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a b s t r a c t

The demand for searching, querying multimedia data such as image, video and audio is omnipresent,
how to effectively access data for various applications is a critical task. Nevertheless, these data
usually are encoded as multi-dimensional arrays, or tensor, and traditional data mining techniques
might be limited due to the curse of dimensionality. Tensor decomposition is proposed to alleviate
this issue. Commonly used tensor decomposition algorithms include CP-decomposition (which seeks
a diagonal core) and Tucker-decomposition (which seeks a dense core). Naturally, Tucker maintains
more information, but due to the denseness of the core, it also is subject to exponential memory
growth with the number of tensor modes. Tensor train (TT ) decomposition addresses this problem
by seeking a sequence of three-mode cores: but unfortunately, currently, there are no guidelines
to select the decomposition sequence. In this paper, we propose a GTT method for guiding the
tensor train in selecting the decomposition sequence. GTT leverages the data characteristics (including
number of modes, length of the individual modes, density, distribution of mutual information, and
distribution of entropy) as well as the target decomposition rank to pick a decomposition order that
will preserve information. Experiments with various data sets demonstrate that GTT effectively guides
the TT-decomposition process towards decomposition sequences that better preserve accuracy.
1. Introduction

Tensors are commonly used to represent multi-dimensional
ets. Consequently, tensor decomposition operations, such as
P [1,2] and Tucker [3] form the basis of many AI techniques for
ata analysis and knowledge discovery. In the Tucker-
ecomposition, for example, given a tensor with d modes, each
ntry in the resulting r1 × r2 × · · · × rd dense core encodes the
trength of the d-way relationship among the groups consisting
f elements of the individual modes.
Tucker decomposition has been shown to be highly effec-

ive in any applications [4,5], but due to the denseness of the
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esources supported by the NSF.
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core, it also is subject to exponential memory growth with the
number of tensor modes. The tensor train (TT ) decomposition ad-
dresses this problem, by seeking a sequence of 3-mode cores [6]:
while, collectively, this sequence (or ‘‘train’’) of cores capture
the high-modal information, they require fewer resources. Con-
sequently, the TT-decomposition has been used in various ap-
plications, including deep learning [7,8], crowdsourcing [9] and
recommendation systems [10].

1.1. Impact of the decomposition order

One critical challenge with the TT-decomposition, however,
is the fact that finding an optimal TT representation is non-
trivial [12]. Fig. 1 illustrates this issue: given a 3-mode (modeA:
ID, modeB: Diagnosis and modeC : Radius) tensor from the Wiscon-
sin Diagnostic Breast Cancer data set in UCI Machine Learning
Repository [11]; the figure compares the relative Frobenius norm
difference (ratio of the norm of the difference tensor to the
norm of the original tensor) between the input tensor and the
reconstructed tensor for different TT-decomposition orders. As
the figure shows, the ordering of the TT-decomposition has a
significant impact on the ability of the final representation in
preserving the original information: in this case, the order ACB

is (0.77− 1.02)/1.02 = 24.5% better than the closest alternative.
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Fig. 1. Effect of the decomposition order on the accuracy for a 3-mode tensor from the Wisconsin Diagnostic Breast Cancer data [11]: ID(modeA), Diagnosis(modeB)
nd Radius(modeC ). See Section 7 for more details.
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.2. Our contributions

In our preliminary work [13], we proposed a novel approach
or guiding the tensor train (GTT) in selecting the mode sequence
or tensor train decompositions for categorical data sets. More
pecifically,

• we identify significant relationships among various data
characteristics and the accuracies of different tensor train
decomposition orders;
• we propose four order selection strategies, (a) aggregate

mutual information (AMI), (b) path mutual information (PMI),
(c) inverse entropy (IE), and (d) number of parameters (NP),
for tensor train decomposition; and
• we show that good tensor train orders can be selected

through a hybrid (HYB) strategy that takes into account
multiple characteristics of the given categorical-valued data
set.

n this paper, we extend the GTT technique to data sets with
ontinuous/non-categorical attributes. We further introduce two
tatistics collection strategies statistics-then-discretization (StD)
nd discretization-then-statistics (DtS) to encode continuous-valued
ata in the form of a tensor for analysis. Experiments reported in
ection 7 show that the proposed HYB strategy provides an effec-
ive order selection strategy for both categorical and continuous
alued, without any additional decomposition time overhead.

.3. Organization of the paper

This paper is organized as follows: In the next section, we
resent the related work for tensor decomposition techniques.
ection 3 presents the relevant notations and the background for
he tensor train decomposition. Section 4 describes the problem
tatement we tackle. Section 5 describes the data characteristics
e extract for the proposed method: guide the tensor trains (GTT)

n Section 6. Section 7 experimentally evaluates the effectiveness
f GTT. And then we conclude the paper in Section 8.

. Related work

.1. Tensor

The tensor model maps a multi-attribute schema into an
-modal array. More formally, let l denote the number of distinct
j

2

alues that the jth attribute (or the jth mode) can take. The tensor
is then an d-modal array such that X ∈ Rl1×l2×...×ld . Intuitively,

he modes of the tensor represent different factors that impact an
bservation and the value that the tensor records for a given cell
orresponds to an observation for a specific combination of factor
nstances. Tensor unfolding, or matrization, is one of fundamental
peration for tensor methods. Considering a tensor as a multi-
odal array, unfolding it consists of reading its element in such
way as to obtain a matrix instead of tensor. Mode-i unfolding is
btained by considering the ith mode as the first dimension of a
atrix and collapsing the other into the other dimension of that
atrix. For a tensor of size (l1× l2×. . .× ld), the mode-i unfolding
f this tensor will be the size (li, l1 × . . .× li−1 × li+1 × . . .× ld).

.2. Tensor decomposition

Tensor decomposition has been shown to be effective in multi-
spect data analysis for capturing high-order structure in high-
imensional data [4]. The CANDECOMP/PARAFAC (CP) and the
ucker [14] are the two most popular tensor decomposition algo-
ithms. The CP decomposition factorizes the tensor into r compo-
ent matrices (where r is a user supplied non-zero integer value
lso referred to as the rank of the decomposition). The Tucker
ecomposition generalizes singular value matrix decomposition
SVD) to high dimensional data. However, a major challenge is
ts high computational complexity and large memory overhead.
here are several parallel and block-based implementations to
lleviate this issue, such as GridParafac [15], GigaTensor [16],
aTen2 [17], BICP [18].

