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Summary 

Prenatal and early-life exposures are known to influence long term health trajectories. Several 

mechanisms are presumed to underlie these associations, among which the most probable and 

the most studied ones are: DNA methylation, the telomere maintenance system and the 

microbiome. 

Since identifying early risk factors and understanding disease etiology are necessary for 

planning preventive health measures and creating targeted interventions, the aim of this thesis 

was to study (1) air pollution exposure and its relation to newborn molecular markers, in 

particular DNA methylation and telomere length (likely mediators in the association between 

early-exposure to air pollution and adverse birth and childhood outcomes) by conducting a 

systematic review to explore potential literature gaps and measuring these molecular markers 

in cord blood from children participants in the Italian birth cohort Piccolipiu and to (2) study 

antibiotic use and presence of vaginal infection in pregnancy, maternal factors known to 

influence offspring’s microbiome and explore their association with preschool obesity in 

children from the Italian birth cohort NINFEA. In both instances, particular importance was 

given to specific gestational windows of susceptibility that might be of particular interest. 

The systematic review provided evidence that air pollutants have the potential to cause 

alterations in DNA methylation, both on global scale and locus specific, and to unstabilise the 

delicate telomere maintenance system. These findings were confirmed in our own analysis in 

cord blood, in particular those relative to locus specific methylation, where we observed 

alterations in CpGs mapped to genes with roles in cell replication, differentiation and 

response to oxidative stress. This thesis underlined the beginning of the pregnancy as a 

particularly sensitive period for exposure to air pollution, when DNA methylation patterns 

are actively remodeling. Telomere length is also very sensitive to DNA damage and, 

similarly to previous studies, we observed indications that PM10 exposure might alter the 

telomere maintenance system, although the confidence intervals were wide. 

With respect to childhood obesity, we observed an association between vaginal infections in 

third trimester and BMI at age of 4, while the association with antibiotics was less 

conclusive. Furthermore, we reported that maternal pre-pregnancy BMI modified the 

association between vaginal infections in the third trimester and obesity at the age of 4 years.  

In conclusion, air pollution during a delicate period in early pregnancy can alter molecular 

markers at birth, that have the potential to leave consequences, years after the exposure. 

Improving air quality, therefore, has the potential to protect and promote health since 

conception. Our observations regarding vaginal infections and antibiotics, point to a potential 

role of the microbiome in childhood obesity, that needs to be further explored. Public health 

measures targeted at individual and societal level should also promote healthy BMI before 

pregnancy, as it seems to be an effect modifier for other common gestational exposures. 

Future studies should try to pinpoint some of the mechanisms between air pollution and/or 

other early risk factors with specific childhood outcomes.  
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Introduction 

1. Developmental Origins of Health and Disease: a conceptual 

framework for understanding disease etiology and prevention 

Today, it is a well-accepted notion among the scientific community that prenatal and early-

life factors influence long-term health trajectories.1 There are public health recommendations 

stemming from such findings that are even common knowledge among the general 

population. However, it was not so long ago when not much thought was given on possible 

long-terms effects of adverse prenatal exposures and the mechanisms underlying them, as it 

was believed that common non-communicable diseases were predominantly determined by 

genetic and lifestyle factors later in life.  

The discovery in the 1960s that prenatal use of the drug thalidomide2 caused a range or birth 

defects, followed by the report that drug diethylstilbestrol (DES)3 increased the risk for 

vaginal cancer years after prenatal exposure to DES, caused a shift towards a greater 

monitoring of the safety of drugs used in pregnancy.4 Around the same time, reports were 

published that pointed out the possible adverse effects of maternal smoking5 and fetal alcohol 

syndrome6 was recognized as a special clinical entity. This meant that for the first time, 

specific lifestyle factors were linked with birth and childhood outcomes. Nevertheless, the 

attention of the scientific community towards prenatal and early-life exposures did not 

change significantly until 1986 when a study by the epidemiologist David Barker was 

published7, where he reported an association between prenatal nutrition and late-onset 

coronary heart disease, unraveling the now well-known relationship between low birth weight 

and later metabolic diseases. Since Barker's initial findings, the results have been replicated 

in diverse populations, such as children conceived during the 1918 flu pandemic8, the 

Chinese Leap Forward9, or the most studied example, children conceived during the Dutch 

Famine10, that presented as well designed, although devastating, human experiments on the 

effects of adversity during pregnancy on adult health. 

The Barker’s theory on the specific mechanism behind these associations was that 

“nutritional, hormonal and metabolic environment afforded by the mother may permanently 

programme the structure and physiology of her offspring”.11 The driving principle behind this 

mechanism was the phenomenon of “developmental plasticity” and “fetal programming”. 

Barker claimed that there is a critical period when a system is plastic and sensitive to the 
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environment (such as the period in utero), followed by loss of plasticity and a fixed 

functional capacity.11 

This theory stimulated lot of interest in the fetal origins of adult disorders. The term “fetal 

programming” has been more recently replaced with the term “early life programming” as it 

was seen that adaptations to environmental insults may occur at different time points during 

prenatal and early postnatal life and they vary by the type, dosage, duration and timing. This 

early life period, from conception to the 2nd year of life, commonly referred to as “the first 

1000 days of life”, is the specific window of susceptibility studied in relation to the Barker’s 

hypothesis, now known as the Developmental Origins of Health and Disease hypothesis, or 

DOHaD1,12, now established as a conceptual framework and a research field in its own right. 

Although the initial studies were based mostly on epidemiological research, the DOHaD 

hypothesis expanded to include studies from various disciplines that integrated 

epidemiological, clinical, molecular and economic data13–16, to name a few, with wade array 

of clinical implication for medical specialties such as gynecology, pediatrics and public 

health, as well as for developmental biology, anthropology, economics and social sciences. 

In the past decades, studies nested within the DOHaD hypothesis revealed that many 

important environmental exposures during early development with a known effect on later 

disease outcomes, are in fact modifiable. For example, recommendations to avoid smoking in 

pregnancy, in addition to globe-wide public health measures to reduce smoking in general, 

came after smoking in pregnancy was consistently associated with wide-array of adverse 

pregnancy and birth outcomes.17–19 The implementation of mandatory food fortification with 

folic acid in some countries and the recommendation that any woman planning to become 

pregnant should consume a folate dietary supplement before and during pregnancy, came 

after multiple studies confirmed that folate supplementation in the periconceptional period 

reduces the risk for neural tube defects.20,21 More recently it was seen that maternal pre-

pregnancy BMI increases the risk of pregnancy complications, adverse birth outcomes and 

childhood obesity, making it an additional critical point of pre-conception counseling.22 

Although, there is still a long way to go, these type of public health interventions were shown 

in the past to be remarkably successful in promoting and protecting the health of families and 

populations, through education and promotion of healthy behavior and by translating research 

findings into public health policies targeted towards changes on individual, as well as societal 

level. 23 



Gestational exposures and their association with newborn molecular markers and early childhood outcomes | 8  

 

DOHaD research underlines that maternal and family circumstances, as well as the 

surrounding environment are of extreme importance during a vulnerable time of intense 

growth and development, such is the period during the first 1000 days of life, with rippling 

effects on health and disease trajectories throughout life course.24 Having data on exposures 

during the first 1000 days of life and knowledge on the potential mechanisms involved is 

therefore essential to improve the health of individuals and plan prevention interventions.24 

The primary candidate mechanisms that might help understand how the environment shapes 

trajectories of health and disease across the lifespan, include the involvement of the 

epigenome (mostly referring to DNA methylation)1, the telomere maintenance system25 and 

the microbiome.26 They are all known to be sensitive to both genetic and early-life 

environmental influences, beginning in utero; are key players in many cellular and metabolic 

functions with particular involvement in growth and development, and their early-life change 

under environmental influence can leave long-lasting molecular fingerprint, possibly 

influencing risk or susceptibility to disease years after the exposure. 

This thesis is focused on two common, but potentially modifiable, gestational exposures:  

1) Air pollution, a ubiquitously present environmental factor, linked with a wide array of 

birth and childhood outcomes. The majority of this thesis will be dedicated to 

studying the association between prenatal and early-life exposure to air pollution and 

newborn molecular markers, in particular DNA methylation and telomere length, 

likely mediators in the association between early-exposure to air pollution and 

adverse birth and childhood outcomes.  

2) Antibiotic use and presence of vaginal infection in pregnancy, maternal factors known 

to influence offspring’s microbiome (a complex system known to influence wide 

array of metabolic functions) and study their association with preschool obesity, 

another important public heath challenge. 

In both instances, particular importance was given to explore specific gestational windows of 

susceptibility that might be of particular interest, based on a priori hypothesis. 
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2. Exposures and outcomes studied within the context of this thesis 

2.1 Studying air pollution exposure within the context of DOHaD 

Air pollution exposure represents one of the main environmental challenges of the 21 

century, with devastating consequences on climate and with alarming implications on public 

health. The latest report from the World Health Organization (WHO), called air pollution 

“the major environmental health threat for children” after estimating that globally 93% of all 

children are exposed to pollutant concentrations higher than the recommended WHO 

guidelines. The ubiquitous presence of air pollution, in both high and middle income 

countries, and the overwhelming evidence of its effect on child’s health27,28, makes acute and 

chronic exposure to elevated levels of air pollutants a global public health emergency.29 

Pregnant women and young children are specifically susceptible to air pollutants. Women’s 

respiratory rate increases during pregnancy to accommodate the new metabolic demands, 

increasing both her own exposure and that of her fetus.30 Air pollution exposure during 

pregnancy may directly affect the fetus, as was seen that ultrafine particulate matter and 

heavy metals, can enter the mother’s bloodstream, cross the placental barrier and reach the 

fetus, affecting growth and development.31,32 As written earlier, the fetal period is 

characterized by accelerated growth and developmental plasticity, making the fetus especially 

vulnerable to environmental stimuli. Air pollution exposure is also known to increase the risk 

for hypertensive disorders in pregnancy, such as pre-eclampsia, indicating that prenatal air 

pollution exposure can have indirect effect of child’s health by affecting maternal health 

during pregnancy.33,34 Young children, on the other hand, are susceptible to the adverse 

effects of air pollution exposure35 due to other physiological, environmental and behavioral 

factors. Children have higher respiratory rate than adults, their organs are still in development 

including their lungs36 and brain37, they spend more time outside and they move closer to the 

ground where some pollutants reach high concentrations. 

There is substantial evidence that links prenatal exposure to air pollution to pregnancy 

complications,34 preterm delivery and low birth weight.33  Both prenatal and postnatal 

exposures were reported to increase the risk for asthma and respiratory diseases38,39, 

metabolic disorders, such as obesity,40 some types of childhood cancers41,42 and some 

neurodevelopmental disorders.43 It is hypothesized that air pollution exerts its main effects on 

human health via production of reactive oxygen species (ROS) and inflammation44,45, that in 

turn can have direct or indirect damaging effect on DNA. Air pollutants are believed to 
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interfere with DNA integrity and stability as well as the response of DNA repair 

mechanisms.46 Furthermore, air pollution was seen to interfere with DNA methylation and 

the telomerase maintenance machinery, responsible for key cellular functions.47 In the past 

decades, many studies on air pollution and DNA methylation and/or telomere length in adults 

confirmed their association48,49, however, until recently the number of studies on gestational 

air pollution exposure and its effect on important molecular markers was limited. Today, due 

to the availability of pollution data and advancements in cost-effective high-though output 

array technologies, this is an extremely active research area that is just beginning to provide 

evidence on the importance of monitoring and improving air pollution quality, due to the 

effect of pollutants on molecular markers measured as early as birth.46,47,50–52 

Air pollution is complex mixture of pollutants that include solid and liquid particles 

suspended in the air (such as particulate matter) and various gases including nitrogen oxides, 

ozone, carbon monoxide and volatile organic compounds. Traditionally, the concentration of 

pollutants in ambient air is assessed using specific instruments at fixed monitoring stations, 

that allow daily measurement of air quality at high spatial resolution. Since it is a requirement 

for each country to monitor air quality indicators, many studies can now use data from fixed 

monitoring stations, or other sources, to study the effects on air pollution on human health.53 

The concentration and type of pollutant (and in the case of particulate matter their chemical 

composition), apart from their specific source, such as industrial or traffic-related pollution, 

are influenced by geographical, seasonal and meteorological factors, as well as background 

photochemical processes in the atmosphere.53 

One of the most commonly measured air pollutant is particulate matter. Particulate matter 

represents air suspended microscopic particles, generated from combustion engines, 

mechanical processes such as construction, power plants, road dust resuspension and wind. 

The risk for many health and disease outcomes, including mortality, are known to increase in 

parallel with the increasing concentrations of particulate matter in atmospheric air. 

Furthermore, effects on health were seen both after short and long-term exposures and there 

does not seem to be any threshold bellow which particulate matter cannot influence human 

health. This lead the International Agency for Research of Cancer (IARC) and the WHO to 

classify particulate matter as Group 1 carcinogen.54 Particulate matter is mostly measures as 

either as PM10, that include particles with a diameter <10 micrometers (μm), or as PM2.5 

measuring fine particles with a diameter < 2.5μm. Since PM10 measures all particles that can 

enter the respiratory tract, by convention including both particles between 2.5 and 10μm and 
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particles measuring < 2.5μm, PM10 is often used as a proxy indicator of overall air pollution 

quality. 55 

Recently, several advanced statistical modelling approaches were developed, that allowed 

researchers to accurately estimate air pollution exposure based on residential/working 

address, by integrating data from fixed monitoring stations, satellite data, as well as other 

characteristics of the area such as meteorological conditions.56–59 These methodological 

advancements allowed studying gestational exposures to air pollutants based solely on 

maternal residential address, rather than using direct exposure assessment methods, that are 

more expensive and time consuming, such as giving mothers personal air monitors or 

estimating pollutant metabolites in urine or other tissues. Furthermore, these models allow 

studying simultaneously both larger and smaller gestational windows of exposure. They also 

have some limitations, such as the potential exposure misclassification that may arise from 

determining exposure solely on residential address without taking into consideration 

individual time activity patterns. 

2.2 Studying exposures linked with childhood obesity within the context of DOHaD 

Childhood obesity is one of the most serious public health challenges of the 21st century due 

to its complex etiology, long-term consequences and high prevalence throughout the globe, 

with trends that plateau in high-income countries, with prevalence remaining relatively high, 

and ever increasing trends in low and middle income countries.60,61 Childhood obesity is a 

public health issue difficult to tackle because it is a complex interplay of many genetic, 

nutritional, behavioral and socio-economic factors. Although there seems to be a strong 

genetic component for adiposity in childhood,62 its increasing prevalence in the last 40 

years60 implies a strong environmental role in the onset of childhood obesity. The last 

decades were marked by many societal changes that included changes in food production and 

marketing, shift towards cheap energy-dense foods and sedentary behaviors, encompassed by 

increased urbanization and exposure to environmental toxins such as air pollution.61,63  

Children are especially susceptible to such obesogenic environments and are heavily 

influenced by the burden of early-onset obesity that many of them carry well into adult life. 64 

Adiposity in childhood is long known to be linked with high blood pressure and cholesterol, 

insulin resistance, asthma, sleep apnea, fatty liver disease, joint problems, musculoskeletal 

pain and precocious puberty, as well as increased risk for diabetes and cardiovascular 
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diseases later in life.65–69 In addition, overweight children often suffer from low self-esteem, 

anxiety and depression, due to higher rates of bulling, social isolation and stigma.70 

The BMI curve in childhood rises in two time points. The first rise starts after birth and peaks 

around the first year of life and then decreases. The second rise in the BMI curve, occurring 

between ages 5 and 7 years, is called “adiposity rebound”.71 Early adiposity rebound, before 

the age of 5, is associated with an increased risk of overweight, and is predictive of obesity in 

adolescence and adulthood,72 as well as with a wide array of metabolic diseases.71,73 Studying 

obesity in preschool children, therefore, is extremely important, since adiposity at that age 

suggests involvement of factors that operate very early in life. Several prenatal factors, such 

as high pre-pregnancy BMI, excess gestational weight gain and maternal tobacco use have 

already been clearly identified as early risk factors for obesity in children.74  

Several studies analyzed prenatal antibiotic exposure in association with childhood obesity.75–

83 The rationale behind studying early-life antibiotic exposure in relation to childhood obesity 

is the ability of the antibiotics to interfere with metabolic pathways, probably though the 

human microbiome (see chapter “The microbiome”), leading to long lasting metabolic 

consequences.84 Antibiotics are among the most commonly prescribed drugs in pregnancy85 

and their use in many circumstances is necessary for timely treatment of infections and 

reducing the risk of pregnancy complications. The antibiotics approved for use during 

pregnancy are considered generally save drugs, apart from limiting side-effects, and are 

commonly prescribed to treat mainly respiratory, ear, nose and throat, urinary, or genital 

infections during pregnancy.86 

The link between antibiotic exposure and metabolic outcomes is not recent. The growth 

promoting effect of antibiotics was known 80 years ago, when farmers noticed that regular 

administration of small doses of antibiotics, will increase growth and weight gain in many 

species of farm animals, increasing their profits.87 This was observed for different classes of 

antibiotics, indicating that the mechanisms might not be related to specific antibiotic type, but 

rather to their overall effect on microbial populations. Importantly, it seems that the effect on 

growth and weigh gain in strongly influenced by the timing of exposure, the earlier in life the 

exposure began, the greater the effect. The significance of timing of exposure indicates that 

antibiotics might interfere with metabolic programming during early development, with 

findings consistent with the DOHaD hypothesis.84,88,89  
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Apart from animal experimental models, the association between antibiotic use in infancy 

and obesity and other markers of metabolic syndrome, was also seen in epidemiological 

studies.84 However, the association between antibiotic exposure during pregnancy and obesity 

in children is not well understood, possibly due to the complex interplay between many 

important factors that exert their effect in this period, with roles difficult to disentangle. Some 

of the studies on this topic reported positive associations between antibiotic exposure in some 

trimesters, or certain types of antibiotics and overweight or obesity, while others studies 

reported null associations.75–83 Most of the studies on antibiotics either used BMI as a 

continuous variable or included children who are underweight in the reference category, 

potentially attenuating the association with overweight/obesity. Furthermore, women 

undergoing cesarean section are typically treated with antibiotics just before or during 

delivery to prevent infections, implying that, studying children born with cesarean section 

together with those born though vaginal delivery might further confound the results. 

Since the first major microbial colonization of the newborn happens during the birthing 

process by bacteria colonizing the maternal vaginal and intestinal microbial communities,90 in 

addition to antibiotics, we decided to study vaginal infections in pregnancy, that similarly to 

antibiotics could ultimately influence early-life metabolic programming.26 Bacterial vaginal 

infections are defined as the presence of pathological microbial strain or as disbalance 

between commensal macrobiotic communities, often accompanied by symptoms such as 

abnormal vaginal discharge.91 

Overgrown bacterial giving rise to vaginal infections during pregnancy, can also invade the in 

utero environment and stimulate an inflammatory cascade that can lead to maternal and fetal 

morbidity26, in particular to increased risk for chorio-amnionitis and premature rupture of the 

membranes and preterm birth92–94, which are all known risk factors for later metabolic 

diseases.95 Vaginal infections and antibiotic use are often intertwined in pregnant women, as 

antibiotic use for other causes can cause vaginal disbalance, while in the same time 

antibiotics are drug of choice for many bacterial vaginal infections. To date, there are no 

studies that explore the possible association between vaginal infections during pregnancy and 

childhood BMI outcomes. 

Identifying modifiable risk factors for obesity in children as early as in pregnancy might have 

long-term beneficial effect on the child's health. Antibiotic use and vaginal infections in 
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pregnancy are one of the most common exposures in pregnancy. Furthermore, both of them 

are believed to strongly influence neonatal gut microbiota.   

3. Mechanism though which early exposures can affect the long-term 

health 

In the following paragraphs, I will provide an introduction into the molecular mechanisms 

that are most likely to underlie the exposure-outcome associations seen within the DOHaD 

hypothesis, that were directly or indirectly studied within this thesis:  

 The epigenome (with focus on DNA methylation) and the telomere maintenance 

system that will be measured in cord blood and studied with relation to air pollution 

exposure 

 The microbiome that will be studied indirectly, by studying two exposures closely 

related to it: antibiotic use and vaginal infections  

I will outline what makes them interesting within the context of the DOHaD hypothesis, as 

well as clarify some specific terminology that will be used throughout the Manuscript. 

Potential windows of susceptibility within the first 1000 days of life that raised some 

hypotheses tested in this thesis will also be underlined.  

3.1 The epigenome  

The epigenome is believed to be one of the key mediators within the framework of DOHaD. 

The term epigenetics (from the Greek prefix “epi” meaning “over”, “outside of”, “around 

of”) was originally conceived in 1940s, by the British developmental biologist, Conrad 

Waddington to describe the existence of mechanisms of inheritance in addition to genetics. 

He claimed that individuals possess a developmental plasticity that is sensitive to 

environmental stimuli.96 Although it was conceived around 40 years prior, the Waddington’s 

definition of epigenetics interestingly overlaps with the Barker’s definition of developmental 

plasticity as “the phenomenon by which one genotype can give rise to a range of different 

physiological or morphological states in response to different environmental conditions 

during development”. In 1990s, after it was seen that changes in DNA methylation can 

influence gene expression, Robin Holiday updated the definition, by saying that epigenetics is 

the temporal and spacial control of gene activity during the development of an organism.97 

Further research into the epigenetic molecular patterns revealed that the same set of genes 

expressed in parent cell is also expressed in daughter cells, in order to maintain cellular 
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identity. This lead to the current definition of epigenetics by Arthur Riggs, that defines it as 

mitotically and/or meiotically heritable changes in gene function that cannot be explained by 

alterations in the sequence of DNA.98  

The most commonly studied mechanism of epigenetic control is the DNA methylation and it 

is the primary candidate mechanism by which early-life conditions may leave stable 

molecular-level alternations with long-term health effects.1 Several prenatal exposures were 

robustly linked with DNA methylation. Maternal smoking in pregnancy was consistently 

associated with newborn methylation of thousands of CpGs in genes relevant for child health 

and development.99–101 A prediction score based on these CpGs was able to accurately assign 

prenatal exposure to smoke 30 years after the exposure.102 Maternal body mass index 

(BMI),103–105 folate levels106,107, glucose concentrations and gestational diabetes108,109, 

hypertensive disorders of the pregnancy110,111 and maternal stress112,113 during pregnancy 

were all reported to influence DNA methylation patterns at birth in more than one study.  

DNA methylation is essential for cell viability, especially during the period studied by 

DOHaD, as we will see later. With the advancement in genome-wide methylation analyses, it 

is now known that the role of DNA methylation at cellular level goes far beyond that of a 

gene expression. DNA methylation is particularly important during early embryonic 

development, where the coordinated expression of gene ensures cell differentiation. The 

stability and mitotic hereditability of the methylation patterns prevents daughters cell to 

regress into an undifferentiated state. DNA methylation plays an important role in sex 

chromosome dosage compensation and the inactivation of one X chromosome in females, the 

suppression of repetitive elements that might lead to genome instability and the coordinated 

expression of imprinted genes necessary for intrauterine growth and development. In order to 

understand what functional consequences can arise from changes in DNA methylation, it is 

pertinent to explain what exactly is DNA methylation, where is it found across the genome 

and how its position can determine its function.114,115 

DNA methylation is the addition of a methyl group to a cytosine base.  It is predominantly 

found at CG dinucleotides i.e. when cytosine (C) is followed by guanine (G) along the DNA 

strand making the so-called CpG site, with the “p” representing the phosphate bond between 

them. The reason why methylation occurs exclusively at CpG dinucleotides is that 

dinucleotides are symmetrical when we look at double stranded DNA. During replication the 

double DNA helix “unzips” and both separated strands serve as templates for new DNA 
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strands. However, after replication, only the “parent” DNA strand will have the methylated 

cytosine, while the new “daughter” strand will not. This is when specific DNA 

methyltransferase enzymes, called DNMT1s, come in play. 116 They are responsible for the 

maintenance of the methylation patterns after replication. They have preference for hemi-

methylated DNA and when they recognize the unmethylated “daughter” strand they lay down 

a methyl group to the unmethylated cytosine and restore the fully methylated CpG site. The 

symmetry of the CG dinucleotide allows methylation to be maintained through cell division 

and makes methylation a stable epigenetic mark. DNA methylation is found at specific places 

across the genome and has different functional consequences depending on both the 

methylation status and the genomic context where it is found.117  

CpG dinucleotides are often found in clusters across the genome, to make the so called CpG 

islands. CpG islands are genomic regions where more CG dinucleotides are found than what 

might be expected by chance. They tend to be found around gene promotors where 

transcription factors bind to initiate gene transcription. The general rule is that CpG islands 

tend to be protected from methylation i.e. hypomethylated.115,118 If the CpG island is 

methylated, this is almost universally associated with long-term gene silencing.119 

Methylation in CpG islands silences gene expression by attracting proteins that repress 

transcription, induce chromatin condensation and prevent transcription factors to bind. Apart 

from promoters of housekeeping genes that are always protected from methylation120 (since 

they are needed for basic cellular functions, and are expressed in all cells under normal and 

pathological conditions), the gene silencing role of DNA methylation shows how a single 

genome can give rise to hundreds of different cell types during embryogenesis.114  

In contrast to CpG islands, the function of DNA methylation in the gene body is still 

somewhat enigmatic, since CpGs in gene bodies are generally, but not exclusively, found to 

be methylated, but they do not seem to be associated with gene silencing. However, it is 

hypothesized that it has some silencing function on cryptic promoters hidden in gene bodies, 

as their activation might attract RNA polymerase to initiate transcription of aberrant peptides 

or interfere with the function of another RNA polymerase loaded on a canonical 

promoter.119,121 Methylation in gene bodies might also be needed to silence cryptic splice 

sites. Splice sites usually surround gene exons (coding gene regions) to mark the place where 

splicing should occur, and are characterized by a specific DNA sequence recognized by the 

splicing machinery. If this sequence, by chance, is found somewhere else in the genome 

(called cryptic splice site) it also needs to be silenced by DNA methylation.119,121 
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The majority of DNA methylation in the genome, however, is not found neither in CpG 

islands nor gene bodies, but rather in repetitive elements. Repetitive elements make up for 

more than 50% of the entire genome. They are repetitive, non-coding sequences of DNA, 

previously called “junk” DNA, but now are known to have an evolutionary function. 122 In 

general, what repetitive elements do is that they make a copy of themselves, “jump” out and 

insert themselves somewhere else in the genome. They can move by using “copy and paste” 

mechanism or “cut and paste” mechanism, depending whether they leave a copy in their 

original position. Although these mobile genetic elements play important roles in shaping 

genomes during evolution, their actions are clearly mutagenic and can lead to genomic 

instability.123 In order to maintain genomic stability, there is a need to silence these repetitive 

elements by DNA methylation.124 To understand the functional consequences of altered DNA 

methylation in CpG islands, intergenic regions and repetitive elements, it is interesting to 

look at DNA methylation patterns in cancer cells. In fact, changes in DNA methylation are 

one of the hallmarks of cancer, where intergenic regions and repetitive elements tend to be 

unmethylated i.e. we see global hypomethylation, indicative of genomic instability. In cancer 

tissues there are also significant changes in CpG islands that induce activation of oncogenes 

and silencing of tumor-suppressor genes.125 

The other two places in early embryo where methylation in necessary are imprinted genes 

and the extra X-chromosome in females. Females have two large X chromosomes and males 

have one X and one smaller Y chromosome. DNA methylation is responsible for the random 

inactivation of one X chromosome in females126 and allows sex to be accurately predicted by 

measuring DNA methylation on the sex chromosomes.127 Failure to inactivate the extra X 

chromosome in female results with early embryonic lethality.128 DNA methylation also 

regulates the expression of imprinted genes, known to be expressed in a parent-of-origin-

specific manner. DNA methylation silences the expression of the allele belonging to the other 

parent. The majority of imprinted genes are involved in embryonic growth and development, 

and the development of placenta, with paternally-expressed genes promoting intra-uterine 

growth and resource allocation, while maternally-expressed genes prevent unnecessary 

metabolic demands on her resources.129,130 

3.1.1. Fetal programming of DNA methylation patterns 

The establishment of DNA methylation patterns in early gestation and their stable 

maintenance throughout life perfectly encapsulates Barker’s definition of “developmental 
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plasticity”: there is a critical period of development when the system is plastic and sensitive 

to the environment (early gestational period), followed by loss of plasticity and a fixed 

functional capacity.11 The zygote, the newly formed cell after fertilization, contains both 

maternal and paternal DNA and therefore all necessary genetic information to form a new 

individual. Unlike the genomic DNA sequence which is directly inherited from the parents, 

the methylation patterns are removed from both maternal and paternal DNA to ensure 

totipotency for the next generation in a process called “epigenetic reprogramming”.114,117 

This process unfolds in several consecutive phases. The first wave of global epigenetic 

changes happens in the pre-implantation period when the embryo passed only though few cell 

replications. This pre-implantation period is characterized with a wave of demethylation. It 

was reported that demethylation of paternal methylation patterns happens very fast and most 

likely involves the active role of DNA methylation enxymes called “erasers”. The erasure of 

the maternal DNA methylation patters happens more slowly and it is believed to be due to 

passive demethylation. DMNT1 enzyme known for the maintenance of methylation patterns 

with preference to hemi-methylated DNA, is translocated to the cytoplasm during this stage 

and therefore maternal methylation patterns are erased passively by being “diluted” slowly 

with each cell replication. It should be noted, the methylation of the parent-of-origin 

imprinted genes is protected from demethylation. It is also possible that other regions such as 

repetitive elements, may also be partially protected from this process.114,115 

The second wave of global methylation changes happens around the time of implantation. At 

this point the entire genome goes through a dramatic wave of de novo methylation. This 

active process is guided by methylation enzymes specifically responsible for de novo 

methylation called DMNT3a-DMNT3c, present in large concentrations in the nuclei of the 

early embryo. CpG islands which regulate many housekeeping genes remain preferentially 

unmethylated. The re-methylation process also provides blanket inactivation of cryptic 

promoters and splicing cites. This wave of re-methylation creates the typical bimodal pattern: 

hypermethylation of CpG sites dispersed throughout the genome that need to be silenced, 

while CpG islands remain hypomethylated. The bimodal pattern created at this stage is then 

maintained and remains largely intact over the next cell divisions.114,115,117 

The third stage of the “epigenetic reprogramming” of the early embryo happens during the 

post-implantation period. The changes are not on global scale, but they include discrete 

changes in the basal methylation patterns. This process corresponds to the initiation of 

embryonal cell differentiation and includes silencing of the pluripotency genes to prevent 



Gestational exposures and their association with newborn molecular markers and early childhood outcomes | 19  

 

regression into an undifferentiated state. Once the new methylation patterns are established, 

they create specific cellular identity and tissue-specific template that is extremely stable and 

generally maintained for the rest of the organism’s life. This is made possible by the re-

introduction of the DMNT1 enzymes responsible for methylation maintenance. Although 

these baseline patterns are established in early life, there are postnatal windows where 

epigenetic patterns might be subdued to further changes in order to respond to new 

requirements, such pubertal changes triggered by exposure to sex-specific hormones.131,132 

The process of “epigenetic reprogramming” is essential for embryonal survival.114,115,117 If 

this ubiquitously important process goes wrong on a large scale, it can result with early 

embryonic lethality. Subtle changes compatible with life are known to exist, and they are 

believed to influence later susceptibility or trigger the emergence of different metabolic, 

immune and neurodevelopmental diseases.1  

3.2 Telomere length maintenance system 

Telomeres, as their names suggest (from the Greek words “telos” and “merοs” translating as 

"end" and "part", respectively) are regions of non-coding repetitive nucleotide sequence 5′-

TTAGGG-3′, that cap the ends of chromosomes and is bound by protective proteins.133 They 

have a major function in maintaining chromosome stability, since the open end of 

chromosomes might be recognized as “broken” DNA, leading to fusion with other DNA 

ends, and/or initiating DNA recombination.133 The second major role of telomeres takes place 

during cell replication. The DNA replication machinery cannot copy completely the DNA all 

the way to the end of the chromosome, so instead of genes being truncated at the end of the 

chromosome, the ends of telomeres are those being shorten with each cell division.133 

Telomeres are also very sensitive to environmental influences, such as oxidative stress. That 

is because telomeric DNA is enriched with G-clustered nucleotides that are more prone to 

oxidative damage than the rest of genome134 and second, the resulting DNA damage cannot 

be resolved since DNA repair enzymes have limited access due to the telomeric protective 

proteins that cover them.133,135 The interest in studying telomeres raised in the last decades, as 

evidence accumulated that telomere shortening is proportionate to age, and that the risk of 

common age-related diseases, as well as mortality risk, increases with shorter telomeres.  

