number of methods belonging to the large spectrum of proposed algorithms [22–57],
have led to the successful computation of all relevant 2 Ñ 2 processes at the LHC, thereby
extending the current theoretical frontier towards NNLO predictions for 2 Ñ 3 reactions
[58–67]. Furthermore, recent progress has streamlined the calculation of N3LO predictions
for benchmark processes (for state-of-the-art reviews, see Refs. [68, 69]). Although the
fundamental mechanisms underlying the cancellation of infrared singularities are concep-
tually straightforward and well-understood, the concrete technical implementation of such
approaches typically entails significant computational intricacy. As a result, a universal
solution to the infrared-subtraction problem beyond NLO is still missing.

This thesis presents the development of a novel subtraction scheme for the systematic
and universal treatment of infrared singularities in fully-differential predictions at higher
orders in perturbative QCD. The ambitious goal of this programme is to establish the
groundwork for a fully-general, analytic solution to the infrared problem at NNLO.

The structure of this thesis is outlined as follows. Chapter 1 sets the stage by de-
lineating the issue this manuscript aims to solve. We start by introducing Quantum
Chromodynamics and its fundamental properties, we then delve into the computation of
physical predictions for hadronic processes, with a particular emphasis on the origin of
infrared and collinear singularities arising in QCD perturbative calculations. An overview
of existing methods for removing infrared divergences at NLO and NNLO accuracy is
provided, highlighting their accomplishments and limitations. We conclude this Chapter
by presenting our proposed strategy for the formulation of a general, analytic, and local
solution to the infrared-subtraction problem.



4 Introduction

In this thesis, we focus on developing and validating our algorithm in two distinct sce-
narios. First, we apply our strategy to formulate a subtraction scheme at NLO accuracy
in massless QCD, capable of handling both initial- and final-state radiation. Chapter 2
provides a thorough account of the construction of this scheme. This step plays a fun-
damental role in assessing the algorithm’s performance, mitigating potential instabilities,
and devising optimisations that can be readily extended to higher-order implementations.

With this experience in hand, in Chapter 3 we address the construction of a novel sub-
traction scheme at NNLO precision. A detailed description of all ingredients is presented,
as well as a guided procedure showcasing their intricate interplay. The outcome of this
extensive effort is a fully-analytic and universal formula which achieves the cancellation
of NNLO infrared singularities in processes involving an arbitrary number of colourful (as
well as colourless) final-state particles in massless QCD. On the phenomenological side,
this result paves the way for a deeper analysis of theory-data comparisons in current (and
future) e`e´ colliders, enabling for example the calculation of the NNLO-accurate cross
section for four-jet production.

Chapter 4 is finally dedicated to the validation of our algorithms. We present both in-
tegrated and differential results obtained employing our NLO subtraction formula, which
have been implemented in MadNkLO, an automated Python framework built upon
MadGraph5_aMC@NLO. While ongoing efforts are directed towards the low-level im-
plementation and optimisation of MadNkLO, particularly in the view of computationally-
demanding NNLO computations, a detailed example illustrating how the cancellation of
NNLO infrared divergences is achieved within our algorithm, is presented in a non-trivial
case study.

The construction of these subtraction schemes, as described in Chapter 2 and Chap-
ter 3, rely on a considerable number of lengthy expressions, which we provide in a series of
Appendices: Appendix A offers a quick reference for the general notations used through-
out this thesis, Appendix B contains all the relevant NLO material, and Appendix C
collects all building blocks entering our NNLO subtraction formula.

In the Conclusions, we provide a summary of the outcomes of this thesis work and
explore potential directions for future developments and applications of our algorithm.



Chapter 1

Collider predictions facing infrared
singularities: a brief overview

This first Chapter offers a brief overview aimed at introducing the reader to the funda-
mental concepts necessary for a comprehensive understanding of this thesis work.

To achieve this, we will first present the theoretical framework of Quantum Chromo-
dynamics (Section 1.1) and provide insights into how calculations are performed within
this context. We will then place particular emphasis on predictions for hadron colliders,
delving into the issue of infrared singularities that affect them (Section 1.2). To fur-
ther assist the reader in situating our work within the broader theoretical landscape of
collider phenomenology, we will provide an overview of the current state-of-the-art al-
gorithms developed and employed for the cancellation of infrared singularities at higher
orders (Section 1.3). This will include an introduction to the strategy underlying our own
proposed subtraction method.

For those interested in delving deeper into these topics, we recommend referring to
standard textbooks of quantum field theory, such as Refs. [70–72], and specific lecture
notes [73, 74], which offer more extensive coverage of the subject matter.

1.1 Quantum Chromodynamics

Quantum Chromodynamics (QCD) is the gauge field theory describing the strong inter-
actions among coloured quarks and gluons. In Section 1.1.1 we provide an overview of
its fundamental properties. Since the interactions of strongly interacting particles play
a dominant role in high-energy collider experiments, our attention turns to perturbation
theory. Within this framework, the calculation of scattering amplitudes is organised in
terms of Feynman diagrams. When going beyond the leading-order representation, this
approach involves the evaluation of closed loops of partons, which are plagued by ultra-
violet divergences stemming from the integration over arbitrarily-large loop momenta.
These infinities can be reabsorbed into a redefinition of the parameters of the Lagrangian

5



6 Chapter 1. Collider predictions facing infrared singularities: a brief overview

through the renormalisation procedure discussed in Section 1.1.2. As a result, the cou-
pling constant αS acquires a scale-dependent behaviour, and in Section 1.1.3, we delve
into the running of αS and its important implications.

1.1.1 Basics

The dynamics of quarks and gluons is encoded in the QCD Lagrangian density, given by

L “
ÿ

f

ψ̄f,i
`

iγµBµ ´mf

˘

ψf,i `
ÿ

f

ψ̄f,i
`

´ gSγ
µtaijA

a
µ

˘

ψf,j ´
1

4
F a
µνF

µν
a , (1.1)

where summation over repeated indices is understood. The first contribution to Eq. (1.1)
represents the kinetic propagation term for the fermion fields. Specifically, ψf,i is the
quark field, of flavour f and massmf , defined to transform under the triplet (fundamental)
representation of the SU(3) gauge group (the corresponding color index i runs from 1 to
Nc“3). The sum over f runs over the six quark flavours included in the Standard Model,
while γµ are the Dirac γ-matrices connecting the spinor representation of the quark fields
to the vector representation of the Lorentz group. The second quantity in Eq. (1.1) is
the fermion-gauge boson interaction vertex that couples the quark fields to the gluon
field Aaµ by means of the SU(3) generators taij, hermitian and traceless matrices in the
fundamental representation. An explicit expression for these generators is given by the
eight 3 ˆ 3 Gell-mann matrices [72], defined as taij ” λ2

ij{2, with the following standard
normalisation

Tr
“

taijt
b
ij

‰

“ TR δ
ab
“

1

2
δab . (1.2)

The coupling constant of the strong interaction is gS, which is also commonly expressed
as αS “ g2

S{4π, where αS is the parameter on which the perturbative expansion of QCD is
based. The last term of Eq. (1.1) contains the contraction of field strength tensors F a

µν ,
defined as

F a
µν “ BµA

a
ν ´ BνA

a
µ ´ gSfabcA

b
µA

c
ν , (1.3)

where Aaµ represents the gluon field, the gauge field of SU(3), in the adjoint representation
(with color index a running from 1 to N2

c ´1 “ 8), and fabc are the real and anti-symmetric
structure constants of SU(3), appearing in the commutation relation defining the group
algebra:

“

ta, tb
‰

“ ifabc t
c . (1.4)

The expansion of the contraction between tensors in Eq. (1.3) reveals a kinetic term for
gluons and self-interaction contributions among gauge bosons, in the form of triple-gluon
vertex (proportional to gS) and four-gluon vertex (proportional to g2

S), arising from the
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fact that gluons are force mediator which carry colour charge themselves, differently from
the QED electrically-neutral mediator, the photon.

The structure of the QCD Lagrangian in Eq. (1.1) is constrained by the requirement
of invariance under SU(3) local gauge transformations, i.e. independent redefinitions of
quark and gluon fields at every point in space and time have not to change the physics
content of the theory. A generic element of this group, the unitary matrix U , can be
written in exponential form in terms of the generators ta of the Lie-algebra and the real
phase parameters of the local gauge transformation ωa ” ωapxq, as

U “ eiωat
a

. (1.5)

One can verify that with the following transformation properties of quark fields, gluon
fields, and strength tensor, namely

ψf,i Ñ Uij ψf,j ,

taAaµ Ñ U taAaµ U
´1
`

i

gs
pBµUqU

´1 ,

taF a
µν Ñ U taF a

µν U
´1 , (1.6)

the QCD Lagrangian density is left unchanged, thus proving its gauge invariance.
In order to perform perturbative calculations, the classical Lagrangian (1.1) has to be

supplemented by a gauge-fixing (GF) term, without which the propagator for the gluon
field could not be defined. A possible class of gauge choices, denoted as

LGF “ ´
1

2ξ

`

B
µAaµ

˘2
, (1.7)

are the covariant gauges with gauge parameter ξ. In non-abelian gauge theories as QCD,
the covariant gauge-fixing term (1.7) requires the inclusion of a ghost Lagrangian, as

Lghost “ ´c̄ aBµ
`

Bµδab ` gSfabcA
c
µ

˘

cb . (1.8)

The Faddev-Popov ghosts, denoted by ca, are anti-commuting scalar fields in the adjoint
representation which interact with the gluon fields, and remove unphysical degrees of
freedom which would otherwise appear in covariant gauges.

For future convenience, we introduce here the colour-charge vector Ti, associated with
the emission of a gluon from a coloured particle i, acting on the colour space asTi ” T ai |ay.
The components of this vector are nˆn matrices whose dimension depends on the nature
of the particle i: if i is a gluon, T acb ” ifcab with n “ 8, while if i is a quark, n “ 3

and T aαβ ” taαβ (in the case of emitting antiquark one has T aαβ ” t̄aαβ “ ´t
a
βα). Applying
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colour-algebra relations, one can derive that the scalar products obey

Ti ¨Tj “ Tj ¨Ti , if i ‰ j , (1.9)

which indicates that the respective matrices act on different spaces; while, for i “ j, one
obtains

Ti ¨Ti “ pTiq
2
“ Cfi , (1.10)

where Cfi is the Casimir operator taking value Cfi “ CF if i is a quark (antiquark), and
Cfi “ CA if i is a gluon. Specifically,

ÿ

a

taikt
a
kj “ CF δij with CF “

N2
c ´ 1

2Nc

Nc“3
ÝÝÝÑ

4

3
,

ÿ

a,b

fabcfabd “ CA δ
cd with CA “ Nc

Nc“3
ÝÝÝÑ 3 . (1.11)

The colour factor CF is associated with the gluon emission from a quark, while the colour
factor CA is associated with the gluon emission from a gluon. The factor TR introduced
in Eq. (1.2) is connected to the process of a gluon splitting into a qq̄ pair. We refer the
reader to Ref. [18] for more details on the colour-charge algebra.

1.1.2 Ultraviolet renormalisation

Starting from the Lagrangian density given by Eq. (1.1), along with Eqs. (1.7)-(1.8), one
can deduce the Feynman rules of QCD (as detailed for instance in Ref. [71]). These rules
provide analytical expressions for computing scattering amplitudes A in perturbation
theory, which are subsequently used in the calculation of physical observables.

However, going beyond the tree-level approximation, the evaluation of loop corrections
to scattering amplitudes gives rise to divergences of ultraviolet (UV) origin, as a conse-
quence of the integration over virtual loop momenta which can become arbitrarily large,
since not constrained by any physical condition. To restore the predictive power of the
theory, we first need to introduce a regulator to isolate and quantify the singularities, so
as to work with finite quantities in the intermediate stages of the calculations. Dimen-
sional regularisation [75] is by far the most commonly used approach, as it preserves the
Lorentz and gauge invariance of the theory. Basically it consists in shifting the number
of space-time dimensions from 4 to d “ 4 ´ 2ε, and taking the limit ε Ñ 0 just at the
end of the calculation. In this framework, UV divergences manifest as isolated ε poles,
schematically as

g2
S

ż

d4k

p2πq4
¨ ¨ ¨ Ñ g2

S µ
2ε

ż

ddk

p2πqd
¨ ¨ ¨ “ g2

S µ
2ε
”c´1

ε
` c0 `Opεq

ı

. (1.12)
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Notice that the introduction of an arbitrary mass scale µ is necessary to maintain the
correct dimensionality of the integral. Since physical observables must be independent
of ε, we need to reabsorb the effects of UV degrees of freedom in a redefinition of the
unobservable parameters of the theory, as masses, fields and couplings of the original
(bare) Lagrangian. This procedure is known as renormalisation, and ultimately leads to
the systematic cancellation of UV divergences order by order in perturbation theory. The
definition of a renormalised Lagrangian capable of providing finite predictions involves
the introduction of a multiplicative constant Z for each bare parameter (denoted with the
label bare), explicitly as

ψbare
i “ Z

1{2
ψ ψi , Abare

µ “ Z
1{2
A Aµ , cbare

“ Z1{2
c c , αbare

S “ ZαS αS , (1.13)

which divergent parts are fixed by the requirement of matching the UV divergences.
On the other hand, the inclusion of finite constants within the Z factors is completely
arbitrary. Different prescriptions for the finite parts result in different renormalisation
schemes: the solely subtraction of the pole content corresponds to the Minimal Subtrac-
tion (MS) scheme, whereas the addition of a finite term given by the universal factor
lnp4πq ´ γE defines the Modified Minimal Subtraction pMSq scheme.

The renormalisation procedure introduces a new arbitrary mass scale, known as renor-
malisation scale µR, which generally defines a separation between the energy accessible
by experiments and the effects of UV physics. The regularisation scale µ in Eq. (1.12)
and the renormalisation scale µR are usually chosen to coincide1.

1.1.3 The running coupling constant

In the context of perturbative QCD, predictions for physical observables are formulated
in terms of the renormalised strong coupling αS “ αSpµ

2q, whose value depends on the
renormalisation scale µ at which αS is evaluated. This running of the coupling constant
is governed by a renormalisation group equation,

µ2dαSpµ
2q

dµ2
“ βpαSpµ

2
qq , (1.14)

where the µ-dependence is encoded in the QCD β-function. This function can be expressed
as a power series in αSpµ

2q, as

βpαSq “ ´αS

8
ÿ

n“0

bn α
n`1
S “ ´

`

b0α
2
S ` b1α

3
S ` b2α

4
S ` ¨ ¨ ¨

˘

, (1.15)

1In this thesis we set µR ” µ, and we adopt µ to identify the renormalisation scale.
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where in particular

b0 “
11CA ´ 4TRNf

12π
, b1 “

17C2
A ´NfTRp10CA ` 6CF q

24π2
, (1.16)

are the one-loop (b0) and the two-loop (b1) coefficients2. Here Nf is the number of active
light flavours, defined as the quark flavours with mass smaller than the scale µR. Beyond
two loops, the bn coefficients become scheme-dependent, and they are currently known up
to five loops [76–78].

The solution to the renormalisation group equation in Eq. (1.14) can be obtained
iteratively. Retaining the first order in the β expansion, the analytic solution for the
running of αS reads

αSpµ
2
q “

αSpµ
2
0q

1` αSpµ2
0q b0 ln µ2

µ2
0

, (1.17)

where µ0 is an initial scale at which αSpµ
2
0q is known or measured. We observe that

the slope of αSpµ
2q is controlled by the sign of the β-function: for a sufficiently small

number of active flavours Nf , as it is the case for QCD, the coefficient b0 is positive and
the strength of the coupling constant decreases with increasing energies. This behaviour,
known as asymptotic freedom [79, 80], is a fundamental feature of QCD. The small value
of αS allows for reliable perturbative calculations in the high-energy regime, where the
resulting predictions are expected to converge with the inclusion of just a few expansion
terms. Eq. (1.17) can be equivalently written in terms of the non-perturbative scale Λ, or
ΛQCD, as

αSpµ
2
q “

1

b0 ln µ2

Λ2

, (1.18)

at which the strong coupling diverges. The value of ΛQCD is not precisely defined as it
depends on the definition of αS, which in turn is determined by the scale µ0, the renor-
malisation scheme, and the order considered for the β-function within the renormalisation
group equation. This scale, which order of magnitude is around 200 MeV, is indicative
of the energy domain where non-perturbative effects become relevant, QCD is strongly
coupled, and perturbation theory ceases to be applicable. This property is consistent
with the phenomenon known as confinement, according to which colour-charged quarks
and gluons are constrained to form colourless observable hadrons. Ultimately, our ability
of making predictions for processes in hadronic colliders relies on factorisation theorems,
which play a crucial role in separating the impact of non-perturbative dynamics from the
high-energy domain, where employing perturbation theory is allowed. We will discuss this
point in more detail in Section 1.2.2.

2The definition of b0 in Eq. (1.16) and β0 in Appendix A are linked by the relation b0 “ β0{4π.
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1.2 Hadronic processes in perturbative QCD

The first theoretical approach for calculating cross sections in generic hadronic collisions
was built upon the parton model [81, 82], a QFT-based framework grounded on the obser-
vation that, in high-energy scattering processes, hadrons (or more specifically, protons)
can be effectively treated as loosely-bound collections of point-like partons, namely mass-
less quarks and gluons. In hadron-initiated reactions, these partons are the actual particles
that partecipate in the hard, short-distance interaction, carrying a fraction x of the lon-
gitudinal momentum of the respective parent hadron. The probability of extracting a
parton of flavour i with energy fraction x is encoded in a parton distribution function
(PDF), fipxq. Since these distribution functions parametrise our knowledge of the inter-
nal dynamics of hadrons, of intrinsic non-perturbative nature, they cannot be computed
using perturbation theory. Conversely, they must be determined from experimental data
through global fits. Due to their universality, once obtained they can be employed to
describe various processes3. The cross section for a scattering process initiated by two
hadrons with momenta p1 and p2 can be written as

σpp1, p2q “
ÿ

a,b

ż 1

0

dx1dx2 fapx1qfbpx2q σ̂abpx1p1, x2p2q `O
`

pΛQCD{Qq
p
˘

, (1.19)

where the sum runs over all flavours of the incoming partons a and b carrying momenta
pa “ x1p1 and pb “ x2p2, respectively, while Q is the relevant hard scale of the process4.
The quantity σ̂ab is the partonic cross section, encoding the hard, short-distance dynamics
of the colliding partons. Given a partonic centre-of-mass energy s “ q2, with qµ “ pµa`p

µ
b ,

it may be specifically evaluated as

σ̂abppa, pbq “
1

2s

ż

dΦm |MabÑXm |
2 , (1.20)

where 2s is the flux factor, Xm indicates a generic m-particle final state, and dΦm repre-
sents the corresponding differential phase-space measure, explicitly reading

dΦm ” p2πq
dδpdq

´

q ´
m
ÿ

i“1

pi

¯

«

m
ź

i“1

ddpi
p2πqd´1

δpp2
i ´m

2
i q θpp

0
i q

ff

, (1.21)

3In this PDF definition, we are neglecting transverse momentum components of the colliding partons that
would have originated from hadron-internal motions. An alternative formulation, known as Transverse Momen-
tum Dependent (TMD) PDFs, has been developed to include non-perturbative information on intrinsic transverse
momentum and polarization in parton distributions, which are essential in QCD predictions of multi-scale, exclu-
sive collider observables (see e.g. [83] for a review on this topic).

4Eq. (1.19) is easily generalised to describe lepton-hadron and lepton-lepton scattering processes by setting the
hadronic PDFs to unity. Actually, electron and muon PDFs [84–86] have also been developed in view of a direct
application in future lepton colliders.
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with Lorentz-invariant factors enforcing momentum conservation and positive-energy mass-
shell condition. The matrix element M gives the transition probability for obtaining a
final state Xm from the scattering of the two incoming states a and b. The expression for
the matrix elements squared in Eq. (1.20) includes appropriate sums/averages over colour
and spin states of the involved particles. Within the framework of perturbative QCD, it
can be expressed as a perturbative expansion in the small coupling constant, as

MabÑXm “

8
ÿ

i“0

αiS Mpiq
abÑXm

, (1.22)

where the sum index i indicates the increasing loop order. As a result, the partonic cross
section can be computed order-by-order in perturbation theory as

σ̂ab “
8
ÿ

i“0

σ̂
piq
ab “ σ̂

p0q
ab ` σ̂

p1q
ab ` σ̂

p2q
ab ` . . . , (1.23)

where the first term in Eq. (1.23) is known as the leading-order (LO) correction, the sec-
ond term as the next-to-leading-order (NLO) correction, and so forth. When considering
a LO process of order αkS , each component in the expansion incorporates an extra power
of the strong coupling, according to αk`iS . The size of subsequent contributions is ex-
pected to steadily decrease at higher orders, and ultimately improve the comparison with
experimental results. The last quantity in Eq. (1.19) accounts for non-perturbative power
corrections that go beyond this perturbative scattering picture. These contributions are
expected to scale as pΛQCD{Qq

p, where the exponent p ě 1 depends on the specific observ-
able under consideration. For instance, recent studies have been dedicated to quantifying
the effects of linear (p “ 1) power corrections in collider observables [87–91].

Nowadays, the parton model is recognised as providing merely an approximation of
the lowest-order perturbative description of collider observables in QCD. As we will see,
this approach does not survive when QCD radiative corrections are taken into account.
In Section 1.2.1, we will analyse the infrared divergent behaviour of next-to-leading order
corrections, specifically arising in the evaluation of real-emission and virtual one-loop con-
tributions. This will be crucial in determining which observables are ultimately insensitive
to these singularities, thus reliably calculable in perturbative QCD. We will find a class of
divergences, originating from initial-state collinear emissions, which do not cancel in the
sum of the separately divergent NLO corrections, effectively making Eq. (1.19) no more
applicable. The solution to this problem will be given in Section 1.2.2, where we employ a
collinear factorisation procedure for reabsorbing these divergences into the PDFs, in the
spirit of the UV renormalisation performed in Section 1.1.2. As a consequence, PDFs will
acquire a dependence on the factorisation scale µF , which in turn implies the presence of a
renormalisation group equation. This latter is known as the DGLAP evolution equation,
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and it will be discussed in Section 1.2.3.

1.2.1 Origin of infrared and collinear singularities

Two different categories of events contribute to the NLO correction in the perturbative
expansion of a total cross section (1.23): the real emission of an extra gluon in the
final state of the corresponding tree-level process, and the one-loop virtual correction
(interfered with the Born amplitude), where a virtual gluon is exchanged between two
partonic legs. When attempting the evaluation of such OpαSq corrections, we inevitably
face the presence of infrared (IR) divergences, which appear to hinder the computation of
meaningful predictions beyond the LO approximation. In the following we will identify
the origin of these divergences and assess their impact on perturbative calculations.

We start by analysing the behaviour of the real-radiation correction in a simple sce-
nario, as the tree-level qq̄ pair production in e`e´ annihilation. The cross section for the
real-emission process e`e´ Ñ qq̄ ` g is given by

σR “
1

2s

ż

dΦqq̄g |Mqq̄g|
2 . (1.24)

We are interested in the hadronic side of the real amplitudeMqq̄g, whose relevant diagrams
are illustrated in Figure 1.1.

Figure 1.1. Gluon emission off a final-state quark (left) and a final-state antiquark (right).

The analytic expression for these contributions explicitly reads

Mµ
qq̄g “ ūpp1q igS{εt

a
ip{p1

` {kq

pp1 ` kq2
ieqγ

µ vpp2q ` ūpp1q ieqγ
µ
´ip{p2

` {kq

pp2 ` kq2
igS{εt

a vpp2q , (1.25)

where the two terms in the sum correspond to the gluon emission from a quark and the
gluon emission from an antiquark, respectively. Here ūpp1q and vpp2q are the spinors of the
massless final-state quark and antiquark, ε is the gluon polarisation vector, and eq iden-
tifies the quark electric charge. In the expression above, the colour indices of quarks are
omitted, but they will be later reintroduced in the matrix element squared. Additionally,
{b “ bµγ

µ. Beginning with Eq. (1.25) and working in the soft gluon approximation, which
assumes that the gluon energy is significantly smaller than the total available energy, the
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calculations simplify. This yields a squared real matrix element summed over colour and
polarisations, which finally reads

|Mqq̄g|
2 soft
ÝÝÑ |Mqq̄|

2 g2
S CF

2p1 ¨ p2

pp1 ¨ kqpp2 ¨ kq
. (1.26)

The quantity Mqq̄ is the scattering amplitude for the underlying Born process e`e´ Ñ qq̄,
whereas the remaining terms constitute the eikonal factor, a universal structure depending
on colour charges and kinematic invariants that factorises from scattering amplitudes in
soft limits. Next, our attention turns to the real phase-space measure, which takes on the
factorised form

dΦqq̄g
soft
ÝÝÑ dΦqq̄

d3~k

2Egp2πq3
“ dΦqq̄

EgdEg d cos θ dφ

2p2πq3
, (1.27)

described by the polar (θ) and azimuthal (φ) angles of the gluon with respect to the
direction of the emitting quark. In the centre-of-mass frame, where quarks are in a back-
to-back configuration, the combination of Eq. (1.26) and Eq. (1.27) leads to

σsoftR “ σB
2αSCF
π

ż

dEg
Eg

d cos θ

p1´ cos θqp1` cos θq
. (1.28)

This resulting cross section, albeit obtained in the soft gluon approximation, contains all
the interesting features. Specifically, the integral in Eq. (1.28) is affected by non-integrable
divergences originating in two distinct limits. First, it diverges when the energy of the
emitted gluon Eg becomes vanishingly small, which is referred to as the soft singularity.
Second, it also diverges when the angle θ between the gluon and quark (or antiquark)
momenta approaches zero (or π), resulting in a nearly collinear configuration, thus known
as collinear singularity5.

Despite the simplicity of the chosen example, the presence of soft and collinear infrared
divergences is a common characteristic of QCD calculations. These infinities are associated
with long-range interactions that occur over time scales significantly longer than those
of the hard scattering event. Therefore, predictions for total cross sections should, in
principle, remain unaffected by them. This is indeed the case when we account for the
one-loop virtual correction as well, whose contribution also exhibits the same kind of non-
integrable singularities that emerge (with a negative sign) as the loop momentum explores
infrared kinematic regions. Consequently, in the sum of the real and virtual corrections
these divergences cancel out, ultimately enabling the calculation of finite predictions. The
Bloch-Nordsieck theorem [92], initially formulated within the framework of QED, and its
later generalisation to QCD by Kinoshita, Lee, and Nauenberg (KLN) [93, 94], ensure

5Note that when dealing with massive quarks, the mass acts as a regulator for collinear singularities, specifically
as pp` kq2 “ 2EqEgp1´ β cos θq, with β “

a

p1´m2{E2
q q, while soft divergences still remain.
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that this cancellation takes place when summing over all initial and final degenerate
states, namely those states that appear physically indistinguishable with respect to a
specific detector resolution. This theorem is particularly relevant for a specific class of
observables referred to as infrared and collinear (IRC) safe, which possess the property
of being essentially insensitive to the effects of soft and collinear long-distance dynamics.
As a result, they can be reliably calculated within the framework of perturbative QCD.
Concretely, this property implies that when we evaluate a given observable On`1 with an
pn` 1q-body kinematics, its behaviour smoothly approaches that of the corresponding
On observable, schematically as

On`1pk1, ¨ ¨ ¨ , ki, ¨ ¨ ¨ , kn`1q
kiÑ0
ÝÝÝÑ Onpk1, ¨ ¨ ¨ , ki´1, ki`1, ¨ ¨ ¨ , kn`1q ,

On`1pk1, ¨ ¨ ¨ , ki, kj, ¨ ¨ ¨ , kn`1q
ki||kj
ÝÝÝÑ Onpk1, ¨ ¨ ¨ , ki ` kj, ¨ ¨ ¨ , kn`1q , (1.29)

where, on the right-hand side, On is evaluated with n-body kinematics obtained either by
removing a soft gluon momentum, or by replacing the collinear particles ki, kj with their
combined momenta.

The KLN theorem, however, does not apply to hadronic collisions, as the non-perturbative
nature of hadrons prevents the summation over initial degenerate states. This leads to the
presence of initial-state collinear singularities that cannot be canceled, thereby affecting
the parton model description of hadron-initiated cross sections, as shown in Eq. (1.19).
We can make this issue evident when considering a generic process involving an initial-
state hadron, and focusing on the combination of the real-emission correction, given by
the radiation of a final-state gluon off an incoming quark p, as depicted in the first panel
of Figure 1.2, and the respective one-loop virtual contribution, as in the second graph in
Figure 1.2.

Figure 1.2. Gluon emission off an incoming quark (left) and one-loop virtual correction (right).

The real contribution to the partonic cross section can be expressed as

σ̂R, p1q “
1

2s

ż

dΦpp; kq |Mp1q|
2 , (1.30)

where the phase-space measure is understood to depend on the incoming momentum p,
and to be integrated over the outgoing momentum k of the emitted gluon. It is convenient
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to examine the divergent behaviour of the real matrix element Mp1q in the specific con-
figuration where the quark and gluon become collinear, denoted as p || k. To this end, we
employ the so-called Sudakov parametrisation to decompose the gluon momentum along
the relevant directions, as

kµ “ p1´ zq pµ ` kµK ´
1

1´ z

k2
K

2p¨pr
pµr , pp` kq2 “ ´

k2
K

1´ z
, (1.31)

where pr is an arbitrary massless on-shell vector necessary to define the gluon transverse
momentum kK (with k2

K ă 0), satisfying kK¨ p “ kK¨ pr “ 0. The variable z represents the
longitudinal momentum fraction, defined as z “ pp´ kq¨ pr{p ¨ pr. In this framework, the
radiative phase-space measure is given by

dΦpp; kq
coll.
ÝÝÑ dΦpzpq

dk2
K

16π2

dz

p1´ zq
, (1.32)

while, after some manipulations (for explicit calculations, see e.g. Ref. [73]), the matrix
element squared in the limit of small emission angles takes the following form

|Mp1q|
2 coll.
ÝÝÑ

2g2
S

pp1 ` kq2
1

z

ˆ

1` z2

1´ z

˙

|Mp0qpzpq|
2 , (1.33)

where the notation Mp0qpzpq indicates that the Born-level amplitude should be calculated
using zp as the four-momentum associated with the incoming quark. Combining all the
ingredients in Eq. (1.32) and Eq. (1.33), one obtains

σ̂R, p1q “
αSCF

2π

ż

σ̂p0qpzpq

ˆ

1` z2

1´ z

˙

dk2
K

k2
K

dz . (1.34)

When one combines this result with the contribution from the virtual one-loop correction,
the final outcome can be expressed as follows:

σ̂R, p1q ` σ̂V, p1q “
αSCF

2π

ż

”

σ̂p0qpzpq ´ σ̂p0qppq
ı

ˆ

1` z2

1´ z

˙

dk2
K

k2
K

dz . (1.35)

In this equation, the soft singularity at z Ñ 1 cancels out between the real and virtual
terms, as the content of the square brackets vanishes. On the other hand, the collinear
singularity associated with the limit of small kK does not cancel. Specifically, the inte-
gration over the transverse momentum is not bounded from below, and as a result, the
integral exhibits a logarithmic divergence as kK approaches zero.

1.2.2 Collinear factorisation

The problem of initial-state collinear singularities spoiling the interaction picture pro-
posed by the parton model can be solved through a collinear factorisation procedure.
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This approach involves quantifying the divergent contributions that affect the partonic
cross section and reabsorbing them into a redefinition of universal (bare) objects as the
parton distribution functions. We will now illustrate how this process works in a simple
scenario, and then extend the concept to create an improved parton-model formulation
for describing hadronic interactions within perturbative QCD.

Let us consider a scattering process involving one initial-state hadron with momentum
p, initiated at the hard-interaction level by a quark carrying momentum p̂ “ yp. The naïve
prediction for the total cross section at next-to-leading-order can be written as

σppq “

ż

dy f p0qq pyq σ̂pypq “

ż

dy f p0qq pyq
´

σ̂p0qpypq ` σ̂p1qpypq
¯

, (1.36)

where f p0qq represents the bare quark PDF, which solely depends on the longitudinal frac-
tion y, σ̂p0q is the leading-order partonic cross section, and σ̂p1q collects the contribution
from the corresponding radiative corrections, schematically depicted in Figure 1.2. As pre-
viously discussed, the computation of these corrections, as given in Eq. (1.35), displays
a logarithmic singularity arising from the integration over the transverse momentum. To
regularise this divergence, we introduce an infrared cutoff λ, which represents the unknown
dependence on low-scale dynamics6. Integrating over kK now leads to

σ̂p1qpp̂q “
αS

2π

ż Q2

λ2

dk2
K

k2
K

ż 1

0

dz Pqqpzq σ̂p0qpzp̂q “
αS

2π
log

Q2

λ2

ż 1

0

dz Pqqpzq σ̂p0qpzp̂q , (1.37)

where Q defines a characteristic hard scale of the process, and Pqq is the regularised q Ñ qg

splitting function, given by

Pqqpzq “ CF

ˆ

1` z2

1´ z

˙

`

. (1.38)

The plus distribution introduced above provides a method to regularise an integral that
would otherwise diverge at z “ 1, and it is defined as

ż 1

0

dx
“

gpxq
‰

`
fpxq “

ż 1

0

dx gpxq
`

fpxq ´ fp1q
˘

. (1.39)

The complete expression for the partonic cross section can then be written as

σ̂pp̂q “ σ̂p0qpp̂q ` σ̂p1qpp̂q “

ż 1

0

dz Γpz,Q2
q σ̂p0qpzp̂q , (1.40)

6Despite the introduced cutoff, there are various methods for regularisation. Dimensional regularisation,
already adopted for dealing with ultraviolet divergences, can also serve as an alternative technique in this context.
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with the distribution Γ defined as

Γpz,Q2
q “ δp1´ zq `

αS

2π
log

Q2

λ2
Pqqpzq . (1.41)

In Eq. (1.40) one may notice a certain analogy with the parton model formula, suggesting
that even partons have a substructure that depends on the scale at which they are probed.
By substituting Eq. (1.40) back into the hadronic cross-section formula in Eq. (1.36)
and using the identity

ş

dx δpx ´ zyq “ 1, we can absorb the contribution from gluon
emission into the bare parton density, essentially returning to a parton model-like formula.
Specifically, one has

σppq “

ż 1

0

dx

ż 1

0

dy

ż 1

0

dz f p0qq pyqΓpz,Q2
q σ̂p0qpxpq δpx´ zyq

“

ż 1

0

dx fqpx,Q
2
q σ̂p0qpxpq , (1.42)

with

fqpx,Q
2
q “

ż 1

0

dy

ż 1

0

dz f p0qq pyqΓ
`

z,Q2
˘

δpx´ zyq . (1.43)

We can then apply a similar procedure to reabsorb the singular collinear behaviour of the
partonic cross section into the universal PDF. To do this, we first isolate the divergence
by introducing in the integration over the transverse momentum in Eq. (1.37) an inter-
mediate scale µF , known as factorisation scale, thus separating the singular contributions
originating from any emissions characterised by kK À µ2

F from the finite part of the ra-
diative correction. At the integrated level, this amounts to divide the logarithm resulting
in Eq. (1.41) into two parts, as

log
Q2

λ2
“ log

Q2

µ2
F

` log
µ2
F

λ2
, (1.44)

and consequently rewrite Eq. (1.40) as

σ̂pp̂q “

ż 1

0

dz

„

Γpz, µ2
F q `

αS

2π
log

Q2

µ2
F

Pqqpzq



σ̂p0qpzp̂q , (1.45)

where the initial-state collinear divergence has been subtracted from the last term in the
right-hand side and now embedded in Γpz, µ2

F q. Therefore, by redefining the bare parton
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density f p0qq as7

fqpx, µ
2
F q “

ż 1

0

dy

ż 1

0

dz f p0qq pyqΓpz, µ2
F q δpx´ zyq

“ f p0qq pxq `
αS

2π
log

µ2
F

λ2

ż 1

x

dy

y
f p0qq pyqPqq

ˆ

x

y

˙

, (1.46)

the hadronic cross section can be finally written in the following factorised form:

σppq “

ż 1

0

dx fqpx, µ
2
F q σ̂pxp, µ

2
F q . (1.47)

The product of the modified parton distribution with the finite short-distance cross section
σ̂pxp, µ2

F q, this latter defined as

σ̂pp̂, µ2
F q “ σ̂p0qpp̂q `

αS

2π
log

Q2

µ2
F

ż

dz Pqqpzq σ̂p0qpzp̂q , (1.48)

can be demonstrated to reproduce Eq. (1.36), up to Opα2
Sq terms.

The generalisation of the factorisation discussed above to the context of hadron-hadron
collisions results in the QCD-improved parton model formula, reading

σpp1, p2q “
ÿ

a,b

ż 1

0

dx1dx2 fapx1, µ
2
F qfbpx2, µ

2
F q σ̂abpx1p1, x2p2, µ

2
F q `O

`

pΛQCD{Qq
p
˘

.

(1.49)

The main difference with the analogous formula in Eq. (1.19) lies in the explicit depen-
dence on the factorisation scale µF . In this context, the modified parton distributions
presented in Eq. (1.46) are consistently extended to include any kind of partonic collinear
emissions, as

fapx, µ
2
F q “ f p0qa pxq `

αS

2π
log

µ2
F

λ2

ÿ

c

ż 1

x

dy

y
f p0qc pyqPac

ˆ

x

y

˙

. (1.50)

Here, the summation involves all initial-state particles labeled with flavour c that have
the potential to undergo a collinear splitting, resulting in the emergence of an incoming
particle a that actively participates in the hard process, represented as aÐ c.

The non-cancellation of initial-state collinear singularities serves as a strong example
of the crucial role played by general factorisation theorems [96] in our ability to provide
theoretical descriptions of collider processes. These theorems enable a clear separation
between the short-distance, high-energy physics governing parton interactions and the
long-distance, low-energy behaviour of QCD degrees of freedom.

7It is possible to reabsorb arbitrary finite contributions into the PDF definition. Different choices lead to
different factorisation schemes. The PDFs are usually defined in the MS scheme, already introduced in Sec. 1.1.2.
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1.2.3 The DGLAP evolution equation

The (physical) parton distribution functions fapx, µ2
F q in Eq. (1.50) are universal non-

perturbative quantities whose value and x-dependence have to be extracted from exper-
imental data. However, their additional dependence of the factorisation scale µF can
be predicted within perturbative QCD. Starting from the fundamental requirement that
fixed-order physical predictions should, up to higher-order contributions, remain indepen-
dent of the arbitrary choice of the factorisation scale, we can derive a renormalisation
group equation that characterises the scale evolution of the PDFs. By taking the deriva-
tive of Eq. (1.50), we obtain the following general expression

µ2
F

Bfapx, µ
2
F q

Bµ2
F

“
αSpµ

2
F q

2π

ÿ

c

ż 1

x

dy

y
fcpy, µ

2
F qPac

ˆ

x

y

˙

“
αSpµ

2
F q

2π

ÿ

c

”

Pac b fc

ı

px, µ2
F q , (1.51)

which is known as the DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) [97–99] evolu-
tion equation. Note that the symbol b represents convolutions over momentum fractions,
and the value of the strong coupling is calculated at the scale µF . Here Pacpx, µ2

F q are the
regularised all-order Altarelli-Parisi kernels, which can be perturbatively expanded as

Pacpx, µ
2
F q “

8
ÿ

n“0

ˆ

αSpµ
2
F q

2π

˙n

P pnqac pxq . (1.52)

At leading order, they are given by8

P p0qqq pxq “ CF

ˆ

1` z2

1´ z

˙

`

,

P p0qqg pxq “ TR

´

x2
` p1´ xq2

¯

,

P p0qgq pxq “ CF
1` p1´ xq2

x
,

P p0qgg pxq “ 2CA

„

x

p1´ xq`
`

1´ x

x
` xp1´ xq



` δp1´ xq
β0

2
, (1.53)

with β0 “ p11CA ´ 4TRNf q{3. The next-to-leading splitting functions P p1qij pxq have
been computed in Refs. [100, 101], while comprehensive results for the next-to-next-to-
leading coefficients P p2qij pxq can be found in Refs. [102, 103]. Recent studies are actively

8For a generic initial-state branching cÑ a` b, with b being a final-state particle, the LO splitting functions
listed in Appendix B.1 are defined using subscripts that indicate the particle flavours resulting from the splitting,
such as ab. This is in contrast with the notation used in Eq. (1.53), where the parent particle and the particle
entering the hard scattering process are identified, as ac.
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contributing to expanding our understanding of four-loop splitting functions, with some
partial information already available, as presented in Refs. [104–110].

1.3 Cancellation of infrared singularities at higher orders

The calculation of higher-order QCD corrections to collider observables is of utmost im-
portance to produce theoretical predictions accurate enough to enable a meaningful com-
parison with the increasingly-precise data obtained in current (and future) energy-frontier
programmes. These days, achieving NNLO accuracy in the strong coupling is becoming
the standard requirement for fixed-order predictions for hard scattering processes at the
Large Hadron Collider (LHC). To compute differential distributions beyond the leading
order, it is essential to employ an efficient and automated method for handling infrared
singularities. As shown in Sections 1.2.1 and 1.2.2, these singularities must either cancel
between virtual corrections and the phase-space integrals of unresolved final-state radia-
tion, or be universally factorised in the case of collisions involving hadrons in the initial
state. From the theoretical viewpoint, the origins and characteristics of the infrared be-
haviour of perturbative QCD corrections are well understood (see Ref. [111] for a recent
review). When dimensional regularisation is employed, IR singularities in virtual correc-
tions manifest as explicit ε poles that are known to factorise from scattering amplitudes
in terms of universal functions [112–123]. The anomalous dimensions required for this
infrared factorisation are fully known up to three loops [124, 125]. Real-radiation matrix
elements have also been shown to factorise in soft and collinear limits, and the corre-
sponding real-radiation splitting kernels have been computed at order α2

S [126–131], with
extensive information also available at α3

S [132–145].
Despite the existence of general theorems applicable in perturbation theory [92–96],

which guarantee the cancellation (or factorisation) of infrared divergences when consider-
ing infrared-safe observables, the practical implementation of procedures to efficiently re-
move these singularities remains a non-trivial task. Indeed, as we explore high-multiplicity
processes and consider typical collider observables, the complexity of phase-space con-
straints rapidly grows to a point where analytic integration becomes impractical. Con-
sequently, the use of numerical tools is essential to handle this complexity effectively.
However, since virtual and real contributions are separately divergent quantities in d “ 4

space-time dimensions, numerical Monte Carlo techniques cannot be directly employed to
handle these integrations. Hence, a strategy is necessary to explicitly extract the poles
in the d-dimensional integration over the radiative degrees of freedom (once completely
decoupled from the resolved phase space), cancel them against the poles originating from
virtual corrections, and thereby enable the numerical computation of fully-differential
predictions for infrared-safe observables.
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At NLO, this problem was first approached with phase-space slicingmethods [146, 147].
Given a differential real correction dσR, d with a d-dimensional phase-space measure, the
strategy can be outlined as follows:

ż

dσR, d “

ż δ

0

”

dσapprox
R

ı

d, poles
`

ż 1

δ

”

dσR

ı

4, fin
`Opδq . (1.54)

The basic idea consists in isolating the phase-space regions where the real emission is sin-
gular by introducing a cutoff scale δ, associated with a proper IR-sensitive observable. For
these singular regions, approximate expressions of the relevant matrix elements, denoted
here as dσapprox

R , are introduced. The integration is then carried out analytically up to the
slicing parameter, thus exposing the poles, while the leftover terms are finite quantities
that can be numerically evaluated in d “ 4 dimensions. The slicing parameter δ must be
chosen sufficiently small to ensure that the final result becomes ultimately δ-independent.
Although conceptually simple, this method requires careful control over the residual de-
pendence on the slicing parameter, as it has the potential to introduce significant power
corrections spoiling the convergence of the calculation.

An alternative strategy that avoids the extra dependence on a slicing parameter is the
subtraction method. This technique involves defining local counterterms that reproduce
the singular behaviour of the real matrix element across all regions of phase space. By
subtracting these counterterms from the full real-radiation matrix elements and then
adding back their exact integrals, one schematically obtains

ż

dσR, d “

ż

”

dσR ´ dσct

ı

4, fin
`

ż

”

dσct

ı

d, poles
. (1.55)

This yields a finite, numerically-integrable subtracted real contribution, identified by the
first square brackets in the r.h.s., while the d-dimensional analytic integration of the coun-
terterms exposes the implicit ε poles. In contrast to slicing schemes, subtraction is a local
and exact procedure that is not affected by issues related to cutoffs and power corrections.
On the other hand, constructing effective subtraction terms can be a challenging task:
indeed, they have to be designed so as to mimic infrared singularities overlapping in the
phase space, while, at the same time, their structure has to remain simple enough to allow
for analytic integration.

Starting from the mid-90s, the automated cancellation of infrared singularities in NLO
predictions has been achieved and generalised by two pioneering subtraction schemes,
which we review in Section 1.3.1. The situation is however rather different at NNLO
accuracy, where efforts to achieve the same level of universality and efficiency as was at-
tained at NLO have been ongoing for nearly two decades. In Section 1.3.2, we provide
a brief overview of the various approaches that have been proposed and pursued during
this time, encompassing both slicing and subtraction methods. These algorithms cover
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a wide spectrum, ranging from primarily numerical to predominantly analytic tools, and
they can be applied to distinct classes of processes of high phenomenological significance.
Recent developments have also enabled the computation of N3LO predictions for LHC
benchmark processes. The construction of such methods, however, has proven to be ex-
tremely challenging due to a substantial increase in technical complexity, arising either
at the level of the analytic integration of counterterms, or at the level of numerical im-
plementation. As a consequence, a comprehensive solution to the infrared-subtraction
problem beyond NLO remains elusive. Thus, aware of the fact that there is still room for
improvement in the universality, versatility and efficiency of existing algorithms, we have
developed a novel approach to the cancellation of infrared singularities called Local Ana-
lytic Sector Subtraction, aiming at a solution of the NNLO QCD subtraction problem for
generic processes. We present the framework and the specific features of this subtraction
algorithm, which will constitute the central core of this thesis work, in Section 1.3.3.

We reserve a special mention to a different category of algorithms that aim at ad-
dressing the infrared-singularity problem by combining the real and virtual corrections
in an alternative way with respect to the subtraction approach presented so far. These
recently-proposed techniques [52–57, 148] are based on the Loop-Tree Duality (LTD) the-
orem [149–152], which allows for a fully local cancellation of IR singularities directly at
the integrand level. Several ongoing endeavours are dedicated to automating and extend-
ing these methods, especially towards the application to higher-order calculations (for a
recent review, see Ref. [153]).

1.3.1 Subtraction schemes at NLO

In this Section we briefly present the relevant features of the three main subtraction algo-
rithms that handle the cancellation of IR divergences at NLO accuracy in full generality.

The first process-independent algorithm to appear was the Frixione-Kunszt-Signer
(FKS) subtraction [16, 17]. This method relies on the introduction of sectors, namely par-
tition functions designed to disentangle the structure of overlapping singularities within
the radiative phase space. This partition crucially reduces the number of infrared diver-
gences that must be simultaneously addressed, effectively suppressing all but one collinear
and one soft singularity. Sectors can be treated independently, and each of them features
an adapted phase-space parametrisation. Local counterterms, identified by δ-functions
and plus distributions, can be analytically integrated thanks to the use of sum rules,
which eliminate the explicit dependence of sector functions within their definitions.

A different approach to tackle the infrared problem at NLO is the Catani-Seymour (CS)
dipole subtraction [18, 19]. In this scheme, local counterterms mimic the IRC singular
behaviour of the real-emission matrix element across the entire phase space, eliminat-
ing the need for partition functions. These subtraction terms are constructed as sums
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of universal functions, or dipoles, which interpolate between soft and collinear singulari-
ties. Within each dipole, the Born-level kinematics are determined through momentum
mappings involving only three partons, namely the emitted, the emitter and the spectator
(this latter referred to as local recoiler). While dipoles can be rather complex objects, the
simple phase-space factorisation and parametrisation achieved through these mappings
make the analytical integration of the local counterterms a straightforward task.

A more recent, viable alternative to the previous approaches is the Nagy-Soper subtrac-
tion [20, 21], firstly introduced in the formulation of an improved parton shower [154–156].
This method embraces the philosophy of Catani-Seymour method in constructing local
counterterms, but it crucially reduces the substantial number of mappings introduced in
dipole functions by a factor of n, thus improving convergence, where n represents the
massless final states in a high multiplicity process. This advantage however comes at the
price of more complex expressions for the subtraction terms, which require the use of
semi-numerical methods for the corresponding integrations.

Nowadays, some of these methods have been developed in full generality, and versions
of the corresponding algorithms have been incorporated into several fast and efficient
multi-purpose NLO event generators [157–169]. These implementations provide robust
solutions to the subtraction problem at the NLO accuracy level.

1.3.2 Landscape of available algorithms at NNLO (and beyond)

As we move beyond NLO, the handling of infrared singularities becomes significantly more
challenging, both conceptually and practically. Calculations of perturbative corrections at
NNLO (and beyond) are substantially complicated due to the proliferation of overlapping
divergent regions in phase space and the inclusion of mixed real-virtual contributions.
This complexity makes it evident that extending mature NLO techniques to higher orders
is unfeasible without introducing new tools to address these overlaps. Nevertheless, the
knowledge and experience gained at NLO have triggered the development of several inno-
vative strategies over the last few decades, each of which characterised by its own range
of applicability, degree of universality, and computational efficiency. Collectively, these
strategies have paved the way for the possibility of performing calculations at NNLO and
beyond.

The idea underlying the singularity-cancellation mechanism introduced by the Catani-
Seymour dipole subtraction at NLO has inspired two major generalisations at NNLO. One
of these is called antenna subtraction [23–27]. In this method, counterterms are defined
using antenna functions, which are essentially ratios of physical spin-averaged matrix el-
ements obtained exploiting the universal factorisation properties of colour-ordered ampli-
tudes [170, 171], which naturally incorporate the information about the relevant infrared
singular regions. These universal functions are almost local, except for angular correla-
tions, which are removed by averaging over azimuthal angles. This non-locality is cured
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by increasing the number of numerical evaluations. Although antennae exhibit complex
and large expressions, analytic integration for all counterterms can be achieved through
integration-by-parts (IBP) identities [172, 173] and the reduction to a small set of master
integrals. The antenna subtraction method is applicable to both hadronic initial and final
states and is implemented in the private parton-level event generator NNLOJET [174],
providing efficient predictions for jet production processes at NNLO. Ongoing studies aim
at extending the construction of antenna functions to higher-order calculations [175–179].
In addition, a reformulation of the antenna subtraction approach taming former limita-
tions while facilitating the application to high-multiplicity processes has been recently
proposed [28].

The CoLoRFulNNLO method [29–38] is another approach rooted in the dipole sub-
traction philosophy. In this framework, local subtraction terms are defined using universal
singular kernels, and the associated momentum mappings involve the momenta of all out-
going particles. The integration of counterterms is performed analytically for the infrared
poles, while numerical methods are employed for evaluating the finite parts. This sub-
traction scheme has been fully worked out for processes involving hadronic final states,
and has been partially extended to the treatment of initial-state radiation.

The FKS subtraction scheme has in turn stimulated the development of various al-
gorithms that recognise the phase-space partition as an effective strategy for separat-
ing overlapping singularities, thus enabling the implementation of less intricate subtrac-
tion mechanisms. The sector-improved residue subtraction [39–42] is a fully numerical
framework that combines a phase-space partition with the sector decomposition tech-
nique [180]. Counterterms are generated through iterated subtractions, and unlike some
other schemes, it does not introduce kinematic mappings. Instead, it relies on specific
phase-space parametrisations that facilitate effective numerical cancellation. Counterterm
integrals are first analytically decomposed in their ε-expansion in dimensional regularisa-
tion, and the resulting coefficients, sector functions included, are integrated numerically.
Subtraction is then made on the fly, on a process-by-process basis. The sector-improved
residue subtraction applies to initial- and final-state radiation. Currently implemented
in the non-public code Stripper, the numerical efficiency of this procedure is expected
to outperform schemes based on Catani-Seymour subtraction, because of the presence of
sectors.

Expanding upon the ideas of the sector-improved residue subtraction method, the
nested soft-collinear subtraction [43] optimises the algorithm by reducing sector redun-
dancy, resulting in a more physically-transparent approach. This method employs color
coherence to iteratively extract soft singularities from the double-real process, and sub-
sequently regulates collinear singularities by partitioning the angular phase-space into
sectors. It is a fully local scheme that provides analytic expressions for integrated sub-
traction counterterms. As of now, its applications have been limited to processes involving
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only two external color-charged particles at the tree level. However, ongoing efforts are ac-
tively focusing on extending the method to processes with an arbitrary number of coloured
partons, starting from the production of N -gluon final states in qq̄ annihilation [44, 181].

While local subtraction schemes tend to outperform slicing methods in terms of pre-
cision and numerical efficiency at NLO accuracy, slicing methods regain competitiveness
at NNLO. This resurgence is attributed to factors such as the enhanced understanding
of the analytic structure of matrix elements and the increased availability of computa-
tional power. The qT -subtraction method [45] is a non-local subtraction implemented
as a slicing procedure that achieves the cancellation of infrared singularities in colour-
singlet production. Given the transverse momentum (qT ) of the generic colour-singlet
system V , the NNLO infrared divergences associated with qT ‰ 0 configurations cor-
respond to the NLO singularities in the process with a final state involving V ` jets.
These NLO singularities can be regularised employing any available subtraction scheme.
The remaining NNLO divergences due to the qT Ñ 0 limit are treated with an addi-
tional counterterm, constructed by exploiting the universal behaviour of real emissions
in the transverse-momentum distribution, which is known via resummation techniques.
Neglecting the subtracted contribution below the cutoff, a residual dependence on this
parameter remains in the form of power-suppressed contributions whose size determines
the efficiency of the computation. Procedures have been recently developed to account for
linear power corrections, thus improving numerical convergence and reducing systematic
uncertainties [182, 183]. This formalism has been extended to processes with a pair of
massive coloured particles [46, 184, 185], and alternative slicing variables for jet processes
are being explored [186]. NNLO predictions obtained via qT -subtraction are collected in
the public framework MATRIX [187].

Another algorithm that incorporates a phase-space slicing procedure is the subtraction
method based on the N -jettiness event-shape variable [47–49], which fully captures the
singularity structure of QCD amplitudes for processes involving final-state jets. In this
framework, soft-collinear effective theory (SCET) [188–192] is employed to derive the
behaviour of the infrared singular contributions of jet cross sections in the limit as the N -
jettiness parameter (τN) approaches zero. The N -jettiness subtraction method has been
implemented, and results for various processes are available in the publicly-accessible
parton-level Monte Carlo program called MCFM [193–196]. In addition to the methods
briefly described in this discussion9, a variety of additional strategies have been explored,
see e.g. Refs. [22, 50, 51].

The availability of two-loop amplitudes and the technology for producing differential
NNLO calculations, established by some of the methods belonging to the broad spectrum
of available schemes, resulted in the successful computation of all relevant 2 Ñ 1 and 2 Ñ 2

processes at LHC. This achievement has pushed the frontier towards NNLO predictions
9For a more detailed review on IR-subtraction methods, see Ref. [197].
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for 2 Ñ 3 collider processes, for which many results started to appear [58–67]. Some of
the previously cited algorithms have also been extended and applied to the calculation
of a selection of simple 2 Ñ 1 benchmark processes at N3LO accuracy, involving only
coloured singlets in the final state. We refer the reader to Refs. [68, 69] for thorough
reports on state-of-the-art QCD predictions. It is worth emphasising that as of today,
obtaining generic NNLO calculations is still not a straightforward task. In fact, these
latter are typically computationally demanding and can be performed either using private
codes, or with a limited number of publicly-accessible computer programmes as Refs. [187,
195], which usually offer predefined sets of available processes. Recently, there have been
developments in the form of the HighTEA web platform [198], which aims to provide
easy access to the analysis of NNLO predictions for a specific collection of precomputed
events, obtained using Monte Carlo methods at a fixed level of statistical precision.