.3. Tensor train decomposition

Tensor-train decomposition [6] provides a memory-saving
epresentation called TT-format, , which preserves the represen-
ation power. For example, Given a d-modal tensor, the space
omplexity of traditional tensor decomposition (e.g. Tucker) is
xponential in d, whereas TT-format has a with linear space
omplexity by creating a linear tensor network (see Fig. 2).
TNrSVD [19] adapts the randomized SVD to implement TT-

ecomposition, and FastTT [20] computes the TT-decomposition
f a sparse tensor by its sparsity. However, as discussed in the in-
roduction, TT-decomposition involves strictly sequential multi-
inear products over latent cores and this makes it difficult to
earch for best TT representation for a given tensor. [12,21] ex-
ended TT-decomposition by adding auxiliary variables to obtain
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Fig. 2. An example of TT-decomposition for converting a 3-mode tensor X l1×l2×l3 into TT-format.
Table 1
Notations used in the paper.

Description

X A tensor

ρX Density of tensor X
X(i) A mode-i unfolding matrix of a tensor X
li Length of mode i in a tensor
mi The mode i in a tensor
πz The mode in the zth position in a sequence of a given tensor

train decomposition
Π A permutation of modes ⟨π1, π2, . . . , πd⟩

ri TT-rank of mode i
X A discrete random variable with possible values {x1, . . . , xn}
U Left factor matrix
S Singular matrix
V Right factor matrix
Gi 3-mode core for mode i of TT-decomposition
Hi Shannon entropy of random variable for mode i
Hi|j Conditional entropy of the random variable for mode i given

the random variable for mode j
H(i,j) Averaged conditional entropy for Hi|j and Hj|i
MI(i,j) Mutual information between mode i and mode j

an alternative data structure, Tensor Ring (TR), which provides
circular dimensional permutation invariance — the sequence can
e shifted circularly without changing the result [22], however,
t does not eliminate the need to pick a (circularly-arranged)
ermutation of modes.

.4. Feature selection in high dimensional data

Feature selection techniques, such as [23] [24], search for the
ost relevant attributes of the data set (for a given application)

o reduce the dimensionality, for example, Entropy tends to be
ow for data that contain tight clusters [25,26]. Various other data
haracteristics, such as variance, mutual information, have been
sed for selecting the order of decisions in supervised machine
earning, such as decision trees.

.5. Guiding the tensor train decomposition (GTT)

Inspired by above researches, in our preliminary work [13], we
roposed GTT, which leverages various data properties (e.g. mode
ntropy, pair-wise mutual information) of high-dimensional and
3

Algorithm 1 TT-SVD (adapted from [6])
Input:
A permutation Π = ⟨π1, π2, . . . , πd⟩, of modes;
A d-mode tensor X ∈ Rlπ1×lπ2×...×lπd ;
A list of target tt-ranks, ⟨rπ0 , rπ1 , rπ2 , . . . , rπd⟩, rπ0 = rπd = 1;
Output:
TT-format with TT-cores Gπ1 ,Gπ2 , . . .Gπd .
• numel(C) : number of elements in C .
• reshape(A, [d1, . . . , dk]) : reshape an array A into shape d1×d2×
. . .× dk .
• min(a, b) : return a if a < b, else return b.
1: procedure TT-SVD(X , ⟨rπ0 , rπ1 , rπ2 , . . . , rπd⟩)
2: C = X .
3: for k← 1 to d− 1 do
4: C ← reshape(C, [rπk−1 × lπk ,

numel(C)
rπk−1×lπk

]).
5: U, S, V = SVD(C, rπk = min(rπk , lπk )).
6: Gk ← reshape(U, [rπk−1 , lπk , rπk ]).
7: C ← SV T .
8: end for
9: Gπd ← C .

10: return TT-format with TT-cores Gπ1 , . . . ,Gπd .
11: end procedure

categorical data sets as a guideline to select an effective sequence
for tensor train decomposition. In this paper, we extend these
results to continuous valued data and consider alternative dis-
cretization strategies for tensor-encoding of continuous valued
data sets.

3. Preliminaries

Table 1 summarizes the key notations. Intuitively, the tensor
model maps a schema with d attributes to a d-modal array (where
each potential tuple is a tensor cell). TT-decomposition [6] is
obtained by applying a sequence of singular value decompositions
(SVD) to approximate the original tensor: given

• (i) a permutation, Π = ⟨π1, π2, . . . , πd⟩, of modes, where πz is
mode in the zth position in a sequence of a given tensor train
decomposition,
• (ii) an input tensor, X ∈ Rlπ1×lπ2×...×lπd ,
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• (iii) a sequence of decomposition ranks, ⟨rπ0 , rπ1 , rπ2 , . . . , rπd⟩,
where rπ0 = rπd = 1,

the tensor train decomposition approximates the input tensor, X ,
with a sequence of tensor cores Gπk ∈ Rrπk−1×lπk×rπk , k = 1 . . . d,
here X ≈ X̂Π = Gπ1 · Gπ2 · · · · Gπd .
In the index form the decomposition is written as:

≈ X̂Π (iπ1 , iπ2 , . . . , iπd )

=

∑
απ0 ,απ1 ,...,απd

Gπ1 (απ0 , iπ1 , απ1 )× Gπ2 (απ1 , iπ2 , απ2 ) . . .

× Gπd (απd−1 , iπd , απd ),

(1)

where iπm represents the index of mode πm and 1 ≤ απm ≤ rπm .
In this paper, we will assume that all ranks (except r0 = rπd =

) have the same value, r . Note that, while there are several non-
arametric decomposition techniques, such as [27] which can
earn also the appropriate rank, this is outside of the scope of this
aper — most tensor decomposition (in fact most latent semantic
earch) literature takes the number of latent-semantics as input.

lgorithm. Algorithm 1 presents the pseudocode and Fig. 2 visu-
lizes the TT-SVD process for a 3-mode tensor X ∈ Rlπ1×lπ2×lπ3 ,
here li represents the size of mode i.

ccuracy. To evaluate the accuracy, we use the Frobenius norm
f the difference between mode-i unfolding X(i), of the original
ensor and mode-i unfolding X̂Π(i) of the reconstructed tensor,

ˆΠ : Error(X̂Π ,X ) =
∥X(i)−X̂Π(i) ∥Frob

∥X(i)∥Frob
. Note that this term gives

he same value independently of the mode i selected for matrix
nfolding.