Excessive telomere shortening induces cell senescence and genomic instability, that leads to 

mitochondrial malfunction, activation of pro-inflammatory processes and eventually 

apoptosis.133,136   
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The 2009 Nobel Prize in Physiology or Medicine went to three researchers that discovered 

the existence of the telomerase enzyme, the second key player in the telomerase maintenance 

system.137 The telomerase adds telomere repeat sequence to the 3' end of telomeres 

elongating them. The telomerase is especially active is some cell types such as embryonic 

stem cells, since without the presence of telomerase, the few zygotic cells would not be able 

to pass through many replication cycles in order to become a fetus. In many adult somatic 

cells, with exception of those that need to divide regularly (such as active lymphocytes), the 

level of the telomerase is limited.133,138 

There is strong genetic influence on the telomere maintenance system with hereditability 

estimates going from 30% to 80%.133,139 Many genetic syndromes associated with premature 

aging, exhibit shorter telomeres. Telomeropathies, disorders with mutations in genes that lead 

to defects in the telomere maintenance machinery, also show characteristic signs of aging.140 

On the other hand, genetic determinants for longer telomeres raise the risk for specific cancer 

types and overall cancer mortality.141 This goes in line with findings from several cancer cell 

types where the activity of the telomerase is up-regulated, providing cellular immortality. 

Taking all this into account, it seems that, on genetic level, there is some sort of trade-off 

between lowering the risk for age-related diseases, such as cardiovascular diseases, and 

increasing the risk for some cancers.133,136 Although telomeres shorten with age, reflecting 

both limited cellular replicability and the cumulative effect of oxidative stress throughout life, 

many new evidence does not support the notion that telomere length is a “ticking 

mitotic/replicative clock”, but rather a more complex phenotype.138,142 The telomere length 

and the rate of telomere attrition is known to be variable among adults with the same age and, 

as many other complex phenotypes, telomere length is longitudinally influenced both from 

underlying genetics and the environment. In fact, many studies have confirmed that telomere 

length is strongly influenced by sex, body mass index, diet, physical activity, sleep, socio-

economic adversity, psychologic stress and environmental exposures.133,138,142  

The most used tissue for studying environmental influences on telomere length is peripheral 

blood (or cord blood in neonates).  The telomere length in blood reflects the mean leucocyte 

telomere length, that in turn reflects systemic influences on telomere length in general, as 

well as immune cell senescence, that increase replications during inflammatory responses. 

The latter is important, since systemic inflammation is a hallmark of many non-

communicable diseases, from cardiovascular to metabolic diseases and dementias. 

Furthermore, in some immune cells, such activated T-lymphocytes, the telomerase is still 
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active.143 That is because is necessary to preserve the cell’s ability to proliferate in response 

to external or internal stimuli. However, telomerase levels in T-lymphocytes are not static 

and they decrease in parallel with T-cell differentiation and age.143 This further demonstrates 

that, leucocyte telomere length, at least in early life and adulthood, is actively modeled both 

by genetic and environmental influences. 

3.2.1. Fetal programming of the telomere length 

After it was seen that intrauterine exposures can influence the susceptibility to many non-

communicable disease, it was hypothesized that early programming of the telomere 

maintenance, in addition to epigenetics, may be one of the molecular markers that might 

explain these findings.144 Maternal psychological stress,145–147 maternal vitamin D 

concentration,148 maternal folate levels,149 gestational diabetes150 and pre-pregnancy BMI151 

are all linked with telomere length. Furthermore, in utero exposure to tobacco also seems 

linked with telomere length in a dose response pattern.152  

Telomere length and telomerase activity are known to show early developmental 

plasticity.25,133 This is supported by several findings. First, newborns exhibit variability in 

telomere length, and the degree of variability is comparable to that of adults from a same age, 

indicating that individual variation in both newborn and adult telomere length originates in 

utero.  Second, studies that measured telomere length at several time points, showed that the 

majority of individuals maintained their telomere length ranking, indicating that that telomere 

length at birth may be the principal determinant of telomere length throughout life. Third, 

although the hereditability of the telomeres seems to be high139, the known genetic variants 

known to influence telomere length account only for 2-3% of leucocyte telomere 

variability141. It is possible that heritability estimates may exaggerate the role of genetics, 

since they may also include intrauterine effects, suggesting a considerable role of prenatal 

exposures in the initial setting of telomere length.138  

Telomere length at birth reflects the number of cell divisions (reflected in somatic growth and 

gestational age with preterm newborns having longer telomeres), exposure to oxidative stress 

and the activity of telomerase that hinders telomere shortening.138,153,154 What we know about 

the telomeres and the telomerase maintenance system during the embryonal and fetal period 

comes from limited number of studies. It is believed that during early embryonic 

development all tissues have similar telomere length due to the universal activity of 

telomerase in all cells, that is needed to support embryonal growth.155 An accelerated decline 
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in mean leucocyte telomere length is seen between 27 and 32 gestational weeks consistent 

with the high proliferation rate of hematopoietic cells before 32 gestational weeks.153 Another 

period of significant telomere length shortening is during the first 3 years, that corresponds to 

the high proliferation rate of the immune cells during the process of developing acquired 

immunity.153 After 3-4 years follows a period of relatively constant but moderate loss of 

telomeric repeats.156–158  

3.3 The microbiome 

The human body is host to a vast number of microbes, both commensal, and pathogenic, with 

population that counts around 1013, with 500–1,000 species and 100 times more genes than 

our own human genome, that collectively constitute our microbiota, or most famously known 

the “microbime”, a term used to refer to both microorganisms and their genes.159 While 

bacteria colonize great number of surfaces on human body, such as skin, oral cavity and 

vagina, the majority of bacteria are found within the gastrointestinal tract, where they have 

important role in protection from pathogens, absorption of nutrients from food, synthesis of 

vitamins and enzymes, as well as  the production of short-chain fatty acids, a primary 

products of the breakdown of non-digestible carbohydrates and a major source of energy for 

epithelial cells, pointing to the considerable involvement of the gut microbiome in metabolic 

processes. 159–161 The advancement in technologies for sequencing and studying the 

microbiome, including the International Human Microbiome Consortium, the European 

Commission’s Metagenomics of the Human Intestinal Tract project, the US National 

Institutes of Health’s Human Microbiome Project,159 revealed many previously unknown 

interactions between the host and microbiome and vice versa, with effects on immunity, 

metabolism, and neuroendocrine responses that can modulate energy metabolism, fat 

accumulation, insulin resistance and systemic inflammation.161,162 Studies suggest 

relationships between gut dysbiosis, defined as shift in microbial composition or diversity, 

with many multifactorial diseases such as obesity, cardiovascular diseases, colon cancer, 

inflammatory bowel disease, atopy and diseases such as autism and mood disorders.160–163  

As many other mechanisms implicated in the development of multifactorial diseases, the 

human gut microbiome is influenced by both genetic and environmental factors. It seems that 

the physical architecture of the gut, that is genetically defined, defines the composition of the 

gut microbiome, since within the same species, there is a great similarity of the microbiome. 
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Apart from genetics, diet and lifestyle are implicated as the main reasons behind the human 

inter-individual variation of gut microbiome.  

3.3.1. Programing of the neonatal microbiome  

The development of the gut microbiota begins at birth, when newborns receive much of their 

initial colonizing microbiota. It is believed that there is are critical periods for the 

development of the neonatal and infant microbiome that might have long lasting metabolic 

consequences. These periods are pregnancy, birth, breastfeeding period and introduction of 

solid food.26,164,165  

It is likely that programming of the neonatal microbiome starts in utero. Changes in the 

maternal gut and vaginal microbiome might have an effect on the initial neonatal colonizing 

bacteria, since the first major microbial colonization of the newborn during vaginal delivery 

happens during the birthing process.26,84,164–166 Over the course of a normal, healthy 

pregnancy, the body undergoes though a variety of changes in order to allocate energy and 

increase metabolism to ensure and support the fetal growth. These changes are encompassed 

by changes in the gut microbiota that would allow higher energy extraction from food. In 

fact, when third trimester gut microbiota was transferred to germ-free mice it induced greater 

adiposity and insulin insensitivity compared to first trimester gut microbiota.167,168 Pregnancy 

also induces changes in vaginal microbial communities, towards reducing the overall 

diversity and richness, with a dominance of Lactobacillus species169,170 that protect the 

mother from infections and provides the newborn with bacteria that support growth and 

thriving. Imbalances in this vaginal microbiota during pregnancy, including patterns 

comparable with for vaginal dysbiosis, are linked with negative pregnancy outcomes, such as 

pregnancy loss and preterm birth.171–173 Antibiotics use during pregnancy are known to alter 

the maternal vaginal flora.174   

The second time point where individual’s circumstances might influence neonatal microbiota 

is the mode of delivery.77,175 It was reported that the microbiome of neonates born via vaginal 

delivery had closely resembles their mothers’ vaginal microbiome, that include potentially 

beneficial microbiota such as Lactobacillus, Bifidobacterium, and Bacteroides, while the 

microbiome of neonates born via cesarean section has more similarities with skin 

flora.26,164,165  

The third and fourth time points of intense changes and maturation when the gut microbiota 

undergoes important changes, are the period of breastfeeding and introduction of solid food. 
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Neonates that are breastfed and those fed with milk formula have different gut microbiome 

patterns. This is because neonates, apart from nutrients, though breastmilk, receive healthy 

bacteria, antimicrobial proteins, secretory IgA that has a protective effect against pathogens, 

as well as oligosaccharides and other breastmilk components that support the growth of 

healthy gut bacteria such as Bifidobacterium.176,177 The infant microbiota then undergoes 

maturation and increases in diversity and stability, in correspondence with the correct 

introduction of solid food, resembling the microbiota of adults by the age of three 

years.26,164,165  

In summary, the development of neonatal and infant microbiome is under strong influence of 

factors acting prenatally and during early infancy, that have the potential to influence growth 

trajectories and metabolic programming. 

4. Birth cohort studies within the context of DOHaD 

Historical birth cohorts, as described in the beginning of the Introduction, were the first that 

recognized the importance of the in utero environment on adult health and disease.178 Since 

then, more than half of a century has passed, and there has been an incredible expansion of 

the number of newly established birth cohorts, that by using prospective study design and 

exhaustive data collection addressed previous limitations, such as recall bias and unmeasured 

confounding factors. 5  

Birth cohort studies are a powerful study design because they provide a unique opportunity to 

study numerous exposures that in humans could not be studied in experimental settings, such 

as exposure to early life stressors and adversity, as well as other obstetric, socioeconomic, 

environmental and lifestyle factors that are believed to have an adverse effect on health. The 

detailed follow-up, that in some cohorts passed to second generations participants, allowed 

collecting information on disease and health status though life course. The amount of 

scientific findings that birth cohorts provided in just few last decades is enormous, and their 

contribution to the knowledge on disease etiology is remarkable. Apart from traditional 

methods for data collection in environmental studies, such as questionnaires and 

administrative records linkages, most of the recent birth cohort collect biological samples. 

This, together with the huge advancements in high-throughput techniques, allowed birth 

cohorts to study genetic, epigenetic, metabolic and other “omic” markers, such as those 

studied within this thesis, and their influence on newborn growth and development, childhood 

health, and common complex diseases in adulthood. 
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Despite the advantages related to study design, the establishment and follow-up of birth 

cohort studies is expensive and many cohorts have now recognized the enormous potential 

that lies in collaborative projects that increase sample size and minimize publication bias.16 

The large sample size in consortia could be exploited to unravel novel risk factors that may 

have passed unnoticed due to small effect estimates, identify populations at risk and study 

mediating factors, capitalizing on already existing quality data. In the past years several 

successful birth cohort consortia were established,13,15,179–181 with different study objectives 

and target research areas, that brought together scientists, health professionals and 

government policy makers with final aim to translate their research findings into public 

health policies acting that might help in health promotion as early as conception. The largest 

consortium is “The LifeCycle project”182 (https://lifecycle-project.eu/) that aims to establish a 

European Union Child Cohort Network that would bring together 40 established birth 

cohorts, providing infrastructure for analysis of harmonized data of more than quarter of a 

million parents and children, opening endless possibilities for future research.  

All data described and analyzed within this thesis are set within the framework of two birth 

cohort studies: Piccolipiù183,184 and NINFEA (Nascita e INFanzia: gli Effetti dell'Ambiente). 

185,186 Both cohorts are set up to investigate exposures acting during pre-natal and early post-

natal life on infant and child health, describe complex interactions between genetic, 

epigenetic, lifestyle and environmental factors and promote infant and child health. The 

overview of data collection of PiccoliPiù is described in Figure 1 and includes baseline and 

follow-up questionnaires completed by the mother with help from a trained professional staff, 

and a biobank that stores maternal and cord blood samples.  

Figure 1. Overview of the data collection in Piccolipiù 
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NINFEA is an internet-based cohort where the mother completes the baseline and follow-up 

questionnaires online, and maternal and child’s saliva are collected during infancy. The 

overview of data collection in NINFEA is presented in Figure 2. Without their rich and 

curated data created by the long-term collaborative effort of many professionals from 

different disciplines and thousands of families, this thesis would not be possible.  

Figure 2. Overview of the data collection in NINFEA 
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Objectives and study hypotheses  

The aim of this thesis was to study common gestational exposures and how they influence 

newborn molecular markers and later childhood outcomes.  

Three important molecular mechanisms that are believed to underlie the exposure-outcome 

associations seen within the DOHaD hypothesis were directly or indirectly studied within this 

thesis: the epigenome (DNA methylation in particular), telomere maintenance system and the 

neonatal microbiome. 

Particular attention was given to assess and identify gestational windows of exposure that 

might be of particular relevance for future health outcomes. 

Study I 

The first study is a systematic review on all published studies on air pollution exposure 

during the first 1000 days of life and changes in somatic cell DNA, particularly DNA 

methylation and telomere length, since (1) they are influenced by the environment, (2) can 

survive cell replications and (3) are key players in biological processes i.e. have the potential 

to influence health across lifetime.  

The aim of the systematic review was to accumulate knowledge on what is already known 

and established in this field, what needs further assessment, and what are potential gaps in 

literature, so we can address, at least some of them in our original investigation.  

Study II 

The second study is an independent study nested within the Italian birth cohort study 

Piccolipiù. The aim of the study was to assess whether PM10 exposure during the gestational 

period can alter overall or locus specific DNA methylation patterns and/or cause alteration in 

the telomere maintenance system in cord blood. Potential windows of vulnerability during 

pregnancy were explored, with particular attention to the beginning of the pregnancy, that we 

believed to be of particular importance for air pollution exposure because it is a period when 

the most active remodeling of the epigenome occurs. 

Study III 

The third study is nested within the Italian birth cohort NINFEA and focuses on the 

relationship between two common gestational exposures linked with the maternal and initial 

neonatal microbiome: antibiotics and vaginal infections, and their association with childhood 

obesity at the age of 4. We focused on exposures during the third trimester of pregnancy 

because we hypothesized that exposures that alter the maternal microbiome closer to the time 

of delivery might be the most relevant ones for obesity risk. 

 

 



Gestational exposures and their association with newborn molecular markers and early childhood outcomes | 39  

 

Study I Exposure to ambient air pollution 

in the first 1000 days of life and alterations 

in the DNA methylation and telomere 

length in children: a systematic review 
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Abstract  

Background. Exposure to air pollution during the first 1000 days of life (from conception to the 2nd 

year of life) might be of particular relevance for long-term child health. Changes in molecular markers 

such as DNA methylation and telomere length could underlie the association between air pollution 

exposure and pollution-related diseases as well as serve as biomarkers for past exposure. The 

objective of this systematic review was to assess the association between air pollution exposure 

during pregnancy and the first two years of life and changes in DNA methylation or telomere length 

in children. 

Methods. PubMed was searched in October 2020 by using terms relative to ambient air pollution 

exposure, DNA methylation, telomere length and the population of interest: mother/child dyads and 

children. Screening and selection of the articles was completed independently by two reviewers. 

Thirty-two articles matched our criteria. The majority of the articles focused on gestational air 

pollution exposure and measured DNA methylation/telomere length in newborn cord blood or 

placental tissue, to study global, candidate-gene or epigenome-wide methylation patterns and/or 

telomere length. The number of studies in children was limited.  

Results. Ambient air pollution exposure during pregnancy was associated with global loss of 

methylation in newborn cord blood and placenta, indicating the beginning of the pregnancy as a 

potential period of susceptibility. Candidate gene and epigenome-wide association studies provided 

evidence that gestational exposure to air pollutants can lead to locus-specific changes in methylation, 

in newborn cord blood and placenta, particularly in genes involved in cellular responses to oxidative 

stress, mitochondrial function, inflammation, growth and early life development. Telomere length 

shortening in newborns and children was seen in relation to gestational pollutant exposure.  

Conclusions. Ambient air pollution during pregnancy is associated with changes in both global and 

locus-specific DNA methylation and with telomere length shortening. Future studies need to test the 

robustness of the association across different populations, to explore potential windows of 

vulnerability and assess the role of the methylation and telomere length as mediators in the association 

between early exposure to ambient air pollutants and specific childhood health outcomes. 
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Introduction 

Air pollution is one of the today’s main environmental and public health challenges in both 

high, and low income countries, with well documented health effects even at low exposure 

levels.1 The period during pregnancy and the first years of life is an important window of 

susceptibility characterized by accelerated growth and developmental plasticity. 

Epidemiological evidence on the effects of exposures during early life lead to the formation 

Developmental Origins of Health and Disease (DOHaD) hypothesis, according to which the 

adaptive responses of the fetus/child to adverse early-life exposures could permanently shape 

the molecular programming and contribute to later disease predisposition.2 

Growing evidence links exposure to air pollutants during early life to adverse pregnancy 

outcomes, including low birth weight and preterm birth,3 reduced lung function, impaired 

neurodevelopment  and susceptibility to later metabolic diseases.4 The biological mechanisms 

that underlie these associations are still not well understood, although studies suggest that one 

mechanism may include changes in somatic cell DNA that (1) are influenced by the 

environment (2) can survive cell replications and (3) have the potential to influence 

biological processes. The most commonly studied biological markers that satisfy these 

criteria are DNA methylation and telomere length.  

DNA methylation is the most well-known epigenetic mechanism that involves adding a 

methyl group to the cytosine (C) base of the DNA when next to the guanine (G) base, 

forming a so called CpG site. The methylation pattern represents a layer of molecular 

information atop of the DNA sequence that has an important role in wide array of functions, 

especially in the early embryonic and fetal development, including cell differentiation, 

regulation of gene expression, imprinting, X-chromosome inactivation and maintenance of 

genome stability.5 The majority of the DNA methylation patterns are established around the 

period of implantation, making the early gestational period a possible window of 

susceptibility.6,7 Telomeres, on the other hand, are nucleoprotein complexes located at the 

end of each chromosome to ensure complete chromosomal replication and prevent genomic 

instability.8 Telomere length normally decreases with each cellular replication and variations 

in telomere length among adults seem to be largely attributed to genetic and environmental 

determinants that start their effect in utero.9–11 Their vulnerability to reactive oxygen species 

makes them a plausible biomarker, not just for age and cellular replicability, but to for overall 
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exposure to oxidative stress and inflammation. Additionally, they may play an important role 

mediating the chronic health effects of early-life air pollution exposure.12–15  

Several systematic reviews16–19 were published on air pollution exposure during the course of 

life and molecular markers, including early life exposure, but they did not include the 

majority of the studies on this topic that have been published only recently.   

Therefore, our aim was to evaluate the association between exposure to air pollutants during 

the 1000 days of life, from conception to 2 years, and changes in the DNA methylation 

patterns and telomere length in children. 

Methods 

To conduct the systematic review, a search strategy was first prepared. It included Medical 

Subject Headings (MESH) terms and keywords, based on our population, exposure and 

outcome of interest, Supplementary Table S1. We focused on most common air pollutants 

measured in atmospheric air such as PM2.5, PM10, polycyclic aromatic hydrocarbons (PAH), 

CO, SO2, NO, NO2, O3, volatile organic compounds, black carbon, elemental or organic 

carbon. The population of interest included mother-child dyads during the gestational period 

and children. The outcomes were DNA methylation and telomere length.  

We limited our search to articles written in English without limitations on the publication 

date. The search was not restricted to specific exposure assessment methods, tissue sample, 

and laboratory methods used to measure the outcomes, in order to assess the methodological 

variability between the selected studies and identify potential gaps in literature. The list of 

eligibility criteria is listed in Table 1. The literature search was conducted in the electronic 

database PubMed, and lastly updated on October, 2020. 

Manual search of the references of the articles selected for full reading and systematic 

reviews previously published on the topic was also performed to identify additional articles 

that could match our selection criteria and one was found. Two investigators (EI and CM) 

conducted the literature search, read all papers and extracted relevant information 

independently. The discrepancies were resolved by consensus.  

From each study that met the eligibility criteria we extracted the following information: study 

design, country of origin and population size, studied pollutants, method for exposure 

assessment, concentration levels of the pollutants, studied molecular marker, laboratory 
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technique used to assess the marker, effect estimates for the major findings, covariates 

considered in the analyses, and relevant results from any additional analyses. 

 

Results 

Study characteristics  

Our search identified 556 articles; 495 were excluded on the basis of the title or the abstract, 

and the remaining 61 articles were selected for full reading. Thirty-two studies20–50 met our 

selection criteria, Figure 3. All of them were ordered according to publication date (ranging 

from 2009 to 2020) and summarized in details in Supplementary Table S2. 

Figure 1. Flow chart 

 

Table 1 Criteria used to assess the eligibility of the articles 

Study exposure  Particulate Matter (PM2.5, PM10), Nitrogen oxides (NO2, NO), Ozone (O3), Carbon 

Monoxide (CO), Sulfur Dioxide (SO2), Volatile Organic Compounds (VOC), Black 

Carbon, Elemental carbon, Organic Carbon, Polycyclic Aromatic Hydrocarbons (PAH) 

Time of exposure Pregnancy, the first 2 years of life 

Outcome(s) DNA Methylation, telomere length  

Population Mother/child dyads, children 

Study design Observational studies on singletons.  

Time frame No time frame 

Other criteria Articles in English. No geographical restrictions. 
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Thirty articles measured gestational exposures to air pollutants and DNA methylation/ 

telomere length in cord blood/newborn blood or placenta. Limited number of studies (n=5) 

included DNA methylation/ telomere length analysis in children in relation to pollutant 

exposure during the DOHaD window.26,27,35,43,48   

The most commonly studied pollutants were particulate matter (PM) (PM2.5 or PM10, 21 

studies), NO2 (10 studies) and PAH (7 studies).  Some studies performed trimester specific 

analyses, other analyzed smaller predefined gestational windows or used distributed-lag 

model to study weekly exposures during pregnancy. Most of the studies used indirect 

methods for exposure assessment based on the residential address. Fewer studies measured 

the exposure by using personal air monitors 41,42,51 or by measuring PAH-DNA adducts28,36 

(cord blood) or PAH metabolites (maternal urine).  

The articles were based on mother-child dyads from different continents, mostly Europe, 

North America and Asia. A number of articles included data from the same birth cohort 

including: eight studies from the ENVIRonmental influence ON early AGEing 

(ENVIRONAGE)25,26,29,33,34,39,40,48, four from the Children’s Health Study (CHS)35,37,48,52, 

four from the Etude de cohorte généraliste, menée en France sur les Déterminants pré et post 

natals précoces du développement psychomoteur et de la santé de l’ENfant (EDEN) 

cohort23,35,43,48, three from Columbia Center for Child’s Environmental Health (CCCEH) 

study41,42,51, three from Chinese cohort from Zhengzhou21,22,45 and two articles from birth 

cohorts enrolled before and after closing of a coal plant in China28,36. Four studies26,35,43,48 

meta-analysed data from multiple European and American birth cohorts. 

We classified each of the thirty-two studies into at least one of the following categories: (1) 

studies of global methylation patterns, (2) studies on candidate-gene methylation that focus 

on  targeted genes of interest, usually with a hypothesized role in the association between 

ambient air pollution exposure and human diseases (3) epigenome-wide association studies 

(EWAS) that used untargeted methylation analysis of thousands of CpGs across the genome 

to discover unknown associations between air pollutants and CpG methylation and (4) 

telomere length studies.  

Twenty-five studies focused on DNA methylation. Of them, ten measured global DNA 

methylation (Table 2) using different methods, including quantifying total genomic 

methylation and measuring the methylation in repetitive elements (RE), such as LINE1 

and/or Alu. In this group we additionally included two studies did not measure global 
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methylation based on traditional methods, but summarized methylation data across all loci 

targeted on the Infinium HumanMethylation450 BeadChip (Illumina450K platform).   This 

platform is mainly used in EWAS studies (Table 4) where it provides a cost-efficient 

measurement of DNA methylation of more than 450 thousand CpGs across the entire 

genome. The CpGs included in the platform account for 2% of the total genomic CpG 

content, but are enriched with potentially relevant CpGs clustered near transcription start sites 

(called CpG islands) and in the body of the majority of human genes. EWAS studies used 

CpG-based, region-based approach (differentially methylated region, DMR analysis) and/ or 

enriched pathway analysis to discover associations between air pollutants and untargeted 

CpGs or regions across the genome. Candidate gene methylation (n=12 studies) was 

estimated either by pyrosequencing or by using CpG data from EWAS studies, Table 3.  

Seven studies analyzed telomere length (Table 5) by using the quantitative polymerase chain 

reaction (qPCR) protocol developed by Cawthon and expressed the telomere length as 

relative T/S ratio.53 

 

Findings in newborn blood, cord blood and placenta 

 

1. Global DNA methylation studies 

Table 2 summarizes the main findings of the studies20–26,28–42,44–50,52 that assessed the link 

between air pollution during pregnancy and global methylation patterns. Most studies 

reported global loss of methylation following increased gestational exposure to PM2.5 and 

PM10, mostly due to exposures in the first trimester 31,4037 Exposure to PAH was also 

associated with decreased global loss of methylation in cord blood.  The exposure to PAH 

was measured in maternal urine only at one-time point (mainly during the third trimester), 

and therefore data on other potential important windows of exposure are lacking.30,36,42 The 

findings regarding O3 and NO2 were less conclusive.37,49  

Table 2. Studies on global DNA methylation 

Author Method Sample  Pollutant  Main findings 

Liu, 2019 LINE1 Cord blood, 

n=258 

PM10, PM2.5 

and PM1 

(ambient air) 

PM10, PM2.5 and PM1 exposure was associated with 

↓LINE1-DNAm. The analyses were conducted only 

for the period between 12 to 20 gestational week, 

previously identified as window of exposure 

associated with preterm birth.  

Ladd-Acosta, 

2019 

 

 

Illumina450K Placenta, 

n=124;  

cord blood  

n=163 

NO2, O3  

(ambient air) 

O3 associated with ↓DNAm at open sea regions (in 

cord blood) and shelf regions (in both cord blood 

and placenta). O3 associated with ↑DNAm at CpG 

islands (in placenta) and shore regions (both cord 

blood and placenta). NO2 associated with ↓DNAm 

in placenta, mostly at CpG islands. 
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2. Candidate genes studies  

Exposure to air pollution was associated with altered methylation (mostly, but not 

exclusively, with gene-promoter hypermethylation) of a number of targeted genes with names 

reported in Table 3. Unfortunately, no gene was analyzed in more than one study.  Briefly, 

exposure to air pollutants (the studied pollutant and analyzed tissue are shown in brackets) 

was associated with altered methylation of several genes involved in pre-eclampsia (NO2; 

placenta)23, circadian rhythm regulation (PM2.5; placenta)25, growth (PM10, NO2, SO2; cord 

blood)22, obesity (PM10, NO2, SO2; cord blood)21, DNA repair and tumor suppression (PM2.5, 

BC; placenta)29, glucocorticoid metabolism (PM10; placenta),31 energy regulation (PM2.5; 

placenta),34 pro-allergic immune responses (PAH; cord blood),41 synthesis of antioxidant 

enzymes (PM2.5, NO2; cord blood),35 and mitochondrial functions (PM2.5, NO2, cord blood, 

placenta)39,45  

 

Abraham, 

2018 

LINE1, Alu,  

Illumina450K 

Placenta, 

n=668 

PM10, NO2  

(ambient air) 

No association, except PM10 exposure the day 

before birth and ↑Alu-DNAm. 

Maghbooli,  

2018 

HPLC Placenta,   

n=92 

PM2.5, PM10  

(ambient air) 

Exposure to PM2.5 and PM10 in T1 positively 

correlated with global DNAm 

Yang, 2017  LINE1, Alu Cord blood, 

n=106 

PAH 

(maternal 

urine) 

PAH (measured only in T3) associated with ↓Alu 

and ↓LINE1-DNAm 

Cai, 2017 LINE1 

 

Placenta,  

n=181 

PM10  

(ambient air) 

PM10 exposure in T1 associated with ↓LINE1-

DNAm, mostly in newborns with FGR 

Lee, 2016 LINE1 Cord blood,  

n=217 

PAH  

(cord blood 

DNA adducts) 

PAH-DNA adducts associated with ↓LINE1-DNAm  

Breton, 2016 LINE1, 

AluYb8 

Newborn 

blood; n=392 

in LINE1, 

n=181 in 

AluYb8 

analyses 

PM2.5, O3, 

PM10, NO2  

(ambient air) 

PM10 and O3 exposure in T1 associated with 

↓LINE1-DNAm. O3 exposure in T3 associated with 

↑LINE1-DNAm 

Janssen, 2013 LC/MS-MS Placenta, 

N=240 

PM2.5 

(ambient air)  

PM2.5 associated with ↓global DNAm, mostly driven 

by exposures in T1 (during implantation) 

Herbstman,  

2012 

ELISA-based Cord blood,  

N=168 

PAH (ambient 

air, maternal 

urine) 

Ambient PAH (measured only in T3) associated 

with ↓global DNAm. 

Abbreviations: DNAm: DNA methylation; T1, T2 and T3: first, second and third trimester, respectively; Illumina450K: Illumina’s Infinium 

HumanMethylationBeadChip; HPLC: High Performance Liquid Chromatography; LC/MS-MS: Liquid chromatography coupled with 
tandem mass spectrometry. ELISA: enzyme-linked immunosorbent assay;  PM: Particulate Matter; PAH: Polycystic Aromatic 

Hydrocarbons. 

Table 3. Studies on candidate gene methylation 

Author Candidate gene Method Sample Pollutant Main findings 

Fang, 2020 GPR61 gene QMS-PCR Cord blood, 

n=568 

PM10, 

NO2, SO2 

(ambient 

air) 

PM10 and SO2 exposure in pregnancy 

was associated with ↓GPR61-DNAm, 

while NO2 exposure with ↑GPR61-

DNAm. 

Zhou, 2019 SOD2 gene QMS-PCR Cord blood, 

n=568 

PM10, 

NO2,  SO2 

(ambient 

air) 

PM10 in T2 associated with ↑DNAm, 

NO2 in T3 with ↓DNAm. 

He, 2018 H19 gene QMS-PCR Cord blood, 

n=527 

PM10, 

NO2,  SO2 

(ambient 

air) 

PM10 and SO2 exposure in pregnancy 

was associated with ↓DNAm in H19 

promoter, while NO2with ↑DNAm. 

Abraham, 

2018 

Genes with 

specific 

expression 

Illumina 

450K 

Placenta, 

n=668 

PM10, 

NO2 

(ambient 

NO2 associated with ↓DNAm in 

ADORA2B, CAPN10 and in PXT1/ 

KCTD20. PM10 associated with 
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3. Epigenome-wide association studies  

Table 4 describes the main findings of the studies that conducted an epigenome wide 

analysis.23,26,35,38,48,49,51,52 The largest study on NO2 exposure meta-analyzed data from 1508 

mother-child dyads from nine separate cohorts from Europe and United States by measuring 

epigenome-wide methylation in cord blood.35 The top three CpGs associated with gestational 

NO2 exposure were mapped to genes important for mitochondrial functions. One of the CpGs 

(cg08973675, in the SLC25A28 gene) showed similar direction of association in an another 

cohort of newborns.49 Gestational NO2 exposure was also associated with placental 

methylation, mainly mapped to genes linked to preeclampsia23 and inflammatory processes. 