1.3.3 Local Analytic Sector Subtraction: the framework

The vast number of approaches proposed to address the local cancellation of infrared sin-
gularities at NNLO, some of which were briefly introduced in Section 1.3.2 and reviewed in
Refs. [68, 197], provides a clear picture of the intricacy of the problem at hand. The con-
siderable complexity arising in the development of such techniques explains why research
groups are still actively working on possible optimisations to streamline the structure
and/or broaden the applicability of existing schemes. The absence of a completely com-
prehensive and satisfactory solution to the NNLO problem, especially when compared to
the well-established NLO strategies, fuels further investigation into this area. Specifically,
the trade-off between the complete locality of subtraction terms and their analytical in-
tegrability, which appears to be a defining characteristic of existing local methods, serves
as a promising starting point for a fundamental re-examination of the subtraction mech-
anism.

The in-depth analysis of such a criticality has resulted in the development of a novel
subtraction scheme, which ambitiously aims to lay the foundations for a fully general an-
alytic solution to the cancellation of NNLO infrared singularities. We call this framework
Local Analytic Sector Subtraction [1, 2, 199]. The fundamental idea driving this method
is to address the NNLO infrared problem by making full use of the freedom available to
define local counterterms, in order to ultimately identify the simplest possible structure
that optimises the process of subtracting infrared singularities at every step of the cal-
culation. In practical terms, to achieve this simplicity we construct local counterterms
by drawing upon key concepts that have been successfully applied at NLO accuracy. A
fundamental ingredient of our method is the implementation of a phase-space partition,
in the spirit of FKS subtraction [16]. Each sector within this partition is carefully de-
signed to isolate a minimal subset of soft and collinear singularities, allowing in turn for
the construction of a minimal local counterterm that has to reproduce the behaviour of
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the real-radiation amplitude squared only in those sector-relevant singular limits. These
sector functions must further obey a set of sum rules, which facilitate the recombination
of different sectors and their removal from local counterterms. As a result, this simplifies
the subsequent process of analytical integration. Another crucial ingredient of our scheme
is a flexible family of momentum mappings, akin to those introduced by Catani-Seymour
subtraction [18]. These kinematic mappings can be tailored to the specific counterterms
or even be adapted to different contributions within a given counterterm. The obtained
phase-space factorisation and corresponding parametrisation, which adjust to the various
singular kernels, significantly enhance the simplicity of the required analytical integra-
tions [200]. The final outcome of such a programme is a completely general and analytic
formula that can be implemented within any existing numerical framework without any
additional work, thus enabling the production of NNLO phenomenological results. Its
applicability to multi-particle processes will be primarily constrained by computational
resources and the availability of multi-loop matrix elements (see for instance Ref. [201]).
The central core of this thesis will be dedicated to implementing this strategy in prac-
tice, specifically providing a comprehensive step-by-step explanation of the process that
culminates in the construction of a fully analytic subtraction formula for the treatment
of infrared singularities at NNLO accuracy.

The implementation of this method is accompanied by a second line of investigation,
which delves into more formal aspects of subtraction, specifically focusing on factorisa-
tion [202, 203]. This line of research aims to explore the connection between the structure
of local counterterms for real radiation and the structural simplification resulting from
the factorisation of gauge-theory amplitudes, with the hope of improving the construc-
tion of minimal and process-independent counterterms, with a specific emphasis on the
organisation of strongly-ordered singular limits, which become relevant for the first time
at NNLO.



Chapter 2

Local Analytic Sector Subtraction
at NLO

In the mind of the reader who learned in Section 1.3.1 about the existence of well-
established algorithms which have efficiently removed next-to-leading-order infrared sin-
gularities since the ’90s, the necessity and practical significance of developing another
subtraction scheme at this perturbative order may be questioned. In our case, testing the
strategy proposed in Section 1.3.3 by implementing a general fully-fledged subtraction in
a simpler NLO playground represents an instrumental step towards the construction of
a universal cancellation procedure for the more involved and demanding NNLO scenario.
Indeed, this offers a valuable opportunity to address potential criticalities, fine-tune the
methodology, and assess the numerical performance of our scheme, away from higher-order
complexity.

We therefore present in this Chapter the details of the construction of a general analytic
formula for the cancellation of NLO infrared singularities, developed within the framework
of Local Analytic Sector Subtraction. This formulation applies to processes featuring
initial- and final-state massless QCD radiation, thus covering all kinds of particle colliders.

The outline is as follows. We provide an overview of the architecture of our method
in Section 2.1, introducing the relevant notations and the ingredients required for an in-
frared subtraction at NLO, for massless initial and final states. We devote Section 2.2 to
the detailed construction of our local counterterm K: we put at work the strategy out-
lined in Section 1.3.3, analysing its pros and cons; we then turn to the validation of our
approach by testing the locality of the subtraction, while implementing various optimi-
sations. In Section 2.3, we perform the integration of the designed counterterm over the
single unresolved radiation parametrised according to tailored momentum mappings, and
recast the outcomes into Born-level kinematic quantities. Corresponding results are col-
lected in Appendix B.3. Finally, Section 2.4 shows the explicit cancellation of virtual and
collinear-factorisation poles. We then present the finite remainders of our computations,
which result in a very compact and completely analytic NLO formula.

29
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2.1 Generalities

Let us consider a generic scattering reaction that at Born level features nmassless coloured
partons (as well as an arbitrary number of massless or massive colourless particles) in the
final state, with up to two massless coloured partons in the initial state. We denote with
Anpkiq the relevant scattering amplitude, which can be expanded in perturbation theory
as

Anpkiq “ Ap0qn pkiq ` Ap1qn pkiq ` Ap2qn pkiq ` . . . , (2.1)

where Apkqn denotes the k-loop correction, and includes the appropriate power of the strong
coupling constant. In this notation, we define i “ 1, . . . , n for final-state particles, and
i “ a, b for initial-state particles. For such a process, we consider a generic IRC-safe
observable X, and we write the corresponding differential distribution as

dσ

dX
“

dσLO

dX
`
dσNLO

dX
`
dσNNLO

dX
` . . . . (2.2)

The formulation of the Born contribution in terms of Eq. (2.1) allows to express the LO
coefficient of Eq. (2.2) as

dσLO

dX
“

ż

dΦnB δnpXq , with B “
ˇ

ˇAp0qn
ˇ

ˇ

2
. (2.3)

By also specifying the real emission, and (MS-renormalised) virtual contributions, as

R “

ˇ

ˇ

ˇ
Ap0qn`1

ˇ

ˇ

ˇ

2

, V “ 2 Re
“

Ap0q˚n Ap1qn
‰

, (2.4)

we write the standard expression for the NLO term as the combination

dσNLO

dX
“ lim

dÑ4

„
ż

dΦn V δnpXq `

ż

dΦn`1Rδn`1pXq `

ż

dΦxx̂
n Cpx, x̂q δnpXq



, (2.5)

where δmpXq ” δpX ´ Xmq, Xm standing for the observable computed with m-body
kinematics, dΦm “ dΦmpka, kbq denotes the Lorentz-invariant phase-space measure for
m massless final-state particles, including suitable polarisation sums/averages and flux
factors; the convolution phase space dΦxx̂

n , defined as

ż

dΦxx̂
n ”

ż 1

0

dx

x

ż 1

0

dx̂

x̂

ż

dΦnpxka, x̂kbq , (2.6)

shows a dependence on rescaled initial-state partonic momenta xka and x̂kb, where 0 ď

x, x̂ ď 1. The PDF collinear counterterm Cpx, x̂q, encoding the full µF dependence of the



2.1. Generalities 31

partonic cross section, is defined in MS scheme as

Cpx, x̂q “
αS

2π

1

ε

peγEqε

Γp1´ εq

ˆ

µ2

µ2
F

˙ε
”

P̄apxq δp1´ x̂q ` P̄bpx̂q δp1´ xq
ı

Bpxka, x̂kbq , (2.7)

where P̄ipxq represent the lowest-order four-dimensional regularised Altarelli-Parisi split-
ting kernels (for their explicit expressions, see Appendix B.1).

While the finiteness of the comprehensive NLO correction in Eq. (2.5) is ensured by
the KLN theorem [93, 94] supplemented with PDF renormalisation, as well as by the
IRC-safety of X, the n-body and pn ` 1q-body contributions are manifestly divergent
when considered separately, thus preventing a straightforward numerical evaluation. In
dimensional regularisation, where amplitudes are evaluated in d “ 4 ´ 2ε space-time di-
mensions, such divergences appear at NLO as double and single 1{ε poles in the expression
of V . On the other hand, the real contribution R, which is finite for εÑ 0, features IRC
phase-space singularities which translate into double and single 1{ε poles upon integration
over the radiative phase space.

The procedure of infrared subtraction enables the explicit cancellation of such poles,
while avoiding analytic integration of the full real-radiation amplitudes. This is accom-
plished by adding and subtracting to Eq. (2.5) a counterterm cross section

dσNLO

dX

ˇ

ˇ

ˇ

ˇ

ct

”

ż

dΦn`1K δnpXq

”

ż

dΦn I δnpXq `

ż

dΦxx̂
n Jpx, x̂q δnpXq . (2.8)

The local counterterm K is designed so as to reproduce the singular IR behaviour of the
real-radiation matrix element R locally in phase space, and at the same time, it is expected
to be simple enough to be analytically integrated in the phase space of the unresolved
radiation (once a parametrisation of the radiative phase space is in place). The outcome
of this integration can be recast into the sum of an px, x̂q-independent contribution I and
an px, x̂q-dependent contribution J , which exhibit the same ε - pole content (with opposite
signs) as V and Cpx, x̂q, respectively. It is now possible to rewrite Eq. (2.5) identically as

dσNLO

dX
“

ż

dΦnV subpXq `

ż

dΦn`1R subpXq `

ż

dΦxx̂
n C subpXq , (2.9)

with

V subpXq “
`

V ` I
˘

δnpXq , (2.10)

R subpXq “ R δn`1pXq ´K δnpXq , (2.11)

C subpXq “ Cpx, x̂q δnpXq ` Jpx, x̂q δnpXq . (2.12)
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Each contribution in Eqs. (2.10)-(2.12) is now separately finite in d “ 4 dimensions, and
therefore well-suited for numerical evaluations of the corresponding phase-space integrals.
In particular, the subtracted real matrix element R subpXq is free from phase-space singu-
larities by construction, V subpXq is finite as εÑ 0 as a consequence of the KLN theorem,
and C subpXq contains just px, x̂q-dependent non-singular remainders. Notice once again
that the IRC safety of the observable X is necessary for the cancellation, which requires
that δn`1pXq turns smoothly into δnpXq in all unresolved limits.

It is worth emphasising that the points discussed above equally apply to lepton-hadron
collisions, up to the formal substitutions

ż

dΦxx̂
n Ñ

ż

dΦx
n ”

ż 1

0

dx

x

ż

dΦnpxkaq ,

Cpx, x̂q Ñ Cpxq ”
αS

2π

1

ε

peγEqε

Γp1´ εq

ˆ

µ2

µ2
F

˙ε

P̄apxqBpxkaq , (2.13)

which, as a consequence, necessitate the definition of a single-argument counterterm Jpxq

instead of Jpx, x̂q. In lepton-lepton collisions, the structure further simplifies because of
the absence of x-variable dependencies (the collinear term of Eq. (2.5) vanishes), and the
integration of the counterterm K reduces to

ż

dΦn`1K δnpXq “

ż

dΦn I δnpXq . (2.14)

2.2 The subtracted real contribution Rsub

In this Section we approach the step-by-step construction of the local counterterm K

within the context of Local Analytic Sector Subtraction, such as to enable the definition
of an integrable real correction Rsub. As outlined in Section 1.3.3, the strategy we propose
is based on the introduction of a unitary phase-space partition (Sec. 2.2.1), which helps to
disentangle the overlapping structure of singularities, and consequently to sketch a first
minimal candidate counterterm (Sec. 2.2.2). However, this formulation suffers from the
presence of Born-level matrix elements potentially evaluated with unphysical n-body kine-
matics. This issue can be solved through appropriate phase-space mappings (Sec. 2.2.3).
At this stage, we are finally able to design a proper local counterterm (Sec. 2.2.4), and
thanks to a detailed analysis testing the actual locality of the subtraction, we can claim
the construction of a real-radiation correction Rsub which is finite and integrable in the
whole phase space. Lastly, we explore two different types of optimisations for the local
counterterm K, with the aim of laying the foundations for an efficient implementation of
our subtraction algorithm in a numerical framework. The first optimisation introduces a
symmetrised phase-space partition (Sec. 2.2.5), reducing the overall number of sectors and
limits that need to be evaluated in a NLO computation. The second suggestion modifies
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singular kernels with damping factors (Sec. 2.2.6), such as to constrain the counterterm
contribution away from the singular phase-space regions, thus preventing potential insta-
bilities in the cancellation between R and K.

2.2.1 Sector functions

First, we define projection operators Si and Cij that extract from the real-radiation
squared matrix element R its singular behaviour in soft and collinear limits. In practice, it
is necessary to pick specific phase-space variables in order to perform the projection, and
we opt for Lorentz-invariant quantities. More precisely, we introduce the dimensionless
variables

ei ”
sqi
s
, wij ”

ssij
sqisqj

“
1´ cos θij

2
, (2.15)

associated with the energy of the parton i and the angle between i and j particles in the
centre-of-mass frame, respectively; moreover, s is the centre-of-mass energy with partonic
centre-of-mass four momentum qµ “ p

?
s,~0 q, sij “ 2ki ¨kj and sq` “ 2q ¨k`. We proceed by

defining Si as extracting the leading power in ei, and Cij “ Cji as extracting the leading
power in wij. It is straightforward to verify that, with this definition, the two operators
commute when acting on the squared matrix element, Si Cij R “ Cij SiR.

Local Analytic Sector Subtraction builds upon the well known idea [16, 17] of dividing
the radiative phase space into regions, each of which tied to the IRC singularities stemming
from an identified set of partons (two at NLO). This can be achieved by introducing a
unitary phase-space partition,

ÿ

i

ÿ

j‰i

Wij “ 1 , (2.16)

defined by sector functions, Wij, namely a set of kinematical weights smoothly dampening
all radiative singularities but those due to particle i becoming soft, or becoming collinear
to a second particle j, as

SiWab “ 0 , @ i ‰ a , (2.17)

Cij Wab “ 0 , @ ab R tij, jiu . (2.18)

We formulate our sector functions in terms of Lorentz invariants. Specifically, we define1

Wij ”
σij

ř

k‰l σkl
, σij ”

θiPF
eiwij

, (2.19)

1Eq. (2.19) generalises the definition of sector functions firstly proposed in [199] to processes involving partonic
initial states.
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where the symbol θC is 1 or 0 if condition C is or is not fulfilled, so that θaPF (θaPI)
enforces parton a to belong to the final (initial) state. These sector functions have the
further defining property of satisfying the following sum rules, namely

Si
ÿ

k‰i

Wik “ θiPF , Cij

`

Wij `Wji

˘

“ 1´ θiPI θjPI , Si Cij Wij “ θiPF , (2.20)

which express that the sum over all sectors that share a given soft or collinear singularity
still forms a partition of unity. Eq. (2.20) not only guarantees that, upon summing over
sectors, the full soft and collinear singularities will be recovered, but it also allows to
eliminate sector functions upon suitable combination of particle labels, which will prove
crucial in view of analytic counterterm integration.

2.2.2 Candidate local counterterm

Considering now one partition at a time, we can readily identify a combination which is
by construction integrable in the radiative phase space: this is achieved by collecting the
singular limits which are relevant within each real contribution RWij, and subsequently
subtracting them from it. Indeed, in sector pijq

p1´ Siq p1´Cijq RWij “ RWij ´ L
p1q
ij RWij Ñ integrable , (2.21)

where we defined the set of projectors

L
p1q
ij ” Si `Cij ´ Si Cij (2.22)

as the incoherent sum of soft and collinear limits, corrected by the ´Si Cij term which
removes the double-counting of soft-collinear configurations. We stress here that the
operators Si and Cij are defined to act on all elements located to their right: therefore,
when denoting a generic singular limit as L, the relation LRWij ” pLRq pL Wijq is
understood. Performing the sum over sectors, we get to the expression for our candidate
local counterterm, namely

ÿ

i

ÿ

j‰i

L
p1q
ij RWij ”

ÿ

i

ÿ

j‰i

”

Si `Cij

`

1´ Si
˘

ı

RWij , (2.23)

which satisfies the requirement of reproducing the singular behaviour of the real matrix
element in all soft and collinear regions of phase space. In particular, when such soft and
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collinear projection operators act on sector functions as defined in Eq. (2.19), one obtains

SiWij “ θiPF
1{wij
ř

l‰i

1{wil
,

Cij Wij “ θiPF

´

θjPF
ej

ei ` ej
` θjPI

¯

,

Si Cij Wij “ θiPF , (2.24)

which clearly strictly depend on the specific definition introduced for Wij. Conversely, the
singular parts of the QCD matrix elements for real emission can be singled out in a general
way by using the factorisation properties of soft and collinear radiation. Despite the well-
known structure of such universal process-independent singular kernels, we report below
the soft and collinear factorised expression for R written in terms of Lorentz invariants
and in a manifestly flavour-symmetric notation, that we will later adopt for defining our
NLO counterterm.

Soft limit

The real matrix element squared can be expressed in the soft limit Si as

SiR “ ´N1

ÿ

c‰i

ÿ

d‰i,c

E piqcd Bcd

`

tku{i
˘

, (2.25)

where the eikonal kernel,

E piqcd “ θiPF δfig
scd
sic sid

, (2.26)

is non-vanishing only if the final-state parton i, with flavour fi, is a gluon. Note that no
constraints on particle (initial or final) position have been placed on the sums running
over c and d in Eq. (2.25). The soft kinematics tku{i represents the set of real-radiation
momenta after removal of soft momentum ki. The colour-correlated Born matrix element
is schematically defined as

Bcd “ Ap0q˚n pTc ¨TdqAp0qn , (2.27)

where An is understood as a ket in colour space [18] which undergoes non-trivial trans-
formations under the action of the SU(Nc) generators Ta. Lastly, the coefficient N1 reads

N1 “ 8παS

ˆ

µ2eγE

4π

˙ε

. (2.28)
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Collinear limit

The kinematics of a pair of final-state particles i and j subjected to a collinear split-
ting rijs Ñ i ` j in the Cij limit can be described with the introduction of a Sudakov
parametrisation of momenta, as

kµi “ zi k̄
µ
rijs `

rkµF ´
1

zi

rk2
F

srijsr
kµr , kµj “ zj k̄

µ
rijs ´

rkµF ´
1

zj

rk2
F

srijsr
kµr , (2.29)

kµ
rijs ” kµi ` k

µ
j , srijsr ” sir ` sjr , k̄µ

rijs “ kµ
rijs ´

sij
srijsr

kµr , r “ rij ,

where massless vector k̄µ
rijs identifies the collinear direction, while k

µ
r represents a light-like

reference vector whose prescription r “ rij enforces r to be any particle different from
i, j, chosen according to the rule defined in Eq. (A.13) (in this case it means that the
same r must be chosen for the pair ij and for the pair ji). The zi variable represents the
longitudinal momentum fraction of the ki momenta, and rkµF the transverse momentum of
parton i with respect to the collinear direction, which respectively read

zi “
sir
srijsr

, rkµF “ kµi ´ zi k
µ
rijs ´ p1´ 2ziq

sij
srijsr

kµr , (2.30)

satisfying the conditions zi ` zj “ 1, rkF ¨ k̄rijs “ rkF ¨ kr “ 0. In the alternative case in
which the collinear configuration involves an outgoing parton i and an incoming parton
j, described with the splitting j Ñ rijs ` i, the final-state momentum kµi is parametrised
in terms of its transverse momentum rkµI and the longitudinal momentum fraction xi, as

kµi “ xi k
µ
j `

rkµI ´
1

xi

rk2
I

sjr
kµr , (2.31)

where

xi “
sir
sjr

, rkµI “ kµi ´ xi k
µ
j ´

sij
sjr

kµr , (2.32)

satisfying xrijs ` xi “ 1, rkI ¨ kr “ rkI ¨ kj “ 0. The collinear direction is identified by

k̄µ
rijs “ xrijs k

µ
j ´

rkµI ´
1

xrijs

rk2
I

sjr
kµr . (2.33)

The universal un-regularised (d-dimensional) Altarelli-Parisi splitting kernels [97–99] are
matrices in spin space which encode the collinear behaviour of R, and can be compactly



2.2. The subtracted real contribution Rsub 37

written as

P µν
abprq,‹pξq “ Pabprqpξq

`

´gµν
˘

`Qabprq,‹pξq

«

´gµν ` pd´ 2q
rkµ‹

rkν‹
rk2
‹

ff

, (2.34)

where ξ represents the longitudinal momentum fraction of splitting parton a, and the
dependence on ‹ “ I,F will be specified in a moment2. We also make the dependence
of such kernels on the reference vector r explicit in the subscript abprq, as it enters the
definition of the longitudinal fraction ξ (see Eqs. (2.30) and (2.32)). In a manifestly
flavour-symmetric notation, the spin- averaged components Pabprqpξq of Eq. (2.34) read

Pabprqpξq“ δfagδfbg 2CA

„

ξ

1´ ξ
`

1´ ξ

ξ
` ξp1´ ξq



` δtfafbutqq̄u TR

„

1´
2 ξp1´ ξq

1´ ε



(2.35)

` δfatq,q̄uδfbg CF

„

2
ξ

1´ ξ
` p1´ εqp1´ ξq



` δfagδfbtq,q̄uCF

„

2
1´ ξ

ξ
` p1´ εq ξ



,

where we introduced flavour delta functions as

δfatq,q̄u ” δfaq ` δfaq̄ , δtfafbutqq̄u ” δfaq δfbq̄ ` δfaq̄ δfbq , (2.36)

which, respectively, specify the cases in which a particle a is a quark or anti-quark, or the
particles ab are a quark/anti-quark pair of the same flavour. According to QCD helicity
conservation, the collinear azimuthal kernels Qabprq,‹pξq are non-zero only when the virtual
parton participating in the splitting is a gluon: the expression for Qabprq,‹pξq thus depends
on whether the virtual gluon is the outgoing splitting parent (‹ “ F),

Qabprq,Fpξq “ ´ δfagδfbg 2CA ξp1´ ξq ` δtfafbutqq̄u TR
2 ξp1´ ξq

1´ ε
, (2.37)

or the incoming splitting sibling (‹ “ I),

Qabprq,Ipξq “ ´ δfagδfbg 2CA
1´ ξ

ξ
´ δfagδfbtq,q̄u 2CF

1´ ξ

ξ
. (2.38)

This notation is indeed reminiscent of the fact that at NLO the two cases are relevant to
final- and initial-state splittings, respectively.

2Note that the formulation of the Altarelli-Parisi kernels in Eq. (2.34) is analogous to the one reported in
Eq. (C.8) when restricted to final-state particle splittings.
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In terms of such kernels, the collinear Cij limit of the real matrix element can be
written as

Cij R “
N1

sij

«

θiPF θjPF P
µν
ijprq,FpziqBµν

`

tku{i{j, krijs
˘

` θiPF θjPI
P µν
rijsiprq,Ipxrijsq

xrijs
Bµν

`

tku{i{j, xrijskj
˘

` θjPF θiPI
P µν
rjisjprq,Ipxrjisq

xrjis
Bµν

`

tku{i{j, xrjiski
˘

ff

, (2.39)

where Bµν is the spin-correlated Born amplitude obtained by stripping the gluon polari-
sation vectors from the matrix element and from its complex conjugate, while ptku{a{b, kcq
is the real-radiative kinematics with ka and kb removed and replaced by kc. Note that the
factorised structure in Eq. (2.39) shows an overall symmetry in iØ j index exchange. In
particular, the first two lines of Eq. (2.39) can be pictorially represented in the left and
right panels of Figure 2.1, respectively, while the third line is obtained from the second
upon iØ j exchange.

Figure 2.1. Final-state (left) splitting and initial-state (right) splitting.

Soft-collinear limit

In the soft-collinear Si Cij limit, an outgoing gluon i exhibits both soft and collinear
behaviour with respect to an initial- or final-state parton j. The corresponding kernel is

Si Cij R “ Cij SiR “ N1 2Cfj E piqjr Bptku{iq , (2.40)

where Cfj “ CA δfjg `CF δfjtq,q̄u is the SU(Nc) Casimir operator associated to flavour fj;
moreover, in this case fj “ frijs since the δfi function within the eikonal kernel (2.26)
forces i to be a gluon.

For later convenience, we define the hard-collinear version of the Altarelli-Parisi kernels
in Eq. (2.35), which are obtained by removing their respective soft limits: for a final-state
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splitting, both collinear siblings i and j can induce a soft singularity, thus

P hc
ijprq,Fpziq ”

`

1´ Si ´ Sj
˘

Pijpziq

“ δfigδfjg 2CA zi zj ` δtfifjutqq̄u TR

ˆ

1´
2 zizj
1´ ε

˙

` δfitq,q̄uδfjg CF p1´ εq zj ` δfigδfjtq,q̄uCF p1´ εq zi , (2.41)

while, in an initial-state splitting, just the outgoing sibling i can potentially be soft, so

P hc
rijsiprq,Ipxrijsq ” xrijs

`

1´ Si
˘ Prijsiprqpxrijsq

xrijs
(2.42)

“ δfrijsgδfig 2CA

„

xi
xrijs

` xrijsxi



` δtfrijsfiutqq̄u TR

„

1´
2 xrijsxi

1´ ε



` δfrijstq,q̄uδfig CF p1´ εqxi ` δfrijsgδfitq,q̄uCF

„

2
xi
xrijs

` p1´ εqxrijs



.

In analogy with Eq. (2.34), we introduce the compact notation3

P µν, hc
abprq,‹pξq “ P hc

abprq,‹pξq
`

´gµν
˘

`Qabprq,‹pξq

«

´gµν ` pd´ 2q
rkµ‹

rkν‹
rk2
‹

ff

. (2.43)

2.2.3 Phase-space mappings

Although the candidate counterterm in Eq. (2.23) locally reproduces all phase-space sin-
gularities of the real matrix element, it cannot yet be used directly in Eq. (2.9): in fact,
the Born matrix elements which factorise in the soft and collinear limits result evaluated
with n-body kinematics that either do not satisfy momentum conservation (in the soft
case, tku{i in Eq. (2.25)), or feature an off-shell leg (in the collinear case, (tku{a{b, kc) in
Eq. (2.39)) outside the relevant singular region of phase space.

Conversely, it is essential for the Born matrix elements appearing in counterterms to
have a physical (i.e. on-shell and momentum conserving) n-body kinematics for all choices
of the n` 1 radiative momenta, and not only for specific singular configurations. For this
purpose, we must introduce a set of mappings that relate the pn` 1q-particle momenta
tku to the n-particle momenta tk̄u, preserving at the same time the soft and collinear
limits at leading power. A convenient way of achieving this is through the adoption of
the Catani-Seymour mappings [18], which generally involve a triplet of massless momenta
ka, kb, and kc (the emitted, emitter, and recoiler parton, respectively) and map them onto
a dipole of Born-level momenta k̄pabcqb and k̄

pabcq
c

4. Based on the position of the chosen
triplet of real momenta, we employ distinct mapping prescriptions:

3Eq. (2.43) coincides with Eq. (C.11) when restricted to final-state particle splittings.
4This prescription does not apply to the initial-initial case in the third panel of Figure 2.2, where all final

states are shifted by the defined mapping (see Eq. (2.51) below).
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• For three final-state momenta ka, kb, kc (all different), as in leftmost configuration
of Figure 2.2, we construct the n-tuple

tk̄upabcq “
!

tku{a{b{c, k̄
pabcq
b , k̄pabcqc

)

, (2.44)

with

k̄
pabcq
b “ ka ` kb ´

y

1´ y
kc , k̄pabcqc “

1

1´ y
kc , (2.45)

and all other momenta left unchanged k̄pabcqi “ ki, i ‰ a, b, c (for i running from 1 to
n` 1), where we defined the kinematic variables y and z as

y “
sab
sabc

, z “
sac

sac ` sbc
, (2.46)

such that 0 ď y, z ď 1.

• For two different final-state momenta ka, kb and an initial-state momentum kc, as in
the central panel of Figure (2.2), we construct the n-tuple

tk̄upabcq “
!

tku{a{b{c, k̄
pabcq
b , k̄pabcqc

)

, (2.47)

with

k̄
pabcq
b “ ka ` kb ´ p1´ xq kc , k̄pabcqc “ x kc , (2.48)

and all other momenta left unchanged (k̄pabcqi “ ki, i ‰ a, b, c); here we introduced
the kinematic variables x and z as

x “
sac ` sbc ´ sab
sac ` sbc

, z “
sac

sac ` sbc
, (2.49)

such that 0 ď x, z ď 1.

• For one final-state momentum ka and two different initial-state momenta kb, kc (last
configuration in Figure 2.2), we construct the n-tuple

tk̄upabcq “
!

tku{a{b­f , k̄
pabcq
b , k̄

pabcq
f

)

, (2.50)

where kf “ tkjujPF, j‰a stands for the collection of all final-state momenta different
from ka; in this setting,

k̄
pabcq
b “ x kb , k̄

pabcq
f “ kf ´

2kf ¨pK ` sKq

pK ` sKq2
pK ` sKq `

2kf ¨K

K2
sK , @f ‰ a ,

(2.51)
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where the momentum kc is left unchanged (k̄pabcqc “ kc), and

K “ kb ` kc ´ ka , sK “ k̄
pabcq
b ` k̄pabcqc . (2.52)

The kinematic variables adopted in this case, satisfying 0 ď x, v ď 1, are

x “
sbc ´ sab ´ sac

sbc
, v “

sab
sab ` sac

. (2.53)

Figure 2.2. Final-final (left), final-initial (middle), and initial-initial (right) dipoles.

All kinematic mappings listed above satisfy the on-shell requirement,

`

k̄pabcqm

˘2
“ 0 , m “ 1, . . . , n , (2.54)

as well as the momentum-conservation condition, according to

θaPF θbPF θcPF : k̄
pabcq
b ` k̄pabcqc “ ka ` kb ` kc ,

θaPF θbPF θcPI : k̄
pabcq
b ´ k̄pabcqc “ ka ` kb ´ kc ,

θaPF θbPI θcPI :
ÿ

iPF
i‰a

k̄
pabcq
i ´ k̄

pabcq
b ´ k̄pabcqc “

ÿ

iPF
i‰a

ki ` ka ´ kb ´ kc . (2.55)

One easily verifies that the sets of momenta reported in the left- and right-hand sides of
Eq. (2.55) respectively coincide when ka vanishes (i.e. it goes soft), and when ka becomes
collinear to kb.

In turn, each of these mapping operations lead to the factorisation of the pn` 1q-body
phase space dΦn`1 into a remapped n-body phase space dΦn times a single-radiative
measure dΦrad: this factorisation can be exact when just final-state particles are involved,
or it may feature an additional convolution with respect to the variable x defining the
boost applied to the initial-state momentum, as in Eqs. (2.48) and (2.51). In both cases,
the resulting phase-space factorisations enable the independent analytic integration of the
radiative degrees of freedom at fixed underlying Born kinematics. More details will be
given when approaching the counterterm integration in Section 2.3.
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2.2.4 Local counterterm with improved limits

Finally, we can promote the candidate counterterm (2.23) to a local counterterm K: all
we need to do is to make use of the factorised expressions for soft and collinear limits of
R, and evaluate the corresponding Born-level squared matrix elements with well-defined
mapped n-body kinematics. To achieve this, we introduce improved versions of our limit
operators Si and Cij, which are defined at NLO to project on leading-power soft and
collinear limits (as was the case for their bare formulation), while simultaneously apply-
ing the selected phase-space mappings. Furthermore, the freedom left in this procedure of
defining the action of the improved singular limits allows also for the potential introduc-
tion of modifications in the kernel structures, which may turn out to be instrumental in
minimising the structural complexity of the counterterm, and possibly curing undesirable
spurious effects.

In practice, there is considerable flexibility in how to associate mappings to singular
kernels, as long as they do not compromise the locality of the subtraction (more details on
this specific requirement will be given shortly): in particular, the choice of the mapping
dipoles can be adapted to the identity of the partons involved in the singular configuration.
In the soft limit, each eikonal kernel E piqcd leads reasonably to the choice picdq or pidcq,
where the momentum of the first particle in the triplet (i.e. i) is the one vanishing in
the soft limit; on the other hand, the most natural mapping for collinear limits involves
the splitting partons and the recoiler, as pabcq “ pijrq or pabcq “ pirjq. Denoting with a
bar the improved limits Si and Cij which convey in their action the kinematic mappings
according to the aforementioned prescription, we thus define the soft counterterm to be

SiR “ ´ 2N1

ÿ

c‰i

ÿ

d‰i
dăc

E piqcd
„

`

θcPI θdPI ` θcPF θdPI ` θcPF θdPF
˘

B̄
picdq
cd ` θcPI θdPF B̄

pidcq
cd



,(2.56)

where the colour-correlated Born matrix elements B̄pabcq... ” B...ptk̄u
pabcqq are evaluated with

mapped momenta, and are therefore also denoted with a bar and with a label identifying
the specific mapping to be employed. As for collinear and soft-collinear kernels, we define

Cij R “
N1

sij

«

θiPF θjPF P
µν
ijprq,Fpzq B̄

pijrq
µν

` θiPF θjPI
P µν
rijsiprq,Ipxq

x

´

θrPF B̄
pirjq
µν ` θrPI B̄

pijrq
µν

¯

` θjPF θiPI
P µν
rjisjprq,Ipxq

x

´

θrPF B̄
pjriq
µν ` θrPI B̄

pjirq
µν

¯

ff

, (2.57)

Si Cij R “ N1 2Cfj E piqjr

«

θjPF B̄
pijrq

` θjPI

´ θrPF
1´ z

B̄pirjq ` θrPI p1´ vq B̄
pijrq

¯

ff

, (2.58)
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where the rule r “ rij applies for both expressions. Note that the soft-collinear coun-
terterm in Eq. (2.58) features extra kinematical factors multiplying the singular kernels,
which are written in terms of the variable z (defined as in Eq. (2.49) for the θjPIθrPF
term) and the variable v (defined as in Eq. (2.53) for the θjPIθrPI term)5, which serve
the purpose of reconstructing the hard-collinear kernels of Eqs. (2.41) and (2.42) in the
following compact form,

HCij R ” p1´ Si ´ SjqCij R

“
N1

sij

«

θiPF θjPF P
µν, hc
ijprq,Fpzq B̄

pijrq
µν

` θiPF θjPI
P µν, hc
rijsiprq,Ipxq

x

´

θrPF B̄
pirjq
µν ` θrPI B̄

pijrq
µν

¯

` θjPF θiPI
P µν, hc
rjisjprq,Ipxq

x

´

θrPF B̄
pjriq
µν ` θrPI B̄

pjirq
µν

¯

ff

, (2.59)

where we have defined Sj Cij ” Sj Cji.
At this stage, the definition in our local counterterm still lacks one final ingredient to be

complete, which is the specification of how the improved projectors, denoted collectively
with L “ Si, Cij, Si Cij, operate on sector functions. The simplest and straightforward
option is to set

L Wab ” LWab , (2.60)

essentially leaving unchanged the action of the improved limits L with respect to the
un-improved operators L (see Eq. (2.24) for explicit expressions). However, there is
nothing that actually prevents us from redefining their structure in order to meet certain
conditions.

The combination of all the ingredients discussed so far finally leads to define the sought
local counterterm K as

K ”
ÿ

i

ÿ

j‰i

Kij , Kij ”

”

Si `Cij ´ Si Cij

ı

RWij , (2.61)

where again LRWij ” pLRq pL Wijq. As mentioned earlier, the entire construction and
consequent validity of the counterterm K is crucially subjected to the stringent require-
ment that the improved operators must preserve the correct soft and collinear limits of R
in order to guarantee the locality of the subtraction procedure. In practise, this condition,

5We emphasise that the definitions of the z, x, and v variables in the previous equations are mapping-
dependent: for instance, one should correctly interpret the notation fpxqpθrPF B̄

pirjq
µν ` θrPI B̄

pijrq
µν q to mean

θrPF fpx
pirjq

q B̄
pirjq
µν ` θrPI fpx

pijrq
q B̄

pijrq
µν , and similarly for the other terms.
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explicitly as

RWij ´Kij “ RWij ´
`

Si `Cij ´ Si Cij

˘

RWij Ñ integrable , (2.62)

translates into the verification of a set of consistency relations. Specifically, for Eq. (2.62)
to be true, it must be checked that the leading divergences cancel under the primary 6

limits Si and Cij, as

Si

”

RWij ´
`

Si `Cij ´ Si Cij

˘

RWij

ı

Ñ integrable ,

Cij

”

RWij ´
`

Si `Cij ´ Si Cij

˘

RWij

ı

Ñ integrable , (2.63)

leading to

Si SiRWij “ SiRWij , Cij Cij RWij “ Cij RWij ,

Si Si Cij RWij “ Si Cij RWij , Cij Si Cij RWij “ Cij Cij RWij . (2.64)

Under the assumption (2.60) for sector functions, these expressions easily reduce to

Si SiR “ SiR , Cij Cij R “ Cij R ,

Si Si Cij R “ Si Cij R , Cij Si Cij R “ Cij SiR . (2.65)

Once these relations are satisfied, they provide evidence of the correctness of our mapping-
adaptation procedure and further redefinitions of singular structures, ultimately ensuring
the cancellation of phase-space singularities. It can be checked (see Appendix B.2) that the
consistency relations in Eq. (2.65) are verified by the definitions of the soft and collinear
counterterms in Eqs. (2.56)-(2.59).

Instabilities within counterterms

However, the freedom we are exploiting to rework singular kernel definitions through im-
proved limits can prove to be a double-edged sword: in fact, despite the local cancellation
being checked by consistency relations, the quantity Kij defined in Eq. (2.61) contains a
subtlety, which must be analysed with care. Let’s consider, for example, the final-state7

DGLAP kernels P µν
ijprq,F reported in Eq. (2.34), which are written in terms of the invariants

zi “
sir

sir ` sjr
, zj “

sjr
sir ` sjr

, (2.66)

6The adjective primary pertains to the singular limits selected by sector functions, to be distinguished from
the auxiliary limits, which we will elaborate on in the next Section.

7The following discussion holds equally for initial-state Altarelli-Parisi splitting kernels.
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as opposed to the energy fractions ei{pei` ejq, ej{pei` ejq. This is a useful choice in view
of analytical integration, and a legitimate one since xi and xj reduce to ei and ej in the
collinear limit Cij. This choice, however, introduces spurious singularities in the collinear
limits Cir and Cjr, which are generated by the denominators of the Altarelli-Parisi kernels,
and are not present in RWij. As a result, the combination p1´ Siqp1´CijqRWij is not
integrable in those limits. Nevertheless, the problem can be solved by using our freedom
to define the action of the improved operators Si and Cij on the sector functions Wij,
whose structure has been so far left unchanged within the local counterterm. These new
definitions we introduce as (r “ rij)

SiWij “ θiPF
1{wij
ř

l‰i

1{wil
,

Cij Wij “ θiPF

ˆ

θjPF
ej wjr

eiwir ` ej wjr
` θjPI

˙

,

Si Cij Wij “ θiPF , (2.67)

in fact represent a modification of Eq. (2.24). The presence of the angular factors wir
and wjr vanishing in the Cir and Cjr limits respectively, allows to satisfy the following
auxiliary consistency relations

Cir

!

1 , Si , Cij

`

1´ Si
˘

)

RWij Ñ integrable ,

Cjr

!

1 , Si , Cij , Si Cij

)

RWij Ñ integrable , (2.68)

on top of the standard ones, corresponding to Eq. (2.65), which now need to be written
explicitly including also sector functions. More compactly, one has

Si

!

`

1´ Si
˘

, Cij

`

1´ Si
˘

)

RWij Ñ integrable ,

Cij

!

`

1´Cij

˘

, Si
`

1´Cij

˘

)

RWij Ñ integrable . (2.69)

Recall that in Eq. (2.68) the index r labels the reference vector used to define the collinear
kernel P µν

abprq,‹: in fact, all collinear projection operators Cab should properly be labelled
with the index r, which in general we omit for brevity. Notice also that our definition of
improved limits of sector functions, Eq. (2.67), is not symmetric under i Ø j exchange.
As a consequence, the two lines of Eq. (2.68) are not identical: in the first line, only the
combination Cijp1 ´ Siq gives an integrable result in the ir collinear limit, when acting
on RWij (which is sufficient for our purposes), while in the second line Cij and Si Cij

give separately integrable contributions in the jr collinear limit.
With the definitions provided in Eqs. (2.56)-(2.59) supplemented by Eq. (2.67), we can

build the local counterterm K, as presented in Eq. (2.61), which is sufficient to construct a
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fully functional subtraction algorithm at NLO. Finally, the subtracted real matrix element
squared is given by

R subpXq “
ÿ

i,j‰i

R sub
ij pXq , R sub

ij pXq “ RWij δn`1pXq ´Kij δnpXq . (2.70)

In the previous Sections, we have presented what can be considered the basic imple-
mentation of our counterterm. However, we are of the opinion that there is good potential
to introduce optimisations in the various stages of the formulation.

2.2.5 Room for optimisation: symmetrised phase-space partition

We acknowledge that sector functions Wij are a valuable tool to identify the improved
limits to be defined, and the consistency relations they must satisfy, but we are also
aware of the fact that the stability of numerical integrations generally improves when
sectors involving the same parametrisations are combined (specifically, in our case, sector
functions sharing a collinear singularity would be parametrised in the same way in a
numerical code). To pursue this idea, we introduce symmetrised sector functions as

Zij “ Wij `Wji , (2.71)

whose corresponding improved limits read

SiZij “ θiPF
1{wij
ř

l‰i

1{wil
, Sj Zij “ θjPF

1{wij
ř

l‰j

1{wjl
,

Cij Zij “ 1´ θiPI θjPI , Si Cij Zij “ θiPF , Sj Cij Zij “ θjPF . (2.72)

This symmetrised phase-space partition reduces the overall number of sectors and singular
limits to be evaluated, thus simplifying the scheme (to some extent) and enhancing its
numerical efficiency. In fact, the counterterm K, with symmetrised sector functions, can
be written as

K “
ÿ

i,jąi

Ktiju , Ktiju “
`

Si ` Sj `HCij

˘

RZij , (2.73)

recalling that HCij “ Cijp1 ´ Si ´ Sjq. The subtracted real contribution can now be
written as

R subpXq “
ÿ

i,jąi

R sub
tijupXq , R sub

tijupXq “ RZij δn`1pXq ´Ktiju δnpXq . (2.74)
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A third expression for the NLO counterterm8, is obtained by summing over all sectors.
Using sum rules in Eq. (2.20), one can then write

R subpXq “ R δn`1pXq ´K δnpXq , (2.75)

with

K “
ÿ

i

SiR `
ÿ

i,jąi

HCij R . (2.76)

Here K results purely defined as a collection of universal soft and collinear NLO kernels.
This last formulation is particularly well-suited for counterterm integration: not only
this avoids analytically integrating over the (arbitrarily complicated) sector functions,
but it also eliminates the necessity to recompute the integrated counterterms I and J

(see Eq. (2.8)) upon redefinition of the sectors themselves, provided the sum rules in
Eq. (2.20) are preserved. Conversely, the expression for R subpXq in Eq. (2.74), with
symmetrised sector functions, is to be preferred for the numerical implementation, since
it allows to parallelise the contribution of different sectors, and to independently optimise
their numerical evaluation.

2.2.6 Room for optimisation: damping factors

Since the subtraction procedure is necessary only in the infrared corners of the phase
space, one has the flexibility to adjust the counterterm contribution in the non-singular
regions, thereby reducing potential numerical instabilities. This is customarily achieved
in the literature by introducing parameters (such as the α parameter in CS [204], and
the δ and ξcut parameters in FKS [16]) that impose a hard boundary to the phase space
allowed for counterterms. The improved numerical stability of this procedure generally
comes at the cost of a more cumbersome analytic counterterm integration, which may
become untenable at NNLO.

What we propose, instead, is to multiply the local counterterms in Eqs. (2.56)-(2.58)
with smooth damping factors (as opposed to hard step functions) in order to gradually
suppress their contribution away from the singular regions. Although there is some flexi-
bility in constructing such damping factors, provided the validity of Eqs. (2.68) and (2.69)
is not spoiled, it is highly convenient to define them as powers, with tunable exponents,
of the kinematic invariants proper of the chosen phase-space parametrisation. This ap-
proach allows controlled inclusion of subleading power terms in the normal variables used
to write the IRC kernels. As a result, the presence of damping factors does not impact the
complexity of the analytic integrations, which is crucial for exporting this optimisation to

8We already provided the counterterm definition (2.61) in terms of Wij functions, and the expression (2.73)
in terms of Zij functions.
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higher perturbative orders. The explicit dependence of (the finite part of) the integrated
counterterms upon the damping parameters, namely the tunable exponents mentioned
above, must cancel against an analogous dependence in the local counterterms, which is
known to offer a powerful handle to verify the numerical implementation of the subtraction
method.

We start by including damping factors in the soft counterterm, Eq. (2.56):

SiR “ ´ 2N1

ÿ

c‰i

ÿ

d‰i
dăc

E piqcd
"

θcPF p1´ zq
α
”

θdPF p1´ yq
α
` θdPI x

α
ı

B̄
picdq
cd

` θcPI x
α
”

θdPF p1´ zq
α B̄

pidcq
cd ` θdPI B̄

picdq
cd

ı

*

, (2.77)

where α ě 0, and the kinematic variables x, y, z are those associated to the picdq or pidcq
phase-space mappings, i.e. they are different for each term in the eikonal double sum. In
detail, they are defined as in Eq. (2.46), Eq. (2.49), Eq. (2.53) for pcdq “ FF,FI{IF, II,
respectively. The case with no damping, Eq. (2.56), is simply obtained by setting α “ 0.

As far as collinear and soft-collinear contributions are concerned, we modify Eq. (2.57)
and Eq. (2.58) as

Cij R “
N1

sij

#

θiPF θjPF P
µν
ijprq,Fpzq

”

θrPF p1´ yq
β
` θrPI x

β
ı

B̄pijrqµν

` θiPF θjPI
P µν
rijsiprq,Ipxq

x

”

θrPF p1´ zq
γ B̄pirjqµν ` θrPI p1´ vq

γ B̄pijrqµν

ı

` θjPF θiPI
P µν
rjisjprq,Ipxq

x

”

θrPF p1´ zq
γ B̄pjriqµν ` θrPI p1´ vq

γ B̄pjirqµν

ı

+

, (2.78)

Si Cij R “ N1 2Cfj E piqjr
"

θjPF p1´ zq
α
”

θrPF p1´ yq
β
` θrPI x

β
ı

B̄pijrq

` θjPI x
α
”

θrPF p1´ zq
γ´1B̄pirjq ` θrPI p1´ vq

γ`1B̄pijrq
ı

*

, (2.79)

where α is the same exponent appearing in the damped soft counterterm, Eq. (2.77),
while β, γ ě 0 are relevant for final- and initial-state collinear splitting, respectively. The
kinematic variables defining the damping factors depend on the mapping appearing in
the relevant Born matrix element, similar to the soft case. The un-damped limits can be
retrieved by setting α “ β “ γ “ 0.

By following the same steps outlined in Appendix B.2, it can be checked that the
damped counterterm definitions in Eqs. (2.77)-(2.79) correctly satisfy the consistency
relations in Eqs. (2.68) and (2.69). Furthermore, it will be shown in Section 2.4 that, as
expected, the ε poles of the integrated counterterms do not exhibit any dependence on
the arbitrary parameters α, β, γ, which thus appear only in the finite part Opε0q. While in
Section 4.1, we will provide a first numerical validation of such damped local counterterms
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at both integrated and differential level.
We point out that the structure of the local counterterm K and of its sector compo-

nents Kij and Ktiju, as given in Eqs. (2.61, 2.73, 2.76), is not affected by the presence of
damping factors and remains formally valid for any value of α, β, γ. The damped HCij R

counterterms can still be expressed in terms of the hard-collinear kernels P hc
ijprq,‹ as

HCij R ” p1´ Si ´ SjqCij R

“ θiPF θjPF HCij,F R ` θiPF θjPI HCij,I R ` θjPF θiPI HCji,I R , (2.80)

with

HCij,FR ” N1

”

θrPF p1´ yq
β
` θrPI x

β
ı

«

P µν,hc
ijprq,Fpzq

sij
B̄pijrqµν ` 2

”

CfjE piqjr
`

1´p1´zqα
˘

` CfiE pjqir p1´zαq
ı

B̄pijrq

ff

,

HCij,IR ” N1

«

θrPF p1´zq
γ

˜

P µν,hc
rijsiprq,Ipxq

x sij
B̄pirjqµν ` 2Cfj E piqjr

1´ xα

1´ z
B̄pirjq

¸

` θrPI p1´vq
γ

˜

P µν,hc
rijsiprq,Ipxq

x sij
B̄pijrqµν ` 2CfjE piqjr p1´xαqp1´vqB̄pijrq

ff̧

, (2.81)

which will be integrated in the next Section.

2.3 Integration of the real-radiation counterterm

In order to analytically integrate the counterterm K, it is convenient to start from
Eq. (2.76), relying on the kernel definitions in Eqs. (2.77) and (2.80). The counterterm
expression is summed over sectors, as its integral must reproduce the poles of the virtual
matrix element, which is not partitioned. For future convenience, we split K into the
corresponding soft, final-state hard-collinear and initial-state hard-collinear contributions

K ” Ks ` K hc,F ` K hc,I , (2.82)

defined as

Ks ”
ÿ

i

SiR , (2.83)

K hc,F ”
ÿ

i

ÿ

jăi

θiPF θjPF HCij,F R , (2.84)

K hc,I ”
ÿ

i

ÿ

jăi

”

θiPF θjPI HCij,IR ` θjPF θiPI HCji,IR
ı

. (2.85)
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Phase-space parametrisations

We start by introducing precise definitions of the phase-space measures used for inte-
gration. As detailed in Section 2.2.3, we have three possible mapping prescriptions to
parametrise the unresolved phase space. We examine them in turn.

The first mapping tk̄upabcq with final-state momenta ka, kb, kc (all different), presented
in Eqs. (2.44) and (2.45), induces the exact factorisation

ż

dΦn`1 “
ςn`1

ςn

ż

dΦpabcqn

ż

dΦ
pabcq
rad , (2.86)

where we explicitly extracted the ratio of the relevant symmetry factors ςn`1 and ςn, and

dΦpabcqn ” dΦn

`

tk̄upabcq
˘

, dΦ
pabcq
rad ” dΦrad

`

s̄
pabcq
bc ; y, z, φ

˘

. (2.87)

The radiative measure of integration is
ż

dΦ
pabcq
rad “ Npεq

´

s̄
pabcq
bc

¯1´ε
ż π

0

dφ psinφq´2ε

ż 1

0

dy

ż 1

0

dz
”

yp1´ yq2zp1´ zq
ı´ε

p1´ yq , (2.88)

where the expression of the invariants composed by ka, kb, kc, written in terms of the
integration variables, are

sab “ y s̄
pabcq
bc , sac “ zp1´ yq s̄

pabcq
bc , sbc “ p1´ zqp1´ yq s̄

pabcq
bc , (2.89)

such that sabc “ sab ` sac ` sbc “ s̄
pabcq
bc . Finally, we define

Npεq ”
p4πqε´2

?
π Γp1

2
´ εq

. (2.90)

The second mapping tk̄upabcq with final-state momenta ka, kb (all different) and an
initial-state momentum kc, as in Eqs. (2.47) and (2.48), leads to the following phase-
space convolution,

ż

dΦn`1pkcq “
ςn`1

ςn

ż ż

dΦpabcqn pxkcq dΦ
pabcq
rad , (2.91)

with

dΦpabcqn pxkcq ” dΦn

`

tk̄upabcq
˘

, dΦ
pabcq
rad ” dΦrad

`

s̄
pabcq
bc ;x, z, φ

˘

. (2.92)

Indeed, in this case, achieving exact factorisation is not possible due to the residual
dependence on the variable x associated to the rescaled momentum of the initial-state
parton, over which we are not integrating. As a function of the reference invariant s̄pabcqbc ”
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2k̄
pabcq
b ¨ kc “ 2k̄

pabcq
b ¨ k̄

pabcq
c {x, the relevant dot products read

sab “ p1´ xq s̄
pabcq
bc , sac “ z s̄

pabcq
bc , sbc “ p1´ zq s̄

pabcq
bc . (2.93)

The single unresolved phase space in terms of the kinematic variables results in
ż

dΦ
pabcq
rad “ Npεq

´

s̄
pabcq
bc

¯1´ε
ż π

0

dφ psinφq´2ε

ż 1

0

dx

ż 1

0

dz rp1´ xq zp1´ zqs´ε . (2.94)

The third mapping configuration tk̄upabcq with final-state momentum ka, and two dif-
ferent initial-state momenta kb, kc, as reported in Eqs. (2.50) and (2.51), conveys a similar
convolution,

ż

dΦn`1pkb, kcq “
ςn`1

ςn

ż ż

dΦpabcqn pxkb, kcq dΦ
pabcq
rad , (2.95)

where

dΦpabcqn pxkb, kcq ” dΦn

`

tk̄upabcq
˘

, dΦ
pabcq
rad ” dΦrad

`

s̄
pabcq
bc ;x, v, φ

˘

, (2.96)

leading to the explicit expression
ż

dΦ
pabcq
rad “ Npεq

´

s̄
pabcq
bc

¯1´ε
ż π

0

dφ psinφq´2ε

ż 1

0

dx

ż 1

0

dv rp1´ xq2 vp1´ vqs´ε p1´ xq .(2.97)

With respect to the invariant s̄pabcqbc ” 2kb ¨ kc “ 2k̄
pabcq
b ¨ k̄

pabcq
c {x, we express the dipole

invariants as

sab “ p1´ xq v s̄
pabcq
bc , sac “ p1´ xq p1´ vq s̄

pabcq
bc , sbc “ s̄

pabcq
bc . (2.98)
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Integration of soft and collinear counterterms

We start with the integration of the soft counterterm Ks in Eq. (2.83), which leads to
ż

dΦn`1 SiR “ (2.99)

“ ´ 2N1
ςn`1

ςn

ÿ

c‰i

ÿ

d‰i
dăc

„

θcPF θdPF

ż

dΦpicdqn

ż

dΦ
picdq
rad p1´ yqαp1´ zqα E piqcd B̄

picdq
cd

` θcPF θdPI

ż ż

dΦpicdqn pxkdq dΦ
picdq
rad xα p1´ zqα E piqcd B̄

picdq
cd

` θdPF θcPI

ż ż

dΦpidcqn pxkcq dΦ
pidcq
rad xα p1´ zqα E piqcd B̄

pidcq
cd

` θcPI θdPI

ż ż

dΦpicdqn pxkc, kdq dΦ
picdq
rad xα E piqcd B̄

picdq
cd



” ´ 2
ςn`1

ςn

ÿ

c‰i

ÿ

d‰i
dăc

"

θcPF θdPF

ż

dΦpicdqn I icds,FF B̄
picdq
cd

` θcPF θdPI

„
ż

dΦpicdqn pkdq I
icd
s,FI `

ż 1

0

dx

x

ż

dΦpicdqn pxkdq J
icd
s,FIpxq



B̄
picdq
cd

` θdPF θcPI

„
ż

dΦpidcqn pkcq I
idc
s,FI `

ż 1

0

dx

x

ż

dΦpidcqn pxkcq J
idc
s,FIpxq



B̄
pidcq
cd

` θcPI θdPI

„
ż

dΦpicdqn pkc, kdq I
icd
s,II `

ż 1

0

dx

x

ż

dΦpicdqn pxkc, kdq J
icd
s,IIpxq



B̄
picdq
cd

*

.