. Problem statement

In this paper, we aim to seek a decomposition sequence that
inimizes the reconstruction error:

roblem 1 (Tensor Train Decomposition Sequence Selection). Let us
be given a d-dimensional tensor with a permutation of modes
⟨π1, π2, . . . , πd⟩, X ∈ Rlπ1×lπ2×...×lπd , and a sequence of TT-ranks,
rπ0 , rπ1 , rπ2 , . . . , rπd⟩, where rπ0 = rπd = 1. Our goal is to
ind a permutation, Π = ⟨π1, π2, . . . , πd⟩, which minimizes the
pproximation error; i.e.,

= argmin
Π∈P

(
Error(X̂Π ,X )

)
,

here P denotes the set of all possible d! permutations.

. Tensor data characteristics to guide tensor train decompo-
ition

In this paper, we propose a novel approach to guide the tensor
rains (GTT) in selecting the decomposition sequence. GTT lever-
ges the various characteristics/statistics of the input data tensor
sparse or dense) to identify and recommend a mode ordering for
he TT-decomposition process.

.1. Tensor encoding

A high-dimensional data set can be viewed as a set of tuples or
a tensor. When the attributes of the data set are categorical, the
tensor representation is easy to obtain: As we illustrated in Fig. 2,
a given data set with categorical entries in tuple representation
can be converted to an occurrence tensor with one-hot-encoding
paradigm, in which each entry with value 1 indicates the pres-
ence of the corresponding tuple in the data set and 0 indicates
its absence. Note that duplicated tuples will be discarded in the
4

tensor encoding. Nevertheless, we will keep these duplicated tu-
ples when we compute other data characteristics in the following
sections.

For data sets with continuous entries, however, we need to dis-
cretize the modes with continuous values into categorical values
before such an encoding is possible. There are various methods
for obtaining discrete representation of continuous valued data
sets; these include equal-width binning, equal-frequency binning,
k-means clustering, or decision trees [28]. Here, we adopt equal-
width binning: let Ci be a set of continuous values of mode i;
given a number, Ni, of bins, we compute the length, Wi, of the
discretization window as

Wi =
(max(Ci)−min(Ci))

Ni
. (2)

Given this window size, each entry, v, in Ci will be represented
ith the corresponding bin.

.2. Statistics collection strategies for continuous valued data

As described above, discretization is a necessary tensor encod-
ng step for data sets with continuous entries. However, the data
tatistics that will be used for guiding the tensor train decompo-
ition process can be collected before or after the discretization
rocess.

.2.1. Discretization-then-Statistics (DtS)
Given a data set with continuous entries, Discretization-then-

tatistics (DtS) strategy first categorizes continuous entries into
iscrete values with the method described above to generate
corresponding tensor, and then extracts data characteristics

reating the data as categorical.

.2.2. Statistics-then-Discretization (StD)
Given a data set with continuous entries, Statistics-then-

iscretization (StD) strategy first extracts data characteristics from
he continuous data and then categorizes continuous entries into
iscrete values to generate the corresponding tensor encoding.
We experimentally evaluate the performance of these two

tatistics collection strategies in Section 7.

.3. Data characteristics

Here, we describe data characteristics, or features, relevant for
ensor train mode sequence selection. Let us consider a tensor
ith n tuples and m modes (or dimensions).

.3.1. Mode lengths
Given a data set with d modes, we hypothesize that the value

f d will have an indirect impact on the selected order. In partic-
lar, as the value of d increases, the number of parameters that
eed to be solved during the decomposition process increases and
ifferent orderings may lead to different number of parameters
this may have an impact on the strategy to be used for per-
utation selection. Given a d-mode tensor with a permutation
f modes ⟨π1, π2, . . . , πd⟩, X ∈ Rlπ1×lπ2×...×lπd , we compute the
verage of mode lengths, along with the absolute and relative
tandard deviations:

length(X ) = average(lπ1 , lπ2 , . . . , lπd ), (3)

σlength(X ) = stdev(lπ1 , lπ2 , . . . , lπd ), (4)

φlength(X ) = σlength/µlength. (5)

Intuitively, the larger the lengths of the modes, the larger
will be the number of parameters to be sought. The absolute
and relative standard deviations indicate how discriminative the
mode length feature is in the given tensor.
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5.3.2. Mode entropy
We next argue that the entropy of the data captured by the

arious modes of the data may also impact the tensor train de-
omposition order. Intuitively, entropy would indicate how easy
t is to have a low-rank approximation of a tensor along a given
ode and the absolute and relative standard deviations indicate
ow discriminative the mode entropy feature is.

odes with categorical data. Given a data set with d modes, for
the data with categorical entries, let Xi be a discrete random
variable with possible values {x1, . . . , xni} for mode i. Given this,
e can compute the Entropy for mode i as

i = H(Xi) = −
ni∑
j=1

pi(j) log2 pi(j), (6)

where pi(j) represents the probability that xj occurs in the given
mode i.

Modes with continuous data. For the data sets with continuous
ntries, we cannot directly apply the basic entropy definition. To
uantify entropy for continuous variables, [29] extends the idea
f Shannon entropy, a measurement for the level of surprise of a
andom variable, to continuous probability distributions through
ifferential entropy. The actual continuous version of discrete
ntropy is the limiting density of discrete points (LDDP) [30]
nd the conventional differential entropy extended from discrete
hannon entropy [29] is a limiting case of the LDDP and loses its
undamental association with discrete entropy. Therefore, here,
e adapt the method proposed in [31], where the entropy es-
imator is based on the first nearest neighbor distances of the
ample points: let Xi be a continuous random variable for mode
in certain metric space, i.e. there is a distance function ∥x −
′
∥ between any two instances of Xi; the entropy of X can be
stimated as:

∗

i = Ĥ∗(Xi) = −ψ(k)+ ψ(N)+ log(cd)+
d
N

N∑
i=1

logϵ(i), (7)

where

• ψ: the digamma function.
• k: the k-nearest neighbor, we set k = 1 as default.
• N: the numbers of instances
• cd: the volume of the d-dimensional unit ball.
• ϵ(i): twice the distance from xi to its kth nearest neighbor.

The detailed proof can be found in [31,32].