49  

Particulate matter exposure in pregnancy was assessed in four epigenome-wide 

studies.23,26,48,52 The largest and most recent study conducted by Gruzieva and colleagues48 

studied cord blood methylation and included information on 1,949 and 1,551 mother-child 

patterns in the 

placenta (18972 

CpGs in total) 

air) ↑DNAm of SLC44A5, ADCK5 and 

TMG6 genes and ↓DNAm in KYNU.  

Nawrot, 

2018 

Circadian 

pathway genes: 

CLOCK, NPAS2, 

BMAL1, CRY1, 

CRY2, PER1, 

PER2, PER3 

pyro Placenta, 

n=407 

PM2.5 

(ambient 

air) 

PM2.5 associated with ↑BMAL1-

DNAm. T1 exposure with ↓CLOCK-

DNAm. T3 exposure with ↑NPAS2 and 

CRY1 and ↓PER2 and PER3 DNAm.  

Lee, 2018 GSTP1 gene  pyro Nasal epi-

thelia at 7 

years, 

n=131 

PM2.5 

(ambient 

air) 

PM2.5 exposure >37 gestational weeks 

associated with ↑DNAm in GSTP1 in 

NE at 7 years. 

Neven, 

2018 

DNA repair and 

tumor suppressor 

genes:APEX1, 

OGG1, PARP1, 

ERCC1, ERCC4, 

p53, DAPK1 

pyro Placenta, 

n=463 

PM2.5, 

BC, NO2 

(ambient 

air) 

PM2.5 associated with ↑DNAm in 

APEX1, OGG1, ERCC4 and p53 and 

with ↓DNAm of DAPK1. BC was 

associated with ↑DNAm in APEX1 and 

ERCC4.  NO2: no associations.  

Gruzieva, 

2017 

Antioxidant and 

inflammatory 

genes (38 genes in 

total, 739 CpGs) 

Illumina 

450K 

Cord blood, 

n=1508 

NO2 

(ambient 

air) 

NO2 exposure in pregnancy was 

associated with ↑DNAm in CAT gene 

and ↓DNAm in TPO gene  

Cai, 2017 Fetal growth 

related genes: 

HSD11B2 and 

NR3C1 

pyro Placenta, 

n=181 

PM10 

(ambient 

air) 

 

Exposure in T1 and T2 associated with 

↑DNAm in HSD11B2 gene 

Saenen,  

2017 

LEP gene  pyro Placenta, 

n=361 

PM2.5 

(ambient 

air) 

PM2.5 exposure in T2 associated with 

↓LEP-DNAm 

Janssen, 

2015 

Mitochondrial 

DNA regions: D-

loop and MT-

RNR1 region 

pyro Placenta, 

n=381 

PM2.5 

(ambient 

air) 

PM2.5 exposure, mostly in T1, was 

associated with ↑mtDNAm in both D-

loop and MT-RNR1 region 

Tang, 2012 Asthma-related 

genes: IFNγ and 

IL4 

BGS Cord blood, 

n=53 

PAH 

(ambient 

air) 

PAH measured in T3 associated with ↑ 

IFNγ promoter DNAm  

Abbreviation: pyro: pyrosequencing; BGS: Bisulfite Genomic Sequencing;  Illumina450K: Illumina’s Infinium HumanMethylation 
BeadChip; QMS-PCR: Quantitative Methylation-Specific-Polymerase Chain Reaction;  DNAm: DNA methylation; PM: Particulate 

Matter; PAH: Polycystic Aromatic Hydrocarbons 
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dyads in the corresponding PM10 and PM2.5 analyses.48 The study reported associations 

between gestational PM10 or PM2.5 exposures and the methylation of 20 CpGs in cord blood. 

The robustness of the associations of the 6 PM10-related CpGs was tested in an independent 

cohort of newborns and only the PM10-related CpG, cg18640183 in the P4HA2 gene showed 

consistent direction of association. (Supplementary Table S3). The region-based analysis 

identified large number of DMRs related to air pollutants, and two PM10-related DMRs in the 

genes H19 and MARCH11 were replicated in newborns. Other two studies on particulate 

matter and DNA methylation in newborns26,52 had smaller sample size and/or were based on 

cohorts already included in the meta-analysis by Gruzieva and colleagues. 

Only one epigenome-wide study estimated PAH exposure.51 The study was published in 2009 

and used a slightly older method to perform unbiased methylation profiling. The top finding 

was the change in methylation of the ACSL3 gene in relation to PAH exposure.  

 

Table 4. Epigenome-wide association studies 

Author Sample  Pollutant Main findings 

Ladd-Acosta, 

2019 

Cord blood, n=163; 

placenta, n=124 

NO2, O3 

(ambient 

air) 

Several DMR associated with NO3 and O3, some of which 

were sex specific. The DMRs in the placenta seemed to be 

tissue-specific, while those reported in cord blood, showed 

similar direction in the placenta.  

Gruzieva, 2019a 

 

Discovery analyses in 

cord/ newborn blood: 

n=1,949 (PM10) and 

n=1,551 (PM2.5). 

Replication analyses 

in cord blood 

(n=688), peripheral 

blood  of 7-9yrs 

(n1=692, n2=525 

n3=901) and 15-16yrs 

(n1=198, n2=903) 

PM2.5, PM10 

(ambient 

air) 

Gestational exposure to ether PM2.4 or PM10 was associated 

with 20 CpGs at birth and hundreds of DMRs. Enriched 

pathways: NOTCH signaling pathway, Rho GTPase cycle, 

neuro-transmitter release cycle, GABA synthesis, release, 

reuptake and degradation. The CpG cg18640183, and two 

DMRs (H19 and MARCH1) showed consistent direction in 

an independent cohort of newborns. Three CpGs cg00905156 

(FAM13A), cg06849931 (NOTCH4) and cg06849931 

(P4HA2) showed consistent association in at least one of the 

independent cohorts of older children aged 7-9.  

Abraham, 2018 Placenta, n=668 PM10, NO2 

(ambient 

air) 

Out of the 4 identified PM10 or NO2-related CpGs, 2 were in 

the ADORA2B gene linked with hypoxia and pre-eclampsia. 

Strongest association was seen after exposures in T2. More 

than 20 DMRs were also identified. 

Gruzieva, 2017a Discovery analyses in 

cord/newborn blood, 

n=1508. Replication 

analyses in peripheral 

blood  of 4 yrs 

(n=733) and 8 yrs 

(n=786) 

NO2 

(ambient 

air) 

Gestational NO2 exposure was associated with 3 CpG sites in 

mitochondria-related genes: cg12283362 (LONP1), 

cg24172570 (HIBADH), and cg08973675 (SLC25A28). 

Enriched pathways: negative regulation of cellular process, 

negative regulation of biological process and integrin-linked 

kinase signaling pathway. The cg08973675 replicated in an 

independent sample of older children.  

Goodrich, 2016 Cord blood, n=22 NOx 

(ambient 

air) 

No CpG passed the FDR threshold. Enriched pathways were 

found related to xenobiotic metabolism, oxygen and gas 

transport, and sensory perception of chemical stimuli  

Perera, 2009 Cord blood, n=22 PAH 

(ambient 

air) 

Top finding was the ACSL3 gene whose association with 

PAH was further confirmed in a slightly larger sample 

(N=53) 
Two studies by Plusquin et al. 2018 and Breton et al. 2016 were excluded from the main summary of the findings since they included 

cohorts included in a meta-analysis by Gruzieva et al. 2019. aThe study included children in their replication analysis. 

All studies, except for Perera et al, 2008 (that used Methylation Sensitive Restriction Fingerprinting), used Illumina’s Infinium 
HumanMethylationBeadChip to assess epigenome wide methylation patterns. Abbreviations: T1, T2 and T3: first, second and third 

trimester, respectively; PAH: Polycystic Aromatic Hydrocarbons 
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4. Telomere length studies 

The association between air pollution exposure in pregnancy and telomere length at birth was 

assessed in seven studies.28,33,43,46,47,50 The main findings are presented in Table 5. The studies 

were generally consistent in reporting an inverse association between gestational exposure to 

air pollutants (mainly PM or PAH) and telomere length in newborn blood and placenta, 

28,33,46,47,50 although there were studies that also reporter longer telomeres in later 

pregnancy.33,50 

Table 5. Telomere length studies 

Author Sample  Pollutant Conclusion 

Lee, 2020 Cord blood, 

n=152 

PM2.5 

(ambient air) 

Exposures during pregnancy was associated with ↓TL, 

mostly due to exposures in mid-gestation between 12-20 

gestational week. 

Clemente, 2019a Peripheral 

blood, 8 yrs; 

n=1396 

NO2, PM2.5  

(ambient air) 

Gestational NO2 exposure was associated with shorter 

TL across all trimesters. 1 year-childhood exposure to 

NO2 and PM2.5 was associated with shorter TL.  

Song, 2019 Cord blood, 

n=743 

 

PM2.5, PM10, 

SO2, CO, NO  

(ambient air) 

Exposures to PM2.5, PM10, CO, and SO2 during T3 were 

related to shorter TL. Associations were stronger in 

males. 

Nie, 2019 Cord blood, 

n=247 

PAH  

(maternal 

urine) 

Association with shorter TL.  

Rosa, 2019 Cord blood, 

n=423 

PM2.5  

(ambient air) 

Exposure during gestational weeks 4-9 associated with 

shorter TL. Exposure during weeks 14-19 and 34-36 

associated with longer TL. Associations were stronger in 

girls. 

Perera, 2018 Cord blood, 

n=225 

PAH   

(ambient air) 

Association with shorter TL.  

Martens, 2017 Cord blood, 

n=698;  

placenta, 

n=660 

PM2.5  

(ambient air) 

Exposure during mid-gestation (weeks 12-25 for cord 

blood and weeks 15-27 for placenta) associated with 

shorter TL. Exposure in late pregnancy (weeks 32-34) 

associated with longer telomeres in cord blood. No 

effect modification by sex. 

All studies used the same method for estimating telomere length (quantitative polymerase chain reaction)  
aThe study was the only one conducted in children. It was also the only study where exposure after pregnancy 

was assessed, in particular, during the first year of life. 

 

Findings in children 

The number of studies that conducted analysis in children is limited. Briefly, an association 

was found between late gestation PM2.5 exposure and nasal epithelia methylation of a 

candidate gene (GSTP1 gene, involved in xenobiotic metabolism) at age 7, with strongest 

effects seen in boys.27 A large meta-analysis on early life air pollution and telomeres included 

more than 1300 8-year old children from six European birth cohort studies reported that 

prenatal exposure and exposure during the first year of life to PM2.5 and NO2 was associated 

with shorted telomeres at age 8.43 There were no studies exploring the association between 

early-life exposure to air pollution and global methylation.  



Gestational exposures and their association with newborn molecular markers and early childhood outcomes | 49  

 

The two large meta-analyses on PM48 and NO2
35 exposure, described previously, tried to 

replicate in several cohorts of older children the association seen in newborns, in order to see 

whether they are stable throughout childhood. The results were inconclusive. Only one NO2-

related CpG cg08973675 in the SLC25A28 gene showed robust association in two cohorts of 

older children aged 4 and 8 years. Out of total 20 CpGs associated with PM10 or PM2.5, none 

showed clear association across different cohorts of older children (6 PM10-related CpGs 

were tested in three cohorts of children aged 7-9 years, and two cohorts of children aged 15-

16 years, while the 14 PM2.5-related CpGs were tested in two cohorts of children aged 7-9 

years and in one cohort of teenagers aged 15-16 years). It should be noted that three PM10 

associated CpGs (cg00905156, cg06849931 and cg06849931 mapped to three genes 

important for respiratory health: FAM13A, NOTCH4 and P4HA2 gene, respectively) showed 

consistent direction in at least one of the three independent cohorts 7-9 year-olds. 

Discussion 

The studies included in this review provided evidence that prenatal exposure to air pollutants 

is linked with global and locus-specific alterations in DNA methylation as well as telomere 

length shortening in newborn cord blood and placenta. Further studies are needed to elucidate 

whether these changes can influence childhood outcomes years after the exposure. The 

number of studies that studied air pollution exposure during the first 1000 days of life by 

measuring DNA methylation or telomere length in older children was limited.  

Global loss of methylation is linked with genomic instability and can predispose to the 

development of human diseases.54 Gestational exposure to air pollutants (PM2.5/10 and PAH) 

was generally associated with global loss of methylation in different cohorts and different 

tissues (placenta and cord/ newborn blood), independently of the exposure assessment 

method and the laboratory method used to measure the global methylation patterns. Some 

studies on PM exposure that conducted trimester-specific analyses, identified the beginning 

of the pregnancy as a potential period of susceptibility.31,37,40 It is plausible that exposures in 

early pregnancy might be strongly associated with global loss of methylation since the period 

around the implantation is the period when the epigenetic reprogramming occurs de novo 

methylation takes place.6 Exposure to air pollutants in such a vulnerable period might 

interfere with the DNA methylation machinery and lead to generalized loss of methylation.55 

Whether these changes persist into childhood is unknown. 
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Air pollution is believed to influence human health through the generation of reactive oxygen 

species, as increased oxidative stress is known to trigger number of redox-sensitive cellular 

signaling pathways.56 Although, the heterogeneity of the published candidate gene studies (all 

studies analyzed different sets of genes with different sets of pollutants in different tissues) 

did not provide enough evidence to draw strong conclusions regarding a specific gene, the 

overall findings suggest that gestational exposure to pollutants can lead to methylation 

changes in cord blood and placenta, in genes involved in key cellular responses to oxidative 

stress,29,35,39,45 and genes with known role in growth, early life development and hypertensive 

disorders of the pregnancy.22,23,31,34  

Epigenome-wide association studies independently tested the association between gestational 

air pollution exposure and more than 400 000 CpGs throughout the genome. This agnostic 

approach allows to identify novel genomic regions associated with the exposure. The 

strongest and most robust associations were seen for CpGs or DMRs mapped to genes with 

roles in mitochondrial35,49,  respiratory functions48 and fetal growth48. The rest of the CpGs 

were mapped to genes with known roles in auto-immunity49, inflammation49, 

inter/intracellular signaling48,49, cell cycle regulation48,49, embryonal development and 

adverse pregnancy outcomes23,48,52. Gestational exposure to PM10 and altered methylation in 

the NOTCH signaling pathway with an important role in embryonal development, while48 

gestational NO2 exposure was associated with altered methylation in pathways that 

downregulate cellular functions and are involved in cell migration, proliferation and 

survival.35  

These findings compliment those from global methylation and candidate gene studies, and 

provide further evidence that gestational air pollution exposure can have an impact on early-

life global and locus-specific methylation patterns. The gestational period, especially early 

pregnancy, is the period when the DNA methylation pattern undergo most dramatic changes: 

active and passive de-methylation of nearly all maternal and paternal patterns, process of 

epigenome-wide re-methylation and, finally, gene-specific changes that initiate embryonal 

cell differentiation.6 Since the majority of these patterns are believed to be largely maintained 

in the next cell replications it is possible that air pollution exposure during this dynamic 

period can leave epigenetic fingerprints that might influence later health and disease 

outcomes. 
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It should be noted however, that the identified CpGs/DMRs/enriched pathways were quite 

heterogeneous between studies and it seems difficult to replicate the EWAS findings across 

different populations. This could be partially explained by pollutant-specific effects that 

trigger different biological cascades, as suggested by the lack of overlap between the top 

NO2-related35 and PM10-related CpGs48 and the different enriched pathways found in the NO2 

and PM10 analyses. Particulate matter- specific effects might be even more difficult to 

replicate due to the possible differences in the source and chemical composition of the 

particulate matter particles in different populations, although this probably is not the major 

cause. In the context of air pollution, environmental mixtures and different confounding 

pattern across study populations may be contributing factors to baseline differences in 

laboratory conditions, unmeasured batch effects and different pre-processing pipelines.57,58 

For example, different studies use different methods of estimating pollutant concentration and 

misclassification of exposure is possible when studying exposure based on residential 

address. Two PM10-related DMRs48 (including the imprinted growth-related gene H19,  that 

showed associations with prenatal PM10 exposure in a previous candidate gene study22) 

showed promising results by replication in an independent cohort of newborns. This could 

mean that future studies should consider expanding the search from single CpG level to 

genomic regions that contain multiple CpGs, or even to epi-signatures based on methylation 

levels of hundreds of CpGs spread across the genome to find patterns predictive of the 

exposure. However, due to the relatively small effect sizes and the variable chemical 

composition of PM, advanced statistical methods would be needed to appropriately model the 

exposure (or the concurrent exposure to multiple pollutants that would better reflect real-life 

exposure), as well as large sample size, in order to detect robust associations on population 

level and/or create scores that could accurately predict early-life exposure to pollution, as was 

previously done with prenatal exposure to smoke.59 Future studies should also assess whether 

the changes seen at birth are stable throughout childhood. Moreover, it is known that 

methylation patterns are tissue-specific. For example, cord blood and placenta are expected to 

have different methylation patterns due to their different biological function and cell 

composition. According to one study49, DMRs identified in cord blood showed consistent 

direction of effect in the placental tissue, while the DMRs identified in placenta seem tissue-

specific. Further studies are needed to confirm these findings.  

Telomere length at birth is a reflection of the complex interplay between genetics, number of 

cell divisions (dependent of both somatic growth and gestational age), exposure to oxidative 
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stress and the counter-regulatory effect of the telomerase.60 Findings from studies included in 

this review indicate that prenatal exposure to air pollution can lead to telomere attrition, as 

seen at birth and in childhood. It is known that the variability in telomere length in adults 

most likely originates in utero and that short telomeres in adults are associated with higher 

risk for chronic-non communicable diseases. Therefore, the possible effect of prenatal 

exposure to air pollution on early telomere maintenance system might not be negligible when 

talking about the lifetime risk of chronic non-communicable diseases.60 Results regarding 

possible windows of exposure during pregnancy and the effect modification by sex are 

unclear. The authors of two studies that reported longer telomeres in late gestation 

hypothesized that prolonged exposure to air pollution might increase activity of the 

telomerase.33,50  

It is known that DNA methylation and the telomere maintenance system are interrelated on 

cellular lever.13,14 This is especially true during the early gestational period. Short telomeres 

in embryonic cells might led to downregulation of the de novo DNA methyl transferases, that 

in turn might induce genomic instability and impair embryonic stem cell differentiation. 

DNA methylation is can also influence telomere length via the regulation of the telomerase 

activity.61,62 

Considering the both DNA methylation and the telomere system are key players in many 

cellular functions, future studies need to assess their potential to leave long-term 

consequences in the context of the fetal origins of health and disease hypothesis. 

Unfortunately, only few studies included in this review analyzed data in relation to some 

specific birth or childhood outcomes. Some of them provided preliminary evidence, that 

global methylation, methylation at specific CpGs and/or genes and telomere length, might 

mediate the association between prenatal exposure to air pollution and birth outcomes31,32, 

childhood respiratory outcomes27,51,52 and neurodevelopmental scores28,47, respectively.  

Conclusion 

Prenatal exposure to air pollution was associated with global loss of methylation, telomere 

shortening and epigenetic alterations mapped to key genes involved in oxidative stress 

response, mitochondrial function, inflammation, fetal growth and development. Additional 

studies are needed to test the robustness of the associations across different populations and 

explore potential windows of vulnerability during pregnancy and early-life, as well as to 
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confirm the role of DNA methylation and telomere length as mediators in the association 

between prenatal and early-life exposure to air pollution and later childhood outcomes. 
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Supplementary Material: Study I 

 

Table S1. PubMed search strategy with keywords used to define the exposure, outcome and the 

population of interest. 

Search date: 2020 October 23rd  # records 

1. Exposure  “Air pollution”[mesh] OR “air pollution”[tiab] OR “air pollutant”[tiab] OR “air 

pollutants”[tiab] OR “Carbon Monoxide”[mesh] OR “sulfur dioxide”[mesh] OR “sulphur 

dioxide”[tiab] OR “SO2”[tiab] OR "Nitrogen Dioxide"[Mesh] OR “nitrogen oxide*” OR 

“NOx”[tiab] OR “NO2”[tiab] OR ozone[mesh] OR ozone[tiab] OR “O3”[tiab] OR 

“Particulate Matter”[mesh] OR “particulate matter”[tiab] OR “PM”[tiab] OR “PM*”[tiab] 

OR particle*[tiab] OR "Polycyclic Aromatic Hydrocarbons"[Mesh] OR “PAH”[tiab] OR 

“Volatile Organic Compounds”[tiab] OR “VOC”[tiab] OR “black carbon”[tiab] OR 

“elemental carbon”[tiab] OR “organic carbon”[tiab] 

1023800 

2. Outcome: “DNA Methylation”[mesh] OR “Telomere Shortening”[mesh] OR “epigenetic 

process”[tiab] OR “DNA methylation”[tiab] OR “Epigenome-Wide”[tiab] OR 

telomere[tiab] OR “CpG”[tiab] OR "Genome-Wide Association Study"[Mesh] OR “gene 

expression”[tiab] 

520273 

3 Population Infant[tiab] OR newborn[tiab] OR toddler[tiab] OR child*[tiab] OR "Child"[Mesh] OR 

"Infant"[Mesh] OR preschool*[tiab] OR young[tiab] OR prenatal[tiab] OR pregnancy[tiab] 

OR conception[tiab] OR birth[tiab] OR perinatal[tiab] OR gestation[tiab] OR fetal[tiab] 

3891838 

4 1 AND 2 AND 3 
809 

5 "Animals"[Mesh] NOT "Humans"[Mesh] 
4748697 

6 4 NOT 5 
555 
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Table S2. List of all studies included in the systematic review, ordered chronologically, with all extracted data. 

 

Author, Country,  

Study population,  

Sample Size 

Pollutant, Exposure assessment 

method; Windows of exposure, 

Exposure levels 

Type of analyses conducted,  

Outcome assessment method,  

Sample type 

Main results and/or effect estimates Covariates Additional 

relevant analyses 

Lee, 2020 

USA 

PRISM cohort 

N=152 

Pollutant: PM2.5 Method: hybrid 

LUR and satellite-based model. 

Windows: whole pregnancy, by 

gestational week. Mean levels: 

8.8μg/m3 

Analysis: TL Methods: qPCR. Sample: 

CB. Effect presented as: change in 

DNAm for 1μg/m3 increase in  PM2.5 (in 

brackets 95%CI) 

PM2.5 exposures during pregnancy was 

associated with ↓TL: −0.29 (95% CI -

0.49 to −0.10). Sensitive period of 

exposure was the period between 12-20 

weeks.  

Maternal age, self-reported 

race/ethnicity, marital 

status, education 

level, lifetime stressors, 

antioxidant intake during 

pregnancy and child sex. 

Children born to 

mothers reporting 

low antioxidant 

intake were most 

vulnerable to  PM2.5 

exposure. 

Feng, 2020 

China, 

Zhengzhou cohort 

N=568 

Pollutant: PM10, NO2, SO2. Method: 
fixed site monitoring stations. 

Windows: whole pregnancy, T1, T2, 

T3. Mean levels (in  μg/m3): 104.6 

for PM10, 45.3 for NO2, 51.8 for SO2 

Analysis: GPR61 gene Methods: QMS-

PCR. Sample: CB. Effect presented as:  
change in DNAm per ??? units increase in 

prenatal exposure (in brackets p-value) 

PM10 and SO2 exposure during 

pregnancy was associated with ↓GPR61-

DNAm: -0.15 (<0.001) and -0.42 

(<0.001), while NO2 exposure with 

↑GPR61-DNAm: 0.40 (<0.001) 

Passive smoking, maternal 

height and weight.  

Adjustment for 

maternal GPR61-

DNAm did not 

change the results. 

Liu, 2019 

China,  

PEOH cohort 

N=258 

Pollutants:  PM10, PM2.5, PM1. 

Method: LUR. Windows: 12th to 20th 

gestational week (only this period 

was assessed; see last column).  

Mean levels (in μg/m3): 49.3 for 

PM10, 32.9 for PM2.5, 28.9 for PM1 

Analysis: LINE1-DNAm. Method: pyro 

Sample: CB. Effect estimates presented 

as: % LINE1-DNAm change for a 10 

μg/m3 increase in exposure (in brackets 

95%CI) 

PM10, PM2.5 and PM1 exposure was 

associated with ↓LINE1-DNAm: -0.51% 

(-0.91 to -0.11), -0.66% (-1.25 to -0.06) 

and -0.67% (-1.28 to -0.06), respectively. 

 

Maternal age, parity, pre-

pregnancy BMI, adverse 

pregnancy history, GD, 

gestational hypertension, 

paternal smoking newborn’s 

sex, GA 

PM2.5 exposure 

between 12th to 20th 

gestational week 

was associated with 

preterm birth. 
Maternal and fetal 

LINE1-DNAm 

might underlie the 

association  with 

preterm birth 

 

Clemente, 2019 

EU countries HELIX 

project  
(birth cohorts:  

BiB, EDEN, INMA, 
MoBa, Rhea, KANC) 
N=1237 for  NO2, 

N=1307 for  PM2.5 

Pollutants: PM2.5, NO2. Method: 

LUR. Windows: whole pregnancy, 

T1, T2, T3, 1st year of life. Mean 

levels (in  μg/m3): 15.1 for  PM2.5, 

25.0 for NO2 for the whole pregnancy 

Analysis: TL. Method qPCR. Sample: 

PB (8yrs). Effect estimates presented 

as: % difference in TL for SD increment 

in exposure, SD=2.6 for PM2.5, SD=13.9 

for NO2. (in brackets 95% CI) 

NO2 exposure during pregnancy was 

associated with ↓TL: -1.5 (-2.8 to -0.2). 

NO2 exposure during the first year of life 

was associated with ↓TL: −1.6 (−2:9, 

−0:4). Suggestive evidence for exposure 

to PM2.5 in the first year of life and ↓TL: 

−1.4 (−2.9 to 0.1). Similar findings across 

trimesters were seen. 

Maternal age, education, 

smoking in pregnancy, 

child’s age, sex, ethnicity, 

BMI, parental smoking at 

8y and qPCR batch 

PM2.5 and NO2 

exposure in the year 

before the sampling 

(8y) was also 

associated with ↓TL 

Zhou, 2019 

China 

Zhengzhou cohort  

N=568 

Pollutants: PM10, SO2, NO2. 

Method: fixed site monitoring 

stations. Windows: whole pregnancy, 

T1, T2, T3. Mean levels (in  μg/m3): 

106.7 for  PM10, 44.2 for NO2.and 

50.1 for SO2, for whole pregnancy 

Analysis: SOD2 gene. Method: QMS-

PCR. Sample: CB. Effect estimates 

presented as: % change in SOD2-DNAm 

for 10μg/m3 increase in exposure (in 

brackets 95%CI) 

PM10 exposure during pregnancy was 

associated with ↑SOD2-DNAm: 2.69% 

(1.99 to 4.17), mostly due to exposures in 

T2.  T 

Maternal age, education, 

pre-pregnancy BMI, 

gestational weight gain, 

family income, smoking, 

folic acid intake, newborn’s 

sex, GA, birth season. 

The found 

association was 

partly mediated by 

maternal SOD2-

DNAm. 

Song, 2019 
China 

Wuhan Children’s 

Hospital cohort 

N=743 

Pollutants: PM2.5, PM10, SO2, CO, 

NO. Method: LUR. Window: T1, 

T2, T3. Mean levels: (in μg/m3): 

around 76 for PM2.5, 140 for PM10, 

16.0 for SO2, 49 NO2, and 998 for CO 

Analysis: TL. Method: qPCR. Sample: 

CB. Effect estimates presented as: 

change in TL for 10 μg/m3 increase in 

exposure to PM2.5, PM10, SO, and a 100 

μg/m3 increase in CO 

Exposure to each of the pollutants was 

associated with ↓TL. The effect estimates 

were: -3.71% (-6.06 to -1.30),  

-3.24% (-5.29 to -1.14), -11.07% (-18.86 

to -2.53) and -3.67% (-6.27 to, -1.00) for 

Maternal age,  education, 

pre-pregnancy BMI, parity, 

passive smokinga, GA, GD,  

hypertensive disorders of 

pregnancy, newborn’s sex, 

Associations were 

stronger in males. 
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 PM2.5, PM10, SO2, NO2, and CO, 

respectively. 

birth weight, birth season 

Nie, 2019 
China  

Taiyuan Mother and 

Child Cohort 

N=247 

Pollutants: PAH. Method: PAH 

metabolites in T3 urine. Window: T3. 

Mean levels (geometric mean, in 

ng/mL): 2-OH Nap=2.412, 1-OH 

Nap=0.647, 2-OH Phe=0.159 

 

Analysis: TL. Method: qPCR. Sample: 

CB. Effect estimates presented as: % 

change in TL for urinary PAH levels in 

the 3rd tertile relative to the 1st tertile (in 

brackets 95%CI) 

Maternal PAH urine metabolites 

associated with ↓TL. 2-OH Nap, 2-OH 

Flu, 9-OH Phe, and 2-OH Phe 

concentrations in the 3rd tertile had 

69.72% (-115.55 to33.51), 31.06% (-

46.31 to -11.49), 23.66% (-40.31 to -2.47) 

and 30.02% (-45.12 to -10.68) reduction 

in TL relative to the 1st tertile, 

respectively. 

Maternal age, pre-

pregnancy BMI, paternal 

age, average monthly 

income, delivery type, 

newborns' sex, GA, birth 

length and head 

circumference 

Mediation analysis 

showed TL could 

explain 21.74% of 

the effect of 2-OH 

Phe on neonatal 

behavioral 

neurological 

assessment score 

 

Gruzieva, 2019 
EU countries, USA. 

PACE consortium 
(Discovery cohorts: 
INMA, GenR, CHS, 

EARLI, PRISM, 

ENVIRONAGE; 
Replication cohorts: 

ALSPAC, 

MeDALL=BAMSE+PI
AMA, HELIX=MoBa, 

EDEN, KAUNAS, BiB) 
Discovery N = 1,949 

Replication: (1)CB  

N=688, (2) 7-9yrs 

N1=692, N2=525, 

N3=901; (3) 15-16yrs 

N1=198, N2=903 

Pollutants: PM2.5, PM10. Method: 

LUR, SPT, hybrid models. Window: 

entire pregnancy. Median levels: 

Varied across cohorts. PM2.5   from 

8.1 to 30.6 µg/m3; PM10 from 17.2 to 

48.5 µg/m3 

Meta-analysis: EWAS, candidate CpGs 

previously related with in utero tobacco 

exposure (total of 6073 CpGs). Method: 

Illumina 450K. Sample: CB, NB, PB (for 

analyses in 6-7yrs, 15-16yrs). Effect 

estimates presented as: increase in 

average IQR of PM10 (5.6) and PM2.5 

(2.0). All presented data passed the FDR 

threshold of 0.05 

EWAS: 6 CpGs associated with PM10 

and 14 CpGs associated with PM2.5. The 

absolute value of the estimates ranged 

from 0.001 to 0.004.  The cg06849931 

was the only that showed consistent 

direction in newborns. 3 CpGs 

cg00905156 (FAM13A), cg06849931 

(NOTCH4) and cg06849931 (P4HA2) 

mapped genes important for respiratory 

health, were replicated in at least one of 

the independent cohorts of older children 

aged 7-9 (although the results were not 

consistent across all cohorts) Two PM10-

related DMRs, H19 and MARCH11, 

replicated in newborns. 

Candidate genes:  no findings 

Child´s gender, maternal 

smoking during pregnancy, 

cohort-specific batch 

indicator(s), and ancestry 

(in CHS). 

 

 

Enriched pathways: 

NOTCH signaling 

pathway, Rho 

GTPase cycle, 

Neuro- transmitter 

ReleaseCycle, 

GABA synthesis, 

release, reuptake 

and degradation 

Ladd-Acosta, 2019 

USA.  

