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1 Abstract

The detection of gravitational waves by the LIGO and Virgo in-
terferometers has changed the way we look at the universe. We
are now able to use gravitational interactions to study astrophys-
ical phenomena that used to be invisible. Through gravitational
waves, we can also test physics in extreme conditions, such as
near black hole event horizons and inside neutron stars.

The analysis of gravitational wave signals emitted by com-
pact binary coalescence rely on accurate theoretical predictions.
These are obtained by solving Einstein’s equations using either
analytical perturbative approaches or numerical methods. The
most accurate semi-analytical models at the moment are based
on the effective-one-body approach and are completed using nu-
merical relativity information.

In this thesis, after briefly introducing these models, I will
present three of the collaborative works I contributed to during
my PhD.

The first will compare the two main families of models based
on the effective-one-body framework, highlighting their main
structural differences. These types of studies are necessary to
understand the theoretical uncertainty waveform approximants
inherently possess.

The second will describe the building of a gravitational wave
model for hyperbolic encounters and dynamical captures of black
hole binaries. An accurate theoretical prediction of the signal
emitted in these scenarios is nowadays missing and it is needed
to complement the current analyses based on models for quasi-
circular binaries.

Finally, the third will detail the development of a complete
model, able to generate waveforms for quasi-circular, eccentric
and hyperbolic systems with sufficient accuracy to be used in
parameter estimation of future detections.
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2 Introduction

The first direct detection of gravitational waves (GWs) by the
Laser Interferometer Gravitational-Wave Observatory (LIGO)
detectors on September 14, 2015 [1] was a watershed moment
for astrophysics: it marked the beginning of GW astronomy.
The GW150914 event implied the existence of stellar-mass black
hole (BH) binaries and proved that General Relativity (GR)
predictions were consistent with the observations. This hap-
pened around a hundred years after Einstein discovered that
GR implied the propagation of gravitational waves [2, 3] and
that Schwarzschild demonstrated it permitted the existence of
BHs [4].

Two years later, on August 17, 2017 the three LIGO and
Virgo detectors captured the GW signal originated by the merger
of a binary neutron star (BNS) system [5]. This detection and
the following observation of the electromagnetic (EM) counter-
part [6] were of similar importance, being the first demonstration
of GW-EM multi-messenger astronomy.

2.1 Gravitational wave detectors

The first attempt at detecting GWs was made with resonant
bars [7, 8], massive aluminum cylinders that would vibrate at
the passing of a GW with a specific resonance frequency. How-
ever, claims of GW detections with resonant bars were never
confirmed.

Current ground-based observatories, such Advanced LIGO [9]
and Virgo [10] as well as KAGRA [11], use enhanced Michelson
interferometry with suspended mirrors. They measure varia-
tions in the light travel time between separated test masses,
configured such that each is in near free fall. With arm lengths
of 3 to 4 kilometers, they are able to reach displacement sen-

5



sitivities of less than 10−19 meters. These interferometers are
sensitive to GW frequencies between 10 Hz and 10 kHz, a band
dominated by stellar-mass compact binaries, and (theoretically)
rotating neutron stars (NSs) and supernovae. A network of such
detectors globally distributed is beneficial to better constrain the
position of the GW source.

Plans to build a third generation of GW detectors are un-
derway. These include two ground-based detectors, Cosmic Ex-
plorer (CE) [12] and Einstein Telescope (ET) [13], and a space-
based one, the Laser Interferometer Space Antenna (LISA) [14].
CE will follow the same layout of the current generation of ob-
servatories, but will improve on their sensitivity, in particular
by increasing the arm lengths to around 40 kilometers. ET, in-
stead, will be an underground facility hosting a triangle-shaped
interferometer. It will increase the arm size to around 10 kilome-
ters and implement new technologies, most notably a cryogenic
system to cool some of the optics to around 10-20 K. Both ET
and CE will be significantly more sensitive than current inter-
ferometers and will be able to detect stellar mass binary coales-
cence throughout the history of our universe. They will allow for
tighter measurements of the source parameters and more precise
tests of GR. The LISA mission instead is scheduled to launch
around 2035 and will be constituted by three spacecraft that
will form an equilateral triangle with arm lengths of around 2.5
million kilometers. Being in space allows for longer laser path
lengths and eludes most of the noise sources present on Earth,
but makes the instrument more susceptible to laser power limi-
tations and diffraction losses. These characteristics make LISA
more suitable for lower frequency bands, from around 100 µHz
to 100 mHz. In this band, it will be able to detect mergers
of intermediate-mass and supermassive BHs, as well as extreme
mass-ratio mergers of stellar-size objects and supermassive BHs.
It will also probably see the early inspiral of stellar mass BBHs
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whose merger would be detected by ground-based interferom-
eters years later, providing very precise sky localization of the
events to help the search for an EM counterpart [15].

2.2 Current detections

The first three observation runs of the LIGO and Virgo inter-
ferometers resulted in a total of 91 merger detections [16, 17,
18, 19]. Most of the observed systems are inferred to be BBHs
and only two are considered to be BNSs, with GW190425 [20]
being the second after GW170817. There was however no clear
detection of an EM counterpart in coincidence with GW190425,
confirming the extraordinary nature of the GW170817 obser-
vation. There are 4 events consistent with originating from a
mixed BH-NS system [21, 22] and 2 more that could be inter-
preted as either BBHs or BH-NS binaries. These considerations
are mainly based on the inferred individual masses (considering
NSs any object with mass smaller than 3 M� [23, 24]), since a
measurement of tidal effects themselves is much more compli-
cated.

Masses are generally the best constrained source parameters.
In particular, combinations of individual masses such as the
chirp mass [25] and the total mass are more precisely measured
than the two component masses. The chirp mass is the greatest
influence on the GW signal during the inspiral phase, making
it better constrained in lower-mass systems, where the inspiral
lies in the most sensitive frequency band of the detectors. On
the contrary, the total mass determines the merger-ringdown
waveform and is hence more precisely measured for higher-mass
sources. The higher total mass measured so far is around 150
M�. The BHs observed through GWs to date span a wide range
of masses from just under 10 M� to almost 100 M�. Most BBH
observations are consistent with equal mass or marginally un-
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equal mass binaries, although two of the events show inferred
mass ratios around 5. The remnants BHs formed in these merg-
ers have masses similar to the total mass of the original bi-
nary, since the energy radiated in GWs generally corresponds
to a few percent of the starting total mass. Some of the heavi-
est remnants are consistent with being intermediate-mass black
holes (IMBHs) [26]. As for systems containing a candidate NS,
they generally have more extreme mass ratios, with the highest
one being inferred to be more than 20. Because of the rela-
tively small number of NS observations it is more difficult to
extract useful information about the population of these objects
throughout the universe. It seems however that the inferred NSs
have a relatively flat mass distribution extending from 1.2 to 2.0
M�.

Spins have more subtle effects on the emitted GWs and are
hence harder to measure. In particular, we are able to precisely
infer only some combinations of the individual masses and spins
[27, 28, 29, 30, 31, 32]. Most of the observed objects are consis-
tent with non-spinning bodies. However, there are binaries than
support non-negligible spins, both aligned and anti-aligned with
the orbital angular momentum of the binary. We also observe
evidence of misalignment of spins relative to the orbital angular
momentum, which gives rise to precessing systems. The ob-
servation of such precessional signatures could be important in
order to distinguish different BBH formation scenarios [33, 34].

Almost every analysis of GW signals from coalescing binaries
is done under the assumption that the inspiral is quasi-circular.
This is because GW emission is very efficient in circularizing
isolated binaries before they enter the detectors frequency band.
However, population studies [35, 36, 37, 38, 39, 40] suggest that
binaries dynamically formed in active galactic nuclei and glob-
ular clusters may still possess some eccentricity that could be
detected by ground-based detectors. At the moment, no evi-
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dence of eccentricity has been found [41, 42, 43].

2.3 Scientific insights

GWs are a powerful probe of the universe, because of their use
of gravity instead of electromagnetism to measure astrophysical
systems. Measuring GWs is often compared to hearing the uni-
verse, opening the possibility to study phenomena that would
otherwise be invisible.

Since GWs generated by compact binaries carry characteristic
information about the astrophysical properties of the objects,
we are able to constrain the mass and spin distributions of BHs
and NSs. Together with their estimated rate of mergers (and
possibly the binary eccentricity), they help us understand their
formation channels and evolution. The current detections of
GW events have already demonstrated the existence of BHs in
previously unexplored mass ranges [44].

The observation of GWs from inspiralling BBHs provides us
the possibility of performing precision tests of GR near BH hori-
zons, that is in the high-curvature, strong-field regime [45, 46,
47, 48, 49, 50, 51]. For instance, we can put constraints on the
graviton mass, violations of local Lorentz invariance, and ad-
ditional GW polarizations [52, 53, 54, 55]. Due to the current
absence of accurate waveforms derived in alternative theories of
gravity, we cannot directly compare GR predictions to other spe-
cific theories. We can however check the self-consistency of our
analyses or introduce parameterized deviations from GR in the
waveform and check that these are compatible with 0. To date,
all GW detections are consistent with GR predictions [48, 50].
For example, subtracting the maximum-likelihood GR waveform
from the data finds residuals consistent with the detector noise
and there is no evidence for non-tensor polarization modes or
dispersion of GWs. At the moment, however, the limits on devi-
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ations from GR are still dominated by the statistical uncertainty
due to the detector noise.

The next generation of detectors [13, 14, 12] will be signifi-
cantly more sensitive than current ones and will be able to probe
the existence of stellar-mass BHs throughout the history of the
universe. They will allow us to measure more accurately BH
masses and spins, perform more precise tests of GR [56, 57, 58]
and possibly even enable us to perform BH spectroscopy by mea-
suring individual quasi-normal modes [59, 60]. The detection of
hundreds of BBHs with different redshifts will allow to probe
fundamental physics spanning a wide range of energy scales
[61, 62], gaining insights on the nature of dark energy and pos-
sible modifications of GR at cosmological scales. By associating
GW sources to nearby galaxies, it will be also possible to make
an independent measure of the Hubble constant [63], that could
clear up the tension between the local and early universe mea-
surements [64].

The detection of BNS mergers instead sheds light on the in-
terior structure of NSs and on fundamental properties of cold
high-density matter [65, 66, 67, 68, 69, 70]. In fact, we still do
not have a good understanding of the internal composition of
NSs. At the moment, detected BNSs determined the NS radii
to be between 9 and 13 kilometers [70] and strongly disfavor the
stiffest equations of state (EOS), which predict NSs not compact
enough to match the observations. The GW170817 detection
alone [5], with the subsequent observations of its electromag-
netic counterpart [6], was the first demonstration of the link
between BNS mergers and short gamma-ray bursts [71, 72, 73,
74, 74, 75, 76, 77, 78, 79] and the first definitive observation of a
kilonova [80, 81, 82, 83, 84, 85, 86]. It also entailed the produc-
tion of heavy elements through r- process nucleosynthesis during
the merger [87, 88, 89, 90, 91, 92]. Perhaps most importantly,
the multi-messenger signal proved that GWs travel at the speed
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of light (as predicted by GR) to astounding precision (a few
parts in 1015). This measurement also provided an independent
method for measuring the Hubble constant using GWs for deter-
mining the absolute distance to the source [93, 94, 95]. Basically,
these multi-messenger observations allowed to use GW170817 as
a standard siren, the GW analog of an astronomical standard
candle.

Detecting more BNS events will put more limiting constraints
on the NS EOS and will better determine the spectrum of NS
masses throughout the universe, which in turn will provide in-
sights into the physics of supernovae. Joint gravitational and
EM observations will help us understand the NS matter prop-
erties, the nature of mass ejecta following BNS mergers and the
structure of relativistic jets.

BHs and NSs mergers could also provide insights into the
nature of dark matter [96], either directly as primordial BHs
[97] or through the effects that dark matter would have on the
binary dynamics and hence on the emitted GWs [61, 98].