Entropy statistics for the tensor. Given the entropy for each mode
of the tensor, we can compute the average and standard deviation
statistics as follows (note that we use entropy for categorical
variable H in the following formulas and sections, but entropy
for continuous variable H∗ can be substituted for data sets with
continuous values):

µentropy(X ) = average(H1,H2, . . . ,Hd), (8)

σentropy(X ) = stdev(H1,H2, . . . ,Hd), (9)

φentropy(X ) = σentropy/µentropy. (10)

The absolute and relative standard deviations indicate how dis-
criminative the mode entropy feature is in the given tensor.

5.3.3. Tensor density
Note that the above definition of entropy is meaningful espe-

cially for sparse tensors1 Therefore, we also compute a density

1 Alternative definitions of entropy may be used for dense tensors
5

statistic. Given a d-mode tensor X ∈ Rl1×l2×...×ld , we compute
the density ρ of X as

ρ(X ) =
# of nonzero values in X

l1 × l2 × . . .× ld
. (11)

.3.4. Pairwise average conditional entropy
The above statistics of mode length and entropy consider each

ode in isolation. Yet, as we mentioned in Section 3, the tensor
rain representation links consecutive modes in the sequence, and
e believe these links provide us extra information for the se-
uence. To measure the strengths of the linkages, we can abstract
he given data set as a mode-graph representation and compute
airwise statistics to guide tensor train decomposition. First of
hese pairwise statistics is the pairwise average conditional entropy
described below.

Mode pairs with categorical data. Let Xi denote a discrete ran-
dom variable with possible values {xi,1, . . . , xi,ni} corresponding
to mode i. The conditional entropy of Xi given Xj is defined as:

Hi|j = H(Xi|Xj) =
nj∑

h=1

pj(xj,h)H(Xi|Xj = xj,h). (12)

Given this, we can compute average pairwise conditional en-
tropy as ACE(i,j) =

Hi|j+Hj|i
2 . Note that at each step of the TT-

decomposition process, the algorithm creates a core that links
two modes of the tensor. Intuitively, the average pairwise entropy
(ACE) indicates the ease with which one can obtain the low-rank
decomposition of a pair of modes.

Mode pairs with continuous data. Let Xi and Xj be two continuous
random variables; the conditional entropy, of Xi given Xj can be
computed based on the formula:

H∗i|j = H∗(i,j) − H∗j , (13)

where H∗(i,j) is the joint entropy of Xi and Xj and H∗j is the entropy
estimate for mode j discussed in Section 5.3. Average pairwise
entropy (ACE) can then be computed similarly as above.

Mixed mode pairs. Mode pairs could be mixed, e.g. (1) Xi is
continuous and Xj is categorical or (2) Xi is categorical and Xj
is continuous. Since there is no direct way to compute the joint
entropy for mixed node pairs, here we approximate the joint
entropy for Xi and Xj as H⋆(i,j) for later conditional entropy com-
putation. And the approximation of the joint entropy for mixed
node pairs is based on the property that H(i,j) <= Hi + Hj.

Hence, the conditional entropy for mixed mode pair H⋆i|j could
be estimated as:

• Xi is continuous and Xj is categorical:

H⋆i|j ∼ H⋆(i,j) − Hj, (14)

where H⋆(i,j) ∼ H∗i + Hj.
• Xi is categorical and Xj is continuous:

H⋆i|j ∼ H⋆(i,j) − H∗j , (15)

where H⋆(i,j) ∼ Hi + H∗j .

In both cases, average pairwise entropy (ACE) can then be
computed similarly as above.

Conditional entropy statistics for the tensor. Given the above, we
can then compute the average and standard statistics for ACE as
follows:

µace(X ) = average(ACE(i,j) | i ̸= j), (16)
σace(X ) = stdev(ACE(i,j) | i ̸= j), (17)
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(
φace(X ) = σace/µace. (18)

he average and standard deviation statistics indicate how signif-
cant this feature is in the data and how discriminative the feature
s to help select pairs of modes to consider in sequence.

.4. Pairwise mutual information

A related measure to conditional entropy is the pairwise mu-
ual information.

ode pairs with categorical data. Let Xi be a discrete random
ariable with possible values {x1, . . . , xni} for mode i. The mutual
nformation of Xi and Xj is defined as

I(i,j) =
∑
x∈Xi

∑
y∈Xj

p(Xi,Xj)(x, y) log(
p(Xi,Xj)(x, y)

pXi (x)pXj (y)
) (19)

= Hi − Hi|j = Hj − Hj|i. (20)

here p(Xi,Xj) is the joint probability mass function of Xi and Xj.

ode pairs with continuous data. For mode pairs with continuous
ntries, we can leverage the entropy conditional entropy formula-
ions presented in the previous subsections to compute pairwise
utual information:

I∗(i,j) = H∗i − H∗i|j = H∗j − H∗j|i. (21)

ixed mode pairs. If Xi is continuous and Xj is categorical, we
pproximate the pairwise mutual information MI⋆(i,j) as

I⋆(i,j) ∼ H∗i − H⋆i|j. (22)

f Xi is categorical and Xj is continuous, on the other hand, to avoid
aving to use an approximated value for H∗i|j, we approximate the
airwise mutual information MI⋆(i,j) as

I⋆(i,j) ∼ H∗j − H⋆j|i. (23)

airwise mutual information statistics for the tensor. We then com-
ute that average and standard statistics for mutual information
s follows:

mi(X ) = average(MI(i,j) | i ̸= j), (24)

σmi(X ) = stdev(MI(i,j) | i ̸= j), (25)

φmi(X ) = σmi/µmi. (26)

ntuitively, mutual information can be used to measure how
losely related the rows and columns of a given matrix are; the
ore closely related two modes are, the better are the chances

o obtain a more accurate decomposition.

. GTT: Guiding tensor trains towards highly accurate decom-
ositions

Given the tensor data characteristics for discrete and con-
inuous valued data described in the previous section, here we
resent various GTT strategies for guiding the tensor trains de-
omposition process.

.1. GTT-NP: number of parameters

Consider the TT-decomposition process depicted in Fig. 2.
ere a 3-mode input tensor X ∈ Rlπ1×lπ2×lπ3 is being con-
erted into TT-format with a given decomposition sequence Π =
π1(mode1), π2(mode2), π3(mode3)⟩ following Algorithm 1. In this
xample, the total number of parameters that the two SVD al-
orithms involved in the process have to solve for is the sum
f the number of variables for U , SV T , U ′ and SV

′T , which is
6

rπ0 × lπ1 × rπ1 )+ (rπ1 × lπ2 × lπ3 )+ (rπ1 × lπ2 × rπ2 )+ (rπ2 × lπ3 ).
It is easy to generalize this to

NPΠ (X ) =
d−1∑
i=1

⎛⎜⎜⎜⎜⎜⎝ri−1 × lπi × ri  
U

+ ri ×
d∏

j=i+1

lπj  
SV T

⎞⎟⎟⎟⎟⎟⎠ .