EARLI cohort 

N=163 (CB),  

N=124 (PT) 

Pollutants: NO2, O3. Method:  spatial 

interpolation using IDSW. Window: 

whole pregnancy. Mean levels 

(whole pregnancy, in ppb): 12.3 for 

NO2, 37.7 for O3 

 

 

Analyses: EWAS, global DNAm (mean 

beta value), candidate CpGs from 

Gruzieva et al, 2017. Method: Illumina 

450K. Sample: PT and CB. Effect 

estimates presented as: average 

difference in DMR-DNAm between 

samples in the highest and lowest 

quartiles of exposure, reported as a 

percent (all presented DMR passed the  

FWER threshold of <0.05) 

EWAS:  9 DMRs in associated NO2 

and/or O3. (a) Top findings in CB: 

RNF39 (2 DMRs. 3.8% and -5.6%), 

CYP2E1 (-9.3%), PM20D1 (13.9%)   

(b) Top findings in PT: ZNF442 (-9.1%); 

PTPRH (-0.09%); SLC25A44 (-1.7%); 

F11R (-12.6%); STK38 (-0.7%). Global 

DNAm: O3 associated with ↓DNAm at 

open sea and/or shelf regions and 

↑DNAm in CGI and/or shore regions. 

NO2 associated only with ↓DNAm in CGI 

regions in PT. Candiate CpGs for 

replication (Gruzieva, 2017): 
cg08973675 (pval 0.06) showed 

consistent direction, but smaller 

magnitude of effect. 

SVA used to remove 

unwanted technical and 

biological sources of 

variation 

 

5/ 9 DMRs were 

child-sex specific. 

The DMRs 

identified in cord 

blood also showed 

consistent direction 

of effect in the 

placenta, while 

DMRs identified in 

the placenta appear 

to be tissue-specific. 

Rosa, 2019 

Mexico 

PROGRESS cohort 

N=423 

Pollutant: PM2.5. Method: LUR 

Window: T1, T2, T3. Median levels: 

22.8  μg/m3 

Analyses: TL. Method: qPCR. Sample: 

CB. Effect estimates presented as: % 

change in TL for 10 μg/m3 of PM2.5. 

Exposure in early pregnancy (4-9 weeks) 

associated with ↓TL (approximately -

0.025% shorter for 10 μg/m3 of PM2.5. 

Exposure in weeks 14–19 and 34–36 

Maternal age, passive 

smoking, pre-pregnancy 

BMI, newborn’s sex, GA, 

birth season and batch. 

In analyses 

stratified by sex the 

association between 

PM2.5 and shorter 
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 associated with ↑TL, but with a smaller 

magnitude. 

TL was stronger in 

girls than in boys. 

He, 2018 

China, 

Zhengzhou cohort 

N=527 

Pollutant: PM10, NO2, SO2. 

Method: fixed site monitoring 

stations. Windows: whole pregnancy, 

T1, T2, T3. Mean levels (in  μg/m3): 

104.6 for PM10, 45.3 for NO2, 51.8 

for SO2 

Analysis: H19 gene Methods: QMS-

PCR. Sample: CB. Effect presented as:  

change in DNAm per ??? units increase 

in prenatal exposure 

PM10 and SO2 exposure in pregnancy was 

associated with ↓DNAm in H19 promoter 

(-0.16, p-val 0.001) and H19 DMR (-

0.18, p-val 0.014), respectively; while 

NO2 exposure was associated with 

↑DNAm in H19 promoter. 

Methylation level of 

H19/DMR in maternal 

blood and season of 

conception. 

H19 promoter and 

DMR DNAm does 

not mediate the rela-

tionship between 

pollutant exposure 

and birth size. 

Abraham, 2018 

France 

EDEN cohort  

N=668 

 

Pollutants: PM10, NO2. Method: 

quasi-Gaussian ADMS-Urban. 

Window: whole pregnancy, T1, T2, 

T3, one month before delivery; one 

week before delivery; 1, 2, 3 days 

before delivery. Mean levels, whole 

pregnancy (in μg/m3): 19 for NO2 and 

20 for PM10 

Analyses: EWAS, candidate genes 

specifically expressed or repressed in the 

placenta, global DNAm. Method: 

Illumina 450K (EWAS, candidate gene, 

global DNAm-GAMP analysis), pyro 

(LINE1, Alu). Sample: PT. Effect 

estimates presented as: change in 

DNAm per 10 units increase in prenatal 

exposure (all presented results passed the 

FDR threshold of 0.05) 

Top finding from the candidate genes 

approach and EWAS: Increase in NO2 

in T2 was associated with -0.004 and -

0.005 ↓DNAm of CpGs in the 

ADORA2B gene, linked with hypoxia 

and pre-eclampsia DMR analysis: 27 

DMRs associated with air pollution 

exposure to PM10 or NO2. Global 

DNAm. PM10 1d before birth ↑Alu 

DNAm, suggestive results for exposure in 

T1 and ↓LINE1 and Alu-DNAm, 

Maternal age at delivery 

and end of education, 

parity, pre-pregnancy BMI, 

smoking, season of 

conception, study centre, 

GA, newborn’s sex, 

technical factors (batch, 

plate and chip) and 

estimated cell-type 

proportions 

Temperature 

exposure during T1 

was also associated 

global DNAm. 

Humidity was 

associated with 

DNAm of 2 

CpGs:cg16917193 

and cg16075020 

Maghbooli, 2018 

Iran 

Tehran University 

cohort 

N=92 

Pollutants: PM2.5, PM10. Method: 

fixed site monitoring stations. 

Window: whole pregnancy, T1, T2, 

T3. Mean levels (whole pregnancy, 

in μg/m3): 37.1 for PM2.5, 91.5 for 

PM10. 

Analyses: Global DNAm Method: 

HPLC. Sample: PT. Effect estimates 

presented as: Spearman correlation 

coefficients (PM2.5/PM10 and global 

DNAm) 

Exposure in T1 positively correlated with 

global DNAm:  PM2.5 0.26 (p<0.01) and 

PM10 0.38 (p<.0001) 

 

 

 

Only results from univariate 

analysis were shown 

Mild negative 

correlation between 

global DNAm and 

gene expression of 

SAMe and DNMT-

1α 

Nawrot, 2018 
Belgium 

ENVIRONAGE 

cohort 

N=407  

 

 

Pollutant: PM2.5. Method:  STI 

method in combination with 

dispersion model. Window: whole 

pregnancy, T1, T2, T3 last month of 

pregnancy. Median levels: 16.4μg/m3 

for whole pregnancy 

Analysis: 8 circadian pathway genes: 

CLOCK, NPAS2, BMAL1, CRY1, 

CRY2, PER1, PER2, PER3). Method: 

PYR. Sample: PT. Effect estimates 

presented as:  log-fold change in 

methylation  for an IQR increment in  

PM2.5 (in brackets 95%CI) 

 

Exposure in T1 and T2 was not 

associated with DNAm of the candidate 

genes, except for CLOCK gene in T1 

(−0.59; −0.93 to −0.25). Exposure in T3 

was associated with ↑DNAm in the 

NPAS2 gene (0.16; 0.06 to 0.27), CRY1 

gene (0.59; 0.22 to 0.95), PER2 gene 

(0.36; 0.16 to 0.57), PER3 gene (0.42; 

0.18 to 0.67) and ↓DNAm in PER1 gene 

(−0.51, −0.90 to −0.13). Similar results 

for the last month of pregnancy. 

Maternal age, education, 

parity, ethnicity, smoking 

status, prepregnancy BMI, 

newborn’s sex, GA, season 

at conception, cord blood 

vitamin D, hour or delivery, 

time window-specific 

apparent temperature 

Multi-gene model to 

combine the 

methylation status 

of all genes in the 

Circadian pathway:  

PM2.5 in T1 was 

associated with 

↓DNAm, and 

exposure in T3 with 

↑DNAm. 

Plusquin, 2018 
EU countries, USA.  

ALSPAC, 

ENVIRONAGE, 

INMA, Piccoli-più, 

Rhea cohorts 

N=1235 

Pollutant: PM10. Method: Dispersion 

modeling; LUR, STI method.  

Window: entire pregnancy. Mean 

levels (in μg/m3): ranged from 17.7 to  

59.2 

Meta-analysis: EWAS, candidate CpGs 

(6246 linked with smoking in pregnancy 

and 25 CpGs linked with NO2 exposure 

in the study by Gruzieva, 2017). Method: 

Illumina 450K. Sample: CB. 

EWAS: no CpG passed the FDR 

threshold. Candidate CpGs: no CpG 

passed the FDR threshold (3 CpGs 

previously associated with smoking, 

cg07571337, cg26500033 and  

cg10704395, had the same direction as in 

the original study (padj=0.24) 

Technical variables, 

newborn’s sex, maternal 

smoking during pregnancy, 

and estimated blood cell 

composition 

Longitudinal 

analysis at 3 time 

points (pregnancy, 7 

and 15−17 years):  

PM10 associated 

with one CpG 

(cg21785536), 

enriched pathways 

GABA-ergic 

synapse, p53 and 

NOTCH1 pathway 

Lee, 2018 Pollutant: PM2.5. Method:  hybrid Analysis: GSTP1 gene. Method: pyro. PM2.5 in late pregnancy (>37 gestational Maternal age, education, ↑GSTP1-DNAm 
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USA 

ACCESS cohort 

N=131 

 

spatial temporal method Window: 

whole pregnancy, by gestational 

weeks. Median levels: 11.0µg/m3 

Sample: NE (at age 7). 

 

weeks) associated with  ↑GSTP1-DNAm 

(data shown only in figure) 

child’s age at spirometry 

test, sex, and race/ethnicity 

associated with  

FEV1 at age 7. The 

results were more 

evident in boys. 

Perera, 2018 
China 

Two Tongliang 

cohorts: before and 

after closure of a 

power plant   

N=225 

Pollutant: PAH. Method: PAH-DNA 

adducts in CB. Window: Pregnancy. 

Mean levels (in 10−8 nucleotides): 

0.33 and 0.20 for the first and second 

cohort, respectively 

Analysis: TL. Method: qPCR. Sample: 

CB. Effect estimates presented as: 

change in TL per SD increase in PAH-

DNA cord adduct: SD for the first and 

second cohort was 0.07 and 0.13, 

respectively (in brackets 95% CI) 

 

 

Increase in PAH-DNA adduct was 

associated with ↓TL: −0.019 (-0.032 to -

0.006) 

 

Maternal age, education, 

newborn’s sex, GA and 

cord blood mercury 

TL also associates 

with (ln) BDNF 

(95% CI): 0.167 

(0.092 to 0.242) 

Neven, 2018 
Belgium 

ENVIRONAGE 

cohort 

N=463  

 

 

 

Pollutants: PM2.5, BC, NO2. Method:  

STI in combination with dispersion 

model. Window: whole pregnancy, 

T1, T2, T3. Median levels (in 

µg/m3): 13.6 for PM2.5, 0.9 for BC 

and 18.6 for NO2, for whole 

pregnancy. 

 

Analysis: candidate genes (7 DNA repair 

and tumor suppressor genes: APEX1, 

OGG1, PARP1, ERCC1, ERCC4, p53, 

DAPK1). Method: PYR. Sample: PT. 

Effect estimates presented as:  relative 

% change in DNAm for an IQR 

increment in exposure (in bracket 95% 

CI) 

 

PM2.5 associated with changes in 

methylation of several genes. ↑APEX1: 

9.0% (0.5 to 17.5), ↑OGG1: 13.9% (22.6 

to 5.1), ↑ERCC4: 16.3% (27.2 to 5.4), 

↑p53: 10.6% (16.7 to 4.5) and ↓DAPK1: -

12.9% (-3.5 to -22.4). BC associated with 

↑APEX1: 9.2% (4.1 to 14.2), ↑ERCC4 

27.6% (17.6 to 37.6). NO2: no 

associations, 

Maternal age, education, 

parity, ethnicity, smoking 

status, prepregnancy BMI, 

newborn’s sex, GA, season 

at conception and batch 

effect 

 

 

Association 

between PM2.5 with 

an ↑Alu mutation 

rate 

Yang, 2018 

China 

Tongji Medical 

College Cohort  

N=106 

Pollutant: PAH. Method: PAH 

metabolites in T3 urine. Window: T3. 

Median levels (mg/g creatinine): 6.7 

for 2-OHNa, 10.1 for 1-OHPh 

Analyses: LINE1, Alu DNAm. Method: 

pyro Sample: CB. Effect estimates 

presented as:  % change in DNAm for 

urinary PAH levels in the 3rd tertile 

relative to the 1st tertile (in brackets 

95%CI) 

2-OHNa and 1-OHPh associated with 

↓Alu-DNAm: -1.88% (-3.73 to -0.10%) 

and -2.57% (-4.30 to -0.80%), 

respectively. Similar results for LINE1 

(data not shown). 

Maternal age, pre-

pregnancy BMI, gestational 

weight gain,  parity, 

education, household 

income, passive smokinga, 

newborn’s sexa 

PAH exposure also 

associated with 

birth length. DNAm 

was not a mediator. 

Cai, 2017 

China 

Wenzhou Medical 

College cohort  

N=181  

Pollutant: PM10. Method: fixed site 

monitoring stations. Windows: whole 

pregnancy, T1, T2, T3. Median 

levels (in µg/m³): 62.7, 68.1, 65.3, 

63.5 for T1, T2, T3 and whole 

pregnancy, respectively. 

 

Analysis: LINE1-DNAm, candidate 

genes DNAm (HSD11B2, NR3C1). 

Method: PYR. Sample: PT. Effect 

estimates presented as:  relative 

difference in DNAm for 10 μg/m3 

increase in PM10 (in brackets 95% CI) 

 

PM10 exposure in T1 associated with 

↓LINE1-DNAm in FGR newborns: −1.78 

(−3.35 to −0. 22%).  PM10 in T2 

associated with ↑HSD11B2-DNAm in 

both FGR cases and controls: 1.42 (0.24 

to 2.57). NR3C1: no associations 

Maternal age, education, 

pre-pregnancy BMI, passive 

smokinga, delivery mode, 

newborn’s sex, GA, day and 

month of birth, NO2, SO2. 

Models by trimester also 

adjusted for season and 

PM10 in other trimesters. 

CpGs within LINE1 

and within 

HSD11B2, were 

highly correlated. 

 

Martens, 2017 
Belgium 

ENVIRONAGE 

cohort  

N=641 

 

Pollutant: PM2.5. Method:  SPT 

method in combination with 

dispersion model. Window: whole 

pregnancy, by gestational week. 

Mean weekly levels: 13.4 μg/m3 

 

Analysis: TL. Method: qPCR 

Sample: CB and PT. Effect estimates 

presented as: % change in TL per 

5-μg/m3 increment in PM2.5 (in brackets 

95% CI) 

 

Exposure during pregnancy was 

associated with ↓TL:  -8.8% (-14.1 to 

−3.1%) and -13.2% (−19.3 to −6.7%) for 

CB and PT, respectively.  Strongest 

association in the mid-gestation period 

(weeks 12-25 for cord blood and weeks 

15-27 for placenta). Exposure in late 

pregnancy (from weeks 32-34) associated 

with longer telomeres in cord blood 

Maternal age, BMI, 

smoking status, education, 

parity, pregnancy 

complications, paternal age, 

newborn’s sex, GA, 

ethnicity, date of delivery, 

season of delivery and 

ambient temperature. 

No modification by 

newborn sex for 

cord and placental 

TL 

Saenen, 2017 
Belgium 

ENVIRONAGE 

cohort  

Pollutant: PM2.5. Method:  STI in 

combination with dispersion model. 

Window: T1, T2, T3. Median level 

(in μg/m3): 13.9, 14.6 and 16.9 for 

Analysis: LEP gene. Method: pyro. 

Sample: PT. Effect estimates presented 

as: % change in DNAm for a IQR 

increment (7.5 μg/m3) in PM2.5 (in 

PM2.5 exposure in T2 was associated with 

↓LEP-DNAm:  -1.4% (–2.7 to –0.19%) 

 

 

Maternal age, education, 

parity, ethnicity, smoking 

status, prepregnancy BMI, 

newborn’s sex, GA, season 

LEP DNAm also 

associated with  3-

NTp content, 

marker of oxidative 
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N=361 T1, T2 and T3, respectively. brackets 95% CI) at conception stress. 

Gruzieva, 2017  
EU countries, USA. 

PACE consortium 
(Discovery cohort: 

MeDALL pooled= 
EDEN+INMA, Gen. R, 

CHS, MoBA; 

Replication cohorts: 
MeDALL pooled: 

EDEN+INMA+ 

BAMSE+PIAMA)  
Discovery N=1508 

Replication (1) 4yrs 

N=733 (2)8yrs 

N1=444, N2=342 

Pollutant: NO2 Method: LUR, 

spatial interpolation using IDSW 

Window: entire pregnancy. Median 

levels: Varied across cohorts. Ranged 

from 10.3 to 38.7 µg/m³ 

 

 

Analysis: EWAS, candidate genes (38 

antioxidant and inflammatory genes). 

Method: Illumina 450K (EWAS and 

candidate gene). Sample: CB, PB (4-5y, 

8y). Effect estimates in brackets 

presented as: change in DNAm per 10 

μg/m3 of increase in NO2. All presented 

CpGs passed the FDR threshold > 0.05. 

EWAS: In CB, NO2 was associated with 

3 CpGs: cg12283362 (-0.007), 

cg24172570 (-0.004) and cg08973675 

(0.005) in the LONP1, HIBADH and 

SLC25A28 genes, respectively, all 

involved in mitochondrial functions.  The 

CpG cg08973675 was also associated 

with NO2 in 4 and 8year olds. 

Candidate-genes: NO2 exposure was 

associated with ↑DNAm of the CAT gene 

(0.003 and 0.002 for cg03728580 and 

cg17034036, respectively) and ↓DNAm 

of the TPO gene (-0.003 for 

cg01385533). 

Newborn’s sex, maternal 

smoking during pregnancy, 

cohort-specific batch 

indicator(s), cohort 

indicator (in the pooled 

MeDALL sample set), and 

ancestry (in CHS). 

 

Enriched pathways: 

pathways related to 

negative regulation 

of cellular process, 

and biological 

process, integrin-

linked kinase 

signaling. 

 

NO2 exposure at the 

time of biosampling 

in childhood had a 

impact on CAT and 

TPO expression. 

 

Lee, 2016 

China  

Two Tongliang 

cohorts:  before and 

after closure of a 

power plant 

N=217 

Pollutant: PAH. Method: PAH-

adducts in CB. Window: pregnancy. 

Mean levels (in adducts/108 

nucleotides): 0.33 and 20 for the first 

and second cohort, respectively 

Analysis: LINE1-DNAm. Method: pyro. 

Sample: CB. Effect estimates presented 

as: change in LINE1-DNAm for unit 

increase in lnPAH-DNA adducts (in 

brackets 95%CI) 

 

 

PAH cord adducts associated with 

↓LINE1-DNAm :  -0.009 (-0.019 to -

0.000) 

Maternal age, education, 

household income, 

newborn’s sex a 

 

 

 

 

LINE1-DNAm 

associated with IQ 

WISCscores. but 

was not a mediator  

between PAH-

adducts and IQ. 

Breton, 2016 

USA 

CHS cohort 

N=392 (LINE1),    

N=181 (AluYb8) 

 

 

Pollutants: PM2.5, PM10, NO2, O3 

Method: Spatial interpolation using   

IDSW. Windows: T1, T2 and T3.  

Median levels:  around 25 μg/m3 for  

PM2.5, 40 μg/m3  for PM10, 30 ppb for 

NO2 and 40 ppb for O3 

Analyses: LINE1, AluYb8-DNAm. 

Method: Pyrosequencing. Sample: 

newborn blood spot. Effect estimates 

presented as:  change in DNAm for 2 SD 

change in exposure (in brackets 95% CI) 

 

PM10 in T1 associated with ↓LINE1-

DNAm: -0.66% (–1.22 to –0.09).   

O3 in T1 associated with ↓LINE1-

DNAm: -0.86% (-1.42 to -0.30). 

O3 in T3 associated with ↑LINE1-

DNAm:  0.60% (0.01 to 1.19).  

AluYb8: no associations 

Newborn’s sex, admixture, 

plate, smoking and maternal 

education level 

 

 

Genotype of  

methylatransferase 

genes modified the 

association between 

T1 air pollutants 

and  LINE1-DNAm 

Goodrich, 2016 
South Africa 

MACE cohort  

N=22 

 

Pollutant: NOx Method: LUR. 

Window: whole pregnancy. Mean 

levels. 26.5 ppb 

Analysis: EWAS. Method: Illumina 

450K. Sample: CB 

No single CpGs passed the FDR 

threshold.  

 

Newborn’s sex and GA Enriched pathways: 

pathways related to 

xenobiotic 

metabolism, oxygen 

and gas transport, 

and sensory 

perception of 

chemical stimuli 

Breton, 2016 
USA 

CHS cohort 

 

N=240 for PM10, 

N=185 for PM2.5 

Replication cohort: 

N=280 for PM10, 

N=149 for PM2.5 

Pollutants: PM2.5, PM10. Method: 

spatially interpolation using IDSW. 

Window: T1, T2 and T3.  Median 

levels:  around 25 μg/m3 for  PM2.5, 

40 μg/m3  for PM10 

Analyses: EWAS restricted to promoter 

regions. Method: Illumina 450K + pyro 

for replication. Sample: NB. Effect 

estimates presented as: change in DNAm 

for a 2SD increment in exposure (2SD for   

PM10 exposure were 32.4 and 31.6, 

respectively) 

31 CpGs associated with PM10 or PM2.5 

for exposures mostly in T2 and T3. PM10 

was associated with ↑DNAm of 

cg03579365 (COLEC11) accross 

trimesters, with strongest association seen 

in T3 (β=0.14) and replicated in an 

independent sample from the same 

cohort, showing consistent direction only 

in T1 (β=0.08). 

Adjusted for gender, plate, 

and cell types a 

Some of the 31 loci 

associated with 

PM2.5 and PM10 

were found to be 

associated with 

cardio-respiratory 

outcomes in 

childhood 

Janssen, 2015 Pollutant: PM2.5. Method:  STI Analysis: candidate regions in mtDNAm: PM2.5 during the whole pregnancy was Maternal age, education, MtDNAm mediated 
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Belgium 

ENVIRONAGE 

cohort  

N=381 

 

method in combination with 

dispersion model. Window: whole 

pregnancy, T1, T2, T3. Mean levels: 

16.7μg/m3 

D-loop and MT-RNR1. Method: pyro. 

Sample: PT. Effect estimates presented 

as: absolute change in % mtDNAm for an 

IQR increment in PM2.5 exposure (in 

brackets 95%CI). IGR for T1 was 

7.8μg/m3. 

associated with ↑mtDNAm in both the 

MT-RNR1 region and D-loop. The 

associations were strongest for T1: 1.27% 

(0.23 to 2.32%) and 0.44% (0.12 to 

0.75%) for  MT-RNR1 and D-loop, 

respectively. 

parity, ethnicity, smoking 

status, newborn’s sex, GA, 

season at conception 

54% (MT-RNR1) 

and 27% (D-loop) 

of the inverse 

association between  

PM2.5 and mtDNA 

content. 

Janssen, 2013 

Belgium 

ENVIRONAGE 

cohort  

N=240 

 

Pollutant: PM2.5. Method:  STI 

method. Window: whole pregnancy, 

T1, T2, T3, pre-implantation, 

implantation, implantation range and 

post-implantation. Mean levels: 17.4  

µg/m³ for the whole pregnancy 

Analysis: Global DNAm. Method: 

LC/MS-MS. Sample: PT. Effect 

estimates presented as: absolute change 

in percentage of global DNAm for 

5μg/m3 increase in PM2.5 

 

PM2.5 associated with ↓global DNAm:  

-2.19% (-3.65 to -0.73), mostly due to 

exposures in T1: −2.41% (-3.62 to -1.20) 

and in the implantation range:  −1.08% ( -

1.80 to -0.36) 

Maternal age, education, 

smoking status and parity, 

newborn’s sex, GA, season 

at conception, trimester-

specific apparent 

temperature 

No effect 

modification by 

infant’s sex or birth 

weight. 

Tang, 2012 
USA 

CCCEH cohort  

N=53 

Pollutant: PAH. Method: personal 

air monitors in T3. Window: T3. 

Median levels: 2.3 ng/m3 

Analysis: candidate genes (IFNγ and 

IL4). Method: bisulfite sequencing 

Sample: CB. Effect estimates presented 

as: regression coefficient between lnPAH 

and lnPercent DNAm 

IFNγ region 1: PAH was associated with 

↑DNAm, 1.07 (0.46 to 1.68). 

IFNγ region 2: DNAm ↑ until PAH 

reached 3.5 ng/m3 and then decreased: 

1.15 (0.54 to 1.76) and -0.57 (-1.12 to -

0.02) for the linear and nonlinear spline 

model, respectively. 

Newborn’s sex, ethnicity, 

environmental tobacco 

smoke a, maternal age, 

receipt of public assistance 

Cell line 

experiments: In 

vitro PAH exposure 

↑DNAm of  IFNγ  

promoter and 

↓expression 

Herbstman, 2012 

USA 

CCCEH cohort 

N=164 (N=87 for 

urinary PAH 

metabolites) 

Pollutant: PAH. Method: personal 

air monitors in T3, PAH metabolites 

in T3 urine. Window: T3. Median 

levels: PAH in air (in ng/m3) 2.5 for 

total PAH, 2.6 for pyrene and 0.2 for 

BaP. PAH metabolites in urine (in 

ng/L urine): 1870.2 for 1-OHPh and 

154.1 for 2-OHNa 

Analysis: Global DNAm. Method: 

ELISA-based Sample: CB. Effect 

estimates presented as: regression 

coefficient between lnPAH and lnPercent 

DNAm (in brackets 95%CI) 

 

Total PAH, pyrene and BaP in air 

associated with ↓global DNAm: -0.11 

(0.21 to 0.00); -0.18 (-0.32 to -0.04); -

0.09 (-0.18 to 0.00). PAH metabolites 

showed slightly positive association with 

global DNAm (p values > 0.1) 

Maternal age, ethnicity, 

marital status, education, 

household income, parity, 

newborn’s sex 

 

 

Global DNAm were 

positively 

associated with 

presence of 

detectable PAH 

DNA adducts in CB 

Perera, 2009 

USA 

CCCEH cohort 

Discovery N=20 

Validation: N=56 

(includes the previous 

20 subjects) 

 

Pollutant: PAH. Method: personal 

air monitors in T3. Window: T3. 

Median level: 2.3 ng/m3. 

Analysis: EWAS. Method: MSRF + 

bisulfite GS and QMS-PCR for the 

validation. Sample: CB, PT 

Identified 31 candidates with different 

methylation according to dichotomized 

PAH exposure. 6 candidate genes 

(ACSL3, RAD 21, DUSP22, SCD5, 

SFMBT2 and WWOX) further validated 

with bisulfite GS. Top finding:  

association between ACSL3-DNAm and 

PAH confirmed by MS-PCR: OR= 13.8 

(3.8, 50.2) (2.41 ng/m3 cut point value 

identified with ROC analysis) 

 Association 

between ACSL3 

and asthma: OR = 

3.9 (1.1, 14.3) odds 

of asthma given 

ACSL3 was 

methylated vs 

unmethylated 

Abbreviations: T1, T2 and T3: first, second and third trimester, respectively;  CB: cord blood; PT: placental tissue; EWAS: Epigenome-Wide Association Study,  TL: telomere length; SE: Standard Error; CI: Confidence Intervals; GA: 

Gestational Age; FGR: Fetal Growth Restriction; MSRF: Methylation Sensitive Restriction Fingerprinting; DMR: Differentially Methylated Regions; FWER: Family-Wise Error Rate; FDR: False Discovery Rate,  PAH: Polycystic 

Aromatic Hydrocarbons; GAMP: Global Analysis of Methylation Profiles; ppb: part per billion (equals to 1 µg/L); CGI: CpG Island; IQR: Inter Quintile Range; SVA: Surrogate Variable Analysis; IDSW: Inverse Distance Squared 

Weighting;  ADMS: Atmospheric Dispersion Modeling System; STI: Spatial Temporal Interpolation; mtDNAm: mitochondrial DNA methylation. LUR: Land Use Regression; MSP: Quantitative Methylation-Specific-Polymerase 
Chain Reaction; pyro: pyrosequencing; Illumia450K: Illumina’s Infinium 450K Bead Chip; ELISA:  enzyme linked immunosorbent assay; qPCR: Quantitative Polymerase Chain Reaction; HPLC: High-Pressure Liquid 

Chromatography 
a Only non-smoking women were included in the study 
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Abstract 

Background: Gestational air pollution exposure can cause molecular level alterations, including 

changes in DNA methylation and telomere length shortening, that can survive cell divisions and 

influence later disease susceptibility. We aimed to investigate changes in two molecular markers in 

cord blood in relation to gestational PM10 exposure and explore potential gestational windows of 

susceptibility.  

Methods: We measured cord blood epigenome-wide DNA methylation (N=384) and telomere length 

(N=500) in children of the Italian birth cohort Piccoli Più using the Illumina’s Infinium Methylation 

EPIC BeadChip and qPCR, respectively.  PM10 exposure levels were estimated for different 

gestational periods based on maternal residential address, using advanced methods based on satellite 

data with particular interest in exposures in the beginning of the pregnancy. 

Results: The level of PM10 exposure during the implantation and post-implantation period was 

associated with variation in DNA methylation of more than 100 unique CpGs, mapped to genes with 

relevant functions in cell replication, differentiation and response to environmental stressors. We were 

able to test half of the CpGs in an independent subsample from the same cohort and Six CpGs showed 

robust associations. There was also suggestive evidence that PM10 exposure in early pregnancy is 

related to shorter offspring cord blood telomeres. Second trimester PM10 exposure was associated with 

CpG island hypomethylation. 

Conclusions: The beginning of the pregnancy seems to be a particularly important PM10 exposure 

window that should be accounted for in future analyses. DNA methylation and telomere length are 

fundamental regulators of cellular processes during early life, and their alterations could have major 

implications for later disease susceptibility. 
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Introduction 

Environmental exposures during pregnancy can cause changes at molecular level that can 

survive cell divisions and potentially influence the cellular regulation of many biological and 

genetic processes.1–4 Several studies have reported an association between exposure to 

ambient air pollutants during pregnancy and global5–11 or locus-specific changes in DNA 

methylation12–16 as well as telomere length shortening in newborns.17–22 These findings are of 

relevance considering today’s ubiquitous presence of ambient air pollutants and the potential 

implications for health across the lifespan after adverse exposures during intrauterine life.23  

DNA methylation is an epigenetic control mechanism essential for normal cell function. 

During early gestation DNA methylation coordinates cell differentiation, sex chromosome 

dosage compensation, expression of imprinted genes and repression of retrotransposons that 

might influence genome stability.24,25 Telomeres, on the other hand, are repetitive nucleotide 

sequences at the end of chromosomes that ensure complete chromosomal replication and 

progressively shorten with each cell division.24 Short telomeres are considered a risk factor 

for age-related diseases and, since they are sensitive to oxidative stress, a potential biomarker 

for cumulative exposure.26  

The early pregnancy period is of particular interest because during this time, methylation 

patterns undergo dramatic changes to establish the baseline methylation patterns that will 

largely maintain intact throughout life.24 However, most studies on global5,6,8,9 or epigenome-

wide methylation patterns12–16,27 either analyzed trimester specific exposure or averaged the 

pollutant concentrations across the entire pregnancy. Only one study analyzed smaller 

windows of exposure and reported that air pollution exposure during the implantation period 

was strongly associated with global methylation loss.11  

Telomere length at birth is shaped by genetics, environmental exposures, number of cell 

divisions (which in turn are related to growth and gestational age), and the counter-regulatory 

effect of telomerase. Similar to DNA methylation, the initial in utero setting of the telomere 

system is particularly important for its long-term effects.2 Previous studies on telomere length 

that analyzed trimester-specific18,19 or weekly17,21 exposures during gestation, showed overall 

inconclusive findings regarding potential susceptibility windows.  

Our objective was to study overall and locus-specific changes in umbilical cord blood DNA 

methylation and telomere length in relation to maternal exposure to PM10 (particulate matter 

< 10μm) in specific time widows during pregnancy, with particular focus on the beginning of 
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the pregnancy. By studying two molecular markers sensitive to environmental exposures, we 

aimed to capture different cellular responses to such stressors that might act as indicators for 

past exposure and/or predictors for future disease risk trajectories.  