2.4 Data analysis and parameter estimation

In order to detect and extract a signal from a detector noise, GW
scientists use match filtering [99, 100, 101, 102], the optimal
linear filter for signals buried in noise. This method relies on
waveform templates that correctly describe the GWs emitted by
merging systems for a range of different configurations. A real
GW signal should also match in all interferometers (bearing in
mind detectors blind spots) with a time difference depending on
the source position and at most equal to the light travel time
between the instruments.

By comparing the observational data with theoretical tem-
plates, it is possible to infer the original binary parameters via
Bayesian inference [103, 104, 105, 106, 107, 108, 109, 110]. This
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task can only be tackled numerically through stochastic sam-
plers, mainly because of the large dimensionality of the param-
eter space. For quasi-circular, non-spinning binary systems, we
need to simultaneously determine 9 parameters: 2 component
masses, luminosity distance, sky location (right ascension and
declination), system orientation with respect to the line of sight
(inclination and polarization angles), time of coalescence and
a reference phase. The parameter space can grow even larger
integer if more detailed physics is included in the gravitational
models. For example, if we take into account spin effects, the
parameter space becomes 15-dimensional (11-dimensional if we
restrict to the aligned-spin case). The system eccentricity can
be derived including an additional parameter. The dimension-
ality increases as well if we want to also determine the nature
of the objects that generated the GW signal. In fact, if the bi-
nary was composed of NSs, their tidal deformabilities have to
be simultaneously estimated.

Generally, one should expect to compare the detector data
with around 107 waveforms generated by a chosen theoretical
model. This requires GW approximants to also be fast compu-
tationally, since even a waveform generation time of one second
could result in months-long parameter estimation runs.

2.5 Theoretical models

We have seen that most analyses on GW signals relies on ac-
curate theoretical predictions that link source parameters to
waveforms. However, Einstein’s equations are non-linear and
it is generally impossible to exactly solve them. As it is custom
when facing these situations, we can approach the problem from
two different directions, either relying on analytical approxima-
tions or using numerical methods.
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2.5.1 Numerical relativity

Numerical relativity (NR) is the branch of GR that uses numer-
ical methods to solve the general relativistic two-body problem
in its full generality.

The numerical simulations are a very powerful tool, since they
constitute the most accurate representation of the dynamics and
GW emission of a binary system in the strong-field regime. They
are also important because they provide the complete waveform
through merger and ringdown. Their main downside historically
is their heaviness in terms of computing power.

The first simulations of BBH mergers date back to the “NR
breakthrough" in 2005 [111, 112]. At the beginning, they were
restricted to the computation of the last few orbits of equal-
mass non-spinning BBHs. Nowadays simulations explore spin-
ning (and spin-precessing) binaries, eccentric-orbit systems, and
longer evolutions [113, 114, 115, 116, 117, 118, 119, 120]. How-
ever, the sampling in the parameter space is still sparse, with
very long waveforms, large mass ratios and high spins still posing
difficult challenges.

The available NR waveforms can be interpolated to build
surrogate models [121, 122, 123], which at the moment con-
stitute the most accurate models available but are limited in
waveform length and parameter space coverage. The merger-
ringdown waveforms obtained from NR simulations are also a
key ingredient in the construction and verification of other ac-
curate waveform models used in GW data analysis: effective-
one-body (EOB) models and phenomenological waveforms (we
will discuss both of these shortly).

NR simulations are able to also describe BH-NS and BNS
systems. In these cases, simulations are more complex and must
include detailed physics for the nuclear, electromagnetic and
weak interactions [124, 125, 126, 127, 128]. As is the case for
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BBHs, NR simulations are the only tool we have to accurately
model the merger waveform and final remnants. These latter
are determined by an interplay of all types of interactions and
can be constituted by a BH or a (short or long-lived) NS and
various types of mass ejecta. As a consequence, a waveform
emitted by a BNS will look very similar to one generated by a
BBH in the inspiral regime, having the typical chirping form,
but could differ drastically in the postmerger phase.

2.5.2 Perturbative expansions

The only way to approach the solution of Einstein’s equations
analytically is to assume some approximation.

The most common one is the post-Newtonian (PN) approxi-
mation [129, 130, 29, 131, 132, 133, 134, 135, 136, 137, 138], an
expansion in the typical source velocity around the Newtonian
solution. It is valid in the slow-motion, weak-field regime and
hence it is well-suited for describing the motion of compact bi-
naries in the inspiral phase. It starts to lose its validity at small
separations, when the system goes towards plunge and merger.

Another possibility consists in solving Einstein’s equations
around Minkowski’s solution, using Newton’s constant G as a
formal expansion parameter. This post-Minkowskian (PM) ap-
proximation [139, 140, 141, 142, 143, 144, 145, 146, 147, 148]
also breaks down near the end of a binary system evolution,
when the assumption of weak fields no longer holds true. This
approach is particularly suitable for unbound systems, when the
object velocities can be relativistic without entering the strong-
field regime.

Finally, the gravitational self-force (GSF) approach [149, 150,
151, 152, 153, 154, 155, 156] studies perturbations around the
Schwarzschild (or Kerr) solution using the mass ratio as expan-
sion parameter.
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Using analytical approximations we can also gain some in-
sight in the ringdown waveform. The quasi-normal mode spec-
trum emitted after a merger resulting in a perturbed BH can be
described by BH perturbation theory [157, 158]. While the an-
alytic prescription provides the mode frequencies and damping
times, it does not determine the amplitude of the waves, that
must be extracted with the help of numerical simulations [159].

We are also able to model the tidal deformations of NSs due
to the gravitational field of its companion. Such effects depend
on the EOS and enter the PN expansion at the fifth PN order
[160, 161, 162].

2.5.3 Effective-one-body approach

The EOB approach [163, 164, 165, 27] to the general relativistic
two-body problem is a way to map the binary dynamics into
an effective one-body problem of a test particle moving in an
external effective metric. This metric is a deformation of the
Schwarzschild (or Kerr) one, with a deformation parameter that
depends on the mass ratio of the original binary. This con-
tinuous link between the test-mass case, where GR is exactly
solvable, and the equal-mass one is of paramount importance.
It allows to meaningfully resum perturbative information in or-
der to accurately describe the dynamics during the late stages
of inspiral and plunge.

The currently most accurate semi-analytical models are built
using PN series resummed through the EOB prescription and
completed by NR information [166, 167], that is needed to cor-
rectly model the merger and ringdown parts of the waveforms.
Nowadays, EOB-NR models are able to take into account higher
harmonics and precession [168, 169], while the building of reli-
able approximants for eccentric orbits is underway [170, 171,
172, 173, 174].
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EOB-NR models are very accurate and allow us to have
control over the underlying physics so that they can be easily
modified, for example to take into account beyond GR effects.
The downside of such models is that they generally require to
solve a system of coupled ordinary differential equations (Hamil-
ton’s equations), which makes the waveform generation rather
costly. This drawback must be mitigated, at the cost of a slight
reduction in accuracy through the building of surrogate mod-
els [175, 176, 177, 178] or by using approximations during the
early inspiral [179, 178, 180, 181].

2.5.4 Phenomenological models

Another approach to waveform generation consists in building
phenomenological approximants [182, 183, 31, 184, 185, 186,
187]. These focus only on modeling the frequency domain GW
signal without solving equations of motions for the binary sys-
tem, aiming to be as fast as possible for data analysis purposes.

In order to do so, they model separately the amplitude and
phase of the waveforms and split them in three regions. The
inspiral region is modeled using PN series typically calibrated
using EOB-based models. The late inspiral and the ringdown are
modeled using different functional forms but are both calibrated
to NR results.

State-of-the-art phenomenological approximants are able to
generate multipolar waveforms for precessing systems [188, 186].
Nowadays, their accuracy is comparable to the ones of EOB-NR
models [186, 187, 189], while being 3-4 times faster than their
surrogates [168, 187].

Both EOB-NR and phenomenological waveforms can be ex-
trapolated beyond the limitations of NR surrogates, but their
accuracy and validation strongly depend on the availability of
NR simulations.
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3 EOB-NR models

At the moment, there are two families of state-of-the art EOB-
NR models. One is TEOBResumS [190, 191, 192, 166, 179, 193,
194, 195, 196, 170, 178, 168, 171] and the other is the SEOBNRv*
series [197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 175,
167, 169]. Their most recent iterations are able to compute
waveforms generated by compact binary coalescence, taking into
account spin contributions (including spin-orbit precession) and
tidal effects.

Lately, a lot of effort has been put into extending their scope
beyond quasi-circular orbits, so to compute GWs emitted by
systems in eccentric or hyperbolic orbits [170, 171, 207, 208,
173]. Eccentric waveform models will be fundamental in order
to analyse data from extreme-mass-ratio-inspirals (EMRIs) that
could be detected by LISA. Hyperbolic ones instead will help
in discerning scatterings and dynamical captures from highly
precessing systems [209]. These extensions are however not yet
accurate enough to be used for data analysis purposes, mostly
because of the lack of NR simulations to be used for calibration
and validation.

While the TEOBResumS and SEOBNRv* models share the foun-
dational aspects of the EOB framework, they do not always
produce the same results. In fact, they differ not only in the
amount of analytical information used to build them, but most
notably in a series of arbitrary decisions, such as resummations
and gauge choices that have to be made along the way.

3.1 Effective-one-body basics

The EOB method maps the two-body dynamics into a point par-
ticle moving in an effective metric [163, 164, 27]. The formalism
utilises ideas coming from quantum mechanics to build the map-
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ping and obtains a relation between the relativistic energies in
the real and effective systems, such as

Eeff

µ
= (Ereal)2 −m2

1 −m2
2

2m1m2
. (1)

where m1 and m2 are the masses of the objects in the original
system and µ ≡ (m1m2)/(m1 +m2) is the reduced mass.

This quadratic relation translates to the µ-rescaled EOB Hamil-
tonian, obtained from the effective Hamiltonian by means of

ĤEOB ≡
HEOB

µ
= 1
ν

√
1 + 2ν

(
Ĥeff − 1

)
, (2)

where we introduced the symmetric mass ratio ν ≡ µ/M , with
M being the total mass of the system. ν varies continuously
varies between 0, for a test-mass orbiting a BH, and 1/4 in the
equal-mass case.

The effective metric is a deformation of the Schwarzschild
(Kerr) one, with ν as a deformation parameter. The effective
metric, using dimensionless coordinates defined as [r ≡ R/M ,
t ≡ T/M , pr ≡ Pr/µ, pϕ ≡ Pϕ/(µM)], is written in the form

ds2 = −A(r; ν)dt2 +B(r; ν)dr2 + r2dΩ, (3)

with
B(r; ν) = D(r; ν)

A(r; ν) , (4)

where A and D are the EOB metric potentials.
The effective Hamiltonian will then be written as

Ĥeff =

√√√√√A(r; ν)
1 +

p2
ϕ

r2 + p2
r

B(r; ν) +Q(r, pr; ν)
 + ĤSO

eff + ĤSS
eff ,

(5)
where Q is the third EOB potential and ĤSO

eff and ĤSS
eff are the

spin-orbit and spin-spin Hamiltonians.
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In order to determine the dynamics of the system, one still
needs to choose a a representation of the radiation reaction due
to the emission of GWs. Then, we can solve Hamilton’s equa-
tions:

dx
dt

= ∂ĤEOB

∂px
,

dpx

dt
= −∂ĤEOB

∂x
+ F̂x, (6)

dSi

dt
= ∂ĤEOB

∂Si
× Si,

where x = {r, ϕ, θ} is the coordinate vector, px = {pr, pϕ, pθ} is
the momentum vector and F̂x = {F̂r, F̂ϕ, F̂θ} contains the three
radiation reaction fluxes.