The first guiding strategy, GTT-NP, computes the number, NPΠ (X )
of parameters for each possible permutation, Π , and selects an
order with the least number of parameters.

6.2. GTT-AMI and GTT-PMI: Mutual Information

Aggregate Mutual Information (AMI). Mutual information (Eq. (19)
or Eq. (23)) can be seen as a measure of dependency between
the two variables. GTT-AMI guides the TT-decomposition process
based on the aggregate mutual information each mode has with
the rest of the modes in the tensor. More specifically, given a
d-mode tensor, the AMI value for mode i is computed as

AMIi =
d∑

j=1

MI(i,j).

We argue (and later experimentally show) that a potential strat-
egy to guide the ordering of the modes in the TT-decomposition
would be to (a) first find the mode with the largest AMI value and
(b) then select this as the first mode. The process is, then, con-
tinued by (c) recomputing the AMI values among the remaining
modes, (d) finding the mode with the largest (updated) AMI value
among the remaining modes, and (e) selecting this as the next
mode in the sequence. The process is repeated until all the modes
have been ordered (when only two modes remain, the order
is picked randomly). Fig. 3 illustrates an example for a 3-mode
(Mode 1: m1, Mode 2: m2, Mode 3: m3) categorical data set. First,
we compute AMI for each mode, which are: AMI1 = 1.5+ 0.2 =
1.7, AMI2 = 1.5+ 0.7 = 2.1, and AMI3 = 0.2+ 0.7 = 0.9. In this
case, AMI strategy described above would select mode m2 as the
first mode followed by m1 or m3. Intuitively, this process ensures
that, at each step of the process, we consider and factorize a
matrix where the rows have the highest statistical dependency
with the columns.

Path Mutual Information (PMI). Note that the above process,
which first picks the mode with the highest aggregate mutual
information with the rest of the modes, is likely to lead to
orderings where the total mutual information along the sequence
is low: Fig. 4 illustrates an example, where MI(1,2) = 1.5, MI(1,3) =
0.2, and MI(2,3) = 0.7. With a total MI of (1.5 + 0.7) = 2.2, the
orders m1 → m2 → m3 and m3 → m2 → m1 have the highest
total mutual information. In fact, surprisingly, permutations with
a low total MI tend to lead to higher accuracies than orders with a
high total MI. This somewhat counter-intuitive result (which we
experimentally validate in the ‘‘Experimental Results’’ section),
indicates that the accuracies of initial decomposition steps are
very important in obtaining high accuracy in TT-decompositions.
We refer to this strategy as path mutual information (GTT-PMI).

6.3. GTT-IE: (Inverse) entropy

Remember that at the first step of the TT-decomposition pro-
cess, we first matricize a given tensor X and then apply SVD
to obtain U and SV T matrices: here U represents clusters along
the first selected mode and SV T represents tensor X except the
first mode. In the following steps of the algorithm, we apply
several other clustering steps on the remaining matrix SV T . It is
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Fig. 3. GTT-AMI computation for a 3-mode tensor. We first compute pair-wise mutual information and then aggregate these mutual information to decide which
mode should be selected to decompose. In this example, Mode 2 will be first mode to decompose, since it has the largest aggregated mutual information.
Fig. 4. GTT-PMI computation for a 3-mode tensor. We first compute pair-wise mutual information and then for a given sequence of order (path), we accumulate its
orresponding pair-wise mutual information and then select the sequence which has the lowest accumulated mutual information.
Fig. 5. GTT-IE computation for a 3-mode tensor. We first compute entropy of each mode, and then decides a TT-decomposition sequence based on entropy in
ascending order. In this example, the decomposition order is Mode 3 → Mode 1 → Mode 2.
•

•

f
O
A
•

•

c

therefore important that the matrix SV T lends itself to a good
clustering. One strong indicator of this is the entropy: if SV T has
high entropy, it is likely that it will lead to better clusters. Since
the overall entropy in X is fixed, this implies that the matrix U
should ideally have low entropy.

This leads to a third strategy, GTT-IE, which guides the TT-
decomposition process based on the (inverse) entropy of each
mode: at each step the algorithm selects the mode with the low-
est entropy among the remaining modes. Again, Fig. 5 illustrates
an example of GTT-IE. Given a 3-mode (m1, m2, m3) categorical
data set, IE strategy computes the entropy with Eq. (6) for each
mode (H1, H2, H3), and then decides a TT-decomposition sequence
based on entropy in ascending order.

6.4. GTT-HYB: Hybrid strategy

In Table 3, we list the data sets we use in our experiments
along with the (non-hybrid) strategy with the best accuracy per-
formance. As we see in the table, none of the strategies lead to
a universally accurate order. While this is initially disappoint-
ing, the facts that different strategies work well for different
data sets and that, often, where one strategy fails to lead to
an accurate decomposition, another strategy excels, indicate that

a hybrid strategy which carefully switches between the differ-

7

Algorithm 2 GTT-HYB.
Input:
• A d-mode tensor X ∈ Rlπ1×lπ2×...×lπd , where Π =

⟨π1, π2, . . . , πd⟩, is a permutation of modes in X ;
• A feature vector X ∈ Rm in Section 5 for X ;
A list of target tt-ranks, ⟨rπ0 , rπ1 , rπ2 , . . . , rπd⟩, rπ0 = rπd = 1;
Linear SVM classifiers for GTT-NP, GTT-PMI and GTT-IE:

NP ,fPMI , fIE ;
utput:
sequence of decomposition order recommended by GTT-HYB.
SGX : Selected GTT for X.
fSG(X, ⟨rπ0 , rπ1 , rπ2 , . . . , rπd⟩) : Separation between X and the

lassifier for SG.