Methods 

1. Study population 

Piccolipiù is a multicentric Italian birth cohort set up to investigate the effects of exposures 

acting during pre-natal and early post-natal life on infant and child health, describe complex 

interactions between genetic, epigenetic, lifestyle and environmental factors and promote 

infant and child health.28 Between 2011 and 2015, 3,358 mother-child pairs were recruited in 

five Italian centers (Turin, Trieste, Florence, Viareggio and Rome). Pregnant women with 

singleton pregnancy were eligible for inclusion if they were at least 18 years old, were 

scheduled to give birth in one of the selected units participating in the study, had residence in 

the catchment area of the maternity center, ability to fill out the informed consent and the 

questionnaire in Italian and had a telephone number to be reached at. Ethical approvals were 

obtained from the Ethics committees of the Local Health Unit Roma E (management center), 

of the Istituto Superiore di Sanità (National Institute of Public Health) and of each local 

center. All parents provided written informed consent. Information on parents and children 

was collected using questionnaires and medical examinations at birth and at the follow up 

visits.  At recruitment, women completed a baseline questionnaire including information on 

several sociodemographic, lifestyle, environmental and medical factors. Follow-up 

information through questionnaires is also collected at 6, 12 months and when children turned 

2, 4 and 6 years after delivery. For each newborn, whole blood was withdrawn from cord 

vessels and collected in a tube with EDTA, fractionated in buffy coat, plasma and 

erythrocytes and stored in a bio-bank at -80 °C. 

2. Air pollution exposure assessment 

Daily PM10 concentrations were estimated at 1-km2 grid using the Random Forest (RF) 

method, as described in details elsewhere.29 Briefly, the RF method combined data from PM 

monitoring sites and satellites with spatial and spatio-temporal predictors.  

Daily data on 24-hour mean PM10 concentrations over the period 2006–2015 from all the 

available monitoring sites was provided by the Italian Institute for Environmental Protection 

and Research (ISPRA).  Daily worldwide Aerosol Optical Depth (AOD) data, were provided 

by the Moderate-Resolution Imaging Spectro-radiometer, positioned on NASA satellites. 
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Missing satellite AOD data were imputed using ensemble atmospheric models to obtain PM10 

predictions. The models showed good predictive performance (R2~0.95) with small 

prediction errors (root mean squared prediction error ~0.02) and negligible bias (intercepts = 

0 and slopes ~ 1). Predictions were equally good in capturing annual and daily PM10 

variability.  

We used daily data to obtain reliable exposure estimates within different gestational windows 

of exposure. We obtained the mean PM10 exposure levels for eight gestational window of 

exposure: a) pre-implantation (days 1-5 since conception), b) implantation (6-12 days after 

conception), c) post-implantation (22-28 days after conception), d) first trimester 1 (1-13 

gestational week) e) second trimester (14-26 gestational week), f) third trimester (27 

gestational week- delivery), g) last month of pregnancy (30 days before delivery) g) whole 

pregnancy.  

3. Molecular analyses 

3.1. Selection of samples for molecular analyses 

The DNA methylation analyses included a set of 384 children of the Piccolipiù cohort, that 

were selected from each center based on the following criteria: pre-extracted DNA with 

sufficient quality and quantity (DNA was extracted using the kit QIAsymphony DSP DNA, 

Qiagen, Hilden, Germany), mother with georeferenced address at enrollment, European 

origin (defined as having 4 grandparents born in Europe) and a complete follow up of at least 

24 months. Out of samples that satisfied the criteria, 96 samples were from the Florence 

center, 96 from the Viareggio center, 96 from the Trieste center, 75 samples from the Turin 

center and 21 samples from the Rome center. The smaller number of samples from the Rome 

center was due to smaller number of samples with extracted DNA at the time when 

methylation analyses were conducted. 

A total of 500 children were included in the telomere length analysis. All samples included in 

the DNA methylation analyses were also included in the telomere length analysis. Samples 

from each center, based on the previously mentioned criteria were selected to top up the 

number of children included in the analyses to hundred from each center. Therefore, four 

additional samples were selected for Florence, Viareggio and Trieste centers, 25 from the 

Turin center and 79 samples from the Rome center. The 25 samples from Turin had DNA 

extracted within the framework of the EXPOsOMICS project30 by using the QIAamp 96 

DNA Blood Kit (Qiagen, Hilden, Germany).  
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3.2. DNA methylation analyses 

DNA methylation analyses started by using the Zymo EZ-96 DNA Methylation™ Kit 

(Zymo, Irvine, CA) for bisulfite conversion. Then we used Illumina's Infinium 

MethylationEPIC BeadChip Kit (Illumina Inc., San Diego, CA, USA), (IlluminaEPIC) to 

assess DNA methylation levels.31 The array targets over 850,000 methylation sites across the 

genome at single-nucleotide resolution, accounting for roughly 4% of all CpG content in the 

genome, covering gene promoters of the majority of known genes, transcription start sites, 

untranslated regions and regulatory elements, such as FANTOM5 enhancers and ENCODE 

regulatory elements.  

The InfiniumMethylationEPIC BeadChips used in this study accommodate 8 samples which 

are organized in one column. Our 384 samples fitted into 4 plates, each with a grid containing 

12 columns and 8 rows. Therefore, in order to ensemble one plate, 12 Illumina’s EPIC 

BeadChips were ordered one next to another, to be analyzed together in one experimental 

batch. To control for possible batch effect32, we randomized the samples by study center and 

newborn’s sex. In order to balance the number of subjects from each center and sex within a 

chip, we first stratified the samples by sex and study center then randomly distributed them 

into the 48 chips. Then the 48 chip were randomly distributed in 4 plates. And finally the 

position of the sample within each chip was randomized. 

The Illumina’s software BeadArray Controls Reporter was used to run the initial assessment 

of the raw signal quality. Ten samples were illegible and therefore excluded from further 

analysis. The minfi package33 was used to import the data from IDAT files, the proprietary 

format outputted by the scanner, into the R software for further quality control and 

processing.  Detection p-value was calculated for each of the 865869 probes for each sample 

by comparing the total signal for each probe to the background signal level, estimated from 

the negative control probes. Very small p-values are indicative of a reliable probe signal 

while large p-values indicate a poor signal quality. Only one sample had mean detection 

value > 0.01, was flagged as low-quality and was excluded from further analysis. 

To minimize the unwanted variation within and between samples, we normalized the data 

using the quintile normalization. Then we filtered out probes that failed in one or more 

samples (n=10014, 1.16%), probes on the sex chromosomes (n=18739), probes with SNPs at 

CpG site (n=27690) and cross reactive probes i.e probes that have been demonstrated to map 

to multiple places in the genome (n=39288),34,35 leaving a total of 770128 CpGs for the 
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analysis. Before filtering probes on sex chromosomes, we estimated the sex based on the 

median values of measurements on the X and Y chromosomes. Three samples were found to 

be discordant by the reported sex (males) and predicted sex (females) and were excluded, 

leaving total of 370 samples for further analysis. Methylation levels were expressed as beta 

values, ranging from 0 to 1, that represent the ratio of the intensity of the methylated-probe 

signal to the total locus signal intensity, methylated and unmethylated. 

Many studies have demonstrated the importance of adjusting for cell type heterogeneity in 

epigenome-wide studies. In this study, for cell type deconvulsion we used the filtered 

reference dataset “FlowSorted.CordBloodCombined.450k”, that combined and optimized 

four previously used reference datasets for cord blood cell type deconvulsion and selected a 

set of 517 CpGs present on both the IlluminaEPIC array and the Illumina’s Infinium 

Methylation450K BeadChip (Illumina 450K) that emerged as the ideal set of probes for cell 

type estimation in cord blood.36 We estimated cord blood proportions of 7 cell types: CD8 T 

cells, CD4 T cells, Natural Killer cells, B cells, monocytes, granulocytes and nucleated red 

blood cells, by using the function estimateCellCounts2 from the FlowSorted.Blood.EPIC R-

package37 according to the authors’ instructions.36  

3.3. Telomere length  

We analyzed cord blood telomere length in 500 children. The average relative telomere 

length was measured using the monochrome multiplex quantitative PCR (qPCR) method 

developed by Cawthon.38 Each sample was run in triplicate on Rotor-Gene Q (Qiagen, 

Hilden, Germany) with 72 well rotor. The mastermix used was iQ Syber Green supermix 

(Bio-Rad). All samples were randomized by sex and study center into 27 batches, each 

containing the triplicates of up to 19 samples. There was no need to randomize by row and 

columns since the Rotor-Gene plate is circular and rotates during the analyses, thus 

eliminating the plate- position effect.  

On each run, a five-point serial dilution of pooled DNA was run to assess the PCR efficiency 

and same pooled DNA was used as inter run calibrator. We assessed telomere length by each 

child by calculating the mean relative T/S ratio using the method 2–ΔΔCt, that represents the 

ratio of telomere repeat copy number (T) to single copy gene (S) copy number, relative to 

average T/S ratio of the entire sample set.  

Before starting the analysis, a protocol, was developed to establish the reproducibility of the 

technique. Ten samples (male and female from each study center) were randomly chosen. In 
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order to account for the plate-to-plate and day-to-day variation of the assay, the samples were 

run in triplicates on two separate occasions several days apart. The 6 data points per sample 

were used to assess the intra and inter-assay variation and calculate the intra and inter assay 

coefficient of variation (CV). The relative T/S ratio for each sample was expressed as relative 

to the mean ΔCt of the entire dataset from the first and second run, accordingly. The 

geometric mean of the intra-assay CV of the telomere Ct’s, albumin Ct’s and rT/S from the 

first run was 0.71%, 0.64% and 6.98%, respectively. The geometric mean of the inter-assay 

CV was 1.48%. The scatter plot and the Bland-Altman plot plotting the agreement between 

two runs can be seen in Supplementary Figure S1. 

Telomere length is known to be highly influenced by genetics. Genotype data were available 

for all children included in the telomere length analysis. Genotype analysis was performed 

using an Illumina assay technology and a custom made panel by Genomix4Life™ containing 

730059 SNPs. We selected 16 SNPs that were known to be strongly associated with telomere 

length39 to account for them in our analyses. The SNPs and their corresponding genes are 

outlined in Supplementary Table S1. Collectively they are believed to account for 2% to 3% 

of the variance in leukocyte telomere length.39  

4. Statistical analyses 

4.1 DNA methylation analyses 

 

First, we examined the associations between exposure to PM10 in each window of exposure 

and epigenome-wide methylation levels using linear regression models (lm in the R 

package stats version 3.6.1; R Core Team). The results from the linear regression are 

presented as change in DNA methylation for 10μg/m3 increase in PM10 concentration. False 

discovery rate (FDR) was used to adjust for multiple testing. All analyses were adjusted for 

an a priori selected set of covariates: technical variables (plate and DNA buffer type – ATE 

vs H2O), study center, maternal age (continuous), education (high- tertiary education, 

medium- upper secondary education, low-lower secondary or less), parity (nulliparous vs 

multiparous), pre-pregnancy BMI (continuous), smoking during pregnancy (yes/no) and 

child’s sex. Additional analysis was performed by adjusting also for cell type proportionss. 

We decided not to adjust for gestational duration and pregnancy complications such as 

eclampsia or intrauterine growth restriction since they may lie on the causal pathway between 

the exposure and the outcome. We also did not adjust for season of conception, variable that 

strongly affect the exposure of interest, with weak or null expected effects on DNA 
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methylation. We searched all CpGs that passed the FDR threshold in the EWAS Atlas40 to 

examine whether they were associated with any specific traits in previous studies. We were 

able to test whether our main EWAS findings showed similar strength and direction of 

association in a dataset of 99 Piccolipiù children, analysed with the Illumina 450K platform 

within the EXPOsOMICS project, which are not included in the current analysis on DNA 

methylation. To increase the comparability, we used the same preprocessing and quality 

control pipeline on the raw Illumina450K data and estimated the exposure to single pollutant, 

PM10, by using the methods described in the present study. The quality control, preprocessing 

and filtering are described in Supplementary Text S1.  

Second, to explore which pathways are targeted by the top most significant CpG sites 

(arbitrary p-value<0.0001, used in a previous epigenome wide study on PM10 exposure and 

methylation signatures in cord blood15) we used the function gometh from the missMetyl41 

package that performs gene set testing using the Gene Ontology (GO) and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) databases, taking into account the different 

number of targeted CpGs per gene.  

Third, we conducted an analysis to identify differentially methylated regions (DMRs) in 

relation to the exposure. We used the R package DMRcate that identifies DMRs across the 

genome based on kernel smoothing of the differential methylation signal. We used the 

following specifications for calling DMRs: a DMR should contain ≥2 CpGs and lambda was 

set to 1000, meaning that regions are agglomerated when the distance between is <1000 base 

pairs. The FDR threshold was set to 0.05. 

Fourth, we selected 6 candidate CpGs found to be differentially methylated in relation to 

PM10 exposure in the epigenome-wide meta-analysis conducted by Gruzieva and 

colleagues.15 The meta-analysis included the 99 Piccolipiù children from the Turin center. 

Lastly, for each sample we derived a measure for overall methylation by averaging the mean 

beta value across all measured probes (n=770128). We will be using the term “overall 

methylation” to differentiate from the term “global methylation” that is usually reserved for 

global methylation profiles measured by high performance liquid chromatography or 

variants, or by measuring LINE1 or Alu repetitive elements. In addition to the mean beta 

values across all probes, we averaged the mean beta values across probes in the following 

regions: (a) CpG island, (b) shore (0–2 kb from CpG islands), (c) shelf (2–4 kb from CpG 

islands) and (d) open sea regions. To compliment these analyses, we used the R package 
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GAMP42 (Global Analysis of Methylation Profiles) that uses a functional regression approach 

to estimate these two measures for each individual using B-spline based functions. The 

package is targeted towards capturing more comprehensive, modest changes in methylation 

globally and is robust to very strong differential methylation in a few CpGs of interest, which 

may affect summary measures such as mean methylation. Using the GAMP package we 

tested weather PM10 exposure influences the cumulative distribution function (CDF) and the 

density of the methylation values across all probes and probes by genomic regions.  

4.2 Telomere length analyses 

 

We used linear regression to assess the association between exposure to PM10 in each 

window of exposure and telomere length in cord blood. The relative T/S ratio measure 

showed skewed distribution and therefore it was log10 transformed prior to analysis.  In the 

first model we used the same set of covariates used in the DNA methylation analyses. 

Telomere length measured in cord blood represents the average TL of cells with different 

replicative histories. To account for differences in cell type proportions, we used the subset of 

children with both telomere and methylation data. Sensitivity analyses were conducted by 

excluding 55 samples (11%) with high CV (CV>20). Out of the 16 SNPs associated with 

telomere length, four SNPs (rs11125529, rs3027234, rs412658 and rs7253490) had large 

number of missing values and were therefore excluded from further analysis. Information on 

the remaining 12 SNPs was used to derive a polygenic score summing up the number of 

effect alleles (alleles associated with longer SNPs) weighted by the beta coefficients 

estimated in the original genome-wide analysis.39 

We conducted complete case analysis, meaning that after quality control, apart from the three 

samples with mismatched sex, we excluded all samples with missing data on any of the 

covariates. The final number of children included in the EWAS and overall methylation 

analysis was 365. The number of children included in the telomere length analysis was 453 in 

the main and 399 in the sensitivity analyses, noting that information on cell types was 

available for 365 and 324 children in the main and the sensitivity analyses, respectfully. 

Results 

The characteristics of the study population are described in Table 1. The mean (standard 

deviation, SD) PM10 levels through the course of the pregnancy were 32.1μg/m3 (10.1) and 

32.2μg/m3 (9.7) for the methylation and telomere length analyses respectively.  
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In both analyses, for around 97% of children, the average maternal exposure during the whole 

pregnancy exceeded 20μg/m3 (World Health Organization (WHO) annual mean 

recommended reference level for PM10) and for 17% of the children mean exposure levels 

during the pregnancy were above 40μg/m3 (WHO’s PM10 annual mean limit value for human 

health). The shorter was the exposure window the more variable were the PM10 levels (Table 

1, Figure 1), due to the number of days from which the average concentration was taken. 

Concentrations in the beginning of the pregnancy, namely pre-implantation, implantation and 

post implantation seem highly correlated with each other and with first trimester exposure, 

while their correlation to mid and late-pregnancy PM10 concentration is low, Supplementary 

Figure S2. 

Table 1. Characteristics of the participants included in the study 

 

DNA methylation (n=384) 
 

Telomere length (n=500) 

  N Mean (SD) or %   N Mean (SD) or % 

Study center 
     

     Florence 96 25.0% 
 

100 20.0% 

     Rome 21 5.5% 
 

100 20.0% 

     Trieste 96 25.0% 
 

100 20.0% 

     Turin 75 19.5% 
 

100 20.0% 

     Viareggio 96 25.0% 
 

100 20.0% 

Maternal age 383 34.7 (4.7) 
 

499 34.8 (4.7) 

     Missing 1 
  

1 
 

Maternal education 
     

     High 185 48.2% 
 

253 50.6% 

     Medium 157 40.9% 
 

196 39.2% 

     Low 42 10.9% 
 

51 10.2% 

Maternal pre-pregnacy BMI (in kg/m2) 381 22.4 (3.5) 
 

496 22.4 (3.5) 

     Missing 3 
  

4 
 

Parity  
     

     Nulliparous 225 58.6% 
 

306 61.2% 

     Multiparous 159 41.4% 
 

194 38.8% 

Smoking in pregnancy 
     

     No 306 79.7% 
 

384 77.2% 

     Yes 78 20.3% 
 

114 22.8% 

Child's sex 
     

     Female 204 46.9% 
 

239 47.8% 

     Male 180 53.1% 
 

261 52.2% 

PM10 estimates (in μg/m3) 
     

Whole pregnancy 383 32.1 (10.1) 
 

499 32.2 (9.7) 

     Pre-implantation 383 29.9 (16.8) 
 

499 30.7 (16.9) 

     Implantation 383 29.1 (15.8) 
 

499 30.1 (16.2) 

     Post-implantation 383 30.0 (17.3) 
 

499 30.6 (17.1) 

     First trimester 383 30.2 (14.3) 
 

499 30.5 (13.9) 

     Second trimester 383 32.8 (14.8) 
 

499 32.8 (14.5) 

     Third trimester 383 33.3 (14.7) 
 

499 33.4 (14.9) 

     Last month of pregnancy 383 31.7 (15.9) 
 

499 32.1 (16.3) 

     Missing 1     1   
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Figure 1. Box plot of PM10 levels across different windows of exposure in a) the study population 

with methylation data and b) the study population with telomere length data 

 

1. Agnostic epigenome-wide association analysis on single CpG level 

After correction for multiple testing, no CpG was associated with the average PM10 exposure 

during the entire course of the pregnancy. PM10 exposure level during the pre-implantation, 

implantation, the post-implantation period, the first trimester, and the last month of 

pregnancy was associated (FDR<0.05) with DNA methylation in 4, 64, 46, 1 and 2 CpGs, 

respectively, amounting to 111 unique CpGs (Table 2).   

Table 2. Results from the epigenome-wide association analysis at single CpG level. Across all 

exposure windows 111 CpGs passed the FDR threshold.  

N 
Exposure 

Window  
ProbeID Coef p-value Chr Position 

Relation to 

CpG island 
Gene 

Location 

in gene 
Promoter  

1 PreI, I cg01688211 -0.0057 1.2E-08 chr20 49337863 OpenSea 
   

2 Prel, I cg14643648 -0.0057 5.2E-08 chr16 23426236 OpenSea COG7 Body 
 

3 Prel, I cg09270435 -0.0051 9.7E-08 chr21 36507812 OpenSea 
   

4 Prel, I cg18318655 -0.0052 1.2E-07 chr13 31713793 OpenSea HSPH1 Body 
 

5 I cg11317661 -0.0084 2.8E-11 chr3 9343708 OpenSea 
   

6 I cg18243764 -0.0065 1.2E-10 chr20 35924185 OpenSea MANBAL 5'UTR 
 

7 I cg13289118 -0.0068 2.9E-10 chr15 75255681 S_Shelf 
   

8 I cg24894563 -0.0064 5.4E-10 chr1 227150327 OpenSea ADCK3 Body 
 

9 I cg18980939 -0.0060 1.3E-09 chr8 140999901 OpenSea TRAPPC9 Body 
 

10 I cg13696148 -0.0058 1.4E-09 chr3 139199845 OpenSea 
   

11 I cg01200186 -0.0059 2.6E-09 chr10 52765418 OpenSea PRKG1 Body 
 

12 I cg10472067 0.0029 3.3E-09 chr20 35402298 Island DSN1 TSS200 Yes 

13 I cg18241780 0.0045 5.4E-09 chr12 118620216 OpenSea TAOK3 Body 
 

14 I cg15828158 -0.0059 6.3E-09 chr5 122152681 OpenSea SNX2 Body 
 

15 I cg10026495 -0.0104 1.0E-08 chr4 77631215 OpenSea SHROOM3 Body 
 

16 I cg02283353 -0.0076 1.4E-08 chr19 622406 Island POLRMT Body 
 

17 I cg18091960 -0.0054 1.5E-08 chr2 43197057 OpenSea 
   

18 I cg19853848 -0.0054 1.7E-08 chr5 138857955 OpenSea TMEM173 Body 
 

19 I cg05958000 -0.0057 1.9E-08 chr9 138280729 OpenSea 
   

20 I cg18447143 -0.0038 2.9E-08 chr11 74461705 S_Shore RNF169 Body 
 

21 I cg04775569 -0.0064 2.9E-08 chr7 195656 Island FAM20C Body 
 

22 I cg08100576 -0.0063 3.6E-08 chr8 9627834 OpenSea TNKS Body 
 

23 I cg01791236 0.0043 5.3E-08 chr19 4815877 OpenSea 
   

24 I cg06469440 -0.0048 5.8E-08 chr7 1000336 OpenSea 
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25 I cg09371530 -0.0055 5.9E-08 chr10 131640006 S_Shore EBF3 Body 
 

26 I cg09522226 -0.0067 8.3E-08 chr22 28501343 OpenSea TTC28 Body 
 

27 I cg12066409 -0.0051 1.1E-07 chr2 101595462 OpenSea NPAS2 Body 
 

28 I cg18917544 0.0037 1.5E-07 chr6 99281070 Island 
   

29 I cg25133533 0.0075 1.8E-07 chr7 100611097 S_Shore 
   

30 I cg03808324 -0.0055 1.9E-07 chr18 64215948 OpenSea CDH19 Body 
 

31 I cg08396875 -0.0051 2.3E-07 chr2 225847045 OpenSea DOCK10 Body 
 

32 I cg10409786 0.0042 2.5E-07 chr20 35402300 Island DSN1 TSS200 Yes 
33 I cg13583523 -0.0048 2.5E-07 chr5 24764190 OpenSea 

   
34 I cg08563994 0.0030 2.6E-07 chr3 49823664 Island IP6K1 5'UTR Yes 

35 I cg10262931 0.0033 2.9E-07 chr10 79807251 OpenSea RPS24 Body 
 

36 I cg06527535 -0.0056 2.9E-07 chr7 157633771 S_Shelf PTPRN2 Body 
 

37 I cg08454563 -0.0082 3.4E-07 chr22 31040187 OpenSea SLC35E4 Body 
 

38 I cg04933990 0.0024 3.7E-07 chr16 10133501 OpenSea GRIN2A Body 
 

39 I cg00257497 -0.0054 5.4E-07 chr5 176396997 OpenSea UIMC1 Body 
 

40 I cg14468007 -0.0051 5.4E-07 chr14 96176384 N_Shelf TCL1A 3'UTR 
 

41 I cg09195657 -0.0049 5.7E-07 chr16 2321187 S_Shelf MIR940 TSS1500 
 

42 I cg25198579 0.0010 8.3E-07 chr15 67358136 Island SMAD3 TSS200 Yes 

43 I cg18798495 -0.0050 8.9E-07 chr17 77957004 S_Shore TBC1D16 Body 
 

44 I cg00531796 -0.0050 9.0E-07 chr5 140042779 N_Shore 
   

45 I cg03175206 -0.0034 1.1E-06 chr3 194978283 N_Shelf C3orf21 Body 
 

46 I cg07485754 0.0044 1.2E-06 chr7 116511339 OpenSea CAPZA2 Body 
 

47 I cg14334911 0.0012 1.3E-06 chr17 44271018 Island 
  

Yes 
48 I cg00493609 -0.0056 1.4E-06 chr16 13704393 OpenSea 

   
49 I cg17806989 -0.0058 1.4E-06 chr13 25338287 OpenSea RNF17 TSS200 

 
50 I cg13851412 -0.0050 1.4E-06 chr14 95922175 OpenSea SYNE3 Body 

 
51 I cg21683659 -0.0028 1.5E-06 chr2 242844943 Island 

   
52 I cg20523029 -0.0067 1.5E-06 chr6 143928427 OpenSea PHACTR2 TSS1500 

 
53 I cg27343976 -0.0053 1.6E-06 chr6 168766332 S_Shore 

   
54 I, T1 cg00599628 -0.0116 1.7E-06 chr20 17763350 OpenSea 

   
55 I cg09628503 -0.0049 2.0E-06 chr1 1842629 S_Shelf 

   
56 I cg24583704 -0.0051 2.5E-06 chr13 21047671 OpenSea CRYL1 Body 

 
57 I, PostI cg09634226 0.0007 2.9E-06 chr8 52811768 Island PCMTD1 TSS200 Yes 

58 I cg09153950 -0.0022 3.0E-06 chr2 67623673 N_Shore ETAA1 TSS1500 
 

59 I cg19222405 -0.0027 3.2E-06 chr19 1826867 Island REXO1 Body 
 

60 I cg18342425 -0.0054 3.8E-06 chr13 25337983 OpenSea RNF17 TSS1500 
 

61 I cg05408607 -0.0053 3.8E-06 chr12 116653902 OpenSea MED13L Body 
 

62 I cg13474011 0.0009 3.9E-06 chr10 49515374 Island 
   

63 I cg24491780 0.0036 3.9E-06 chr15 41107391 OpenSea 
   

64 I cg25423145 -0.0056 4.1E-06 chr17 43513233 S_Shelf 
   

65 PostI cg01509792 0.0021 3.3E-09 chr21 43608929 OpenSea 
   

66 PostI cg00121374 -0.0055 5.3E-09 chr1 3392638 N_Shelf ARHGEF16 Body 
 

67 PostI cg00325528 -0.0042 2.8E-08 chr11 2819073 S_Shore KCNQ1 Body 
 

68 PostI cg26173959 -0.0050 3.2E-08 chr9 124575779 OpenSea 
   

69 PostI cg07390478 -0.0053 3.2E-08 chr7 150646082 N_Shore KCNH2 Body 
 

70 PostI cg23830969 -0.0041 3.3E-08 chr3 15474768 OpenSea EAF1 Body 
 

71 PostI cg05324638 -0.0048 3.6E-08 chr9 90428397 OpenSea 
   

72 PostI cg02603756 -0.0052 4.1E-08 chr11 75909015 S_Shelf WNT11 Body 
 

73 PostI cg13797723 -0.0048 5.8E-08 chr11 57078109 OpenSea TNKS1BP1 Body 
 

74 PostI cg21797500 -0.0049 1.1E-07 chr13 84406289 OpenSea 
   

75 PostI cg10399764 0.0020 2.0E-07 chr9 115517223 S_Shelf SNX30 Body 
 

76 PostI cg01971227 0.0095 4.2E-07 chr16 3988694 N_Shore 
   

77 PostI cg09721840 -0.0048 4.4E-07 chr13 99114023 OpenSea STK24 
ExonBnd; 

Body  

78 PostI cg19140429 0.0039 4.5E-07 chr17 48858746 Island 
   

79 PostI cg00903584 0.0048 5.0E-07 chr1 202128682 OpenSea PTPN7 
5'UTR; 

1stExon 
Yes 

80 PostI cg12194267 -0.0047 5.4E-07 chr9 98473994 OpenSea 
   

81 PostI cg22068476 -0.0045 5.6E-07 chr12 104271473 OpenSea TTC41P Body 
 

82 PostI cg14565439 -0.0049 5.7E-07 chr5 107702185 OpenSea FBXL17 Body 
 

83 PostI cg18669139 0.0017 5.7E-07 chr7 50346768 S_Shelf IKZF1 5'UTR 
 

84 PostI cg26305606 -0.0044 5.9E-07 chr10 76997231 S_Shore COMTD1 TSS1500 
 

85 PostI cg01132839 -0.0039 5.9E-07 chr10 73083954 OpenSea SLC29A3 Body 
 

86 PostI cg15997497 0.0018 6.5E-07 chr11 95948847 OpenSea MAML2 Body 
 

87 PostI cg02961575 0.0008 6.8E-07 chr3 186285036 Island TBCCD1 5'UTR Yes 

88 PostI cg24646748 0.0058 7.5E-07 chr5 82281494 OpenSea 
   

89 PostI cg17002039 -0.0045 7.9E-07 chr9 91955646 OpenSea SECISBP2 Body 
 

90 PostI cg18857759 -0.0045 7.9E-07 chr1 248110661 OpenSea OR2L8;OR2L13 TSS1500 
 

91 PostI cg09968723 0.0020 8.5E-07 chr8 143545789 Island BAI1 1stExon 
 

92 PostI cg16624646 0.0014 9.3E-07 chr19 2474993 Island GADD45B TSS1500 Yes 
93 PostI cg21487550 0.0051 9.4E-07 chr3 127056955 Island 

   
94 PostI cg22810059 -0.0044 9.4E-07 chr6 167031282 N_Shore RPS6KA2 Body 

 
95 PostI cg07656744 -0.0042 9.6E-07 chr1 174945070 OpenSea RABGAP1L Body 

 
96 PostI cg21222426 0.0058 1.0E-06 chr9 20339790 OpenSea 

   
97 PostI cg00677562 -0.0048 1.2E-06 chr9 111206648 OpenSea 
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98 PostI cg25292359 -0.0046 1.4E-06 chr20 50820973 OpenSea 
   

99 PostI cg20806143 -0.0046 1.4E-06 chr1 89567209 OpenSea 
   

100 PostI cg22240773 -0.0027 1.6E-06 chr11 15074269 OpenSea 
   

101 PostI cg05040872 -0.0042 1.7E-06 chr5 107156463 OpenSea 
   

102 PostI cg23471777 0.0026 1.8E-06 chr13 95254279 Island GPR180 1stExon Yes 
103 PostI cg23480855 -0.0037 2.0E-06 chr7 101554900 OpenSea CUX1 Body 

 
104 PostI cg11691189 -0.0062 2.0E-06 chr2 47743741 OpenSea 

   
105 PostI cg22223441 -0.0041 2.4E-06 chr6 11920499 OpenSea 

   
106 PostI cg23707521 -0.0107 2.6E-06 chr3 159585493 OpenSea SCHIP1 Body 

 
107 PostI cg18526161 0.0027 2.8E-06 chr14 64854366 Island MTHFD1 TSS1500 Yes 

108 PostI cg12876838 -0.0055 2.9E-06 chr4 5897223 S_Shelf 
   

109 PostI cg17387122 0.0060 3.0E-06 chr22 18507711 S_Shore MICAL3 TSS1500 
 

110 M1 cg26030063 0.0033 6.1E-08 chr14 42078342 S_Shelf LRFN5 5'UTR 
 

111 M1 cg06230418 -0.0056 1.1E-07 chr12 133129990 N_Shore FBRSL1 Body 
 

Adjusted for technical variables, study center, maternal age, education, parity, pre-pregnancy BMI, smoking in pregnancy, child’s sex. The 
coefficient represents DNA methylation change per 10μg/m3 increase in PM10. 

Abbreviations: Prel, I, PostI, T1 and M1 correspond to “Pre-implantation”, “Implantation”, “Post-implantation”, “First trimester” and “Last 

month of pregnancy”, respectively. 

 

The 4 CpGs identified in the analysis on the pre-implantation period were also present among 

those identified for the implantation analyses. The CpGs associated with exposure during 

implantation, post-implantation and the last month of pregnancy were independent, with the 

exception of one CpG (cg09634226) emerging in both implantation and post-implantation 

analyses. All CpGs that passed the FDR threshold in more than one window of exposure, 

showed a consistent direction of association across exposure windows. 