The model is finally completed by a prescription to compute
the waveform emitted towards infinity. To preserve the model
internal consistency, this is usually the same used for radiation
reaction.

3.2 Resummation choices

Of course, even within the EOB framework, we cannot reach
an exact solution to Einstein’s equations. Both the EOB po-
tentials and fluxes are still to be determined using some other
approach, most commonly PN expansions. The strength of the
EOB methods consists in imposing a non-linear resummation to
the Hamiltonian, which helps to stabilize the (asymptotic) PN
series.

The idea behind its functioning is that instead of expanding
a structure directly in a polynomial series, it imposes an exact
general behaviour and expands only the residual substructures.
In particular, instead of using a polynomial representation of
the Hamiltonian (as it is done in PN approximants), EOB mod-
els use an Hamiltonian containing square roots, within which
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the A potential is obtained by (subsequently resummed) PN
series [210, 200, 190].

The same is done for the multipolar waveform, where the
different modes are not just expanded as PN series. Known
structures, such as a source term, motivated by the particle limit
expression, or tail effects are imposed to the final functional form
[211, 212, 213, 214, 215, 216].

Imposing the EOB resummation and all exact behaviours we
have knowledge of is still not enough to have an accurate GW
approximant. In fact, we still have to choose resummations for
all the residual PN series and determine the gauge for the spin
sector among other things. This is the main reason why the dif-
ferent families of EOB-based models diverge. All these choices
are arbitrary, but necessary. Keeping PN series in their polyno-
mial form is itself a form of resummation, even though it may
seem more natural. Furthermore, a high-order PN polynomial
will diverge very fast when approaching the plunge, when the
system velocities increase, making it completely unreliable. A
correctly chosen resummation will instead make the series more
stable and accurate during the late stages of the evolution.

3.3 Numerical relativity completion

Both the intrinsic (EOB) and the arbitrary resummations help
extend the usefulness of perturbative expansions beyond the
early inspiral regime. However, NR information is fundamen-
tal to achieve the desired accuracy during the late inspiral and
plunge [217, 218, 219]. Thus, fictitious parameters can be added
to the dynamics and waveform at high order. These are then fit-
ted to NR simulations so that the resulting GWs are consistent
with numerical results up to some degree.

Moreover, EOB approximants have no way to model the post-
merger and ringdown waveform. Hence, this part is generally
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modeled using NR fits and a smooth transition between the in-
spiral and postmerger waveforms is required [220, 210, 200, 221,
222].

3.4 TEOBResumS model overview

We briefly introduce here the main structures entering the TEOBResumS
waveform model, that will be central in the following Chapters.
We will repeat some of the definitions when necessary, the most
used parameters and symbols are reported in Appendix A.

3.4.1 Non-spinning Hamiltonian

Within TEOBResumS, the orbital (non-spinning) effective Hamil-
tonian entering Eq. (2) is written as

Ĥorb
eff

∣∣∣(Si=0) ≡
Horb

eff
∣∣∣(Si=0)

µ
=

√√√√√p2
r∗

+ Aorb(r)
1 +

p2
ϕ

r2 +Qorb(r, pr∗)
,

(7)
where we introduced pr∗ ≡

√
A/B pr, the radial momentum con-

jugated to the tortoise radial coordinate r∗.
The EOB potentials A, B and Q are expressed as PN series

and are currently known at 5th PN level:

A5PN(u) = 1− 2u+ 2ν u3 + νa4 u
4 + ν

[
ac5 + alog

5 ln(u)
]
u5+

+ ν
[
ac6 + alog

6 ln(u)
]
u6, (8)

D5PN(u) = 1− 6ν u2 −
(
52ν − 6ν2)u3 + d4 u

4 + d5 u
5,

(9)

Q5PNloc(u, pr∗) = 2ν(4− 3ν)u2p4
r∗

+
+
(
q43u

3p4
r∗

+ q62u
2 p6

r∗
+O[up8

r∗
]
)

+
+
(
q44locu

4p4
r∗

+ q63locu
3p6
r∗

+ q82locu
2p8
r∗

+O[up10
r∗

]
)
,

(10)
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with B5PN ≡ D5PN/A5PN and u ≡ 1/r. The explicit values of
the 4PN and 5PN coefficients 1 can be found in Ref. [135] and
will be reported in Chapter 6.

In all iterations of TEOBResumS, before the version presented
in Chapter 6, the A potential is taken effectively at 5th PN
order, with ac6 being an effective parameter informed by NR
simulations. The series is then resummed as

Aorb(r) = P1
5
[
Aeff

5PN(r; ac6)
]
. (11)

The D and Q potentials are instead included at 3PN order, with
D being inversely resummed, as

Dorb(r) = P0
3
[
D3PN(r)

]
,

Qorb(r, pr∗) = Q3PN(r, pr∗). (12)

The version of TEOBResumS that will be introduced in Chap-
ter 6 will instead make use of the recently computed 5PN series,
using

Aorb(r) = P3
3
[
Aeff

5PN(r; ac6)
]
,

Dorb(r) = P3
2
[
D5PN(r)

]
,

Qorb(r, pr∗) = Q5PNloc(r, pr∗). (13)

Note that the explicit value of the effective parameter ac6 will be
different, as it must be re-tuned every time a part of the model
is changed.

3.4.2 Spin contributions

Let us first define the projections of the spins along the direction
of the orbital angular as Si ≡ L · Si. The dimensionless spin
variables we will use are χi ≡ Si/m

2
i and ãi ≡ Si/(miM).

1Note that the Q expression starts at 3PN.
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The spin-spin terms contributing to the EOB Hamiltonian
are known up to 4PN, which is next-to-next-to-leading order
(NNLO) [223]. In TEOBResumS, all the spin-spin contributions
are included in the centrifugal radius rc [190], defined as

r2
c ≡ r2 + ã2

0

1 + 2
r

 + δa2
NLO
r

+ δa2
NNLO
r2 , (14)

where ã0 ≡ ã1 + ã2 and the next-to-leading (NLO) term reads

δa2
NLO = −9

8 ã
2
0 −

1
8(1 + 4ν)ã2

12 + 5
4X12ã0ã12, (15)

with X12 =
√

1− 4ν and ã12 ≡ ã1 − ã2. The explicit values of
the NNLO term δa2

NNLO can be obtained from Ref. [223] and will
again be reported in Chapter 6.

Historically, within TEOBResumS, the centrifugal radius is used
at NLO. The newer version of the model described in Chapter 6
will use the NNLO extension, though in a factorized form.

The centrifugal radius enters the metric functions definitions
[190, 224] as follows:

A(r;χi) = 1 + 2uc
1 + 2u Aorb(rc),

D(r;χi) = Dorb(rc),

B(r;χi) = r2

r2
c

D(r;χi)
A(r;χi)

, (16)

where we defined uc ≡ 1/rc. It also substitutes the redial separa-
tion r that appears in the effective Hamiltonian [Eq. (7)], which
will read

Ĥorb
eff =

√√√√√p2
r∗

+ A(r)
[
1 +

p2
ϕ

r2
c

+Q(r, pr∗)
]
. (17)

The spin-orbit contributions are instead added to the effective
Hamiltonian as

Ĥeff = Ĥorb
eff + pϕ

(
GsŜ +GS∗Ŝ∗

)
, (18)
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where

Ŝ ≡ S1 + S2

M 2 , (19)

Ŝ∗ ≡
1
M 2

m2

m1
S1 + m1

m2
S2

 . (20)

We defined the gyro-gravitomagnetic functions GS and GS∗,
that determine the strength of the spin-orbit coupling. We
take them in Damour-Jaranowski-Schäfer (DJS) gauge [225], in
which they are only functions of r and p2

r∗
(and not pϕ). They

are factorized as

GS = G0
S ĜS,

GS∗ = G0
S∗
ĜS∗, (21)

where
G0
S = 2uu2

c,

G0
S∗

= 3
2u

3
c, (22)

and (ĜS, ĜS∗) are PN correcting factors known at 4.5 PN [154,
138], corresponding to (next-to)3-leading order (N3LO). In TEOBResumS,
they are generally inverse-resummed and expressed as functions
of uc, so that they read

ĜS =
[
1 +

(
c10uc + c02p

2
r∗

)
+

+
(
c20u

2
c + c12ucp

2
r∗

+ c04p
4
r∗

)
+

+
(
c30u

3
c + c22p

2
r∗
u2
c + c14ucp

4
r∗

+ c06p
6
r∗

) ]−1
, (23)

ĜS∗ =
[
1 +

(
c∗10uc + c∗02p

2
r∗

)
+

+
(
c∗20u

2
c + c∗12ucp

2
r∗

+ c∗04p
4
r∗

)
+

+
(
c∗30u

3
c + c∗22p

2
r∗
u2
c + c∗14ucp

4
r∗

+ c∗06p
6
r∗

)
+ c∗40u

4
c

]−1
, (24)
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where

c10 = 5
16ν, c∗10 = 3

4 + 1
2ν,

c20 = 51
8 ν + 41

256ν
2, c∗20 = 27

16 + 29
4 ν + 3

8ν
2,

c12 = 12ν − 49
128ν

2, c∗12 = 4 + 11ν − 7
8ν

2,

c02 = 27
16ν, c∗02 = 5

4 + 3
2ν,

c04 = − 5
16ν + 169

256ν
2, c∗04 = 5

48 + 25
12ν + 3

8ν
2, (25)

and the N3LO coefficients are computed in Refs. [154] and will
be made explicit in Chapter 6.

We can note how Eq. (24) also contains a term that would
appear at (next-to)4-leading order, c∗40. In order to understand
why that is, we must note that in the test-mass limit ĜS∗ does
not reduce to the case of a spinning particle orbiting around
a Schwarzschild BH. In fact, the circular value of ĜS∗ in the
test-mass limit reads

Ĝcirc
S∗

∣∣∣∣∣
ν=0

= 2
1 + 1√

1−3uc
=

=
(

1 + 3
4uc + 27

16u
2
c + 135

32 u
3
c + 2835

256 u
4
c +O[u5

c]
)−1

.

(26)

Since the exact expression, in DJS gauge, had a singularity at
the (rc-corrected) light ring, it was decided to expand it in series
and use its 4PN form (even when working at a lower order for
the generic-masses terms).

In both versions of TEOBResumS discussed in this thesis (un-
less otherwise specified), the gyro-gravitomagnetic functions are
taken at effective N3LO, that is using the analytical expression
at NNLO (apart from the test-mass terms coming from ĜS∗)
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and adding an effective N3LO coefficient, c3, which is the sec-
ond parameter fitted to NR simulations. In practice, this means
expressing ĜS and ĜS∗ using the coefficients of Eq. (25), with
the addition of

c30 = νc3, c∗30 = 135
32 + νc3,

c∗40 = 2835
256 . (27)

Also in this case, the explicit value of c3 will depend on the
specific TEOBResumS iteration.

3.4.3 Radiation reaction and waveform

The Hamiltonian determines the conservative portion of the dy-
namics and will be the part we will focus on in the following
Chapters. In addition to the Hamiltonian, in order to solve the
complete Hamilton’s equations, we need a prescription for the
radiation reaction fluxes F̂ϕ and F̂r.

In the quasi-circular scenario, TEOBResumS sets F̂r = 0. The
angular momentum flux is instead separated into two contribu-
tions. The first is the angular momentum carried away by GWs
that can be measured at “infinite” distance, while the second is
constituted by the GWs that enter the BH event horizons, so
that

F̂ϕ = F̂∞ϕ + F̂H
ϕ . (28)

The horizon flux is implemented in TEOBResumS using an ap-
proach first introduced in Ref. [226]. The flux at infinity is
instead related to the multipolar waveform strain, which is de-
composed into spherical harmonics with spin-weight s = −2 as

h+ − ih× =
`max∑
`=2

∑̀
m=1

h`m −2Y`m(θ, φ), (29)
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so that the total flux reads

F̂∞ϕ =
`max∑
`=2

∑̀
m=1

F`m = 2
16πG

`max∑
ł=2

∑̀
m=1

∣∣∣∣R ḣ`m
∣∣∣∣2 , (30)

where F`m = F`|m| is the sum of the two equal contributions
related to +m and −m.