The integrals I iabs,‹‹ and J iabs,‹‹pxq are reported in Appendix B.3.1, where the latter (former)
collect x-(in)dependent contributions.

Moving to the hard-collinear counterterms Khc,‹ in Eqs. (2.84)-(2.85), we notice that
the azimuthal contribution multiplying Qabprq,‹ in the collinear kernels vanishes upon in-
tegration (see Appendix C.4). Therefore, only unpolarised Altarelli-Parisi kernels need to
be integrated. For a final-state j, relevant to Khc,F, the result is as follows:

ż

dΦn`1 HCij,FR “

“ N1
ςn`1

ςn

„

θrPF

ż

dΦpijrqn

ż

dΦ
pijrq
rad p1´ yqβ ` θrPI

ż ż

dΦpijrqn pxkrq dΦ
pijrq
rad xβ



«

P hc
ij,Fpzq

sij
` 2

”

Cfj Ipiqjr
`

1´p1´zqα
˘

` Cfi Ipjqir p1´zαq
ı

ff

B̄pijrq

”
ςn`1

ςn

„

θrPF

ż

dΦpijrqn

´

I ijrhc,FF ` I
ijr
sc,FF ` I

jir
sc,FF

¯

` θrPI

ż

dΦpijrqn pkrq
´

I ijrhc,FI ` I
ijr
sc,FI ` I

jir
sc,FI

¯

` θrPI

ż 1

0

dx

x

ż

dΦpijrqn pxkrq
´

J ijrhc,FIpxq ` J
ijr
sc,FIpxq ` J

jir
sc,FIpxq

¯



B̄pijrq . (2.100)
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The contributions proportional to θrPF or θrPI correspond to different prescriptions for the
position of the recoiler particle. Similarly, integrating the constituents of K hc,I yields
ż

dΦn`1 HCij,I R “ (2.101)

“ N1
ςn`1

ςn

«

θrPF

żż

dΦpirjqn pxkjq dΦ
pirjq
rad p1´zq

γ

˜

P hc
rijsi,Ipxq

x sij
` 2CfjIpiqjr

1´xα

1´z

¸

B̄pirjq

` θrPI

żż

dΦpijrqn pxkj, krq dΦ
pijrq
rad p1´vq

γ

˜

P hc
rijsi,Ipxq

x sij
` 2CfjIpiqjr p1´xαqp1´vq

¸

B̄pijrq

ff

”
ςn`1

ςn

"

θrPF

„
ż 1

0

dx

x

ż

dΦpirjqn pxkjq
´

J irjhc,IFpxq ` J
irj
sc,IFpxq

¯

`

ż

dΦpirjqn pkjq I
irj
sc,IF



B̄pirjq

` θrPI

„
ż 1

0

dx

x

ż

dΦpijrqn pxkj, krq
´

J ijrhc,IIpxq ` J
ijr
sc,IIpxq

¯

`

ż

dΦpijrqn pkj, krq I
ijr
sc,II



B̄pijrq

+

.

All integrals I iabhc{sc,‹‹ and J iabhc{sc,‹‹pxq appearing in the previous equations are collected in
Appendix B.3.2.

Notice that, thanks to the procedure we implemented to construct our local countert-
erm, which combines a unitary phase-space partition with a smart mapping adaptation,
all necessary integrations turn out to be surprisingly straightforward, and the resulting
integrals involve nothing more complex than logarithms of kinematic invariants (see Ap-
pendix B.3).

Rearranging the outcomes

To obtain the final integrated counterterms I and J , two last steps are required. First,
all various Born-level parametrisations are identified, as the corresponding phase spaces
have identical support. This process entails the following relabelings:

tk̄upabcq Ñ tku , dΦpabcqn Ñ dΦn , B̄pabcq... Ñ B... . (2.102)

Next, sums over pn ` 1q-body labels must be converted into Born-level sums. When
removing a final-state gluon i, which is relevant to the soft case, one has

ςn`1

ςn

ÿ

iPF

δfig “ 1 ; (2.103)
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when two final-state particles i and j are replaced by the parent particle p, the sums over
i and j can be reorganized as a sum over p according to

ςn`1

ςn

ÿ

iPF

ÿ

jPF
jăi

δtfifjutqq̄u “ Nf

ÿ

pPF

δfpg ,

ςn`1

ςn

ÿ

iPF

ÿ

jPF
jăi

`

δfitq,q̄uδfjg ` δfjtq,q̄uδfig
˘

“
ÿ

pPF

δfptq,q̄u ,

ςn`1

ςn

ÿ

iPF

ÿ

jPF
jăi

δfig δfjg “
1

2

ÿ

pPF

δfpg , (2.104)

where Nf denotes the number of light active flavours; in the case of a final-state particle i
and an initial-state particle j replaced by the resulting initial-state particle a, the relevant
relations are

ςn`1

ςn

ÿ

iPF

ÿ

jPI

δtfrijsfiutqq̄u “
ÿ

aPI

δfag ,

ςn`1

ςn

ÿ

iPF

ÿ

jPI

δfrijstq,q̄u δfig “
ÿ

aPI

δfatq,q̄u ,

ςn`1

ςn

ÿ

iPF

ÿ

jPI

δfrijsg δfitq,q̄u “
ÿ

aPI

δfatq,q̄u ,

ςn`1

ςn

ÿ

iPF

ÿ

jPI

δfrijsg δfig “
ÿ

aPI

δfag . (2.105)

After such a procedure, all integrals mentioned above are naturally written in terms of
Born-level quantities. For ‹ “ F, I, one has

Iabcs,‹‹ Ñ Is,‹‹ psbcq , Jabcs,‹‹pxq Ñ Js,‹‹ psbc, xq ,

Iabcsc,‹‹ Ñ 2Cfb Isc,‹‹ psbcq , Jabcsc,‹‹pxq Ñ 2Cfb Jsc,‹‹ psbc, xq , (2.106)

Iabchc,F‹ Ñ δfbg

„

1

2
I
p2gq
hc,F‹ psbcq `Nf I

p0gq
hc,F‹ psbcq



` δfbtq,q̄u I
p1gq
hc,F‹ psbcq ,

Jabchc,F‹pxq Ñ δfbg

„

1

2
J
p2gq
hc,F‹ psbc, xq `Nf J

p0gq
hc,F‹ psbc, xq



` δfbtq,q̄u J
p1gq
hc,F‹ psbc, xq ,

Jabchc,I‹pxq Ñ δfbg

„

J
p2gq
hc,I‹ psbc, xq ` J

p0gq
hc,I‹ psbc, xq



` δfbtq,q̄u J
p1gq
hc,I‹ psbc, xq , (2.107)

where, on the right-hand sides, b and c are Born-level labels. The quantities Is{sc{hc,‹‹psq

and Js{sc{hc,‹‹ps, xq appearing in the above identifications are collected in Appendices B.3.1
and B.3.2.
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2.4 The subtracted virtual Vsub and collinear Csub contributions

We are now at the stage of verifying that the integrated counterterm correctly repro-
duces all virtual ε poles, thus providing a valid local subtraction formula for generic NLO
processes without massive colourful particles. We separately analyse the three distinct
cases of 0, 1, 2 initial-state QCD partons, relevant to lepton-lepton, lepton-hadron, and
hadron-hadron collisions, respectively. For these three process categories, we label the
counterterm K as KF, KIF, and KIIF, respectively.

To properly define the hard-collinear contributions of these counterterms, it is essential
to establish a rule for assigning the recoiler particle, denoted as r, to each splitting pair
i and j. Our approach is to associate r with an initial-state particle whenever possible;
otherwise, we assign it to a final-state particle. In the following discussion, we emphasise
the assignment of r using theta factors like θrP‹, which have no purpose other than enabling
a more straightforward interpretation of the equations.

Final-state radiation

We define the counterterm for leptonic processes as

KF “ Ks ` θrPFK hc,F , (2.108)

where Ks and Khc,F are defined in Eqs. (2.83) and (2.84). The notation underlines the
fact that the emitting dipole jr appearing in the hard-collinear kernels is bound to belong
to the final state.

The integration over the radiative phase space in Eq. (2.94), up to Opεq, yields

IF “ Ipoles ` Ifin,F , (2.109)

where9

Ipoles “
αS

2π

„

1

ε2

ÿ

j

Cfj B `
1

ε

´

ÿ

j

γj B `
ÿ

c,d‰c

LcdBcd

¯



, (2.110)

Ifin,F “
αS

2π

"

”

ÿ

kPF

φk ´
ÿ

j

γ hc
j Ljr

ı

B `
ÿ

c,d‰c

Lcd

´

2´
1

2
Lcd

¯

Bcd

` 2A2pαq
”

ÿ

j

Cfj Ljr B `
ÿ

c,d‰c

LcdBcd

ı

`
ÿ

kPF

γ hc
k A2pβqB

`

”

A2pαq
´

A2pαq ´ 2A2pβq
¯

´ A3pαq
ı

ÿ

j

Cfj B

*

. (2.111)

9The expressions in Eqs. (2.110, 2.111) include sums running on final-state labels only,
ř

kPF, as well as on
final- and initial-state labels, such as

ř

j and
ř

c,d‰c. Although in leptonic collisions the distinction is immaterial,
as Cfa “ γa “ 0 for initial-state particles, such a notation enables the direct unmodified use of Eq. (2.109) for
hadronic collisions as well.
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We have introduced some short-hand notation for logarithms, denoted as Lab “ lnpsab{µ
2q,

and for anomalous dimensions,

γa “
3

2
CF δfatq,q̄u `

1

2
β0 δfag , γ hc

a “ γa ´ 2Cfa ,

φa “
13

3
CF δfatq,q̄u `

4

3
β0 δfag `

ˆ

2

3
´

7

2
ζ2

˙

Cfa , (2.112)

where CA “ Nc, CF “ pN2
c ´1q{p2Ncq, TR “ 1{2, and β0 “

`

11CA´4TRNf

˘

{3 is the first
coefficient of the QCD beta function. The functions Anpxq are specified in Appendix B.3.

The poles collected in Eq. (2.110) are correctly independent of the damping parameters
α and β, and can be checked to exactly match those of virtual origin, see for instance
[116], thus verifying the cancellation of singularities in Eq. (2.11). As a consequence, we
can write the subtracted virtual contribution in an integrable form, as

V subpXq “
`

Vfin ` Ifin,F
˘

δnpXq , (2.113)

where Vfin stands for the finite remainder of the one-loop correction. As for the finite
contribution in Eq. (2.111), the second and third lines collect the full dependence upon
the damping parameters, and cancel out as α “ β “ 0.

Initial-state radiation: one initial-state QCD parton

The relevant local counterterm for a reaction with one incoming QCD parton is

KIF “ Ks ` θrPI Khc,F ` θrPFK hc,I , (2.114)

where the singular kernels are listed in Eqs. (2.83)-(2.85). In K hc,I, a final-state recoiler
is assigned since the only initial-state coloured parton is identified with j, the initial-
state splitting particle. As for Khc,F, assigning a final-state recoiler is only possible if the
process features at least one massless colourful parton in the final state at Born level, in
addition to the final-state emitter j. On the other hand, identifying the recoiler with the
initial-state colourful parton is always allowed.

The integration over the radiative phase space up to Opεq gives
ż

dΦn`1KIF “

ż

dΦnpkaq
´

IF ` Ifin,I

¯

`

ż 1

0

dx

x

ż

dΦnpxkaq JIpxq , (2.115)

where IF is the same as in Eq. (2.109), while Ifin,I is a purely finite contribution, which
can be expressed as

Ifin,I “
αS

2π
2Cfa

„

1`
ζ2

4
´ A2pαq

´

A1pγq ´ A2pβq ´ 1
¯

` A3pαq



B , (2.116)
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where a labels the initial-state coloured parton. The x-independent integral on the right-
hand side of Eq. (2.115) once again successfully reproduces the general pole structure of
the virtual contribution. The remaining integral JIpxq, reading

JIpxq “
αS

2π

"

´

´1

ε
´ Lar

¯

P̄apxq ` P
p1q
a,finpxq ´

ˆ

x1`β

1´ x

˙

`

ÿ

kPF

´

γ hc
k ´ 2Cfk A2pαq

¯

` 2Cfa

„ ˆ

x lnp1´ xq

1´ x

˙

`

´

ˆ

x

1´ x

˙

`

A1pγq

`

ˆ

x1`α

1´ x

˙

`

´

A1pγq ´ A2pαq ´ 1´ Lar

¯

*

B

´
αS

2π

ˆ

x1`α

1´ x

˙

`

ÿ

kPF

2 Lak Bak , (2.117)

with P p1qa,finpxq defined in Appendix B.1, is instrumental to tame the single pole stemming
from collinear factorisation, as contained in Eq. (2.13). It is straightforward to check
that the sum CsubpXq “

`

Cpxq ` JIpxq
˘

δnpXq is finite in d “ 4, and exhibits a leftover
logarithmic dependence upon the factorisation scale µF , in the form

Cpxq ` JIpxq Ą ´
αS

2π
lnµ2

F P̄apxqB , (2.118)

which cancels the OpαSq DGLAP µF dependence from the PDF.

Initial-state radiation: two initial-state QCD partons

The local counterterm for a process involving two incoming colourful partons is

KIIF “ Ks ` θrPI

´

K hc,F `K hc,I

¯

, (2.119)

where the selection of an initial recoiler r is dictated by the general availability, for this
class of processes, of an extra initial-state QCD parton regardless of the position of the
emitter j.

Counterterm integration up to Opεq gives
ż

dΦn`1KIIF “

ż

dΦnpka, kbq
´

IF` Ifin,II

¯

`

ż 1

0

dx

x

ż 1

0

dx̂

x̂

ż

dΦnpxka, x̂kbq JIIpx, x̂q .(2.120)

As above, IF refers to Eq. (2.109), reproducing the general virtual-pole content. The
remaining x-independent contributions are collected in

Ifin,II “
αS

2π

" „

2`
ζ2

2
` 3A3pαq ´ A2pαq

´

2A1pγq ´ 2A2pβq ` A2pαq
¯



´

Cfa ` Cfb

¯

B

` 4
´

ζ2 ´ 1` A3pαq
¯

Bab

*

, (2.121)
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with a, b labelling the two incoming coloured partons.
The contribution JIIpx, x̂q ” Ja,IIpxq δp1 ´ x̂q ` Jb,IIpx̂q δp1 ´ xq accounts separately

for the configurations in which the initial-state colourful parton a or b, respectively, enters
the Born-level amplitude with rescaled momentum. Since none of our mappings features
a simultaneous rescaling of both initial-state momenta, the simultaneous dependence on
both x and x̂ is trivial in JIIpx, x̂q. Explicitly, for i “ a, b, one has

Ji,IIpxq “
αS

2π

"

´

´1

ε
´ Lir

¯

P̄ipxq ` P
p2q
i,finpxq ´

ˆ

x1`β

1´ x

˙

`

ÿ

kPF

´

γ hc
k ´ 2Cfk A2pαq

¯

` 2Cfi

„

2

ˆ

x lnp1´ xq

1´ x

˙

`

´

ˆ

x1`α lnp1´ xq

1´ x

˙

`

´

ˆ

x

1´ x

˙

`

A1pγq

`

ˆ

x1`α

1´ x

˙

`

´

A1pγq ´ A2pαq ´ 1´ Lab

¯

*

B

´
αS

2π
2

„ˆ

x1`α lnp1´ xq

1´ x

˙

`

`

ˆ

x1`α

1´ x

˙

`

´

A2pαq ` 1` Lab

¯



Bab

´
αS

2π

ˆ

x1`α

1´ x

˙

`

ÿ

kPF

2 Lik Bik . (2.122)

The same considerations regarding collinear-pole cancellation and µF dependence apply
as in the case of single initial-state QCD parton, therefore concluding the proof of ε - pole
cancellation by means of the Local Analytic Sector Subtraction procedure.



Chapter 3

Local Analytic Sector Subtraction
at NNLO

The implementation of our general analytic formula to address the NLO QCD subtrac-
tion problem, as detailed in Chapter 2, has provided valuable insights into the underlying
mechanisms of our approach. In particular, this effort has demonstrated that optimis-
ing the counterterm structure throughout all stages of the calculation, by systematically
leveraging all available degrees of freedom, offers substantial advantages in terms of sim-
plifying the required integrations. The discussion in Section 2.3 and the explicit results
presented in Appendix B.3 underscore the effectiveness of this strategy.

The achieved computational simplicity is an encouraging result that strongly motivates
the extension of this method to address the subtraction problem beyond NLO. Exporting
this simplicity to higher perturbative orders is highly desirable, especially considering
that practical implementations of algorithms producing state-of-the-art predictions often
encounter substantial computational complexity. This complexity has, so far, hindered
the community endevours to reach the same degree of universality and efficiency as was
accomplished at NLO (see Section 1.3.2).

In this Chapter we present the extension of the subtraction procedure developed within
the framework of Local Analytic Sector Subtraction to address the treatment of NNLO
infrared singularities. The final outcome of this algorithm is a completely analytic sub-
traction formula, which provides the NNLO contribution to the differential distribution
for any infrared-safe observable built out of massless coloured final states (along with
an arbitrary number of massive or massless colourless final-state particles). It only re-
quires as input the relevant matrix elements, which include the double-virtual correction
to the Born-level process, the one-loop correction to the single-radiation process, and the
tree-level expression for the double-real-emission contribution.

This Chapter is structured as follows. We start by introducing the framework of our
algorithm in Section 3.1, which expands upon the discussion outlined in Section 2.1 by
introducing the essential ingredients for a NNLO subtraction. In Section 3.2, we imple-
ment the strategy proposed in Section 1.3.3 to construct three distinct local counterterms,

59
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labelled as the single-unresolved, uniform double-unresolved and strongly-ordered double-
unresolved subtraction terms, specifically designed to reproduce all double-unresolved
phase-space singularities. The resulting outcome is a subtracted double-real contribu-
tion that is integrable over the entire radiative phase space. At this level, the multiplicity
of singular configurations and of their overlaps will lead to long and intricate expressions:
therefore, detailed formulas for NNLO soft and collinear kernels, and for the relevant
improved limits, will be presented in the Appendices C.1 and C.2. Section 3.3 organ-
ises the integration procedure for all counterterms associated with double-real radiation,
expressing the necessary integrals in terms of a small set of constituent integrals, which
are collected in Appendix C.5. These integrals have all been computed analytically [200],
requiring only standard techniques. Section 3.4 presents the subtracted real-virtual cor-
rection, providing an explicit expression for the real-virtual counterterm. By combining
together the real-virtual correction with its local counterterm, and the integrals of the
single-unresolved and the strongly-ordered counterterms, we build an expression that is
both free of infrared poles and integrable in the radiative phase space. Next, we discuss in
Section 3.5 the integration of the real-virtual counterterm, which again can be organised
in terms of simple integrals. Lastly, Section 3.6 introduces the subtracted double-virtual
contribution, which is free of infrared poles. This finally completes our subtraction pro-
gramme for generic massless QCD final states.

3.1 Generalities

The NNLO contribution to the differential cross section in Eq. (2.2) when QCD radiation
is limited to the final state can be written as

dσNNLO

dX
“ lim

dÑ4

„
ż

dΦn V V δnpXq `

ż

dΦn`1RV δn`1pXq `

ż

dΦn`2RR δn`2pXq



, (3.1)

where

RR “

ˇ

ˇ

ˇ
Ap0qn`2

ˇ

ˇ

ˇ

2

,

RV “ 2 Re
”

Ap0q:n`1 Ap1qn`1

ı

, V V “
ˇ

ˇAp1qn
ˇ

ˇ

2
` 2 Re

”

Ap0q:n`1 Ap2qn`1

ı

. (3.2)

In this case, the MS-renormalised double-virtual contribution V V exhibits IR poles up
to ε´4, the double-real RR contains up to four phase-space singularities, and the MS-
renormalised real-virtual term RV has poles up to ε´2 and up to two phase-space singu-
larities. In order to rewrite Eq. (3.1) as a sum of finite contributions, we introduce four
local counterterms, denoted as K p1q, K p2q, K p12q and KpRVq. The counterterm K p1q is
designed to reproduce all phase-space singularities of RR where a single particle becomes
unresolved, while K p2q addresses situations where two particles become unresolved at the
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same rate. The two sets of singularities overlap, and K p12q is responsible for subtracting
the double-counted overlap region. Finally, KpRVq is defined to subtract the phase-space
singularities arising from the single-real radiation in RV .

In order to integrate these counterterms, we need to introduce phase-space parametri-
sations factorising single and double radiation. In this case we will require the factorisa-
tions

dΦn`2 “
ςn`2

ςn`1

dΦn`1 dΦrad ,

dΦn`2 “
ςn`2

ςn
dΦn dΦrad,2 , dΦn`1 “

ςn`1

ςn
dΦn dΦrad . (3.3)

Once a parametrisation yielding Eq. (3.3) is in place, one can define integrated countert-
erms as

I p1q ”

ż

dΦradK
p1q , I p2q ”

ż

dΦrad,2K
p2q ,

I p12q ”

ż

dΦradK
p12q , IpRVq

”

ż

dΦradK
pRVq . (3.4)

We are now ready to present the master formula for our subtraction at NNLO: in practice,
we aim to construct an expression of the form

dσNNLO

dX
“

ż

dΦn V V subpXq `

ż

dΦn`1RV subpXq `

ż

dΦn`2RR subpXq , (3.5)

where each one of the three contributions is finite in ε and is free from phase-space
singularities.

Using the previously introduced local counterterms, and their integrals over the radia-
tive degrees of freedom, the subtracted matrix elements V V sub, RV sub and RR sub can be
expressed as

V V subpXq ”
`

V V ` I p2q ` IpRVq
˘

δnpXq , (3.6)

RV subpXq ”
`

RV ` I p1q
˘

δn`1pXq ´
`

KpRVq
` I p12q

˘

δnpXq , (3.7)

RR subpXq ” RRδn`2pXq ´K
p1q δn`1pXq ´

`

K p2q
´K p12q

˘

δnpXq . (3.8)

Eqs. (3.5) and (3.6)-(3.8) provide an identical rewriting of Eq. (3.1), and their logic is as
follows:

• in Eq. (3.8), RR subpXq term must be integrated in the full phase space Φn`2, and it
is built out of tree-level quantities1, therefore has no explicit IR poles. It is also free
from phase-space singularities, since single-unresolved contributions are subtracted

1We have implicitly assumed that the underlying Born reaction is associated with tree-level diagrams; however,
in case of loop-induced processes, all arguments and techniques presented in this Chapter carry over.
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by K p1q, double-unresolved contributions are subtracted by K p2q, and their double-
counted overlap is reinstated by adding back K p12q.

• in Eq. (3.7), RV must be integrated in Φn`1, and is affected by both explicit IR
poles and phase-space singularities. The IR poles arising from the loop integration
in RV are removed by the integral I p1q, by virtue of general cancellation theorems,
making the first parenthesis finite. However, both terms are singular in the phase
space of the radiated particle. By construction, the phase-space singularities of I p1q

are cancelled by I p12q, whileKpRVq is designed to cancel the phase-space singularities
of RV . Nevertheless, this does not guarantee that explicit IR poles will cancel in the
second parenthesis. Anyway, one can fine-tune the definition of KpRVq, by including
explicit IR poles not affecting the phase-space singularity cancellation with RV , in
order to make the second parenthesis finite as well. At this point, Eq. (3.7) is both
finite and integrable.

• The complete cancellation of real and virtual singularities in Eq. (3.7) and Eq. (3.8)
guarantees then, as a consequence of the KLN theorem, that Eq. (3.6), which is to
be integrated over the Born-level phase space Φn, will be free of IR poles.

3.2 The subtracted double-real contribution RRsub

In this Section we provide a detailed construction of the subtracted matrix element squared
for double-real radiation, RR sub. As noted in Eq. (3.8), this will require the definition
of three distinct local counterterms. This task represents the most intricate part of the
NNLO-subtraction programme from a combinatorial viewpoint, due to the large number
of overlapping singular limits affecting double-real radiation. In analogy to Section 2.2, we
will proceed as follows: first, in Section 3.2.1, we will identify the relevant singular limits,
which can be single- or double-unresolved; next, we will introduce a set of sector functions,
smoothly partitioning the pn` 2q-particle phase space so as to minimise the number of
singular configurations to be considered in any given sector (Sec. 3.2.2). These sectors will
naturally be grouped into three different topologies, corresponding to the specific structure
of the limits relevant to each sector. In Section 3.2.3, we will identify specific combinations
of limits that yield integrable contributions in each topology, in the spirit of Eq. (2.21);
we will then construct a family of phase-space mappings in order to properly factorise
the double-radiative phase space in all relevant configurations (Sec. 3.2.4). Finally, in
Section 3.2.5, we will introduce improved limits appropriate for each topology, discuss the
required consistency relations, and then use those improved limits to write an expression
for the subtracted double-real contribution RR sub. As was the case at NLO for single-real
radiation, it is possible to improve upon the resulting expression for RR sub by introducing
symmetrised sector functions in order to optimise the subsequent numerical integration
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(Sec. 3.2.6). We note that the construction presented in the following sections differs
slightly in some technical choices from the one given in Ref. [199]: we will stress the
differences as we go along.

3.2.1 Singular limits

Double-real squared matrix elements are characterised by a variety of overlapping singular
limits. It is important, from the outset, to select a complete set of limits, in order to
study (and then subtract) their overlaps, preventing double counting. Clearly, single-
unresolved soft and collinear limits are relevant also for double radiation, so our list must
include the limits Si and Cij introduced in Section 2.2.1. Next, we collect all possible
double-unresolved limits. Importantly, when two particles become unresolved, one needs
to distinguish uniform limits, where two particles become unresolved at the same rate,
and strongly-ordered limits, where one particle becomes unresolved at a higher rate with
respect to the second one. Obviously, this distinction becomes significant starting at
NNLO. Our set of fundamental uniform limits consists of four independent configurations.
First, two particles i and j can become soft at the same rate, a limit which we denote
by Sij; second, a single hard particle can branch into three collinear ones, i, j and k, a
limit which we denote by Cijk; third, two hard partons can independently branch into
two collinear pairs, which we denote by Cijkl, with pi, jq and pk, lq labelling the two
independent pairs; finally, a particle i can become soft while another pair of particles, j
and k, become collinear at the same rate2, which we denote by SCijk. In these four limits,
the double-real-radiation squared matrix element factorises, with the universal relevant
kernels derived and presented in Ref. [129]. Given these uniform limits, the strongly-
ordered ones can be reached by acting iteratively: for example, the strongly-ordered
double-soft limit, with particle i becoming soft faster than particle j, can be reached by
computing Si Sij,while the strongly-ordered double-collinear limit, with particles i and
j becoming collinear faster than the third particle k, will be given by the combination
Cij Cijk. All singular configurations can be reached in this way.

In order to proceed, we need to characterise the limits in terms of phase-space variables.
As was the case at NLO, we choose to define the limits in terms of Mandelstam invariants,
and we pay attention to the fact that all limits must commute when applied to the double-
real radiation squared matrix element. Using the variables ei and wij given in Eq. (2.15),
the definitions of the independent single- and double-unresolved limits are specified in
Table 3.1. Importantly, our choice of independent limits is related to how we choose to
define sector functions, which will be tuned so that only a minimal pre-defined set of the
chosen limits will contribute in each sector.

2In Ref. [199], two strongly-ordered soft-collinear limits were considered, instead of the uniform one chosen
here.
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Si ei Ñ 0 (soft configuration of parton i)
Cij wij Ñ 0 (collinear configuration of partons pi, jq)
Sij ei, ej Ñ 0 and ei{ej Ñ constant

(uniform double-soft configuration of partons pi, jq)
Cijk wij , wik, wjk Ñ 0 and wij{wik, wij{wjk, wik{wjk Ñ constant

(uniform double-collinear configuration of partons pi, j, kq)
Cijkl wij , wkl Ñ 0 and wij{wkl Ñ constant

(uniform double-collinear configuration of partons pi, jq and pk, lq)
SCijk ei, wjk Ñ 0 and ei{wjk Ñ constant

(uniform soft and collinear configuration for partons i and pj, kq)

Table 3.1. Definitions of the single-unresolved singular limits Si, Cij and of our set of basic independent
double-unresolved singular limits Sij , Cijk, Cijkl, SCijk.

3.2.2 Sector functions and topologies

We now introduce a smooth unitary partition of the double-real-radiation phase space,
in the spirit of Ref. [16]. Since at most four particles can be involved in singular infrared
limits at NNLO, we label the sector functions with four indices, and denote them by Wijkl.
We reserve the first two indices to label the single-unresolved configurations assigned to
the chosen sector. In particular, we will design the sector pijklq to be non-zero in the
limits Si and Cij (thus we take j ‰ i). We then need to distinguish sectors involving
only three distinct particles from sectors involving four distinct particles. In sectors
where only three particles are involved, the double-unresolved limit Cijk will be relevant;
furthermore, a second particle (besides i) may become soft in these configurations, and
it can be particle j or particle k. Correspondingly, we will have distinct sector functions
Wijjk and Wijkj, where we take the third index to indicate the second particle that can
become soft. Similarly, if the four indices are all different, we take Wijkl to identify the
sector where particles i and k can become soft, while the possible collinear pairs are pi, jq
and pk, lq. Notice that in all cases the last three indices j, k and l are distinct from i, and
k ‰ l. We will refer to the three allowed combinations of sector indices, pijjkq, pijkjq and
pijklq as topologies, and we will denote them collectively by τ ” abcd P tijjk, ijkj, ijklu.

It is now necessary to introduce a precise definition of NNLO sector functions, which
will enable us to list all the fundamental limits contributing to each topology. In analogy
with NLO case (see Eq. (2.19)), we define NNLO sector functions as ratios of the type

Wabcd “
σabcd
σ

, σ “
ÿ

a,b‰a

ÿ

c‰a
d‰a,c

σabcd , (3.9)

so that
ÿ

a,b‰a

ÿ

c‰a
d‰a,c

Wabcd “ 1 . (3.10)
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Such a partition allows us to rewrite the double-real squared matrix element RR as

RR “
ÿ

i, j‰i

ÿ

k‰i

ÿ

l‰i,k

RR Wijkl “
ÿ

i, j‰i

ÿ

k‰i,j

„

RR Wijjk `RR Wijkj `
ÿ

l‰i,j,k

RR Wijkl



. (3.11)

In particular, our choice for the functions σabcd3 is given by

σabcd “
1

peawabqα
1

pec ` δbc eaqwcd
, α ą 1 . (3.12)

Having specified Eq. (3.12), we can list which of the fundamental limits discussed in
Section 3.2.1 affect each topology. One finds that the combination RR Wτ is singular in
the limits listed below.

RR Wijjk : Si , Cij , Sij , Cijk , SCijk ;

RR Wijkj : Si , Cij , Sik , Cijk , SCijk , SCkij ; (3.13)

RR Wijkl : Si , Cij , Sik , Cijkl , SCikl , SCkij .

In analogy with the NLO sum-rule requirements in Eq. (2.20), also NNLO sector functions
which share a given singular configuration must form a unitary partition. This is a crucial
feature in order to minimise the complexity of the counterterm structure in view of analytic
integration. The choice of the functions σabcd in Eq. (3.12) guarantees that the required
partial sums reduce to unity. As an example, we report the sum rules for the double-
unresolved limits in Table 3.1, which read

Sik

˜

ÿ

b‰i

ÿ

d‰i,k

Wibkd `
ÿ

b‰k

ÿ

d‰k,i

Wkbid

¸

“ 1 , (3.14)

Cijk

ÿ

abc Pπpijkq

`

Wabbc `Wabcb

˘

“ 1 , (3.15)

Cijkl

ÿ

ab Pπpijq
cd Pπpklq

`

Wabcd `Wcdab

˘

“ 1 , (3.16)

SCijk

ˆ

ÿ

d‰i
ab Pπpjkq

Widab `
ÿ

d‰i,a
ab Pπpjkq

Wabid

˙

“ 1 , (3.17)

where by πpijq and πpijkq we denote the sets tij, jiu and tijk, ikj, jik, jki, kij, kjiu, re-
spectively.

In order for the double-real contribution to properly combine with the real-virtual
3This choice corresponds to setting α “ β in the NNLO sector functions introduced in Ref. [199].
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correction, we further require NNLO sector functions to factorise into NLO-like sector
functions under the action of single-unresolved limits. As discussed in Ref. [199], and
below in Section 3.4, this ensures the local cancellation of integrated phase-space singu-
larities with the poles of the real-virtual correction, sector by sector in the single-radiative
phase space: indeed RV needs to be partitioned with NLO-like sector functions, since it
involves a single-real radiation. As an easy check, one may verify that the sector functions
for the topology pijjkq satisfy

SiWijjk “ Wjk SiWpαq
ij ,

Cij Wijjk “ Wrijsk Cij Wpαq
ij ,

Si Cij Wijjk “ Wjk Si Cij Wpαq
ij , (3.18)

where Wrijsk is the NLO sector function defined in the pn` 1q-particle phase space in-
cluding the parent parton rijs of the collinear pair pi, jq, and we introduced the NLO-like,
α-dependent sector functions

Wpαq
ij ”

σ
pαq
ij

ř

k‰l σ
pαq
kl

, σ
pαq
ij ”

1

peiwijqα
, α ą 1 , (3.19)

so that ordinary NLO sector functions are given by Wij “ Wp1q
ij . Similar relations hold

for the other two topologies.

3.2.3 Candidate local counterterms

As listed in Eq. (3.13), a limited number of products of IR projectors is sufficient to collect
all singular configurations of the double-real squared matrix element in each topology.
Since the action of the relevant limits on both RR and on the sector functions does not
depend on the order they are applied, the following combinations are by construction
integrable in the whole phase space:

p1´ Siqp1´Cijqp1´ Sijqp1´Cijkqp1´ SCijkqRR Wijjk Ñ integrable,

p1´ Siqp1´Cijqp1´ Sikqp1´Cijkqp1´ SCijkqp1´ SCkijqRR Wijkj Ñ integrable,(3.20)

p1´ Siqp1´Cijqp1´ Sikqp1´Cijklqp1´ SCiklqp1´ SCkijqRR Wijkl Ñ integrable.

Note that, in analogy to the definition used for NLO projection operators, if we take L to
be any one of the singular limits in Table 3.1, the relation LRRWabcd ” pLRRq pL Wabcdq

is understood for all topologies.
Applying directly Eq. (3.20) to construct local counterterms would be quite cumber-

some, as the three lines generate a total of 160 terms. Fortunately, the resulting combina-
tions of limits are not all independent, and several non-trivial relations can be obtained
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exploiting the symmetries of the limits under exchanges of indices, as well as the actual
definitions of the various limits involved as projection operators on singular terms of RR.
Consider for example, in four-particle sector Wijkl, the projection p1´SikqRRWijkl. This
will contain only terms in RR that are not singular in sector pijklq when the uniform soft
limit is taken for particles i and k. As a consequence, if further projections involving both
the i and k soft limits are taken, the result will be integrable. We conclude, for example,
that

SCikl SCkijp1´ SikqRR Wijkl Ñ integrable . (3.21)

Working in this way, topology by topology, we can write a set of finite relations, which
help us remove redundant configurations contributing to Eq. (3.20). They read

Cij SCijkp1´ Siqp1´ Sijqp1´CijkqRR Wijjk Ñ integrable ,

Si SCkijp1´ Sikqp1´CijkqRR Wijkj Ñ integrable ,

Cij SCijkp1´ Siqp1´ Sikqp1´CijkqRR Wijkj Ñ integrable ,

Cij Sikp1´ Siqp1´ SCkijqp1´CijkqRR Wijkj Ñ integrable ,

SCijk SCkijp1´ SikqRR Wijkj Ñ integrable ,

Si SCkijp1´ Sikqp1´CijklqRR Wijkl Ñ integrable ,

Si Cijklp1´ Sikqp1´ SCiklqRR Wijkl Ñ integrable , (3.22)

Cij SCiklp1´ Siqp1´ Sikqp1´CijklqRR Wijkl Ñ integrable ,

Cij Sikp1´ Siqp1´ SCkijqp1´CijklqRR Wijkl Ñ integrable ,

SCikl SCkijp1´ SikqRR Wijkl Ñ integrable ,

Cijkl Sikp1´ SCiklqRR Wijkl Ñ integrable ,

Cijkl Sikp1´ SCkijqRR Wijkl Ñ integrable .

These relations considerably simplifies Eq. (3.20), leading to the integrable expression

RRWτ ´

´

L
p1q
ij ` Lp2qτ ´ Lp12qτ

¯

RRWτ Ñ integrable , (3.23)

which is the NNLO equivalent of Eq. (2.21) for double-real radiation4. In Eq. (3.23) we
distinguished, for each topology τ , the single-unresolved limit L

p1q
ij , the uniform double-

unresolved limit L
p2q
τ , and the strongly-ordered double-unresolved limit L

p12q
τ . Their ex-

plicit expressions for each topology, in terms of the projectors discussed in Section 3.2.1,
4Note that there is no ambiguity in the notation: we denote by pijq the first two indices of the sector, which

are common to all three topologies.
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are

L
p1q
ij “ Si `Cij p1´ Siq ,

L
p2q
ijjk “ Sij ` SCijk p1´ Sijq `Cijk p1´ Sijq p1´ SCijkq ,

L
p2q
ijkj “ Sik ` pSCijk ` SCkijq p1´ Sikq `Cijk p1´ Sikq p1´ SCijk ´ SCkijq ,

L
p2q
ijkl “ Sik ` pSCikl ` SCkijq p1´ Sikq `Cijkl p1` Sik ´ SCikl ´ SCkijq ,

L
p12q
ijjk “ Si

”

Sij ` SCijk p1´ Sijq `Cijk p1´ Sijq p1´ SCijkq

ı

(3.24)

`Cij p1´ Siq
”

Sij `Cijk p1´ Sijq
ı

,

L
p12q
ijkj “ Si

”

Sik ` SCijk p1´ Sikq `Cijk p1´ Sikq p1´ SCijkq

ı

`Cij p1´ Siq
”

SCkij `Cijk p1´ SCkijq

ı

,

L
p12q
ijkl “ Si

”

Sik ` SCikl p1´ Sikq
ı

` Cij p1´ Siq
”

SCkij `Cijkl p1´ SCkijq

ı

.

The projection operators appearing in Eq. (3.24) are organised so as to display, in order,
the soft (S), the uniform soft and collinear (SC) and the collinear (C) singular contri-
butions. Upon summing over sectors, Eq. (3.23) and Eq. (3.24) build up the equivalent
at NNLO of Eq. (2.21) and Eq. (2.23), for double-real radiation: indeed, applying the
limits defined in Eq. (3.24) on RR and on the sector functions gives the starting point
to determine the form of the counterterms for each sector, since the limits contain all
phase-space singularities of RR in a given sector, without double counting. In order to
promote them to actual counterterms, it is now necessary to introduce phase-space map-
pings, allowing to properly factorise the pn` 2q-body phase space into an pn` 1q-body
phase space times a single-radiation phase space for Lp1q and Lp12q, and into an n-body
phase space times a double-radiation phase space for Lp2q, as shown in Eq. (3.3). We now
turn to the discussion of these mappings.

3.2.4 Phase-space mappings

There is considerable freedom in defining phase-space mappings for double-real radia-
tion (see for example [205]). We have chosen to use nested Catani-Seymour final-state
mappings, which involve a minimal set of the pn` 2q momenta, and are built in terms
of Mandelstam invariants. This choice simplifies both the factorised expression for the
pn` 2q-body phase space and the dependence of the counterterms on the integration
variables of the radiative phase spaces. In this framework, the mappings to factorise the
pn` 2q-body phase space into an pn` 1q-body phase space times a single-radiation phase
space, required for Lp1q and Lp12q, can be constructed using the same procedure as fol-
lowed at NLO. This leads us to Eq. (2.45) and Eq. (2.54), with i running from 1 to n` 2,
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and m from 1 to n` 1.
For the construction of an on-shell, momentum conserving n-tuple of massless mo-

menta in the pn` 2q-particle phase space, necessary for Lp2q, we report in the following
three of the possible choices.

• For six final-state massless momenta ka, kb, kc, kd, ke, kf (all different), we construct
the n-tuple (without ka and kb)

tk̄upacd,befq “
!

tku{a{b{c{d{e­f , k̄
pacd,befq
c , k̄

pacd,befq
d , k̄pacd,befqe , k̄

pacd,befq
f

)

, (3.25)

with

k̄pacd,befqc “ ka ` kc ´
sac
sracsd

kd , k̄
pacd,befq
d “

sacd
sracsd

kd ,

k̄pacd,befqe “ kb ` ke ´
sbe
srbesf

kf , k̄
pacd,befq
f “

sbef
srbesf

kf , (3.26)

while all other momenta are left unchanged (k̄pacd,befqn “ kn , n ‰ a, b, c, d, e, f). Here
and in the following srabsc “ sac ` sbc.

• For five final-state massless momenta ka, kb, kc, kd, ke (all different), we construct
the n-tuple (without ka and kb)

tk̄upacd,bedq “
!

tku{a{b{c{d{e, k̄
pacd,bedq
c , k̄

pacd,bedq
d , k̄pacd,bedqe

)

, (3.27)

with

k̄pacd,bedqc “ ka ` kc ´
sac
sracsd

kd , k̄
pacd,bedq
d “

ˆ

1`
sac
sracsd

`
sbe
srbesd

˙

kd ,

k̄pacd,bedqe “ kb ` ke ´
sbe
srbesd

kd , (3.28)

while all other momenta are left unchanged (k̄pacd,bedqn “ kn , n ‰ a, b, c, d, e).

• For four final-state massless momenta ka, kb, kc, kd (all different), we construct the
n-tuple (without ka and kb)

tk̄upacd,bcdq “ tk̄upabc,bcdq “ tk̄upabcdq “
!

tku{a{b{c{d, k̄
pabcdq
c , k̄

pabcdq
d

)

, (3.29)

with

k̄pabcdqc “ ka ` kb ` kc ´
sabc

sad ` sbd ` scd
kd , k̄

pabcdq
d “

sabcd
sad ` sbd ` scd

kd , (3.30)

while all other momenta are left unchanged (k̄pabcdqn “ kn , n ‰ a, b, c, d).
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Other possibilities for the construction of nested mappings, like the combinations pabc, debq
or pabc, dcbq, are achieved by iteratively applying NLO final-state mappings (see Eq. (2.45)).
With these tools, we are now fully equipped to construct improved infrared projectors,
with a proper factorised structure, and we can use them to define our local counterterms.

3.2.5 Local counterterms with improved limits

To write explicitly the counterterms we introduce improved versions of the projection
operators in Table 3.1

Sa, Cab, Sab, Cabc, Cabcd, SCabc .

Similarly to the logic already discussed in Section 2.2.4, these new limits should be inter-
preted as operators which, not only extract the corresponding singular limit on the objects
they act on, but also convey a specific mapping of momenta, to be defined a case-by-case
basis. They may be further refined (for example by tuning their action on sector func-
tions) in order to ensure the local cancellation of singularities after the implementation
of phase-space mappings.

Once given the definitions of the improved limits (to be discussed below), we can formu-
late the expression for RR sub in the following way. First, we define the improved version
of the various L operators which correspond to the un-improved limits in Eq. (3.24),
denoting the improved operators by L. Next, for each topology τ “ ijjk, ijkj, ijkl, we
define our local counterterms as

K p1q
τ “ L

p1q

ij RR Wτ , K p2q
τ “ L

p2q

τ RR Wτ , K p12q
τ “ L

p12q

τ RR Wτ . (3.31)

Explicit expressions for these counterterms are reported in Eqs. (C.138), (C.151) and
(C.165), topology by topology. The subtracted double-real squared matrix element for
arbitrary topology τ can then be written as

RR sub
τ pXq “ RR Wτ δn`2pXq ´K

p1q
τ δn`1pXq ´

´

K p2q
τ ´K p12q

τ

¯

δnpXq . (3.32)

Summing now the contributions from all sectors, we finally build the complete RR subpXq

of Eq. (3.5) reading

RR subpXq “
ÿ

i, j‰i

ÿ

k‰i,j

„

RR sub
ijjkpXq `RR

sub
ijkjpXq `

ÿ

l‰i,j,k

RR sub
ijklpXq



. (3.33)
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The structure of Eq. (3.8) with no sector functions is then recovered by using Eq. (3.11),
and by defining

K p1q
“

ÿ

i, j‰i

ÿ

k‰i,j

„

K
p1q
ijjk `K

p1q
ijkj `

ÿ

l‰i,j,k

K
p1q
ijkl



,

K p2q
“

ÿ

i, j‰i

ÿ

k‰i,j

„

K
p2q
ijjk `K

p2q
ijkj `

ÿ

l‰i,j,k

K
p2q
ijkl



,

K p12q
“

ÿ

i, j‰i

ÿ

k‰i,j

„

K
p12q
ijjk `K

p12q
ijkj `

ÿ

l‰i,j,k

K
p12q
ijkl



. (3.34)

We stress that the definitions of the counterterms in Eq. (3.31) are actually complete only
after specifying both the action of improved limits on the double-real matrix element,
LRR, as well as the action on sector functions, L Wτ . We report in Appendix C.2 the
detailed descriptions of all improved limits, which are written in terms of the soft and
collinear kernels listed in Appendix C.1, multiplying appropriate versions of the Born-level
matrix element squared, expressed in terms of mapped momenta.

To provide the readers with an insight into the kind of expressions that emerge from
this procedure, we present here two representative examples. First, consider the uniform
double-unresolved double-soft improved limit Sik (i ‰ k), which can be written as

Sik RR ”
N 2

1

2

ÿ

c‰i,k
d‰i,k,c

"

E piqcd
ÿ

e‰i,k,c,d

„

ÿ

f‰i,k,c,d,e

E pkqef B̄
picd,kefq
cdef ` 4 E pkqed B̄

picd,kedq
cded



` 2 E piqcd E
pkq
cd B̄

picd,kcdq
cdcd ` E pikqcd B̄

pikcdq
cd

*

, (3.35)

where the NLO eikonal kernel E piqcd and the NNLO eikonal kernel E pikqcd are reported in
Eqs. (C.3) and (C.5), and for the colour-correlated Born terms we employed six-, five-
and four-particle mappings, according to the numbers of particles involved. Note in
particular that all eikonal dipoles are mapped differently, which is essential to ease the
respective analytic integration. This concept is discussed in Ref. [200] and in Section 3.3
below.

On the other hand, we can express the strongly-ordered double-unresolved double-soft
improved limit Si Sik (i ‰ k) as follows:

Si Sik RR ”
N 2

1

2

ÿ

c‰i,k
d‰i,k,c

#

E piqcd

«

ÿ

e‰i,k,c,d

ˆ

ÿ

f‰i,k,c,d,e

Ē pkqpicdqef B̄
picd,kefq
cdef ` 2 Ē pkqpicdqed B̄

picd,kedq
cded

˙

` 2
ÿ

e‰i,k,c,d

Ē pkqpidcqed B̄
pidc,kedq
cded ` 2 Ē pkqpicdqcd

´

B̄
picd,kcdq
cdcd ` CA B̄

picd,kcdq
cd

¯

ff

´ 2CA

„

E piqkc Ē
pkqpickq
cd B̄

pick,kcdq
cd ` E piqkd Ē

pkqpikdq
cd B̄

pikd,kcdq
cd



+

. (3.36)
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Despite the more intricate combinatorics, the complexity of the kernels has diminished
with respect to Eq. (3.35), as might be expected: note indeed that the expression solely
features NLO eikonal factors. Unlike the previous example, here we used mapped mo-
menta also in the eikonal kernels corresponding to the least-unresolved particle k.

It is important to stress that, while there appears to be considerable flexibility in
the definitions of the improved limits, there are also stringent constraints that must be
satisfied. Specifically, the improved limits LRR must preserve the same symmetries under
index exchange which are carried by the corresponding unimproved countertparts, so that
the improved collections L

p1q
,L

p2q
,L

p12q are still consistent with Eq. (3.24), whose content
relies on the validity of the integrable relations listed in Eq. (3.22). Within the limitations
of this requirement, there is still a residual freedom to adjust how the improved limits
act on both RR and sector functions, compared to the outcomes obtained with their
bare unimproved version. However, it is essential to ensure that this procedure does
preserve the locality of the cancellation of singularities, or, analogously, the finiteness of
RR sub

ijjk, RR sub
ijkj and RR sub

ijkl, in Eq. (3.33). To this end, we proved the consistency of the
improved limits listed in Appendix C.2 by analytically verifying that, for any topology
τ , the corresponding RR sub

τ is in fact integrable in all singular limits of that tolopogy.
Concretely, this process involved the analytical verification of the following consistency
relations:

 

Si, Cij, Sij, Cijk, SCijk

(

RR sub
ijjk Ñ integrable ,

 

Si, Cij, Sik, Cijk, SCijk, SCkij

(

RR sub
ijkj Ñ integrable ,

 

Si, Cij, Sik, Cijkl, SCikl, SCkij

(

RR sub
ijkl Ñ integrable . (3.37)

As was the case at NLO (see Section 2.2.4), also NNLO-relevant collinear kernels of
Appendix C.1 display spurious collinear singularities involving the reference momentum
kr, which are not always screened by the respective sector functions when evaluated in
those specific limits. Once the action of the improved limits on such sector functions
has been tuned by the introduction of angular factors (explicitly in Appendix C.2.2), we
analytically verified that also the following relations hold

 

Cir, Cjr, Cijr

(

RR sub
ijjk Ñ integrable ,

 

Cir, Ckr, Cikr

(

RR sub
ijkj Ñ integrable ,

 

Cir, Ckr

(

RR sub
ijkl Ñ integrable . (3.38)
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To complete this analysis, we also consider it necessary to verify that RR sub
τ is integrable

in what we refer to as secondary limits, such as

Sj for topology τ “ ijjk, Sk for topology τ “ ijkj, ijkl,

Cjk for topology τ “ ijjk, ijkj, Ckl for topology τ “ ijkl, (3.39)

where the word secondary identifies those singular limits that are suppressed by the full
sector function in RRWτ , but that can still lead to divergent terms when acting on
counterterms, where sector functions are taken in specific limits, thus no longer complete.
The singular limits appearing in Eq. (3.39) are also a consequence of the definition of Wτ .
For the interested reader, we have collected in Appendix C.3 a detailed catalogue of all
the consistency relations outlined in Eqs. (3.37), (3.38), and (3.39). These relations are
broken down into lists of minimal conditions among counterterms, which provide valuable
insights into the singularity-cancellation mechanism at the core of our scheme.

Having passed these tests, we can claim that the local counterterms presented in
Eq. (3.31), assembled according to Eqs. (3.32)-(3.33), and constructed with the improved
limits listed in Appendix C.2, provide a fully local subtraction of phase-space singulari-
ties for the double-real-emission contribution to the cross section, and Eq. (3.33) is indeed
integrable in the pn` 2q-particle phase space. We now go on to investigate a different
(optimised) construction for RR sub based on symmetrised sector functions, similarly to
what was done in Section 2.2.5 at NLO.

3.2.6 Local counterterms with symmetrised sector functions

The partition of the pn` 2q-particle phase space by means of the sector functions Wabcd

that we introduced in Section 3.2.2 is not the only possible way forward. Analogously to
what has been discussed at NLO (see Section 2.2.5), this sector structure can be adapted
to meet certain symmetry conditions that reduce the actual number of sectors: in par-
ticular, since sectors sharing the same double-collinear singularities would naturally be
parametrised in the same way in a numerical implementation, grouping such sectors in
a single contribution is expected to improve numerical stability. Exploiting the symme-
tries of the improved limit Cijk, we thus collect the 6 permutations of i, j, k in sectors
Wijjk,Wijkj introducing the symmetrised sector functions

Zijk “ Wijjk `Wikkj `Wjiik `Wjkki `Wkiij `Wkjji

` Wijkj `Wikjk `Wjiki `Wjkik `Wkiji `Wkjij . (3.40)

Similarly, within four-particle sectors Wijkl, we can leverage the symmetries of the im-
proved limit Cijkl to sum up the 8 permutations ijkl, ijlk, jikl, jilk, klij, klji, lkij, lkji,
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and define

Zijkl “ Wijkl `Wijlk `Wjikl `Wjilk `Wklij `Wklji `Wlkij `Wlkji . (3.41)

We also find it useful to introduce some notation for the NLO-type symmetric sector
functions, based on Wpαq

ij definition in Eq. (3.19), reading

Zpαqij ” Wpαq
ij `Wpαq

ji , Zij ” Zp1qij , (3.42)

and the corresponding soft limit,

Zpαqs,ij ” SiZpαqij “ SiWpαq
ij “

1
wαij

ř

l‰i

1
wαil

, Zs,ij ” Zp1qs,ij . (3.43)

By employing Zijk, Zijkl functions and consequently reducing the number of sectors, the
expression of the counterterms further simplifies. In fact, deriving the action of the generic
improved limit L on the new sector functions (which can be directly obtained from the
L Wabcd definitions in Appendix C.2.2), we verify that, thanks to their symmetries, any
improved limit involving either the operator Cijk, or the operator Cijkl, reduces Zijk, or
Zijkl, to unity, according to

Cijk

`

. . .
˘

RRZijk “ Cijk

`

. . .
˘

RR , Cijkl

`

. . .
˘

RRZijkl “ Cijkl

`

. . .
˘

RR ,(3.44)

where the ellipsis denotes a generic sequence of improved limits.
In analogy with Eq. (3.31), we now define our local counterterms with symmetrised

sector functions by

K
p1q
tσu “ L

p1q

tσu RRZσ , K
p2q
tσu “ L

p2q

tσu RRZσ , K
p12q
tσu “ L

p12q

tσu RRZσ , (3.45)

where σ P tijk, ijklu denotes the symmetrised topologies, and the limits Ltσu are sym-
metrised versions of the limits in Eq. (3.24), to be presented below. The subtracted
double-real contribution for a given symmetrised sector, in analogy with Eq. (3.32), is
then given by

RR sub
tσu pXq ” RR Zσ δn`2pXq ´K

p1q
tσu δn`1pXq ´

´

K
p2q
tσu ´K

p12q
tσu

¯

δnpXq , (3.46)

and finally the full expression for RR subpXq of Eq. (3.5) is obtained by summing the
contributions from the symmetrised sectors Zijk, Zijkl. It reads

RR subpXq “
ÿ

i, jąi

„

ÿ

kąj

RR sub
tijkupXq `

ÿ

k‰j
kąi

ÿ

l‰i,j
ląk

RR sub
tijklupXq



. (3.47)
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This expression can be written in the form of Eq. (3.8) by specifing the complete coun-
terterms K p1q, K p2q and K p12q in terms of symmetrised sector functions, as

K p1q
“

ÿ

i, jąi

„

ÿ

kąj

K
p1q
tijku `

ÿ

k‰j
kąi

ÿ

l‰i,j
ląk

K
p1q
tijklu



,

K p2q
“

ÿ

i, jąi

„

ÿ

kąj

K
p2q
tijku `

ÿ

k‰j
kąi

ÿ

l‰i,j
ląk

K
p2q
tijklu



,

K p12q
“

ÿ

i, jąi

„

ÿ

kąj

K
p12q
tijku `

ÿ

k‰j
kąi

ÿ

l‰i,j
ląk

K
p12q
tijklu



. (3.48)

The collections of improved limits required to compute the symmetrised counterterms
defined in Eq. (3.45) can be derived from the limits designed for theWabcd sector functions,
which were presented in Eq. (3.24) before improvement. The symmetrisation must be
done carefully, in order not to overcount singular configurations. We adopt the following
procedure. First, we expand all products in Eq. (3.24), and we express the corresponding
lists of improved limits as flat sums running over the respective sets of relevant singular
projectors. For example, we write

L
p1q

ab “
ÿ

¯̀PL p1qab

¯̀, where L p1qab “

!