Eleven CpGs were mapped to gene promotors and all were hypermethylated with relation to 

PM10 exposure. The rest of the CpGs were found in gene bodies or in non-coding regions far 

from CpG islands, and were generally hypomethylated. Many of our top CpGs were novel 

findings, meaning they were either not found in the EWAS atlas or they were not associated 

with a known trait. Twenty-eight out of 111 CpGs were previously reported in other studies, 

including studies on prenatal exposures. Table S2 in the Supplementary material lists the 

CpGs found in the EWAS Atlas and their corresponding traits. 

2. Enriched pathway analysis 

No pathways were clearly identified after correction for multiple testing in the pathway 

analysis on 230 and 269 top significant CpGs that had p-value<0.0001 in the implantation 

and post-implantation analysis respectively. The top 25 GO and KEGG pathways are listed in 

the Supplementary Tables S3 and S4. 

3. Testing the robustness of our findings in another subset of children from the  

Piccolipiu cohort.  

Out of the initial 99 samples from the Turin center analyzed with the Illumina450K platform 

within the EXPOsOMICs project, only 92 were included in this analysis. The pre-processing 
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pipeline and the reasons for exclusion are available in Supplementary Text S1. The 

subsample (in comparison to the sample population with methylation data used in the main 

analysis) had higher mean levels of PM10, higher percentage of multiparous women and 

higher percentage of males, Supplementary Table S5.   Methylation values were available for 

58 of our top 111 CpGs. Around half of the CpGs (n=32) showed consistent direction within 

the same exposure window, Supplementary Table S6. Six CpGs (10.3%) showed strong and 

consistent direction of association across all windows of exposure in beginning of the 

pregnancy (pre-implantation, implantation, post-implantation and first trimester), Table 3. A 

search on the four genes (SHROOM3, PTPN7, BAI1 and RPs6KA2) in the EWAS atlas 

revealed previous associations between NO2 air pollution exposure and DNA methylation in 

all four genes, as reported in a previous study.   

Table 3. Top six CpGs identified in the main epigenome-wide analysis (n=365) that showed the same 

direction of association in the PiccoliPiù EXPOsOMICS dataset (n=92) 

ProbeID Gene 

Main 

analysis 

Replication analysis 

PreI I PostI T1 T2 T3 M1 

W Dir Dir p-val Dir p-val Dir p-val Dir p-val Dir p-val Dir p-val Dir p-val 

cg10026495 SHROOM3 I - - 0.01 - 0.01 - 0.00 - 0.00 + 0.16 + 0.00 + 0.03 

cg27343976 unmapped I - - 0.01 - 0.00 - 0.00 - 0.00 + 0.08 + 0.02 + 0.24 
cg00903584 PTPN7 PostI + + 0.24 + 0.01 + 0.00 + 0.00 + 0.79 - 0.04 - 0.07 

cg09968723 BAI1 PostI + + 0.21 + 0.04 + 0.07 + 0.24 - 0.16 - 0.05 - 0.36 

cg19140429 unmapped PostI + + 0.01 + 0.02 + 0.04 + 0.02 - 0.13 - 0.05 - 0.43 
cg22810059 RPS6KA2 PostI - - 0.11 - 0.14 - 0.08 - 0.05 + 0.11 + 0.30 + 0.62 

Adjusted for technical variables, study center, maternal age, education, parity, pre-pregnancy BMI, smoking in pregnancy, child’s sex and 

cell heterogeneity. Abbreviations: W: Window of exposure; Dir: Direction of association; Prel, I, Post-I, T1, T2, T3 and M1 correspond to 

“Pre-implantation”, “Implantation”, “Post-implantation”, “First trimester”, “Second trimester”, “Third trimester” and “Last month of 
pregnancy”, respectively. 

 

4. Results from the DMR analysis  

 The DMR analysis identified 3, 4 and 1 DMR when analyzing implantation, post-

implantation and first trimester PM10 exposures, Table 4.  

Table 4. Results from the differentially methylated region analysis 

DMR Region coordinates N of CpGs Coefmean FDRmin 

Implantation  

         RNF17 chr13:25337649-25338289 3 -0.0045 1.20E-13 

     SOD3 chr4:24797007-24797176 3 -0.0055 1.76E-08 

     unmapped chr6:30094960-30095728 24 0.0036 4.07E-10 

Post-implantation  

         KIAA0101 chr15:64673790-64673872 6 0.0016 1.33E-12 

     unmapped chr6:32064497-32064588 5 0.0035 1.33E-12 

First trimester 

         HIVEP3 chr1:42384474-42384647 4 0.0063 8.94E-12 

Adjusted for technical variables, study center, maternal age, education, parity, pre-pregnancy BMI, smoking in pregnancy, child’s sex. The 
coefficient represents mean DNA methylation change per 10μg/m3 increase in PM10. The FDR value represents the FDR value for the 

CpG most strongly associated with the outcome. 
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The DMRs were mapped to genes involved in spermatogenesis and regulation of 

transcriptional activity of MYC (RNF17 gene), response to oxidative stress (SOD3 gene), 

regulation of DNA repair during DNA replication (KIAA0101 gene) and with involvement in 

cell progression and differentiation (HIVEP3). 

5. Candidate CpG analysis  

We conducted the candidate CpG analysis on 4 out of 6 PM10-related CpGs from the meta-

analysis by Gruzieva and colleagues43 that were available in our main dataset. All 4 CpGs 

showed variable effect estimates across different windows of exposure. None of them showed 

the same direction of association as the original study when we analyzed PM10 exposure 

during the whole pregnancy, Table 5. 

Table 5. Testing for association the 4 PM10-related CpGs (Gruzieva et al. 2019) in our complete 

case dataset of 365 children. 

 

6. Overall DNA methylation 

We averaged and plotted the methylation density across all probes and across probes in 

different genomic regions (Supplementary Figures S3-S4) and, as expected, there was a 

notable difference between regions, while the variation within regions was small, 

Supplementary Figure S5. Estimates were relatively small ranging from 1x10-6 to 1x10-7 

change in methylation for 10μg/m3 increase in PM10. Exposure to PM10 during pregnancy 

was associated with hypomethylation in CpGs islands (-8.4x10-6, 95% CI: -1.7x10-5 to  

-6.4x10-7), that seems to be mostly due to exposures in the second trimester. This association 

was also confirmed with the GAMP-CDF analysis, Supplementary Table S7. 

7. Telomere length 

Although the confidence intervals for most analyses were wide, children exposed to high 

PM10 concentrations during the beginning of the pregnancy showed tendency to have shorter 

telomeres in cord blood, with strongest effect sizes seen for the post-implantation period (-

0,0044, 95% CI -0,0095 to 0,0007), Table 10.  

Gruzieva et al. 2019 

N=1949 

Main DNA amalysis (n=365 in the complete case analysis) 

Preg PreI I PostI T1 T2 T3 M1 

CpG Direction Dir pval Dir pval Dir pval Dir pval Dir pval Dir pval Dir pval Dir pval 

cg15082635 -+-++++ - 0.44 - 0.76 - 0.57 - 0.57 - 0.26 - 0.30 + 0.26 + 0.29 
cg24127244 -++++++ - 0.78 + 0.72 + 0.87 + 0.80 + 0.69 - 0.34 + 0.71 + 0.54 

cg06849931 ---++-- + 0.15 + 0.71 - 0.46 - 0.76 + 0.85 + 0.15 + 0.89 + 0.81 

cg18640183 +++++++ - 0.15 - 0.71 - 0.12 + 0.80 + 0.99 - 0.58 - 0.20 + 0.95 

DirMeta: Direction of methylation change in relation to PM10 for each cohort included in the original meta-analysis: INMA, ProjectViva, 

CHS, PRISM, ENVIRONAGE, Rhea, Piccolipiù and EARLI. The estimates from the current study are adjusted for technical variables, 

study center, maternal age, education, parity, pre-pregnancy BMI, smoking in pregnancy, child’s sex and cell heterogeneity. Preg, Prel, I, 

Post-I, T1, T2, T3 and M1 correspond to “Pregnancy”, “Pre-implantation”, “Implantation”, “Post-implantation”, “First trimester”, 

“Second trimester”, “Third trimester” and “Last month of pregnancy”, respectively. 
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The estimates further attenuated after removing samples with high CV (pre-implantation 

period: -0,0009, 95% CI -0,0064 to 0,0046), but showed a consistent direction of association, 

Table 6. Adjusting for cell type proportions did not affect the estimates, Supplementary Table 

S8. The polygenic score was associated with longer telomeres which is in line with the 

literature.39 Adding it to the final model did not alter the PM10 estimates. 

Table 6. Association between gestational PM10 exposure and telomere length  

 
N=453 

 

N=399 (samples with CV<20) 

 
Coef 

95% CI 
p value 

 
Coef 

95% CI 
p value 

 
Lower Upper 

 

Lower Upper 

All pregnancy -0.0005 -0.0144 0.0134 0.943 

 

0.0078 -0.0064 0.0219 0.281 

Pre-implantation  -0.0036 -0.0088 0.0016 0.175 

 

-0.0021 -0.0073 0.0032 0.444 

Implantation -0.0033 -0.0087 0.0021 0.232 

 

-0.0011 -0.0066 0.0045 0.704 

Post-implantation -0.0045 -0.0096 0.0006 0.081 

 

-0.0013 -0.0065 0.0040 0.640 

First trimester -0.0047 -0.0115 0.0021 0.173 

 

-0.0003 -0.0073 0.0066 0.926 

Second trimester 0.0007 -0.0059 0.0073 0.834 

 

0.0040 -0.0027 0.0106 0.240 

Third trimester 0.0046 -0.0021 0.0112 0.175 

 

0.0028 -0.0040 0.0095 0.424 

Last month of pregnancy 0.0023 -0.0034 0.0080 0.429 

 

-0.0001 -0.0061 0.0059 0.975 

Adjusted for technical variables, study center, maternal age, education, parity, pre-pregnancy BMI, smoking in pregnancy, 

child’s sex and polygenic score 

 

Discussion 

We observed that gestational PM10 exposure was associated with DNA methylation and 

possibly telomere length in the cord blood. The reported associations were mostly due to 

exposures during the beginning of the pregnancy, namely around the period of implantation. 

More than 100 unique CpGs and 4 DMRs were associated with PM10 exposure during the 

beginning of the pregnancy with roles mostly in cell replication, differentiation and response 

to oxidative stress.44 Hypermethylation of CpG islands (located within gene promotors) is 

almost always synonymous with long-term gene silencing.25,45 In our study, the majority of 

CpGs in CpG islands and all CpGs associated with gene promoters (n=11) were 

hypermethylated with respect to PM10. Some of them were in genes that, according to the 

Human Gene Database,44 have roles in cell replication (DSN1 gene), tumor suppression 

(SMAD3 gene), differentiation of T and B-lymphocytes (PTPN7 gene), response to 

environmental stress and DNA damage (GADD45B gene) and involvement in one-carbon 

metabolism providing methyl groups needed for DNA methylation (MTHFD1 gene). The rest 

of the CpGs were hypomethylated in response to PM10 exposure. Most of these genes were in 

gene bodies and non-coding genomic regions. Contrary to CpG islands, gene bodies generally 

need to be hypermethylated to provide blanket silencing of cryptic promoters or cryptic splice 
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sites. Exposure to PM10 might cause activation of these genomic elements that might lead to 

transcription of aberrant peptides.46,47  

Prenatal exposures such as maternal smoking48 and toxic environmental substances49–51 were 

previously linked with methylation levels of some of the CpGs identified in this study, further 

confirming their involvement in responses linked to oxidative stress. We conducted a more 

in-depth search for the 4 CpGs mapped to a known gene that showed robust associations in 

the EXPOsOMICS dataset, by looking for traits not only associated with the CpG locus, but 

also with gene they are mapped to. We did the same thing for the 4 identified DMRs. 

Interestingly, changes in methylation of all four genes and two DMRs (SOD3 and HIVEP3) 

were associated with NO2 exposure in previous study.52 All these findings indicate that locus 

and region-specific changes in DNA methylation at birth could have a functional relevance 

and act as a mediator through which air pollution exposure could leave a molecular 

fingerprint in early life and influence health outcomes years after the exposure.  

Although there seems to be abundant number of studies that report locus-specific changes in 

DNA methylation in relation to prenatal exposure to air pollution12,15,43,53, epigenome-wide 

studies often suffer from lack of robust associations at single CpG level across cohorts, 

possibly due to environmental mixtures, as well as technical and true variation across study 

populations.54,55 Even in the present study, we did not replicate findings for 4 PM10-related 

CpGs emerging from a previous meta-analysis including 1949 children.15 There may be 

several reasons for this lack of replication, such as different methods of estimating PM10 

concentrations (annual average concentrations using land-use regression models/other 

methods in the meta-analysis vs RF estimations based on daily satellite data in the current 

study) and misclassification of exposure (air pollution exposure based on residential address 

cannot fully capture individual behaviors and daily pattern), differences in laboratory 

conditions, assays (Illumina450K vs IlluminaEPIC) and other batch variability uncaptured by 

the variables chosen for adjustment, different pre-processing pipeline, different methods for 

estimating cell types, as well as different confounding pattern not accounted for in the 

analyses. We ran sensitivity analyses by removing maternal age, education, parity and pre-

pregnancy BMI from the model, since these covariates were not considered in the meta-

analysis, and the results did not change significantly.  

We were able to detect robust signals in six CpGs when were tested our top CpGs in the same 

subsample of Piccolipiù included in the aforementioned meta-analysis. This could be due to 
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fact that we addressed some of the issues underlined previously, such as using the same 

method to re-estimate PM10 concentrations, running the pre-processing and filtering pipeline 

on raw data and estimating cell counts with the same method. This however does not indicate 

that the signal will be stable across different populations, and future studies should replicate 

these findings in other cohorts paying attention to the period of exposure, since the 

associations of these CpGs seems to be specific for exposure around pregnancy. 

We did not observe an association between prenatal PM10 exposure and overall methylation 

patterns when we averaged all probes on the IlluminaEPIC assay. Previous studies measuring 

global methylation using traditional methods generally reported an association between 

prenatal exposure to particulate matter and global hypomethylation.6,7,9,11 However, a study 

similar to ours, that used array-based data to derive a measure of overall methylation, also did 

not report differences in methylation in relation to PM10 exposure.53 When we averaged the 

methylation levels across different genomic regions, we observed a lower mean methylation 

in CpG islands in relation to gestational PM10 exposure, mostly due to exposures during the 

second trimester.  This association was confirmed by the GAMP-CDF analysis, meaning that 

the association likely reflects true mean shifts in methylation patterns. This is at odds with the 

hypermethylation at CpG islands we observed in our CpG-based EWAS analysis. There is no 

other study that analyzed methylation patterns by genomic regions in relation to prenatal 

PM10 exposure. Previous study12 on gestational NO2 and O3 exposure, that averaged probes 

across different regions, did not observe an association with methylation in CpG islands in 

cord blood.  

Our study provided some indication that air pollution exposure during the beginning of the 

pregnancy could influence telomere length, although the confidence intervals were wide and 

included the null. The estimates further attenuated after removing 11% of the samples that 

had high CV. We believe that the observed estimates do not reflect a lack of association, but 

lack of power to detect one, considering the consistent direction of association. Our findings 

indicate a possible association between exposures in the beginning of the pregnancy and 

telomere length shortening, which is in line with a study that reported short telomeres in 

relation to exposures during the 4th to 9th gestational week, and are in odds with studies that 

reported telomere length shortening in relation to exposure in mid17,56 or late pregnancy.19 

Similarly to two other studies17,21, we also observed an indication that exposures in late 

pregnancy might lead to longer telomeres. Disturbance in the telomere length maintenance 

system leading to both or long telomeres, conveys some sort of risk. Shorter telomeres 
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increase the risk for many age-related diseases, while longer telomeres increase the risk for 

some types of cancer.39,57  

One of the main findings of our study is that the beginning of the pregnancy is particularly 

susceptible period during which PM10 exposure can influence fetal DNA methylation 

programming and, possibly, telomere length shortening. This is in line with what is already 

know about the establishment of DNA methylation patterns during early cell divisions.24 The 

embryo undergoes three consecutive waves of epigenome-wide pattern change during the 

pre-implantation, implantation and post-implantation period. In the preimplantation embryo, 

almost all parental methylation patterns are erased, with the exception of the imprinting loci 

that remain methylated on one allele. At the time of implantation, the entire genome 

undergoes a dramatic wave of de novo methylation with most loci becoming highly 

methylated, while CpG islands remain unmethylated, creating the typical bimodal pattern that 

will largely maintained intact in all subsequent cell divisions. In the post-implantation period, 

changes in the bimodal pattern do not occur on a global scale but there are tissue or gene-

specific changes that initiate embryonal cell differentiation and including silencing of the 

pluripotency genes to prevent regression into an undifferentiated state.24,25 It should be noted 

that, although the baseline methylation patterns are established before birth, the methylome 

remains a dynamic system throughout life and is influenced both by the underlying genetic 

make-up and environment in which it is immersed.58  

Our study has several strengths. We measured two molecular markers, that capture different 

biological responses to cellular stress and we reported that PM10 exposure during pregnancy 

has the potential to leave molecular marks at birth that could potentially influence later 

disease susceptibility. We used daily PM10 exposure data based on machine learning method 

to obtain exposure estimates within smaller gestational windows of exposure and we reported 

the beginning of the pregnancy as potential window of vulnerability. In addition, we were 

able to test whether our top findings show robust associations in another subsample of the 

same cohort and we reported six CpGs that showed robust associations. There are also some 

weaknesses. While we were able to reliably estimate air pollution exposure based on 

residential address, these estimates do not necessarily reflect true individual exposure and 

time-activity patterns might introduce exposure misclassification. Secondly, we studied only 

exposure to PM10, since daily exposure predictions for other pollutants, such as PM2.5, were 

not available for our study period. Although our study included relatively large number of 

subjects, probably more power was needed to detect stronger association with telomere 
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length and while we carefully chose the set of confounders included in the models, there is a 

possibility for residual confounding. Finally, we were not able to assess the stability of the 

found epigenetic changes in later childhood.  

Conclusion 

Exposure to PM10 during the beginning of the pregnancy was associated with altered 

methylation in more than 100 loci and 4 DMR with relevant function in cell replication, 

differentiation and response to environmental stressors. Six of them showed strong and robust 

associations in an independent subsample from the same cohort. 

The beginning of pregnancy seems to be a window period of particulate importance for DNA 

methylation and PM10 exposure, and possibly for telomere length. Further studies should 

confirm these findings and integrate them in their analyses when studying gestational 

exposures and DNA methylation patterns. 

In the beginning of the pregnancy, methylation and telomere length are fundamental 

regulators of cellular processes and their alteration could have major implications for health 

outcomes and disease susceptibility for complex diseases. 
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Supplementary Material: Study II 

Figure S1. Reproducibility of the telomere length measures. Ten samples were in triplicates run on two 

separate occasions, several days apart. A) Scatter plot, B) Bland Altman plot 

Table S1. The list of SNPs associated with telomere length  

SNP Chromosome Position Gene 

rs11125529 2 54248729 ACYP2 

rs6772228 3 58390292 PXK 

rs12696304 3 169763483 TERC 

rs10936599 3 169774313 TERC 

rs1317082 3 169779797 TERC 

rs10936601 3 169810661 TERC 

rs7675998 4 163086668 NAF1 

rs2736100 5 1286401 TERT 

rs9419958 10 103916188 OBFC1 

rs9420907 10 103916707 OBFC1 

rs4387287 10 103918139 OBFC1 

rs3027234 17 8232774 CTC1 

rs8105767* 19 22032639 ZNF208 

rs412658 19 22176638 ZNF676 

rs6028466 20 39500359 DHX35 

rs755017 20 63790269 ZBTB46 

*rs8105767 was unavailable and replaced with rs7253490. 

The two SNPs were in linkage disequilibrium r2=0.69.  
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Text S1. Pre-processing and quality control of the 99 samples analyzed within EXPOsOMICS project 

Within the EXPOsOMICS collaborative European project (Vineis et al., 2017), a combination of three 

population based birth cohorts ENVIRonmental influence ON AGEing in early life (ENVIRONAGE), 

Rhea and Piccolipiu was established to conduct DNA methylation analyses. Aliquots of Piccoli Più 

cord blood samples (collected and frozen at birth at -80°C) were shipped on dry ice to the Epigenetics 

Group at the International Agency for Research on Cancer (IARC), Lyon, France, where DNA was 

extracted (QIAamp 96 DNA Blood Kit, Qiagen 51161), quantified (Quant-iT PicoGreen dsDNA 

Assay Kit, Molecular Probes P7589) and bisulfite converted (600 ng of DNA using EZ-96 DNA 

Methylation kit, Zymo Research D5004). DNA methylation was measured at 485512 GpGs using 

Illumina Infinium HumanMethylation450 BeadChip (Illumina Inc., San Diego, USA). The phenotypic 

variables were harmonized across the three cohorts, and their biospecimens were semi-randomized on 

the DNA methylation arrays such that the latter would incorporate proportional representations of the 

three cohorts and that batch effects do not completely confound with biological covariates of interest. 

In the current study, we used the minfi package to import the raw data from IDAT files, into the R 

software for quality control and processing. Detection p-value was calculated for each of the 485512 

probes for each sample by comparing the total signal for each probe to the background signal level, 

estimated from the negative control probes. All 99 samples had mean detection p value < 0.01. The 

dataset was normalized using quantile normalization (preprocessQuantile) from the minfi package. We 

filtered out probes that failed in one or more samples (n=2964, 0.6%), probes on the sex chromosomes 

(n=11234), probes with SNPs at CpG site (n=16469) and cross reactive probes i.e probes that have 

been demonstrated to map to multiple places in the genome (n=35044) (Chen et al., 2013, Benton et 

al., 2015), leaving a total of 419801 CpGs for the analysis. Before filtering probes on sex 

chromosomes we estimated the sex based on the median values of measurements on the X and Y 

chromosomes. One sample was found to be discordant by the reported sex (male) and predicted sex 

(female) and was excluded, leaving total of 98 samples for further analysis. Methylation levels were 

expressed as beta values, ranging from 0 to 1, that represent the ratio of the intensity of the 

methylated-probe signal to the total locus signal intensity, methylated and unmethylated. 

We used the same method as the discovery dataset to estimate 7 cell types: CD8 T cells, CD4 T cells, 

Natural Killer cells, B cells, monocytes, granulocytes and nucleated red blood cells, by using the 

filtered reference dataset “FlowSorted.CordBloodCombined.450k” (Gervin et al., 2019) for 

deconvulsion. We used the function estimateCellCounts2 from the FlowSorted.Blood.EPIC R package 

(Salas et al., 2018) according to the authors’ instructions.  

The 99 PiccoliPiù samples were distributed in 6 plates together with samples from other cohorts. The 

first four plates contained more than 20 PiccoliPiù samples per plate, while the last two plates 

contained 2 and 4 samples, respectively. The 6 samples from the last two plates were excluded from 

the analyses in order to be able to adequately adjust for plate in the regression models, leaving 92 

samples for analysis. While in the original EXPOsOMICS study the PM10 concentrations were 

estimated using land-use regression modeling described elsewhere (Gruzieva et al., 2019), to increase 

the comparability between the two datasets we re-estimated the PM10 concentrations using the same 

method as the main analysis. (Stafoggia et al., 2016) Using linear regression, we assessed the 

association between PM10 exposure and the methylation of the top CpGs from the discovery analysis 

available in the Piccoli Più EXPOsOMICS dataset. Fifty-eight out of 111 CpGs were available on the 

Illumina450K array. All analyses were adjusted for an a priori selected set of covariates: technical 

variables (plate and DNA buffer type – ATE vs H2O), study center, maternal age (continuous), 

education (high- tertiary education, medium- upper secondary education, low-lower secondary or 



Gestational exposures and their association with newborn molecular markers and early childhood outcomes| 89  

 

less), parity (nulliparous vs multiparous), pre-pregnancy BMI (continuous), smoking during pregnancy 

(yes/no) and child’s sex. 

Figure S2. Correlation matrix between PM10 concentrations in different exposure windows. 

“Preg”, “PreImp”, “Imp”, “PostImp”, “T1”, “T2”, “T3” and “M1” refer to PM10 exposures during 

the entire pregnancy, pre-implantation, implantation, post-implantation, first trimester, second 

trimester, third trimester and last month of pregnancy, respectively. 
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Table S2. Traits associated with 28/111 CpGs found in EWAS Atlas and the studies where the original 

associations were reported.  

Probe ID Trait  
PMID of the 

corresponding study 

cg00121374 obesity 26977391 

cg00903584 psoriasis 30092825 

cg02283353 smoking, human herpesvirus 6B infection 24559495, 28298607  

cg02603756 prenatal arsenic exposure, Crohn's disease 25304211, 27279921 

cg04933990 B Acute Lymphoblastic Leukemia with t(1;19)(q23;p13.3); E2A-

PBX1 (TCF3-PBX1), oral squamous cell carcinoma 

26237075, 28890207 

cg06230418 obesity 26977391 

cg07485754 air pollution (NO2), smoking 29410382, 27651444, 

31536415 

cg08454563 smoking 27651444, 31536415 

cg09968723 B Acute Lymphoblastic Leukemia with t(1;19)(q23;p13.3); E2A-

PBX1 (TCF3-PBX1), Helicobacter pylori infection, oral squamous 

cell carcinoma, colorectal cancer, colorectal laterally spreading 

tumor, insufficient sleep, Tetralogy of Fallot 

29574700, 28890207, 

26237075, 30183087, 

30718923, 30977211  

cg10026495 right insular surface area  30830696 

cg11691189 breast cancer, type 2 diabetes 26418287, 28899398 

cg12876838 obesity, perinatally acquired HIV 29692867, 31324826 

cg13583523 asthma, adenocortical carcenoma, follicular thyroid carcinoma, 

facial aging, adenoma, short-term diesel exhaust inhalation, 

chemotherapy for breast cancer  

27942592, 26963385, 

28938489, 30409196, 

30183087, 25487561, 

30867049 

cg14334911 child abuse 23332324 

cg16624646 asthma 27942592 

cg17806989 absolute fat free mass, childhood adversity 29084944, 30905381 

cg18241780 smoking, aging 31536415, 27651444, 

30626398 

cg18318655 alcohol consuption 31910897 

cg18342425 Gulf war Illness 30920300 

cg18798495 preterm birth, B Acute Lymphoblastic Leukemia with t(12;21) 

(p13.2;q22.1) ETV6-RUNX1 

28428831, 26237075  

cg18857759 hepatocellular carcinoma, colorectal cancer, adenoma 29988590, 30183087 

cg21222426 aging, B Acute Lymphoblastic Leukemia with t(1;19)(q23;p13.3) 

E2A-PBX1 (TCF3-PBX1), fetal alcohol spectrum disorder, prenatal 

arsenic exposure, preterm birth, ancestry, perinatally- acquired HIV, 

gestational age  

29947889, 29064478, 

28428831, 27358653, 

26237075, 30563547, 

31324826, 30966880 

cg21487550 gestational diabetes 29596946 

cg22223441 breast cancer 29776342 

cg23480855 polychlorinated biphenyl exposure 32660331 

cg24583704 obesity 26977391 

cg24646748 Down syndrome 31843015 

cg26030063 aging 30626398 
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Table S3. Top 25 GeneOntology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways among the top CpGs associated with PM10 exposure during the period of implantation. 

N, number of genes in the pathway; DM, number of differentially methylated genes in the pathway, P, p-value and FDR, false discovery rate. 

GO TERM N DM P FDR   KEGG term N DM P FDR 

transcription initiation from mitochondrial promoter 3 2 0,0001 1   Synaptic vesicle cycle 78 4 0,0120 1 

integral component of presynaptic active zone membrane 14 3 0,0005 1   Phagosome 152 4 0,0464 1 

T cell homeostasis 28 3 0,0010 1   Thyroid hormone signaling pathway 121 4 0,0650 1 

growth cone membrane 6 2 0,0017 1   Adherens junction 71 3 0,0730 1 

protein kinase binding 401 12 0,0018 1   Viral protein interaction with cytokine and cytokine receptor 100 2 0,0898 1 

cell morphogenesis 52 4 0,0022 1   Other types of O-glycan biosynthesis 47 2 0,0972 1 

mitochondrial transcription 9 2 0,0028 1   PPAR signaling pathway 77 2 0,1369 1 

calcium-transporting ATPase activity 5 2 0,0029 1   Endocrine and other factor-regulated calcium reabsorption 53 2 0,1371 1 

leukocyte chemotaxis 11 2 0,0035 1   Endocytosis 248 5 0,1404 1 

protein dimerization activity 158 6 0,0037 1   Epithelial cell signaling in Helicobacter pylori infection 70 2 0,1518 1 

superoxide anion generation 14 2 0,0038 1   Human papillomavirus infection 331 6 0,1620 1 

negative regulation of cardiac muscle hypertrophy in response to 

stress 8 2 0,0041 1   AMPK signaling pathway 120 3 0,1667 1 

coenzyme binding 10 2 0,0043 1   Pentose and glucuronate interconversions 34 1 0,1724 1 

positive regulation of potassium ion transport 9 2 0,0050 1   Folate biosynthesis 26 1 0,1771 1 

cell recognition 11 2 0,0050 1   

Glycosaminoglycan biosynthesis - chondroitin sulfate / dermatan 

sulfate 20 1 0,2066 1 

kinase activity 67 4 0,0054 1   Thyroid hormone synthesis 75 2 0,2069 1 

negative regulation of potassium ion transmembrane transporter 

activity 8 2 0,0055 1   Collecting duct acid secretion 27 1 0,2127 1 

detection of tumor cell 1 1 0,0055 1   Salivary secretion 93 2 0,2276 1 

calcium ion transmembrane import into cytosol 7 2 0,0056 1   mTOR signaling pathway 155 3 0,2369 1 

cyclic-di-GMP binding 1 1 0,0059 1   Herpes simplex virus 1 infection 491 5 0,2401 1 

cyclic-GMP-AMP binding 1 1 0,0059 1   Cytokine-cytokine receptor interaction 294 3 0,2470 1 

integral component of ERGIC membrane 1 1 0,0059 1   Biosynthesis of unsaturated fatty acids 27 1 0,2476 1 

hormone biosynthetic process 12 2 0,0063 1   TGF-beta signaling pathway 94 2 0,2484 1 

cholestenol delta-isomerase activity 2 1 0,0067 1   Pancreatic secretion 102 2 0,2526 1 

negative regulation of potassium ion transmembrane transport 10 2 0,0068 1   Apoptosis - multiple species 32 1 0,2582 1 
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Table S4. Top 25 GeneOntology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways among the top CpGs associated with PM10 exposure during the period of post-

implantation. N, number of genes in the pathway; DM, number of differentially methylated genes in the pathway, P, p-value and FDR, false discovery rate. 