The (`,m) multipolar waveform is factorized as [227, 211, 219]

h`m = h
(N,ε)
`m ĥ

(ε)
`mĥ

NQC
`m , (31)

in which ε = mod(` + m) denotes the parity of the multipolar
waveform. h(N,ε)

`m represents the Newtonian contribution, ĥ(ε)
`m is a

PN correction factor and ĥNQC
`m is a next-to-quasi-circular (NQC)

term informed by NR simulations, that ensures the smooth tran-
sition between the inspiral and merger waveforms. The PN cor-
rection factor ĥ(ε)

`m is built as

ĥ
(ε)
`m = Ŝ

(ε)
eff T`m ei δ`m (ρ`m)`, (32)

where Ŝ(ε)
eff is an effective source term and T`m is the tail factor,

that takes into account the “leading logarithms” arising from the
back-scattering of the propagating GWs against the background
gravitational field. The residual PN series δ`m and ρ`m are then
resummed in a multipole-dependent way described in Ref. [196].

Ref. [170] introduced a first extension of TEOBResumS to ec-
centric systems, by implementing the radiation reaction fluxes
along generic orbits derived in Ref. [228]. The circular Newto-
nian prefactor of the angular momentum flux F̂ϕ is corrected by
a generic-orbit term as

F̂∞,Nϕ = F̂∞,Ncirc
ϕ f̂ Nnon−circ

ϕ ,

where the explicit form of f̂ Nnon−circ
ϕ can be found in Eq. (7)

of Ref. [170]. The same is done for the emitted waveform, in
which the circular Newtonian prefactor h(N,ε)

`m is replaced by its
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general expression obtained computing the time-derivatives of
the Newtonian mass and current multipoles. Moreover, the ra-
dial momentum flux F̂r is no longer considered null, but instead
reads

F̂r = 32
3 pr∗u

4P 0
2

[
f̂ 2PN
r

]
, (33)

where the generic-orbits 2PN flux of Ref. [228] is inverse-resummed.
This minimal extension of TEOBResumS will be the one used in
Chapter 5 to generate waveforms for BBH scatterings and dy-
namical captures.

This generic-orbits version of TEOBResumS was then improved
in Ref. [171], which constituted the first attempt at building
a coherent model for quasi-circular, eccentric and hyperbolic
systems. First, Ref. [171] proposed to multiply the generic-orbit
prefactor f̂ Nnon−circ

ϕ only to the (`,m) = (2, 2) contribution to the
angular momentum flux, as in

F̂∞,Nϕ =
`max∑
`=2

∑̀
m=1
F̂Ncirc
`m f̂

Nnon−circ
`m , (34)

where f̂ Nnon−circ
22 = f̂ Nnon−circ

ϕ and f̂ Nnon−circ
`m = 1 otherwise. Second,

the residual 2PN correction to the radial momentum flux, f̂ 2PN
r ,

was reduced to its low-eccentricity approximation

f̂ 2PN
r = 1−

573
280 + 118

35 ν
u+

+
−33919

2160 + 6493
560 ν + 1311

280 ν
2
u2, (35)

so to improve the quasi-circular behaviour of the model. Fi-
nally, the generic-orbits correction to the waveform introduced
in Ref. [170] is now multiplied to a sigmoid function that progres-
sively switches off this factor near merger and simultaneously
switches on NR-informed NQC corrections. This last descrip-
tion of the TEOBResumS waveform and radiation reaction along
generic orbits is the one that will be used in Chapter 6.
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4 Comparing effective-one-body Hamiltoni-
ans

Parameter estimation of GW data extracts information on the
masses, spins and tidal parameters of the source objects by com-
paring the detector data with a large number of template wave-
forms. Different approximants generate different waveforms and
may in principle lead to discrepancies in the recovery of the bi-
nary parameters. Errors and biases due to mistakes in waveform
modeling are commonly referred as waveform systematics.

EOB-based models are the most accurate semi-analytical mod-
els used in GW data analysis. Their accuracy is generally mea-
sured by using their unfaithfulness with respect to NR simula-
tions. The 2 state-of-the art EOB-NR models for circular bi-
naries, TEOBResumS [166, 196] and SEOBNRv4 [204, 167], both
deliver waveforms that are faithful to NR simulations at the
1% level (or less) [204, 166]. This threshold is considered sat-
isfactory for current GW detectors but will need to be lowered
by roughly two orders of magnitude for the next generation of
detectors [229]. With improved sensitivities and higher signal-
to-noise ratios (SNRs), smaller discrepancies between waveform
approximants will be magnified and could induce biases in the
estimated parameters. The study of waveform systematics hence
becomes very important in order to understand up to which level
we can trust results obtained with different theoretical models.

For EOB-based models, the systematics can lie both in the
incompleteness of the analytical information used to build them
and in the resummation choices made by their developers. In
the following, we will focus on the modeling differences in the
dynamics of the spin-aligned models TEOBResumS and SEOBNRv4.

The contents of this section were originally published as “P.
Rettegno et al., Phys. Rev. D 101 104027 (2020)” [230].
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4.1 Hamiltonian of a spinning particle on a Kerr back-
ground

Both EOB models use as starting point the Hamiltonian of a
test spinning object around a background spinning BH (de-
scribed by a Kerr metric). However, the constructions of the
two spinning EOB models were rooted in different ways of con-
sidering the extreme-mass-ratio (m2 � m1, i.e. ν → 0) limit
defining the undeformed, background Kerr Hamiltonian. The
TEOBResumS construction was initially based on Ref. [225] which
considered the extreme-mass-ratio limit of a system of two spin-
ning BHs, while the SEOBNRv4 construction was initially based
on Refs. [198, 197, 199], which considered the extreme-mass-
ratio limit describing a test particle endowed with an unlimited
spin moving in a Kerr metric. The difference between the two
ways of considering the limit is that, as the spin of a small BH of
mass m2 � m1 is physically bounded by the inequality χ2 ≤ 1,
i.e. S2 ≤ m2

2, the former way of thinking about the limit leads to
an Hamiltonian describing a non-spinning test particle around
a Kerr BH. Technically, when considering the general Hamilto-
nian described in Eq.(57) below, the spin combination Ŝ∗ defined
in Eq.(53) goes to zero proportionally to ν in this way of consid-
ering the extreme-mass-ratio limit. By contrast, in the second
way of considering the extreme-mass-ratio limit, in which one
formally considers overspinning test objects having χ2 � 1, but
a fixed value of ã2 = S2/(m2M), the spin combination Ŝ∗ does
not go to zero as ν → 0. This motivated Ref.[197, 199] to pay
particular attention to the part of the spin-orbit sector linked
to the coupling of Ŝ∗, i.e. to the second gyro-gravitomagnetic
factor GS∗ in Eq.(73) below. On the other hand, the construction
of the TEOBResumS model paid particular attention to the first
gyro-gravitomagnetic factor GS, and, following the construction
of the first spinning EOB model [27], to ways of incorporating
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spin-spin effects through the definition of a suitable background
Kerr spin variable ã0 (see below).

In this section, we indicate with M the mass of the Kerr BH
and with µ the mass of the particle. Their spins are addressed
as SKerr and S∗ respectively, with dimensionless spin variables
that read â ≡ SKerr/M

2 and ã∗ ≡ S∗/(µM). We restrict our-
selves to equatorial orbits (θ = π/2) and parallel spins, using
dimensionless phase space variables.

The Kerr metric in Boyer-Lindquist coordinates and restricted
to the equatorial plane reads

ds2 =− Λ
∆KΣdt

2 + ∆K

Σ dr2

+ 1
Λ

−4r2â2

∆KΣ + Σ
 dϕ2 − 2râ

∆KΣdtdϕ, (36)

where
Σ ≡ r2, (37)

∆K ≡ r2
1− 2

r

 + â2, (38)

Λ ≡ (r2 + â2)2 − â2∆K . (39)

From the relativistic mass-shell condition gµνpµpν = −1, one
obtains the Hamiltonian of a non-spinning particle on a Kerr
background, ĤK

0 ≡ −p0, as
ĤK

0 = α
√

1 + γij pi pj + βi pi, (40)

with standard lapse-shift decomposition of the metric

α = 1√
−gtt

, (41)

βi = gti

gtt
, (42)

γij = gij − gtigtj

gtt
. (43)
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The same Hamiltonian can be written equivalently as

ĤK
0 =

√√√√√√AK

1 +
p2
ϕ

(rKc )2 + p2
r

BK

 +GK
S â pϕ, (44)

where we introduced the centrifugal radius
(
rKc

)2
= Λ

Σ = (r2 + â2)2 − â2∆K

r2 = r2 + â2
1 + 2

r

 , (45)

and the functions (AK , BK , rKc , G
K
S ) are expressed in terms of

the Kerr metric functions as

AK = ∆KΣ
Λ =

(
1− 2uKc

) 1 + 2uKc
1 + 2u , (46)

BK = Σ
∆K

= (uKc )2

u2
1
AK

, (47)

GK
S = 2râ

Λ = 2u (uKc )2, (48)

where uKc ≡ 1/rKc . These two different formulations of the Kerr
Hamiltonian are at the core of the differences between the two
EOB-NR models dynamics. We will expand our discussion on
this topic in the following sections.

When we consider a (over)spinning particle, an additional
spin-orbit coupling term GK

S∗
ã∗pϕ is present, so that the Kerr

Hamiltonian in the extreme mass-ratio limit [198, 190] reads

ĤK =

√√√√√√AK

1 +
p2
ϕ

(rKc )2 + p2
r

BK

 +
(
GK
S â+GK

S∗
ã∗
)
pϕ. (49)

The expression of GK
S∗

is not trivial (see Ref. [197]). The re-
derivation of Ref. [231] showed that for the equatorial, parallel-
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spin, case it can be written as (see Eq. (2.21) therein)

GK
S∗

= 1(
rKc

)2


√
AK√
QK

1−
(
rKc

)′
√
BK

+

+ rKc

2
(
1 +

√
QK

)
(
AK

)′
√
AKBK

, (50)

where the radial derivatives are indicated as (·)′ ≡ ∂r(·) and

QK ≡ 1 + γij pi pj

= 1 + p2
ϕ(uKc )2 + p2

r

BK
. (51)

One can check that Eq. (50) is consistent with Eq. (3.18) Ref. [197]
once specified to equatorial orbits.

4.2 The Hamiltonian of TEOBResumS

In the following, we will consider a binary system with massesmi

and spin vectors Si, with i = 1, 2. The projections of the spins
along the direction of the orbital angular momentum are denoted
by Si ≡ L ·Si. We denote the total mass by M ≡ m1 +m2 and
the reduced mass as µ ≡ (m1m2)/M . We adopt the convention
that m1 ≥ m2. We hence define the mass ratio q = m1/m2 ≥ 1
and symmetric mass ratio ν ≡ µ/M = (m1m2)/(m1 +m2)2. The
mass fractions are expressed as Xi ≡ mi/M . The dimensionless
spin variables we use are χi ≡ Si/m

2
i and ãi ≡ Si/(miM) =

Xiχi, together with their combinations

Ŝ ≡ S1 + S2

M 2 , (52)

Ŝ∗ ≡
1
M 2

m2

m1
S1 + m1

m2
S2

 , (53)
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and
ã0 ≡ ã1 + ã2 = Ŝ + Ŝ∗, (54)

ã12 ≡ ã1 − ã2 = Ŝ − Ŝ∗
X12

, (55)

where X12 ≡ X1 − X2. Like the case of a spinning particle on
Kerr seen above, for spin-aligned binaries the four-dimensional
phase space is described by (ϕ, Pϕ, R, Pr∗) where ϕ is the orbital
phase, Pϕ the orbital angular momentum, R the radial separa-
tion and PR∗ ≡

√
A/BPR the conjugate radial momentum with

respect to the tortoise radial coordinate. Dimensionless phase
space variables are r ≡ R/M , pr∗ ≡ Pr∗/µ and pϕ ≡ Pϕ/(µM),
while dimensionless time is denoted as t ≡ T/M .