Sa, Cab, ´Sa Cab

)

,

L
p2q

abbc “
ÿ

¯̀PL p2qabbc

¯̀, where L p2qabbc “

!

Sab, SCabc, ´SCabc Sab, Cabc, ´Sab Cabc,

´SCabc Cabc, SCabc Sab Cabc

)

, (3.49)

and similarly for the remaining limits given in Eq. (3.24). Next, we introduce the index
sets

α “ tij, ji, ik, ki, jk, kju , β “ tij, ji, kl, lku ,

γ1 “ tijjk, ikkj, jkki, jiik, kiij, kjjiu , γ2 “ tijkj, ikjk, jkik, jiki, kiji, kjiju ,

δ “ tijkl, ijlk, jikl, jilk, klij, klji, lkij, lkjiu , (3.50)

which enumerate the permutations that will need to be summed in order to perform
the required symmetrisations. The collections of limits L

p1q

tσu, L
p2q

tσu and L
p12q

tσu can now be
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defined by sums running over unions of the sets L. Specifically, we define

L
p1q

tijku “
ÿ

¯̀PL p1qα

¯̀, where L p1qα “
ď

ab Pα

L p1qab ,

L
p1q

tijklu “
ÿ

¯̀PL p1qβ

¯̀, where L p1qβ “
ď

ab Pβ

L p1qab ,

L
p2q

tijku “
ÿ

¯̀PL p2qγ

¯̀, where L p2qγ “

«

ď

abbc P γ1

L p2qabbc

ff

Y

«

ď

abcb P γ2

L p2qabcb

ff

,

L
p2q

tijklu “
ÿ

¯̀PL p2qδ

¯̀, where L p2qδ “
ď

abcd P δ

L p2qabcd . (3.51)

Similarly, the strongly-ordered double-unresolved limits L
p12q

tσu are obtained by analogous
sums, where for σ “ ijk the sum runs over the collection L p12qγ , and, for σ “ ijkl, the
sum runs over the collection L p12qδ , defined as in the last two lines of Eq. (3.51), with
the replacement p2q Ñ p12q. While assembling the set unions introduced in Eq. (3.51),
one must be careful in counting only once all limits that coincide by symmetry: thus, for
example, one should use the fact that Cij “ Cji, and SCijk “ SCikj. To further illustrate
the procedure, we make explicit the first line of Eq. (3.51), which becomes

L
p1q

tijku “ Si ` Sj ` Sk `Cij `Cik `Cjk

´Si Cij ´ Sj Cij ´ Si Cik ´ Sk Cik ´ Sj Cjk ´ Sk Cjk

“ Si ` Sj ` Sk `HCij `HCik `HCjk , (3.52)

properly including all relevant singular regions without double counting.
The explicit results for the sums in Eq. (3.51) appear rather cumbersome at first sight,

but in fact they result in relatively compact expressions when the limits are evaluated.
Indeed, thanks to the symmetry properties of Zijk and Zijkl, it is possible to merge subsets
of singular limits which factor identical combinations of symmetrised sector functions.
One finds then that only certain combinations of singular limits survive in the result. In
detail, all single-unresolved collections L

p1q

tσu can be written explicitly as sums of single-soft
limits Sa plus hard-collinear combinations HCab, defined in Eq. (C.48). Furthermore, it
is useful to introduce a soft-subtracted version of the uniform double-unresolved limit
SCabc, which is given by

SHCabc ” SCabc

`

1´ Sab ´ Sac
˘

. (3.53)

This combination appears only when attached to either the Sa or Cabc limits: indeed, in
any other case, the operators SCabc and Sab SCabc do not share the same sector functions
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in the limit. Similarly, considering the double-unresolved improved collinear limit Cabc,
we can distinguish three useful combinations, defined by

HCabc ” Cabc

`

1´ Sab ´ Sbc ´ Sac
˘

,

HC
psq

abc ” Cabc

`

1´ Sab ´ Sac
˘ `

1´ SCabc

˘

,

HC
pcq

abc ” Cabc

`

1´ Sab ´ SCcab

˘

, (3.54)

which reflect three different possible strategies for removing soft singularities from the
triple collinear kernel. The superscripts psq and pcq in the second and third line of
Eq. (3.54) refer to the fact that the psq combination can appear only in association with
a single-soft limit Sd (with d P ta, b, cu), while the pcq combination can appear only in
association with single hard-collinear limits HCde, with de P tab, ac, bcu. Finally, for the
four-particle double-collinear improved limit Cijkl we introduce

HCabcd ” Cabcd

`

1` Sac ` Sbc ` Sad ` Sbd ´ SCacd ´ SCbcd ´ SCcab ´ SCdab

˘

,

HC
pcq

abcd ” Cabcd

`

1´ SCcab ´ SCdab

˘

, (3.55)

where again the notation pcq refers to the fact that the combined limit in the second
line of Eq. (3.55) can only appear in association with the hard-collinear single-unresolved
limits HCab and HCcd.

With these preliminary definitions in place, we can formulate explicit expressions for
the symmetrised improved limits defined in Eq. (3.51). They are as follows:

L
p1q

tijku“ Si ` Sj ` Sk `HCij `HCjk `HCik ,

L
p1q

tijklu“ Si ` Sj ` Sk ` Sl `HCij `HCkl ,

L
p2q

tijku“ Sij ` Sjk ` Sik ` SCijkp1´Sij´Sikq ` SCjikp1´Sij´Sjkq ` SCkijp1´Sik´Sjkq

`HCijk ´CijkpSHCijk`SHCjik`SHCkij q ,

L
p2q

tijklu“ Sik ` Sjk ` Sil ` Sjl ` SCikl

`

1´Sik´Sil
˘

` SCjkl

`

1´Sjk´Sjl
˘

`SCkij

`

1´Sik´Sjk
˘

` SClij

`

1´Sil´Sjl
˘

`HCijkl ,

L
p12q

tijku“ Si
`

Sij`Sik`SHCijk

˘

` Sj
`

Sij`Sjk`SHCjik

˘

` Sk
`

Sik`Sjk`SHCkij

˘

`
`

Si`Sj`Sk
˘

HC
psq

ijk `HCij

´

Sij`SCkij`HC
pcq

ijk

¯

`HCjk

´

Sjk`SCijk`HC
pcq

ijk

¯

`HCik

´

Sik`SCjik`HC
pcq

ijk

¯

, (3.56)

L
p12q

tijklu“ Si
`

Sik ` Sil
˘

` Sj
`

Sjk ` Sjl
˘

` Sk
`

Sik ` Sjk
˘

` Sl
`

Sil ` Sjl
˘

`Si SHCikl ` Sj SHCjkl ` Sk SHCkij ` Sl SHClij

`HCij

`

SCkij ` SClij

˘

`HCkl

`

SCikl ` SCjkl

˘

`
`

HCij `HCkl

˘

HC
pcq

ijkl .



78 Chapter 3. Local Analytic Sector Subtraction at NNLO

The actions of all these improved limits on RR and on the symmetrised sector functions
Zijk, Zijkl are reported in Appendix C.2.

Comparing the collections of singular projectors relevant to Wabcd sector functions in
Eq. (3.24) with the ones reported in Eq. (3.56) for the symmetrised case, it is immediate
to notice that the number of different non-trivial singular limits contributing to a given
sector changes, depending on the type of partition we introduce. In particular, this
number increases for our choice of Zijk and Zijkl. Despite this, though, the ordered sums
in Eq. (3.47), building up the relevant integrable contributions, lead to a significantly more
compact final expression (in terms of the number of different objects one needs to define
and evaluate). This is a feature that will crucially translate into a gain in computational
time and resources in the numerical implementation of the method.

3.3 Integration of the double-real-radiation counterterms

In the previous Section we constructed RR sub of Eq. (3.8), a combination which is inte-
grable everywhere in the double-radiative phase space, by subtracting the local countert-
erms K p1q, K p2q and K p12q (given in Eq. (3.34), or equivalently in Eq. (3.48)) from the
double-real squared matrix element RR. These counterterms must now be added back,
after integrating out one or two emissions, yielding the integrated counterterms I p1q, I p2q,
I p12q. The integration procedure at this perturbative order involves rather intricate com-
binatorics, and generates lengthy expressions in the intermediate stages. However, all
integrals that need to be computed are remarkably simple, and in almost all cases exhibit
trivial (logarithmic) dependence on the Mandelstam invariants [200].

We will begin by introducing the relevant phase-space factorisations and parameter-
isations, derived from the nested Catani-Seymour mappings introduced in Section 3.2.4.
Then, we will report the integration of the counterterms K p1q, K p2q, K p12q, specifying
how each singular contribution is treated. The resulting expressions can be simplified, by
relabelling the momenta and rewriting the flavour sums of the original pn`2q-body phase
space. This finally enable us to recombine the contributions carrying different mappings,
resulting in relatively compact collections of integrals for I p1q, I p2q, I p12q. At this stage,
the results can be directly employed in the subtraction formula, Eq. (3.5).

It is natural to define I p1q as the integral of K p1q in the single-unresolved radiation,
and I p2q as the integral of K p2q in both unresolved emissions. For the strongly-ordered
counterterm K p12q both possibilities are in principle viable. In our framework, we define
I p12q as the integral of K p12q in a single radiation5, corresponding to the ‘most unresolved’
radiated particle, as explicitly noted in Eq. (3.4). As a consequence, before performing
the integrations, we rewrite both K p1q and K p12q by summing up the sector functions

5We note that in the context of the CoLoRFul approach to subtraction [206, 207], the strongly-ordered coun-
terterm is integrated directly in both unresolved radiations.
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related to the most unresolved radiation (the ones carrying the suffix α), while keeping
the sector functions for the second (least-unresolved) radiation untouched. Note however
that these remaining sector functions carry pn` 1q-body mapped kinematics. In this way,
it will be possible to combine directly the integrated counterterms I p1q and I p12q with the
real-virtual contribution RV , and with the real-virtual counterterm KpRVq, in Eq. (3.7),
sector by sector in Φn`1. For the sake of simplicity, in the following all integrations are
described using the representations ofK p1q,K p2q andK p12q in terms of symmetrised sector
functions, as provided in Eq. (3.48), but we will also present the resulting expressions for
I p1q, I p2q and I p12q in terms of the W sector functions.

Phase-space parametrisations

We start by giving precise definitions for the measures of integration in the radiative phase
spaces dΦrad and dΦrad,2, according to Eq. (3.3), now focusing on the dependence on the
chosen mappings (discussed in Section 3.2.4), and making specific choices of integration
variables.

The single-unresolved counterterm K p1q contains just single mappings of the type
tk̄upacdq (a, c, d all different) and is going to be integrated in the corresponding single-
radiation phase space. Conversely,K p12q andK p2q are built by means of iterated mappings
of the type tk̄upacd,befq (a, c, d all different and b, e, f all different). However, while K p12q

has to be integrated just in the phase space of the single radiation corresponding to the
first mapping, K p2q must be integrated in the whole double-radiation phase space.

We start specifying the first term in Eq. (3.3), needed for the integration of K p1q and
K p12q. We write

ż

dΦn`2ptkuq “
ςn`2

ςn`1

ż

dΦ
pacdq
n`1

ż

dΦ
pacdq
rad , (3.57)

where we defined

dΦ
pacdq
n`1 ” dΦn`1ptk̄u

pacdq
q . (3.58)

The explicit expression for the radiative measure has already been reported in Eq. (2.88).
The invariants composed by the momenta ka, kc, kd are related to the integration variables
y and z by

sac “ y s̄
pacdq
cd , sad “ zp1´ yq s̄

pacdq
cd , scd “ p1´ zqp1´ yq s̄

pacdq
cd , (3.59)

so that sacd “ sac ` sad ` scd “ s̄
pacdq
cd .

To parametrise the double-radiative phase space for K p2q integration (as in the second
entry of Eq. (3.3)), we employ double mappings of three different types, as discussed in
Section 3.2.4. We examine them in turn.
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The six-particle mapping tk̄upacd,befq (a, b, c, d, e, f all different) presented in Eqs. (3.25)
and (3.26) induces the factorisation

ż

dΦn`2ptkuq “
ςn`2

ςn

ż

dΦpacd,befqn

ż

dΦ
pacd,befq
rad,2 , dΦpacd,befqn ” dΦnptk̄u

pacd,befq
q,(3.60)

and the resulting radiative measure of integration is
ż

dΦ
pacd,befq
rad,2 “ N2

pεq
´

s̄
pacd,befq
cd s̄

pacd,befq
ef

¯1´ε
ż π

0

dφ1 psinφ1q´2ε

ż 1

0

dy1
ż 1

0

dz1
ż π

0

dφ psinφq´2ε

ˆ

ż 1

0

dy

ż 1

0

dz
”

y1p1´ y1q2 z1p1´ z1q yp1´ yq2 zp1´ zq
ı´ε

p1´ y1qp1´ yq,(3.61)

with Npεq as in Eq. (2.90). The expressions for relevant invariants in terms of the inte-
gration variables are

sac “ y1 s̄
pacd,befq
cd , sbe “ y s̄

pacd,befq
ef ,

sad “ z1 p1´ y1q s̄
pacd,befq
cd , sbf “ z p1´ yq s̄

pacd,befq
ef ,

scd “ p1´ z
1
qp1´ y1q s̄

pacd,befq
cd , sef “ p1´ zqp1´ yq s̄

pacd,befq
ef , (3.62)

so that
sacd “ sac ` sad ` scd “ s̄

pacd,befq
cd “ s̄

pacdq
cd ,

sbef “ sbe ` sbf ` sef “ s̄
pacd,befq
ef “ s̄

pbefq
ef . (3.63)

The five-particle mapping tk̄upacd,bedq (a, b, c, d, e all different) presented in Eqs. (3.27)
and (3.28) induces the factorisation
ż

dΦn`2ptkuq “
ςn`2

ςn

ż

dΦpacd,bedqn

ż

dΦ
pacd,bedq
rad,2 , dΦpacd,bedqn ” dΦnptk̄u

pacd,bedq
q,(3.64)

and we write
ż

dΦ
pacd,bedq
rad,2 “N2

pεq
´

s̄
pacd,bedq
cd s̄

pacd,bedq
ed

¯1´ε
ż π

0

dφ1 psinφ1q´2ε

ż 1

0

dy1
ż 1

0

dz1
ż π

0

dφ psinφq´2ε

ż 1

0

dy

ˆ

ż 1

0

dz
”

y1p1´ y1q2 z1p1´ z1q yp1´ yq3 zp1´ zq
ı´ε

p1´ y1qp1´ yq2,(3.65)

with

sac “ y1 p1´ yq s̄
pacd,bedq
cd , sad “ z1 p1´ y1qp1´ yq s̄

pacd,bedq
cd ,

sbe “ y s̄
pacd,bedq
ed , sbd “ p1´ y

1
q z p1´ yq s̄

pacd,bedq
ed ,

scd “ p1´ y
1
qp1´ z1qp1´ yq s̄

pacd,bedq
cd , sed “ p1´ y

1
qp1´ zqp1´ yq s̄

pacd,bedq
ed , (3.66)
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so that the invariant sabcde “ sab` sac` sad` sae` sbc` sbd` sbe` scd` sce` sde is equal
to s̄pacd,bedqcde “ s̄

pacd,bedq
cd ` s̄

pacd,bedq
ce ` s̄

pacd,bedq
de .

Finally, we have the four-particle mapping, tk̄upacd,bcdq “ tk̄upabcdq, (a, b, c, d all differ-
ent), presented in Eqs. (3.29) and (3.30). This is the most intricate mapping, inducing
the factorisation

ż

dΦn`2ptkuq “
ςn`2

ςn

ż

dΦpabcdqn

ż

dΦ
pabcdq
rad,2 , dΦpabcdqn ” dΦnptk̄u

pabcdq
q , (3.67)

where we write
ż

dΦ
pabcdq
rad,2 “ 2´2εN2

pεq
´

s̄
pabcdq
cd

¯2´2ε
ż 1

0

dw1
ż 1

0

dy1
ż 1

0

dz1
ż π

0

dφ psinφq´2ε

ż 1

0

dy

ż 1

0

dz (3.68)

ˆ

”

w1p1´w1q
ı´1{2´ε”

y1p1´y1q2 z1p1´z1q y2
p1´yq2 zp1´zq

ı´ε

p1´y1q y p1´yq ,

with

sab “ y1 y s̄
pabcdq
cd , sac “ z1p1´ y1q y s̄

pabcdq
cd , sbc “ p1´ y1qp1´ z1q y s̄

pabcdq
cd ,

scd “ p1´ y
1
qp1´ yqp1´ zq s̄

pabcdq
cd ,

sad “ p1´ yq
”

y1p1´ z1qp1´ zq ` z1z ´ 2p1´ 2w1q
a

y1z1p1´ z1qzp1´ zq
ı

s̄
pabcdq
cd ,

sbd “ p1´ yq
”

y1z1p1´ zq ` p1´ z1qz ` 2p1´ 2w1q
a

y1z1p1´ z1qzp1´ zq
ı

s̄
pabcdq
cd , (3.69)

so that sabcd “ sab ` sac ` sad ` sbc ` sbd ` scd “ s̄
pabcdq
cd .

Integration of K p1q, K p2q and K p12q

We now have all the ingredients to perform the required integrations. Our task is simpli-
fied by the fact that the integrals of the azimuthal parts of the collinear kernels vanish,
as proved in Appendix C.4. All remaining integrals are then computed following the
techniques explained in [200].

The integration of the single-unresolved counterterm K p1q involves
ż

dΦn`2K
p1q
“

ż

dΦn`2

"

ÿ

i,j‰i

ÿ

k‰i
kąj

SiRR Z̄jk `
ÿ

i, jąi

ÿ

k‰i

ÿ

l‰i
ląk

HCij RR Z̄kl

*

. (3.70)

The integrand on the right-hand side has been obtained from K p1q of Eq. (3.48) by
summing up the NLO sector functions with label α of Eqs. (C.129)-(C.130). As explained
in Appendix C.2, the mapped sector functions Z̄ij are understood to carry the same
mapping as the matrix elements they multiply. Given that Eq. (3.70) will have to be
combined with the real-virtual contribution RV within Eq. (3.7), it becomes necessary
to express the integral in Eq. (3.70) as a sum of terms where the integration over the
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single-particle radiative phase space has been performed, a specific parametrisation for
the pn` 1q-particle phase space has been identified, and the full single-real-radiation
squared matrix element R has been factored, and computed in the chosen variables. The
outcomes for the individual components of the two terms in Eq. (3.70) take the form

ż

dΦn`2 SiRR Z̄jk “ ´
ςn`2

ςn`1

ÿ

c‰i

ÿ

d‰i,c

ż

dΦ
picdq
n`1 J

icd
s R̄

picdq
cd Z̄picdqjk , (3.71)

ż

dΦn`2 HCij RR Z̄kl “
ςn`2

ςn`1

ż

dΦ
pijrq
n`1 J

ijr
hc R̄

pijrq Z̄pijrqkl , r “ rijkl , (3.72)

where the measure of integration dΦ
pacdq
n`1 was defined in Eq. (3.58). The integration over

the appropriate dΦrad has been performed, yielding the integrals J icds and J ijrhc , whose ex-
plicit expressions are given in Eq. (C.183) and in Eq. (C.189), respectively. The reference
particle r “ rijkl ‰ i, j, k, l 6 in Eq. (3.72) has been chosen following the rule of Eq. (A.13),
which reflects the prescription made for HCij RR in Eq. (C.48). Notice that this choice
causes a dependence of the integrated kernel J ijrhc on the indices k and l of Z̄pijrqkl , thus
preventing the complete summation of sector functions in the second line of Eq. (3.7).

We now turn to the integration of K p2q, which constitutes the most involved part of
the calculation. In this case, since I p2q lives in Φn, as part of double-virtual correction
in Eq. (3.6), we start from K p2q in Eq. (3.48) and perform the complete sum over sector
functions by means of their sum rules (see for example Eqs. (3.14)-(3.17)), thus removing
any dependence from the latter. This gives

ż

dΦn`2K
p2q
“

ż

dΦn`2

„

ÿ

i,jąi

Sij RR `
ÿ

i,j‰i

ÿ

k‰i
kąj

SHCijk

`

1´Cijk

˘

RR

`
ÿ

i, jąi

ÿ

kąj

HCijkRR `
ÿ

i, jąi

ÿ

k‰j
kąi

ÿ

l‰j
ląk

HCijklRR



. (3.73)

Each of the four terms in Eq. (3.73) must be written as a sum of contributions, where
the double-radiation kernels have been integrated over the parametrised radiative phase
space, and one is left with a Born-level factor, expressed in terms of mapped momenta.
To guide the eye of the reader through the following rather intricate expressions, we
emphasise that, for each one of the limits involved, the results are of the form

ż

dΦn`2 L
p2q

¨¨¨ RR “ constant
ÿ

tµu

ż

dΦpµqn Jµlimit B̄
pµq
colour , (3.74)

where the overall constant is related to multiplicities, the sum is over the set tµu of
6Notice that setting r “ rijkl implies the need for at least five massless partons in Φn`2, namely three massless

final-state partons at Born level. A solution for the case of two massless final-state partons in the Born phase
space requires minor technical modifications.
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mappings that have been employed, the Born factor may have different colour correlations,
and J will always denote the results of the integration of the kernels appropriate to the
limit being taken7. The relevant J ’s will be listed in Appendix C.5. Beginning with the
integrated double-soft limit in Eq. (3.73), we find the explicit expression

ż

dΦn`2 Sij RR “
1

2

ςn`2

ςn

ÿ

c‰i,j
d‰i,j,c

#

ÿ

e‰i,j,c,d

„

ÿ

f‰i,j,c,d,e

ż

dΦpicd,jefqn J ijcdefsbs B̄
picd,jefq
cdef

` 4

ż

dΦpicd,jedqn J ijcdesbs B̄
picd,jedq
cded



`

ż

dΦpijcdqn

„

2 J ijcdsbs B̄
pijcdq
cdcd ` J ijcdss B̄

pijcdq
cd



+

, (3.75)

where we collected colour correlations involving four, three and two partons, and each
term has been mapped differently, to simplify the corresponding integration. The integrals
relevant for double-soft radiation are presented in Eq. (C.185). We now turn to the second
term in Eq. (3.73), and we find (with r “ rijk)

ż

dΦn`2 SHCijk

`

1´Cijk

˘

RR “

´
ςn`2

ςn

#

ÿ

c‰i,j,k,r
d‰i,j,k,r,c

ż

dΦpjkr,icdqn J jkricdsbhc B̄
pjkr,icdq
cd ` 2

ÿ

c‰i,j,k,r

ż

dΦpjkr,icrqn J jkricrsbhc B̄pjkr,icrqcr

`

«

ÿ

c‰i,j,k

ż

dΦpkrj,icjqn Jkrjicsbhc

ˆ

ρpCqjk B̄
pkrj,icjq
rjksc ` f̃ qq̄jk B̄

pkrj,icjq
rjksc

˙

`Cfrjks ρ
pCq

jk

ż

dΦpkrj,ijrqn Jkrjirsbhc B̄
pkrj,irjq

` pj Ø kq

ff+

, (3.76)

where rjks represents the parent particle of the pair pj, kq, the factors ρpCqjk , involving
combinations of Casimir eigenvalues, are defined in Eq. (A.7), the flavour factors such as
f̃ qq̄jk are presented in Eq. (A.3), and Bcd is a colour projection of the Born contribution
involving the symmetric tensor dABC , defined in Eq. (A.5); furthermore, the phase-space
integrals Jsbhc are presented in Eq. (C.196). The remaining contributions to Eq. (3.73) are
purely hard-collinear. For the integral of the emission of a cluster of three hard-collinear
particles we find

ż

dΦn`2 HCijkRR “
ςn`2

ςn

ż

dΦpijkrqn J ijkrhcc B̄pijkrq , r “ rijk , (3.77)

7Note that, since the limit L is expressed as a sum of terms that can be mapped differently, several J ’s will
contribute to each L.
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while for the emission of two distinct pairs of hard-collinear particles the integral reads
ż

dΦn`2 HCijklRR “
ςn`2

ςn

ż

dΦpijr,klrqn J ijklr
hcbhc B̄

pijr,klrq , r “ rijkl , (3.78)

where the integrals Jhcc and Jhcbhc are reported in Eq. (C.192) and in Eq. (C.194), re-
spectively.

We finally turn to the integration of the strongly-ordered counterterm K p12q. As
announced, we integrate K p12q only in the phase space of the most unresolved radiation,
so the integrals involved will be the same that appeared in the case of K p1q. Starting
from the expression for K p12q in Eq. (3.48), we then sum up the NLO sector functions
with label α of Eqs. (C.133)-(C.134), and we get

ż

dΦn`2K
p12q

“

ż

dΦn`2

#

ÿ

i,j‰i

Si

„

ÿ

k‰i,j

Sij RR Z̄s,jk `
ÿ

k‰i
kąj

`

SHCijk `HC
psq

ijk

˘

RR



`
ÿ

i, jąi

ÿ

k‰i,j

HCij

„

Sij RR Z̄s,jk `
ÿ

l‰i,k

SCkij RR Z̄s,kl

` HC
pcq

ijk RR `
ÿ

l‰i,j
ląk

HC
pcq

ijklRR



+

, (3.79)

where again the mapped sector functions Z̄s,ab carry the same mapping as the matrix
elements they multiply. No other sector functions appear in Eq. (3.79), since the use of
symmetrised sector functions has allowed to perform the corresponding sector sums in the
collinear contributions, thus replacing sector functions by unity. Once again, to highlight
the general structure of the expressions listed below, we anticipate that they are all of the
form

ż

dΦn`2 L
p12q

¨¨¨ RR “ constant
ÿ

tµ1,µ2u

ż

dΦ
pµ1q

n`1 J
µ1

limit K̄pµ1q
µ2

B̄
pµ1,µ2q

colour . (3.80)

In this case, the only integrals required for the most unresolved radiation will again be
J ilms and J ijrhc , reported in Eq. (C.183) and in Eq. (C.189) respectively. The contribution
K̄ identifies either a soft or a collinear kernel associated with the second (least-unresolved)
radiation, which carries mapping pµ1q, i.e. the first one in the nested mapping pµ1, µ2q of
the Born matrix elements. Following in the order the content of Eq. (3.79), the integrated
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strongly-ordered double-soft limit is given by
ż

dΦn`2 Si Sij RR Z̄s,jk “ (3.81)

N1
ςn`2

ςn`1

ÿ

c‰i,j
d‰i,j,c

#

ż

dΦ
picdq
n`1 J

icd
s

„

ÿ

e‰i,j,c,d

ˆ

1

2

ÿ

f‰i,j,c,d,e

Ē pjqpicdqef B̄
picd,jefq
cdef ` Ē pjqpicdqed B̄

picd,jedq
cded

˙

` Ē pjqpicdqcd

´

B̄
picd,jcdq
cdcd ` CAB̄

picd,jcdq
cd

¯



Z̄picdqs, jk

`

ż

dΦ
pidcq
n`1 J

idc
s

ÿ

e‰i,j,c,d

Ē pjqpidcqed B̄
pidc,jedq
cded Z̄pidcqs, jk

´CA

ż

dΦ
picjq
n`1 J

icj
s Ē pjqpicjqcd B̄

picj,jcdq
cd Z̄picjqs, jk

´CA

ż

dΦ
pijdq
n`1 J

ijd
s Ē pjqpijdqcd B̄

pijd,jcdq
cd Z̄pijdqs, jk

+

,

and it is entirely expressed in terms of the simple NLO eikonal kernels given in Eq. (C.3).
Next, we perform the integral (with r “ rijk)
ż

dΦn`2 Si SHCijk RR “ (3.82)

´N1
ςn`2

ςn`1

ÿ

c‰i,j,k

#

ÿ

d‰i,j,k,c

ż

dΦ
picdq
n`1 J

icd
s

P̄
picdqhc,µν
jk

s̄
picdq
jk

B̄
picd,jkrq
µν,cd

`

«

ż

dΦ
pijcq
n`1J

ijc
s

P̄
pijcqhc,µν
jkprq

2s̄
pijcq
jk

ˆ

ρpCqjk B̄
pijc,krjq
µν,rjksc `f̃

qq̄
jk B̄

pijc,krjq
µν,rjksc

˙

` pj Ø kq

ff

`

«

ż

dΦ
picjq
n`1J

icj
s

P̄
picjqhc,µν
jkprq

2s̄
picjq
jk

ˆ

ρpCqjk B̄
picj,krjq
µν,rjksc `f̃

qq̄
jk B̄

picj,krjq
µν,rjksc

˙

` pj Ø kq

ff+

,

where the hard-collinear kernels are given in Eq. (C.11). We now turn to limits involving
triple-collinear configurations. First we need

ż

dΦn`2 Si HC
psq

ijk RR “ (3.83)

N1
ςn`2

ςn`1

Cfrjks
2

# «

ρpCqjk

ż

dΦ
pijrq
n`1 J

ijr
s

P̄
pijrqhc,µν
jkprq

s̄
pijrq
jk

`

B̄pijr,jkrqµν ´B̄pijr,krjqµν

˘

` pj Ø kq

ff

`

«

ρpCqjk

ż

dΦ
pirjq
n`1 J

irj
s

P̄
pirjqhc,µν
jkprq

s̄
pirjq
jk

`

B̄pirj,jkrqµν ´B̄pirj,krjqµν

˘

` pj Ø kq

ff

´ ρpCq
rjks

«

ż

dΦ
pijkq
n`1 J

ijk
s

P̄
pijkqhc,µν
jkprq

s̄
pijkq
jk

B̄pijk,jkrqµν ` pj Ø kq

ff+

, r “ rijk .
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Next we consider (again with r “ rijk)
ż

dΦn`2 HCij Sij RR Z̄s, jk “ ´N1
ςn`2

ςn`1

ż

dΦ
pijrq
n`1 J

ijr
hc

ÿ

c‰i,j
d‰i,j,c

Ē pjqpijrqcd B̄
pijr,jcdq
cd Z̄pijrqs, jk , (3.84)

where the choice of r different from i, j, k, analogously to the integral of HCij RR in
Eq. (3.72), causes a dependence of the integrated kernel J ijrhc on the index k of the sector
function Z̄pijrqs, jk . Next we have ( r “ rijkl, r1 “ rijk )

ż

dΦn`2 HCij SCkij RR Z̄s, kl “ ´N1
ςn`2

ςn`1

ż

dΦ
pijrq
n`1 J

ijr
hc

«

ÿ

c‰i,j,k,r1

d‰i,j,k,r1,c

Ē pkqpijrqcd B̄
pijr,kcdq
cd (3.85)

` 2
ÿ

c‰i,j,k,r1

Ē pkqpijrqcr1 B̄
pijr,kcr1q
cr1 ` 2

ÿ

c‰i,j,k

Ē pkqpijrqjc B̄
pijr,kcjq
jc

ff

Z̄pijrqs, kl .

Finally we move to strongly-ordered hard-collinear limits. First, with a collinear cluster
of three particles we find (with r “ rijk)

ż

dΦn`2 HCij HC
pcq

ijk RR “ N1
ςn`2

ςn`1

"
ż

dΦ
pijrq
n`1 J

ijr
hc

P̄
pijrqhc,µν
jkprq

s̄
pijrq
jk

B̄pijr,jkrqµν (3.86)

´ 2Cfrijs

ż

dΦ
pijrq
n`1 J

ijr
hc Ē pkqpijrqjr

´

B̄pijr,krjq ´ B̄pijr,kjrq
¯

*

.

Then, with two independent pairs of collinear particles, we obtain

ż

dΦn`2 HCij HC
pcq

ijklRR “ N1
ςn`2

ςn`1

ż

dΦ
pijrq
n`1 J

ijr
hc

P̄
pijrqhc,µν
klprq

s̄
pijrq
kl

B̄pijr,klrqµν , r “ rijkl . (3.87)

This concludes the list of all required integrals for double-real radiation.

Relabelling of momenta and flavour sums

Our next step will be to collect the results from different contributions and combine them
by relabelling mapped momenta. More precisely, in all pn` 1q-body phase spaces dΦ

pabcq
n`1

appearing in the integrals of K p1q and K p12q, we rename the sets of mapped momenta
tk̄pabcqun`1 as a unique set of pn`1q momenta tkun`1. With this new labelling, the indices
of the mapped momenta refer directly to the particles of the unique pn` 1q-body phase
space, and the reference to the first mapping can be simply removed. The relabelling thus
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leads to

dΦ
pabcq
n`1 Ñ dΦn`1 , Z̄pabcq¨¨¨ Ñ Z ¨¨¨ , R̄pabcq¨¨¨ Ñ R ¨¨¨ , B̄pabc,defq¨¨¨ Ñ B̄pdefq¨¨¨ ,

s̄
pabcq
ij Ñ sij , P̄

pabcqhc,µν
ijprq Ñ P hc,µν

ijprq , Ē piqpabcqlm Ñ E piqlm . (3.88)

Similarly, in the n-body phase spaces dΦ
pabc,defq
n appearing in the integral of K p2q, the sets

of mapped momenta tk̄pabc,defqun are renamed as a unique set of n momenta tkun, which
in practice means performing the substitutions

dΦpabc,defqn Ñ dΦn , B̄pabc,defq¨¨¨ Ñ B ¨¨¨ s̄
pabc,defq
ij Ñ sij . (3.89)

In particular, in the integral of SHCijkp1 ´ CijkqRR in Eq. (3.76), which involves a
collinear splitting of partons j and k, the momenta k̄pjkr,icdqk , k̄pjkr,icrqk , k̄pkrj,icjqj and k̄pkrj,ijrqj

are all renamed as kp, where p is the parent particle of j and k.
At this stage, in all integrated counterterms, the only recollection of the particles of

the original pn` 2q-body phase space is confined to the flavour factors f qi , f
q̄
i , f

g
i . These

can be summed up, and, if needed, translated into flavour factors for the particles of the
pn` 1q-body and n-body phase spaces. We now provide the rules to carry out these sums.

Let us begin with the simple case in which only one particle is integrated out, which
is the case for K p1q and K p12q. In this context, the following rules come into play.

• When going from an pn` 2q-body phase space to an pn` 1q-body phase space by
discarding particle i, which happens when particle i is a soft gluon, the sum over
flavour factors satisfies8

ςn`2

ςn`1

ÿ

i

f gi “ 1 . (3.90)

For example, if all (n` 2) particles are gluons, one has ςn`2 “ 1{pn` 2q! and ςn`1 “

1{pn` 1q!, and the sum yields the missing factor of n` 2.

• When going from an pn` 2q-body phase space to an pn` 1q-body phase space by
replacing two particles i, j with their parent particle p, which happens when i and j
form a collinear pair, the sum over the flavour factors of particles i, j can be written

8Eq. (3.90) is equal to Eq. (2.103), up to the appropriate symmetry factors.
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as a sum over flavour factors for particle p according to the rules9

ςn`2

ςn`1

ÿ

i,jąi

f qq̄ij “ Nf

ÿ

p

f gp ,

ςn`2

ςn`1

ÿ

i,jąi

pf gqij ` f
gq̄
ij q “

ÿ

p

pf qp ` f
q̄
p q ,

ςn`2

ςn`1

ÿ

i,jąi

f ggij “
1

2

ÿ

p

f gp . (3.91)

As an example, consider the production of n gluons and a collinear qq̄ pair. In this
case the first line of Eq. (3.91) applies, and one must take into account the fact that
quark flavours must be summed, since the quark pair is integrated out. One then
has ςn`2 “ Nf{n! and ςn`1 “ 1{pn` 1q!, since the new final state involves pn` 1q

gluons. For the same reason, the r.h.s. yields Nf pn` 1q.

Not surprisingly, the flavour sum rules for the integrated K p2q are both more varied
and more intricate. This complexity arises from integrating out two particles, either
by removing them (when they are soft), or by replacing them with their (grand)parent
particles when they form collinear sets. We consider the various cases in turn.

• When going from an pn` 2q-body phase space to an n-body phase space by discard-
ing two particles i, j, the sum over particles i, j satisfies

ςn`2

ςn

ÿ

i

ÿ

jąi

f ggij “
1

2
,

ςn`2

ςn

ÿ

i

ÿ

jąi

f qq̄ij “ Nf . (3.92)

As before, the first equality is easily verified when all (n` 2) particles are gluons,
as is the second one when the final state consists of n gluons and a quark-antiquark
pair.

• When going from an pn` 2q-body phase space to an n-body phase space by replacing
two particles j, k with their parent particle p, and by discarding particle i, the sum
over particles i, j, k can be written as a sum over p according to the following rules,

ςn`2

ςn

ÿ

i,j‰i

ÿ

k‰i
kąj

f gi f
qq̄
jk “ Nf

ÿ

p

f gp ,

ςn`2

ςn

ÿ

i,j‰i

ÿ

k‰i
kąj

f gi pf
gq
jk ` f

gq̄
jk q “

ÿ

p

pf qp ` f
q̄
p q ,

ςn`2

ςn

ÿ

i,j‰i

ÿ

k‰i
kąj

f gi f
gg
jk “

1

2

ÿ

p

f gp , (3.93)

where it is important to pay attention to the range of the various sums.
9The sums in Eq. (3.91) are equal to ones in Eq. (2.104), up to the appropriate symmetry factors.



3.3. Integration of the double-real-radiation counterterms 89

• When going from an pn` 2q-body phase space to an n-body phase space by replacing
three particles i, j, k with their grandparent particle p, the sum over particles i, j, k
can be replaced by a sum over p, as

ςn`2

ςn

ÿ

i, jąi

ÿ

kąj

pf qq̄q
1

ijk ` f
qq̄q̄1

ijk q “ Nf

ÿ

p

pf qp`f
q̄
p q ,

ςn`2

ςn

ÿ

i, jąi

ÿ

kąj

pf qq̄qijk ` f
qq̄q̄
ijk q “

1

2

ÿ

p

pf qp`f
q̄
p q ,

ςn`2

ςn

ÿ

i, jąi

ÿ

kąj

f qq̄gijk “ Nf

ÿ

p

f gp ,

ςn`2

ςn

ÿ

i, jąi

ÿ

kąj

pf ggqijk ` f
ggq̄
ijk q “

1

2

ÿ

p

pf qp`f
q̄
p q ,

ςn`2

ςn

ÿ

i, jąi

ÿ

kąj

f gggijk “
1

6

ÿ

p

f gp , (3.94)

where one easily recognises in the five lines the five possible partonic channels in-
volving the production of a cluster of three collinear particles: in the first line, the
final quark-antiquark pair can have any flavour (including that of the grandparent
(anti)quark, which is the same as that of the final (anti)quark q1), while in the second
line all three (anti)quarks have the same flavour.

• The most elaborated channel for flavour sums arises when going from an pn` 2q-
body phase space to an n-body phase space by replacing two pairs of particles i, j
and k, l with their parent particles, p and t, respectively. In this case, the sum over
particles i, j, k, l can be replaced by a sum over p and t according to the following
rules:

ςn`2

ςn

ÿ

i, jąi

ÿ

k‰j
kąi

ÿ

l‰j
ląk

f qq̄ij f
q1q̄1

kl “
N2
f

2

ÿ

p,t‰p

f ggpt ,

ςn`2

ςn

ÿ

i, jąi

ÿ

k‰j
kąi

ÿ

l‰j
ląk

”

f qq̄ij pf
gq1

kl ` f
gq̄1

kl q ` pf
gq1

ij ` f
gq̄1

ij qf
qq̄
kl

ı

“
Nf

2

ÿ

p,t‰p

pf gqpt ` f
gq̄
pt q ,

ςn`2

ςn

ÿ

i, jąi

ÿ

k‰j
kąi

ÿ

l‰j
ląk

pf qq̄ij f
gg
kl ` f

gg
ij f

qq̄
kl q “

Nf

2

ÿ

p,t‰p

f ggpt ,

ςn`2

ςn

ÿ

i, jąi

ÿ

k‰j
kąi

ÿ

l‰j
ląk

pf gqij ` f
gq̄
ij qpf

gq1

kl ` f
gq̄1

kl q “
1

2

ÿ

p,t‰p

pf qp ` f
q̄
p qpf

q1

t ` f
q̄1

t q ,

ςn`2

ςn

ÿ

i, jąi

ÿ

k‰j
kąi

ÿ

l‰j
ląk

”

pf gqij ` f
gq̄
ij qf

gg
kl ` f

gg
ij pf

gq
kl ` f

gq̄
kl q

ı

“
1

4

ÿ

p,t‰p

pf gqpt ` f
gq̄
pt q ,

ςn`2

ςn

ÿ

i, jąi

ÿ

k‰j
kąi

ÿ

l‰j
ląk

f ggij f
gg
kl “

1

8

ÿ

p,t‰p

f ggpt . (3.95)
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We emphasise that the flavour sum rules listed in this Section apply for any final-state
multiplicity and flavour structure. We now have all the tools to assemble the complete
integrated counterterms, which will be naturally organised according to the flavour struc-
tures of the pn` 1q-particle and of the n-particle phase spaces, as needed.

Assembling the complete integrated counterterms

After summing all contributions that were differently mapped, relabelling their momenta,
and making use of the flavour rules, the resulting integrated counterterms no longer retain
any trace of the original pn` 2q-body phase space, and we can actually get full results
for I p1q, I p2q, I p12q, as defined in Eq. (3.4).

The simplest case is the integral of the single-unresolved counterterm I p1q, which reads

I p1q “
ÿ

i,j‰i

I
p1q
ij Wij “

ÿ

i,jąi

I
p1q
ij Zij , (3.96)

I
p1q
ij “ ´

ÿ

c,d‰c

JspscdqRcd `
ÿ

k

J k
hcpskrqR , r “ rijk .

Here R is the full squared matrix element for single-real radiation, defined in Eq. (2.4), and
Rcd is its colour-correlated counterpart, defined in Eq. (A.6). The single-soft integral Js
is given in Eq. (C.184), and the collinear integral J k

hc is reported in Eq. (C.191). Because
of the rule r “ rijk, a dependence of J k

hcpskrq on i and j is left, excluding the possibility
to sum over sectors in the hard-collinear part of I p1q.

Moving to the integral of the double-unresolved counterterm, I p2q, we assemble the
corresponding contributions according to

I p2q “ I
p2q

SS ` I
p2q

SHC ` I
p2q

HCC ` I
p2q

HCHC , (3.97)

distinguishing double-soft, soft-times-hard-collinear and double-hard-collinear contribu-
tions, the last of which may involve three or four Born-level particles. For I p2qSS we get
contributions containing Born-level colour correlations involving four, three and two par-
ticles, and we write

I
p2q

SS “
1

4

ÿ

c,d‰c

#

ÿ

e‰c,d

„

ÿ

f‰c,d,e

J
p4q
sbspscd, sef qBcdef ` 4 J

p3q
sbspscd, sedqBcded



(3.98)

` 2 J
p2q
sbspscdqBcdcd ` 2

”

2Nf TR J
pqq̄q
ss pscdq ´ CA J

pggq
ss pscdq

ı

Bcd

+

,



3.3. Integration of the double-real-radiation counterterms 91

where the constituent integrals are given in Eq. (C.186). The soft-times-hard-collinear
contribution yields

I
p2q

SHC “ ´
ÿ

k

"

J k
hcpskrq

ÿ

c,d‰c

JspscdqBcd ` J
k

shcpskrqB ` J
k,A
shc pskrqBkr (3.99)

`
ÿ

c‰k,r

”

Jk,Bshc pskr, skcqBkc ` J
k,B
shc pskr, scrqBcr

ı

*

, r “ rk ,

where the rule r “ rk, as defined in Eq. (A.13), prevents r from being equal to k. In
Eq. (3.99) we have introduced the following soft-times-hard-collinear integrals

J k
shcpsq “ pf

q
k`f

q̄
k q

!

2CF J
gqg
sbhcpsq ` CA

”

Jggqsbhcpsq ´ J
gqg
sbhcpsq

ı)

` f gk CA

”

2Nf J
gqq
sbhcpsq ` J

ggg
sbhcpsq

ı

,

J k,A
shc psq “ pf

q
k`f

q̄
k q

"

2 Jgqgsbhcpsq `
CA
CF

”

Jggqsbhcpsq ´ J
gqg
sbhcpsq

ı

´ 2 J
4p2gq

sbhc ps, sq

*

` f gk

!

2Nf

”

Jgqqsbhcpsq ´ J
4p1gq

sbhc ps, sq
ı

` Jgggsbhcpsq ´ J
4p3gq

sbhc ps, sq
)

,

J k,B
shc ps, s

1
q “ pf qk`f

q̄
k q

”

2 J
3p2gq

sbhc ps, s
1
q ´ 2 J

4p2gq
sbhc ps, s

1
q

ı

` f gk

!

2Nf

”

J
3p1gq

sbhc ps, s
1
q ´ J

4p1gq
sbhc ps, s

1
q

ı

` J
3p3gq

sbhc ps, s
1
q ´ J

4p3gq
sbhc ps, s

1
q

)

, (3.100)

whose constituent integrals can be found in Eq. (C.197). Next, we turn to the double-
hard-collinear integral involving three Born-level particles, which reads

I
p2q

HCC “
ÿ

k

"

pf qk`f
q̄
k q

„

Nf J
p0gq
hcc pskrq `

1

2
J
p0g,idq
hcc pskrq `

1

2
J
p2gq
hcc pskrq



` f gk

„

Nf J
p1gq
hcc pskrq `

1

6
J
p3gq
hcc pskrq

*

B , r “ rk ,

where the relevant constituent integrals are given in Eq. (C.193). Finally, we come to the
double-hard-collinear integral involving four Born-level particles, for which we obtain

I
p2q

HCHC “
1

2

ÿ

j,l‰j

"

pf qj ` f
q̄
j qpf

q1

l ` f
q̄1

l qJ
qgqg
hcbhc

`

sjrslr
˘

(3.101)

`pf gqjl `f
gq̄
jl q

„

Nf J
qqqg
hcbhc

`

sjrslr
˘

`
1

2
Jqggg

hcbhc

`

sjrslr
˘



` f ggjl

„

N2
fJ

qqqq
hcbhc

`

sjrslr
˘

`NfJ
qqgg
hcbhc

`

sjrslr
˘

`
1

4
Jgggg

hcbhc

`

sjrslr
˘

*

B , r “ rjl ,

where the constituent integrals are given in Eq. (C.195).
Similarly to I p1q, we provide expressions for the integral of the strongly-ordered coun-

terterm, I p12q, with both unsymmetrised and symmetrised sector functions, so as to make
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it straightforward to prove that I p12q compensates sector by sector the phase-space singu-
larities of I p1q. Starting with the expression involving the original sector functions Wij,
we write

I p12q “
ÿ

i,j‰i

I
p12q
ij , I

p12q
ij “ I

p12q
S,ij Ws,ij ` I

p12q
C,ij ´ I

p12q
SC,ij , (3.102)

where the soft limit of sector functions Ws,ij is given in Eq. (C.41). The soft integral I p12qS,ij

can again be organised in terms of quadruple, triple and simple Born-level colour corre-
lations, which in this case will be multiplied by eikonal kernels for the second radiation,
and NLO-type soft and hard-collinear integrals. We find (r “ rik, r1 “ rij, r2 “ rijk)

I
p12q

S,ij “ N1

ÿ

c‰i
d‰i,c

E piqcd
"

1

2

ÿ

e‰i
f‰i,e

Jspsef q B̄
picdq
cdef `

ÿ

e‰i,d

Jspsdeq
´

B̄
picdq
cded ´ B̄

pidcq
cded

¯

(3.103)

´CA

”

Jspsicq ` Jspsidq ´ Jspscdq
ı

B̄
picdq
cd ´ J i

hcpsir1qB̄
picdq
cd

*

´N1

ÿ

k‰i

J k
hcpskr2q

„

ÿ

c‰i,k,r
d‰i,c,k,r

E piqcd B̄
picdq
cd ` 2

ÿ

c‰i,k,r

E piqcr B̄picrqcr ` 2
ÿ

c‰i,k

E piqkc B̄
pickq
kc



,

where the component integrals are given in Eq. (C.184) and in Eq. (C.191). We notice that
the expression contains three different reference particles r, r1 and r2, all built according to
the rule in Eq. (A.13). In particular, r1 “ rij and r2 “ rijk introduce a dependence in I p12qS,ij

on the particle j of the soft sector functionWs,ij. The collinear integral I
p12q
C,ij in Eq. (3.102)

is formulated in terms of spin-correlated Born-level squared matrix elements, which in this
case are multiplied by LO collinear kernels for the least-unresolved collinear splitting, and
times suitable combinations of the same constituent integrals as in Eq. (3.103). We find
(with r “ rij, r1 “ rijk)

I
p12q
C,ij “ ´N1

P µν
ijprq

sij

"

ÿ

c‰i,j

ÿ

d‰i,j,c

Jspscdq B̄
pijrq
µν,cd ` Cfrijs ρ

pCq

rijs Jspsijq B̄
pijrq
µν (3.104)

`

„

ÿ

c‰i,j

Jspsicq
´

ρpCqij B̄
pjriq
µν,rijsc ` f̃

qq̄
ij B̄pjriqµν,rijsc

¯

`Cfrijs ρ
pCq

ij Jspsirq
´

B̄pjriqµν ´ B̄pijrqµν

¯

` piØ jq

*

Wc,ijprq

`N1

P µν
ijprq

sij

”

J i
hcpsirq ` J

j
hcpsjrq

ı

B̄pijrqµν Wc,ijprq `N1

ÿ

k‰i,j

P µν
ijpr1q

sij
J k

hcpskr1q B̄
pijr1q
µν Wc,ijpr1q ,

where the collinear limit of sector functions Wc,ij is given in Eq. (C.42), and again two
reference particles have to be introduced. Finally, the soft-collinear integral has a similar
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structure and reads (with r “ rij, r1 “ rijk)

I
p12q

SC,ij “ ´ 2N1 E piqjr
"

Cfj
ÿ

c‰i,j

ÿ

d‰i,j,c

Jspscdq B̄
pijrq
cd ´ CfjCA Jspsijq B̄

pijrq (3.105)

`CA

„

ÿ

c‰i,j

Jspsicq B̄
pjriq
rijsc ` Cfj Jspsirq

´

B̄pjriq´ B̄pijrq
¯



`p2Cfj´CAq

„

ÿ

c‰i,j

Jspsjcq B̄
pirjq
rijsc ` Cfj Jspsjrq

´

B̄pirjq´ B̄pijrq
¯

*

` 2N1CfjE piqjr
”

J i
hcpsirq B̄

pijrq
` J j

hcpsjrq B̄
pirjq

ı

` 2N1CfjE piqjr1
ÿ

k‰i,j

J k
hcpskr1q B̄

pijr1q.

As already noted, a more compact expression for I p12q can be obtained using symmetrised
sector functions. We can equivalently write

I p12q “
ÿ

i,jąi

I
p12q
tiju , I

p12q
tiju “ I

p12q
S,ij Zs,ij ` I

p12q
S,ji Zs,ji ` I

p12q
HC,ij , (3.106)

where the soft contributions were already introduced in Eq. (3.103), while the hard-
collinear contribution I p12qHC,ij reads (r “ rij, r1 “ rijk)

I
p12q

HC,ij “ I
p12q
C,ij ` I

p12q
C,ji ´ I

p12q
SC,ij ´ I

p12q
SC,ji (3.107)

“ ´N1

P hc,µν
ijprq

sij

"

ÿ

c‰i,j

ÿ

d‰i,j,c

Jspscdq B̄
pijrq
µν,cd ` Cfrijs ρ

pCq

rijs Jspsijq B̄
pijrq
µν

`

„

ÿ

c‰i,j

Jspsicq
´

ρpCqij B̄
pjriq
µν,rijsc ` f̃

qq̄
ij B̄pjriqµν,rijsc

¯

`Cfrijs ρ
pCq

ij Jspsirq
´

B̄pjriqµν ´ B̄pijrqµν

¯

` piØ jq

*

`N1

P hc,µν
ijprq

sij

”

J i
hcpsirq ` J

j
hcpsjrq

ı

B̄pijrqµν `N1

ÿ

k‰i,j

P hc,µν
ijpr1q

sij
J k

hcpskr1q B̄
pijr1q
µν

´ 2N1

„

CfiE pjqir J i
hcpsirq

´

B̄pjriq ´ B̄pjirq
¯

` CfjE piqjr J j
hcpsjrq

´

B̄pirjq ´ B̄pijrq
¯



.

This concludes the list of integrated counterterms for double-real radiation. We now turn
to the treatment of real-virtual contributions.

3.4 The subtracted real-virtual contribution RVsub

Let us review what we have accomplished up to this point. After subtracting the appro-
priate combination of the local counterterms K p1q, K p2q and K p12q from the double-real
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squared matrix element RR, and after adding back the corresponding integrated countert-
erms, I p1q, I p2q and I p12q, we can write a partially subtracted expression for the differential
distribution in Eq. (3.1). It reads

dσNNLO

dX
“

ż

dΦn

”

V V ` I p2q
ı

δnpXq

`

ż

dΦn`1

”

`

RV ` I p1q
˘

δn`1pXq ´ I
p12q δnpXq

ı

`

ż

dΦn`2RR subpXq . (3.108)

Notice that no approximations have been made in reaching Eq. (3.108), since all local
terms that were subtracted from Eq. (3.1) have been added back exactly in their integrated
form. At this stage, RR sub, given in Eq. (3.33) or in Eq. (3.47), is free of phase-space
singularities in Φn`2, and (evidently) does not contain explicit poles in ε. Therefore, it
can be directly integrated in four dimensions, as desired.

We can then safely turn our attention to the second line of Eq. (3.108), namely the
real-virtual correction. As discussed in Section 3.1, this contribution is affected by the
presence of phase-space singularities, due to the extra single-unresolved radiative emission,
as well as explicit poles in ε, originating from its one-loop nature. These characteristics
inevitably make the devising of a strategy to remove those singularities, a non-trivial task.
We will proceed by steps. We will start by assessing the role played by the insertion of
the integrals I p1q and I p12q in the cancellation pattern (Section 3.4.1). We will however
soon realise that these contributions are not sufficient to reach our goal, as they too bring
with them further singularities that must be taken care of, in addition to those of RV . It
will be therefore necessary to introduce a fourth counterterm, KpRVq, specifically designed
to make the full RV correction comprehensively free from ε poles, and integrable in the
pn` 1q-body phase space (Section 3.4.2). Once verified the finiteness of the second line of
Eq. (3.108), in Section 3.4.3 we will present the formulation of the real-virtual counterterm
in terms of symmetrised sector functions.

3.4.1 Integrated contributions

By introducing the integrated counterterms I p1q and I p12q as defined in Eq. (3.96) and
Eq. (3.102), we can confirm that the second line of Eq. (3.108) verifies two crucial proper-
ties that follow from general cancellation theorems and from the definitions provided up
to this point. Specifically, the combination of these ingredients leads to

p1q
`

RV ` I p1q
˘

δn`1pXq Ñ finite ,

p2q I p1q δn`1pXq ´ I
p12q δnpXq Ñ integrable . (3.109)
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The first property derives from the KLN theorem: indeed, I p1q is the integral over the
most unresolved radiation of RR, and its IR poles must compensate the virtual poles
arising when one of the two unresolved particles becomes virtual, while the other one
remains unaffected. These are precisely the poles of RV . To check this, which provides
a test of the results obtained so far, it is sufficient to perform the ε expansion of I p1q, as
given in Eq. (3.96), writing

I p1q “ I
p1q
poles ` I

p1q
fin `Opεq . (3.110)

Performing the sum over sectors in I p1qpoles, we get

I
p1q

poles “
αs
2π

„

1

ε2
Σ
C
R `

1

ε

ˆ

Σγ R `
ÿ

c,d‰c

LcdRcd

˙

“ ´RVpoles , (3.111)

while keeping the complete dependence on sector functions in I p1qfin , we find

I
p1q

fin “
ÿ

i,j‰i

I
p1q
fin,ij Wij “

ÿ

i,jąi

I
p1q
fin,ij Zij , (3.112)

I
p1q
fin,ij “

αs
2π

„ˆ

Σφ ´
ÿ

k

γhc
k Lkr

˙

R `
ÿ

c,d‰c

Lcd

ˆ

2´
1

2
Lcd

˙

Rcd



, r “ rijk .