1: procedure GTT-HYB(X, ⟨rπ0 , rπ1 , rπ2 , . . . , rπd⟩)
2: SGX = argmaxSG∈{NP,PMI,IE}(fSG(X, ⟨rπ0 , rπ1 , rπ2 , . . . , rπd⟩)).
3: return the sequence of decomposition order recommended

by SGX .
4: end procedure

ent approaches can lead to a better accuracy than any of the
individual strategies.
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Fig. 6. GTT-HYB selects a strategy using SVM classifiers. We train a linear SVM
lassifier for each GTT-strategy (GTT-NP, GTT-IE, and GTT-PMI), and then select a
trategy which has the maximum separation for a given data set. In this example,
MI would be selected.

To show the feasibility of such a hybrid technique, for each
trategy,2 S, we have considered the data characteristics de-
cribed earlier Section 5 as features and train a (linear) SVM
lassifier (with L1-regularization) that separates the data sets
or which the strategy provides better accuracies than the rest
i.e., strategyS vs. rest). In particular, with given training datasets
tensor instances),3 for each scenario we consider the top-20%
f the tensor instances for which the given strategy returns the
est results against the lowest-20% of the tensor instances for
hich the given strategy returns the worst results. Intuitively, the
eparator can be interpreted as a feature selector that describes
he data characteristics that best matches the given strategy. For
ach decomposition scenario, we then select the strategy that
s recommended collectively by the trained separators; for any
cenario for which the classifiers recommend more than one
trategy, we pick the strategy that has the largest margin from
he corresponding separator. Fig. 6 depicts the concept of our
TT-HYB: each GTT strategy has its linear SVM classifier. For a
iven data set. GTT-HYB selects the strategy which has the largest
argin. In this example, GTT-PMI is selected since it has maximal
eparation. And the pseudo procedure of GTT-HYB is described in
lgorithm 2.

.5. Complexity of GTT decomposition

Let X be a d-mode input tensor and t = |X | indicates the
umber of non-zero entries in data set. Let also ni denote the size
f mode di and n denote the average mode size.
Guidance Step. The time complexities for the various strate-

ies are as follows:

• GTT-AMI makes a pass over t data and for each it computes
its contribution to the mutual information among d(d−1)

2
mode pairs; therefore its cost is O

(
t × d(d−1)

2

)
.

2 Note that the two mutual information based strategies, GTT-AMI and GTT-
MI, are hard to separate; since, as we see in Tables 4 and 5 in Section 7,
TT-PMI is overall more accurate among the two, we omit GTT-AMI in hybrid
election.
3 For GTT-HYB, we randomly sample 80% of tensor instances as training data,
nd the rest of 20% of tensor instances will be testing data. In experiments, we
valuate the proposed approaches with testing data.
8

Table 2
Data sets [11].
Data set #Inst. #Modes Data set #Inst. #Modes

Categorical-valued data

dermatology 366 34 flare 1395 11
mushroom 8124 23 house-votes 435 17
soybean 307 36 tic-tac-toe 958 10
breast 699 10 nursery 12960 9
balance-scale 625 5 primary-tumor 339 18
hayes-roth 160 6 lymphography 148 19
car 172 7 spect 267 23
chess 3196 37

Continuous-valued data

iris 5 16 abalone 237 14
wine 206 9

• GTT-PMI also computes mutual information for all pairs of
modes, but then it further computes a minimum path on the
resulting graph with d nodes and d(d−1)

2 edges; therefore its
cost is O

((
t × d(d−1)

2

)
+

( d(d−1)
2 + d log d

))
.

• GTT-NP enumerates d! many sequences and, for each se-
quence computes the corresponding number of variables at
O(d) time — therefore it costs O(d! × d).
• GTT-IE requires one pass over the entire data for computing

all of the mode entropies — i.e., its cost is O(t).

Note that, as we experimentally show in the next section
(Table 4), the time complexity for statistics collection is negligible
relative to the time needed to decompose the tensor.

Decomposition Step. GTT provides a decomposition order which
is then fed into TT-SVD to obtain the actual decomposition. The
decomposition time complexity is therefore equal to that of TT-
SVD [6], which is O(dnr3) and the number of parameters will be
O(dnr + (d− 2)r3).

. Experimental results

Here, we present experimental evaluations of the proposed
TT strategies.4 Note that (once the decomposition order is se-
ected) the data tensors are decomposed using TT-SVD [6] on a
-core CPU (2.7 GHz each) machine, with 16 GB RAM. And further
ettings are in the following:

ata sets. We use both categorical and continuous valued data
ets in our experiments. Table 2 lists the data sets we use in these
experiments. The data sets are taken from the UCI Machine learn-
ing repository [11], where 15 of them are categorical-valued data
sets and 3 of them are continuous-valued data sets. From each
data set, we extracted randomly selected 3-, 4-, and 5-mode ten-
sor instances (up to 100 each, as allowed by the dimensionality
of the data set). The total number of tensors extracted from these
data sets and used in the experiments is 3632 (categorical-valued
data) and 459 (continuous-valued data).

TT-ranks. Here, we consider two TT-ranks, 3 and 5. As discussed
in Section 3, we assume the target TT-rank is given and fixed for
each mode. While there are several non-parametric decomposi-
tion techniques, such as [27] which can learn also the appropriate
rank, this is outside of the scope of this paper. We leave this to
the future works.

Competitors. We compare five order selection strategies (GTT-
AMI, GTT-PMI, GTT-IE, GTT-NP, GTT-HYB) and a baseline strategy,
ARB, which represents the ‘‘average’’ decomposition performance
of uninformed (i.e. arbitrary) order selection.

4 Our implementation and data sets can be found: https://shorturl.at/DMOSY.
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Table 3
The relative average ranking against ARB for each data set (we normalize average ranking of ARB strategy as 1, and the bold number means the best ranking within
four proposed strategies - the lower, the better) and the percentage improvement in reconstruction error (RE % impr.) against ARB using the GTT-HYB strategy -
he higher, the better. *Inst. weighted average = (# of instances for a data set * Relative average ranking or RE % impr. for a strategy)/(total # of instances).
Data set Relative average ranking RE % impr. using HYB

(Lower, the better) (Higher, the better)

r = 3 r = 5 r = 3 r = 5

IE NP PMI AMI IE NP PMI AMI % impr. % impr.