The TEOBResumS model [166] stems from the (equatorial)
Hamiltonian introduced in Ref. [190]. An important element
of the latter is the centrifugal radius that is used to incorporate,
in a resummed way, spin-spin effects within the Hamiltonian.
The EOB Hamiltonian reads

ĤEOB ≡
HEOB

µ
= 1
ν

√
1 + 2ν

(
Ĥeff − 1

)
. (56)

The effective Hamiltonian Ĥeff ≡ Heff/µ is constructed so as to
closely mimic the structure of the (spinning) test-particle one
described in Eq. (49) and is written as

Ĥeff = Ĥorb
eff +

(
GSŜ +GS∗Ŝ∗

)
pϕ, (57)

where Ŝ and Ŝ∗ reduce to the spin of the primary object and of
the particle respectively when m1 � m2.

4.2.1 Orbital Hamiltonian

The orbital effective Hamiltonian in Eq. (57) reads

Ĥeff
orb =

√√√√√√A
1 +

p2
ϕ

r2
c

+ 2ν(4− 3ν)p
4
r∗

r2
c

 + p2
r∗
, (58)
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where rc is the EOB centrifugal radius that takes into account
spin-spin interactions (see below) and the A function is written
as

A = Aorb (uc)
1 + 2uc
1 + 2u , (59)

where
Aorb (uc) = P 1

5

[
A5PN

orb

]
(uc), (60)

is the orbital potential resummed with a (1, 5) Padé approxi-
mant. The PN expanded orbital potential, at 5PN formal accu-
racy, reads

APN
orb(u) = 1− 2u+ 2νu3 +

94
3 −

41π2

32

 νu4+

+
(
ac5 + alog

5 log u
)
u5 + ν

(
ac6 + alog

6 log u
)
u6. (61)

The 4PN and the logarithmic 5PN term are analytically known,

ac5 =
2275π2

512 − 4237
60 + 128

5 γE + 256
5 log 2

 ν+

+
41π2

32 −
221
6

 ν2,

alog
5 = 64

5 ν,

alog
6 =− 7004

105 ν −
144
5 ν2, (62)

where γE = 0.57721 . . . is Euler’s constant and the (effective)
5PN term ac6 is informed by NR simulations [191, 192, 166] (see
Sec. 4.2.3 below).

All terms proportional to even powers of the spins are in-
corporated in the EOB centrifugal radius rc. This function is
understood as a deformation of the Kerr one, Eq. (45), which
reads

r2
c ≡ r2 + ã2

0

1 + 2
r

 + δa2

r
, (63)
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where the dimensionless Kerr spin is replaced by the dimen-
sionless effective spin ã0. The function δã2 is introduced here
to incorporate spin-spin terms beyond LO. The BBH sector of
TEOBResumS only includes next-to-leading order (NLO) spin-spin
terms, so that this function explicitly reads [194]

δa2 ≡ −1
8

9 ã2
0 + (1 + 4ν) ã2

12 − 10X12 ã0 ã12

. (64)

The other metric potential B is obtained through the D func-
tion, whose PN expression is

DPN
orb(u) = 1− 6νu2 − 2 (26− 3ν) νu3. (65)

Within TEOBResumS, this is resummed as

D ≡ AB = r2

r2
c

Dorb(uc), (66)

with
Dorb (uc) = P 0

3

[
D5PN

orb

]
(uc) (67)

being the inverse resummation of its PN series.

4.2.2 Spin-orbit Hamiltonian

The spin-orbit contributions are encoded into the gyro-gravitomagnetic
functions (GS, GS∗) of Eq. (49). In TEOBResumS they are written
in factorized form

GS = G0
S ĜS, (68)

GS∗ = G0
S∗
ĜS∗, (69)

where
G0
S = 2uu2

c (70)
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is the Kerr spin orbit coupling structure, in which rKc is replaced
by the one defined in Eq. (63) above. G0

S∗
is the leading PN cor-

rection (that can be also obtained by Taylor-expanding Eq. (50))
where u is replaced by uc and reads

G0
S∗

= 3
2u

3
c. (71)

In this respect, one should be reminded that Ref. [190] chose,
for simplicity, to only use part of the analytical information
encoded into the Hamiltonian of a spinning particle, Eq. (50),
i.e. restricting it to the case of a Schwarzschild background and
expanding it up to (next-to)3-leading order (N3LO). We stress
this was a choice prompted both by the desire of construct-
ing a rather simple model using the Damour-Jaranowski-Schäfer
(DJS) gauge [225], where all dependence on the angular momen-
tum pϕ is removed from (GS, GS∗), and by the idea that, in the
physically relevant case of BBH systems, the GS∗-type coupling
is always secondary with respect to the GS-type one because
it contains an extra factor ν (with ν ≤ 1/4 in all cases). In
the DJS gauge 2, the Hamiltonian of a spinning particle (either
Schwarzschild or Kerr) becomes singular at light ring. So, the
only way of incorporating some of this analytical information is
by PN-expanding the corresponding GS∗, that is then eventu-
ally resummed after in a different way. Note however that the
full spinning-particle information can be incorporated also in a
special flavor of TEOBResumS, notably in factorized form. To do
so, however, a different spin gauge should be chosen.

Finally, ĜS and ĜS∗ are PN correcting factors that in TEOBResumS
2The DJS gauge has the disadvantage of introducing formal (and fictitious [232]) sin-

gularities at the light ring, but it has many other useful properties: (i) it minimizes the
effect of non-circularities during the late inspiral and the premerger phase; (ii) it allows,
in principle, a clean separation between spin-orbit (odd in spin) and spin-spin (even in
spin) effects.
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are inverse-resummed as

ĜS =
(
1 + c10uc + c20u

2
c + c30u

3
c + c02p

2
r∗

+
+ c12ucp

2
r∗

+ c04p
4
r∗

)−1
, (72)

ĜS∗ =
(
1 + c∗10uc + c∗20u

2
c + c∗30u

3
c + c∗40u

4
c + c∗02p

2
r∗

+
+ c∗12ucp

2
r∗

+ c∗04p
4
r∗

)−1
. (73)

All coefficients are fully known analytically, with their com-
plete ν dependence, except for (c∗30, c

∗
40), which are those cor-

responding to the PN expansion of the spin-orbit sector of the
Hamiltonian of a spinning particle on a Schwarzschild back-
ground [190]. In addition, the ν-dependence of c30 and c∗30 is
informed by NR simulations. More precisely, we use c30 ≡ νc3
and c∗30 = 135/32 + νc3, where 135/32 is the spinning-particle
value and c3 is an NR-tuned effective N3LO parameter. The
numerical values of the other coefficients in the DJS gauge are
listed in Appendix B of Ref. [230].

4.2.3 Numerical-relativity informed functions

The dynamics of TEOBResumS depends on two free functions (or
flexibility parameters), ac6 and c3, that are determined by com-
parison with NR simulations. The orbital Hamiltonian is NR-
informed through ac6, that explicitly reads [191, 192, 166]

ac6 = 3097.3 ν2 − 1330.6 ν + 81.38 . (74)

The spin-orbit sector is instead calibrated using

c3 = p0
1 + n1ã0 + n2ã

2
0

1 + d1ã0
+

+
(
p1ν + p2ν

2 + p3ν
3)ã0X12 + p4ã12ν

2, (75)
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with 3

p0 = 43.371638, p1 = 929.579,
n1 = −1.174839, p2 = −9178.87,
n2 = 0.354064, p3 = 23632.3,
d1 = −0.151961, p4 = −104.891. (76)

Similar to what will be seen to occur also for SEOBNRv4, the
spin-dependence of the NR-informed parameters violates the
clear distinction between spin-orbit and spin-spin Hamiltonians.
In this case, c3 introduces even-in-spin terms in GS∗Ŝ∗.

4.3 The Hamiltonian of SEOBNRv4

The Hamiltonian used in the SEOBNRv4 [204] model was struc-
turally introduced in Ref. [197] for the case of generally oriented
spins. In order to compare it to the TEOBResumS one, here we
only focus on the spin-aligned case (the generic scenario is dis-
cussed in Appendix A of Ref. [230].

The SEOBNRv4 Hamiltonian is obtained as the result of a cer-
tain deformation of the Hamiltonian of a spinning particle on
a Kerr background. First, the dimensionless BH spin â is re-
placed by the effective spin Ŝ (instead of ã0 = Ŝ + Ŝ∗ used
in TEOBResumS). Second, the functions (∆K ,Σ,Λ) entering the
Kerr metric, Eq. (36), are deformed by adding ν-dependent PN
information. These functions are resummed so as to obtain a ro-
bust behavior in the strong-field regime. Finally, one adds to the
latter Hamiltonian additional terms that are obtained by sim-
ilarly deforming the spin-orbit coupling function of a spinning
particle on a Kerr BH.

We now denote the EOB Hamiltonian as

ĤEOB ≡
1
ν

√
1 + 2ν

(
ĤSEOB

eff − 1
)
, (77)

3In the equal-mass case, since the last term is not symmetric under the exchange of χ1
and χ2, c3 is computed adopting the convention |χ1| > |χ2|.
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with ĤSEOB
eff replacing the generic Ĥeff of Eq. (56) and where, fol-

lowing Refs. [197, 199], we define the effective EOB Hamiltonian
as

ĤSEOB
eff = ĤNS + ĤSO + Ĥeff

SS . (78)

Here, ĤNS denotes the (deformed) Hamiltonian of a non-spinning
particle; ĤSO indicates the ν-deformed spin-orbit coupling of the
spinning particle and Ĥeff

SS refers to an additional spin-spin con-
tribution. In this respect one has to be aware that part of the
spin-orbit and spin-spin interaction is also incorporated in ĤNS,
as it is inherited by the structure of the Hamiltonian of a test-
particle moving in a Kerr metric.

The aim of this section is to illustrate that it is possible to
recast the spin-aligned Hamiltonian of SEOBNRv4 in a way that
is formally close to the one of TEOBResumS as defined in Eq. (57),
modulo the additional spin-spin contribution. The final result
will be an expression of the form

ĤSEOB
eff = Ĥeff

orb +
(
ḠSŜ + ḠS∗Ŝ∗

)
pϕ + Ĥeff

SS , (79)

where: (i) the orbital Hamiltonian Ĥeff
orb is formally analogous

to Ĥeff
orb, although the metric functions and the centrifugal ra-

dius are replaced by different analytical expressions; (ii) simi-
larly, the spin-orbit sector (i.e., odd-in-spins) will resemble the
TEOBResumS one, with the gyro-gravitomagnetic functions (ḠS, ḠS∗)
replacing (GS, GS∗) being different both in the gauge choice and
the resummation approach. By contrast, the even-in-spin terms,
that in TEOBResumS are entirely contained in Ĥeff

orb, are partly in-
corporated within Heff

orb and partly in Ĥeff
SS , as detailed below.