In Eqs. (3.111)-(3.112), Lab “ logpsab{µ
2q, and the numerical coefficients are given in

Eqs. (A.7)-(A.10). One easily verifies that I p1qpoles matches the explicit poles of the real-
virtual matrix element RVpoles, which have the well-known universal NLO structure (see
for example [116, 146]), upon replacing the n-point amplitude with the pn` 1q-point
amplitude.

The second property in Eq. (3.109) guarantees the cancellation of phase-space sin-
gularities arising from to the real-radiation matrix elements squared R present in I p1q.
In order to prove it, we start from the decompositions of the integrated counterterms in
terms of the sector fuctions Wij, provided in Eqs. (3.96)-(3.102), which combination reads

Ip1qδn`1pXq ´ I
p12qδnpXq “

ÿ

i,j‰i

!

I
p1q
ij Wij δn`1pXq ´

”

I
p12q
S,ij Ws,ij ` I

p12q
C,ij ´ I

p12q
SC,ij

ı

δnpXq
)

. (3.113)

The NLO sector functions Wij and Ws,ij are defined in Eq. (2.19) and Eq. (C.41) respec-
tively. The local subtraction of phase-space singularities in Eq. (3.113) is thus expected
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to occur at the level of single sectors Wij, owing to the relations

Si

”

I
p1q
ij Wij ´ I

p12q
S,ij Ws,ij

ı

Ñ integrable , Si

”

I
p12q
C,ij ´ I

p12q
SC,ij

ı

Ñ integrable ,

Cij

”

I
p1q
ij Wij ´ I

p12q
C,ij

ı

Ñ integrable , Cij

”

I
p12q
S,ij Ws,ij ´ I

p12q
SC,ij

ı

Ñ integrable . (3.114)

For concreteness, consider the first relation. Under soft limit, the pn` 1q-particle matrix
element in I

p1q
ij returns a sum of products of eikonal factors and n-particle Born-level,

colour-correlated matrix elements, and its sector function Wij becomes equal to Ws,ij.
At the same time, when the operator Si acts on I

p12q
S,ij , it effectively removes the phase-

space mappings, so that Eq. (3.103) tends to the Si limit of the sum of soft and collinear
integrals in Eq. (3.96), up to the overall sign. Similar steps show the validity of the other
relations in Eq. (3.114).

3.4.2 Definition of the local counterterm

At this stage, we have established that the sum
`

RV ` I p1q
˘

δn`1pXq is free of explicit
poles, while the combination I p1q δn`1pXq´I

p12q δnpXq is integrable in Φn`1. Nonetheless,
the former expression still contains phase-space singularities arising from the real-virtual
correction RV , whereas the latter still exhibits explicit poles in ε, specifically from I p12q.

In order to build a fully subtracted real-virtual matrix element RV sub, it is necessary to
define a real-virtual counterterm K

pRVq
ij . This counterterm, sector by sector, must satisfy

the two further properties:

p3q K
pRVq
ij ` I

p12q
ij Ñ finite ,

p4q RV Wij δn`1pXq ´K
pRVq
ij δnpXq Ñ integrable . (3.115)

Once these conditions are met, the subtracted real-virtual contribution to the cross sec-
tion, defined in Eq. (3.7), is manifestly finite and integrable in Φn`1. To explicitly prove
the relations in Eq. (3.115), we reformulate RV sub as a sum over sectors, obtaining

RV subpXq “
ÿ

i,j‰i

„

´

RV ` I
p1q
ij

¯

Wij δn`1pXq ´
´

K
pRVq
ij ` I

p12q
ij

¯

δnpXq



. (3.116)

As sector functions Wij selects only single soft and collinear singular limits associated
with a specific pair of partons ij, the second condition in Eq. (3.115) effectively reduces
to verify that

RV Wij δn`1pXq ´K
pRVq
ij δnpXq Ñ integrable in the limits Si, Cij . (3.117)

In order to find a suitable expression for KpRVq
ij , we adopt a strategy akin to the one used

in the NLO scenario. We start by defining soft and collinear improved limits, Si and Cij,
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for the real-virtual squared matrix element. As a crucial requirement, such limits must
reproduce the behaviour of RV in all singular regions of phase space. This is verified by
checking a set of consistency relations10, specifically

Si

!

`

1´ Si
˘

, Cij

`

1´ Si
˘

)

RV Wij Ñ integrable ,

Cij

!

`

1´Cij

˘

, Si
`

1´Cij

˘

)

RV Wij Ñ integrable . (3.118)

As previously mentioned, these improved limits are devised to act on the real-virtual
matrix element not only by extracting its leading behaviour in the singular phase-space
regions, they also associate specific kinematic mappings to each counterterm contribution
in order to provide well-behaved (i.e. on-shell and momentum conserving) Born-level
kinematics, in the whole phase space. Moreover, such mappings can be selected to sim-
plify as much as possible the analytic integration over the corresponding radiation phase
space. Following the discussion presented at NLO, and the choices made in Ref. [200], we
introduce

SiRV Wij ”

´N1

ÿ

c‰i
d‰i,c

„

E piqcd V̄
picdq
cd ´

αS

2π

ˆ

Ẽ piqcd ` E piqcd
β0

2ε

˙

B̄
picdq
cd ` αS

ÿ

e‰i,c,d

Ẽ piqcde B̄
picdq
cde



Ws,ij ,

Cij RV Wij ”
N1

sij

„

P µν
ijprq V̄

pijrq
µν `

αS

2π

ˆ

P̃ µν
ijprq´ P

µν
ijprq

β0

2ε

˙

B̄pijrqµν



Wc,ij , (3.119)

Si Cij RV Wij ” 2N1Cfj

„

E piqjr V̄ pijrq ´
αS

2π

ˆ

Ẽ piqjr ` E piqjr
β0

2ε

˙

B̄pijrq


, r “ rij .

The kernels E piqcd and P µν
ijprq are the eikonal and collinear kernels from tree-level factorisation,

introduced already at NLO, while Ẽ piqcd , Ẽ
piq
cde and P̃

µν
ijprq are the genuine real-virtual soft and

collinear kernels [128, 131]. Explicit expressions can be found in Eqs. (C.3), (C.8), (C.6),
(C.25), respectively.

Since the combination p1 ´ Siqp1 ´ CijqRV Wij is integrable everywhere in Φn`1,
one would expect to define the counterterm K

pRVq
ij simply as an NLO-like collection of

improved limits, as

K
pRVq
ij,naive “

”

Si `Cij

`

1´ Si
˘

ı

RV Wij , (3.120)

employing the definitions provided in Eqs. (3.119). Although such a choice preserves the
minimal structure of the real-virtual counterterm, and automatically fulfils condition (4)

10Note that these consistency relations are analogous to those introduced at the NLO level in Eq. (2.69) for
dealing with the real-emission correction, consistent with the fact that, in both cases, the phase-space singularities
to be cured arise from a single-unresolved radiation.
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of Eq. (3.115), surprisingly, explicit computations show that it spoils condition (3) of
Eq. (3.115). Let us explain the reasons behind this violation.

The pole content of KpRVq
ij,naive is designed to match the poles of RV that are accom-

panied by phase-space singularities, as a necessary requirement to verify condition (4) of
Eq. (3.115). On the other hand, I p12qij is the result of integrating the strongly-ordered
counterterm K

p12q
ij over the phase space of the most unresolved radiation: in fact, it col-

lects precisely terms that exhibit phase-space singularities in the remaining radiation (in
the form of singular kernels multiplied by mapped Born-level matrix elements), as well
as poles that should match their virtual counterpart, given by RV . Hence, it would be
natural to expect that the poles of Eq. (3.120) cancel those of I p12qij . However, unforeseen
subtleties, stemming from the specific phase-space mappings adopted in the improved
limits entering KpRVq

ij,naive, or I
p12q
ij in their integrated form, prevent this from occurring.

The first class of mismatches we find concerns single ε-pole terms that appear multiplied
by kinematics-dependent coefficients within the contributions under investigation. Specif-
ically, we notice that the residues of the single poles in I p12qij (refer to Eqs. (3.103)-(3.105))
are proportional to logarithms of Lorentz invariants constructed with unmappedmomenta,
i.e. with pn` 1q-body kinematics; on the contrary, the residues of the single poles in the
ε expansions of Eq. (3.119) can also depend on logarithms of mapped invariants, obtained
via momentum mappings from the pn`1q- to the n-particle phase space. This is the case,
for instance, for the virtual component of the soft limit SiRV in Eq. (3.119): the pole
content of V̄ picdqcd includes terms of the type,

”

SiRV
ı

poles
Ą

αS

2π
N1

ÿ

c‰i
d‰i,c

E piqcd
1

ε

ˆ

1

2

ÿ

e‰i,c
f‰i,c,e

log
s̄
picdq
ef

µ2
B̄
picdq
cdef `

ÿ

e‰i,d

log
s̄
picdq
de

µ2
B̄
picdq
cded

˙

, (3.121)

which cannot appear in the soft part of I p12qij , where we find instead

”

I
p12q
S,ij

ı

poles
Ą ´

αs
2π

N1

ÿ

c‰i
d‰i,c

E piqcd
1

ε

ˆ

1

2

ÿ

e‰i,c
d‰i,c,e

log
sef
µ2

B̄
picdq
cdef `

ÿ

e‰i,d

log
sde
µ2

B̄
picdq
cded

˙

. (3.122)

The second category of mismatches emerges exclusively in the integrated counterterm
I
p12q
ij , and basically consists in differences of terms that would vanish if not for the different
mappings appearing in the Born-level matrix elements associated with such contributions.
Here is an example of such a discrepancy arising in Eq. (3.103):

”

I
p12q
S,ij

ı

poles
Ą

αs
2π

2N1

ÿ

c‰i
d‰i,c

E piqcd
ˆ

1

ε2
`

2

ε

˙

Cfc

´

B̄
picdq
cd ´ B̄

pidcq
cd

¯

. (3.123)

More intricate inconsistencies occur in the collinear sector, where the kinematics of the
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poles of I p12qij does not align with that of KpRVq
ij,naive outside the collinear region, regardless

of mappings.
The fact that all discrepancies in the single pole in ε disappear in the singular regions

of phase space, as they must, gives us the possibility to refine the definition of KpRVq
ij,naive,

by adding back precisely the mismatched terms, thus obtaining the desired cancellation
of the I p12qij poles, without introducing new phase-space singularities. Schematically, we
define

K
pRVq
ij ” K

pRVq
ij,naive `∆ij “

”

Si `Cij

`

1´ Si
˘

ı

RV Wij `∆ij . (3.124)

The extra term ∆ij appearing in Eq. (3.124) is required not to spoil condition (4) of
Eq. (3.115), and therefore cannot have any phase-space singularity in the limits Si and
Cij. Therefore, we impose the conditions

Si ∆ij Ñ integrable , Cij ∆ij Ñ integrable . (3.125)

At the same time, ∆ij has the crucial role of matching the explicit ε poles of I p12qij ,
implying the finiteness of the combination KpRVq

ij ` I
p12q
ij , in agreement with condition (3)

of Eq. (3.115). We introduce ∆ij starting from a decomposition into soft, collinear and
soft-collinear components, following the structure outlined for I p12qij in Eq. (3.102). Using
this decomposition,

∆ij ” ∆S,iWs,ij `∆C,ij ´∆SC,ij , (3.126)

the properties Eq. (3.125) can be better detailed, and read

Si ∆S,iWs,ij Ñ integrable , Si
`

∆C,ij ´∆SC,ij

˘

Ñ integrable ,

Cij ∆C,ij Ñ integrable , Cij

`

∆S,iWs,ij ´∆SC,ij

˘

Ñ integrable . (3.127)

Furthermore, we can enforce the desired cancellation between K
pRVq
ij and I

p12q
ij for each

component, specifically by requiring that
”

SiRV Wij `

´

∆S,i ` I
p12q
S,ij

¯

Ws,ij

ı

poles
“ 0 ,

”

Cij RV Wij `

´

∆C,ij ` I
p12q
C,ij

¯ı

poles
“ 0 ,

”

Si Cij RV Wij `

´

∆SC,ij ` I
p12q

SC,ij

¯ı

poles
“ 0 . (3.128)

Since the pole parts of both I p12qij and KpRVq
ij,naive are explicitly known, the necessary com-

pensating terms are easily determined. An expression for the three components of ∆ij

can be constructed in a minimal way by considering all and only the single poles of I p12qij
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with mismatching kinematics. Given that they consist in differences of logarithms, or
differences of Born matrix elements (which vanish in the soft or collinear limit), we chose
to promote the differences of logarithms to ratios of scales, raised to a power vanishing
with ε. This non-minimal structure simplifies subsequent integrations, and it only affects
finite parts, without introducing new phase-space singularities. Beginning with the soft
term ∆S,i, we define

∆S,i “ ´
αs
2π

N1

ÿ

c‰i
d‰i,c

E piqcd

#

1

2ε2

ÿ

e‰i,c
f‰i,c,e

„ˆ

sef

s̄
picdq
ef

˙´ε

´ 1



B̄
picdq
efcd `

1

ε2

ÿ

e‰i,d

„ˆ

sed

s̄
picdq
ed

˙´ε

´ 1



B̄
picdq
edcd

`

„ˆ

1

ε2
`

2

ε

˙

2Cfc `
γhc
c

ε



´

B̄
picdq
cd ´ B̄

pidcq
cd

¯

+

´
αS

2π
N1

ÿ

k‰i
c‰i,k,r

E piqcr
γhc
k

ε

´

B̄pircqcr ´ B̄picrqcr

¯

, r “ rik . (3.129)

Thanks to the fact that in the soft limit the mapped momenta coincide with the unmapped
ones, the first condition in Eq. (3.127) is fulfilled in a trivial way. The first relation in
Eq. (3.128) is less evident, but can be proven by simply performing the ε expansion of
SiRV , ∆S,i and I

p12q
S,ij . For the collinear component, we define (r “ rij, r1 “ rijk)

∆C,ij “
αS

2π
N1

P µν
ijprq

sij

1

ε2

ÿ

c‰i,j

#

ÿ

d‰i,j,c

„ˆ

scd

s̄
pijrq
cd

˙´ε

´ 1



B̄
pijrq
µν,cd ` 2

„

1´

ˆ

s̄
pijrq
jc

srijsr

˙´ε 

B̄
pijrq
µν,rijsc

`

"

ρpCqij

„ˆ

s̄
pjriq
ic

s̄
pjriq
ir

˙´ε

´

ˆ

sirs̄
pjriq
ic

s̄
pjriq
ir sic

˙´ε 

B̄
pjriq
µν,rijsc

` f̃ qq̄ij

„ˆ

s̄
pjriq
ic

µ2

˙´ε

´

ˆ

s̄
pjriq
ic

sic

˙´ε 

B̄pjriqµν,rijsc ` piØ jq

*

+

Wc,ijprq

`
αS

2π
N1

ÿ

k‰i,j

ˆ

γhc
k

ε
` φhc

k

˙

«

P µν
ijprq

sij
B̄pijrqµν Wc,ijprq ´

P µν
ijpr1q

sij
B̄pijr

1q
µν Wc,ijpr1q

ff

, (3.130)

where ρpCqij , f̃ qq̄ij , γhc
k , φhc

k and B̄ are defined in Appendix A, and Wc,ijprq is given in
Eq. (C.42). The third condition in Eq. (3.127) can be verified by considering that, in
the collinear limit Cij, we have

k̄
pijrq
j , k̄

pjriq
i

Cij
ÝÝÑ krijs, k̄pijrqr , k̄pjriqr

Cij
ÝÝÑ kr, k̄pijrqc , k̄pjriqc

Cij
ÝÝÑ kc. (3.131)
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Again, the second relation in Eq. (3.128) can be proven upon expansion in ε. Finally, for
the soft-collinear component we introduce (r “ rij, r1 “ rijk)

∆SC,ij “

αS

2π
2N1Cfj E piqjr

1

ε2

ÿ

c‰i,j

#

ÿ

d‰i,j,c

„ˆ

scd

s̄
pijrq
cd

˙´ε

´ 1



B̄
pijrq
cd ` 2

„ˆ

sjr
srijsr

˙´ε

´

ˆ

s̄
pijrq
jc

srijsr

˙´ε 

B̄
pijrq
rijsc

`
CA
Cfj

„ˆ

s̄
pjriq
ic

s̄
pjriq
ir

˙´ε

´

ˆ

sirs̄
pjriq
ic

s̄
pjriq
ir sic

˙´ε

B̄
pjriq
rijsc

`
2Cfj´CA

Cfj

„ˆ

s̄
pirjq
jc

s̄
pirjq
jr

˙´ε

´

ˆ

sjrs̄
pirjq
jc

s̄
pirjq
jr sjc

˙´ε

B̄
pirjq
rijsc

+

`
αS

2π
2N1Cfj

„

J j
hcpsjrq E

piq
jr

´

B̄pijrq ´ B̄pirjq
¯

`
ÿ

k‰i,j

ˆ

γhc
k

ε
` φhc

k

˙ˆ

E piqjr B̄pijrq ´ E piqjr1 B̄pijr
1q

˙

. (3.132)

By employing the latter definition, we can demonstrate the validity of the second and
fourth relation in Eq. (3.127) by exploiting the colour algebra of the colour-connected
matrix elements. We can also prove the cancellation of the ε poles in the third line of
Eq. (3.128). The explicit expression of the components of ∆ij in Eq. (3.126) completes
the list of definitions required to implement the subtracted real-virtual squared matrix
element RV sub. Because of its finiteness in d “ 4, we can now rephrase Eq. (3.116) as

RV subpXq “
ÿ

i,j‰i

„

´

RVfin ` I
p1q
fin,ij

¯

Wij δn`1pXq ´
´

K
pRVq
fin,ij ` I

p12q
fin,ij

¯

δnpXq



, (3.133)

where the subscript emphasises that, at this stage, all the explicit poles have already been
cancelled. The finite component I p1qfin,ij is given in Eq. (3.112), while I p12qfin,ij can easily be
derived from Eqs. (3.103)-(3.105). Finally, we obtain the finite contribution K

pRVq
fin,ij by

computing the expansion in powers of ε of the sum of Eqs. (3.119) and (3.129)-(3.132).
We refrain from giving here the explicit expression for the quantities in Eq. (3.133), as we
will derive a more compact result for RV subpXq in terms of symmetrised sector functions
in the next Section.

3.4.3 RV sub with symmetrised sector functions

In analogy to the procedure applied at NLO in Eq. (2.73), and later generalised to RR sub

in Section 3.2.6, we rewrite the real-virtual countertermKpRVq in terms of the symmetrised
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sector functions, which is defined as

K
pRVq
tiju “ K

pRVq
ij `K

pRVq
ji , KpRVq

“
ÿ

i,j‰i

K
pRVq
ij “

ÿ

i,jąi

K
pRVq
tiju . (3.134)

Starting from Eq. (3.133), it is not difficult to obtain the corresponding formulation for
Zij functions, as

RV subpXq “
ÿ

i,jąi

"

”

RVfin ` I
p1q
fin,ij

ı

Zij δn`1pXq ´
”

K
pRVq
fin,tiju ` I

p12q
fin,tiju

ı

δnpXq

*

,(3.135)

with I p1qfin,ij given in Eq. (3.112). The remaining finite contributions collected in the right-
most square brackets in Eq. (3.135) can be organised in terms of soft and hard-collinear
components, leading to the expression

K
pRVq
fin,tiju ` I

p12q
fin,tiju “ K

pRV`12q
S,ij Zs,ij `K

pRV`12q
S,ji Zs,ji `K

pRV`12q
HC,ij , (3.136)

where the soft limit of the symmetrised sector functions, Zs,ij, is defined in Eq. (3.43).
The finite soft counterterm in the first contribution to the right-hand side is obtained
through the combination

K
pRV`12q
S,ij “ SiRV `∆S,i ` I

p12q
S,ij , (3.137)

derived from the definitions in Eqs. (3.119), (3.129) and (3.103), dropping the explicit
poles. The result is extremely compact, and, except for the process-dependent finite
part of the single-virtual squared matrix element, it displays only simple logarithmic
dependence on the kinematics. We find (r “ rik, r1 “ rij, r2 “ rijk)

K
pRV`12q
S,ij “ 4α2

S

ÿ

c‰i
d‰i,c

E piqcd

#

ÿ

e‰i
f‰i,e

ˆ

Lef ´
1

4
L2
ef

˙

B̄
picdq
cdef ` 2

ÿ

e‰i,d

ˆ

Led ´
1

4
L2
ed

˙

´

B̄
picdq
cded ´ B̄

pidcq
cded

¯

`
ÿ

e‰i,d

ln2 s̄
picdq
de

sde
B̄
picdq
cded ´

1

2
ln2 s̄

picdq
cd

scd
B̄
picdq
cdcd ´ 2π

ÿ

e‰i,c,d

ln
sidsie
µ2 sde

B̄
picdq
cde

`

„ˆ

6´
7

2
ζ2

˙

`

Σ
C
`2Cfd´2Cfc

˘

`
ÿ

k

φhc
k ´

ÿ

k‰i

γhc
k Lkr2 ´ γ

hc
i Lir1

`CA

ˆ

6´ ζ2 ´ ln
sic
scd

ln
sid
scd
´ 2 ln

sicsid
µ2scd

˙

B̄
picdq
cd

+

` 4α2
S

ÿ

k‰i

`

φhc
k ´ γ

hc
k Lkr2

˘

„

ÿ

c‰i,k

E piqkc
´

B̄
pickq
kc ´ B̄

pikcq
kc

¯

`
ÿ

c‰i,k,r

E piqcr
´

B̄picrqcr ´ B̄pircqcr

¯



` 8π αS

ÿ

c‰i
d‰i,c

E piqcd V̄
picdq

fin,cd , (3.138)
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where V̄ picdqfin,cd is the finite part of the colour-correlated, single-virtual squared matrix ele-
ment, expressed in the n-body mapped kinematics. We notice that the presence of the
reference particle r1 “ rij introduces a dependence on the particle j of the soft sector
function Zs,ij which multiplies KpRV`12q

S,ij , as was the case for I p12qS,ij .
To conclude this section, we report the expression for the finite hard-collinear coun-

terterm introduced in the right-hand side of Eq. (3.136), which is the result of summing
Eqs. (3.119), (3.130), (3.104), (3.132), and (3.105), as

K
pRV`12q
HC,ij “ HCij RV `∆HC,ij ` I

p12q
C,ij ´ I

p12q
SC,ij ´ I

p12q
SC,ji , (3.139)

where we introduced the shorthand notation

HCij RV ” Cijp1´ Si ´ SjqRV , ∆HC,ij ” ∆C,ij `∆C,ji ´∆SC,ij ´∆SC,ji .(3.140)

Explicitly we find (with r “ rij, r1 “ rijk)

K
pRV`12q
HC,ij “ 4α2

S

P hc,µν
ijprq

sij

#

ÿ

c‰i,j

«

ln2
s̄
pijrq
jc

srijsr
B̄
pijrq
µν,rijsc ´

1

2

ÿ

d‰i,j,c

`

4Lcd´L
2
cd

˘

B̄
pijrq
µν,cd

ff

´
ÿ

c‰i,j,r

«

ln2 s̄
pijrq
cr

scr
B̄pijrqµν,cr `

ρpCqij

2
Lijcr B̄pjriqµν,rijsc `

ρpCqji

2
Ljicr B̄pirjqµν,rijsc

ff

´
1

2

ÿ

c‰i,j

f̃ qq̄ij

´

L̃ijcr B̄pjriqµν,rijsc ´ L̃jicr B̄pirjqµν,rijsc

¯

´

„ˆ

6´
7

2
ζ2

˙

´

Σ
C
´Cfrijsρ

pCq

rijs

¯

` Cfrijs
ρpCq
rijs

2

`

4Lij´L
2
ij

˘

´Cfrijs
ρpCqij

2

`

4Lir´L
2
ir

˘

´ Cfrijs
ρpCqji

2

`

4Ljr´L
2
jr

˘

` Σhc
φ



B̄pijrqµν

+

´ 4α2
S

„

2Cfj E piqjr Cfrijs ln2 sjr
srijsr

B̄pijrq ` piØjq



` 4α2
S

«

P hc,µν
ijprq

sij

´

γhc
i Lir ` γ

hc
j Ljr

¯

B̄pijrqµν `
ÿ

k‰i,j

P hc,µν
ijpr1q

sij
γhc
k Lkr1 B̄

pijr1q
µν

ff

´ 4α2
S

P̃ hc,µν
fin,ijprq

sij
B̄pijrqµν ´ 8π αS

P hc,µν
ijprq

sij
V̄
pijrq

fin,µν , (3.141)

where we introduced the shorthand notation

Lijcr “ 2 ln
sic
sir

«

2´ Lic ` ln
s̄
pjriq
ic

s̄
pjriq
ir

ff

, L̃ijcr “ 2Lic

«

2´ Lic ` ln
s̄
pjriq
ic

µ2

ff

. (3.142)
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Notice that even in Eq. (3.141), the kinematic dependence occurs only in terms of simple
logarithms.

3.5 Integration of the real-virtual counterterm

In Eqs. (3.124), (3.134) we have defined the counterterm KpRVq, that enabled us to build
the subtracted real-virtual squared matrix element RV sub, integrable in the whole pn` 1q-
body phase space, and free of poles in ε. The KpRVq counterterm needs to be integrated
in d “ 4´ 2ε dimensions in the radiation phase space, and then the result must be added
back, according to the subtraction structure given in Eqs. (3.5)-(3.7). To compute the
integrated counterterm, IpRVq, as defined in Eq. (3.4), we first sum over all sectors Wij, so
that sector functions drop out of the calculation due to the sum rules they satisfy (refer
to those in (2.20)). We then perform the integration over the radiative phase space with
the measure dΦ

pacdq
rad , naturally induced by the mapping pacdq, according to

ż

dΦn`1ptkuq “
ςn`1

ςn

ż

dΦpacdqn

ż

dΦ
pacdq
rad , dΦpacdqn ” dΦnptk̄u

pacdq
q , (3.143)

where dΦ
pacdq
rad is defined in Eq. (2.88). The integration of KpRVq is carried out following

the methods described in Ref. [200], and using the fact that the spin-correlated contribu-
tions proportional to the kernels Qµν

ijprq and Q̃
µν
ijprq vanish upon integration, as discussed in

Appendix C.4. The formal expression for the integration of KpRVq can be written as
ż

dΦn`1K
pRVq

“

ż

dΦn`1

„

ÿ

i

´

SiRV `∆S,i

¯

`
ÿ

i, jąi

´

HCij RV `∆HC,ij

¯



,(3.144)

where the integrands are defined in Eqs. (3.119) and (3.129)-(3.132), and we used the
shorthand notations introduced in Eq. (3.140). Before integrating, we can further simplify
the expressions for ∆S,i and ∆C,ij, given in (3.129)-(3.130). In fact, since s̄picdqef “ sef for
e, f ‰ i, c, d, and s̄pijrqcd “ scd for c, d ‰ i, j, r, one finds that

1

2

ÿ

e‰i,c
f‰i,c,e

«

ˆ

sef

s̄
picdq
ef

˙´ε

´ 1

ff

B̄
picdq
efcd `

ÿ

e‰i,d

«

ˆ

sed

s̄
picdq
ed

˙´ε

´ 1

ff

B̄
picdq
edcd “

“ 2
ÿ

e‰i,c,d

«

ˆ

sed

s̄
picdq
ed

˙´ε

´ 1

ff

B̄
picdq
edcd `

«

ˆ

scd

s̄
picdq
cd

˙´ε

´ 1

ff

B̄
picdq
cdcd , (3.145)

as well as

ÿ

c‰i,j
d‰i,j,c

«

ˆ

scd

s̄
pijrq
cd

˙´ε

´ 1

ff

B̄
pijrq
µν,cd “ 2

ÿ

c‰i,j,r

«

ˆ

scr

s̄
pijrq
cr

˙´ε

´ 1

ff

B̄pijrqµν,cr . (3.146)
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After integration, the soft contributions to Eq. (3.144) read
ż

dΦn`1 SiRV “ ´
ςn`1

ςn

ÿ

c‰i
d‰i,c

ż

dΦpicdqn

„

J icds V̄
picdq
cd ´

αS

2π

ˆ

J̃ icds ` J icds

β0

2ε

˙

B̄
picdq
cd

` αS

ÿ

e‰i,c,d

J̃ icde
s B̄

picdq
cde



, (3.147)

while (r “ rik)

ż

dΦn`1 ∆S,i “ ´
αs
2π

ςn`1

ςn

ÿ

c‰i
d‰i,c

#

ż

dΦpicdqn

„

ÿ

e‰i,c,d

J icdpeq
∆s

B̄
picdq
edcd ` J

icd
∆s

B̄
picdq
cdcd



`

„

2Cfc

ˆ

1

ε2
`

2

ε

˙

`
γhc
c

ε

„
ż

dΦpicdqn J icd
s B̄

picdq
cd ´

ż

dΦpidcqn J idc
s B̄

pidcq
cd



+

´
αS

2π

ςn`1

ςn

ÿ

k‰i
c‰i,k,r

γhc
k

ε

„
ż

dΦpircqn J ircs B̄pircqcr ´

ż

dΦpicrqn J icrs B̄picrqcr



. (3.148)

Explicit expressions for the constituent integrals J̃ icd
s , J̃ icde

s , J icdpeq
∆s

and J icd
∆s

are given
in Eq. (C.187), while the NLO integral J icd

s is given in Eq. (C.183). We notice that
the soft integrated real-virtual counterterm in Eq. (3.147) receives contributions from the
triple-colour-correlated squared matrix element B̄cde. However, the pole content of such
term vanishes upon performing the appropriate colour sums (see Ref. [200] for further
details). This cancellation represents a strong test for the method: it is protected by
the fact that no singular contributions proportional to colour tripoles can arise from
double-virtual nor from double-real corrections. On the other hand, integrating the tripole
contribution to the soft real-virtual kernel requires the non-trivial procedure described in
Ref. [200], which is necessary in order to verify the pole cancellation, and to compute the
finite remainder. To complete the discussion we also report the integrated hard-collinear
component, reading (r “ rij)

ż

dΦn`1 HCij RV “
ςn`1

ςn

ż

dΦpijrqn

„

J ijr
hc V̄ pijrq `

αS

2π

ˆ

J̃ ijr
hc ´ J

ijr
hc

β0

2ε

˙

B̄pijrq


, (3.149)
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while the compensating hard-collinear term integrates to (r “ rij, r1 “ rijk)

ż

dΦn`1 ∆HC,ij “
αS

2π

ςn`1

ςn

#

ż

dΦpijrqn

„

ÿ

c‰i,j,r

J ijr
∆hc

B̄pijrqcr `
ÿ

c‰i,j

J ijrc
∆hc

B̄
pijrq
rijsc



(3.150)

`
ÿ

c‰i,j,r

„
ż

dΦpjriqn J jri,c
∆hc

B̄
pjriq
rijsc `

ż

dΦpirjqn J irj,c
∆hc

B̄
pirjq
rijsc



`
ÿ

k‰i,j

ˆ

γhc
k

ε
` φhc

k

˙„
ż

dΦpijrqn J ijr
hc B̄pijrq ´

ż

dΦpijr
1q

n J ijr1

hc B̄pijr
1q



` f̃ qq̄ij
ÿ

c‰i,j

„
ż

dΦpjriqn J̃ jri,c
∆hc

B̄pjriq
rijsc ´

ż

dΦpirjqn J̃ irj,c
∆hc

B̄pirjq
rijsc



+

.

Explicit expressions for the hard-collinear constituent integrals J̃ ijr
hc , J ijr

∆hc
, J ijrc

∆hc
, J jri,c

∆hc
,

and J̃ jri,c
∆hc

are given in Eq. (C.198), while the NLO hard-collinear integral J ijr
hc can be

found in Eq. (C.189).
Having computed all relevant integrals, we now recombine them, following a proce-

dure analogous to the one described at the end of Section 2.3. We rename the sets of
mapped momenta tk̄pabcqun to the same set of Born-level momenta tkun by means of the
replacements

dΦpabcqn Ñ dΦn , B̄pabcq¨¨¨ Ñ B¨¨¨ , B̄pabcq¨¨¨ Ñ B̄¨¨¨ , s̄
pabcq
lm Ñ slm , (3.151)

where the ellipsis in the Born-level matrix element stands for a generic colour correlation.
In particular, in the integral of ∆HC,ij in Eq. (3.150), all momenta k̄pijrqj , k̄pjriqi , k̄pirjqj , and
k̄
pijr1q
j are renamed as kp, where p is the label of the parent particle splitting into i and j.

As a consequence of this renaming, the integrals involving B̄rijsc can be recombined, and
do not contribute to the integrated counterterm. Indeed,

ż

dΦpjriqn J̃ jri,c
∆hc

B̄pjriq
rijsc ´

ż

dΦpirjqn J̃ irj,c
∆hc

B̄pirjq
rijsc “ (3.152)

“

ż

dΦpjriqn J̃ c
∆hc

´

s̄
pjriq
ir , s̄

pjriq
ic

¯

B̄pjriq
rijsc ´

ż

dΦpirjqn J̃ c
∆hc

´

s̄
pirjq
jr , s̄

pirjq
jc

¯

B̄pirjq
rijsc

Ñ

ż

dΦn J̃
c

∆hc

´

spr, spc

¯

Bpc ´
ż

dΦn J̃
c

∆hc

´

spr, spc

¯

Bpc “ 0 .

The dependence on the pn` 1q-body phase-space particles is now limited to the flavour
factors f qi , f

q̄
i and f gi , which can be translated into flavour factors for the n-body-phase-

space particles, as was done in Section 2.3. In particular, when going from an pn` 1q-body
phase space to an n-body phase space the relations in Eq. (2.103) and Eq. (2.104) apply.
After performing the flavour sums, no residual dependence on the original pn` 1q-body
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phase space remains. Simplifying the colour correlations where possible, we finally get

IpRVq
“ ´

ÿ

c,d‰c

„

JspscdqVcd ` JsRVpscdqBcd ` J
p2q

sRVpscdqBcdcd `
ÿ

e‰c,d

J cdesRV Bcde



`
ÿ

j

#

J j
hcpsjrqV ` J

j
hcRVpsjrqB ` J

j,A
hcRVpsjrqBjr

`
ÿ

c‰j,r

„

J j,B
hcRVpsjcqBjc ` J

j,C
hcRVpsjrqBcr



`
αS

2π

ÿ

k‰j

ˆ

γhc
k

ε
` φhc

k

˙

”

J j
hcpsjrq ´ J

j
hcpsjr1q

ı

+

, (3.153)

where we introduced the following combinations of constituent integrals:

JsRVpsq “ ´
αS

2π

„

CA J̃spsq `
β0

2ε
Jspsq ` 2Cfd J

p3q
∆s
psq



, (3.154)

J
p2q

sRVpsq “
αS

2π

”

J p2q
∆s
psq ´ J p3q

∆s
psq

ı

, (3.155)

J cdesRV “ ´
α2

S

2π

„

1

2
ln
sce
sde

ln2 scd
µ2

`
1

6
ln3 sce

sde
` Li3

ˆ

´
sce
sde

˙

`Opεq


, (3.156)

J j
hcRVpsq “

αS

2π

#

`

f qj `f
q̄
j

˘

„

J̃
p1gq
hc psq ´

β0

2ε
J
p1gq
hc psq (3.157)

´CF J
p1gq

∆hc,A
psq ´ CF J

qg
∆hc,A

psq ´ CF J
gq

∆hc,A
psq



` f gj

„

1

2

ˆ

J̃
p2gq
hc psq ´

β0

2ε
J
p2gq
hc psq ´ CA J

p2gq
∆hc,A

psq ´ 2CA J
gg

∆hc,A
psq

˙

`Nf

ˆ

J̃
p0gq
hc psq ´

β0

2ε
J
p0gq
hc psq ´ CA J

p0gq
∆hc,A

psq ´ 2CA J
qq

∆hc,A
psq

˙

+

,

J j,A
hcRVpsq “

αS

2π

#

`

f qj `f
q̄
j

˘

´

J p1gq
∆hc,B

psq ´ Jqg
∆hc,A

psq ´ Jgq
∆hc,A

psq
¯

(3.158)

` f gj

„

1

2

´

J p2gq
∆hc,B

psq ´ 2 Jgg
∆hc,A

psq
¯

`Nf

´

J p0gq
∆hc,B

psq ´ 2 Jqq
∆hc,A

psq
¯



+

,

J j,B
hcRVpsq “

αS

2π

#

`

f qj ` f
q̄
j

˘

´

J p1gq
∆hc,B

psq ` Jqg
∆hc,B

psq ` Jgq
∆hc,B

psq
¯

(3.159)

` f gj

„

1

2

´

J p2gq
∆hc,B

psq ` 2 Jgg
∆hc,B

psq
¯

`Nf

´

J p0gq
∆hc,B

psq ` 2 Jqq
∆hc,B

psq
¯



+

,
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J j,C
hcRVpsq “

αS

2π

#

`

f qj ` f
q̄
j

˘

J p1gq
∆hc
psq ` f gj

„

1

2
J p2gq

∆hc
psq `Nf J

p0gq
∆hc
psq



+

. (3.160)

All new constituent integrals appearing in the above results are listed in Appendix C.5:
the soft integrals are presented in Eq. (C.188), the hard-collinear integrals in Eq. (C.199),
and the integrals arising from the compensating ∆ij terms in Eqs. (C.200)-(C.202). We
note once again that all integrals involved are single-scale, and thus involve only simple
logarithms. Interestingly, the only exception is Eq. (3.156), with a uniform-weight-three
function featuring three scales and a single trilogarithm: this integral arises as a finite
remainder of the non-trivial integration of the tripole term.

The integrated counterterm IpRVq given in Eq. (3.153), which features Born-level kine-
matics, contains explicit poles in ε, that must be combined with those of the integrated
counterterm I p2q, and must, together, cancel the singularities of the double-virtual squared
matrix element.

3.6 The subtracted double-virtual contribution V Vsub

Finally, we turn our attention to the first line in Eq. (3.6), which we rewrite here as

V V subpXq “
´

V V ` I p2q ` IpRVq
¯

δnpXq . (3.161)

It is our task to show that the equation above is free of ε poles. To verify this, we first
explicitly derive the ε poles of the double-virtual correction V V (Section 3.6.1), and then
we provide the complete ε expansion of I p2q ` IpRVq, including Opε0q terms, obtained by
combining Eq. (3.97) and Eq. (3.153) (Section 3.6.2).

3.6.1 The pole part of the double-virtual matrix element V V

All infrared poles of gauge-theory scattering amplitudes can be expressed in a factorised
form through the formula [116, 117, 120, 121, 123]

A
ˆ

ki
µ
, αspµq, ε

˙

“ Z

ˆ

ki
µ
, αspµq, ε

˙

H
ˆ

ki
µ
, αspµq, ε

˙

, (3.162)

where H is finite as ε Ñ 0, and Z is a colour operator with a universal form, to be dis-
cussed below. The infrared operator Z obeys a (matrix) renormalisation-group equation,
which can be solved in exponential form, with a trivial initial condition, in terms of an
anomalous-dimension matrix Γ. One may write

Z

ˆ

ki
µ
, αspµq, ε

˙

“ P exp

„
ż µ

0

dλ

λ
Γ

ˆ

ki
λ
, αspλq, ε

˙

, (3.163)
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where the integral converges at λ “ 0 in dimensional regularisation thanks to the be-
haviour of the β function in d “ 4 ´ 2ε, for ε ă 0 (d ą 4). Indeed, in dimensional
regularisation one has

µ
dαs
dµ

” β pε, αsq “ ´ 2ε αs ´
α2
s

2π
β0 ` O

`

α3
s

˘

, (3.164)

whose solution implies [114] that the d-dimensional running coupling αspµ, εq vanishes at
µ “ 0 for ε ă 0, so that the corresponding initial condition is Zpµ “ 0q “ 1, leading to
Eq. (3.163). For the purposes of NNLO subtraction (and thus at two loops for virtual
amplitudes), Γ is given by the dipole formula [120, 121]

Γ
´pi
λ
, αspλq, ε

¯

“
1

2
pγK pαspλ, εqq

ÿ

i,jąi

ln

ˆ

sij e
iπσij

λ2

˙

Ti ¨Tj `
ÿ

i

γi pαspλ, εqq . (3.165)

In Eq. (3.165), the phases σij are given by σij “ `1 if partons i and j are either both
in the initial state or both in the final state, while σij “ 0 otherwise. For our present
final-state application, we can thus henceforth replace all phase factors using eiπσij “ ´1,
with the understanding that the logarithm is taken above the cut.

The anomalous dimensions appearing in Eq. (3.165) are the cusp anomalous dimension
pγK pαsq and the collinear anomalous dimensions γi pαsq. More precisely, in the derivation
of Eq. (3.165) it has been assumed that the (light-like) cusp anomalous dimension γprqK pαsq,
in colour representation r, obeys ‘Casimir scaling’, i.e. it can be written as

γ
prq
K pαsq “ Cr pγKpαsq , (3.166)

where Cr is the quadratic Casimir eigenvalue for colour representation r, while pγKpαsq is a
universal (representation-independent) function. This assumption is known to fail at four
loops [208, 209]. The collinear anomalous dimensions γipαsq are related to the anomalous
dimensions of quark and gluon fields, and can be derived from essentially colour-singlet
calculations such as those of form factors.

One important consequence of the dipole formula is that the scale integration in
Eq. (3.163) can be performed without affecting the colour structure (which is scale-
independent): one may therefore omit the path-ordering in Eq. (3.163), simplifying con-
siderably the necessary calculations. Expanding the various ingredients perturbatively
as

pγKpαsq “
8
ÿ

n“1

pγ
pnq
K

´αs
2π

¯n

, γipαsq “
8
ÿ

n“1

γ
pnq
i

´αs
2π

¯n

, Γpαsq “
8
ÿ

n“1

Γpnq
´αs

2π

¯n

, (3.167)
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one gets at NLO

Γp1q “
1

4
pγ
p1q
K

ÿ

i,j‰i

ln

ˆ

´sij ` iη

µ2

˙

Ti ¨Tj `
ÿ

i

γ
p1q
i ´

1

4
pγ
p1q
K ln

ˆ

µ2

λ2

˙

ÿ

i

Cfi ,(3.168)

and consequently

Zp1q
ˆ

pi
µ
, ε

˙

“ ´
1

ε2
pγ
p1q
K

8
Σ
C
´

1

ε

˜

pγ
p1q
K

8

ÿ

i,j‰i

Lij Ti ¨Tj `
1

2
Σγ

¸

` iπ
γ
p1q
K

8ε
Σ
C
, (3.169)

where Lij “ lnpsij{µ
2q. Eq. (3.169) is in agreement with [116, 121], with the one-loop

anomalous-dimension coefficients given by

pγ
p1q
K “ 4 , γ

p1q
i ” γi “

3

2
CF pf

q
i `f

q̄
i q `

1

2
β0 f

g
i , Σ

C
“
ÿ

i

Cfi , Σγ “
ÿ

i

γi , (3.170)

where we noted that in the text we have sometimes used the notation γi for the one-loop
coefficient denoted here by γp1qi . Expanding the anomalous dimensions to two loops and
performing the relevant integrals, the NNLO result for the Z factor is

Zp2q “
1

ε4

´

pγ
p1q
K

¯2

128
Σ2
C

`
1

ε3
pγ
p1q
K

64
Σ
C

«

3β0 ` 4Σγ ` pγ
p1q
K

ÿ

i,j‰i

ln

ˆ

´sij ` iη

µ2

˙

Ti ¨Tj

ff

`
1

ε2
1

8

«

β0 pγ
p1q
K

4

ÿ

i,j‰i

ln

ˆ

´sij ` iη

µ2

˙

Ti ¨Tj ` β0Σγ ´
pγ
p2q
K

4
Σ
C

` Σ2
γ `

pγ
p1q
K

2
Σγ

ÿ

i,j‰i

ln

ˆ

´sij ` iη

µ2

˙

Ti ¨Tj

`

´

pγ
p1q
K

¯2

16

ÿ

i,j‰i
k,l‰k

ln

ˆ

´sij ` iη

µ2

˙

ln

ˆ

´skl ` iη

µ2

˙

Ti ¨Tj Tk ¨Tl

ff

´
1

ε

1

4

«

pγ
p2q
K

4

ÿ

i,j‰i

ln

ˆ

´sij ` iη

µ2

˙

Ti ¨Tj ` Σp2qγ

ff

, (3.171)

which agrees with [121], with the anomalous dimension coefficients given in Eq. (A.12),
and where we defined Σ

p2q
γ “

ř

i γ
p2q
i . Having deduced the Z elements up to the needed

order, we can now interfere the double-virtual amplitude with the Born, and extract the
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poles. The perturbative expansion of (3.162) yields

Ap0q “ Hp0q ,

Ap1q “ αs
2π

”

Hp1q
` Zp1qHp0q

ı

”
αs
2π

Ap1q ,

Ap2q “
ˆ

αs
2π

˙2
”

Hp2q
` Zp1qHp1q

` Zp2qHp0q
ı

”

ˆ

αs
2π

˙2

Ap2q , (3.172)

implying

|A|2 “
ˇ

ˇHp0q
ˇ

ˇ

2
`
αs
2π

2 Re
”

`

Hp0q
˘:Hp1q

`
`

Hp0q
˘:

Zp1qHp0q
ı

(3.173)

`

ˆ

αs
2π

˙2
”

2 Re
´

`

Hp0q
˘:Hp2q

`
`

Hp0q
˘:

Zp1qHp1q
`
`

Hp0q
˘:

Zp2qHp0q
¯

`
ˇ

ˇHp1q
ˇ

ˇ

2
`
`

Hp0q
˘: `

Zp1q
˘:

Zp1qHp0q
` 2 Re

´

`

Hp1q
˘:

Zp1qHp0q
¯ı

`Opα3
sq .

We are interested in the divergent contributions to Eq. (3.173) at Opα2
sq: we extract them

in turn. First, the direct contribution of the two-loop Z matrix is given by

2 Re

ˆ

`

Hp0q
˘:

Zp2qHp0q

˙

“ Hp0q:
`

Zp2q ` Zp2q
:˘Hp0q

“
1

ε4
1

4
Σ2
C
B `

1

ε3
1

2
Σ
C

«

´3

4
β0 ` Σγ

¯

B `
ÿ

i,j‰i

Lij Bij

ff

`
1

ε2
1

4

«

´

β0Σγ ´
pγ
p2q
K

4
Σ
C
` Σ2

γ

¯

B ` pβ0 ` 2 Σγq
ÿ

i,j‰i

Lij Bij

`
1

2

ÿ

i,j‰i
k,l‰k

´

Lij Lkl ´ π
2
¯

Bijkl

ff

´
1

ε

1

8

«

4 Σp2qγ B ` pγ
p2q
K

ÿ

i,j‰i

Lij Bij

ff

, (3.174)

where again Lij “ lnpsij{µ
2q, and the colour-correlated Born amplitudes Bij and Bijkl are

defined in Eq. (A.5). The square of the one-loop Z matrix contributes

Hp0q:Zp1q
:
Zp1qHp0q

“
1

ε4
1

4
Σ2
C
B `

1

ε3
1

2
Σ
C

«

Σγ B `
ÿ

i,j‰i

Lij Bij

ff

(3.175)

`
1

ε2
1

4

«

Σ2
γ B ` 2 Σγ

ÿ

i,j‰i

Lij Bij `
1

2

ÿ

i,j‰i
k,l‰k

´

Lij Lkl ` π
2
¯

Bijkl

ff

.

Note that in Eq. (3.174) and in Eq. (3.175), for simplicity, we already substituted pγ
p1q
K “ 4.
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Finally, terms involving the product of the one-loop hard part and the one-loop Z matrix
give

2 Re
´

Hp0q:Zp1qHp1q
`Hp1q:Zp1qHp0q

¯

“ Hp0q:
´

Zp1q ` Zp1q
:
¯

Hp1q

`Hp1q:
´

Zp1q ` Zp1q
:
¯

Hp0q . (3.176)

In order to make use in practice of Eq. (3.176), it is useful to rewrite Hp1q in terms of the
full virtual amplitude Ap1q, using

Hp1q
“ Ap1q ´ Zp1qHp0q . (3.177)

Eq. (3.176) then becomes

2 Re
´

Hp0q:Zp1qHp1q
`Hp1q:Zp1qHp0q

¯

“ Hp0q:
´

Zp1q ` Zp1q
:
¯

Ap1q`Ap1q
:
´

Zp1q ` Zp1q
:
¯

Hp0q

´Hp0q:
´

Zp1q
2
` 2 Zp1q

:
Zp1q ` Zp1q

:2
¯

Hp0q. (3.178)

The term on the second line of Eq. (3.178) is easily computed using Eq. (3.169) and yields

´Hp0q:
´

Zp1q
2
` 2 Zp1q

:
Zp1q ` Zp1q

:2
¯

Hp0q
“ ´

1

ε4
Σ2
C
B ´

1

ε3
2 Σ

C

«

Σγ B `
ÿ

i,j‰i

Lij Bij

ff

´
1

ε2

«

Σ2
γB ` 2 Σγ

ÿ

i,j‰i

Lij Bij `
1

2

ÿ

i,j‰i
k,l‰k

Lij LklBijkl

ff

. (3.179)

The first two terms on the r.h.s. of Eq. (3.178) can be expressed in terms of the one-loop
virtual correction to the cross section. One finds

αs
2π

”

Hp0q:
´

Zp1q ` Zp1q
:
¯

Ap1q ` Ap1q
:
´

Zp1q ` Zp1q
:
¯

Hp0q
ı

“ Hp0q:

«

´
1

ε2
pγ
p1q
K

4
Σ
C
´

1

ε

˜

pγ
p1q
K

4

ÿ

i,j‰i

Lij Ti ¨Tj ` Σγ

¸ff

Ap1q ` h. c.

“ ´
1

ε2
Σ
C
V ´

1

ε
Σγ V ´

1

ε

ÿ

i,j‰i

Lij Vij , (3.180)

where the colour-correlated virtual correction Vij is defined in Eq. (A.6). Combining
Eq. (3.174) with Eq. (3.175) and Eq. (3.180), we get a complete and explicit expression
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for the pole part of the double-virtual contribution to the cross section,

V Vpoles “

ˆ

αs
2π

˙2
#

´
1

ε4
1

2
Σ2
C
B `

1

ε3
Σ
C

„ˆ

3

8
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B ´
ÿ
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Lij Bij



`
1

ε2
1

4

„ˆ

β0Σγ ´
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K

4
Σ
C
´ 2 Σ2

γ

˙

B

`
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β0 ´ 4 Σγ

˙

ÿ

i,j‰i

Lij Bij ´
ÿ

i,j‰i
k,l‰k

Lij LklBijkl



´
1

ε

1

8

„

4 Σp2qγ B ` pγ
p2q
K

ÿ

i,j‰i

Lij Bij



+

´
αs
2π

„

1

ε2
Σ
C
V `

1

ε
Σγ V `

1

ε

ÿ

i,j‰i

Lij Vij



. (3.181)

Eq. (3.181) can now be combined with the integrals of the double-radiative and the real-
virtual counterterms to form the subtracted double-virtual contribution to the cross sec-
tion, V V sub, given in Eq. (3.161).

3.6.2 Integrated counterterms for double-virtual poles

The expressions for the relevant integrated counterterms, I p2q and IpRVq, were given in
Eq. (3.97) and in Eq. (3.153), respectively. All we have to do now is expand these
expressions in powers of ε, including terms up to Opε0q. We define

I p2q ` IpRVq
” I

p2`RVq
poles ` I

p2`RVq
fin `Opεq . (3.182)

As expected, the pole part Ip2`RVq
poles exactly cancels Eq. (3.181):

I
p2`RVq
poles “ ´V Vpoles . (3.183)

We note in particular that it is not necessary to compute NLO virtual corrections up
to Opε2q, since the last term in Eq. (3.181), containing virtual corrections times explicit
poles up to ε´2, is exactly reproduced by I

p2`RVq
poles , so that Opεq contributions to NLO

corrections never appear in our subtraction formula11. This was anticipated in Ref. [210]
and emerges clearly in our approach thanks to the factorisation properties of the one-loop
amplitude, and the minimal scheme we adopt for the factorisation of virtual corrections.
The finite part derived from the sum of the integrated counterterms in Eq. (3.182) can

11This understands the technical capability by a two-loop provider to turn off the Opεq NLO virtual contribution
in the computation of V V . Were this is not the case, the evaluation of I p2q as well would have to be performed
with such a contribution turned on.
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be written as (r “ rj, r1 “ rjl)

I
p2`RVq
fin “

ˆ

αs
2π

˙2
#

„

Ip0q `
ÿ

j

I
p1q
j Ljr `

ÿ

j
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2

ÿ
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j γhc
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B (3.184)

`
ÿ

j

”
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ÿ
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

,

where Vfin and V fin
cd are the Opε0q terms in the virtual and colour-correlated virtual contri-

butions, which are obtained from the full virtual contributions V and Vcd by subtracting
the IR poles given explicitly by Eq. (3.169). We emphasise that the kinematic dependence
of Eq. (3.184) is only through simple logarithms of kinematic invariants, with the single
exception of the trilogarithm multiplying the tripole Born-level colour correlation Bcde on
the one-but-last line of Eq. (3.184). All the integral coefficients appearing in Eq. (3.184)
are pure numbers, and they are collected in the following expressions:
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,(3.185)
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I
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Σφ . (3.186)

We emphasise that, as expected, the pole part Ip2`RVq
poles does not depend on the reference

momenta r, r1; conversely, the dependence on r, r1 arising in the finite part Ip2`RVq
fin is

essential for removing the corresponding explicit dependence present in the counterterms
K p2q and KpRVq.





Chapter 4

Numerical implementation and
validation of the scheme

With the completion of the Local Analytic Sector Subtraction programme for the can-
cellation of NNLO infrared singularities in massless QCD final states, as presented in
Chapter 3, we are now ready to approach the fundamental task of implementing and vali-
dating this algorithm at the numerical level. The universal and entirely analytic nature of
our subtraction procedure makes it naturally well-suited to be incorporated in a general
automated Monte Carlo event generator, which provides an optimal environment to fully
exploit the potential of our scheme. The development of such an event generator, cou-
pled with the extension of the algorithm to the treatment of initial-state radiation, would
result in a cutting-edge tool capable of producing fully-differential NNLO predictions.
This would be highly valuable for the wider phenomenological community, especially con-
sidering the current absence of a fully automated and publicly available code yielding
perturbative corrections beyond NLO, as discussed in Section 1.3.2.

Reaching this ambitious goal requires the successful finalisation of several intermediate
yet equally significant steps. In this Chapter we report on the progress and the current
status of the implementation of our subtraction procedure within MadNkLO, a Python-
based framework designed to automate the generation and handling of local subtraction
terms at higher orders in perturbation theory, in the spirit of the well-established Mad-
Graph5_aMC@NLO package [166, 211], on which it builds. Motivated by the logical
approach that guided the analytic construction of the scheme, we first start by imple-
menting the NLO subtraction formula developed in Chapter 2, and subsequently assess
its performances in both integrated and differential calculations. We report the results
in Section 4.1. Then, in Section 4.2, we provide an update on the current progress of
the NNLO implementation. Additionally, we offer an analytic demonstration showcasing
how the cancellation of phase-space singularities is achieved within a non-trivial process
at NNLO accuracy.