GO TERM N DM P FDR 

 

KEGG term N DE P.DE FDR 

ventricular cardiac muscle cell action potential 15 3 0,0011 1 

 

Non-small cell lung cancer 68 5 0,0035 1 

chemosensory behavior 5 2 0,0016 1 

 

Glycerophospholipid metabolism 98 4 0,0259 1 

methionine metabolic process 6 2 0,0019 1 

 

Mannose type O-glycan biosynthesis 23 2 0,0289 1 

membrane repolarization during action potential 5 2 0,0022 1 

 

Fc gamma R-mediated phagocytosis 93 4 0,0372 1 

negative regulation of mesenchymal cell proliferation 5 2 0,0028 1 

 

Sulfur relay system 8 1 0,0485 1 

astrocyte differentiation 7 2 0,0036 1 

 

Thyroid hormone synthesis 75 3 0,0716 1 

ketohexokinase activity 1 1 0,0043 1 

 

Metabolic pathways 1492 20 0,0807 1 

voltage-gated potassium channel activity involved in cardiac muscle cell action 

potential repolarization 
7 2 0,0049 1 

 
Valine, leucine and isoleucine degradation 48 2,5 0,0884 1 

thyroid hormone generation 11 2 0,0053 1 
 

Thyroid cancer 37 2 0,0890 1 

voltage-gated potassium channel activity involved in ventricular cardiac muscle 

cell action potential repolarization 
8 2 0,0062 1 

 

PD-L1 expression and PD-1 checkpoint pathway in 

cancer 
89 3 0,0928 1 

adenine transmembrane transporter activity 2 1 0,0062 1 

 

N-Glycan biosynthesis 50 2 0,1022 1 

potassium ion export across plasma membrane 9 2 0,0063 1 

 

Gastric cancer 149 4 0,1286 1 

mitochondrial genome maintenance 11 2 0,0066 1 

 

Phosphatidylinositol signaling system 97 3 0,1391 1 

ATP-dependent 5'-3' DNA/RNA helicase activity 1 1 0,0075 1 

 

Necroptosis 159 3 0,1401 1 

male germ cell nucleus 15 2 0,0077 1 

 

Notch signaling pathway 53 2 0,1470 1 

regulation of mesoderm development 1 1 0,0079 1 

 

RNA transport 185 3 0,1492 1 

regulation of membrane repolarization 10 2 0,0081 1 

 

Choline metabolism in cancer 98 3 0,1535 1 

hormone biosynthetic process 12 2 0,0081 1 

 

Inflammatory mediator regulation of TRP channels 100 3 0,1639 1 

membrane repolarization during ventricular cardiac muscle cell action potential 12 2 0,0082 1 

 

Histidine metabolism 22 1 0,1670 1 

histidine decarboxylase activity 1 1 0,0083 1 

 

VEGF signaling pathway 59 2 0,1864 1 

histidine metabolic process 1 1 0,0083 1 

 

One carbon pool by folate 20 1 0,1868 1 

positive regulation of potassium ion transmembrane transport 12 2 0,0087 1 

 

Basal cell carcinoma 63 2 0,1870 1 

transverse filament 1 1 0,0089 1 

 

Linoleic acid metabolism 29 1 0,1872 1 

lateral element assembly 1 1 0,0089 1 

 

Pentose and glucuronate interconversions 34 1 0,1908 1 

membrane repolarization during cardiac muscle cell action potential 9 2 0,0090 1 

 

Mismatch repair 23 1 0,1940 1 
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Table S5. Study characterististics of the Piccoli Più subsample from the Turin (N=99) center analyzed within the 

EXPOsOMICS project.  

  N Mean (SD) or %   

Maternal age 99 34.1 (4.4) 
 

Maternal education 
   

     High 50 50.5% 
 

     Medium 41 41.4% 
 

     Low 8 8.1% 
 

Maternal pre-pregnacy BMI 99 22.6 (3.9) 
 

Parity  
   

     Nulliparous 45 45.5% 
 

     Multiparous 54 54.6% 
 

Smoking in pregnancy 
   

     No 78 78.8% 
 

     Yes 21 21.2% 
 

Child's sex 
   

     Female 54 54.6% 
 

     Male 45 45.5% 
 

PM10 estimates 
   

     Whole pregnancy 383 45.9 (9.6) 
 

     Pre-implantation 383 43.6 (25.8) 
 

     Implantation 383 43.6 (15.8) 
 

     Post-implantation 383 38.9 (24.6) 
 

     First trimester 383 39.0 (20.5) 
 

     Second trimester 383 43.6 (21.5) 
 

     Third trimester 383 55.0 (22.1) 
 

     Last month of pregnancy 383 57.1 (26.8) 
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Table S6. Testing our top findings in a subsample from the Turin center of the Piccoli Più cohort analysed within the EXPOsOMICS project to assess whether 

they show consistent direction of association in the corresponding window of exposure. Fifty-eight CpGs were available for testing. Asterisk (*) indicates p-value 

< 0.1 and two asterisks (**) p-value<0.05. 

ProbeID 
Discovery dataset 

 
Pre-impl 

 

Impl 

 

Post-impl 

 

T1 

 

T2 

 

T3 

 

M1 

 

Preg 

 Window of exposure  Dir 
 

Dir p-val 
 

Dir p-val 
 

Dir p-val 
 

Dir p-val 
 

Dir p-val 
 

Dir p-val 
 

Dir p-val 
 

Dir p-val 

 

cg09634226 

Implantation and 

post-implantation + 

 

+ 0,32 

 

+ 0,91 

 

+ 0,99 

 

+ 0,72 

 

+ 0,82 

 

+ 0,76 

 

+ 0,50 

 

+ 0,86 

 cg00493609 Implantation - 

 

- 0,88 

 

+ 0,65 

 

- 0,65 

 

- 0,95 

 

+ 0,28 

 

+ 0,94 

 

- 0,54 

 

+ 0,27 

 cg01200186 Implantation - 

 

- 0,09 * - 0,14 

 

- 0,78 

 

- 0,60 

 

+ 0,51 

 

- 0,83 

 

- 0,44 

 

+ 0,95 

 cg02283353 Implantation - 

 

+ 0,11 

 

+ 0,24 

 

+ 0,35 

 

+ 0,62 

 

- 0,01 ** - 0,34 

 

+ 0,86 

 

- 0,03 ** 

cg03175206 Implantation - 

 

+ 0,53 

 

+ 0,69 

 

+ 0,48 

 

+ 0,08 * + 0,49 

 

- 0,09 * - 0,21 

 

- 0,96 

 cg04933990 Implantation + 

 

- 0,10 

 

- 0,32 

 

- 0,39 

 

- 0,69 

 

+ 0,71 

 

+ 0,49 

 

+ 0,67 

 

+ 0,66 

 cg06469440 Implantation - 

 

+ 0,63 

 

+ 0,93 

 

- 0,86 

 

- 0,74 

 

- 0,26 

 

- 0,50 

 

- 0,79 

 

- 0,17 

 cg06527535 Implantation - 

 

+ 0,23 

 

+ 0,04 ** + 0,14 

 

+ 0,10 * - 0,42 

 

- 0,25 

 

- 0,54 

 

- 0,29 

 cg07485754 Implantation + 

 

- 0,44 

 

- 0,26 

 

- 0,12 

 

- 0,01 ** - 0,41 

 

+ 0,20 

 

+ 0,09 * - 0,19 

 cg08454563 Implantation - 

 

+ 0,89 

 

+ 0,44 

 

+ 0,37 

 

+ 0,68 

 

- 0,51 

 

- 0,31 

 

- 0,37 

 

- 0,23 

 cg08563994 Implantation + 

 

+ 0,17 

 

+ 0,77 

 

+ 0,47 

 

+ 0,76 

 

- 0,47 

 

+ 0,72 

 

+ 0,37 

 

- 0,75 

 cg09153950 Implantation - 

 

+ 0,18 

 

+ 0,01 ** + 0,01 ** + 0,08 * - 0,53 

 

- 0,21 

 

- 0,85 

 

- 0,88 

 cg09195657 Implantation - 

 

+ 0,40 

 

+ 0,52 

 

+ 0,82 

 

- 0,95 

 

- 0,25 

 

+ 0,63 

 

+ 0,16 

 

- 0,90 

 cg09371530 Implantation - 

 

- 0,38 

 

- 0,17 

 

- 0,07 * - 0,14 

 

+ 0,40 

 

+ 0,32 

 

+ 0,74 

 

+ 0,59 

 cg10026495 Implantation - 

 

- 0,01 ** - 0,01 ** - 0,00 ** - 0,00 ** + 0,16 

 

+ 0,00 ** + 0,03 ** + 0,31 

 cg10409786 Implantation + 

 

- 0,93 

 

+ 0,73 

 

+ 0,78 

 

+ 0,36 

 

+ 0,91 

 

- 0,38 

 

- 0,05 ** - 0,64 

 cg10472067 Implantation + 

 

+ 0,84 

 

+ 0,13 

 

+ 0,40 

 

+ 0,19 

 

- 0,82 

 

- 0,31 

 

- 0,11 

 

- 0,48 

 cg13289118 Implantation - 

 

+ 0,08 * + 0,00 ** + 0,05 * + 0,12 

 

- 0,55 

 

- 0,05 ** - 0,56 

 

- 0,91 

 cg13474011 Implantation + 

 

- 0,69 

 

+ 0,21 

 

+ 0,23 

 

+ 0,33 

 

+ 0,83 

 

- 0,30 

 

- 0,48 

 

+ 0,75 

 cg13583523 Implantation - 

 

- 0,68 

 

+ 0,87 

 

+ 0,71 

 

+ 0,28 

 

+ 0,24 

 

- 0,80 

 

- 0,32 

 

+ 0,20 

 cg13696148 Implantation - 

 

- 0,46 

 

- 0,26 

 

- 0,10 * - 0,33 

 

+ 0,64 

 

+ 0,28 

 

+ 0,18 

 

+ 0,47 

 cg14334911 Implantation + 

 

+ 0,11 

 

- 0,73 

 

+ 0,88 

 

- 0,56 

 

- 0,06 * + 0,98 

 

+ 0,44 

 

- 0,08 * 

cg14468007 Implantation - 

 

+ 0,18 

 

+ 0,00 ** + 0,04 ** + 0,11 

 

- 0,11 

 

- 0,03 ** - 0,10 * - 0,07 * 

cg17806989 Implantation - 

 

- 0,22 

 

- 0,11 

 

- 0,09 * - 0,06 * + 0,21 

 

+ 0,16 

 

+ 0,87 

 

+ 0,57 

 cg18241780 Implantation + 

 

- 0,12 

 

- 0,05 ** - 0,12 

 

- 0,82 

 

+ 0,01 ** + 0,64 

 

- 0,35 

 

+ 0,02 ** 

cg18447143 Implantation - 

 

+ 0,99 

 

- 0,29 

 

- 0,98 

 

- 0,67 

 

+ 0,99 

 

+ 0,84 

 

- 0,67 

 

+ 0,97 

 cg18798495 Implantation - 

 

- 0,84 

 

- 0,61 

 

- 0,49 

 

- 0,87 

 

+ 0,79 

 

+ 0,74 

 

- 0,50 

 

+ 0,58 
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cg18917544 Implantation + 

 

+ 0,09 * + 0,76 

 

- 0,86 

 

- 0,41 

 

- 0,13 

 

+ 0,40 

 

+ 0,06 * - 0,38 

 cg18980939 Implantation - 

 

+ 0,24 

 

+ 0,14 

 

+ 0,06 * + 0,41 

 

- 0,06 * - 0,35 

 

- 0,77 

 

- 0,07 * 

cg19222405 Implantation - 

 

- 0,53 

 

- 0,75 

 

- 0,53 

 

- 0,26 

 

- 0,54 

 

+ 0,40 

 

+ 0,18 

 

- 0,26 

 cg21683659 Implantation - 

 

- 0,81 

 

- 0,72 

 

- 0,97 

 

- 0,25 

 

- 0,28 

 

+ 0,80 

 

+ 0,18 

 

- 0,29 

 cg24583704 Implantation - 

 

+ 0,55 

 

- 0,97 

 

- 0,97 

 

- 0,29 

 

- 0,11 

 

+ 0,71 

 

+ 0,13 

 

- 0,11 

 cg25198579 Implantation + 

 

+ 0,62 

 

+ 0,54 

 

+ 0,48 

 

+ 0,62 

 

+ 0,91 

 

- 0,63 

 

- 0,86 

 

+ 0,98 

 cg27343976 Implantation - 

 

- 0,01 ** - 0,00 ** - 0,00 ** - 0,00 ** + 0,08 * + 0,02 ** + 0,24 

 

+ 0,12 

 cg00121374 Post-implantation - 

 

+ 0,83 

 

+ 0,21 

 

+ 0,84 

 

+ 0,61 

 

+ 0,08 * - 0,92 

 

- 0,84 

 

+ 0,16 

 cg00325528 Post-implantation - 

 

+ 0,43 

 

+ 0,71 

 

+ 0,93 

 

- 0,87 

 

- 0,94 

 

- 0,33 

 

- 0,40 

 

- 0,53 

 cg00903584 Post-implantation + 

 

+ 0,24 

 

+ 0,01 ** + 0,00 ** + 0,00 ** + 0,79 

 

- 0,04 ** - 0,07 * + 0,41 

 cg01971227 Post-implantation + 

 

- 0,27 

 

- 0,62 

 

- 0,49 

 

- 0,93 

 

+ 0,15 

 

+ 0,41 

 

- 0,46 

 

+ 0,33 

 cg02603756 Post-implantation - 

 

- 0,93 

 

- 0,92 

 

- 0,79 

 

- 0,34 

 

+ 0,32 

 

+ 0,21 

 

+ 0,16 

 

+ 0,17 

 cg02961575 Post-implantation + 

 

+ 0,11 

 

+ 0,10 

 

+ 0,22 

 

+ 0,07 * - 0,69 

 

- 0,11 

 

- 0,56 

 

- 0,88 

 cg07390478 Post-implantation - 

 

+ 0,76 

 

- 0,28 

 

- 0,63 

 

- 0,63 

 

- 0,37 

 

+ 0,38 

 

+ 0,08 * - 0,70 

 cg09968723 Post-implantation + 

 

+ 0,21 

 

+ 0,04 ** + 0,07 * + 0,24 

 

- 0,16 

 

- 0,05 ** - 0,36 

 

- 0,09 * 

cg11691189 Post-implantation - 

 

- 0,51 

 

- 0,63 

 

- 0,42 

 

- 0,18 

 

- 0,90 

 

+ 0,59 

 

+ 0,91 

 

- 0,40 

 cg12876838 Post-implantation - 

 

+ 0,48 

 

- 0,88 

 

+ 0,78 

 

+ 0,59 

 

+ 0,62 

 

+ 0,74 

 

+ 0,80 

 

+ 0,21 

 cg14565439 Post-implantation - 

 

+ 0,43 

 

+ 0,60 

 

+ 0,78 

 

+ 0,45 

 

+ 0,88 

 

- 0,78 

 

+ 0,90 

 

+ 0,90 

 cg16624646 Post-implantation + 

 

+ 0,35 

 

+ 0,39 

 

+ 0,39 

 

+ 0,26 

 

- 0,16 

 

- 0,27 

 

- 0,85 

 

- 0,35 

 cg18526161 Post-implantation + 

 

+ 0,22 

 

+ 0,54 

 

+ 0,74 

 

- 0,18 

 

- 0,01 ** + 0,56 

 

+ 0,03 ** - 0,04 ** 

cg18857759 Post-implantation - 

 

- 0,97 

 

+ 0,27 

 

+ 0,21 

 

+ 0,89 

 

- 0,32 

 

- 0,51 

 

- 0,56 

 

- 0,15 

 cg19140429 Post-implantation + 

 

+ 0,01 ** + 0,02 ** + 0,04 ** + 0,02 ** - 0,13 

 

- 0,05 ** - 0,43 

 

- 0,22 

 cg20806143 Post-implantation - 

 

+ 0,90 

 

+ 0,11 

 

+ 0,35 

 

+ 0,16 

 

+ 0,50 

 

- 0,13 

 

- 0,02 ** - 0,82 

 cg21222426 Post-implantation + 

 

- 0,33 

 

- 0,46 

 

+ 0,68 

 

+ 0,87 

 

+ 0,60 

 

+ 0,61 

 

- 0,85 

 

+ 0,19 

 cg21487550 Post-implantation + 

 

+ 0,55 

 

+ 0,78 

 

+ 0,19 

 

+ 0,23 

 

- 0,95 

 

- 0,24 

 

- 0,36 

 

- 0,94 

 cg21797500 Post-implantation - 

 

+ 0,29 

 

+ 0,23 

 

+ 0,22 

 

+ 0,16 

 

+ 0,96 

 

- 0,37 

 

- 0,48 

 

- 0,92 

 cg22223441 Post-implantation - 

 

+ 0,20 

 

+ 0,22 

 

+ 0,27 

 

+ 0,30 

 

- 0,45 

 

- 0,17 

 

- 0,43 

 

- 0,44 

 cg22810059 Post-implantation - 

 

- 0,11 

 

- 0,14 

 

- 0,08 * - 0,05 ** + 0,11 

 

+ 0,30 

 

+ 0,62 

 

+ 0,36 

 cg23471777 Post-implantation + 

 

- 0,88 

 

+ 0,76 

 

+ 0,69 

 

- 0,62 

 

+ 0,58 

 

- 0,53 

 

- 0,98 

 

+ 0,45 

 cg06230418 Month before birth - 

 

+ 0,29 

 

+ 0,04 ** + 0,19 

 

+ 0,35 

 

- 0,29 

 

- 0,13 

 

- 0,60 

 

- 0,14 

 cg26030063 Month before birth + 

 

+ 0,16 

 

+ 0,05 * + 0,08 * + 0,15 

 

- 0,18 

 

- 0,35 

 

- 0,76 

 

- 0,21 

 The estimates are adjusted for technical variables, maternal age, education, parity, pre-pregnancy BMI, smoking in pregnancy, child’s sex and cell heterogeneity. Pre-impl, imp, 

post-impl, T1, T2, T3, M1 and preg: pre-implantation, implantation, post-implantation, first, second and third trimester, last month of pregnancy and entire pregnancy respectively.  
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Figure S3. The density plot showing the distribution of the normalized beta values for each sample 

across all probes included after quality control and filtering (N=770128). 

 

Figure S4. The density plot showing the distribution of the normalized beta values for each sample 

across different genomic regions: a) CpG islands (number of included probes after quality control and 

filtering, n=146684, 19.0%), b) shore regions (n=139339, 18.1%), c) shelf regions (n=53062, 6.9%) and 

d) open sea region (n=431043, 60.0%) 
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Figure S5. Box plot showing the median methylation across different genomic regions 
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Table S7. Association between ambient air pollution exposure to PM10 and measures of overall methylation 

across all probes and across probes in different genomic regions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Linear regression (mean DNAm) 
 

GAMP 

  
Coef 

95% CI 
p-val  

CDF Density 

Whole pregnancy 

 

Lower Upper 
 

p-val p-val 

     All probes 

 

5.0E-05 -1.6E-05 1,2E-04 0,136 

 

0,429 0,554 

     CpG islands 

 

-8.4E-05 -1.7E-04 6,4E-06 0,068 

 

0,071 0,122 

     Shore  

 

5.3E-05 -6.8E-05 1,7E-04 0,387 

 

0,414 0,153 

     Shelf 

 

5.5E-05 -1.3E-04 2,4E-04 0,565 

 

0,381 0,283 

     Open Sea  

 

9.4E-05 2.8E-05 1,6E-04 0,005 

 

0,421 0,326 

Pre-implantation 

             All probes 

 

-1.2E-06 -2.5E-05 2.3E-05 0.919 

 

0.567 0.547 

     CpG islands 

 

9.4E-06 -2.3E-05 4.2E-05 0.572 

 

0.602 0.581 

     Shore  

 

2.7E-06 -4.1E-05 4.6E-05 0.904 

 

0.825 0.526 

     Shelf 

 

-3.9E-05 -1.1E-04 2.9E-05 0.264 

 

0.676 0.657 

     Open Sea  

 

-1.5E-06 -2.6E-05 2.3E-05 0.901 

 

0.457 0.366 

Implantation 

             All probes 

 

1.0E-05 -1.5E-05 3.6E-05 0.432 

 

0.736 0.442 

     CpG islands 

 

2.4E-05 -1.1E-05 5.9E-05 0.179 

 

0.368 0.398 

     Shore  

 

2.3E-05 -2.4E-05 6.9E-05 0.338 

 

0.764 0.355 

     Shelf 

 

-4.2E-05 -1.1E-04 3.1E-05 0.258 

 

0.795 1.000 

     Open Sea  

 

7.8E-06 -1.8E-05 3.4E-05 0.550 

 

0.593 0.552 

Post-implantation 

             All probes 

 

-5.6E-06 -2.9E-05 1.8E-05 0.638 

 

0.221 0.461 

     CpG islands 

 

1.7E-05 -1.5E-05 4.9E-05 0.288 

 

0.497 0.596 

     Shore  

 

-1.6E-05 -5.8E-05 2.7E-05 0.475 

 

0.311 0.655 

     Shelf 

 

-7.1E-05 -1.4E-04 -4.5E-06 0.036 

 

0.124 0.237 

     Open Sea  

 

-2.2E-06 -2.6E-05 2.1E-05 0.855 

 

0.236 0.317 

First trimester 

             All probes 

 

-2.0E-06 -3.2E-05 2.8E-05 0.894 

 

0.690 0.949 

     CpG islands 

 

7.9E-06 -3.4E-05 5.0E-05 0.708 

 

0.636 0.560 

     Shore  

 

-7.8E-06 -6.3E-05 4.8E-05 0.782 

 

1.000 1.000 

     Shelf 

 

-6.8E-05 -1.5E-04 1.8E-05 0.120 

 

0.445 0.852 

     Open Sea  

 

4.5E-06 -2.6E-05 3.5E-05 0.771 

 

0.626 1.000 

Second trimester 

             All probes 

 

1.2E-05 -1.7E-05 4.2E-05 0.411 

 

0.500 0.425 

     CpG islands 

 

-4.5E-05 -8.6E-05 -4.6E-06 0.029 

 

0.056 0.105 

     Shore  

 

1.8E-05 -3.7E-05 7.3E-05 0.515 

 

0.599 0.235 

     Shelf 

 

2.0E-05 -6.5E-05 1.1E-04 0.641 

 

0.464 0.290 

     Open Sea  

 

2.9E-05 -6.7E-07 6.0E-05 0.055 

 

0.444 0.244 

Third trimester 

             All probes 

 

2.0E-05 -1.0E-05 4.9E-05 0.194 

 

0.347 0.659 

     CpG islands 

 

-1.3E-05 -5.4E-05 2.7E-05 0.520 

 

0.766 0.881 

     Shore  

 

2.2E-05 -3.3E-05 7.6E-05 0.431 

 

0.420 0.658 

     Shelf 

 

7.4E-05 -1.1E-05 1.6E-04 0.088 

 

0.201 0.224 

     Open Sea  

 

2.3E-05 -6.5E-06 5.3E-05 0.124 

 

0.384 0.407 

Last month of 

pregnancy 

             All probes 

 

-3.1E-06 -2.8E-05 2.2E-05 0.807 

 

0.828 1.000 

     CpG islands 

 

-4.0E-06 -3.9E-05 3.1E-05 0.820 

 

1.000 0.914 

     Shore  

 

-1.8E-05 -6.4E-05 2.8E-05 0.444 

 

0.592 0.406 

     Shelf 

 

-9.2E-06 -8.2E-05 6.3E-05 0.802 

 

0.684 0.654 

     Open Sea  

 

2.7E-06 -2.3E-05 2.8E-05 0.835 

 

0.780 0.712 

All analyses were adjusted for technical variables. study center. maternal age. 

education. parity. pre-pregnancy BMI. smoking in pregnancy and child’s sex. The 

second analysis was additionally adjusted for cell heterogeneity. The confidents 

represent change in DNA methylation for 10µg/m3 in PM10. 
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Table S8. Association between prenatal exposure to PM10 and telomere length. the coefficients are 

adjusted for cell heterogeneity. 

 
N=365 

 

N=324 (samples with CV>20 were excluded) 

 
Coef 

95% CI 
p value 

 
Coef 

95% CI 
p value 

 
Lower Upper 

 

Lower Upper 

All pregnancy -0.0010 -0.0171 0.0150 0.901  0.0067 -0.0096 0.0230 0.420 

Pre-implantation  -0.0047 -0.0104 0.0010 0.105  -0.0025 -0.0083 0.0034 0.407 

Implantation -0.0044 -0.0103 0.0015 0.142  -0.0022 -0.0083 0.0040 0.488 

Post-implantation -0.0048 -0.0104 0.0009 0.098  -0.0012 -0.0072 0.0047 0.687 

First trimester -0.0053 -0.0127 0.0021 0.157  -0.0007 -0.0085 0.0070 0.850 

Second trimester 0.0020 -0.0053 0.0092 0.593  0.0042 -0.0031 0.0116 0.259 

Third trimester 0.0038 -0.0035 0.0111 0.306  0.0020 -0.0055 0.0095 0.598 

Last month of 

pregnancy 
0.0009 -0.0053 0.0071 0.771  -0.0010 -0.0076 0.0056 0.765 

Adjusted for technical variables, study center, maternal age, education, parity, pre-pregnancy BMI, smoking in pregnancy, 

child’s sex and cell heterogeneity. The confidents represent change in telomere length for 10µg/m3 in PM10. 
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Abstract 

Background: Several exposures during pregnancy are associated with offspring BMI. The objective 

of this study was to evaluate whether third trimester antibiotic use and vaginal infections are 

associated with BMI in preschool children. 

Methods: The study population included singletons from the NINFEA birth cohort with available 

anthropometric measurements at the age of 4 (3151 born with vaginal and 1111 born with cesarean 

delivery). Self-reported use of antibiotics and the presence of vaginal infection in the third trimester 

were analyzed in association with the child’s BMI, classified into 3 categories: thinness, normal and 

overweight/obesity, using both the International Obesity Task Force (IOTF) and the World Health 

Organization (WHO) recommended cut-offs. 

Results: Maternal vaginal infections in the third trimester of pregnancy were associated with higher 

relative risk ratios (RRR) for overweight/obesity at age of 4 in children delivered vaginally: 1.92 

(95% confidence interval (CI): 1.37 to 2.70). This association appeared stronger for children born to 

women with pre-pregnancy BMI>25 kg/m2 (RRR: 4.78; 95% CI 2.45 to 9.35), and was robust when 

different obesity cut-offs were used. The results regarding third trimester antibiotic use in vaginal 

deliveries were less conclusive (RRRs for overweight/obesity: 1.43 (0.92 to 2.21) and 1.11 (0.57 to 

2.20), for the IOTF and WHO cut-offs, respectively). Third trimester vaginal infections were not 

associated with BMI in children delivered by cesarean section.  

Conclusion: Maternal third trimester vaginal infections are associated with an increased 

overweight/obesity risk in children born by vaginal delivery, and especially in children of mothers 

with pre-pregnancy overweight/obesity.  
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Introduction 

Obesity in children is an important public health challenge due to its high prevalence, 

complex etiology and long-term consequences.1,2 According to the Developmental Origins of 

Health and Disease hypothesis (DOHaD) the risk for many metabolic diseases, including 

obesity, can originate during early development.3 Exposures such as high pre-pregnancy 

BMI, excess gestational weight gain and exposure to tobacco smoke during pregnancy have 

already been identified as early risk factors for obesity in children.4,5      

Due to the emerging role of altered human gut microbiota in many metabolic and 

inflammatory diseases, especially obesity, we focused on two common gestational exposures 

closely linked6 with the maternal and initial neonatal microbiota: antibiotics and vaginal 

infections in the third trimester of pregnancy. The first major microbial colonization of the 

newborn happens during the birthing process and maternal antibiotic use or vaginal infections 

in pregnancy may not only disturb the maternal microbiota but also the initial colonizing 

microbiota of the newborn.  Antibiotics are among the most commonly prescribed drugs in 

pregnancy7,8 and their administration in many circumstances is both effective and life-saving. 

However, undesired effects on the long-term health of the offspring are also linked with their 

use. 9 The association between gestational antibiotic exposure and obesity in children is not 

well understood, possibly due to the complex interplay between many important factors that 

exert their effect in this period, with roles difficult to disentangle.10 Some of the studies on 

this topic reported positive associations between antibiotic exposure in some trimesters, or 

certain types of antibiotics and overweight or obesity, while others studies reported null 

associations. 11–17 Most of the studies on antibiotics either used BMI as a continuous variable 

or included children who are underweight in the reference category, potentially attenuating 

the association with overweight/obesity. Vaginal dysbiosis in pregnancy is linked with 

maternal and fetal morbidity, in particular with increased risk for chorionamnionitis and 

premature rupture of the membranes18 and preterm birth19,20, a  risk factors for later metabolic 

diseases.21 To date, there are no studies that explore the possible association between vaginal 

infections during pregnancy and childhood BMI outcomes.  

Since the identification of early modifiable risk factors for metabolic diseases can help 

promote childhood health as early as from pregnancy, our aim was to evaluate, within the 

framework of a mother-child cohort study, whether antibiotic use and vaginal infections in 

the last trimester of pregnancy are associated with BMI in pre-school children. To address 
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possible gaps in the literature and explore the association with both sides of the BMI 

spectrum, we modeled child’s BMI as categorical variable with three categories (thinness, 

normal weight and overweight/obesity). To account for the fact that all mothers undergoing 

cesarean delivery are pretreated with antibiotics, and therefore, all children could be 

considered as exposed, our main analyses are focused only on children born by vaginal 

delivery.  

We focused on exposures occurring during the third trimester of pregnancy because, from a 

theoretical point of view, we hypothesized that exposures that alter the maternal microbiome 

closer to the time of delivery might be the most relevant ones for obesity risk, and from a 

technical point of view, information on the exposures in the third trimester was the most 

complete, as detailed in the following Methods section. 

 

Methods 

1. Study population  

The NINFEA study (Nascita e Infanzia: gli Effetti dell’Ambiente; Birth and Childhood: 

Effects of the Environment) is an Italian internet-based mother-child 

cohort (https://www.progettoninfea.it/index_en - n1) set up to investigate exposures during 

pre-natal and early post-natal life that may affect health later in life.22,23 Members of the 

cohort are children born to women who have access to the Internet and have enough 

knowledge of the Italian language to complete the online questionnaires. Since 2005 

approximately 7500 pregnant women were recruited and completed the baseline 

questionnaire at any time during the pregnancy. The follow-up questionnaires are completed 

at 6 and 18 months after delivery and when the child turns 4, 7, 10 and 13 years. For this 

study we used the 2019.11 version of the NINFEA database, in which 4841 children were 

followed up at age of 4. 

The study population included 4262 singletons with available height and weight 

measurements at the age of 4. Of them 3151 were born with vaginal and 1111 with cesarean 

delivery (Supplementary Figure S1). The NINFEA study was approved by the Ethical 

Committee of the San Giovanni Battista Hospital and CTO/CRF/Maria Adelaide Hospital of 

Turin (approval N.0048362 and following amendments) and all the participants gave written 

informed consent at enrolment. 
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2. Exposure, outcome and confounding variables  

We used the data from the second questionnaire completed 6 months after delivery, covering 

third trimester exposures, in order to obtain information on antibiotic use and the occurrence 

of vaginal infections in the first and third trimester of pregnancy. We focused on third 

trimester exposures due to the larger sample size. The first questionnaire covering first and 

secondtrimester exposures can be completed at any point in the pregnancy and thus would 

require exclusion of all participants who completed the questionnaire before the end of the 

corresponding trimesters, leading to reduction in sample size. In the second questionnaire, 

mothers were asked to complete two separate pre-specified checklists, one for medication use 

and one for pathological conditions. Therefore, antibiotic use was defined as any antibiotic 

taken by the mother independently of indication, while vaginal infection was defined as any 

vaginal infection.  

Child weight and height measurements at approximately 4 years of age were reported by 

mothers at the 4-year follow-up questionnaire. The offspring body mass index (BMI) at age 

of 4 years was calculated using the standard formula, weight in kilograms divided by height 

in meters squared (kg/m2). Since we modeled BMI as a categorical variable with three 

categories (thinness, normal weight and overweight/obesity) and differences in prevalence 

are known to exists when different definitions are used, we decided to use two cut-offs: the 

ones proposed by the International Obesity Task Force (IOTF)24 and the World Health 

Organization (WHO).25 The IOTF cut-offs are based on and linked to the corresponding adult 

BMI cut-offs at age 18 of the IOTF reference population and classify children into six 

categories thinness grade 3, 2 and 1, normal BMI, overweight and obesity. The WHO Child 

Growth Standards (0-5 years) on the other hand, are based on traditional z-scores. The z 

scores recommended to define thinness and overweight/obesity for children under the age of 

five are -2 and 2.  The WHO z score of -2 closely corresponds to the cut-off for thinness level 

2 in IOTF. Therefore, for comparability reasons for the main IOTF analyses we used the age 

and sex-specific cut-off for thinness grade 2 to define thinness and included thinness grade 1 

in the normal BMI category. We also conducted sensitivity analyses classifying thinness 

grade 1 together with thinness grade 2 and 3.  

Maternal age (continuous), maternal education (primary school or less, secondary education, 

and university degree or higher), parity (yes, no), maternal pre-pregnancy BMI (continuous), 

smoking during pregnancy (ever smoked, never) and gestational diabetes were pre-selected as 
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potential confounders. We also adjusted for gestational age to account for different pregnancy 

length and, therefore, the period in which the child could have been exposed prenatally. 