4.3.1 Rewriting of ĤNS: the centrifugal radius r̄c

Following Ref. [197], ĤNS is written following the structure of
Eq. (44) and reads

ĤNS = α
√

1 + γij pi pj +Q4(p) + βi pi, (80)
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where Q4(p) is a PN term quartic in the momenta that will
be defined below and vanishes in the Kerr limit. The functions
(α, βi, γij) have the same structure of Eqs. (41)–(43), but different
explicit form, since the components of the ν-deformed metric
introduced in Ref. [199], for equatorial orbits, are

gtt = − Λt

∆tΣ
, (81)

grr = ∆r

Σ , (82)

gθθ = 1
Σ , (83)

gϕϕ = 1
Λt

− ω̃2
fd

∆tΣ
+ Σ

 , (84)

gtϕ = − ω̃fd
∆tΣ

, (85)

where

∆t = r2 ∆u, (86)

∆r = ∆tD−1, (87)

Λt =
(
r2 + Ŝ2

)2
− Ŝ2∆t, (88)

Σ = r2, (89)

ω̃fd = 2 Ŝ r, (90)

which mimic the Kerr functions4 and the Kerr BH spin â is
replaced by the effective spin Ŝ. Note that the function ∆K

appears in both the gtt and the grr components of the Kerr
metric. This implies that, in Kerr, ∆K is also part of the B

4In general, ω̃fd reads

ω̃fd = 2 Ŝ r + ν ω0
fd Ŝ + ν ω1

fd Ŝ r. (91)

With respect to Eq. (36) of Ref. [199], we already gauge-fixed the two frame-dragging
parameters to zero, i.e. ω0

fd = ω1
fd = 0.
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function. In EOB models the connection between the metric
potentials is more complicated because of the presence of the
D function. Hence, ∆K was replaced by ∆t in the gtt metric
component and by ∆r that appears in grr. The ν-deformation is
implemented as follows. At 4PN accuracy, we define the function

∆4PN
t ≡ r2A4PN

orb (u) + Ŝ2, (92)

where the terms 1 − 2u appearing in the Kerr function ∆K is
replaced by the PN-expanded EOB orbital potential at 4PN ac-
curacy, as obtained from Eq. (61) dropping the 5PN, effective,
correction. In SEOBNRv4, the resummation procedure is imple-
mented on the ∆u function, that at 4PN reads

∆4PN
u ≡ u2∆4PN

t = A4PN
orb (u) + u2Ŝ2. (93)

Two Kerr-like horizons u± are imposed and the residual function
is then resummed using a global logarithmic function as

∆u = Ŝ2 (u− u+) (u− u−)×

×
1 + ν∆0 + log

1 +
5∑
i=1

∆iu
i


 . (94)

Here (∆0,∆i) are ν-dependent coefficients that are obtained im-
posing that the PN-expansion of Eq. (94) coincides with the one
of Eq. (93), see Ref. [200]. The two horizons are placed at

r± ≡
1
u±

=
(

1±
√

1− Ŝ2
)

(1−Kν) , (95)

where K is a free parameter in the model that is calibrated to
NR simulations [204]. Note that also that the various functions
(∆0,∆i) depend on this parameter and can be found in Ap-
pendix A of Ref. [206]. We also list them for completeness in
our Appendix C of Ref. [230].
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Finally, theD function is also resummed using a global overall
logarithm instead of the Padé approximant used in TEOBResumS.
It reads

D =
[
1 + log

(
1 + 6νu2 + 2 (26− 3ν) νu3)]−1

. (96)

We can then rewrite Eq. (80) in the following form

ĤNS = Ĥeff
orb + Ḡ0

S Ŝ pϕ, (97)

in which we defined the Kerr-like gyro-gravitomagnetic function
Ḡ0
S as

Ḡ0
S ≡

ω̃fd

ΛtŜ
= 2u ū2

c. (98)

Moreover, the effective orbital Hamiltonian Ĥeff
orb reads

Ĥeff
orb =

√√√√√A
1 + p2

ϕū
2
c + 2ν(4− 3ν) u2p̄4

r∗

 + p̄2
r∗
, (99)

where we expanded Q4(p) ≡ 2ν(4− 3ν)u2p̄4
r∗
and we now define

the momentum conjugate to the tortoise radial coordinate as
p̄r∗ ≡

√
A/B pr. The functions (A,B,Q) are expressed in terms

of the ν-deformed metric functions as

A ≡ ∆tΣ
Λt

= ū2
c

u2 ∆u, (100)

B ≡ Σ
∆r

= D
∆u

, (101)

Q ≡ 1 + γij pi pj = 1 + p2
ϕū

2
c + p̄2

r∗

A
. (102)

The functions (A,B,D,Q) are analogous to (A,B,D,Q) used
within TEOBResumS and, although different, they reduce to the
same corresponding Kerr functions in the ν → 0 limit. In
Eq. (99) we also introduced ūc ≡ 1/r̄c, where r̄c is a new cen-
trifugal radius. This function is a ν-deformation of the Kerr rKc ,
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but differs from the TEOBResumS one, rc, and explicitly reads

r̄2
c ≡

Λt

Σ = (r2 + Ŝ2)2

r2 − Ŝ2∆u. (103)

Writing an orbital Hamiltonian for SEOBNRv4, Ĥeff
orb, that mim-

ics Ĥeff
orb makes it clearer where the differences between the mod-

els arise, though the two expressions look formally the same.
The functions (A, rc) and (A, r̄c) are different from one another,
even if they correctly reproduce the corresponding Kerr func-
tions when ν → 0. To understand how this is possible, let us
go back to the definitions of the centrifugal radius rKc and of
the potential AK for the Kerr metric, Eqs. (45) and (46) respec-
tively. These can be written in two, analytically equivalent,
forms, namely [

rKc

]2
≡ (r2 + â2)2

r2 − â2∆K (104a)

= r2 + â2
1 + 2

r

 , (104b)

and

AK ≡
(
uKc

)2

u2 ∆K (105a)

=
(
1− 2uKc

) 1 + 2uKc
1 + 2u . (105b)

In SEOBNRv4 one obtains r̄c and A using Eqs. (104a) and (105a),
without expanding the expression of ∆K , and then substituting
â → Ŝ and ∆K → ∆u. On the other hand, in TEOBResumS rc
and A are obtained through Eqs. (104b) and (105b), where the
expressions have been simplified and bear no memory of the
original function ∆K that appears in the Kerr metric. Then,
one substitutes â→ ã0 and (1− 2uKc )→ Aorb. In conclusion, as
well as different spin variable and resummation choices, r̄c dif-
fers from rc because it contains includes additional ν-dependent
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corrections that come from ∆u. Hence, although the two func-
tion share the same ν = 0 limit, the spin-square contributions
that they incorporate differ already at linear order in ν.

4.3.2 ĤSO and the spin-orbit sector

Let us turn now to rewriting ĤSO using a different notation
consistent with the orbital part. Our starting point is ĤSO as
given by Eq. (4.18) of Ref. [197] (and re-written in Appendix
A of Ref. [230]). Once restricted to spin-aligned systems, this
gives 5

ĤSO = e2ν̃−µ̃

B̃2√Q

eµ̃+ν̃ − J̃B̃ ′ + 1 + 2
√
Q

1 +
√
Q
J̃B̃ ν̃ ′

pϕŜ∗, (106)

where the functions of Ref. [199] are connected to the metric
ones as

e2µ̃ = Σ = r2, e2ν̃ = ∆tΣ
Λt

= A, (107)

B̃ =
√

∆t =
√
A r̄c, J̃ =

√
∆r = r√

B
, (108)

and the prime indicates derivative with respect to r. In ad-
dition, the ν-dependent PN results for the spin-orbit coupling
functions are included in Eq. (106) through a (gauge-dependent)
mapping [199] between the spin variables that naturally enter
the PN-expanded effective Hamiltonian, (Ŝ, Ŝ∗), that are used
in TEOBResumS, and the effective spin variables (Ŝ, Ŝ∗) that ap-
pear in SEOBNRv4. These spin quantities are intended to be the
spin of an effective particle, Ŝ∗, moving around an effective Kerr
BH whose spin is Ŝ. Following Ref. [199], such spin mapping is

5Note that our notation differs from Ref. [199]. We define their ν as ν̃, not to confuse it
with the symmetric mass ratio. Also, we use explicitly B̃r = B̃ ′−B̃/J̃ and µr = µ ′−1/J̃ .
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defined as

Ŝ = Ŝ + 1
c2 ∆(1)

σ + 1
c4 ∆(2)

σ , (109)

Ŝ∗ = Ŝ∗ + 1
c2 ∆(1)

σ∗ + 1
c4 ∆(2)

σ∗ + 1
c6 ∆(3)

σ∗ , (110)

where the functions (∆(i)
σ ,∆

(i)
σ∗) are gauge-dependent function

that are chosen so to incorporate the high-order ν-dependent
PN information. Ref. [199] fixes the gauge imposing that ∆(1)

σ =
∆(2)
σ = 0, so that

Ŝ ≡ Ŝ. (111)

On the other hand, the functions ∆(1)
σ∗ and ∆(2)

σ∗ are fixed in such
a way that, once the SEOB Hamiltonian is PN-expanded, the
spin-orbit PN contributions up to NNLO are correctly recovered.
Moreover, the spin-orbit sector is NR-informed by an additional
N3LO effective correction of the form

∆(3)
σ∗ = dSO ν

r3 Ŝ, (112)

whose explicit expression can be found below.
Using the definitions of Eqs. (107) and (108), ĤSO can be

rewritten as
ĤSO = GS∗ pϕ Ŝ∗, (113)

where we defined

GS∗ ≡
1

(r̄c)2


√
A√
Q

1− (r̄c)′√
B

 + r̄c
2
(
1 +
√
Q
) A′√

AB

, (114)

that formally coincides with Eq. (50), having replaced the Kerr
functions (AK , BK , QK , rKc ) with (A,B,Q, r̄c).

We found it convenient to write the complete spin-orbit con-
tent of SEOBNRv4 in a form that is close to the one of TEOBResumS,
so to similarly define two gyro-gravitomagnetic functions. To do
so, we define the complete spin-orbit sector of ĤSEOB

eff as

ĤSO =
(
Ḡ0
SŜ + GS∗Ŝ∗

)
pϕ. (115)
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Since Ŝ∗ is a linear combination of (Ŝ, Ŝ∗), one sees that the
above function can be written precisely as the corresponding
function in TEOBResumS, though the gyro-gravitomagnetic func-
tions will eventually be different. We see that the ∆(i)

σ∗ that
appear in Eq. (110) are functions of (r, pr∗, pϕ), with some addi-
tional gauge-freedom that can be fixed at will (see below). These
latter formally read

∆(1)
σ∗ = cuu+ cQ (Q− 1) + cp2

r

p2
r

B
, (116)

∆(2)
σ∗ = cu2 u2 + cQ2 (Q− 1)2 + cuQ u (Q− 1) +

+ cp4
r

p4
r

B2 + cup2
r
u
p2
r

B
+ cp2

rQ
p2
r

B
(Q− 1). (117)

The explicit expression of the cX coefficients can be obtained
comparing Eqs. (116) and (117) to Eqs. (51) and (52) of Ref. [199]
and are recalled in Appendix D of Ref. [230]. All these co-
efficients are linear functions of (Ŝ, Ŝ∗). Thus, we can write
∆(1)
σ∗ = c

(1)
S Ŝ + c

(1)
S∗ Ŝ∗ and ∆(2)

σ∗ = c
(2)
S Ŝ + c

(2)
S∗ Ŝ∗, and, substituting

them into Eq. (115), we obtain

ĤSO ≡
(
ḠSŜ + ḠS∗Ŝ∗

)
pϕ, (118)

where we defined two new gyro-gravitomagnetic functions

ḠS ≡ Ḡ0
S +

(
c

(1)
S + c

(2)
S

)
GS∗, (119)

ḠS∗ ≡
(
1 + c

(1)
S∗ + c

(2)
S∗

)
GS∗. (120)

The explicit forms of
[
c

(i)
S , c

(i)
S∗
]
are also reported in Appendix D of

Ref. [230]. In inspecting those expressions, one should be aware
that the two models adopt two different gauges in the spin-orbit
sector. On the one hand, TEOBResumS is written in the DJS
gauge [225, 233] that is designed to cancel all the dependence
on p2 in the gyro-gravitomagnetic functions. On the other hand,
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within SEOBNRv4 one makes the minimal gauge choice and sets
all gauge parameters to be zero. More details can be found in
Appendix E of Ref. [230].