117
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4.1 Testing the NLO subtraction scheme

In this Section we present numerical results obtained through the application of the Local
Analytic Sector Subtraction algorithm1 to the computation of NLO cross sections for real-
istic scattering processes. As previously mentioned, we choose to work in the MadNkLO
framework [212–215], which provides a flexible high-level platform suitable for deploying
meta-codes that implement generic subtraction schemes for IRC divergences at higher
orders. MadNkLO builds on the MadGraph5_aMC@NLO environment [166, 211],
relying on the latter for the generation of tree-level and one-loop matrix elements.2 Specif-
ically, once the user specifies the scattering process and the desired perturbative order
(e.g. NLO or NNLO in QCD, and possibly mixed QCD-EW corrections), MadNkLO
identifies all the building blocks required for the corresponding computations, i.e. the
matrix elements and the local counterterms necessary for handling singular limits appro-
priately. It is a developer’s task to implement in this framework those ingredients which
are specific to a given subtraction scheme, such as the expression of the local and inte-
grated counterterms, momentum mappings, possibly sector functions, as well as functions
that generate code in low-level programming languages. In the following, we present nu-
merical results that validate our scheme both at the local and at the integrated level,
in Section 4.1.1 and Section 4.1.2, respectively. In Section 4.1.3, we also analyse dif-
ferential cross sections and verify the effectiveness of the damping factors introduced in
Section 2.2.6. The interested reader can find details on the technical implementation of
our subtraction scheme in MadNkLO in Appendix E of Ref. [1].

4.1.1 Cancellation of IRC singularities

In this Section we showcase how the numerical cancellation of IRC singularities is achieved
for a selection of processes and of singular configurations at NLO accuracy. To carry out
this demonstration, we use the built-in testing routine provided by MadNkLO, which
allows us to examine the behavior of matrix elements and local counterterms in singular
phase-space regions. In detail, we evaluate the pn` 1q-body matrix element and the rele-
vant counterterms in a randomly-chosen phase-space point, then we progressively deform
it in order to approach a specific singular configuration (soft or collinear). The closeness
to the singular configuration is controlled by a scaling parameter, λ. For the purpose of
this Section, the reader should bear in mind that λ „ E2

i (λ „ θ2
ij) in the soft Si (collinear

Cij) limit (more details on the implementation of such scaling variable can be found in
Section 6.1.1 of Ref. [212], and Appendix A of Ref. [213]).

1Specifically, we implement the version of the NLO subtraction scheme that incorporates symmetrised sector
functions and damping factors.

2We remind the reader that one-loop matrix elements in MadGraph5_aMC@NLO are generated by the
MadLoop module [216].
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Figure 4.1. The singular behaviour of the real-emission matrix element and counterterms for the process
e`e´ Ñ ggdd̄, in the sector identified by particles 3, 6. Top row: collinear configuration C(3,6); bottom
row: soft configuration S(3).

We start by showing in Figure 4.1 the real channel e`e´ Ñ ggdd̄ of the annihilation
process e`e´ Ñ jjj, and consider the sector identified by the first gluon and the d̄ quark
(labelled as 3, 6 in the particle list) both in case they become collinear (top row), and in
case the gluon becomes soft (bottom row). Several quantities are displayed: the solid blue
line represents the exact pn` 1q-body matrix element, dubbed ME; thin dashed lines of
different colours indicate the collinear counterterms C(x, y), which include soft-collinear
contributions, and the soft counterterms S(z), split according to the different eikonal (or
radiating dipole) contributions Dip a-b; the subtracted matrix element, labelled with
TOTAL, is marked with a solid teal line, while the sum of all counterterms (Sum of
CTs) is displayed with a thicker dashed line. Contributions are shown either in absolute
value (left panels) or divided by the matrix element (right panels). Both sets of panels
help conveying the message that the local cancellation of singularities has been achieved.
In the left-hand plots, the λ´1 slope of the real matrix element and of the counterterms is
apparent, reducing to a λ´1{2 behaviour for the subtracted result, which in turn becomes
regular once combined with the phase-space measure. In the right-hand plots one can
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Figure 4.2. The singular behaviour of the real-emission matrix element and counterterms for the process
uūÑ Zgg, in the sector identified by particles 1, 5. Top row: collinear configuration C(1,5); bottom row:
soft configuration S(5).

appreciate how the various counterterms combine in such a way that their sum matches
the matrix element in the relevant singular limit.

Turning to processes initiated by coloured particles, we consider in Figure 4.2 the
real correction uū Ñ Zgg to the reaction pp Ñ Zj. We show the C(1,5) and S(5)
configurations (i.e. those for which the last gluon (5) is collinear to the incoming u quark
(1), or soft), in the sector identified by particles 1, 5.

Analogously, in Figure 4.3, we consider the real channel dd Ñ ggdd of the three-
level process pp Ñ jjj, in the C(1,3) and S(3) configurations, in the sector identified
by particles 1, 3. Such a process has as many as 11 counterterms in this configuration
(1 collinear and 10 soft dipoles), thus the displayed integrable scaling of the subtracted
matrix element provides a highly non-trivial test of the correctness of the local subtraction
mechanism.
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Figure 4.3. The singular behaviour of the real-emission matrix element and counterterms for the process
dd Ñ ggdd, in the sector identified by particles 1, 3. Top row: collinear configuration C(1,3); bottom
row: soft configuration S(3).

4.1.2 Integrated results

We now turn to the numerical validation of our approach at the level of integrated cross
sections for a selection of processes at NLO, comparing our results against those obtained
with MadGraph5_aMC@NLO. The two main current limitations of our MadNkLO-
based framework are the absence of a low-level code implementation, and of optimised
phase-space integration routines. In fact, the integration is steered by a code written
in Python, using Vegas3 [217, 218] as integrator. Such a behaviour somewhat limits
the complexity of the processes that can be run within a reasonable amount of time and
computing resources; still, the processes we consider in the following cover all radiation
topologies and both leptonic and hadronic collisions, hence we reckon them a sufficient
subset for validation purposes.

The numerical setup we use is the following: processes at lepton colliders are run at
a centre-of-mass energy of 1 TeV. Hadronic processes are instead run at the LHC RunII
energy of 13 TeV. In the latter case, the PDF4LHC15_nlo_30 PDFs are employed [219],
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via the LHAPDF interface [220]. The fine-structure and Fermi constants have the values

α “ 1{132.507, Gf “ 1.16639 ¨ 10´5 GeV´2, (4.1)

while the particle masses are given by:3

mZ “ 91.188GeV, mW “ 80.419GeV, mb “ 4.7GeV, mt “ 173GeV. (4.2)

Renormalisation and factorisation scales are kept fixed to µ “ µF “ mZ .
Whenever light partons are present in the final state at the Born level, they are clustered
into jets with the anti-kt algorithm [221], as implemented in FastJet [222], with radius
parameter R “ 0.4. Jets are then required to satisfy the following kinematic cuts:

pT pjq ą 20GeV, |ηpjq| ă 5. (4.3)

The processes we consider are

e`e´ Ñ jj, (4.4)

e`e´ Ñ jjj, (4.5)

pp Ñ Z, (4.6)

pp Ñ Zj, (4.7)

pp Ñ W`W´j. (4.8)

For these processes, we have computed the LO cross section and the corresponding NLO
correction, which are quoted in Table 4.1. In this case, no damping factors are applied.
Results from MadGraph5_aMC@NLO (dubbed aMC in the table) and MadNkLO are
in general very well compatible, the largest deviations being of the order of the combined
integration error, which is at or below the per-mille level.

Process aMC LO MadNkLO LO aMC NLO corr. MadNkLO NLO corr.

e`e´ Ñ jj 0.53209(6) 0.53208(6) 0.019991(7) 0.019991(10)
e`e´ Ñ jjj 0.4739(3) 0.4740(3) -0.1461(1) -0.1463(6)
ppÑ Z 46361(3) 46362(3) 6810.9(8) 6810.8(4)
ppÑ Zj 11270(7) 11258(5) 3770(6) 3776(17)

ppÑW`W´j 42.42(1) 42.39(2) 10.68(5) 10.53(13)

Table 4.1. Validation table with predictions for LO cross sections and NLO corrections. Numbers are
in pb. Integration errors, on the last digit(s), are shown in parentheses.

3In our model mW is derived from α, Gf and mZ ; also, the presence of a non-zero value for mb is formally
inconsistent with the employed PDF set, however this is of no relevance as far as validation is concerned.
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We also consider the case of non-zero values for the damping parameters α, β, γ pre-
sented in Section 2.2.6. For simplicity, we set the three parameters to a common value,
ranging from 0 to 2. Results for the NLO corrections are shown in Table 4.2, together
with their breakdown into n-body and pn` 1q-body contributions (the former including
virtual corrections and integrated counterterms, the latter including subtracted real emis-
sions). While the n- and pn` 1q-body terms, if consider separately, show a very significant
dependence upon the unphysical damping parameters, their sum remains stable, as ex-
pected. Results with the three different damping choices are totally compatible within the
respective integration errors, and, in turn, with the MadGraph5_aMC@NLO results.

Process MadNkLO MadNkLO MadNkLO
α “ β “ γ “ 0 α “ β “ γ “ 1 α “ β “ γ “ 2

e`e´ Ñ jj

V+I 0.02664732(9) 0.01998531(7) 0.00666183(2)
R-K -0.00666(1) 0.000004(6) 0.013329(6)

NLO corr. 0.019991(10) 0.019985(6) 0.019991(6)
ppÑ Z

V+I+C+J 3981.5(4) -3472.7(4) -9163.2(5)
R-K 2829.3(2) 10284.3(4) 15974.1(6)

NLO corr. 6810.8(4) 6811.6(6) 6810.9(8)
ppÑ Zj

V+I+C+J 7172(2) 5246(2) 3624(2)
R-K -3395(17) -1469(25) 156(22)

NLO corr. 3776(17) 3777(25) 3780(22)

Table 4.2. Validation table with predictions for the NLO corrections, broken down between n and
n` 1 contributions, when different damping factors (α, β, γ) are considered. Numbers are in pb. The
integration error, on the last digit(s), is shown in parentheses.

4.1.3 Validation at differential level

Finally, we validate the correctness of the damping factors at the differential level in the
simple case of e`e´ Ñ γ˚ Ñ jj, at centre-of-mass energy

?
s “ 100 GeV, with µ “ 35

GeV. The plots in Figure 4.4 show differential cross sections with respect to transverse
momentum and (absolute value of) pseudo-rapidity of the two hardest jets in the events
(clustered with the kt algorithm [223, 224]), which are NLO-accurate observables receiving
contribution from subtraction counterterms across the whole spectrum. A comparison is
provided between predictions obtained with MadGraph5_aMC@NLO and an in-house
implementation of Local Analytic Sector Subtraction, limited to the above-mentioned
process. Various combinations of parameters α and β, ranging from 0 to 3, are chosen, in
order to cover different damping possibilities (γ is irrelevant for final-state radiation).
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Figure 4.4. Transverse momenta and pseudo-rapidities for the two hardest jets in e`e´ Ñ γ˚ Ñ jj at
NLO, comparing MadGraph5_aMC@NLO (aMC in the labels) and Local Analytic Sector Subtraction.

As evident from Figure 4.4, predictions generated using our NLO subtraction algo-
rithm for all chosen damping profiles are in excellent agreement with those obtained with
MadGraph5_aMC@NLO within the numerical accuracy used for the runs. A system-
atic study of the performance of different damping choices at the differential level in more
complex processes and setups would certainly be valuable. Such an analysis is, however,
beyond the scope of this first scheme validation, and thus postponed to future work.

4.2 Testing the NNLO subtraction scheme

While the MadNkLO framework is already equipped with all the necessary structures and
routines for handling the components required for a NNLO subtraction, the highly-flexible
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Python code is not optimised for efficiently performing extensive NNLO phenomenological
computations within a reasonable runtime. In order to approach these computationally-
expensive calculations, we must first address the current limitations of our code, pointed
out in Section 4.1.2. On-going efforts are dedicated to the construction of a Fortran-
level implementation and optimisation of the code, so as to allow for a faster evaluation
of the integrands. Additionally, we are incorporating mature phase-space routines that
leverage the sector structure and kinematic mappings of our algorithm, which will further
enhance the code’s performance. Once fully developed, MadNkLO will become a versatile
automated platform, providing immediate access to the generation of state-of-the-art
specialised results for both theoretical and experimental communities, with a significant
impact on the scientific programmes of the LHC and future colliders.

In the absence, as yet, of a numerical tool to test our NNLO subtraction scheme, in
Section 4.2.1 we provide an analytical, explicit example that illustrates the cancellation
of phase-space singularities for a selected double-real channel of the process e`e´ Ñ qq̄g.

4.2.1 Cancellation of IR singularities: a case study

In this Section we work out in detail the cancellation of IR singularities for the process
e`e´ Ñ qp1qq̄p2qgpr345sq at NNLO, focusing on the double-real-emission channel where
an extra quark-antiquark pair is emitted, namely e`e´ Ñ qp1qq̄p2qgp3qq1p4qq̄1p5q (with q
and q1 being different quark flavours).

We pick the sector W4353 as a test case. As such sector function selects C43 as single-
unresolved limit, the only possible underlying single-real-emission channel to be considered
is e`e´ Ñ qp1qq̄p2q q1pr34sqq̄1p5q. Moreover, the only double-unresolved configurations
allowed are S45 and C435. In Fig. 4.5 we show a sample NNLO double-real-emission
Feynman diagram contributing to this sector (left), together with its underlying NLO
single-real-emission diagram (middle), as well as the LO Born diagram (right).
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Figure 4.5. Sample Feynman diagrams for three-jet production in leptonic collisions: NNLO double-real
emission (left), NLO single-real emission (middle), Born process (right).
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The improved limits on RR relevant for W4353 sector are given by (see Appendix C.1)

C43RR ”
N1

s43

P43prq R̄
p43rq , C435RR ”

N 2
1

s2
435

P µν
435prq B̄

p435rq
µν ,

S45RR ”
N 2

1

2

ÿ

c‰4,5
d‰4,5,c

E p45q
cd B̄

p45cdq
cd , S45 C435RR ” ´N 2

1 Cf3 E p45q
3r B̄p453rq ,

C43 C435RR ” N 2
1

P43prq

s43

P̄
p43rqµν
r34s5prq

s̄
p43rq
r34s5

B̄p43r,r34s5rq
µν . (4.9)

The expression for the relevant kernels S45RR and C43 C435RR, according to Eqs. (C.49)
and (C.76), is rather simple in this configuration. Since partons 4 and 5 are quarks,
the eikonal kernels E p4qab and E p5qab vanish; moreover, since the parent parton [34] of the 34
pair is a quark, there is no azimuthal dependence in the collinear splitting kernels, hence
Qµν

43prq “ 0, and P µν
43prqR̄

p43rq
µν “ P43prqR̄

p43rq. In the case we are considering, the reference
index r (used for collinear limits) could be either r “ 1 or r “ 2, without any distinction.
The subtracted double-real contribution in this sector is thus

RR sub
4353 “ RRW4353 ´K

p1q
4353 ´

´

K
p2q
4353 ´K

p12q
4353

¯

, (4.10)

where the NNLO counterterms read

K
p1q
4353 ” C43RRW4353 “ N1

P43prq

s43

R̄p43rqW p43rq

5r34s W pαq
c,43prq , (4.11)

K
p2q
4353 ”

”

S45 `C435

`

1´ S45

˘

ı

RRW4353

“
N 2

1

2

ÿ

c‰4,5
d‰4,5,c

E p45q
cd B̄

p45cdq
cd

`

S45 W4353

˘

`
N 2

1

s2
435

P µν
435prq B̄

p435rq
µν

`

C435 W4353

˘

`N 2
1 Cf3 E p45q

3r B̄p453rq
`

S45 C435 W4353

˘

,

K
p12q
4353 ” C43 C435RRW4353 “ N 2

1

P43prq

s43

P̄
p43rqµν
r34s5prq

s̄
p43rq
r34s5

B̄p43r,r34s5rq
µν W p43rq

c,5r34sprqW pαq
c,43prq .

Looking at Eqs. (3.37)-(3.39), we can identify the consistency relations that must be
satisfied in order to prove the integrability of the subtracted double-real contribution
RR sub

4353. Those relations are given by

• primary limits:
 

C43, S45, C435

(

RR sub
4353 Ñ integrable ;

• auxiliary limits:
 

C4r, C5r, C45r

(

RR sub
4353 Ñ integrable ;

• secondary limits: C35RR
sub
4353 Ñ integrable .
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Let us begin by showing the cancellation of the singular behaviour in the C43 limit.
We note that particle momenta in this limit obey C43tku “ C43tk̄u

p43rq “ tku{4{3,r34s, which
implies that the limit taken on sector functions gives

C43 Wp43rq

5r34s “W5r34s , C43 Wpαq
c,43prq “ C43 Wpαq

43 . (4.12)

This, together with the relation C43W4353 “ C43W5r34sWpαq
43 , and with the known C43

limit of RR, is sufficient to show that

C43

”

1´C43

ı

RRW4353 Ñ integrable . (4.13)

Next, for the remaining contributions, we need to show that

C43

”

K
p2q
4353 ´K

p12q
4353

ı

Ñ integrable . (4.14)

To this end, let us note that the double-soft kernel factorised in S45RR is not singular
in the C43 limit, since the denominator of E p45q

cd (see Eq. (4.9)) features the sum sr34s5 ”

s34 ` s35. The same is true for the C435 S45RR limit, which is constructed with the same
double-soft kernel. As a consequence, checking the requirement in Eq. (4.14) reduces to
verifying that

C43 C435

”

1´C43

ı

RRW4353 Ñ integrable . (4.15)

As far as sector functions are concerned, it is straightforward to check that

C43 C435 W4353 “ C43 C43 C435 W4353

“ C43 Wp43rq

c,5r34sprqWpαq
c,43prq “ Cr34s5 W5r34sC43 Wpαq

43 . (4.16)

The mapped kinematics is such that the identity tk̄up435rq “ tk̄up43r,r34s5rq holds also far
from the collinear limit. Finally, the double-collinear kernel can be written as

P µν
435prq

s2
345

“
1

s2
345

„

´ P
p1gq
453prq g

µν
`

ÿ

a“3,4,5

Q
p1gq,a
453prq d

µν
a



. (4.17)

It is easy to show that in the collinear limit C43 the non-abelian contribution to this
kernel is non-singular4, while the abelian part, owing to the relations x3 “ s3r{sr34sr and

4To this end we use the following equivalence relations in the C43 limit (k̃µ5 “ ´k̃
µ
3 ´ k̃

µ
4 ):

C43
s35

s45
“ C43

s3r

s4r
“ C43

z3

z4
, C43 k̃

µ
3 “ ´C43

z3

z34
k̃µ5 , C43 k̃

µ
4 “ ´C43

z4

z34
k̃µ5 .
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x4 “ 1´ x3, becomes

C43

P µν
435prq

s2
345

“ C43
CF TR
s2
r34s5

2x4 ` p1´ εqx
2
3

x3

sr34s5

s43

„

´ gµν ` 4 z5p1´ z5q
k̃µ5 k̃

ν
5

k̃2
5



“ C43

P43prq

s43

P µν
r34s5prq

sr34s5

“ C43

P43prq

s43

P̄
p43rqµν
r34s5prq

s̄
p43rq
r34s5

, (4.18)

which shows that singular terms in the C43 limit cancel in Eq. (4.15).
Moving on to the double-soft S45 limit, we note that its action on kinematics is

such that S45 tku “ S45 tk̄u
p45cdq “ tku{4{5. This consideration, together with the rela-

tion S45 W4353 “ S45 S45 W4353, and the known double-soft limit of the double-real matrix
element, immediately implies that

S45

”

1´ S45

ı

RRW4353 Ñ integrable . (4.19)

On the other hand, the single-unresolved kernel K p1q
4353 is non-singular in the S45 double-

soft limit, as it does not feature any 1{s45 enhancement, so S45K
p1q
4353 “ 0. The same holds

for the strongly-ordered collinear kernel C43 C435RR, whence S45K
p12q
4353 “ 0. We thus are

left with the requirement

S45 C435

`

1´ S45

˘

RRW4353 Ñ integrable . (4.20)

As far as sector functions are concerned, it is straightforward to verify that S45 C435 W4353 “

S45 S45 C435 W4353, using Eq. (C.96) and Eq. (C.98). As to matrix elements, the relevant
kernel is

C435

`

1´ S45

˘

RR “
N 2

1

s2
435

P µν
435prq B̄

p435rq
µν `N 2

1 Cf3E p45q
3r B̄p453rq . (4.21)

Here, using the kinematic condition S45 tk̄u
p435rq “ S45 tk̄u

p453rq, one can show that the
second term on the right-hand side precisely removes from the first one all double-soft
enhancements proportional to 1{s45, as was the case for unimproved limits. Thus, we
verify that

S45 C435

`

1´ S45

˘

RRÑ integrable. (4.22)

Next, we consider the behaviour of the counterterm K
p2q
4353 under the double-collinear

limit C435. First, we notice that

C435 tku “ C435 tk̄u
p435rq

“ C435 tk̄u
p453rq

“ tku{3{4{5r345s , (4.23)
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and that, using Eq. (3.12) and Eq. (C.43), one has C435 C435 W4353 “ C435 W4353. These
relations, together with the known C435 limit of RR, are sufficient to show that

C435 C435RRW4353 “ C435RRW4353 . (4.24)

As for the remaining part of K p2q
4353, we have

C435 S45 W4353 “ C435 S45 C435 W4353 “
σ4353

σ4353 ` σ5343 ` σ4553 ` σ5443

, (4.25)

as can be deduced from the definitions in Eq. (C.43) and Eq. (C.98). The action of the
double-soft kernel on the matrix element, on the other hand, gives

C435

ÿ

c‰4,5
d‰4,5,c

E p45q
cd B̄

p45cdq
cd “ 2 E p45q

3r

ÿ

d‰4,5,3

C435 B̄
p453dq
3d “ 2 E p45q

3r

ÿ

d‰4,5,3

C435 B̄
p453rq
3d , (4.26)

where, in the last step, we used C435 tk̄u
p453dq “ C435 tk̄u

p453rq. By performing the sum
over colours, Eq. (4.26) becomes

2 E p45q
3r

ÿ

d‰4,5,3

C435 B̄
p453rq
3d “ ´2Cf3 E p45q

3r C435 B̄
p453rq , (4.27)

which matches (with opposite sign) the kernel in C435 S45RR, finally showing that

C435 S45

”

1´C435

ı

RRW4353 Ñ integrable . (4.28)

In order to complete the proof of the cancellation of singular contributions in the C435

limit, it is finally necessary to show that

C435

”

K
p1q
4353 ´K

p12q
4353

ı

Ñ integrable . (4.29)

The sector functions appearing in K
p1q
4353 and K

p12q
4353 approach the same value under the

double-collinear limit, since C435 Wc,5r34sprq “ C435 W5r34s. As for the kernels, one just
needs to check that

C435 R̄
p43rq

“ C435

P̄
p43rqµν
r34s5prq

s̄
p43rq
r34s5

B̄p43r,r34s5rq
µν , (4.30)

which is indeed the case, since the C435 double-collinear limit acts on the mapped kine-
matics as a single-collinear limit between parton 5 and the parent parton r34s.

After proving the local cancellation of all phase-space singularities in sector W4353,
we proceed by showing that the functional form chosen for the sector functions is also
capable of eliminating spurious singularities, arising from collinear kernels, as detailed
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in Eq. (3.38). To this end, we consider the C45r limit (in fact, neither the C4r nor C5r

limits generate any spurious singularities in this specific case). We introduce a common
scaling parameter λ for the invariants vanishing in this limit, s45, s4r and s5r. The K

p1q
4353

counterterm is non-singular in this limit, since it does not feature any isolated 1{s4r

denominator, so we focus on K
p2q
4353 and K

p12q
4353 . The kernel S45RR diverges as λ´2 in

the limit, due to denominators of type 1{s2
45, or 1{s45sr45sr, however the corresponding

sector function S45 W4353 scales as λ2, thus compensating the singularity. Analogously,
the counterterm C43 C435RRW4353 is non-singular in the C45r limit. As for the remaining
counterterms, we have

C45r C435RR “ C45rN 2
1 2CATR

„

1

s2
45

ˆ

s43s5r ´ s4rs53

sr45s3sr45sr

˙2

´
s3r

s45sr45s3sr45sr



„ λ´2

“ C45r S45 C435RR ,

C45r C435 W4353 “ C45r
σ̂4353

σ̂4553 ` σ̂5443

„ λα

“ C45r S45 C435 W4353 , (4.31)

where the dependence on the parameter α emerges from the definition of the sector func-
tion, see Eq. (3.12). In this case, both C435RRW4353 and S45 C435RRW4353 display
at most an integrable λα´2 singularity, which is ultimately due to the chosen sector.
However, even in a sector in which the two contributions are separately non-integrable
(for instance in W4553 or W5443), the fact that both kernels and sector functions tend
to become identical prevents a singular scaling of the double-hard collinear contribution
C435p1´ S45qRRW4353.

Finally, we analyse the secondary limit C35. Since the counterterms K p1q
4353, K

p12q
4353 , and

the double-soft and soft-collinear contributions in K p2q
4353, are non-singular under this limit,

we are left to verify that

C35RRW4353 Ñ integrable ,

C35 C435RRW4353 Ñ integrable . (4.32)

Denoting with λ the scaling variable associated with the vanishing invariant s35, it can
be shown that both the double-unresolved singular kernel in C435RR, and the collinear
kernel resulting from

C35RR “ N1

P35prq

s35

Rpr35sq , (4.33)

display a λ´1 singular behaviour. At the same time, the corresponding sector functions
evaluated in the C35 limit vanish with a λα´1 rate. As a result, both contributions in
Eq. (4.32) display an overall λα´2 scaling, leading to an integrable singularity.
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This completes our analysis of this example, showing that the subtracted double-real
emission contribution under consideration is completely free of phase-space singularities.





Conclusions & Perspective

In this thesis, we addressed the challenging problem of handling infrared singularities in
higher-order perturbative calculations in massless QCD. In Chapter 1, we introduced an
innovative strategy for the formulation of a novel subtraction scheme, known as Local Ana-
lytic Sector Subtraction, which ambitiously aims to lay the foundations for systematic and
universal solutions to this long-standing issue. Inspired by successful NLO schemes, our
procedure seeks to optimise the counterterm structure across all stages of the calculation
by systematically leveraging every available degree of freedom, significantly simplifying
the required analytic integrations.

We initially applied this strategy to develop a general subtraction scheme, capable of
addressing unresolved radiation in both initial and final states within the NLO framework.
In Chapter 2, we provided a detailed construction of our local counterterm, coupled with a
comprehensive analysis of its advantages and limitations. To improve numerical stability,
we introduced an optimisation procedure to smoothly mitigate the contribution of sub-
traction terms in the non-singular regions of phase space while preserving the method’s
fundamental properties, specifically the simplicity of the involved analytical integrations.
This resulting computational simplicity stands as a highly desirable characteristic as we
look towards extending our approach to higher perturbative orders.

With these promising results in hand, in Chapter 3 we addressed the extension of our
subtraction procedure to handle NNLO infrared singularities. Herein, we provided an
exhaustive description of all essential ingredients contributing to the formulation of this
scheme, accompanied by a step-by-step explanation of their intricate combination. The
outcome of this substantial effort culminated in a fully analytic and universal formula
which achieves the cancellation of NNLO infrared singularities for a broad spectrum of
processes, involving an arbitrary number of colourful as well as colourless final-state parti-
cles in massless QCD. The cancellation of all phase-space singularities in double-real and
real-virtual contributions has been proven by the verification of all relevant consistency
checks. Furthermore, all counterterms were analytically integrated through standard tech-
niques, exhibiting singular contributions characterised by single-scale integrals with trivial
logarithmic dependence on Born-level kinematic invariants. All explicit ε poles originating
from the singular part of the double-virtual contribution to the cross section have also
been shown to cancel once properly combined with the phase-space counterterm integra-
tions. We also achieved the analytic integration of all finite remainders, which manifest
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a similar level of simplicity, with the exception of a single contribution (proportional
to a colour tripole) introducing a weight-three polylogarithm depending on two physical
scales. This analytic formula, representing a significant novelty in our field, can be readily
implemented in any numerical framework equipped with the relevant matrix elements.

Finally, we dedicated Chapter 4 of this thesis to the validation of our subtraction al-
gorithms. We reported on the progress towards their numerical implementation within
MadNkLO, a Python-based framework designed to automate the generation and han-
dling of local subtraction terms at higher orders in perturbation theory. In this context,
we presented numerical results obtained by applying the NLO subtraction scheme to the
computation of cross sections for realistic scattering processes. We discussed the per-
formance of the method both at the integrated and differential level. While efforts are
underway to achieve an efficient implementation of the NNLO subtraction formula within
our numerical framework, we provided a detailed example illustrating the analytical can-
cellation of phase-space singularities in a non-trivial scattering process.

The results obtained in this thesis have direct implications in state-of-the-art phe-
nomenological studies. A clear research avenue is, for example, the analysis of theory-data
comparisons in current (and future) e`e´ colliders: in this context, our subtraction for-
mula can be readily applied to the computation of NNLO-accurate predictions, extending
to quantities such as the cross section for four-jet production, as well as energy-energy
correlations in hadronic final states.

The future steps naturally following after these achievements are clearly defined.
Among the high-priority tasks is the numerical implementation and testing of the NNLO
subtraction algorithm within an automated Monte Carlo event generator. As we high-
lighted in Chapter 3, work is under way to overcome the current limitations of MadNkLO,
specifically focusing on a systematic optimisation of the numerical software to reduce the
time and CPU resources needed for the production of computationally-demanding NNLO
phenomenological results. Without a doubt, a crucial goal at NNLO is to extend the treat-
ment of unresolved radiation to non-trivial initial states, particularly in view of relevant
LHC applications. This generalisation is anticipated to involve no new major technical
obstacles: as observed at NLO, it will require the introduction of new classes of mappings
and a consistent implementation of collinear factorisation, but all of these developments
are expected to be relatively straightforward. Importantly, also new phase-space integrals
are expected to be of the same level of complexity as those presented in the final-state
scenario, suggesting that a completely analytic result is within reach. Work is in progress
also on this front. Looking ahead, another important step for generalisation is the inclu-
sion of massive QCD particles in the final state. This task will be simplified by the fact
that the number and type of singular limits associated with massive coloured particles
are limited, as collinear limits for real radiation are non-singular in this case. Since our
approach is combinatorially intensive, this simplicity is expected to be of great advantage.
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On the other hand, massive particles will require adjustments in phase-space mappings,
and will likely involve new classes of integrals, with a more intricate scale dependence.
We are, nonetheless, confident that a complete analytic expression can be derived also in
that case.

Finally, we are of the opinion that, despite the simplicity of our analytic results, there
is further room for optimisation. Specifically, we believe that extending the damping
factors, initially introduced at NLO, to NNLO accuracy could significantly enhance the
numerical efficiency of our algorithm.

In summary, we believe that our results mark a significant step towards establishing
a fully general, local, analytic, and efficient NNLO-subtraction formalism.





Appendix A

General notation

We denote by s the squared centre-of-mass energy and by qµ “ p
?
s,~0 q the centre-of-mass

four-momentum. Given two final-state momenta kµi and kµj , we define

sqi “ 2 q ¨ ki , sij “ 2 ki ¨ kj , Lij “ ln
sij
µ2

, ei “
sqi
s
, wij “

s sij
sqi sqj

. (A.1)

In addition, given four final-state momenta kµa , k
µ
b , k

µ
c and kµd , we define

sabc “ sab ` sbc ` sac , srabsc “ sac ` sbc , kµ
rabs “ kµa ` k

µ
b ,

sabcd “ sab ` sac ` sad ` sbc ` sbd ` scd , srabcsd “ sad ` sbd ` scd . (A.2)

For the sake of compactness, we define the following flavour structures:

f qi “

#

1 if i is a quark
0 if i is not a quark

f q̄i “

#

1 if i is an antiquark
0 if i is not an antiquark

f gi “

#

1 if i is a gluon
0 if i is not a gluon

f qq̄ij “ f qi f
q̄
j ` f

q̄
i f

q
j , f ggij “ f gi f

g
j , f gggijk “ f gi f

g
j f

g
k , f̃ qq̄ij “ f qi f

q̄
j ´ f

q̄
i f

q
j , (A.3)

which are special cases of the general rule

f f1...fn
i1...in

“
ÿ

g1,...,gn“
P pf1,...,fnq

f g1

i1
¨ ¨ ¨ f gnin , f̃ f1...fn

i1...in
“

ÿ

g1,...,gn“
P pf1,...,fnq

signpP q f g1

i1
¨ ¨ ¨ f gnin , (A.4)

where P pf1, . . . , fnq is a generic permutation of indices f1, . . . , fn.
We introduce a compact notation for Born-level colour correlations:

Bcd ” Ap0q:n Tc ¨TdAp0qn , Bcdef ” Ap0q:n tTc ¨Td,Te ¨TfuAp0qn ,

Bcd ” f gc Ap0q:n Tc ¨TdAp0qn , pTAqBC “ dABC . (A.5)
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Analogously, the colour-correlated real and virtual matrix elements are defined as

Vcd ” 2 Re
”

Ap1q:n Tc ¨TdAp0qn
ı

, Rcd ” Ap0q:n`1 Tc ¨Td Ap0qn`1 , (A.6)

which are of relative order αs with respect to the corresponding Born-level terms.
We define the following combinations of Casimir operators,

ρpCqab “
Cfrabs ` Cfa ´ Cfb

Cfrabs
, ρpCq

rabs “
Cfrabs ´ Cfa ´ Cfb

Cfrabs
, Σ

C
“

ÿ

a

Cfa , (A.7)

and

γa “
3

2
CF pf

q
a`f

q̄
aq `

1

2
β0 f

g
a , Σγ “

ÿ

a

γa , γhc
a “ γa ´ 2Cfa , (A.8)

φa “
13

3
CF pf

q
a`f

q̄
aq `

4

3
β0 f

g
a `

ˆ

2

3
´

7

2
ζ2

˙

Cfa , Σφ “
ÿ

a

φa , (A.9)

φhc
a “

13

3
CF pf

q
a`f

q̄
aq `

4

3
β0 f

g
a ´

16

3
Cfa , Σhc

φ “
ÿ

a

φhc
a , (A.10)

where the sums run over all final-state QCD partons and

β0 “
11CA ´ 4TRNf

3
. (A.11)

The two-loop anomalous dimensions are given by

pγp2q
K
“ 4

"ˆ

67

18
´ ζ2

˙

CA ´
10

9
TRNf

*

“

ˆ

8

3
´ 4ζ2

˙

CA `
10

3
β0 ,

γ
p2q
i “ pf qi `f

q̄
i qCF

„

3

ˆ

1

8
´ ζ2 ` 2ζ3

˙

CF `

ˆ

41

36
´

13

2
ζ3

˙

CA `

ˆ

65

72
`

3

4
ζ2

˙

β0



` f gi

"

CA

„

´
11

4
CF `

ˆ

´
1

9
´

1

2
ζ3

˙

CA



` β0

„

3

4
CF `

ˆ

16

9
´

1

4
ζ2

˙

CA

*

.(A.12)

As for the labelling of particles we introduce the notation

ri1...in “ Rnpi1, . . . , inq ‰ i1, . . . , in , (A.13)

to indicate a generic particle label different from i1, . . . , in, defined following a specific
rule Rn. Such a rule is arbitrary to some extent, and could for instance assign ri1...in
as the smallest label different from all i1, . . . , in, or the largest, and so on. A crucial
feature, however, is that Rn must be symmetric under permutations of all indices i1, . . . , in,
and must be the same for all ri1...in with the same n. As a consequence, the notation
ri1...in always refers to the rule Rnpi1, . . . , inq, which is a symmetric function of its indices
i1, . . . , in, and just depends on n.
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NLO Appendices

B.1 Altarelli-Parisi splitting kernels

We collect here the expression for the regularised Altarelli-Parisi collinear kernels appear-
ing in the lowest-order DGLAP [97–99] evolution equations.

P̄apxqB ” δfag

”

P̄ggpxqB
pgq
` P̄qq̄pxq

`

Bpqq `Bpq̄q
˘

ı

` δfatq,q̄u

”

P̄gqpxqB
pgq
` P̄qgpxqB

pfaq
ı

, (B.1)

where

P̄ggpxq “ 2CA

„

x

p1´ xq`
`

1´ x

x
` xp1´ xq



` δp1´ xq
β0

2
, (B.2)

P̄qq̄pxq “ TR
“

x2
` p1´ xq2

‰

, P̄qgpxq “ CF

ˆ

1` x2

1´ x

˙

`

, P̄gqpxq “ CF
1` p1´ xq2

x
,

CA “ Nc, CF “ pN2
c ´ 1q{p2Ncq, TR “ 1{2, β0 “ p11CA ´ 4TRNf q{3, and Bpfiq denotes

the Born contribution initiated by a parton of flavour fi, stemming from the splitting of
parton a.

We also collect here finite terms arising from the integration of initial-state collinear
counterterms, see Section 2.4, which are related to the Altarelli-Parisi kernels:

P
pλq
a,finpxqB ” δfag

”

ppλqgg pxqB
pgq
` p

pλq
qq̄ pxq

`

Bpqq `Bpq̄q
˘

ı

` δfatq,q̄u

”

ppλqgq pxqB
pgq
` ppλqqg pxqB

pfaq
ı

, (B.3)

where λ “ 1, 2,

ppλqgg pxq “ 2CA

ˆ

1´ x

x
` xp1´ xq

˙

”

λ lnp1´ xq ´ A1pγq
ı

,

p
pλq
qq̄ pxq “ TR

`

x2
` p1´ xq2

˘

”

λ lnp1´ xq ´ A1pγq
ı

` TR 2x p1´ xq ,
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ppλqqg pxq “ CF p1´ xq
”

λ lnp1´ xq ` 1´ A1pγq
ı

,

ppλqgq pxq “ CF
1` p1´ xq2

x

”

λ lnp1´ xq ´ A1pγq
ı

` CF x , (B.4)

and A1pγq is defined in Appendix B.3.

B.2 NLO consistency relations

In this Appendix we explicitly verify the relations in Eqs. (2.65) for initial- and final-state
radiation, ensuring the locality of the subtraction procedure.

• Si SiR “ SiR

This relation is trivially verified since the mapped kinematics in Eq. (2.56) reduce
to Si tk̄u

picdq “ Si tk̄u
pidcq “ tku{i for vanishing i, hence

Si SiR “ ´N1

ÿ

c‰i

ÿ

d‰i,c

E piqcd Bcdptku{iq “ SiR , (B.5)

which coincides with Eq. (2.25).

• Cij Cij R “ Cij R

The key ingredients for this consistency are the limits

Cij x θiPF θjPI “ xrijs θiPF θjPI , (B.6)

as well as

Cij tk̄u
pijrq θiPF θjPF “

`

tku{i{j, krijs
˘

θiPF θjPF ,

Cij tk̄u
pijrq θiPF θjPI θrPI “ Cij tk̄u

pirjq θiPF θjPI θrPF

“
`

tku{i{j, xrijs kj
˘

θiPF θjPI , (B.7)

from which one immediately deduces

Cij Cij R “
N1

sij

«

θiPF θjPF P
µν
ijprq,FpziqBµν

`

tku{i{j, krijs
˘

` θiPF θjPI
P µν
rijsiprq,Ipxrijsq

xrijs
Bµν

`

tku{i{j, xrijskj
˘

` θjPF θiPI
P µν
rjisjprq,Ipxrjisq

xrjis
Bµν

`

tku{i{j, xrjiski
˘

ff

“ Cij R , (B.8)

exactly as Eq. (2.39).
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• Si Si Cij R “ Si Cij R

This relation is a consequence of the fact that

Si Si Cij R “ N1 δfig 2Cfj
sjr

sij
`

sir ` θjPI θrPI sij
˘ B

`

tku{i
˘

“ Si Cij R , (B.9)

having explicitly employed the soft behaviour of the Altarelli-Parisi kernels.

• Cij Si Cij R “ Cij SiR

This final relation is instead slightly subtler. The explicit action of the collinear
limit on the soft counterterm reads

Cij SiR “ ´ 2N1 E piqjr Cij

"

ÿ

c‰i
căj

”

`

θjPI θcPI`θjPF θcPI`θjPF θcPF
˘

B̄
pijcq
jc `θjPI θcPF B̄

picjq
jc

ı

`
ÿ

c‰i
cąj

”

`

θcPI θjPI`θcPF θjPI`θcPF θjPF
˘

B̄
picjq
jc `θcPI θjPF B̄

pijcq
jc

ı

*

“ ´ 2N1 E piqjr Cij

"

ÿ

c‰i
căj

”

`

θjPI θcPI ` θjPF θcPF
˘

B̄
pijcq
jc

ı

`
ÿ

c‰i
cąj

”

`

θjPI θcPI ` θjPF θcPF
˘

B̄
picjq
jc

ı

`
ÿ

c‰i,j

”

θjPF θcPI B̄
pijcq
jc ` θjPI θkPF B̄

picjq
jc

ı

*

, (B.10)

aware of the fact that the eikonal kernel Cij E piqjc “ E piqjr is independent of c, thus it
can be taken out of the sum. The action of Cij on the mapped Born kinematics
reads

Cij θjPF θcPF B̄
pijcq
jc “ Cij θjPF θcPF B̄

picjq
jc “ θjPF θcPF Bjc

`

tku{i{j, krijs
˘

,

Cij θjPF θcPI B̄
pijcq
jc “ θjPF θcPIBjc

`

tku{i{j, krijs
˘

,

Cij θjPI θcPF B̄
picjq
jc “ θjPI θcPFBjc

`

tku{i{j, xrijskj
˘

,

Cij θjPI θcPI B̄
pijcq
jc “ Cij θjPI θcPI B̄

picjq
jc “ θjPI θcPI Bjc

`

tku{i{j, xrijskj
˘

, (B.11)

where the latter non-trivial equality is proven in Appendix B.2.1. At this point, one
can recast Eq. (B.10) in

Cij SiR “ ´ 2N1 E piqjr
ÿ

c‰i,j

„

θjPIBjc

`

tku{i{j, xrijskj
˘

` θjPF Bjc

`

tku{i{j, krijs
˘



.(B.12)
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Upon enforcing colour conservation,
ř

c‰j Tc “ ´Tj, this becomes

Cij SiR “ 2N1Cfj E piqjr
„

θjPI B
`

tku{i{j, xrijskj
˘

` θjPF B
`

tku{i{j, krijs
˘



. (B.13)

Recalling that Cij z
pirjq θjPI θrPF “ Cij v

pijrq θjPI θrPI “ 0, it is straightforward to
verify that the expression in Eq. (B.10) matches the result of Cij Si Cij R for all
choices of mapping, showing the consistency relation.

B.2.1 Collinear limits on mappings with two initial-state partons

We show the last line of Eqs. (B.11), namely that, under the collinear Cij limit, both
θjPI θcPI B̄

pijcq
jc and θjPI θcPI B̄

picjq
jc tend to θjPI θcPIBjc

`

tku{i{j, xrijskj
˘

. The proof relies on the
fact that, although the two sets of momenta do not match in the limit, the colour- (as
opposed to spin-) connected Born squared amplitudes depend on kinematics only through
Mandelstam invariants, which do coincide in the Cij limit, as shown below.

Considering particles j and c in the initial state, while particles i and f in the final
state, we analyse the Cij limit for the mappings pijcq and picjq.

• Mapping pijcq

k̄j “ x kj , (B.14)

k̄c “ kc ,

k̄f “ kf ´
2kf ¨

`

K ` sKp1q
˘

`

K ` sKp1q
˘2

`

K ` sKp1q
˘

`
2kf ¨K

K2
sKp1q ,

with

x “
sjc ´ sij ´ sic

sjc
, K “ kj ` kc ´ ki , sKp1q “ k̄j ` k̄c “ xkj ` kc . (B.15)

Denoting with Ea the energy of parton a in arbitrary frame, and with r the ratio
Ei{Ej, in the collinear limit one has

sij
Cij
ÝÝÑ 0 , sic

Cij
ÝÝÑ sjc r , sif

Cij
ÝÝÑ sjf r , (B.16)

x
Cij
ÝÝÑ 1´ r , K

Cij
ÝÝÑ kjp1´ rq ` kc , sKp1q

Cij
ÝÝÑ kjp1´ rq ` kc ,

2 k̄j ¨ k̄f
Cij
ÝÝÑ sjf p1´ rq , 2 k̄c ¨ k̄f

Cij
ÝÝÑ scf , 2 k̄j ¨ k̄c

Cij
ÝÝÑ sjc p1´ rq .
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• Mapping picjq

k̄j “ kj , (B.17)

k̄c “ x kc ,

k̄f “ kf ´
2kf ¨

`

K ` sKp2q
˘

`

K ` sKp2q
˘2

`

K ` sKp2q
˘

`
2kf ¨K

K2
sKp2q ,

with

x “
sjc ´ sij ´ sic

sjc
, K “ kj ` kc ´ ki , sKp2q “ k̄j ` k̄c “ kj ` xkc . (B.18)

Denoting with Ea the energy of parton a in arbitrary frame, and with r the ratio
Ei{Ej, in the collinear limit one has

sij
Cij
ÝÝÑ 0 , sic

Cij
ÝÝÑ sjc r , sif

Cij
ÝÝÑ sjf r , (B.19)

x
Cij
ÝÝÑ 1´ r , K

Cij
ÝÝÑ kjp1´ rq ` kc , sKp2q

Cij
ÝÝÑ kj ` kcp1´ rq ,

2 k̄j ¨ k̄f
Cij
ÝÝÑ sjf p1´ rq , 2 k̄c ¨ k̄f

Cij
ÝÝÑ scf , 2 k̄j ¨ k̄c

Cij
ÝÝÑ sjc p1´ rq .

Invariants built with the two different momentum mappings coincide in the collinear
Cij limit. The proof of the last relation of Eq. (B.11) is completed by the fact that
Cij x “ Cij xrijs “ 1´ r.

B.3 Library of NLO integrals

The analytical results collected in this Section depend on the following functions

A1pξq ” γE `Ψp0q
pξ ` 1q ,

A2pξq ” γE ´ 1`Ψp0q
pξ ` 2q “ A1pξ ` 1q ´ 1 ,

A3pξq ” 1´ ζ2 `Ψp1q
pξ ` 2q , (B.20)

where ξ ě 0, γE “ 0.5772156649... is the Euler-Mascheroni constant, Ψpnqpzq is the n-th
Polygamma function, namely

Ψpnq
pzq “

dn`1

dzn`1
lnrΓpzqs , (B.21)

and all functions Aipξq satisfy Aip0q “ 0.
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B.3.1 Soft counterterms

For ‹‹ taking value in FF,FI, II, we define

Iabcs,‹‹ ” δfag Is,‹‹

`

s̄
pabcq
bc

˘

, (B.22)

Jabcs,‹‹pxq ” δfag Js,‹‹

`

s̄
pabcq
bc , x

˘

, (B.23)

where the relevant integrals obtained integrating the soft counterterm in Eq. (2.83) are

Is,FFpsq “
αS

2π

ˆ

s

eγEµ2

˙´ε
Γp1´ εqΓp2` α ´ εq

ε2 Γp2` α ´ 3εq
(B.24)

“
αS

2π

ˆ

s

µ2

˙´ε „
1

ε2
`

2

ε
´

7π2

12
` 6` 2A2pαq

ˆ

1

ε
` 2` A2pαq

˙

´ 4A3pαq `Opεq


,

Is,FIpsq “
αS

2π

ˆ

s

eγEµ2

˙´ε
Γp1´ εqΓp2` αq

ε2 Γp2` α ´ 2εq
(B.25)

“
αS

2π

ˆ

s

µ2

˙´ε „
1

ε2
`

2

ε
´
π2

4
` 4` 2A2pαq

ˆ

1

ε
` 2` A2pαq

˙

´ 2A3pαq `Opεq


,

Is,IIpsq “
αS

2π

ˆ

s

eγEµ2

˙´ε
Γp1´ εqΓp2` αq

ε2 Γp2` α ´ 2εq
“ Is,FIpsq ; (B.26)

Js,FIps, xq “
αS

2π

ˆ

s

eγEµ2

˙´ε
Γp2` α ´ εq

p´εqΓp2` α ´ 2εq

ˆ

x1`α

p1´ xq1`ε

˙

`

(B.27)

“
αS

2π

ˆ

s

µ2

˙´ε„

´

ˆ

x1`α

1´ x

˙

`

ˆ

1

ε
` 1` A2pαq

˙

`

ˆ

x1`α lnp1´ xq

1´ x

˙

`

`Opεq


,

Js,IIps, xq “
αS

2π

ˆ

s

eγEµ2

˙´ε
Γp1´ εq

ε2 Γp´2εq

ˆ

x1`α

p1´ xq1`2ε

˙

`

(B.28)

“
αS

2π

ˆ

s

µ2

˙´ε „

´

ˆ

x1`α

1´ x

˙

`

2

ε
` 4

ˆ

x1`α lnp1´ xq

1´ x

˙

`

`Opεq


.



B.3. Library of NLO integrals 145

B.3.2 Collinear counterterms

When a collinear splitting occurs in the final state, the relevant integrals are

Iabchc,F‹ ” δtfafbutqq̄u I
p0gq
hc,F‹

`

s̄
pabcq
bc

˘

`
`

δfagδfbtq,q̄u ` δfbgδfatq,q̄u
˘

I
p1gq
hc,F‹

`

s̄
pabcq
bc

˘

` δfagδfbg I
p2gq
hc,F‹

`

s̄
pabcq
bc

˘

,

Jabchc,F‹pxq ” δtfafbutqq̄u J
p0gq
hc,F‹

`

s̄
pabcq
bc , x

˘

`
`

δfagδfbtq,q̄u ` δfbgδfatq,q̄u
˘

J
p1gq
hc,F‹

`

s̄
pabcq
bc , x

˘

` δfagδfbg J
p2gq
hc,F‹

`

s̄
pabcq
bc , x

˘

,

Iabcsc,F‹ ” δfag 2Cfb Isc,F‹

`

s̄
pabcq
bc

˘

,

Jabcsc,F‹pxq ” δfag 2Cfb Jsc,F‹

`

s̄
pabcq
bc , x

˘

, (B.29)

while, if the splitting originates from an initial partonic state, one has

Jabchc,I‹pxq ” δtfafrabsutqq̄u J
p0gq
hc,I‹

`

s̄
pabcq
bc , x

˘

` δfagδfrabstq,q̄u J
p1gq,qg
hc,I‹

`

s̄
pabcq
bc , x

˘

` δfrabsgδfatq,q̄u J
p1gq,gq
hc,I‹

`

s̄
pabcq
bc , x

˘

` δfagδfrabsg J
p2gq
hc,I‹

`

s̄
pabcq
bc , x

˘

,

Iabcsc,I‹ “ δfag 2Cfb Isc,I‹

`

s̄
pabcq
bc

˘

,

Jabcsc,I‹pxq “ δfag 2Cfb Jsc,I‹

`

s̄
pabcq
bc , x

˘

, (B.30)

where ‹ “ F, I. Explicitly, the integrals resulting from the integration of the collinear
counterterms in Eqs. (2.84, 2.85) read as follows.

• Final j, final r:

I
p0gq
hc,FF psq “

αS

2π

ˆ

s

eγEµ2

˙´ε

4TR
Γp2´ εq2 Γp2` β ´ 2εq

p´εqΓp4´ 2εqΓp2` β ´ 3εq

“
αS

2π

ˆ

s

µ2

˙´ε

TR

„

´
2

3

1

ε
´

16

9
´

2

3
A2pβq `Opεq



, (B.31)

I
p1gq
hc,FFpsq “

αS

2π

ˆ

s

eγEµ2

˙´ε

p3´ 2εqCF
Γp2´ εq2 Γp2` β ´ 2εq

p´εqΓp4´ 2εqΓp2` β ´ 3εq

“
αS

2π

ˆ

s

µ2

˙´ε

CF

„

´
1

2

1

ε
´ 1´

1

2
A2pβq `Opεq



, (B.32)

I
p2gq
hc,FFpsq “

αS

2π

ˆ

s

eγEµ2

˙´ε

2CA
Γp2´ εq2 Γp2` β ´ 2εq

p´εqΓp4´ 2εqΓp2` β ´ 3εq

“
αS

2π

ˆ

s

µ2

˙´ε

CA

„

´
1

3

1

ε
´

8

9
´

1

3
A2pβq `Opεq



, (B.33)
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Isc,FFpsq “
αS

2π

ˆ

s

eγEµ2

˙´ε
Γp1´ εqΓp2` β ´ 2εq

ε2 Γp2` β ´ 3εq

„

Γp2´ εq

Γp2´ 2εq
´

Γp2` α ´ 2εq

Γp2` α ´ 3εq



“
αS

2π

ˆ

s

µ2

˙´ε „

´ 1`
π2

6
´ A2pαq

ˆ

1

ε
` 2`

1

2
A2pαq ` A2pβq

˙

`
5

2
A3pαq `Opεq



. (B.34)

• Final j, initial r:

I
p0gq
hc,FIpsq “

αS

2π

ˆ

s

eγEµ2

˙´ε

4TR
Γp2´ εq2 Γp2` βq

p´εqΓp4´ 2εqΓp2` β ´ εq

“
αS

2π

ˆ

s

µ2

˙´ε

TR

„

´
2

3

1

ε
´

16

9
´

2

3
A2pβq `Opεq



, (B.35)

I
p1gq
hc,FIpsq “

αS

2π

ˆ

s

eγEµ2

˙´ε

p3´ 2εqCF
Γp2´ εq2 Γp2` βq

p´εqΓp4´ 2εqΓp2` β ´ εq

“
αS

2π

ˆ

s

µ2

˙´ε

CF

„

´
1

2

1

ε
´ 1´

1

2
A2pβq `Opεq



, (B.36)

I
p2gq
hc,FIpsq “

αS

2π

ˆ

s

eγEµ2

˙´ε

2CA
Γp2´ εq2 Γp2` βq

p´εqΓp4´ 2εqΓp2` β ´ εq

“
αS

2π

ˆ

s

µ2

˙´ε

CA

„

´
1

3

1

ε
´

8

9
´

1

3
A2pβq `Opεq



, (B.37)

J
p0gq
hc,FI ps, xq “

αS

2π

ˆ

s

eγEµ2

˙´ε

4TR
p1´ εqΓp2´ εq

Γp4´ 2εq

ˆ

x1`β

p1´ xq1`ε

˙

`

“
αS

2π

ˆ

s

µ2

˙´ε

TR

ˆ

x1`β

1´ x

˙

`

„

2

3
`Opεq



, (B.38)

J
p1gq
hc,FI ps, xq “

αS

2π

ˆ

s

eγEµ2

˙´ε

p3´ 2εqCF
p1´ εqΓp2´ εq

Γp4´ 2εq

ˆ

x1`β

p1´ xq1`ε

˙

`

“
αS

2π

ˆ

s

µ2

˙´ε

CF

ˆ

x1`β

1´ x

˙

`

„

1

2
`Opεq



, (B.39)

J
p2gq
hc,FI ps, xq “

αS

2π

ˆ

s

eγEµ2

˙´ε

2CA
p1´ εqΓp2´ εq

Γp4´ 2εq

ˆ

x1`β

p1´ xq1`ε

˙

`

“
αS

2π

ˆ

s

µ2

˙´ε

CA

ˆ

x1`β

1´ x

˙

`

„

1

3
`Opεq



, (B.40)
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Isc,FIpsq “
αS

2π

ˆ

s

eγEµ2

˙´ε
Γp1´ εqΓp2` βq

ε2 Γp2` β ´ εq

„

Γp2´ εq

Γp2´ 2εq
´

Γp2` α ´ εq

Γp2` α ´ 2εq



“
αS

2π

ˆ

s

µ2

˙´ε „

´ A2pαq

ˆ

1

ε
` 2`

1

2
A2pαq ` A2pβq

˙

`
3

2
A3pαq `Opεq



, (B.41)

Jsc,FIps, xq “
αS

2π

ˆ

s

eγEµ2

˙´εˆ

´
1

ε

˙„

Γp2´ εq

Γp2´ 2εq
´

Γp2` α ´ εq

Γp2` α ´ 2εq

ˆ

x1`β

p1´ xq1`ε

˙

`

“
αS

2π

ˆ

s

µ2

˙´εˆ
x1`β

1´ x

˙

`

”

A2pαq `Opεq
ı

. (B.42)

• Initial j, final r:

J
p0gq
hc,IFps, xq “

αS

2π

ˆ

s

eγEµ2

˙´ε

TR

ˆ

1´
2xp1´ xq

1´ ε

˙

p1´ xq´ε Γp1` γ ´ εq

p´εqΓp1` γ ´ 2εq
(B.43)

“
αS

2π

ˆ

s

µ2

˙´ε

TR

„

´

x2
` p1´ xq2

¯

ˆ

´
1

ε
` lnp1´ xq ´ A1pγq

˙

` 2xp1´ xq `Opεq


,

J
p1gq,qg
hc,IF ps, xq “

αS

2π

ˆ

s

eγEµ2

˙´ε

CF p1´ xq p1´ εq
p1´ xq´ε Γp1` γ ´ εq

p´εqΓp1` γ ´ 2εq
(B.44)

“
αS

2π

ˆ

s

µ2

˙´ε

CF p1´ xq

„

´
1

ε
` lnp1´ xq ` 1´ A1pγq `Opεq



,

J
p1gq,gq
hc,IF ps, xq “

αS

2π

ˆ

s

eγEµ2

˙´ε

CF

ˆ

1` p1´ xq2

x
´ εx

˙

p1´ xq´ε Γp1` γ ´ εq

p´εqΓp1` γ ´ 2εq
(B.45)

“
αS

2π

ˆ

s

µ2

˙´ε

CF

„

1` p1´ xq2

x

ˆ

´
1

ε
` lnp1´ xq ´ A1pγq

˙

` x`Opεq


,

J
p1gq
hc,IFps, xq ” J

p1gq,qg
hc,IF ps, xq ` J

p1gq,gq
hc,IF ps, xq (B.46)

“
αS

2π

ˆ

s

eγEµ2

˙´ε

CF

ˆ

2

x
´ 1´ ε

˙

p1´ xq´ε Γp1` γ ´ εq

p´εqΓp1` γ ´ 2εq

“
αS

2π

ˆ

s

µ2

˙´ε

CF

„ˆ

2

x
´ 1

˙ˆ

´
1

ε
` lnp1´ xq ´ A1pγq

˙

` 1`Opεq


,

J
p2gq
hc,IFps, xq “

αS

2π

ˆ

s

eγEµ2

˙´ε

2CA

ˆ

1´ x

x
` xp1´ xq

˙

p1´ xq´ε Γp1` γ ´ εq

p´εqΓp1` γ ´ 2εq
(B.47)

“
αS

2π

ˆ

s

µ2

˙´ε

2CA

ˆ

1´ x

x
` xp1´ xq

˙„

´
1

ε
` lnp1´ xq ´ A1pγq `Opεq



,



148 Appendix B. NLO Appendices

Isc,IFpsq “
αS

2π

ˆ

s

eγEµ2

˙´ε
Γp1´ εqΓp1` γ ´ εq

ε2 Γp1` γ ´ 2εq

„

1

Γp2´ εq
´

Γp2` αq

Γp2` α ´ εq



(B.48)

“
αS

2π

ˆ

s

µ2

˙´ε „

´ A2pαq

ˆ

1

ε
` 1`

1

2
A2pαq ` A1pγq

˙

`
1

2
A3pαq `Opεq



,

Jsc,IFps, xq “
αS

2π

ˆ

s

eγEµ2

˙´ε
Γp1` γ ´ εq

p´εqΓp1` γ ´ 2εq

ˆ

xp1´ xαq

p1´ xq1`ε

˙

`

(B.49)

“
αS

2π

ˆ

s

µ2

˙´ε „ˆ
xpxα ´ 1q

1´ x

˙

`

ˆ

1

ε
` A1pγq

˙

`

ˆ

xp1´ xαq lnp1´ xq

1´ x

˙

`

`Opεq


.