Although antibiotics can be used to treat vaginal infections, we not to adjust for antibiotic use 

when studying vaginal infections, because in this case the antibiotic would act as a mediator 

in the association, and not a confounder.26    

Children born with cesarean delivery are pretreated with intrapartum antibiotic prophylaxis 

and therefore for our main analyses we focused only on vaginal deliveries and additionally 

performed the analyses regarding vaginal infections in cesarean deliveries.  

3. Statistical analyses  

We used a complete case analyses approach, excluding all subjects with missing data in any 

of the variables of interest. For the main statistical analyses, we used multinomial logistic 

regression, an extension of logistic regression, used when the dependent variable is nominal 

with more than two categories. The exponentiated coefficients provide an estimate of relative 

risk and are presented as relative risk ratios (RRRs) and 95% confidence intervals (CIs). RRR 

represents the relative risk of thinness or overweight at age 4 (compared to normal BMI) 

among children of exposed vs unexposed mothers. We further investigated whether the 

studied associations are modified by maternal pre-pregnancy BMI (categorized as ≤25 and 

>25) and sex of the child. All the analyses were performed using STATA version 15 

(STATA Corp., Texas, USA).  

Results 

In our population of children born with vaginal delivery, the prevalence of antibiotic use in 

the third trimester was close to 6%, while the prevalence of vaginal infections was slightly 

higher, around 9%. We observed notable differences in the prevalence of thinness and 

overweight (that includes obesity) when different cut-offs were used, Figure 1.  

According to the WHO z-score cut-offs, 4.5% of the NINFEA children were classified in the 

thinness category, while 7.7% were classified as thinness grade 3 or 2 according to the IOTF 

cut-offs. Around 15% of the NINFEA children were classified as IOTF thinness grade 1, but 

fell within the normal BMI limits according to WHO cut-offs.  The prevalence of overweight 

according to WHO and IOTF was 5.3% and 12%, respectively. Other characteristics of the 

population are summarized in Table 1. The corresponding percentages regarding cesarean 

deliveries are reported in Supplementary Table S1. 
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Figure 1. Comparison between the IOTF and WHO classification in NINFEA children aged 4 

born with vaginal delivery. 

 

Table 1. Characteristics of mother-child dyads born with vaginal delivery and with available height 

and weight measures at age 4 (N=3151) 

  N Mean (SD) or % 

Maternal age at delivery 3151 33.5 (4.1) 

Maternal pre-pregnancy BMI 3100 22.2 (3.6) 

     Missing values 51 ─ 

Maternal education     

     Primary school or less 112 3.6% 

     Secondary school 985 31.5% 

     University degree or higher 2035 64.8% 

     Missing values 19 ─ 

Gestational diabetes     

     No  2707 91.5% 

     Yes 253 8.6% 

     Missing values 191 ─ 

Smoked in pregnancy     

     No  2876 92.4% 

     Yes 237 7.6% 

     Missing values 38 ─ 

First pregnancy      

     No  858 27.8% 

     Yes 2227 72.8% 

     Missing values 66 ─ 

Antibiotic use in third trimester     

     No  2820 94.1% 

     Yes 177 5.9% 

     Missing values 154 ─ 

Vaginal infections in third trimester     

     No  2733 91.2% 

     Yes 264 8.8% 

     Missing values 151 ─ 

Child's BMI (IOTF cut-offs)     

     Thinness grade 3 and 2 242 7.7% 

     Thinness grade 1 478 15.2% 

     Normal BMI 2053 65.2% 
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     Overweight/obesity 378 12% 

Child's BMI (WHO cut-offs)     

     Thinness 142 4.5% 

     Normal BMI 2843 90.2% 

     Overweight/obesity 166 5.3% 

 

For this study, we used the complete case analysis approach and excluded 10% of the 

subjects due to missing data, leaving a total of 2837 children in our main analyses. The 

percentage of missing data was below 6% for all explanatory variables. There were no 

differences in the baseline characteristics between included and excluded subjects, with the 

exception of maternal smoking in pregnancy, which was more common in the excluded group 

(7.2% vs. 12.0 %, p-value 0.004). The characteristics of the included and excluded subjects 

are summarized in Supplementary Table S2. 

The prevalence of both thinness and overweight/obesity was smaller by WHO standards and 

thus the analyses were more limited in power, in comparison to those by IOTF. The relative 

risk of being overweight/obese at 4 years of age in children whose mothers had vaginal 

infection during the third trimester vs those did not was 1.92 (1.37 to 2.70) (Table 2). The 

strength of association did not change when different overweight/obesity cut-off was used, 

Supplementary Table S3.  

Table 2. Associations of antibiotic use and vaginal infections in the third trimester with BMI 

outcomes at age of 4 in NINFEA children born with vaginal delivery. International Obesity Task 

Force cut-offs were used to define thinness and overweight/obesity. Thinness grade 1 is classified 

as normal BMI. 

  Cases/exposed cases (%) RRRcrude (95% CI) RRRadj* (95% CI) 

Antibiotic use 170/2837 (6.0)     

          Thinness 14/223 (6.3) 1.11 (0.63 to 1.96) 1.10 (0.62 to 1.95) 

          Overweight/obesity 26/328 (7.9%) 1.43 (0.92 to 2.21) 1.40 (0.90 to 2.16) 

Vaginal infections 251/2837 (8.8)     

          Thinness 19/223 (8.5) 1.07 (0.65 to 1.76) 1.06 (0.64 to 1.74) 

          Overweight/obesity 49/328 (14.9) 2.01 (1.43 to 2.85) 1.92 (1.37 to 2.70) 
Data are presented as n, n(%) and Relative Risk Ratios (RRR) and 95% confidence intervals (CI). *Adjusted for: maternal 

age, education, parity, pre-pregnancy BMI, smoking during pregnancy, gestational diabetes and gestational age (only for 

the third trimester analyses) 

 

The association between third trimester antibiotic use and overweight/obesity was less robust. 

The corresponding RRRs for antibiotic use were 1.43 (0.92 to 2.21) and 1.11 (0.57 to 2.20), 

for the IOTF (Table 2) and WHO analysis (Supplementary Table S3), respectively.  

We did not observe an association between antibiotic use or vaginal infections with thinness 

at age 4. The estimates only slightly changed when thinness grade 1 (15% of all children) was 

included in the thinness category in the IOTF analyses (data not shown).  
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We found that maternal pre-pregnancy BMI modified the association of vaginal infections 

with childhood overweight and obesity (p-value for multiplicative interaction 0.002). The 

stratified analysis showed that the association was particularly pronounced in the category of 

overweight/obese mothers with RRR of 4.78 (2.45 to 9.35) (Table 3). There was no evidence 

of effect modification for child sex. 

Table 3. Pre-pregnancy BMI as a potential effect modifier in the association between vaginal 

infections in the third trimester and overweight/obesity at age 4 in NINFEA children born with 

vaginal delivery 

  RRRs (95% CI) for each stratum of pre-pregnancy BMI and 

vaginal infection status with a single reference category 

  RRRs (95% CI) for 

vaginal infection in 

the strata of pre-

pregnancy BMI 

    

  Vaginal infection=0   Vaginal infection=1   

Pre-pregnancy BMI N RRR (95% CI)   N RRR (95% CI)   

      ≤ 25 208/234  1.00   26/234  1.34 (0.86 to 2.08)   1.33 (0.86 to 2.07) 

      > 25 71/94  1.64 (1.22 to 2.22)   23/94  7.5 (4.01 to 13.97)   4.78 (2.45 to 9.35) 

All RRRs are adjusted for maternal age, education, parity, pre-pregnancy BMI, smoking during pregnancy, 

gestational diabetes and gestational age 

 

Due to the slightly high power, the analyses regarding maternal vaginal infections and BMI 

outcomes in cesarean deliveries was performed only based on IOTF cut-offs.  We found no 

evidence of association between vaginal infections during the third trimester and child’s 

overweight and obesity (Supplementary Table S4). However, these analyses were performed 

on smaller number of subjects (N=1111) in comparison with those born with vaginal delivery 

(N=3151), the number of exposed cases was small and the confidence intervals quite wide.  

Discussion 

In the NINFEA cohort, vaginal infections in the third trimester of pregnancy were associated 

with overweight/obesity at age of 4 in children delivered vaginally. Maternal pre-pregnancy 

BMI modified the association between vaginal infections and child BMI. The findings 

regarding antibiotic use were less conclusive, although it seemed to be some indication of an 

association in our IOTF analysis.  

We did not find a similar study in the literature to compare our findings on vaginal infections. 

They are one of the most common gynecological conditions and vaginal dysbiosis is known 

to be a risk factor for preterm birth and premature rupture of the membranes18–20, indicating 

how unbalanced vaginal microbial communities can influence intrauterine growth and 

duration of gestation and increasing the risk for some conditions related to metabolic 
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syndrome.21,27 However, in our cohort, the effect of vaginal infections is not likely to be 

explained by prematurity, since the percentage of preterm births is very small (3%).  

It is known that altered human gut microbiota has a role in many metabolic, inflammatory 

pro-obesogenic pathways,28 The first major microbial colonization of the newborn happens 

during the birthing process and maternal antibiotic use or vaginal infections in pregnancy 

may not only disturb the maternal microbiota but also the initial colonizing microbiota of the 

newborn. The skin, oral and nasopharyngeal orifices and gut of vaginally delivered infants 

are initially enriched in microbial communities that resembles the maternal vaginal 

microbiota 6,29 The vaginal microbiome in pregnant women is characterized by more stable, 

less rich and diverse communities dominated by Lactobacillus spp. that benefit both the 

mother and the child30–32 and having maternal vaginal microbiota enriched with health 

promoting bacteria, could give competitive advantage to the composition of healthy non-

obesogenic neonatal intestinal microflora. Due to the novelty of the findings, further research 

is needed to replicate our findings and explore possible mechanisms that underlie this 

association.   

Furthermore, our analyses indicate that maternal pre-pregnancy BMI modifies the association 

between vaginal infections in the third trimester and the child’s risk for overweight and 

obesity at age 4. It is known that maternal BMI increases the risk for adverse maternal and 

birth outcomes4 as well as childhood obesity risk.5 A recent study33 that analyzed the first 

neonatal stool of neonates found that among the neonates born vaginally, those born to 

overweight and obese mothers (BMI≥25) had different gut microbiota structure compared 

with children of normal weight mothers, that ultimately could lead to metabolic differences 

later in childhood. As the same associations were not found in children born by Cesarean 

deliveries, the authors argued that the observed differences are likely the result of mother-to-

offspring transmission of microbiota during childbirth. We also did not observe an 

association between vaginal infections and overweight/obesity in cesarean deliveries. 

However, our effect estimates are based on small number of cases and additional studies are 

needed with larger statistical power to provide evidence for lack of association. 

Several studies explored the association between antibiotic use in pregnancy and elevated 

offspring BMI and while some found an increased risk of overweight and obesity, others did 

not observe an association. Some of the studies modeled BMI z scores and others used 

percentiles or IBTF cut-offs and the inconsistent strength of the effect estimates could be, 
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therefore, at least in part explained by different overweight and obesity cut-offs used. Muller 

et al.11 reported a higher risk for obesity at age 7 after antibiotic use in the second and third 

trimester. Mor et al.12 reported higher prevalence ratios for overweight and obesity in school-

aged children (7-16 years). Cassidy-Bushrow et al.14 found an increased risk of 

overweight/obesity and higher BMI z-score at age 2 after antibiotic use in the first two 

trimesters. Poulsen et al.13 and Sejersen et al.34 did not find an association between prenatal 

antibiotics and BMI z-scores at ages 1, 3 and 6 years. In addition, three recent large studies15–

17 (based on more than 40,000 mother-child dyads) presented reassuring results with effects 

going towards the null for most of the associations even when different trimester of exposure, 

dose-response, spectrum and type of antibiotic were considered. However, association with 

repeated use of antibiotics during pregnancy and exposure to broad spectrum antibiotics and 

obesity at age 7 was reported by Wang et al.15 and Jess et al.17, respectively.  

The found associations could be due to underlying alterations in the infant gut microbiome35 

or could be confounded by maternal susceptibility to infection. Future studies should address 

other possible mechanisms such as immunologic, metabolomic or epigenetic pathways that 

might start their effect even before birth.    

The results from previous studies are not directly comparable to ours, since only some of 

them performed stratified analyses by delivery mode, and none reported estimates for third 

trimester antibiotics use and overweight/obesity in vaginal deliveries. The effect estimate and 

95% CIs for vaginal deliveries for ever antibiotic use in pregnancy and obesity in children 

aged 7-16 reported by Mor et al. was 1.34 (1.08 to 1.75). The estimate, however, was not 

adjusted for maternal BMI. The effect estimates for vaginal deliveries by Wang et al. and Jess 

et al. were 1.18 (1.02 to 1.38) for repeated use of antibiotics in pregnancy and obesity at age 7 

and 1.08 (0.99 to 1.17) for ever antibiotic use in pregnancy and overweight/obesity at age of 

7, respectively. Our study is conducted in a smaller study population with lower prevalence 

of antibiotic use and therefore our failure to reach more conclusive and robust results may be 

due to the limited power combined with the present, but relatively smaller, effect on 

antibiotics on overweight/obesity compared to vaginal infections.  

Both exposures are self-reported, but this is common in epidemiological studies particularly 

with exposures such as antibiotic use/infections.  The prevalence of antibiotics is only slightly 

lower in our study population (6% and 7% for vaginal and caesarean deliveries, respectively), 

compared to the 9% prevalence of antibiotic use in the third trimester for vaginal and 
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caesarean deliveries combined in the study by Jess et al.17 based on more than 40 000 

subjects and with antibiotic data coming from the Danish National Prescription Registry, that 

could be due to the fact that NINFEA, as in many other cohorts, participants mainly originate 

from a population with high educational attainment. However, it has been extensively shown 

that baseline selection does not imply biased estimates of the exposure-disease 

associations.36,37 We also acknowledge the possibility of missclassification of exposure 

driven by under-reporting rather than over-reporting, that would translate into high 

specificity, such as reporting well-known antibiotics and symptomatic vaginal infections, 

rather that asymptomatic bacterial vaginosis.  

Our outcome was measured prospectively, at 4 years of age, and we used parentally-reported 

height and weight measurements to calculate the BMI. NINFEA is an internet-based cohort 

and therefore only has data on parentally-reported weight and height. NINFEA birth weight 

data was previously linked with the Piedmont Birth Registry and the comparison showed a 

very high validity of the NINFEA birth weight data.38 The questionnaire at age 4, uses the 

fact that children in Italy are regularly measured by health professionals and their measures 

are recorded in the children’s personal health booklets. Mothers during the compilation of 

anthropometric measures were asked how the height and weight measurements were recalled, 

specifically whether they reported the measurements written in their child’s booklets. At age 

4, around 40% of the mothers reported written weight and height measures. The association 

with vaginal infections did not change when we restricted the analysis only on children with 

anthropometric measures reported from the booklets (RRR for vaginal infections 2.05, 95% 

CI 1.16 to 3.57 in vaginal deliveries). Several articles on the agreement between parentally-

reported and measured height and weight in younger children (less than 10 years) were 

published that reported specificity ≥95% to accurately classify obesity and variable, but 

relatively lower, percentages of sensitivity,39–42 that might lead to underestimation of obesity 

and produce estimates that bias towards the null. it is generally considered that non-

differential exposure and disease misclassification is a greater concern in interpreting studies 

that seem to indicate the absence of an effect.43 

Our study has several limitations. Unfortunately, we were not able to explore further the role 

of factors such as the type of vaginal infection, whether it was ever treated and the type of 

antibiotic used, nor the composition of the maternal vaginal or offspring’s gut microbiota that 

might underlie the found associations. We also were not able to assess first and second 

trimester exposures due to smaller sample size.  
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We used the detailed information available in NINFEA to control for a number of carefully 

chosen covariates, including maternal BMI, maternal education and age, smoking, parity and 

gestational diabetes, factors that may strongly influence the associations of interest, and we 

found very little evidence of confounding. We modelled BMI as categorical variable 

including the thinness as a separate category and we carried out sensitivity analyses that took 

into account different BMI cut-offs. Furthermore, we assessed the presence of interaction by 

sex and maternal pre-pregnancy BMI, and found that the latter modified the effect of vaginal 

infections with offspring overweight/obesity. We were also able to examine the association 

between vaginal infections and BMI in children from our cohort born via cesarean section, 

although with lower power. 

Conclusion 

We reported a novel association regarding vaginal infections in pregnancy and later 

childhood BMI in children delivered vaginally. Further studies should replicate these 

findings. Maternal pre-pregnancy BMI seems to modify the association between vaginal 

infection in the third trimester and overweight/obesity at age 4 which might be an important 

point for preconception counseling. 4 Our results regarding antibiotics were less conclusive.  

Obesity has a complex etiology and is influenced by variety of genetic, dietary and 

environmental factors. Identifying potential modifiable risk factors for childhood obesity as 

early as in preconception or pregnancy might have long term beneficial effect on the child’s 

metabolic health. Future studies should take into careful consideration the complex interplay 

between maternal pre-pregnancy BMI, antibiotic use and vaginal infections.  
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Table S1. Characteristics of the study population born with cesarean delivery 

  N Mean (SD) or % 

Maternal age at delivery 1111 34.5 (4.2) 

Maternal pre-pregnancy BMI 1089 23.1 (4.3) 

     Missing values 22 ─ 

Maternal education     

     Primary school or less 45 4.1% 

     Secondary school 343 31.1% 

     University degree or higher 715 64.8% 

     Missing values 8 ─ 

Smoked in pregnancy     

     No  1019 92.6% 

     Yes 81 7.4% 

     Missing values 11 ─ 

First pregnancy      

     No  292 27.1% 

     Yes 786 72.9% 

     Missing values 33 ─ 

Antibiotic use in third trimester     

     No  975 92.9% 

     Yes 75 7.1% 

     Missing values 61 ─ 

Vaginal infections in third trimester     

     No  917 87.3% 

     Yes 133 12.7% 

     Missing values 61 ─ 

Child's BMI (IOTF cut-offs)     

     Thinness grade 3 and 2 97 8.7% 

     Thinness grade 1 178 16.0% 

     Normal BMI 696 62.7% 

     Overweight/obesity 140 12.6% 

Child's BMI (WHO cut-offs)     

     Thinness 55 5.0% 

     Normal BMI 997 89.7% 

     Overweight/obesity 59 5.3% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Gestational exposures and their association with newborn molecular markers and early childhood outcomes| 116  

 

Table S2. Characteristics between the included and excluded subjects in the complete case analysis in vaginal 

deliveries. 

  Included Excluded p-value 

 N(%) or mean (SD) N(%) or mean (SD)  

Number of subjects 2837 (90%) 314 (10%)   

Maternal age at delivery 33.5 (4.0) 33.7 (4.4) 0.216 

Maternal pre-pregnancy BMI 22.2 (3.6) 22.3 (3.2) 0.701 

Maternal education       

     Primary school or less 99 (3.5%) 13 (4.4%) 

0.578      Secondary school 888 (31.3%) 97 (32.9%) 

     University degree or higher 1850 (65.2%) 185 (62.7%) 

Gestational diabetes       

     No  2599 (91.6%) 108 (87.8%) 
0.139 

     Yes 238 (8.4%) 15 (12.2%) 

Smoked in pregnancy       

     No  2633 (92.8%) 243 (88.0%) 

0.004      Yes 204 (7.2%) 33 (12.0%) 

First pregnancy        

     No  778 (27.4%) 80 (32.3%) 

0.103      Yes 2059 (72.6%) 168 (67.7%) 

Antibiotic use in third trimester       

     No  2667 (94.0%) 153 (95.6%) 

0.399      Yes 170 (6.0%) 7 (4.4%) 

Vaginal infections in third trimester     

     No  2586 (91.2%) 147 (91.9%) 

0.754      Yes 251 (8.9%) 13 (8.13%) 

Child's BMI (IOTF cut-offs)       

     Thinness grade 3 and 2 223 (7.9%) 19 (6.1%) 

0.116 

     Thinness grade 1 432 (15.2%) 46 (14.7%) 

     Normal BMI 1854 (65.4%) 199 (63.4%) 

     Overweight/obesity 328 (11.6) 50 (15.9%) 

Child's BMI (WHO cut-offs)       

     Thinness 134 (4.7%) 8 (2.6%) 

0.056 

     Normal BMI 2560 (90.2%) 283 (90.1%) 

     Overweight/obesity 143 (5.0%) 23 (7.3%) 

 

Table S3. Associations of antibiotic use and vaginal infections in the third trimester with BMI outcomes at 

age of 4 in NINFEA children born with vaginal delivery. World Health Organization Growth Standards were 

used.  

  Cases/exposed cases (%) RRRcrude (95% CI) RRRadj* (95% CI) 

Antibiotic use 170/2837 (6.0)     

          Thinness 14/223 (6.3) 1.11 (0.63 to 1.96) 1.10 (0.62 to 1.95) 

          Overweight/obesity 26/328 (7.9%) 1.43 (0.92 to 2.21) 1.40 (0.90 to 2.16) 

Vaginal infections 251/2837 (8.8)     

          Thinness 19/223 (8.5) 1.07 (0.65 to 1.76) 1.06 (0.64 to 1.74) 

          Overweight/obesity 49/328 (14.9) 2.01 (1.43 to 2.85) 1.92 (1.37 to 2.70) 

Data are presented as n, n(%) and Relative Risk Ratios (RRR) and 95% confidence intervals (CI). *Adjusted for: 

maternal age, education, parity, pre-pregnancy BMI, smoking during pregnancy, gestational diabetes and gestational 

age (only for the third trimester analyses)  

 

Table S4. Associations between vaginal infections and BMI outcomes at age 4 in children born with cesarean 

delivery 

  Cases/exposed cases (%) RRRcrude (95% CI) RRRadj* (95% CI) 

Vaginal infections       

          Thinness 7/90 (7.8) 0.56 (0.25 to 1.25) 0.60 (0.26 to 1.35) 

          Overweight/obesity 17/123 (13.8) 1.07 (0.61 to 1.86) 1.07 (0.61 to 1.88) 

Data are presented as n, n(%) and Relative Risk Ratios (RRR) and 95% confidence intervals (CI). *Adjusted 

for: maternal age, education, parity, pre-pregnancy BMI, smoking during pregnancy, gestational diabetes and 

gestational age (only for the third trimester analyses)  
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Overall interpretation, implications and 

final conclusions 

In this thesis we focused on common exposures and their associations with newborn 

molecular markers and childhood outcomes. The first 1000 days of life are particularly 

vulnerable period, when individuals’ circumstances and their surrounding environment may 

leave them with health risks that they will carry on well into childhood and adulthood. 

Two thirds of this thesis are focused on air pollution exposure in early-life and newborn 

molecular markers. The systematic review provided evidence that air pollutants have the 

potential to cause alterations in DNA methylation, both on global scale and locus specific, 

and to unstabilise the delicate telomere maintenance system. These findings were supported 

by our own analysis in cord blood, in particular those relative to locus specific methylation, 

where we observed alterations in CpGs mapped to genes with roles in cell replication, 

differentiation and response to oxidative stress. In particular, we observed hypermethylation 

in CpGs located in gene promoters, that are known to lead to long-term gene silencing, and 

gene body hypomethylation, often linked with synthesis of aberrant proteins.  

These findings are relevant first because ambient air pollution is a ubiquitous exposure with 

concentrations that often go beyond the recommended limits and second, because pregnant 

women and their families are exposed to pollutants that are virtually unseparable from the 

environment where they live and work. Findings like these can also address some of the 

criticism directed towards DOHaD studies, such as that they erroneously perpetuate the 

notion that pregnant women, and only them, are responsible for the health of their children. 

Today, the majority of governments and international health organizations recognize the 

effects of air pollution and make efforts to lower gas emissions from vehicles and industries 

to improve overall air quality. However, since pregnant women and the developing fetus 

seem particularly vulnerable to the effects of air pollution, effort to lower the exposure itself 

are needed, as well as specific public health policies that support and promote health in 

vulnerable groups living in highly polluted places, especially in those with multiple risk 

factors, such as mothers with acute or chronic health issues or those that live in socio-

economic adversity.   
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The analysis across different windows of exposure during pregnancy, outlined the beginning 

of the pregnancy as a particularly sensitive period for exposure to air pollution, when DNA 

methylation patterns are actively remodeling. These findings, might be of particular interest 

for research groups that study the mechanisms behind air pollution exposure and long-term 

health outcomes, considering that the major part of the methylation patterns is established 

around the beginning of the pregnancy and are believed to remain relatively stable throughout 

life.  

The last, third part of the thesis was dedicated to common, non-environmental, gestational 

exposures and their link to pre-school obesity. We observed that vaginal infections and, to 

smaller extent, antibiotic use in the third trimester was associated with elevated BMI in early 

childhood. These observations, point to a potential role of the microbiome in childhood 

obesity. Further studies should assess whether there are specific microbial communities in the 

gut and/or study specific metabolites that may help unravel the mechanisms behind early 

adiposity rebound and postnatal growth, as well as identify children with multiple risk factors 

for developing obesity.  

It seems that maternal pre-pregnancy BMI modifies the association between vaginal 

infections in the third trimester and obesity at the age of 4, pointing out to the importance of 

pre-conception counselling regarding maternal pre-pregnancy BMI, already known to 

negatively influence pregnancy and birth outcomes and increase the risk for childhood 

obesity. Maternal pre-pregnancy BMI might be considered as overall indicator for mother’s 

health, since its intertwined with multiple clinical, nutritional, lifestyle, and socio-economic 

factors, and as such, it requires multidisciplinary approach for targeted health interventions, 

both on individual and societal level.  

The thesis is based on two approaches that provide high quality scientific evidence: a 

systematic review and prospective cohort study design. The systematic review allowed me to 

summarize the current knowledge on the topic in the light of the accelerated growth of 

scientific information.  

There are advantages and some limitations regarding the methodology used in the two 

cohort-based studies. We used an indirect measure of exposure assessment to study air 

pollution exposure in pregnancy, by applying an advanced machine learning method, based 

on daily satellite PM10 data to provide cost-effective assessment of PM10 exposure based on 

maternal residential address, that has good predictive performance and small prediction 
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errors. The outcome was two family of molecular markers: DNA methylation, measured by 

the latest Illumina methylation array, targeting 850 000 CpGs; and telomere length, by 

applying the method by Cawthon already used in similar studies. A major advantage was the 

possibility to calculate PM10 concentration across different windows of exposure during 

pregnancy and the possibility to replicate the findings in a smaller subset of the cohort. 

Nevertheless, there is a possibility for misclassification of exposure, since the exposure 

assessment does not take into account daily activity pattern, the outcome was measured only 

at one-time point, birth, and therefore implications regarding the stability of the markers at 

different time points cannot be made.  

The study based on NINFEA data used self-reported questionnaire data to assess the 

exposure: antibiotic use and vaginal infections in the third trimester. We discussed the 

possibility that the slightly lower percentage of reported antibiotic, use in comparison to other 

studies might be due to the higher percentage of mothers with high educational attainment in 

the NINFEA cohort and how the baseline selection does not imply biased estimates of the 

exposure-disease associations. One of the limitations of the study is that we do not have data 

on the indication for the antibiotic and if the reported vaginal infection was 

pharmacologically treated, weather antibiotics were used. The outcome (child’s BMI at age 

4) based on children’s height and weight measurements was measured prospectively and 

reported by the parents. We also confirmed that parental reporting of the child’s 

measurements did not bias our estimates, after we restricted the analyses on children whose 

parents reported the height and weight measurements from the child’s health booklets. 

In conclusion, findings from this thesis may not only serve to elucidate disease ethology, but 

also to convey some public health messages, underlining the need to support and strengthen 

health since conception. Future studies should be able to address some of the issues 

underlined in this thesis and pinpoint some of the mechanisms between early risk factors with 

specific childhood outcomes by joining forces in novel multidisciplinary approaches and 

collaborative projects. 
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Future perspectives 

Based on the findings of this thesis, these are possible continuations that might expand the 

knowledge within the field. 

First, environmental exposures can have effects that are not limited to the period when they 

are observed, but they can be delayed in time. Therefore, our air pollution analyses may 

benefit from the use of statistical models that add a time dimension to the exposure–response 

relationship. In order to deal with delayed effects, we could estimate mean PM10 

concentrations by gestational week and use lag-distributed models to model the association 

between PM10 exposure across pregnancy and molecular markers in cord blood. 

Second, we have seen that air pollution influences locus-specific methylation in gene 

promotors and bodies, with key functions in cell replication, differentiation and oxidative 

stress. As mentioned in the Introduction section, apart from these two regions, there are 

several other places where DNA methylation is essential for the growth and the development 

of the fetus, such as methylation at imprinting genes. It is believed that there are around 200 

imprinting genes that influence, not just intrauterine growth and development, but also later 

metabolic programing and neurocognitive pathways. By specifically studying whether air 

pollution has an influence on the methylation of these genes, it may help elucidate some of the 

effects on air pollution on intrauterine growth restriction, being born small or large-for-

gestational age, or later metabolic and neurodevelopmental outcomes, such as susceptibility to 

obesity or autism. 

Third, many studies reported an association between air pollution exposure in pregnancy and 

global methylation loss, indicating a possible involvement of DNA methylation machinery. 

Possible research hypotheses could include studying genotypes for DNA methytransferases 

responsible for de-novo methylation or maintenance of already established methylation 

patterns and/or one-carbon metabolism responsible for providing the methyl groups needed 

for methylation.  Other possibility is to conduct candidate gene methylation analysis to see 

wheather air pollution silences genes that responsible for the expression of DNA methylation 

enzymes. 

Fourth, advanced machine learning approached already found a way to study LINE1 

methylation patterns by using high-thoughoutput platforms such as Illumina. Future studies 
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could assess if the findings for air pollution exposure seen in studies using traditional 

approaches for measuring LINE1 or Alu, are be comparable to studies that use a measure of 

LINE1/Alu derived from Illumina platforms. 

Fifth, it was seen that DNA methylation at specific CpG sites is related to age. Steve Horvath 

constructed the first “epigenetic clock”, a predictor based on the methylation status of 

hundreds of age-dependent CpGs that can estimate human age with high accuracy using DNA 

methylation. The recent development of gestational age predictors based on cord blood 

methylation made possible to study gestational age acceleration/deceleration (GAA/GAD) in 

newborns. While age acceleration (defined as the difference between DNA methylation age 

and chronological age or as the residuals from regressing DNAm age on chronological age) in 

adults was consistently linked with adverse exposures and age-related diseases, both GAA 

and GAD were previously linked to gestational exposures and birth outcomes. It is unknown 

if air pollution exposure during pregnancy influences epigenetic age at birth and if so, in what 

direction. 

Sixth, it was seen that methylation at single CpG level is difficult to replicate. But it may well 

be that DNA methylation does not leave single CpG marks, but rather creates characteristic 

signatures in CpGs dispersed throughout the genome. Several prediction scores based on 

hundreds of CpGs were created with the help of advanced statistical methods to predict 

gestational exposure to tobacco. It could be argued that epigenetic clocks function similarly. 

Considering that air pollution exposures creates generalized oxidative stress and 

inflammation, it is plausible that it can leave a characteristic signature in multiple CpGs 

dispersed throughout the genome. Large sample size and harmonized pipeline should 

probably be needed in order to detect such signatures. 

Seventh, stochastic epigenetic mutations (SEMs) are defined as an individual having an 

extreme methylation value at a single CpG locus when compared to the rest of the population. 

The number of stochastic mutations is known to increase exponentially with human aging and 

with exposure to toxic substances. Until now, there are no studies that analyzed SEMs in 

neonatal tissues in relation to adverse prenatal exposures, such as air pollution.  

Eighth, in the NINFEA study we only included BMI at one specific time point (4 years). 

Future studies could use weight and height data available at several time points from birth to 

childhood to estimate individual weight trajectories using methods such as the SITAR: Super 
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Imposition by Translation and Rotation model.  

Lastly, DNA methylation is another plausible mechanism though which exposures such as 

antibiotics or vaginal infections can influence childhood obesity. Many birth cohorts, apart 

from cord blood, collect other types of easily assessable samples, such as nasal epithelia or 

saliva. The NINFEA cohort has samples from both maternal and child’s saliva, and studying 

epigenetic patterns in oral epithelial cells might be more relevant for exposures that influence 

the establishment of the newborn gut microbiome. 
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