4.3.3 Ĥeff
SS and the spin-spin sector

Moving finally to the spin-spin sector, we define Ĥeff
SS as

Ĥeff
SS = ĤSS −

1
2u

3(Ŝ∗)2 + dSS ν

r4

(
X4

1χ
2
1 +X4

2χ
2
2
)
. (121)

The first term in the r.h.s. of the above equation, for equatorial
orbits (see Eq. (4.19) of Ref. [197] or Appendix A of Ref. [230]
for generic ones) explicitly reads

ĤSS = ω Ŝ∗ + e−3µ̃−ν̃J̃

2B̃
√
Q
(
1 +
√
Q
)×

×
{
e2µ̃+2ν̃p2

ϕ + e2µ̃
√
Q
(
1 +

√
Q
)
B̃2 − J̃2p2

rB̃
2
}
ω′ Ŝ∗,

(122)

where
ω ≡ ω̃fd

Λt
= Ḡ0

S Ŝ. (123)

Using Eqs. (107), (108) and (123), ĤSS can be rewritten as

ĤSS =

Ḡ0
S + r̄c

2
√
B

1− 1√
Q
(
1 +
√
Q
)×

×
p2

ϕū
2
c −

p2
r∗

A


 (Ḡ0

S

)′  Ŝ Ŝ∗. (124)

The second term in the r.h.s. of Eq. (121) was introduced in
Ref. [197] [see Eqs. (5.59), (5.60) and (5.70) therein and related
discussion] to correctly account for the LO spin-spin coupling.
One easily checks that PN-expanding the whole Ĥeff

SS together
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with Ĥeff
orb is necessary to correctly recover the LO spin-spin con-

tribution in the full Hamiltonian, ĤLO
SS = −u3(Ŝ + Ŝ∗)2/2 =

−ã2
0/2. This constitutes the main structural difference between

TEOBResumS and SEOBNRv4 in the spin-spin sector. In fact, in
the former even-in-spin terms are fully resummed through rc,
while in the latter these terms are partially resummed within r̄c
and partly added to the Hamiltonian as they are.

We also note in passing that, by expanding Heff
orb, one also

finds the Kerr-like quartic-in-spin term Ŝ4/2. This term takes
into account only a fraction of the analytically known LO quartic-
in-spin Hamiltonian. By contrast, it was shown in Ref. [194] that
this is completely incorporated in the TEOBResumS Hamiltonian
because of the use of effective spin ã0 within rc.

Finally, Eq. (121) also features the presence of an effective
NLO spin-spin correction, with the adjustable parameter dSS
that will be discussed below.

4.3.4 Numerical relativity calibrated functions

As briefly mentioned above, the SEOBNRv4 analytic structure is
completed by 3 functions that are calibrated to NR simulations.
These functions are: (i) K, that enters ∆u; (ii) dSO, that is
found in the definition of the effective spin variable Ŝ∗; and
(iii) dSS that affects the spin-spin coupling. The NR-calibrated
expression of K was obtained in Ref. [204] and reads

K = K|χ=0 +K|χ 6=0, (125)
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where we introduced the functions

K|χ=0 = 267.788247ν3 − 126.686734ν2 + 10.257281ν+
+ 1.733598, (126)

K|χ6=0 = − 59.165806χ3ν3 − 0.426958χ3ν + 1.436589χ3+
+ 31.17459χ2ν3 + 6.164663χ2ν2 − 1.380863χ2+
− 27.520106χν3 + 17.373601χν2 + 2.268313χν+
− 1.62045χ, (127)

where
χ ≡ χS +X12

χA
1− 2ν = Ŝ

X2
1 +X2

2
, (128)

with χS = (χ1+χ2)/2 and χA = (χ1−χ2)/2. The spin-orbit sec-
tor presents an additional N3LO effective correction that reads

dSO = 147.481449χ3ν2 − 568.651115χ3ν +
+66.198703χ3 − 343.313058χ2ν +

+2495.293427χν2 − 44.532373 . (129)

Finally, the NLO effective spin-spin correction that enters Ĥeff
SS

is NR-calibrated through the parameter

dSS = 528.511252χ3ν2 − 41.000256χ3ν+
+ 1161.780126χ2ν3 − 326.324859χ2ν2+
+ 37.196389χν + 706.958312 ν3+
− 36.027203 ν + 6.068071. (130)

As all these coefficients depend on multiple powers of the in-
dividual spins, a clear distinction between the spin-orbit and
spin-orbit sectors is impossible.

4.4 Select comparisons

We have seen that the TEOBResumS and SEOBNRv4 Hamiltonians
are constructed rather differently. They differ in the amount
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of analytical information that is included, the spin-gauge, the
resummation procedures and the way they are informed (or cal-
ibrated) to NR simulations. Still, both models deliver wave-
forms that are faithful with state-of-the-art NR simulations at
1% level or better [204, 166]. This is possible because, on top of
the tunable functions that enter the dynamics of the two models,
(ac6, c3) and (K, dSO, dSS) the waveforms are also NR-completed
through merger and ringdown in some way. The aim of this sec-
tion is to attempt to quantify the differences entailed by the two
NR-informed Hamiltonians. To do so, we focus on the gauge-
invariant relation between energy and angular momentum (or
orbital frequency) and we calculate them both in the adiabatic
approximation as well as non-adiabatically, switching on some
analytical radiation reaction to account for the angular momen-
tum losses.

4.4.1 Adiabatic dynamics

Our interest is to make some comparative statements between
the dynamics of the two models. Since the models are cali-
brated to NR, and moreover are expressed in different gauges,
direct comparisons between the analytical expressions discussed
above are not informative. On the contrary, comparisons be-
tween gauge-invariant quantities are meaningful and we start by
considering the adiabatic approximation to the dynamics, i.e. a
sequence of circular orbits. We hence set pr∗ = 0 and compute,
at each given radius, the circular angular momentum pcirc

ϕ solving
∂Ĥeff(r, pϕ)/∂r|pϕ=pcirc

ϕ
= 0. We can then compare the rescaled

binding energy of a system Êb ≡ (E −M)/µ of the two models,
when plotted as a function of the angular momentum pϕ or of
the dimensionless orbital frequency Ω ≡MΩphys = ∂ĤEOB/∂pϕ.

The results of these comparisons are shown in Fig. 1. From
simplicity, in the following we will often denote TEOBResumS as
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Figure 1: Gauge-invariant relation between Eb and pϕ and Ω in the adiabatic
case. We show two selected configurations: (q, χ1, χ2) = (1,−0.9,−0.9) and
(3, 0.8,−0.2) The markers correspond to the LSO position (not present in
TEOBResumS for large aligned spins).

TEOB and SEOBNRv4 as SEOB. The markers highlight the lo-
cation of the last stable orbit (LSO), which corresponds to the
inflection point of the Hamiltonian and is thus found imposing
∂Ĥeff/∂r = ∂2Ĥeff/∂r

2 = 0. As expected, the binding energies
are similar but not exactly overlapping. It is difficult to quantify
the effects of this difference, but it is probably tapered in the
full models, when taking into account the respective radiation
reactions. In the next section, we will compare binding energy in
the non-adiabatic scenario, adding the same radiation reaction
to both models.

The general characteristics of the dynamics can be also sum-
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Figure 2: Gauge-invariant quantities computed at the LSO for equal-mass,
equal-spin systems versus χ = χ1 = χ2. Note that the TEOBResumS Hamilto-
nian does not have an LSO after χ ≈ 0.7 and thus the corresponding curves
terminate there.

marized by inspecting various gauge-invariant quantities at the
LSO, i.e. binding energy, orbital frequency and the dimension-
less Kerr parameter

χJ ≡
1
ν

jtot

Ĥ2
EOB

, (131)

where jtot is total angular momentum and reads

jtot = pϕ + X1

X2
χ1 + X2

X1
χ2 . (132)

This is done in Fig. 2, that refers to the equal-mass, equal-spin
case. On the x-axis we put χ = χ1 = χ2. Note that the curve
for TEOBResumS stops at ã ≈ 0.7 because the LSO does not
exist for higher spins. We will comment more on this aspect in
the conclusions. It is interesting to note that for large, positive
spins TEOBResumS predicts values of the LSO frequency larger
than the SEOBNRv4 ones.

The last piece of information that can be extracted from the
two Hamiltonians in the adiabatic case concerns the spin-orbit
and spin-spin contributions. In fact, if we consider small spins,
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Figure 3: Linear and quadratic-in-spin Hamiltonian contributions in the
equal-mass case. Eã1 qualitatively agrees between the two models. The
quadratic-in-spin behaviour is instead completely different, although it is
similar in the PN regime. We remind the reader that for these systems
Eã1 = Eã2 and Eã2

1
= Eã2

2
, while Eã1ã2 , though not shown, displays a similar

behavior to Eã2
1
. The markers highlight the non-spinning LSO position.

ãi � 1, we can expand the Hamiltonian as

ĤEOB (ν, ã1, ã2) ∼ E0(ν) + Eã1(ν) ã1 + Eã2(ν) ã2+
+ Eã2

1
(ν) ã2

1 + Eã1ã2(ν) ã1ã2+
+ Eã2

2
(ν) ã2

2 +O[ã3
i ]. (133)

In this situation, the EX functions are well defined and de-
pend on the mass ratio and dynamical variables but not on
the spin values. These functions hence encode the way the lin-
ear and quadratic-in-spin terms are described in the two mod-
els. We can obtain each contribution analytically differentiat-
ing ĤEOB, e.g. Eã1 = (∂ĤEOB/∂ã1)|ãi=0. For simplicity, we
instead compute them numerically, considering very small (pos-
itive or negative) spins and suitably summing/subtracting the
corresponding energies so to obtain the coefficients. For ex-
ample, Eã1 =

[
ĤEOB|(ã1=a, ã2=0) − ĤEOB|(ã1=−a, ã2=0)

]
/(2a), with

a ∼ 10−4.
Note that in the adiabatic case, using pϕ as a variable is

problematic, as it presents a cusp at the LSO, when the stable
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Figure 4: Same as Fig. 3 for systems of q = 5. We also added the Kerr
corresponding functions up to the Schwarzschild LSO. In this case, all three
curves agree qualitatively.
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Figure 5: Same as Fig. 2 using models without NR information, i.e. set-
ting all calibration coefficients to zero. The NR-informed TEOBResumS and
SEOBNRv4 are indicated with dashed lines. Without calibration, TEOBResumS
does not have an LSO after χ ≈ 0.3.

and unstable orbits branches meet. Moreover, the spin-squared
contributions are singular at the same point when plotted ver-
sus the angular momentum. Conversely, the orbital frequency
is continuous and well-behaved near the LSO, making it more
useful for comparisons. The results for equal-mass systems are
exhibited in Fig. 3.

The figure illustrates that Eã1 is reasonably consistent be-
tween the two models, although it has a slightly different be-
havior after the non-spinning LSO. Eã2

1
, instead, is completely

different. The two curves behave similarly in the PN regime (for
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Figure 6: Comparison of Eã1 and Eã2
1
for TEOBResumS and SEOBNRv4 without

NR calibration. The dashed lines correspond to the curves of Fig. 3. It is
possible to notice how the non-calibrated curves are closer and have a more
similar behavior up the LSO. Moreover, we can see that both the spin-orbit
and spin-spin interactions are tempered by the use of NR information.

small values of Ω) but quickly start to disagree and even change
sign well before the LSO. Some difference was to be expected
due to the different included PN information and way to include
spin-spin terms within the EOB framework.

Since these functions are universal, we can extract the linear-
in-spin contribution for any value of the spins as Eã1ã1 +Eã2ã2,
even if for large spins the expansion of Eq. (133) is no longer valid
and higher order contributions become non-negligible. Thus, we
expect that these differences will be more pronounced for large
aligned spins, when the LSO occurs at higher frequencies.