Categorical-valued Data

balance-scale 0.73 1.03 0.99 0.8 0.73 1.03 0.99 0.80 42% 43%
breast 0.79 1.08 1.02 0.99 0.82 1.09 0.99 0.97 6% 7%
car 1.24 0.90 1.02 0.69 1.26 1.23 1.03 0.70 −4% 1%
chess 0.88 0.97 1.01 0.89 0.86 0.97 1.01 0.88 −1% −3%
dermatology 0.85 0.93 1.02 1.11 0.88 0.95 1.00 1.12 3% 4%
flare 0.92 0.89 0.85 1.18 0.94 0.92 0.84 1.17 4% 6%
hayes-roth 0.75 0.72 0.75 0.67 0.77 0.70 0.77 0.69 14% 7%
house_votes 0.96 1.03 0.89 1.18 0.93 1.04 0.89 1.16 −8% −6%
lymphography 0.73 0.93 1.01 0.99 0.74 0.96 1.00 1.02 6% 5%
mushroom 0.92 0.87 0.82 1.10 1.02 0.78 0.86 1.12 3% 2%
nursery 0.90 0.76 0.92 0.72 0.94 0.80 0.93 0.69 10% 7%
primary-tumor 0.94 0.68 0.87 0.91 0.98 0.62 0.83 0.90 9% 12%
soybean 0.84 0.91 0.95 1.05 0.87 0.96 0.93 1.02 5% 3%
spect 0.97 1.00 0.92 0.91 0.97 1.00 0.91 0.90 8% 10%
tic-tac-toe 0.70 1.05 0.95 1.02 0.70 1.05 0.94 1.01 7% 17%

Average 0.87 0.92 0.93 0.95 0.89 0.94 0.93 0.94 7% 8%

*Inst. weighted 0.86 0.90 0.93 0.96 0.88 0.91 0.92 0.96 6% 7%
Average
G

Table 4
Average reconstruction error, rate of improvement against arbitrary selection
(ARB) and average decomposition time.
Method Average

Reconstruction Error
Rate of
Improvement

Avg. Dec. Time

(Lower, the better) (Higher, the better) (ms)

r = 3 r = 5 r = 3 r = 5 r = 3 r = 5

ARB 5.16 5.33 – – 82.9 85.3

IE 4.90 5.07 4.9% 5.0% 78.6 81.8
NP 5.05 5.30 2.0% 0.7% 84.4 82.5
PMI 4.95 5.13 4.0% 3.9% 81.5 84.3
AMI 4.98 5.19 3.4% 2.7% 82.1 82.3

HYB 4.86 5.01 5.8% 6.1% 80.7 82.3

7.1. Evaluations for categorical-valued data sets

Evaluation criteria. For accuracy, we adapt the reconstruction
error introduced in Section 3. We report and compare aver-
age reconstruction errors for each strategy and the percentage
improvement over ARB:

• Given a d-mode tensor, we enumerate ALL (d!) permutations
and compute error for each permutation.
• We use the mean of all these d! reconstruction errors as the

(average) error for arbitrary selection, ARB.

In addition to the absolute values of reconstruction errors, we also
report percentages of decompositions with better than (B) and
worse than (W ) the average ranking by arbitrary selection, ARB.

e further report the ratio gain = B/W — the value of gain in-
icates how well a given strategy promotes good decomposition,
hile avoiding the bad ones.
We also report the average decomposition times for the de-

omposition orders selected by the various strategies.

.1.1. Evaluations and analysis
ccuracy. In Table 3, we first list the relative average ranking

for each proposed strategy against ARB (lower, the better), as we
can see, the best single strategy can vary from data set to data

set — this motivates the need for a hybrid strategy (GTT-HYB)

9

Table 5
Percentages of decompositions with better than (B) and worse than (W ) the rank
of decomposition returned on average by an uniformed, arbitrary ARB selection
strategy).

Method r = 3 r = 5

B W gain B W gain

IE 55.0 33.0 1.7 54.0 35.0 1.5
NP 36.0 25.0 1.4 35.0 26.0 1.4
PMI 47.0 31.0 1.5 47.0 32.0 1.5
AMI 45.0 42.0 1.1 45.0 42.0 1.1
HYB 50.0 26.0 2.0 51.0 24.0 2.1

to select an effective combined strategy. As shown in Table 3,
TT-HYB provides improvements for all data set except the car,

and house_votes data sets. To get a more general view of the
benefit of proposed strategies, in Table 4, we aggregate all data
sets and report average reconstruction errors and percentage of
improvements against the baseline (ARB). As we see in the table,
all proposed GTT strategies improve reconstruction performance
against ARB, with GTT-IE providing the highest improvement
among the single criterion strategies. The table also shows that
the hybrid strategy (GTT-HYB, described in Section 6.4) provides
the highest overall improvement in accuracy. Table 3 also depicts
the percentage improvement of reconstruction error (RE) against
ARB using the GTT-HYB strategy for each data set, and we further
see that the proposed hybrid strategy is indeed beneficial for 12
out of 15 of the considered data sets.

Again, with aggregating all data sets, in Table 5, we report
the percentage of tensors for which each strategy returns better
than (B) and worse than (W ) the arbitrary selection, ARB, and
the overall gain (gain = B/W ). As we see, the GTT-IE strategy
provides the largest gain among the four strategies and as before
GTT-HYB strategy provides the best overall gain for both target
tt-ranks.

Note that, among the two mutual information, based strate-
gies, GTT-PMI is more effective than GTT-AMI in terms of both
reconstruction error (Table 4) and gain (Table 5). Therefore, as
reported in Section 6.4, we do not consider GTT-AMI, when con-
structing a hybrid strategy.
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Table 6
Three major contributors to the GTT-IE, GTT-NP, and GTT-PMI strategies (positive
alues indicate positive, negative values indicate negative contribution)
IE σace[3.9]; φace[−2.7]; ρ[−1.9]
NP φlength[3.1]; ρ[−2.0]; σentropy[−1.1]
PMI σace[3.2]; φace[−2.0]; µlength[1.8]

Table 7
The relative average ranking against ARB (lower, the better) between GTT-BEST
and GTT-HYB for each data set.
Dataset TT-rank=3 TT-rank-5

GTT-BEST GTT-HYB GTT-BEST GTT-HYB

balance-scale 0.73 0.73 0.73 0.99
breast 0.52 0.72 0.54 0.73
car 0.63 1.25 0.82 1.15
chess 0.59 0.95 0.59 0.92
dermatology 0.52 0.92 0.52 0.92
flare 0.47 0.71 0.45 0.74
hayes-roth 0.47 0.78 0.46 0.83
house_votes 0.56 0.96 0.53 0.89
lymphography 0.49 0.75 0.51 0.78
mushroom 0.47 0.74 0.48 0.75
nursery 0.42 0.86 0.48 0.94
primary-tumor 0.49 0.69 0.47 0.64
soybean 0.47 0.86 0.47 0.86
spect 0.78 0.97 0.77 0.96
tic-tac-toe 0.64 0.99 0.64 0.87

Average 0.55 0.86 0.56 0.86

Decomposition time. Table 4 reports the average decomposition
imes for different strategies. As we discussed in Section 6.5, the
proposed strategies do not add any overhead to the decomposi-
tion time over arbitrary selection, ARB. In fact, the hybrid strategy,
GTT-HYB, appears to reduce the decomposition time over ARB.
While this is not our focus in this paper, we plan to explore this
further in future work.