• Initial j, initial r:

J
p0gq
hc,IIps, xq “

αS

2π

ˆ

s

eγEµ2

˙´ε

TR

ˆ

1´
2xp1´ xq

1´ ε

˙

p1´ xq´2ε Γp1` γ ´ εq

p´εqΓp1` γ ´ 2εq
(B.50)

“
αS

2π

ˆ

s

µ2

˙´ε

TR

„

´

x2
` p1´ xq2

¯

ˆ

´
1

ε
` 2 lnp1´ xq ´ A1pγq

˙

` 2xp1´ xq `Opεq


,

J
p1gq,qg
hc,II ps, xq “

αS

2π

ˆ

s

eγEµ2

˙´ε

CF p1´ xq p1´ εq
p1´ xq´2ε Γp1` γ ´ εq

p´εqΓp1` γ ´ 2εq
(B.51)

“
αS

2π

ˆ

s

µ2

˙´ε

CF p1´ xq

„

´
1

ε
` 2 lnp1´ xq ` 1´ A1pγq `Opεq



,

J
p1gq,gq
hc,II ps, xq “

αS

2π

ˆ

s

eγEµ2

˙´ε

CF

ˆ

1` p1´ xq2

x
´ εx

˙

p1´ xq´2ε Γp1` γ ´ εq

p´εqΓp1` γ ´ 2εq
(B.52)

“
αS

2π

ˆ

s

µ2

˙´ε

CF

„

1` p1´ xq2

x

ˆ

´
1

ε
` 2 lnp1´ xq ´ A1pγq

˙

` x`Opεq


,

J
p1gq
hc,IIps, xq ” J

p1gq,qg
hc,II ps, xq ` J

p1gq,gq
hc,II ps, xq (B.53)

“
αS

2π

ˆ

s

eγEµ2

˙´ε

CF

ˆ

2

x
´ 1´ ε

˙

p1´ xq´2ε Γp1` γ ´ εq

p´εqΓp1` γ ´ 2εq

“
αS

2π

ˆ

s

µ2

˙´ε

CF

„ˆ

2

x
´ 1

˙ˆ

´
1

ε
` 2 lnp1´ xq ´ A1pγq

˙

` 1`Opεq


,

J
p2gq
hc,IIps, xq “

αS

2π

ˆ

s

eγEµ2

˙´ε

2CA

ˆ

1´ x

x
` xp1´ xq

˙

p1´ xq´2ε Γp1` γ ´ εq

p´εqΓp1` γ ´ 2εq
(B.54)

“
αS

2π

ˆ

s

µ2

˙´ε

2CA

ˆ

1´ x

x
` xp1´ xq

„̇

´
1

ε
` 2 lnp1´ xq ´ A1pγq `Opεq



,
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Isc,IIpsq “
αS

2π

ˆ

s

eγEµ2

˙´ε
Γp1´ 2εqΓp1` γ ´ εq

2ε2 Γp1` γ ´ 2εq

„

1

Γp2´ 2εq
´

Γp2` αq

Γp2` α ´ 2εq



“
αS

2π

ˆ

s

µ2

˙´ε „

´ A2pαq

ˆ

1

ε
` 2` A2pαq ` A1pγq

˙

` A3pαq `Opεq


,

(B.55)

Jsc,IIps, xq “
αS

2π

ˆ

s

eγEµ2

˙´ε
Γp1` γ ´ εq

p´εqΓp1` γ ´ 2εq

ˆ

xp1´ xαq

p1´ xq1`2ε

˙

`

(B.56)

“
αS

2π

ˆ

s

µ2

˙´ε „ˆ
xpxα ´ 1q

1´ x

˙

`

ˆ

1

ε
` A1pγq

˙

` 2

ˆ

xp1´ xαq lnp1´ xq

1´ x

˙

`

`Opεq


.





Appendix C

NNLO Appendices

C.1 Infrared kernels

C.1.1 Soft kernels at tree level

We introduce the kernels associated with the real emission of one or two soft partons,
as given in Ref. [200], relevant for both NLO (with the emission of just one parton)
and NNLO corrections (with the emission of either one or two partons). We express all
kernels in terms of Lorentz-invariant quantities, and using the flavour structures defined
in Appendix A. The resulting expressions are

Ipiqcd “ f gi
scd
sic sid

, Ipijqcd “ f qq̄ij 2TR Ipqq̄qpijqcd ´ f ggij 2CA Ipggqpijqcd , (C.1)

where

Ipqq̄qpijqcd “
sicsjd ` sidsjc ´ sijscd

s2
ij srijsc srijsd

, (C.2)

Ipggqpijqcd “
p1´ εqpsicsjd ` sidsjcq ´ 2sijscd

s2
ij srijsc srijsd

` scd
sicsjd ` sidsjc ´ sijscd

sijsicsjdsidsjc

„

1´
1

2

sicsjd ` sidsjc
srijsc srijsd



.

We also define the combinations of eikonal kernels

E piqcd ” Ipiqcd “ f gi
scd
sic sid

, (C.3)

E pijqcd ” Ipijqcd ´
1

2
Ipijqcc ´

1

2
Ipijqdd “ f qq̄ij 2TR E pqq̄qpijqcd ´ f ggij 2CA E pggqpijqcd , (C.4)
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with

E pqq̄qpijqcd “
1

s2
ij

«

sicsjd ` sidsjc
srijscsrijsd

´
sicsjc
s2
rijsc

´
sidsjd
s2
rijsd

ff

´
scd

sijsrijscsrijsd
,

E pggqpijqcd “
1´ ε

s2
ij

«

sicsjd ` sidsjc
srijscsrijsd

´
sicsjc
s2
rijsc

´
sidsjd
s2
rijsd

ff

´ 2
scd

sijsrijscsrijsd

` scd
sicsjd ` sidsjc ´ sijscd

sijsicsjdsidsjc

„

1´
1

2

sicsjd ` sidsjc
srijscsrijsd



. (C.5)

C.1.2 Soft kernels at one loop

We introduce kernels associated with the emission of a single-soft gluon at one-loop level,
relevant for the soft part of the real-virtual counterterm at NNLO,

Ẽ piqcd ” f gi CA
Γ3p1` εqΓ4p1´ εq

ε2 Γp1` 2εqΓ2p1´ 2εq

scd
sicsid

ˆ

eγE µ2scd
sicsid

˙ε

“ CA E piqcd
„

1

ε2
´

1

ε
ln
sicsid
µ2 scd

´
5

2
ζ2 `

1

2
ln2 sicsid

µ2 scd
`Opεq



,

Ẽ piqcde ” f gi
Γp1` εqΓ2p1´ εq

εΓp1´ 2εq

scd
sicsid

ˆ

eγE µ2 sde
sidsie

˙ε

“ E piqcd
„

1

ε
´ ln

sidsie
µ2 sde

`Opεq


, (C.6)

where ε is the dimensional regulator (d “ 4´ 2ε).

C.1.3 Collinear and hard-collinear kernels at tree level

In order to define the kernel associated with the tree-level emission of two collinear final-
state particles i and j (labelled single-collinear), we choose a reference momentum kr,
with r ‰ i, j, and introduce the following kinematic structures:

xi “
sir
srijsr

, xj “
sjr
srijsr

, k̃i “ xi kj ´ xj ki ´ p1´2xjq
sij
srijsr

kr . (C.7)

Then, the collinear (Altarelli-Parisi) kernels P µν
ijprq are defined as

P µν
ijprq “ ´Pijprq g

µν
`Qµν

ijprq , Qµν
ijprq “ Qijprq d

µν
i , (C.8)

where the azimuthal tensor reads

dµνi “ ´gµν ` pd´ 2q
k̃µi k̃

ν
i

k̃2
i

, (C.9)
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and

Pijprq “ P
p0gq
ijprq f

qq̄
ij ` P

p1gq
ijprq f

g
i pf

q
j `f

q̄
j q ` P

p1gq
jiprq pf

q
i `f

q̄
i qf

g
j ` P

p2gq
ijprq f

gg
ij , (C.10)

Qijprq “ TR
2xixj
1´ ε

f qq̄ij ´ 2CA xixj f
gg
ij ,

P
p0gq
ijprq “ TR

ˆ

1´
2xixj
1´ ε

˙

,

P
p1gq
ijprq “ CF

„

2
xj
xi
` p1´ εqxi



,

P
p2gq
ijprq “ 2CA

ˆ

xi
xj
`
xj
xi
` xixj

˙

.

The hard-collinear kernels P hc,µν
ijprq are defined as

P hc,µν
ijprq ” P µν

ijprq ` sij

”

2Cfj E piqjr ` 2Cfi E pjqir
ı

gµν ” ´P hc
ijprq g

µν
`Qµν

ijprq , (C.11)

where

P hc
ijprq “ P

hc,p0gq
ijprq f qq̄ij ` P

hc,p1gq
ijprq f gi pf

q
j `f

q̄
j q ` P

hc,p1gq
jiprq pf qi `f

q̄
i qf

g
j ` P

hc,p2gq
ijprq f ggij , (C.12)

P
hc,p0gq
ijprq “ P

p0gq
ijprq “ TR

ˆ

1´
2xixj
1´ ε

˙

, P
hc,p1gq
ijprq “ CF p1´ εqxi , P

hc,p2gq
ijprq “ 2CA xixj .

The kernel describing the emission of three collinear final-state partons i, j and k (labelled
double-collinear) relies on the choice of a reference momentum kr, with r ‰ i, j, k, and on
the following kinematic structures,

za “
sar
srijksr

, zab “ za ` zb , a, b “ i, j, k (C.13)

k̃µa “ kµa ´ zapk
µ
i ` k

µ
j ` k

µ
k q ´ psrijksa ´ 2 zasijkq

kµr
srijksr

, a, b, c “ i, j, k ,

k̃2
a “ zapzasijk ´ srijksaq “ zapsbc ´ zbcsijkq .

The double-collinear kernels P µν
ijkprq are defined as

P µν
ijkprq ” ´Pijkprq g

µν
`Qµν

ijkprq , Qµν
ijkprq “

ÿ

a“i,j,k

Qa
ijkprq d

µν
a . (C.14)
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The Pijkprq kernels, organised by flavour structures, are given by

Pijkprq “ P
p0gq
ijkprq f

qq̄
ij pf

q1

k `f
q̄1

k q ` P
p0gq
jkiprq f

qq̄
jk pf

q1

i `f
q̄1

i q ` P
p0gq
kijprq f

qq̄
ik pf

q1

j `f
q̄1

j q

` P
p0g,idq
ijkprq pf

q
i f

q
j f

q̄
k`f

q̄
i f

q̄
j f

q
k q ` P

p0g,idq
jkiprq pf

q
j f

q
kf

q̄
i `f

q̄
j f

q̄
kf

q
i q ` P

p0g,idq
kijprq pf

q
i f

q
kf

q̄
j `f

q̄
i f

q̄
kf

q
j q

` P
p1gq
ijkprq f

qq̄
ij f

g
k ` P

p1gq
jkiprq f

qq̄
jk f

g
i ` P

p1gq
kijprq f

qq̄
ik f

g
j

` P
p2gq
ijkprq f

gg
ij pf

q
k`f

q̄
k q ` P

p2gq
jkiprq f

gg
jk pf

q
i `f

q̄
i q ` P

p2gq
kijprq f

gg
ik pf

q
j `f

q̄
j q

` P
p3gq
ijkprq f

ggg
ijk , (C.15)

where q1 is a quark of flavour equal to or different from that of q; similarly, the azimuthal
tensor kernel can be written as

Qa
ijkprq “ Q

p1gq,a
ijkprq f

qq̄
ij f

g
k `Q

p1gq,a
jkiprq f

qq̄
jk f

g
i `Q

p1gq,a
kijprq f

qq̄
ik f

g
j `Q

p3gq,a
ijkprq f

ggg
ijk . (C.16)

The expressions for P p0gq
ijkprq, P

p0g,idq
ijkprq , P

p1gq
ijkprq, P

p2gq
ijkprq, and P

p3gq
ijkprq read:

P
p0gq
ijkprq “ CFTR

#

´
s2
ijk

2s2
ij

ˆ

sjk
sijk

´
sik
sijk

`
zi´zj
zij

˙2

`
sijk
sij

„

2
zk´zizj
zij

` p1´ εqzij



´
1

2
` ε

+

, (C.17)

P
p0g,idq
ijkprq “ CF p2CF´CAq

#

´
s2
ijk zk

2sjksik

„

1` z2
k

zjkzik
´ ε

ˆ

zik
zjk

`
zjk
zik
` 1` ε

˙

`p1´ εq

„

sij
sjk

`
sij
sik
´ ε



(C.18)

`
sijk
2sjk

„

1` z2
k ´ εz

2
jk

zik
´ 2p1´ εq

zj
zjk

´ εp1` zkq ´ ε
2 zjk



`
sijk
2sik

„

1` z2
k ´ εz

2
ik

zjk
´ 2p1´ εq

zi
zik
´ εp1` zkq ´ ε

2 zik



+

,

P
p1gq
ijkprq “ CFTR

„

2sijksij
siksjk

` p1´ εq

ˆ

sik
sjk

`
sjk
sik
` 2

˙

´ 2



` CATR

„

´
s2
ijk

2s2
ij

ˆ

sjk
sijk

´
sik
sijk

`
zi ´ zj
zij

˙2

´
s2
ijk

siksjk
`
s2
ijk

2sij

1´ 2zk
zkzij

ˆ

zi
sik
`

zj
sjk

˙

`
sijk

2zkzij

ˆ

zik
sik
`
zjk
sjk

˙

`
sijk
sij

1´ zk ` 2zk
zkzij

´
1

2
` ε



´
ÿ

a“i,j,k

Qa
ijkprq , (C.19)



C.1. Infrared kernels 155

P
p2gq
ijkprq “ C2

F

#

s2
ijk zk

2siksjk

„

1` z2
k ´ εz

2
ij

zizj
` εp1´ εq



´ p1´ εq2
sjk
sik
` εp1´ εq

`
sijk
sik

„

zkzjk ` z
3
ik ´ εzikz

2
ij

zizj
` ε zik ` ε

2
p1` zkq



+

` CFCA

#

p1´ εq
s2
ijk

4s2
ij

ˆ

sjk
sijk

´
sik
sijk

`
zi ´ zj
zij

˙2

´
s2
ijk zk

4siksjk

„

z2
ijp1´ εq ` 2zk

zizj
` εp1´ εq



`
s2
ijk

2sijsik

„

z2
ijp1´ εq ` 2zk

zj
`
z2
j p1´ εq ` 2zik

zij



`
1

4
p1´ εqp1´ 2εq

`
sijk
2sik

„

p1´ εq
z3
ik ` z

2
k ´ zj

zjzij
´ 2ε

zikpzj ´ zkq

zjzij

´
zkzjk ` z

3
ik

zizj
` ε zik

z2
ij

zizj
´ εp1` zkq ´ ε

2zik



`
sijk
2sij

„

p1´ εq
zip2zjk ` z

2
i q ´ zjp6zik ` z

2
j q

zjzij
` 2ε

zkpzi ´ 2zjq ´ zj
zjzij



+

` piØ jq , (C.20)

P
p3gq
ijkprq “ C2

A

#

p1´ εq
s2
ijk

4s2
ij

ˆ

sjk
sijk

´
sik
sijk

`
zi ´ zj
zij

˙2

`
3

4
p1´ εq

`
s2
ijk

2sijsik

„

2zizjzikp1´2zkq

zkzij
`

1`2zi`2z2
i

zikzij
`

1´2zizjk
zjzk

` 2zjzk ` zip1`2ziq ´ 4



`
sijk
sij

„

4
zizj ´ 1

zij
`
zizj ´ 2

zk
`
p1´ zkzijq

2

zizkzjk
`

5

2
zk `

3

2



+

` ( 5 permutations ) . (C.21)

The azimuthal kernelsQp1gq,a
ijkprq andQ

p3gq,a
ijkprq are defined according to the following expressions:

Q
p1gq,i
ijkprq“ TR

k̃2
i

1´ε

sijk
siksjk

"

CA

„

1´
2zj
zk

sij`2sjk
s2
ij

sik

`
zisjk`zjsik

zijsij
`

ˆ

zizj
zkzij

´
1´ε

2

˙

sik´sjk
sij



´2CF

*

,
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Q
p1gq,j
ijkprq“ TR

k̃2
j

1´ε

sijk
siksjk

"

CA

„

1´
2zi
zk

sij`2sik
s2
ij

sjk`
zisjk`zjsik

zijsij

`

ˆ

zizj
zkzij

´
1´ε

2

˙

sjk´sik
sij



´2CF

*

,

Q
p1gq,k
ijkprq“ TR

k̃2
k

1´ε

sijk
siksjk

"

CA

„

zizj
zkzij

4siksjk`sijsrijsk
s2
ij

`
zi´zj
2zij

sik´sjk
sij

´ε
sijk`sij

2sij



`2CF ε

*

,

ÿ

a“i,j,k

Q
p3gq,a
ijkprqd

µν
a “ C2

A

sijk
sij

#

„

2zj
zk

1

sij
`

ˆ

zjzik
zkzij

´
3

2

˙

1

sik



k̃2
i d

µν
i (C.22)

`

„

2zi
zk

1

sij
´

ˆ

zjzik
zkzij

´
3

2
´
zi
zk
`
zi
zij

˙

1

sik



k̃2
j d

µν
j

´

„

2zizj
zijzk

1

sij
`

ˆ

zjzik
zkzij

´
3

2
´
zi
zj
`
zi
zik

˙

1

sik



k̃2
k d

µν
k

+

` (5 permutations) .

The hard-double-collinear kernels P hc,µν
ijkprq are defined as

P hc,µν
ijkprq ” ´P hc

ijkprq g
µν
`Qµν

ijkprq , (C.23)

where Qµν
ijkprq is given in Eq. (C.14) and

P hc
ijkprq ” Pijkprq ´ s

2
ijk

”

Cfk

´

4CfkE
piq
kr E

pjq
kr ´ E pijqkr

¯

` piØ kq ` pj Ø kq
ı

. (C.24)

C.1.4 Collinear and hard-collinear kernels at one loop

The collinear contribution to the real-virtual counterterm at NNLO depends on the one-
loop, single-collinear kernel which reads (r ‰ i, j):

P̃ µν
ijprq ”

Γ2p1`εqΓ3p1´εq

Γp1`2εqΓ2p1´2εq

ˆ

eγEµ2

sij

˙ε"Cfrijs
ε2

”

ρpCq
rijs ` ρ

pCq

ij F pxiq ` ρ
pCq

ji F pxjq
ı

P µν
ijprq ` P̂

µν
ijprq

*

,

(C.25)

where the function F pxq is defined by

F pxq ” 1´ 2F1

ˆ

1,´ε; 1´ ε;
x´ 1

x

˙

“ ε lnx`
`8
ÿ

n“2

εn Lin
ˆ

x´ 1

x

˙

, (C.26)
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and P̂ µν
ijprq reads

P̂ µν
ijprq “

„

´ gµν ` 4xixj
k̃µi k̃

ν
i

k̃2
i



TR
1´2ε

„

1

ε

`

β0 ´ 3CF
˘

` CA ´ 2CF `
CA ` 4TRNf

3p3´ 2εq



f qq̄ij

´ gµν CF
CA´CF
1´ 2ε

”

`

1´ εxi
˘

f gi pf
q
j `f

q̄
j q `

`

1´ εxj
˘

pf qi `f
q̄
i qf

g
j

ı

`
k̃µi k̃

ν
i

k̃2
i

4CA
2TRNf ´ CAp1´ εq

p1´ 2εqp2´2εqp3´2εq

`

1´ 2εxixj
˘

f ggij . (C.27)

The expansion of P̃ µν
ijprq in the dimensional regulator ε gives

P̃ µν
ijprq “ P µν

ijprq Cfrijs

"

ρpCq
rijs

„

1

ε2
´

1

ε
ln
sij
µ2
´

1

2

ˆ

7 ζ2 ´ ln2 sij
µ2

˙

`

„

1

ε
´ ln

sij
µ2



`

ρpCqij lnxi ` ρ
pCq

ji lnxj
˘

` ρpCqij Li2
ˆ

´xj
xi

˙

` ρpCqji Li2
ˆ

´xi
xj

˙*

`

„

´ gµν ` 4xixj
k̃µi k̃

ν
i

k̃2
i



f qq̄ij TR

„ˆ

1

ε
´ ln

sij
µ2

˙

`

β0 ´ 3CF
˘

`
7

3
CA `

5

3
β0 ´ 8CF



´ gµν pf
gq
ij `f

gq̄
ij q CF pCA´CF q `

k̃µi k̃
ν
i

k̃2
i

f ggij CA p3CA ´ β0q `Opεq . (C.28)

The one-loop collinear kernel P̂ µν
ijprq can be rewritten according to the same structure as

in Eq. (C.8),

P̂ µν
ijprq “ ´ P̂ijprq g

µν
` Q̂µν

ijprq , Q̂µν
ijprq “ Q̂ijprq d

µν
i , (C.29)

where we have introduced

P̂ijprq “
TR

1´2ε

„

1´
2xixj
1´ε

„

1

ε

`

β0 ´ 3CF
˘

` CA ´ 2CF `
CA ` 4TRNf

3p3´ 2εq



f qq̄ij

`CF
CA´CF
1´ 2ε

”

`

1´ εxi
˘

f gi pf
q
j `f

q̄
j q `

`

1´ εxj
˘

pf qi `f
q̄
i qf

g
j

ı

` 4CA
CAp1´ εq ´ 2TRNf

p1´ 2εqp2´2εq2p3´2εq

`

1´ 2εxixj
˘

f ggij ,

Q̂ijprq “ 2xixj
TR

p1´2εqp1´εq

„

1

ε

`

β0 ´ 3CF
˘

` CA ´ 2CF `
CA ` 4TRNf

3p3´ 2εq



f qq̄ij

` 4CA
2TRNf ´ CAp1´ εq

p1´ 2εqp2´2εq2p3´2εq

`

1´ 2εxixj
˘

f ggij . (C.30)

Analogously, the ε expansion P̃ µν
ijprq can be recast in the same form, as

P̃ µν
ijprq “ ´ P̃ijprq g

µν
` Q̃µν

ijprq , Q̃µν
ijprq “ Q̃ijprq d

µν
i , (C.31)
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where P̃ijprq and Q̃ijprq are given by (F “ P,Q)

F̃ijprq “
Γ2p1`εqΓ3p1´εq

Γp1`2εqΓ2p1´2εq

ˆ

eγEµ2

sij

˙ε"Cfrijs
ε2

”

ρpCq
rijs ` ρ

pCq

ij F pxiq ` ρ
pCq

ji F pxjq
ı

Fijprq ` F̂ijprq

*

.

(C.32)

The hard-collinear real-virtual kernel, expanded in the regulator ε, reads

P̃ hc,µν
ijprq ” P̃ µν

ijprq ´ sij

”

2Cfj Ẽ piqjr ` 2Cfi Ẽ pjqir
ı

gµν (C.33)

“ P̃ hc,µν
fin,ijprq ` Cfrijs

„

ρpCq
rijs

ˆ

1

ε2
´

1

ε
ln
sij
µ2

˙

`
1

ε

´

ρpCqij lnxi ` ρ
pCq

ji lnxj

¯



P hc,µν
ijprq

´
4

ε

„

f gi C
2
fj

xj
xi

lnxj ` f
g
j C

2
fi

xi
xj

lnxi



gµν

´
TR
ε

`

β0´3CF
˘

f qq̄ij

„

gµν ´ 4xixj
k̃µi k̃

ν
i

k̃2
i



`Opεq ,

where

P̃ hc,µν
fin,ijprq “ P hc,µν

ijprq Cfrijs

"

ρpCq
rijs

„ˆ

1

2
ln2 sij

µ2
´

7

2
ζ2

˙

` ρpCqij

„

Li2
ˆ

´xj
xi

˙

´ ln
sij
µ2

lnxi



` ρpCqji

„

Li2
ˆ

´xi
xj

˙

´ ln
sij
µ2

lnxj

*

´ gµν 2 f gi Cfj
xj
xi

"

CA

„

ln2xj ` 2Li2pxiq


` 2Cfj

„

Li2
ˆ

´xi
xj

˙

´ ln
sij
µ2

lnxj

*

´ gµν 2 f gj Cfi
xi
xj

"

CA

„

ln2xi ` 2Li2pxjq


` 2Cfi

„

Li2
ˆ

´xj
xi

˙

´ ln
sij
µ2

lnxi

*

´

„

gµν ´ 4xixj
k̃µi k̃

ν
i

k̃2
i



f qq̄ij TR

„

ln
sij
µ2

`

3CF ´ β0

˘

`
7

3
CA `

5

3
β0 ´ 8CF



´ gµν pf
gq
ij `f

gq̄
ij q CF pCA´CF q `

k̃µi k̃
ν
i

k̃2
i

f ggij CA p3CA ´ β0q , (C.34)

and

Li2
ˆ

´
xi
xj

˙

“ ´Li2pxiq ´
1

2
ln2 xj “ Li2pxjq ` lnxi lnxj ´

1

2
ln2 xj ´ ζ2 ,

Li2
ˆ

´
xj
xi

˙

“ ´Li2pxjq ´
1

2
ln2 xi “ Li2pxiq ` lnxi lnxj ´

1

2
ln2 xi ´ ζ2 . (C.35)

Equivalently we can write P̃ hc,µν
ijprq in the form

P̃ hc,µν
ijprq “ ´ P̃ hc

ijprq g
µν
` Q̃µν

ijprq , (C.36)
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with

P̃ hc
ijprq ” P̃ijprq ` sij

”

2Cfj Ẽ piqjr ` 2Cfi Ẽ pjqir
ı

(C.37)

“
Γ2p1`εqΓ3p1´εq

Γp1`2εqΓ2p1´2εq

ˆ

eγEµ2

sij

˙ε"Cfrijs
ε2

”

ρpCq
rijs ` ρ

pCq

ij F pxiq ` ρ
pCq

ji F pxjq
ı

Pijprq ` P̂ijprq

` 2CA
Γp1`εqΓp1´εq

ε2

„

f gi Cfj

ˆ

xj
xi

˙1`ε

` f gj Cfi

ˆ

xi
xj

˙1`ε *

.

C.2 Improved limits

In this Appendix we present three sections that collect the building blocks needed to
construct our local counterterms. Specifically, we explicitly define the action of

• improved limits on the double-real matrix element RR (Section C.2.1);

• improved limits on sector functions Wijjk, Wijkj, Wijkl (Section C.2.2);

• improved limits on symmetrised sector functions Zijk, Zijkl (Section C.2.3).

The content of each section is organised according to the nature of the singular limits in-
volved, which can be single-unresolved, uniform double-unresolved, and strongly-ordered
double-unresolved. The action of improved limits L on matrix elements times sector
functions is specified by LRRWabcd ”

`

LRR
˘ `

L Wabcd

˘

, and similarly for Z functions.
When acting on sector functions, single-unresolved and strongly-ordered improved limits
imply the latter to be evaluated with mapped kinematics. Mapped sector functions are
indicated generically as W or Z̄ with no mapping labels in Sections C.2.2, C.2.3, under-
standing that the actual mapping to be used must be adapted to the one of the matrix
elements the sector function is associated to. To be more precise, for each term of an
improved limit, the mapping of W or Z̄ is always the same as the first mapping of matrix
elements in that term.

To give an explicit example, let us apply this rule to the Si Sik RRWijkl contribution
to K p12q

ijkl counterterm. Starting with the definitions

Si Sik RR ”
N 2

1

2

ÿ

c‰i,k
d‰i,k,c

"

E piqcd
„

ÿ

e‰i,k,c,d

ˆ

ÿ

f‰i,k,c,d,e

Ē pkqpicdqef B̄
picd,kefq
cdef ` 2 Ē pkqpicdqed B̄

picd,kedq
cded

˙

` 2
ÿ

e‰i,k,c,d

Ē pkqpidcqed B̄
pidc,kedq
cded ` 2 Ē pkqpicdqcd

´

B̄
picd,kcdq
cdcd ` CA B̄

picd,kcdq
cd

¯



´ 2CA

”

E piqkc Ē
pkqpickq
cd B̄

pick,kcdq
cd ` E piqkd Ē

pkqpikdq
cd B̄

pikd,kcdq
cd

ı

*

, (C.38)

and

Si SikWijkl ” Ws, klWpαq
s, ij , (C.39)
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according to the procedure detailed above, the explicit expression for Si Sik RRWijkl

results in

Si Sik RRWijkl ”

N 2
1

2

ÿ

c‰i,k
d‰i,k,c

"

E piqcd
„

ÿ

e‰i,k,c,d

ˆ

ÿ

f‰i,k,c,d,e

Ē pkqpicdqef B̄
picd,kefq
cdef ` 2 Ē pkqpicdqed B̄

picd,kedq
cded

˙

Wpicdq

s, kl (C.40)

` 2
ÿ

e‰i,k,c,d

Ē pkqpidcqed B̄
pidc,kedq
cded Wpidcq

s, kl ` 2 Ē pkqpicdqcd

´

B̄
picd,kcdq
cdcd ` CA B̄

picd,kcdq
cd

¯

Wpicdq

s, kl



´ 2CA

”

E piqkc Ē
pkqpickq
cd B̄

pick,kcdq
cd Wpickq

s, kl ` E piqkd Ē
pkqpikdq
cd B̄

pikd,kcdq
cd Wpikdq

s, kl

ı

*

Wpαq
s, ij ,

where it is evident that each Wab contribution is mapped according to the first mapping
of the Born matrix element it accompanies.

Finally, we introduce a shorthand notation to simplify the treatment in Section C.2.2:
we define single-unresolved improved limits on NLO sector functions as

Wpαq
s, ij ” SiWpαq

ij ”

1
wαij

ř

l‰i

1
wαil

, Ws, ij ” Wp1q
s, ij , (C.41)

Wpαq
c, ijprq ” Cij Wpαq

ij ”
eαj w

α
jr

eαi w
α
ir ` e

α
j w

α
jr

, Wc, ijprq ” Wp1q
c, ijprq , (C.42)

depending on a reference particle r ‰ i, j, whose choice will be specified case by case. As
for NNLO sector functions, we introduce

σ̂abcdprq “
1

peawabwarqα
1

pecwcr ` δbc eawarqwcd
, (C.43)

and

σ̂tijkuprq “ σ̂ijjkprq`σ̂ikjkprq`σ̂jiikprq`σ̂jkikprq`σ̂ijkjprq`σ̂ikkjprq

` σ̂kiijprq`σ̂kjijprq`σ̂jikiprq`σ̂jkkiprq`σ̂kijiprq`σ̂kjjiprq . (C.44)
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C.2.1 Improved limits of RR

Single-unresolved improved limits

For the single-unresolved improved limits we have (j ‰ i)

SiRR ” ´N1

ÿ

c‰i
d‰i,c

E piqcd R̄
picdq
cd , (C.45)

Cij RR ” N1

P µν
ijprq

sij
R̄pijrqµν , (C.46)

Si Cij RR ” Si CjiRR ” N1 2Cfj E piqjr R̄pijrq ; (C.47)

HCij RR ” Cij

`

1´ Si ´ Sj
˘

RR “ N1

P hc,µν
ijprq

sij
R̄pijrqµν . (C.48)

In these equations r must be chosen according to the rule of Eq. (A.13) as r “ rijkl ‰

i, j, k, l, where i, j, k, l are the indices appearing in the NNLO sector functions multiplying
the improved limits Cij, Si Cij, HCij. This means that in the topologies Wijjk, Wijkj the
index r “ rijk is different from the three indices of the sector, while for the topology Wijkl

(i, j, k, l all different) the index r “ rijkl is different from the four indices of the sector.
We stress that, having defined r “ rijkl, one needs at least five massless partons in Φn`2,
namely three massless final-state partons at Born level. We work under this assumption
throughout this thesis.

Uniform double-unresolved improved limits

The double-soft improved limit is given by (k ‰ i)

Sik RR ”
N 2

1

2

ÿ

c‰i,k
d‰i,k,c

"

E piqcd
ÿ

e‰i,k,c,d

„

ÿ

f‰i,k,c,d,e

E pkqef B̄
picd,kefq
cdef ` 4 E pkqed B̄

picd,kedq
cded



` 2 E piqcd E
pkq
cd B̄

picd,kcdq
cdcd ` E pikqcd B̄

pikcdq
cd

*

. (C.49)

The soft-collinear improved limit SCikl and its double-soft version Sik SCikl read (k ‰ i,
l ‰ i, k, and r “ rikl ‰ i, k, l defined with the rule of Eq. (A.13))

SCiklRR ” ´N 2
1

P µν
klprq

skl

"

ÿ

c‰i,k,l,r

„

ÿ

d‰i,k,l,r,c

E piqcd B̄
pklr,icdq
µν,cd ` 2 E piqcr B̄pklr,icrqµν,cr



`
ÿ

c‰i,k,l

”

E piqkc
´

ρpCqkl B̄
plrk,ickq
µν,rklsc ` B̄plrk,ickqµν,rklsc f̃

qq̄
kl

¯

` pk Ø lq
ı

*

, (C.50)
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Sik SCiklRR ” Ski SCiklRR ” Sik SCilk RR

” ´ 2N 2
1 E pkqlr

"

Cfl
ÿ

c‰i,k,l,r

„

ÿ

d‰i,k,l,r,c

E piqcd B̄
pklr,icdq
cd ` 2 E piqcr B̄pklr,icrqcr



`
ÿ

c‰i,k,l

”

CA E piqkc B̄
plrk,ickq
rklsc ` p2Cfl´CAq E

piq
lc B̄

pkrl,iclq
rklsc

ı

*

. (C.51)

The improved limits SCijk, SCkij, Sij SCijk, Sik SCijk, Sik SCkij can be obtained from
these limits with a renaming of indices. For the uniform double-unresolved limits involving
Cijk, we have (j ‰ i, k ‰ i, j and r “ rijk ‰ i, j, k)

Cijk RR ”
N 2

1

s2
ijk

P µν
ijkprq B̄

pijkrq
µν ; (C.52)

Sij Cijk RR ” Sij Cikj RR ” Sij Ckij RR

” N 2
1 Cfk

„

4Cfk E
piq
kr E

pjq
kr ´ E pijqkr



B̄pijkrq , (C.53)

HCijk RR ” Cijk

`

1´ Sij ´ Sik ´ Sjk
˘

RR “
N 2

1

s2
ijk

P hc,µν
ijkprq B̄

pijkrq
µν ; (C.54)

Cijk SCijk RR ” Cjki SCijk RR

” N 2
1 Cfrjks

P µν
jkprq

sjk

„

ρpCqjk E
piq
jr B̄

pkrj,irjq
µν ` ρpCqkj E

piq
kr B̄

pjrk,irkq
µν



, (C.55)

Sij Cijk SCijk RR ” Sij Cikj SCikj RR “ Sji Cjki SCijk RR

” 2N 2
1 Cfk E

pjq
kr

”

CA E piqjr B̄pkrj,irjq ` p2Cfk´CAq E
piq
kr B̄

pjrk,irkq
ı

, (C.56)

Cijk SHCijk RR ” Cijk SCijk

`

1´ Sij ´ Sik
˘

RR

” N 2
1 Cfrjks

P hc,µν
jkprq

sjk

„

ρpCqjk E
piq
jr B̄

pkrj,irjq
µν ` ρpCqkj E

piq
kr B̄

pjrk,irkq
µν



, (C.57)

SHCijk

`

1´Cijk

˘

RR ” SCijk

`

1´Cijk

˘ `

1´ Sij ´ Sik
˘

RR (C.58)

” ´N 2
1

P hc,µν
jkprq

sjk

"

ÿ

c‰i,j,k,r

„

ÿ

d‰i,j,k,r,c

E piqcd B̄
pjkr,icdq
µν,cd ` 2 E piqcr B̄pjkr,icrqµν,cr



`
ÿ

c‰i,j,k

„

E piqjc
´

ρpCqjk B̄
pkrj,icjq
µν,rjksc ` B̄pkrj,icjqµν,rjksc f̃

qq̄
jk

¯

`pj Ø kq



`Cfrjks

„

ρpCqjk E
piq
jr B̄

pkrj,irjq
µν ` ρpCqkj E

piq
kr B̄

pjrk,irkq
µν

*

.
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Finally, the limits involving Cijkl are given by (j ‰ i, k ‰ i, j, l ‰ i, j, k and r “ rijkl ‰

i, j, k, l)

CijklRR ” N 2
1

P µν
ijprq

sij

P ρσ
klprq

skl
B̄pijr,klrqµνρσ , (C.59)

Sik CijklRR ” Sik CjiklRR ” Sik Cijlk RR ” Sik Cjilk RR

” 4N 2
1 Cfj Cfl E

piq
jr E pkqlr B̄pijr,klrq ; (C.60)

SCikl CijklRR ” SCikl Cklij RR ” SCikl CjiklRR ” SCikl CkljiRR

” 2N 2
1 Cfj E piqjr

P µν
klprq

skl
B̄pijr,klrqµν ; (C.61)

HCijklRR ” Cijkl

`

1` Sik ` Sjk ` Sil ` Sjl ´ SCikl ´ SCjkl ´ SCkij ´ SClij

˘

RR

“ N 2
1

P hc,µν
ijprq

sij

P hc,ρσ
klprq

skl
B̄pijr,klrqµνρσ . (C.62)

Strongly-ordered double-unresolved improved limits

The improved limit Si Sik is given by (k ‰ i)

Si Sik RR ”
N 2

1

2

ÿ

c‰i,k
d‰i,k,c

"

E piqcd
„

ÿ

e‰i,k,c,d

ˆ

ÿ

f‰i,k,c,d,e

Ē pkqpicdqef B̄
picd,kefq
cdef ` 2 Ē pkqpicdqed B̄

picd,kedq
cded

˙

` 2
ÿ

e‰i,k,c,d

Ē pkqpidcqed B̄
pidc,kedq
cded ` 2 Ē pkqpicdqcd

´

B̄
picd,kcdq
cdcd ` CA B̄

picd,kcdq
cd

¯



´ 2CA

”

E piqkc Ē
pkqpickq
cd B̄

pick,kcdq
cd ` E piqkd Ē

pkqpikdq
cd B̄

pikd,kcdq
cd

ı

*

. (C.63)

For Si SCikl and Si Sik SCikl we have (k ‰ i, l ‰ i, k, and r “ rikl ‰ i, k, l)

Si SCiklRR ” ´N 2
1

ÿ

c‰i,k,l

#

ÿ

d‰i,k,l,c

E piqcd
P̄
picdqµν
klprq

s̄
picdq
kl

B̄
picd,klrq
µν,cd (C.64)

`

«

E piqkc
P̄
pikcqµν
klprq

2 s̄
pikcq
kl

´

ρpCqkl B̄
pikc,lrkq
µν,rklsc `B̄pikc,lrkqµν,rklsc f̃

qq̄
kl

¯

` pk Ø lq

ff

`

«

E piqkc
P̄
pickqµν
klprq

2 s̄
pickq
kl

´

ρpCqkl B̄
pick,lrkq
µν,rklsc `B̄pick,lrkqµν,rklsc f̃

qq̄
kl

¯

` pk Ø lq

ff+

,
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Si Sik SCiklRR ” Si Sik SCilk RR

” ´N 2
1

ÿ

c‰i,k,l

„

2Cfl
ÿ

d‰i,k,l,c

E piqcd Ē pkqpicdqlr B̄
picd,klrq
cd (C.65)

`CA E piqkc
´

Ē pkqpikcqlr B̄
pikc,lrkq
lc ` Ē pkqpickqlr B̄

pick,lrkq
lc

¯

`p2Cfl´CAq E
piq
lc

´

Ē pkqpilcqlr B̄
pilc,krlq
lc ` Ē pkqpiclqlr B̄

picl,krlq
lc

¯



.

Combining the previous definitions we have (j ‰ i, k ‰ i, j, and r “ rijk ‰ i, j, k)

Si SHCijk RR ” Si SCijk

`

1´ Sij ´ Sik
˘

RR (C.66)

” ´N 2
1

ÿ

c‰i,j,k

#

ÿ

d‰i,j,k,c

E piqcd
P̄
picdqhc,µν
jkprq

s̄
picdq
jk

B̄
picd,jkrq
µν,cd

`

«

E piqjc
P̄
pijcqhc,µν
jkprq

2 s̄
pijcq
jk

´

ρpCqjk B̄
pijc,krjq
µν,rjksc `B̄pijc,krjqµν,rjksc f̃

qq̄
jk

¯

` pj Ø kq

ff

`

«

E piqjc
P̄
picjqhc,µν
jkprq

2 s̄
picjq
jk

´

ρpCqjk B̄
picj,krjq
µν,rjksc `B̄picj,krjqµν,rjksc f̃

qq̄
jk

¯

` pj Ø kq

ff+

.

For the strongly-ordered double-unresolved limits involving Si Cijk, we have (j ‰ i, k ‰
i, j, r “ rijk ‰ i, j, k)

Si Cijkp1´SCijkqRR ”

N 2
1

Cfrjks
2

#

ρpCqjk E piqjr

«

P̄
pijrqµν
jkprq

s̄
pijrq
jk

`

B̄pijr,jkrqµν ´B̄pijr,krjqµν

˘

`
P̄
pirjqµν
jkprq

s̄
pirjq
jk

`

B̄pirj,jkrqµν ´B̄pirj,krjqµν

˘

ff

` ρpCqkj E
piq
kr

«

P̄
pikrqµν
jkprq

s̄
pikrq
jk

`

B̄pikr,jkrqµν ´B̄pikr,jrkqµν

˘

`
P̄
pirkqµν
jkprq

s̄
pirkq
jk

`

B̄pirk,jkrqµν ´B̄pirk,jrkqµν

˘

ff

´ ρpCq
rjks E

piq
jk

«

P̄
pijkqµν
jkprq

s̄
pijkq
jk

B̄pijk,jkrqµν `
P̄
pikjqµν
jkprq

s̄
pikjq
jk

B̄pikj,jkrqµν

ff+

, (C.67)

Si Sij Cijkp1´SCijkqRR ” Si Sij Cikjp1´SCikjqRR

” N 2
1 Cfk

"

CA E piqjr
”

Ē pjqpijrqkr

`

B̄pijr,jkrq´B̄pijr,krjq
˘

` Ē pjqpirjqkr

`

B̄pirj,jkrq´B̄pirj,krjq
˘

ı

`p2Cfk´CAq E
piq
kr

”

Ē pjqpikrqkr

`

B̄pikr,jkrq´B̄pikr,jrkq
˘

` Ē pjqpirkqkr

`

B̄pirk,jkrq´B̄pirk,jrkq
˘

ı

`CA E piqjk
”

Ē pjqpijkqkr B̄pijk,jkrq ` Ē pjqpikjqkr B̄pikj,jkrq
ı

*

, (C.68)
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Si HC
psq

ijk RR ” Si Cijk

`

1´ Sij ´ Sik
˘`

1´ SCijk

˘

RR (C.69)

“ N 2
1

Cfrjks
2

#

ρpCqjk E piqjr

«

P̄
pijrqhc,µν
jkprq

s̄
pijrq
jk

`

B̄pijr,jkrqµν ´B̄pijr,krjqµν

˘

`
P̄
pirjqhc,µν
jkprq

s̄
pirjq
jk

`

B̄pirj,jkrqµν ´B̄pirj,krjqµν

˘

ff

` ρpCqkj E
piq
kr

«

P̄
pikrqhc,µν
jkprq

s̄
pikrq
jk

`

B̄pikr,jkrqµν ´B̄pikr,jrkqµν

˘

`
P̄
pirkqhc,µν
jkprq

s̄
pirkq
jk

`

B̄pirk,jkrqµν ´B̄pirk,jrkqµν

˘

ff

´ ρpCq
rjks E

piq
jk

«

P̄
pijkqhc,µν
jkprq

s̄
pijkq
jk

B̄pijk,jkrqµν `
P̄
pikjqhc,µν
jkprq

s̄
pikjq
jk

B̄pikj,jkrqµν

ff+

.

For Cij SCkij and Si Cij SCkij we have (j ‰ i, k ‰ i, j, r “ rijkl ‰ i, j, k, l, r1 “ rijk ‰

i, j, k in sector Wijkl )

Cij SCkij RR ” ´N 2
1

P µν
ijprq

sij

"

ÿ

c‰i,j,k,r1

„

ÿ

d‰i,j,k,r1,c

Ē pkqpijrqcd B̄
pijr,kcdq
µν,cd ` 2 Ē pkqpijrqcr1 B̄

pijr,kcr1q
µν,cr1



` 2
ÿ

c‰i,j,k

Ē pkqpijrqjc B̄
pijr,kcjq
µν,jc

*

, (C.70)

Si Cij SCkij RR ” Si Cji SCkjiRR

” ´ 2N 2
1 Cfj E piqjr

"

ÿ

c‰i,j,k,r1

„

ÿ

d‰i,j,k,r1,c

Ē pkqpijrqcd B̄
pijr,kcdq
cd ` 2 Ē pkqpijrqcr1 B̄

pijr,kcr1q
cr1



` 2
ÿ

c‰i,j,k

Ē pkqpijrqjc B̄
pijr,kcjq
jc



, (C.71)

HCij SCkij RR ” Cij

`

1´ Si ´ Sj
˘

SCkij RR

“ ´N 2
1

P hc,µν
ijprq

sij

"

ÿ

c‰i,j,k,r1

„

ÿ

d‰i,j,k,r1,c

Ē pkqpijrqcd B̄
pijr,kcdq
µν,cd ` 2 Ē pkqpijrqcr1 B̄

pijr,kcr1q
µν,cr1



` 2
ÿ

c‰i,j,k

Ē pkqpijrqjc B̄
pijr,kcjq
µν,jc

*

. (C.72)

The improved limits Cij Sij RR, Si Cij Sij RR and their combination HCij Sij RR appear
in the sector topology Wijjk only, and are given by (j ‰ i and r “ rijk ‰ i, j, k)

Cij SijRR ” ´N 2
1

ÿ

c‰i,j
d‰i,j,c

#

Pijprq
sij

Ē pjqpijrqcd `
Qµν
ijprq

sij

«

k̄
pijrq
c,µ

s̄
pijrq
jc

´
k̄
pijrq
d,µ

s̄
pijrq
jd

ff«

k̄
pijrq
c,ν

s̄
pijrq
jc

´
k̄
pijrq
d,ν

s̄
pijrq
jd

ff+

B̄
pijr,jcdq
cd ,

(C.73)

Si Cij Sij RR ” Si Cji SjiRR ” ´ 2N 2
1 Cfj E piqjr

ÿ

c‰i,j
d‰i,j,c

Ē pjqpijrqcd B̄
pijr,jcdq
cd , (C.74)
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HCij Sij RR ” Cij

`

1´ Si ´ Sj
˘

SijRR “ (C.75)

´N 2
1

ÿ

c‰i,j
d‰i,j,c

«

P hc
ijprq

sij
Ē pjqpijrqcd `

Qµν
ijprq

sij

˜

k̄
pijrq
c,µ

s̄
pijrq
jc

´
k̄
pijrq
d,µ

s̄
pijrq
jd

¸˜

k̄
pijrq
c,ν

s̄
pijrq
jc

´
k̄
pijrq
d,ν

s̄
pijrq
jd

¸ff

B̄
pijr,jcdq
cd .

For the strongly-ordered double-unresolved limits involving Cij Cijk, we have (j ‰ i,
k ‰ i, j, r “ rijk ‰ i, j, k)

Cij Cijk RR ” N 2
1

#

Pijprq
sij

P̄
pijrqµν
jkprq

s̄
pijrq
jk

B̄pijr,jkrqµν ` 2CA Ē pkqpijrqjr

Qµν
ijprq

sij
B̄pijr,jkrqµν (C.76)

´ 2Cfk Ē
pjqpijrq
kr

Qµν
ijprq

sij

˜̄k
pijrq
µ

˜̄k
pijrq
ν

`˜̄kpijrq
˘2

B̄pijr,jkrq

+

,

Si Cij Cijk RR ” Si Cji Cjik RR ” 2N 2
1 Cfj E piqjr

P̄
pijrqµν
jkprq

s̄
pijrq
jk

B̄pijr,jkrqµν , (C.77)

Cij Sij CijkRR ” 2N 2
1 Cfk Ē

pjqpijrq
kr

#

Pijprq
sij

´
Qµν
ijprq

sij

˜̄k
pijrq
µ

˜̄k
pijrq
ν

`˜̄kpijrq
˘2

+

B̄pijr,jkrq , (C.78)

Si Cij Sij Cijk RR ” Si Cji Sji Cjik RR ” 4N 2
1 Cfj Cfk E

piq
jr Ē pjqpijrqkr B̄pijr,jkrq , (C.79)

Cij Cijk SCkij RR ” 2N 2
1 Cfrijs Ē

pkqpijrq
jr

P µν
ijprq

sij
B̄pijr,krjqµν , (C.80)

Si Cij Cijk SCkij RR ” Si Cji Cjik SCkjiRR ” 4N 2
1 C

2
fj
E piqjr Ē pkqpijrqjr B̄pijr,krjq , (C.81)

HCij HC
pcq

ijk RRZijk ” Cij

`

1´ Si ´ Sj
˘

Cijk

`

1´ Sij ´ SCkij

˘

RR (C.82)

“ N 2
1

P hc
ijprq

sij

P̄
pijrqhc,µν
jkprq

s̄
pijrq
jk

B̄pijr,jkrqµν

´ 2N 2
1 Cfrijs Ē

pkqpijrq
jr

P hc,µν
ijprq

sij

´

B̄pijr,krjqµν ´ B̄pijr,kjrqµν

¯

.
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Finally the limits involving Cij Cijkl are given by (j ‰ i, k ‰ i, j, l ‰ i, j, k and r “

rijkl ‰ i, j, k, l)

Cij CijklRR ” N 2
1

P µν
ijprq

sij

P̄
pijrqρσ
klprq

s̄
pijrq
kl

B̄pijr,klrqµνρσ , (C.83)

Si Cij CijklRR ” Si Cji CjiklRR ” 2N 2
1 Cfj E piqjr

P̄
pijrqρσ
klprq

s̄
pijrq
kl

B̄pijr,klrqρσ , (C.84)

Cij SCkij CijklRR ” Cij SCkij Cijlk RR ” 2N 2
1 Cfl

P µν
ijprq

sij
Ē pkqpijrqlr B̄pijr,klrqµν ,(C.85)

Si Cij SCkij CijklRR ” Si Cji SCkji CjiklRR ” Si Cij SCkij Cijlk RR

” Si Cji SCkji Cjilk RR

” 4N 2
1 CfjCfl E

piq
jr E pkqlr B̄pijr,klrq , (C.86)

HCij HC
pcq

ijklRR ” Cij

`

1´ Si ´ Sj
˘

Cijkl

`

1´ SCkij ´ SClij

˘

RR (C.87)

“ N 2
1

P hc,µν
ijprq

sij

P̄
pijrqhc,ρσ
klprq

s̄
pijrq
kl

B̄pijr,klrqµνρσ .