Top-contributors to each strategy. In Table 6, we present the top-3
positive and/or negative contributors (among the various statis-
tics considered in Section 5) for the GTT-IE, GTT-NP, and GTT-PMI
strategies:

• For GTT-IE, the two main contributors are σace and φace. This
echos our argument in Section 6.3: GTT-IE prefers that the
entropies of the modes are considered in ascending order and
thus GTT-IE is more effective when the discriminatory power
of ACE is high.
• As discussed in Section 6.1, the number of parameters that

needs to be learned depends on the length of the modes and the
more discriminative the mode length parameter is, the more
effective GTT-NP — this explains the positive contribution of
φlength to the GTT-NP selection criterion.
• For the mutual information based strategy, GTT-PMI, the higher

the spread of ACE, the higher the impact of GTT-PMI. This
confirms our discussion in Section 6.2: mutual information
can be considered as a measure of dependency and, since the
entropy of a mode is fixed, its dependency with the adjacent
mode (mutual information) is constrained by the conditional
entropy between them. Hence, the more the parameter ACE is
(i.e., the larger is the value of σace), the higher the benefits of
GTT-PMI.

Compare with the best strategy within GTT. To further analyze the
performance of GTT, we compare the relative average ranking
against ARB selection strategy between GTT-BEST (select the best
result within GTT-NP, GTT-PMI and GTT-IE) and GTT-HYB. From
the results in Table 7, we can see both GTT-BEST and GTT-HYB
provide better results than ARB — the ‘‘average’’ decomposi-
tion performance of uninformed (i.e. arbitrary) order. However,
 s

10
Table 8
Relative average ranking against ARB selection strategy (lower, the better) for 
continuous-valued data.
tt-rank, r = 3

Statistics Collection Width ARB AMI PMI IE NP HYB

DtS
5 1 1.19 1.42 0.88 1.29 1.04
10 1 1.19 1.43 0.91 1.25 0.97
15 1 1.16 1.44 1.05 1.24 0.99

StD
5 1 0.93 1.02 0.89 1.29 0.82
10 1 0.90 1.04 0.92 1.28 0.86
15 1 0.93 1.07 0.97 1.28 0.84

tt-rank, r = 5

Statistic Collection Width ARB AMI PMI IE NP HYB

DtS
5 1 1.22 1.42 0.93 1.26 1.01
10 1 1.17 1.42 0.96 1.24 0.97
15 1 1.13 1.40 0.95 1.25 1.03

StD
5 1 1.01 1.07 0.85 1.28 0.76
10 1 0.99 1.08 0.87 1.27 0.75
15 1 0.99 1.06 0.90 1.24 0.76

GTT-BEST select decomposition order from the union set of GTT-
NP, GTT-PMI, and GTT-IE, which means, this selection could be
like enumerating all possible decomposition orders. Furthermore,
GTT-BEST triples the computation effort and is not appropriate
for the practical use, while GTT-HYB only needs one-time effort
to train classifiers and then could be applied to most of the data.

7.2. Evaluations for continuous-valued data sets

Here we consider the continuous-valued data sets in Table 2
and evaluate the relative average ranking for each GTT strategy
with various TT-ranks (3 and 5)5 against ARB (lower, the better)
with alternative statistics collection strategies, discretization-then-
statistics (DtS) and statistics-then-discretization (StD). For tensor
encoding, we consider different discretization widths (5, 10, 15)
for equal-width binning in Section 5.1.

As we see in the Table 8, we obtain the best overall results un-
der the StD statistics collection strategy, using GTT-HYB approach
for ordering tensor modes. This indicates that for continuous data,
it is more effective to collect statistics in the continuous domain
and, once the statistics are collected, then, the hybrid tensor-train
guiding strategy is again the most effective approach. Below, we
look at these results in further detail:

Statistics collection strategies. In Table 8, we can see the GTT
strategies with StD have better performance than GTT strategies
with DtS — as expected, this is especially true for entropy-based
GTT strategies (GTT-AMI, GTT-PMI).

It is interesting that GTT-IE has overall better performance
with DtS discretization scenario than StD scenario, we think it
is because GTT-IE only focuses on the order of mode entropy
individually instead of considering the relationships across modes
like GTT-AMI and GTT-PMI. Hence, we believe DtS scenario sim-
plifies the process of determining the order of model entropy
in GTT-IE and results in better performance. However, DtS sce-
nario diminishes the potential benefit from actual entropy for
continuous-valued data, which degrades the performance of GTT-
AMI, GTT-PMI, and also GTT-HYB.

Discretization width. As we see in Table 8, discretization width
has only minimal effect on the results. Especially in StD, data
characteristics are computed before the discretization process;
therefore, the impact of the size of the discretization window is
especially minimal.

5 GTT-HYB is re-trained with continuous-valued data sets under the same
ettings in Section 6.4.
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TT-ranks. As expected, using higher TT-rank generally provides
better decomposition performance than lower TT-ranks — this
is because higher TT-rank means we preserve more informa-
tion during decomposition process. Beyond this, however, we
do not see any significant impact of the TT-rank on the relative
performance of GTT strategies or statistics collection strategies.

8. Conclusion

In this paper, we proposed a novel approach for guiding the
tensor train (GTT) in selecting the decomposition sequence. We
have shown that we can leverage the various characteristics of
the given data set to identify an effective order strategy for both
categorical and continuous data set. In particular, we proposed
three order selection strategies, (a) number of parameters (NP), (b)
aggregate mutual information (AMI, PMI), and (c) inverse entropy
(IE), for guiding the tensor train decomposition sequence and we
have shown that a hybrid (HYB) strategy that combines these
three strategies taking into account the specific characteristics of
the given data set can lead to good decomposition sequences.
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