C.2.2 Improved limits of Wijjk, Wijkj, Wijkl

Single-unresolved improved limits

For the single-unresolved improved limits we have (j ‰ i, k ‰ i, l ‰ i, k and r “ rijkl ‰

i, j, k, l)

SiWijkl ” WklWpαq
s, ij , (C.88)

Cij Wijkl ” WklWpαq
c, ijprq , (C.89)

Si Cij Wijkl ” Wkl . (C.90)

Uniform double-unresolved improved limits

The double-soft improved limit is given by (j ‰ i, k ‰ i, l ‰ i, k)

SikWijkl ”
σijkl

ř

b‰i

ř

d‰i,k σibkd `
ř

b‰k

ř

d‰k,i σkbid
. (C.91)
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The soft-collinear improved limits SCikl and SCkij as well as their double-soft versions
Sik SCikl and Sik SCkij read (j ‰ i, k ‰ i, l ‰ i, k)

SCiklWijkl ”
σ
pαq
ij

σkl
wkr

ř

b‰i σ
pαq
ib

´

σkl
wkr
`

σlk
wlr

¯

`
σ
pαq
kl

wkr

ř

d‰i,k σid `
σ
pαq
lk

wlr

ř

d‰i,l σid

, r “ rikl , (C.92)

SCkij Wijkl ”

σ
pαq
ij

wir
σkl

ř

b‰k σ
pαq
kb

´

σij
wir
`

σji
wjr

¯

`
σ
pαq
ij

wir

ř

d‰i,k σkd `
σ
pαq
ji

wjr

ř

d‰k,j σkd

, r “ rijk,(C.93)

Sik SCiklWijkl ”
σ
pαq
ij σkl

ř

b‰i σ
pαq
ib σkl ` σ

pαq
kl

ř

d‰i,k σid
, r “ rikl , (C.94)

Sik SCkij Wijkl ”
σ
pαq
ij σkl

ř

b‰k σ
pαq
kb σij ` σ

pαq
ij

ř

d‰i,k σkd
, r “ rijk . (C.95)

For the uniform double-unresolved limits involving Cijk, we have (j ‰ i, k ‰ i, j and
r “ rijk ‰ i, j, k)

CijkWijjk ”
σ̂ijjkprq
σ̂tijkuprq

, CijkWijkj ”
σ̂ijkjprq
σ̂tijkuprq

; (C.96)

Sij CijkWijjk ”
σ̂ijjkprq

σ̂ijjkprq`σ̂ikjkprq`σ̂jiikprq`σ̂jkikprq
, (C.97)

Sik CijkWijkj ”
σ̂ijkjprq

σ̂ijkjprq ` σ̂ikkjprq ` σ̂kiijprq ` σ̂kjijprq
; (C.98)

Cijk SCijkWijjk ”

σ
pαq
ij

wαir

σjk
wjr

σ
pαq
ij `σ

pαq
ik

wαir

´

σjk
wjr
`

σkj
wkr

¯

`
σ
pαq
jk

wαjr

σik
wir
`

σ
pαq
kj

wαkr

σij
wir

, (C.99)

Cijk SCijkWijkj ”

σ
pαq
ij

wαir

σkj
wkr

σ
pαq
ij `σ

pαq
ik

wαir

´

σjk
wjr
`

σkj
wkr

¯

`
σ
pαq
jk

wαjr

σik
wir
`

σ
pαq
kj

wαkr

σij
wir

, (C.100)

Cijk SCkij Wijkj ”

σ
pαq
ij

wαir

σkj
wkr

σ
pαq
kj `σ

pαq
ki

wαkr

´

σji
wjr
`

σij
wir

¯

`
σ
pαq
ji

wαjr

σki
wkr
`

σ
pαq
ij

wαir

σkj
wkr

; (C.101)
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Sij Cijk SCijkWijjk ”

σ
pαq
ij

wαir

σjk
wjr

σ
pαq
ij `σ

pαq
ik

wαir

σjk
wjr
`

σ
pαq
jk

wαjr

σik
wir

, (C.102)

Sik Cijk SCijkWijkj ”

σ
pαq
ij

wαir

σkj
wkr

σ
pαq
ij `σ

pαq
ik

wαir

σkj
wkr
`

σ
pαq
kj

wαkr

σij
wir

, (C.103)

Sik Cijk SCkij Wijkj ”

σ
pαq
ij

wαir

σkj
wkr

σ
pαq
kj `σ

pαq
ki

wαkr

σij
wir
`

σ
pαq
ij

wαir

σkj
wkr

. (C.104)

Finally the limits involving Cijkl are given by (j ‰ i, k ‰ i, j, l ‰ i, j, k and r “ rijkl ‰

i, j, k, l)

CijklWijkl ”

σijkl
wirwkr

σijkl̀ σklij
wirwkr

`
σijlk̀ σlkij
wirwlr

`
σjikl̀ σklji
wjrwkr

`
σjilk̀ σlkji
wjrwlr

, (C.105)

Sik CijklWijkl ”
σ
pαq
ij σkl

σ
pαq
ij σkl ` σ

pαq
kl σij

, (C.106)

SCikl CijklWijkl ”
σ
pαq
ij

σkl
wkr

σ
pαq
ij

´

σkl
wkr
`

σlk
wlr

¯

`

ˆ

σ
pαq
kl

wkr
`
σ
pαq
lk

wlr

˙

σij

, (C.107)

SCkij CijklWijkl ”

σ
pαq
ij

wir
σkl

σ
pαq
kl

´

σij
wir
`

σji
wjr

¯

`

ˆ

σ
pαq
ij

wir
`
σ
pαq
ji

wjr

˙

σkl

. (C.108)

Strongly-ordered double-unresolved improved limits

The improved limit Si Sik is given by (j ‰ i, k ‰ i, l ‰ i, k)

Si SikWijkl ” Ws, klWpαq
s, ij . (C.109)

For Si SCikl and Si Sik SCikl we have (j ‰ i, k ‰ i, l ‰ i, k, and r “ rikl ‰ i, k, l)

Si SCiklWijkl ” Wc, klprqWpαq
s, ij , (C.110)

Si Sik SCiklWijkl ” Wpαq
s, ij . (C.111)
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For the strongly-ordered double-unresolved limits involving Si Cijk, we have (j ‰ i, k ‰
i, j, r “ rijk ‰ i, j, k and τ “ jk, kj)

Si Cijkp1´SCijkqWijτ ” Wc,τprq

σ
pαq
ij

σ
pαq
ij `σ

pαq
ik

, (C.112)

Si Sij Cijkp1´SCijkqWijjk ”
σ
pαq
ij

σ
pαq
ij `σ

pαq
ik

, (C.113)

Si Sik Cijkp1´SCijkqWijkj ”
σ
pαq
ij

σ
pαq
ij `σ

pαq
ik

. (C.114)

For Cij SCkij and Si Cij SCkij we have (j ‰ i, k ‰ i, l ‰ i, k, and r “ rijkl ‰ i, j, k, l )

Cij SCkij Wijkl ” Wpαq
c, ijprqWs, kl ; (C.115)

Si Cij SCkij Wijkl ” Ws, kl . (C.116)

The improved limits Cij Sij RRWijjk and Si Cij Sij RRWijjk read (j ‰ i, k ‰ i, j and
r “ rijk ‰ i, j, k)

Cij Sij Wijjk ” Wpαq
c, ijprqWs, jk ; (C.117)

Si Cij Sij Wijjk ” Ws, jk . (C.118)

For the strongly-ordered double-unresolved limits involving Cij Cijk, we have (j ‰ i,
k ‰ i, j, r “ rijk ‰ i, j, k, and τ “ jk, kj)

Cij CijkWijτ ” Wpαq
c, ijprqWc, τprq ; (C.119)

Si Cij CijkWijτ ” Wc, τprq ; (C.120)

Cij Sij CijkWijjk ” Wpαq
c, ijprq ; (C.121)

Si Cij Sij CijkWijjk ” 1 ; (C.122)

Cij Cijk SCkij Wijkj ” Wpαq
c, ijprq ; (C.123)

Si Cij Cijk SCkij Wijkj ” 1 . (C.124)
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Finally the limits involving Cij Cijkl are given by (j ‰ i, k ‰ i, j, l ‰ i, j, k and r “

rijkl ‰ i, j, k, l)

Cij CijklWijkl ” Wpαq
c, ijprqWc, klprq ; (C.125)

Si Cij CijklWijkl ” Wc, klprq ; (C.126)

Cij SCkij CijklWijkl ” Wpαq
c, ijprq ; (C.127)

Si Cij SCkij CijklWijkl ” 1 . (C.128)

C.2.3 Improved limits of Zijk, Zijkl

Single-unresolved improved limits

For the single-unresolved improved limits in K p1q
tijku we have (j ‰ i, k ‰ i, j)

SiZijk “ Z̄jk

´

Zpαqs, ij ` Zpαqs, ik

¯

, HCij Zijk “ Z̄jk ; (C.129)

while for K p1q
tijklu we have (j ‰ i, k ‰ i, j)

SiZijkl “ Z̄klZpαqs, ij , HCij Zijkl “ Z̄kl . (C.130)

Uniform double-unresolved improved limits

For K p2q
tijku we have (j ‰ i, k ‰ i, j, and r “ rijk ‰ i, j, k)

Sik Zijk “
σikkj ` σijkj ` σkiij ` σkjij

ř

b‰i

ř

d‰i,k σibkd `
ř

b‰k

ř

d‰k,i σkbid
, (C.131)

SCijk Zijk “

´

σ
pαq
ij ` σ

pαq
ik

¯´

σjk
wjr
`

σkj
wkr

¯

`
σ
pαq
jk

wjr
σik `

σ
pαq
kj

wkr
σij

ř

b‰i σ
pαq
ib

´

σjk
wjr
`

σkj
wkr

¯

`
σ
pαq
jk

wjr

ř

d‰i,j σid `
σ
pαq
kj

wkr

ř

d‰i,k σid

,

Sij SCijk Zijk “

´

σ
pαq
ij ` σ

pαq
ik

¯

σjk ` σ
pαq
jk σik

ř

b‰i σ
pαq
ib σjk ` σ

pαq
jk

ř

d‰i,j σid
,

HCijk Zijk “ 1 ,

Cijk SHCijk Zijk “ 1 .
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For K p2q
tijklu one has (j ‰ i, k ‰ i, j, l ‰ i, j, k, and r “ rikl ‰ i, k, l)

Sik Zijkl “
σijkl ` σklij

ř

b‰i

ř

d‰i,k σibkd `
ř

b‰k

ř

d‰k,i σkbid
, (C.132)

SCiklZijkl “

σ
pαq
ij

´

σkl
wkr
`

σlk
wlr

¯

`

ˆ

σ
pαq
kl

wkr
`

σ
pαq
lk

wlr

˙

σij

ř

b‰i σ
pαq
ib

´

σkl
wkr
`

σlk
wlr

¯

`
σ
pαq
kl

wkr

ř

d‰i,k σid `
σ
pαq
lk

wlr

ř

d‰i,l σid

,

Sik SCiklZijkl “
σ
pαq
ij σkl ` σ

pαq
kl σij

ř

b‰i σ
pαq
ib σkl ` σ

pαq
kl

ř

d‰i,k σid
,

HCijklZijkl “ 1 .

Strongly-ordered double-unresolved improved limits

For K p12q
tijku one has (j ‰ i, k ‰ i, j)

Si Sij Zijk “ Z̄s, jk

´

Zpαqs, ij ` Zpαqs, ik

¯

, (C.133)

Si SHCijk Zijk “ Zpαqs, ij ` Zpαqs, ik ,

Si HC
psq

ijk Zijk “ 1 ,

HCij Sij Zijk “ Z̄s, jk ,

HCij SCkij Zijk “ Z̄s, kj ,

HCij HC
pcq

ijk Zijk “ 1 .

For K p12q
tijklu one has (j ‰ i, k ‰ i, j, l ‰ i, j, k)

Si Sik Zijkl “ Z̄s, klZpαqs, ij , (C.134)

Si SHCiklZijkl “ Zpαqs, ij ,

HCij SCkij Zijkl “ Z̄s, kl ,

HCij HC
pcq

ijklZijkl “ 1 .
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C.3 The consistency of the double-real contribution RRsub

The finiteness of the subtracted double-real contribution RR sub in Eq. (3.33) is achieved
once the integrability of

RRWijjk ´K
p1q
ijjk ´

´

K
p2q
ijjk ´K

p12q
ijjk

¯

Ñ integrable ,

RRWijkj ´K
p1q
ijkj ´

´

K
p2q
ijkj ´K

p12q
ijkj

¯

Ñ integrable ,

RRWijkl ´K
p1q
ijkl ´

´

K
p2q
ijkl ´K

p12q
ijkl

¯

Ñ integrable , (C.135)

has been proven. In the following sections, topology by topology, we provide a detailed
list of all the relevant consistency relations that establish the locality of our singularity-
cancellation procedure. When an entry of the following lists involves a difference between
two improved limits, it implies that both contributions exhibit the same leading singular
behaviour in that particular limit. In cases where more than two improved limits are
involved in a given consistency condition, then it means that all of these limits display
the same leading singular behaviour.

C.3.1 Topology Wijjk

Let us prove that

RRWijjk ´K
p1q
ijjk ´

´

K
p2q
ijjk ´K

p12q
ijjk

¯

Ñ integrable , (C.136)

in the proper singular limits of this topology (namely the first line of Eq. (3.37)):

Si , Cij , Sij , Cijk , SCijk . (C.137)

The counterterms of this topology are

K
p1q
ijjk “

”

Si `Cij

`

1´ Si
˘

ı

RRWijjk ,

K
p2q
ijjk “

”

Sij ` SCijk

`

1´ Sij
˘

`Cijk

`

1´ Sij
˘ `

1´ SCijk

˘

ı

RRWijjk ,

K
p12q
ijjk “

”

Si

´

Sij ` SCijk

`

1´ Sij
˘

`Cijk

`

1´ Sij
˘ `

1´ SCijk

˘

¯

`Cij

`

1´ Si
˘

´

Sij `Cijk

`

1´ Sij
˘

¯ı

RRWijjk . (C.138)

The consistency of this topology is achieved through the consistency relations:
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• Limit Si

Si p1´ SiqRRWijjk Ñ integrable ,

Si Cij p1´ SiqRRWijjk Ñ integrable ,

Si Sij p1´ SiqRRWijjk Ñ integrable ,

Si Cijk p1´ SiqRRWijjk Ñ integrable ,

Si Sij Cijk p1´ SiqRRWijjk Ñ integrable ,

Si SCijk p1´ SiqRRWijjk Ñ integrable ,

Si Sij SCijk p1´ SiqRRWijjk Ñ integrable ,

Si Cijk SCijk p1´ SiqRRWijjk Ñ integrable ,

Si Sij Cijk SCijk p1´ SiqRRWijjk Ñ integrable ,

Si Cij Sij p1´ SiqRRWijjk Ñ integrable ,

Si Cij Cijk p1´ SiqRRWijjk Ñ integrable ,

Si Cij Sij Cijk p1´ SiqRRWijjk Ñ integrable ; (C.139)

• Limit Cij

Cij p1´CijqRRWijjk Ñ integrable ,

Cij Si p1´CijqRRWijjk Ñ integrable ,

Cij Sij p1´CijqRRWijjk Ñ integrable ,

Cij Cijk p1´CijqRRWijjk Ñ integrable ,

Cij Sij Cijk p1´CijqRRWijjk Ñ integrable ,

Cij SCijk p1´CijkqRRWijjk Ñ integrable ,

Cij Sij SCijk p1´CijkqRRWijjk Ñ integrable ,

Cij Si SCijk p1´CijkqRRWijjk Ñ integrable ,

Cij Si Sij SCijk p1´CijkqRRWijjk Ñ integrable ,

Cij Si Sij p1´CijqRRWijjk Ñ integrable ,

Cij Si Cijk p1´CijqRRWijjk Ñ integrable ,

Cij Si Sij Cijk p1´CijqRRWijjk Ñ integrable ; (C.140)
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• Limit Sij

Sij p1´ SijqRRWijjk Ñ integrable ,

Sij Si p1´ SijqRRWijjk Ñ integrable ,

Sij Cij p1´ SijqRRWijjk Ñ integrable ,

Sij Si Cij p1´ SijqRRWijjk Ñ integrable ,

Sij Cijk p1´ SijqRRWijjk Ñ integrable ,

Sij SCijk p1´ SijqRRWijjk Ñ integrable ,

Sij Cijk SCijk p1´ SijqRRWijjk Ñ integrable ,

Sij Si Cijk p1´ SijqRRWijjk Ñ integrable ,

Sij Si SCijk p1´ SijqRRWijjk Ñ integrable ,

Sij Si Cijk SCijk p1´ SijqRRWijjk Ñ integrable ,

Sij Cij Cijk p1´ SijqRRWijjk Ñ integrable ,

Sij Si Cij Cijk p1´ SijqRRWijjk Ñ integrable ; (C.141)

• Limit Cijk

Cijk p1´CijkqRRWijjk Ñ integrable ,

Cijk Si p1´CijkqRRWijjk Ñ integrable ,

Cijk Cij p1´CijkqRRWijjk Ñ integrable ,

Cijk Si Cij p1´CijkqRRWijjk Ñ integrable ,

Cijk Sij p1´CijkqRRWijjk Ñ integrable ,

Cijk SCijk p1´CijkqRRWijjk Ñ integrable ,

Cijk Sij SCijk p1´CijkqRRWijjk Ñ integrable ,

Cijk Si Sij p1´CijkqRRWijjk Ñ integrable ,

Cijk Si SCijk p1´CijkqRRWijjk Ñ integrable ,

Cijk Si Sij SCijk p1´CijkqRRWijjk Ñ integrable ,

Cijk Cij Sij p1´CijkqRRWijjk Ñ integrable ,

Cijk Si Cij Sij p1´CijkqRRWijjk Ñ integrable ; (C.142)
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• Limit SCijk

SCijk p1´ SCijkqRRWijjk Ñ integrable ,

SCijk Si p1´ SCijkqRRWijjk Ñ integrable ,

SCijk Cij p1´ SiqRRWijjk Ñ integrable ,

SCijk Sij p1´ SCijkqRRWijjk Ñ integrable ,

SCijk Cijk p1´ SCijkqRRWijjk Ñ integrable ,

SCijk Sij Cijk p1´ SCijkqRRWijjk Ñ integrable ,

SCijk Si Sij p1´ SCijkqRRWijjk Ñ integrable ,

SCijk Si Cijk p1´ SCijkqRRWijjk Ñ integrable ,

SCijk Si Sij Cijk p1´ SCijkqRRWijjk Ñ integrable ,

SCijk Cij Sij p1´ SiqRRWijjk Ñ integrable ,

SCijk Cij Cijk p1´ SiqRRWijjk Ñ integrable ,

SCijk Cij Sij Cijk p1´ SiqRRWijjk Ñ integrable . (C.143)

In addition to the proper singular limits of RRWijjk, the improved limits of RR have
spurious limits, which must be consistently compensated by the sector functions and/or
by other improved limits1 (see first line of Eq. (3.38)):

• Limit Cir

Cir Cij p1´ SiqRRWijjk Ñ integrable ,

Cir Cijk p1´ SiqRRWijjk Ñ integrable ,

Cir Sij Cijk p1´ SiqRRWijjk Ñ integrable ,

Cir Cijk SCijk p1´ SiqRRWijjk Ñ integrable ,

Cir Sij Cijk SCijk p1´ SiqRRWijjk Ñ integrable ,

Cir Cij Sij p1´ SiqRRWijjk Ñ integrable ,

Cir Cij Cijk p1´ SiqRRWijjk Ñ integrable ,

Cir Cij Sij Cijk p1´ SiqRRWijjk Ñ integrable ; (C.144)
1In the list we omit the other singular limits which are trivially compensated by the sector functions such as

Ckr, Cikr, and Cjkr.
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• Limit Cjr

Cjr SCijk p1´ SijqRRWijjk Ñ integrable ,

Cjr Si Cijk p1´ SijqRRWijjk Ñ integrable ,

Cjr Si SCijk p1´ SijqRRWijjk Ñ integrable ,

Cjr Si Cijk SCijk p1´ SijqRRWijjk Ñ integrable ; (C.145)

• Limit Cijr

Cijr Cijk p1´ SijqRRWijjk Ñ integrable ,

Cijr Cijk SCijk p1´ SijqRRWijjk Ñ integrable ,

Cijr Si Cijk p1´ SijqRRWijjk Ñ integrable ,

Cijr Si Cijk SCijk p1´ SijqRRWijjk Ñ integrable ,

Cijr Cij Cijk p1´ SijqRRWijjk Ñ integrable ,

Cijr Si Cij Cijk p1´ SijqRRWijjk Ñ integrable . (C.146)

To complete our analysis, we must also examine the consistency relations for secondary
limits that are not suppressed by sector functions when taken in specific limits. As
specified in Eq. (3.39), we verify

• Limit Sj

Sj Sip1´ SijqRRWijjk Ñ integrable ,

Sj Si Cijkp1´ Sijqp1´ SCijkqRRWijjk Ñ integrable ,

Sj Si SCijkp1´ SijqRRWijjk Ñ integrable ; (C.147)

• Limit Cjk

Cjk Sip1´ SCijkqRRWijjk Ñ integrable ,

Cjk Si Sijp1´ SCijkqRRWijjk Ñ integrable ,

Cjk Si Cijkp1´ SCijkqRRWijjk Ñ integrable ,

Cjk Si Sij Cijkp1´ SCijkqRRWijjk Ñ integrable . (C.148)

C.3.2 Topology Wijkj

Let us prove that

RRWijkj ´K
p1q
ijkj ´

´

K
p2q
ijkj ´K

p12q
ijkj

¯

Ñ integrable , (C.149)
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in the proper singular limits of this topology (namely the second line of Eq. (3.37)):

Si , Cij , Sik , Cijk , SCijk , SCkij . (C.150)

The counterterms of this topology are

K
p1q
ijkj “

”

Si `Cij

`

1´ Si
˘

ı

RRWijkj ,

K
p2q
ijkj “

”

Sik`
`

SCijk ` SCkij

˘`

1´ Sik
˘

`Cijk

`

1´ Sik
˘ `

1´ SCijk ´ SCkij

˘

ı

RRWijkj ,

K
p12q
ijkj “

”

Si

´

Sik ` SCijk

`

1´ Sik
˘

`Cijk

`

1´ Sik
˘ `

1´ SCijk

˘

¯

`Cij

`

1´ Si
˘

´

SCkij `Cijk

`

1´ SCkij

˘

¯ı

RRWijkj . (C.151)

The consistency of this topology is achieved through the consistency:

• Limit Si

Si p1´ SiqRRWijkj Ñ integrable ,

Si Cij p1´ SiqRRWijkj Ñ integrable ,

Si Sik p1´ SiqRRWijkj Ñ integrable ,

Si Cijk p1´ SiqRRWijkj Ñ integrable ,

Si Sik Cijk p1´ SiqRRWijkj Ñ integrable ,

Si SCijk p1´ SiqRRWijkj Ñ integrable ,

Si Sik SCijk p1´ SiqRRWijkj Ñ integrable ,

Si Cijk SCijk p1´ SiqRRWijkj Ñ integrable ,

Si Sik Cijk SCijk p1´ SiqRRWijkj Ñ integrable ,

Si SCkij p1´ SikqRRWijkj Ñ integrable ,

Si Cijk SCkij p1´ SikqRRWijkj Ñ integrable ,

Si Cij Cijk p1´ SiqRRWijkj Ñ integrable ,

Si Cij SCijk p1´ SiqRRWijkj Ñ integrable ,

Si Cij Cijk SCijk p1´ SiqRRWijkj Ñ integrable ; (C.152)
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• Limit Cij

Cij p1´CijqRRWijkj Ñ integrable ,

Cij Si p1´CijqRRWijkj Ñ integrable ,

Cij Sik p1´ SiqRRWijkj Ñ integrable ,

Cij Cijk p1´CijqRRWijkj Ñ integrable ,

Cij Sik Cijk p1´ SiqRRWijkj Ñ integrable ,

Cij SCijk p1´CijkqRRWijkj Ñ integrable ,

Cij Sik SCijk p1´CijkqRRWijkj Ñ integrable ,

Cij SCkij p1´CijqRRWijkj Ñ integrable ,

Cij SCkij pSik ´ Si CijqRRWijkj Ñ integrable ,

Cij Cijk SCkij p1´CijqRRWijkj Ñ integrable ,

Cij Cijk SCkij pSik ´ Si CijqRRWijkj Ñ integrable ,

Cij Si Cijk p1´CijqRRWijkj Ñ integrable ,

Cij Si SCijk p1´CijkqRRWijkj Ñ integrable ,

Cij Si Sik SCijk p1´CijkqRRWijkj Ñ integrable ; (C.153)

• Limit Sik

Sik p1´ SikqRRWijkj Ñ integrable ,

Sik Si p1´ SikqRRWijkj Ñ integrable ,

Sik Cij p1´ Siq p1´ SCkijqRRWijkj Ñ integrable ,

Sik Cijk p1´ SikqRRWijkj Ñ integrable ,

Sik SCijk p1´ SikqRRWijkj Ñ integrable ,

Sik Cijk SCijk p1´ SikqRRWijkj Ñ integrable ,

Sik SCkij p1´ SikqRRWijkj Ñ integrable ,

Sik Cijk SCkij p1´ SikqRRWijkj Ñ integrable ,

Sik Si Cijk p1´ SikqRRWijkj Ñ integrable ,

Sik Si SCijk p1´ SikqRRWijkj Ñ integrable ,

Sik Si Cijk SCijk p1´ SikqRRWijkj Ñ integrable ,

Sik Cij Cijk p1´ Siq p1´ SCkijqRRWijkj Ñ integrable ; (C.154)
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• Limit Cijk

Cijk p1´CijkqRRWijkj Ñ integrable ,

Cijk Si p1´CijkqRRWijkj Ñ integrable ,

Cijk Cij p1´CijkqRRWijkj Ñ integrable ,

Cijk Si Cij p1´CijkqRRWijkj Ñ integrable ,

Cijk Sik p1´CijkqRRWijkj Ñ integrable ,

Cijk SCijk p1´CijkqRRWijkj Ñ integrable ,

Cijk Sik SCijk p1´CijkqRRWijkj Ñ integrable ,

Cijk SCkij p1´CijkqRRWijkj Ñ integrable ,

Cijk Sik SCkij p1´CijkqRRWijkj Ñ integrable ,

Cijk Si Sik p1´CijkqRRWijkj Ñ integrable ,

Cijk Si SCijk p1´CijkqRRWijkj Ñ integrable ,

Cijk Si Sik SCijk p1´CijkqRRWijkj Ñ integrable ,

Cijk Cij SCkij p1´CijkqRRWijkj Ñ integrable ,

Cijk Si Cij SCkij p1´CijkqRRWijkj Ñ integrable ; (C.155)

• Limit SCijk

SCijk p1´ SCijkqRRWijkj Ñ integrable ,

SCijk Si p1´ SCijkqRRWijkj Ñ integrable ,

SCijk Cij p1´ Siq p1´CijkqRRWijkj Ñ integrable ,

SCijk Sik p1´ SCijkqRRWijkj Ñ integrable ,

SCijk Cijk p1´ SCijkqRRWijkj Ñ integrable ,

SCijk Sik Cijk p1´ SCijkqRRWijkj Ñ integrable ,

SCijk SCkij p1´ SikqRRWijkj Ñ integrable ,

SCijk Cijk SCkij p1´ SikqRRWijkj Ñ integrable ,

SCijk Si Sik p1´ SCijkqRRWijkj Ñ integrable ,

SCijk Si Cijk p1´ SCijkqRRWijkj Ñ integrable ,

SCijk Si Sik Cijk p1´ SCijkqRRWijkj Ñ integrable ,

SCijk Cij SCkij p1´ Siq p1´CijkqRRWijkj Ñ integrable ; (C.156)
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• Limit SCkij

SCkij p1´ SCkijq p1´CijqRRWijkj Ñ integrable ,

SCkij Si p1´ SikqRRWijkj Ñ integrable ,

SCkij pSik ´ Si Cijq p1´ SCkijqRRWijkj Ñ integrable ,

SCkij Cijk p1´ SCkijqRRWijkj Ñ integrable ,

SCkij Sik Cijk p1´ SCkijqRRWijkj Ñ integrable ,

SCkij SCijk p1´ Siq p1´ Sikq p1´CijkqRRWijkj Ñ integrable ,

SCkij Si Cijk p1´ SikqRRWijkj Ñ integrable ,

SCkij Cij Cijk p1´ SCkijqRRWijkj Ñ integrable ,

SCkij Si Cij Cijk p1´ SCkijqRRWijkj Ñ integrable . (C.157)

In addition to the proper singular limits of RRWijkj, the improved limits of RR have
spurious limits, which must be consistently compensated by the sector functions and/or
by other improved limits2 (see second line of Eq. (3.38)):

• Limit Cir

Cir Cij p1´ SiqRRWijkj Ñ integrable ,

Cir Cijk p1´ SiqRRWijkj Ñ integrable ,

Cir Sik Cijk p1´ SiqRRWijkj Ñ integrable ,

Cir Cijk SCijk p1´ SiqRRWijkj Ñ integrable ,

Cir Sik Cijk SCijk p1´ SiqRRWijkj Ñ integrable ,

Cir SCkij p1´ SikqRRWijkj Ñ integrable ,

Cir Cijk SCkij p1´ SikqRRWijkj Ñ integrable ,

Cir Cij Cijk p1´ SiqRRWijkj Ñ integrable ,

Cir Cij SCkij p1´ SiqRRWijkj Ñ integrable ,

Cir Cij Cijk SCkij p1´ SiqRRWijkj Ñ integrable ; (C.158)
2In the list we omit the other singular limits which are trivially compensated by the sector functions such as

Cjr, Cijr, and Cjkr.
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• Limit Ckr

Ckr SCijk p1´ SikqRRWijkj Ñ integrable ,

Ckr Si Cijk p1´ SikqRRWijkj Ñ integrable ,

Ckr Si SCijk p1´ SikqRRWijkj Ñ integrable ,

Ckr Si Cijk SCijk p1´ SikqRRWijkj Ñ integrable ,

Ckr Cij Cijk p1´ SCkijqRRWijkj Ñ integrable ,

Ckr Si Cij Cijk p1´ SCkijqRRWijkj Ñ integrable ; (C.159)

• Limit Cikr

Cikr Cijk p1´ SikqRRWijkj Ñ integrable ,

Cikr Cijk SCijk p1´ SikqRRWijkj Ñ integrable ,

Cikr Cijk SCkij p1´ SikqRRWijkj Ñ integrable ,

Cikr Cij Cijk p1´ SCkijqRRWijkj Ñ integrable ,

Cikr Si Cij Cijk p1´ SCkijqRRWijkj Ñ integrable . (C.160)

To complete our analysis, we must also examine the consistency relations for secondary
limits that are not suppressed by sector functions when taken in specific limits. As
specified in Eq. (3.39), we verify

• Limit Sk

Sk Sip1´ SikqRRWijkj Ñ integrable ,

Sk Cijp1´ SCkijqRRWijkj Ñ integrable ,

Sk Si Cijp1´ SCkijqRRWijkj Ñ integrable ,

Sk Si Cijkp1´ Sikqp1´ SCijkqRRWijkj Ñ integrable ,

Sk Si SCijkp1´ SikqRRWijkj Ñ integrable ,

Sk Cij Cijkp1´ SCkijqRRWijkj Ñ integrable ,

Sk Si Cij Cijkp1´ SCkijqRRWijkj Ñ integrable ; (C.161)

• Limit Cjk

Cjk Sip1´ SCijkqRRWijkj Ñ integrable ,

Cjk Si Sikp1´ SCijkqRRWijkj Ñ integrable ,

Cjk Si Cijkp1´ SCijkqRRWijkj Ñ integrable ,

Cjk Si Sik Cijkp1´ SCijkqRRWijkj Ñ integrable . (C.162)
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C.3.3 Topology Wijkl

Let us prove that

RRWijkl ´K
p1q
ijkl ´

´

K
p2q
ijkl ´K

p12q
ijkl

¯

Ñ integrable , (C.163)

in the proper singular limits of this topology (namely the third line of Eq. (3.37)):

Si , Cij , Sik , SCikl , SCkij , Cijkl . (C.164)

The counterterms of this topology are

K
p1q
ijkl “

”

Si `Cij

`

1´ Si
˘

ı

RRWijkl ,

K
p2q
ijkl “

”

Sik `
`

SCikl ` SCkij

˘ `

1´ Sik
˘

`Cijkl

`

1` Sik ´ SCikl ´ SCkij

˘

ı

RRWijkl ,

K
p12q
ijkl “

”

Si

´

Sik ` SCikl

`

1´ Sik
˘

¯

`Cij

`

1´ Si
˘

´

SCkij `Cijkl

`

1´ SCkij

˘

¯ı

RRWijkl . (C.165)

The consistency of this topology is achieved through the consistency:

• Limit Si

Si p1´ SiqRRWijkl Ñ integrable ,

Si Cij p1´ SiqRRWijkl Ñ integrable ,

Si Sik p1´ SiqRRWijkl Ñ integrable ,

Si SCikl p1´ SiqRRWijkl Ñ integrable ,

Si SCkij p1´ SikqRRWijkl Ñ integrable ,

Si Sik SCikl p1´ SiqRRWijkl Ñ integrable ,

Si Cijkl p1´ SCiklqRRWijkl Ñ integrable ,

Si Cijkl pSik ´ SCkijqRRWijkl Ñ integrable ,

Si Cij SCkij p1´ SiqRRWijkl Ñ integrable ,

Si Cij Cijkl p1´ SiqRRWijkl Ñ integrable ,

Si Cij Cijkl SCijk p1´ SiqRRWijkl Ñ integrable ; (C.166)
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• Limit Cij

Cij p1´CijqRRWijkl Ñ integrable ,

Cij Si p1´CijqRRWijkl Ñ integrable ,

Cij Sik p1´ SiqRRWijkl Ñ integrable ,

Cij SCikl p1´ SiqRRWijkl Ñ integrable ,

Cij SCkij p1´CijqRRWijkl Ñ integrable ,

Cij Sik SCikl p1´ SiqRRWijkl Ñ integrable ,

Cij SCkij pSik ´ Si CijqRRWijkl Ñ integrable ,

Cij Cijkl p1´CijqRRWijkl Ñ integrable ,

Cij Cijkl pSik ´ Si Cij SCkijqRRWijkl Ñ integrable ,

Cij Cijkl pSCikl ´ Si CijqRRWijkl Ñ integrable ,

Cij SCkij Cijkl p1´CijqRRWijkl Ñ integrable ; (C.167)

• Limit Sik

Sik p1´ SikqRRWijkl Ñ integrable ,

Sik Si p1´ SikqRRWijkl Ñ integrable ,

Sik Cij p1´ Siq p1´ SCkijqRRWijkl Ñ integrable ,

Sik SCikl p1´ SikqRRWijkl Ñ integrable ,

Sik SCkij p1´ SikqRRWijkl Ñ integrable ,

Sik Cijkl

”

p1´ SCkijq

´

1´Cij p1´ Siq
¯

` Sik ´ SCikl

ı

RRWijkl Ñ integrable ,

Sik Si SCikl p1´ SikqRRWijkl Ñ integrable ;

(C.168)

• Limit SCkij

SCkij p1´ SCkijq p1´CijqRRWijkl Ñ integrable ,

SCkij Si p1´ SikqRRWijkl Ñ integrable ,

SCkij pSik ´ Si Cijq p1´ SCkijqRRWijkl Ñ integrable ,

SCkij SCikl p1´ SikqRRWijkl Ñ integrable ,

SCkij Cijkl p1´ SCkijq p1´CijqRRWijkl Ñ integrable ,

SCkij Cijkl

”

Sik ´ SCikl ` Si Cij p1´ SCkijq

ı

RRWijkl Ñ integrable ,

SCkij Si SCikl p1´ SikqRRWijkl Ñ integrable ; (C.169)
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• Limit SCikl

SCikl p1´ SCiklq p1´ SiqRRWijkl Ñ integrable ,

SCikl

”

Cij p1´ Siq p1´Cijklq `Cijkl p1´ SCiklq

ı

RRWijkl Ñ integrable ,

SCikl Sik p1´ SCiklq p1´ SiqRRWijkl Ñ integrable ,

SCikl SCkij p1´ SikqRRWijkl Ñ integrable ,

SCikl

”

Cijkl pSik ´ SCkijq ´Cij SCkij p1´ Siq p1´Cijklq

ı

RRWijkl Ñ integrable ;

(C.170)

• Limit Cijkl

Cijkl p1´Cijklq p1´CijqRRWijkl Ñ integrable ,

Cijkl Si p1´ SCiklqRRWijkl Ñ integrable ,

Cijkl pSi Cij ´ SCiklq p1´CijklqRRWijkl Ñ integrable ,

Cijkl

”

Sik p1´ SCikl ´ SCkij `Cijklq

`Si Cij SCkij p1´Cijklq

ı

RRWijkl Ñ integrable ,

Cijkl SCkij p1´Cijklq p1´CijqRRWijkl Ñ integrable ,

Cijkl Si Sik p1´ SCiklqRRWijkl Ñ integrable .

(C.171)

In addition to the proper singular limits of RRWijkl, the improved limits of RR have
spurious limits, which must be consistently compensated by the sector functions and/or
by other improved limits3 (see third line of Eq. (3.38)):

• Limit Cir

Cir Cij p1´ SiqRRWijkl Ñ integrable ,

Cir SCkij p1´ SikqRRWijkl Ñ integrable ,

Cir Cijkl p1´ SCiklqRRWijkl Ñ integrable ,

Cir Cijkl pSCkij ´ SikqRRWijkl Ñ integrable ,

Cir Cij SCkij p1´ SiqRRWijkl Ñ integrable ,

Cir Cij Cijkl p1´ SiqRRWijkl Ñ integrable ,

Cir Cij SCkij Cijkl p1´ SiqRRWijkl Ñ integrable ; (C.172)
3In the list we omit the other singular limits which are trivially compensated by the sector functions such as

Cjr and Clr.
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• Limit Ckr

Ckr SCikl p1´ SikqRRWijkl Ñ integrable ,

Ckr Cijkl p1´ SCkijqRRWijkl Ñ integrable ,

Ckr Cijkl pSCikl ´ Sikq RRWijkl Ñ integrable ,

Ckr Si SCikl p1´ SikqRRWijkl Ñ integrable ,

Ckr Cij Cijkl p1´ SCkijqRRWijkl Ñ integrable ,

Ckr Si Cij Cijkl p1´ SCkijqRRWijkl Ñ integrable . (C.173)

To complete our analysis, we must also examine the consistency relations for secondary
limits that are not suppressed by sector functions when taken in specific limits. As
specified in Eq. (3.39), we verify

• Limit Sk

Sk Sip1´ SikqRRWijkl Ñ integrable ,

Sk Cijp1´ SCkijqRRWijkl Ñ integrable ,

Sk Si Cijp1´ SCkijqRRWijkl Ñ integrable ,

Sk Si SCiklp1´ SikqRRWijkl Ñ integrable ,

Sk Cij Cijklp1´ SCkijqRRWijkl Ñ integrable ,

Sk Si Cij Cijklp1´ SCkijqRRWijkl Ñ integrable ; (C.174)

• Limit Ckl

Ckl Sip1´ SCiklqRRWijkl Ñ integrable ,

Ckl Cijp1´CijklqRRWijkl Ñ integrable ,

Ckl Si Cijp1´CijklqRRWijkl Ñ integrable ,

Ckl Si Sikp1´ SCiklqRRWijkl Ñ integrable ,

Ckl Cij SCkijp1´CijklqRRWijkl Ñ integrable ,

Ckl Si Cij SCkijp1´CijklqRRWijkl Ñ integrable . (C.175)

C.4 Integration of azimuthal contributions

The azimuthal parts of the collinear kernels Qµν
ijprq, Q̃

µν
ijprq and Qµν

ijkprq, defined in Ap-
pendix C.1, contain k̃µa k̃

ν
a , where a “ i for P µν

ijprq, P̃
µν
ijprq and a “ i, j, k for P µν

ijkprq. In

all counterterms, Qµν
ijprq has to be integrated in the single-radiative phase space dΦ

pijrq
rad ,

dΦ
pirjq
rad or dΦ

pjriq
rad , while Q̃µν

ijprq and Qµν
ijkprq are always integrated in dΦ

pijrq
rad and dΦ

pijkrq
rad,2 ,
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respectively. In all cases, when integrating Qµν
ijprq and Q̃

µν
ijprq in their single-radiative phase

space, or Qµν
ijkprq in its double-radiative phase space, the integral of the tensor structure

k̃µa k̃
ν
a must be a symmetric rank-2 tensor constructed combining gµν and mapped mo-

menta, see [18]. Thus
ż

dΦ
pτq
rad fptkuq k̃

µ
a k̃

ν
a “ Agµν `B k̄pτqµk̄pτqν ` C

´

k̄pτqµk̄pτqνq ` k̄pτqµq k̄pτqν
¯

`D k̄pτqµq k̄pτqνq ,

(C.176)

where τ “ ijr, irj, jri, ijkr, q “ r if τ “ ijr, irj, jri, q “ r if τ “ ijkr, and

k̄pijrq “ k̄
pijrq
j , k̄pirjq “ k̄

pirjq
j , k̄pjriq “ k̄

pjriq
i , k̄pijkrq “ k̄

pijkrq
k . (C.177)

Since k̃a is orthogonal to k̄pτqµ and k̄pτqµq , so must be also its integrals. This leads to the
conditions D “ 0 and A` C k̄pτq ¨k̄pτqq “ 0. We have

ż

dΦ
pτq
rad fptkuq k̃

µ
a k̃

ν
a “ A

«

gµν ´
k̄pτqµk̄

pτqν
q ` k̄

pτqµ
q k̄pτqν

k̄pτq ¨k̄
pτq
q

ff

`B k̄pτqµk̄pτqν . (C.178)

In all counterterms this tensor is contracted with either

R̄pτqµν , B̄pτqµν , B̄pτ,... qµν , or

«

k̄
pτq
c,µ

s̄
pτq
jc

´
k̄
pτq
d,µ

s̄
pτq
jd

ff«

k̄
pτq
c,ν

s̄
pτq
jc

´
k̄
pτq
d,ν

s̄
pτq
jd

ff

. (C.179)

As a consequence, the terms proportional to k̄pτqµ or to k̄pτqν vanish, and just Agµν

contributes. On the other hand, since k̄pτq is on shell, A can be obtained as follows:

gµν

ż

dΦ
pτq
rad fptkuq k̃

µ
a k̃

ν
a “ A pd´ 2q ùñ A “

1

d´ 2

ż

dΦ
pτq
rad fptkuq k̃

2
a . (C.180)

Thus in all counterterms we can subtitute
ż

dΦ
pτq
rad fptkuq k̃

µ
a k̃

ν
a Ñ Agµν “

ż

dΦ
pτq
rad fptkuq

gµν

d´ 2
k̃2
a , (C.181)

and the integrals of Qµν
ijprq, Q̃

µν
ijprq and Q

µν
ijkprq vanish in all counterterms:

ż

dΦ
pτq
rad

Qµν
ijprq

sij
“

ż

dΦ
pτq
rad

Qijprq

sij

„

´ gµν ` pd´ 2q
k̃µi k̃

ν
i

k̃2
i



Ñ 0 , τ “ ijr, irj, jri ;

ż

dΦ
pτq
rad

Q̃µν
ijprq

sij
“

ż

dΦ
pτq
rad

Q̃ijprq

sij

„

´ gµν ` pd´ 2q
k̃µi k̃

ν
i

k̃2
i



Ñ 0 , τ “ ijr ; (C.182)

ż

dΦ
pτq
rad,2

Qµν
ijkprq

s2
ijk

“
ÿ

a“i,j,k

ż

dΦ
pτq
rad,2

Q
paq
ijkprq

s2
ijk

„

´ gµν ` pd´ 2q
k̃µa k̃

ν
a

k̃2
a



Ñ 0 , τ “ ijkr .
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C.5 Constituent integrals

In the following we report the constituent integrals relevant for the analytic integration
of all counterterms at NNLO. Such integrals are schematically denoted as J `t , where t
indicates the type of integral, while ` is a set of labels whose different indices denote
distinguished particles.
The soft integrated kernel is

J ilms ” N1

ż

dΦ
pilmq
rad E piqlm ” δfig Jsps̄

pilmq
lm q , (C.183)

with

Jspsq “
αS

2π

ˆ

s

eγEµ2

˙´ε
Γp1´ εqΓp2´ εq

ε2 Γp2´ 3εq

“
αS

2π

ˆ

s

µ2

˙´ε „
1

ε2
`

2

ε
` 6´

7

12
π2
`

ˆ

18´
7

6
π2
´

25

3
ζ3

˙

ε

`

ˆ

54´
7

2
π2
´

50

3
ζ3 ´

71

1440
π4

˙

ε2 `Opε3q


. (C.184)

The double-soft integrated kernels read

J ijcdefsbs ” N 2
1

ż

dΦ
picd,jefq
rad,2 E piqcd E pjqef ” J

p4q
sbs

´

s̄
picd,jefq
cd , s̄

picd,jefq
ef

¯

f ggij ,

J ijcdesbs ” N 2
1

ż

dΦ
picd,jedq
rad,2 E piqcd E pjqed ” J

p3q
sbs

´

s̄
picd,jedq
cd , s̄

picd,jedq
ed

¯

f ggij ,

J ijcdsbs ” N 2
1

ż

dΦ
pijcdq
rad,2 E piqcd E pjqcd ” J

p2q
sbs

´

s̄
pijcdq
cd

¯

f ggij , (C.185)

J ijcdss ” N 2
1

ż

dΦ
pijcdq
rad,2 E pijqcd ” 2TR J

pqq̄q
ss

´

s̄
pijcdq
cd

¯

f qq̄ij ´ 2CA J
pggq
ss

´

s̄
pijcdq
cd

¯

f ggij ,
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with

J
p4q
sbsps, s

1
q “

ˆ

αS

2π

˙2 ˆ
ss1

µ4

˙´ε „
1

ε4
`

4

ε3
`

ˆ

16´
7

6
π2

˙

1

ε2
`

ˆ

60´
14

3
π2
´

50

3
ζ3

˙

1

ε

` 216´
56

3
π2
´

200

3
ζ3 `

29

120
π4
`Opεq



,

J
p3q
sbsps, s

1
q “

ˆ

αS

2π

˙2 ˆ
ss1

µ4

˙´ε „
1

ε4
`

4

ε3
`

ˆ

17´
4

3
π2

˙

1

ε2
`

ˆ

70´
16

3
π2
´

68

3
ζ3

˙

1

ε

` 284´
68

3
π2
´

272

3
ζ3 `

13

90
π4
`Opεq



,

J
p2q
sbspsq “

ˆ

αS

2π

˙2ˆ
s

µ2

˙´2ε„
1

ε4
`

4

ε3
`

ˆ

18´
3

2
π2

˙

1

ε2
`

ˆ

76´ 6π2
´

74

3
ζ3

˙

1

ε

` 312´ 27π2
´

308

3
ζ3 `

49

120
π4
`Opεq



,

J pqq̄q
ss psq “

ˆ

αS

2π

˙2ˆ
s

µ2

˙´2ε„
1

6

1

ε3
`

17

18

1

ε2
`

ˆ

116

27
´

7

36
π2

˙

1

ε

`
1474

81
´

131

108
π2
´

19

9
ζ3 `Opεq



,

J pggq
ss psq “

ˆ

αS

2π

˙2ˆ
s

µ2

˙´2ε„
1

2

1

ε4
`

35

12

1

ε3
`

ˆ

487

36
´

2

3
π2

˙

1

ε2

`

ˆ

1562

27
´

269

72
π2
´

77

6
ζ3

˙

1

ε

`
19351

81
´

3829

216
π2
´

1025

18
ζ3 ´

23

240
π4
`Opεq



. (C.186)

The soft real-virtual integrated kernels are

J̃ icds ” N1

ż

dΦ
picdq
rad Ẽ piqcd ” δfig CA J̃s

´

s̄
picdq
cd

¯

,

J icdpeq
∆s

” N1
2

ε2

ż

dΦ
picdq
rad E piqcd

„ˆ

sed

s̄
picdq
ed

˙´ε

´ 1



” f gi J
p3q

∆s

´

s̄
picdq
cd

¯

,

J icd
∆s

” N1
1

ε2

ż

dΦ
picdq
rad E piqcd

„ˆ

scd

s̄
picdq
cd

˙´ε

´ 1



” f gi J
p2q

∆s

´

s̄
picdq
cd

¯

,

J̃ icde
s ” N1

ż

dΦ
picdq
rad Ẽ piqcde , (C.187)
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with

J̃spsq “
αS

2π

ˆ

s

eγEµ2

˙´2ε
Γ3p1` εqΓ3p1´ εq

4 ε4 Γp1` 2εqΓp2´ 4εq
(C.188)

“
αS

2π

ˆ

s

µ2

˙´2ε „
1

4ε4
`

1

ε3
`

ˆ

4´
7

24
π2

˙

1

ε2
`

ˆ

16´
7

6
π2
´

14

3
ζ3

˙

1

ε

` 64´
14

3
π2
´

56

3
ζ3 ´

7
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π4
`Opεq



,

J p3q
∆s
psq “

αS

2π

ˆ

s

µ2

˙´ε„ˆ

2´
π2

3

˙

1

ε2
`

ˆ

16´
2

3
π2
´ 12 ζ3

˙

1

ε

` 92´
7

2
π2
´ 24 ζ3 ´

7

18
π4
`Opεq



,

J p2q
∆s
psq “

αS

2π

ˆ

s

µ2

˙´ε„ˆ

2´
π2

3

˙

1

ε2
`

ˆ

14´
2

3
π2
´ 10 ζ3

˙

1

ε

` 74´
23

6
π2
´ 20 ζ3 ´

7

36
π4
`Opεq



,

ÿ

c‰i,d‰i,c
e‰i,c,d

J̃ icde
s Bcde “ ´ f

g
i

αS

2π

ÿ

c‰i,d‰i,c
e‰i,c,d

Bcde

„

1

2
ln
s̄ce
s̄de

ln2 s̄cd
µ2
`

1

6
ln3 s̄ce

s̄de
` Li3

ˆ

´
s̄ce
s̄de

˙

`Opεq


.

The hard-collinear integrated kernels are given by

J ijrhc ” N1

ż

dΦ
pijrq
rad

P hc
ijprq

sij

” J
p0gq
hc

´

s̄
pijrq
jr

¯

f qq̄ij ` J
p1gq
hc

´

s̄
pijrq
jr

¯

pf gqij ` f
gq̄
ij q ` J

p2gq
hc

´

s̄
pijrq
jr

¯

f ggij , (C.189)

where

J
p0gq
hc psq “

αS

2π

ˆ

s

eγEµ2

˙´ε
Γp1´ εqΓp2´ εq

εΓp2´ 3εq
TR

´2

3´ 2ε

“
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2π

ˆ

s
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˙´ε

TR

„

´
2

3

1

ε
´
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9
´

ˆ
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27
´

7

18
π2

˙

ε

´

ˆ

1252

81
´
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27
π2
´

50

9
ζ3

˙

ε2 `Opε3q


,

J
p1gq
hc psq “

αS

2π

ˆ

s

eγEµ2

˙´ε
Γp1´ εqΓp2´ εq

εΓp2´ 3εq
CF

ˆ

´
1

2

˙

“
αS

2π

ˆ

s

µ2

˙´ε

CF

„

´
1

2

1

ε
´1´

ˆ

3´
7

24
π2

˙

ε´

ˆ

9´
7

12
π2
´
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6
ζ3

˙

ε2`Opε3q

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J
p2gq
hc psq “

αS

2π

ˆ

s

eγEµ2

˙´ε
Γp1´ εqΓp2´ εq

εΓp2´ 3εq
CA

ˆ

´
1

3´ 2ε

˙

(C.190)

“
αS

2π

ˆ

s
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˙´ε
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´
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3

1

ε
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´

ˆ
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´

7
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˙

ε´

ˆ

626

81
´
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9
ζ3

˙

ε2`Opε3q


.

A useful combination of these constituent integrals is

J k
hcpsq “ pf

q
k`f

q̄
k q J

p1gq
hc psq ` f gk

„

Nf J
p0gq
hc psq `

1

2
J
p2gq
hc psq



“
αS

2π

ˆ

s

µ2

˙´ε „
γhc
k

ε
` φhc

k `Opεq


. (C.191)

The hard double-collinear integrated kernels are given by

J ijkrhcc ” N 2
1

ż

dΦ
pijkrq
rad,2

P hc
ijkprq

s2
ijk

” J
p0gq
hcc

´

s̄
pijkrq
kr

¯

pf qq̄q
1

ijk ` f
qq̄q̄1

ijk q ` J
p0g,idq
hcc

´

s̄
pijkrq
kr

¯

pf qq̄qijk ` f
qq̄q̄
ijk q (C.192)

` J
p1gq
hcc

´

s̄
pijkrq
kr

¯

f qq̄gijk ` J
p2gq
hcc

´

s̄
pijkrq
kr

¯

pf ggqijk ` f
ggq̄
ijk q ` J

p3gq
hcc

´
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¯

f gggijk ,

with
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ˆ
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˙
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J
p2gq
hcc psq “
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αS

2π

˙2ˆ
s
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#
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F
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´
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´

ˆ
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˙

1
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1
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˙
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6
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7
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π4
`Opεq


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,

J
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hcc psq “

ˆ

αS

2π

˙2ˆ
s

µ2

˙´2ε

C2
A

„

´
5

2

1

ε3
´
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6

1

ε2
´

ˆ
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4
π2
` 3 ζ3

˙

1

ε

´
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`
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`
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3
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9
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π4
`Opεq


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For the hard-collinear times hard-collinear integrated kernels we have

J ijklr
hcbhc ” N 2

1

ż

dΦ
pijr,klrq
rad,2

P hc
ijprqpsir, sjrq

sij

P hc
klprqpskr, slrq

skl

” Jqqqq
hcbhc

´

s̄
pijr,klrq
jr s̄

pijr,klrq
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¯

f qq̄ij f
q1q̄1

kl

` Jqqqg
hcbhc

´
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pijr,klrq
jr s̄

pijr,klrq
lr

¯ ”

f qq̄ij pf
gq1

kl `f
gq̄1

kl q`pf
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ij `f
gq̄1

ij qf
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kl

ı

` Jqqgg
hcbhc

´
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pijr,klrq
jr s̄
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¯
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kl ` f
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ij f
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kl q

` Jqgqg
hcbhc

´
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pijr,klrq
jr s̄

pijr,klrq
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¯

pf gqij ` f
gq̄
ij qpf

gq1

kl ` f
gq̄1

kl q

` Jqggg
hcbhc

´

s̄
pijr,klrq
jr s̄

pijr,klrq
lr

¯ ”

pf gqij `f
gq̄
ij qf
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kl `f
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ij pf

gq
kl `f

gq̄
kl q

ı

` Jgggg
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´

s̄
pijr,klrq
jr s̄

pijr,klrq
lr

¯

f ggij f
gg
kl , (C.194)
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with
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The soft-times-hard-collinear integrated kernels read

J jkricd
sbhc ” N 2

1

ż

dΦ
pjkr,icdq
rad,2

P hc
jkprq

sjk
E piqcd

” f gi

”

J
4p1gq

sbhc

´

s̄
pµq
kr , s̄

pµq
cd

¯

f qq̄jk

` J
4p2gq

sbhc

´
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¯

pf gqjk`f
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jk q ` J

4p3gq
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´
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¯

f ggjk

ı
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,
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1

ż

dΦ
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J
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kr , s̄

pµq
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¯

f qq̄jk
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´
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¯
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´
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cr

¯

f ggjk

ı
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,

J krjic
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1

ż

dΦ
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”

J
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´
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¯
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´
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jc

¯
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¯
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ı
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,
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´
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´
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ı
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with
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Finally the hard-collinear real-virtual integrated kernels read
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jr

¯

pf gqij `f
gq̄
ij q ` J̃

p2gq
hc

´

s̄
pijrq
jr

¯

f ggij ,

J ijr
∆hc

” N1
2

ε2

ż

dΦ
pijrq
rad

P hc
ijprq

sij

„ˆ

scr

s̄
pijrq
cr

˙´ε

´ 1



” J p0gq
∆hc

´

s̄
pijrq
jr

¯

f qq̄ij ` J
p1gq
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where
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