As a consistency test, we show in Fig. 4 the same comparison
for q = 5, together with the Kerr corresponding curves. As
expected, since the two models share the same ν → 0 and PN
limits, in this case the curves have a similar behavior and are
close to the Kerr functions.

As we briefly mentioned in the previous sections, the NR-
informed parameters introduce a complicated spin-dependence
in both models. In order to remove these effects, we compare
in Fig. 5 the LSO quantities for TEOBResumS and SEOBNRv4, af-
ter eliminating the NR-calibration, i.e. we impose ac6 = c3 = 0

56



and K = dSS = dSO = 0 respectively. Two features become evi-
dent: (i) TEOBResumS does not display an LSO for χ ≥ 0.3; (ii)
SEOBNRv4 has a behavior that is Kerr-like and does not display
a change of concavity.

We conclude this section by showing in Fig. 6 the comparisons
between Eã1 and Eã2

1
. We can see that that the main effect of

using NR information is a decrease in the importance of the spin
terms. However, NR-calibrated terms also change the behavior
of the spin interaction. Without these, the TEOBResumS and
SEOBNRv4 curves are closer and Eã2

1
is positive for both models

up to the LSO.

4.4.2 Non adiabatic dynamics

Let us now complement the above section with similar compar-
isons based on non-adiabatic evolutions, so to get up to merger.
To do so, for both Hamiltonians we write Hamilton’s equations
with the same radiation reaction Fϕ. For consistency between
TEOBResumS and SEOBNRv4, we use the formal expression of Fϕ
discussed in Ref. [166], where however the argument x is taken
to be x = Ω2(Ω|pr=0)−4/3. We stress that this choices does not
correspond to neither the TEOBResumS nor the SEOBNRv4 one.
The purpose of this section is to purely explore the structure of
the Hamiltonians in the strong field, and compare them. It is
intended that the full energetics obtained from this dynamics is
not expected to be fully compatible with the corresponding NR
one, like it is for the NR-completed model [191]. Similarly, we
don’t improve the inspiral EOB analytical waveform with a NR-
improved description of the merger (i.e., next-to-quasi-circular
corrections) nor ringdown, but we adopt it as is. However, since
its amplitude has a peak that is known to be close (both in
location and amplitude) to the actual merger point obtained
by NR simulations, we use it as an approximate merger point
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Figure 7: Non-adiabatic evolution: gauge-invariant relation between bind-
ing energy Eb/µ and orbital angular momentum pϕ obtained using the two
different TEOBResumS and SEOBNRv4 Hamiltonians, but the same radiation
reaction. The chosen configurations are the same of Fig. 2. The markers
highlight the position of the peak of the (2, 2) mode. The lower panel shows
the difference ∆Eb/µ = (ETEOB

b − ESEOB
b )/µ.

(note that this is the choice usually adopted in the analytical
description of coalescing and merging BNS). Such approximate
merger location will be useful below. Fig. 7 compares the re-
lation Eb(pϕ) of the two models for a few configurations. The
approximate merger point (as defined above) for each model is
shown as a colored marker. One sees that, on randomly cho-
sen configurations, the global differences are non negligible. In
particular, they are larger than the expected uncertainty on the
corresponding NR curves (∼ 10−4). Moreover, the position of
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Figure 8: Rescaled binding energy Êb ≡ Eb/µ at the LSO for equal-mass,
equal-spin systems. This is obtained with the non-calibrated Hamiltonians
of SEOBNRv4 and TEOBResumS, where the latter includes a new GS∗ with
the complete spinning particle information. Note that this new flavor of
TEOBResumS presents an LSO for all values of the spin χ = χ1 = χ2.

the (2, 2) peak is often very different, with TEOBResumS merging
later for large aligned spins and sooner for anti-aligned ones.

4.4.3 Specific modifications

We have seen that, due to the several structural differences be-
tween the two models, it is difficult to understand clearly what
special physical element is responsible for some specific dynam-
ical behavior. Generally speaking one sees that the two models
implement a fundamentally different description of the spin-spin
interaction and this eventually reflects on all diagnostics that we
have analyzed.

To shed more light on the impact of the various analyti-
cal structure, we focus here on a specific analytical element.
From this point of view, we want to stress that most of the
spinning-particle information that is encoded in GK

S∗
is miss-

ing in TEOBResumS, that is thus analytically less complete than
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SEOBNRv4. One should however be aware that nothing prevents
us from the possibility of injecting the same information into an
alternative TEOBResumS Hamiltonian that, however, maintains
the same global structure as the current one. In particular, the
features that we want to preserve are: (i) the use of rc with ã0
for spin-spin interaction and (ii) the use of factorized (and then
resummed) (GS, GS∗) function. In particular, one would like to
keep for GS∗ a factorized expression of the form

GS∗ = G0
S∗
ĜS∗, (134)

where now G0
S∗

reduces to GK
S∗
, Eq. (50), when ν = 0 and not just

to the first term of the PN expansion, 3/2u3. To achieve this,
one cannot work in the DJS gauge, but in a different gauge such
that the standard PN-expanded GS∗ coincides with the Taylor
expansion of GK

S∗
when ν = 0. One finds that this gauge is

defined by the condition that all the ν-dependent terms that
depend on the radial momentum disappear. The correspond-
ing choice of the gauge parameters is reported at the end of
Appendix E of Ref. [230]. A new spin-orbit sector that fully
incorporates the spinning particle information can be obtained
as follows: (i) one factorizes out from geff

S∗
the r3GK

S∗ terms up to
NNLO; (ii) G0

S∗
is taken to have the same functional form of GK

S∗

where, however, the various Kerr functions (rKc , AK , BK , QK)
are replaced by the EOB ones, (rc, A,B,Q), with their complete
ν-dependence. Similarly, the Kerr spin is replaced by the ã0 ef-
fective spin variable. The functions A and B are then resummed
using the usual TEOBResumS prescriptions; finally, the new func-
tions (ĜS, ĜS∗), that explicitly depend on ν, and are both in
the form 1 + . . . , are also resummed using their inverse Taylor
representation, analogously to what is done in the DJS gauge.
We found that incorporating the (ν-deformed) spinning-particle
information within this new flavor of TEOBResumS fixes one of
the long standing issues of the model in DJS gauge, i.e. the fact
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that the LSO does not exist for large, positive spins ≥ 0.7, as
recalled in the text and as pointed out in Ref. [224]. For this
study, we also kept rc at LO, i.e. setting δa2 = 0 in Eq.(63),
so to use the same amount of PN information as SEOBNRv4.
Figure 8 shows the binding energy at the LSO obtained with
this new model: one sees that the LSO always exists also for
quasi-extremal, positive spins. We could also verify that, once
implemented in the time-domain code to provide the full tran-
sition from early inspiral to plunge, merger and ringdown, the
Hamiltonian in the new gauge maintains the same robustness
and flexibility that was typical of the DJS gauge one. We also
found that, analogously to this case, an effective spin-orbit pa-
rameter is necessary to get a good phasing agreement with NR
simulations.

4.5 Summary

We performed a comprehensive analytic comparison between the
Hamiltonians of the two state-of-the-art EOB waveform models
for coalescing BBHs, TEOBResumS and SEOBNRv4. In particu-
lar, we have illustrated that the SEOBNRv4 Hamiltonian can be
formally written similarly to the TEOBResumS one, though with
different potentials. We report the main differences in Table 1.
Generally speaking, this allowed us to illustrate that the most
important structural differences between the two models lie in
the way the ν-deformation is implemented in the spin sector.

More precisely:

(i) Centrifugal radius and spin-spin sector. We have pointed
out that in the orbital part of the SEOBNRv4 Hamiltonian
it is possible to identify a centrifugal radius function r̄c
[Eq. (103)], similarly to rc within TEOBResumS [Eq. (63)].
This function incorporates, in resummed form, some of the
even-in-spin contribution, as in the case of a non-spinning
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Table 1: We here summarize the main structural differences between the
conservative dynamics of TEOBResumS and SEOBNRv4. We remind the reader
that the complete dynamics differ also in the way NR information is incor-
porated.

TEOBResumS SEOBNRv4

Deformed Hamiltonian structures: Deformed metric structures:
1− 2uKc → Aorb ∆K → ∆u

[Eq. (60)] [Eq. (94)]

Event horizon not always present Imposed two Kerr-like horizons
[Eq. (94)]

A and D potentials resummed ∆u and D potentials resummed
using Padé approximants through logarithms

[Eqs. (60) and (67)] [Eqs. (94) and (96)]

Effective spin variable: Effective spin variable:
â→ ã0 = X1χ1 +X2χ2 â→ Ŝ = X2

1χ1 +X2
2χ2

[Eq. (63)] [Eqs. (86)-(90)]

Only leading PN correction Conserved spinning-particle
in spin-orbit sector structure in Gs∗

[Eq. (71)] [Eq. (98)]

Spin-spin resummed through: Spin-spin terms added
uKc → uc to the Hamiltonian

[Eqs. (58) and (63)] [Eq. (79)]
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particle on Kerr. However, r̄c and rc are very different func-
tions, notably because of the choice of the effective spin
quantity. In particular, in TEOBResumS the use of ã0 al-
lows one to automatically incorporate within rc the LO
quadratic-in-spin (as well as quartic-in-spin) terms. This
is not the case for SEOBNRv4, that uses Ŝ, so that a com-
pensation term in the effective Hamiltonian, Ĥeff

SS [Eq. (121)]
has to be introduced. Another important difference comes
from the fact that the resummation choices of SEOBNRv4
include in r̄c the ν-dependent terms of ∆u which are not
present in TEOBResumS.

(ii) Spin-orbit sector. We attempted to provide a one to one
comparison between the spin-orbit sectors of the two mod-
els, rewriting the corresponding part of the SEOBNRv4 Hamil-
tonian like the TEOBResumS one. We identified the two gyro-
gravitomagnetic functions (ḠS, ḠS∗), Eqs. (68) and (69), in
the former that correspond to (GS, GS∗), Eqs. (119) and
(120), in the latter. These functions differ both in the gauge
choice and in the analytical content. We have explicitly
showed that in SEOBNRv4, the spin-orbit Hamiltonian can
be obtained starting from the expression of Ref. [231] and
ν-deforming it in some way, replacing the Kerr functions
(rKc , AK , BK , QK) with (r̄c,A,B,Q), that incorporate ad-
ditional ν-dependent effects. The main difference here is
that within SEOBNRv4 the GK

S∗
function contains the full

spinning-particle information, while this is approximated
to (N3LO) in TEOBResumS.

We also made some quantitative comparisons between the
two models. We compared the gauge-invariant relations between
energy, angular momentum and orbital frequency, both for adi-
abatic and nonadiabatic dynamics. In doing so, we compared
and contrasted the linear-in-spin and quadratic-in-spin contri-
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butions of the two Hamiltonians. We found relevant qualitative
and quantitative differences, especially in the spin-spin sector.
The discrepancies are mitigated by the calibration to NR sim-
ulations. This is not surprising, since we expect the use of nu-
merical information to drive the generated waveforms towards
the “exact” GR result.

We finally demonstrated how the inclusion of different ana-
lytical information can impact the model. One should note that
similar results could be obtained by changing one of the resum-
mation schemes and all these aspects enter into the analysis of
waveform systematics. Fortunately, NR information helps miti-
gating these effects, but a deep understanding of the underlying
analytical structures is fundamental in order to push EOB-NR
models to their accuracy limits.
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5 EOB waveforms for dynamical captures

In dense stellar regions, such as galactic nuclei and globular
clusters, BHs can become gravitationally bound as they lose en-
ergy to gravitational radiation during a close passage [234, 235].
Such dynamically captured pairs may lead to highly eccentric
mergers with a phenomenology that is radically different from
quasi-circular inspirals [236, 237]. The future detection of these
mergers [238, 239] can provide invaluable insights on astrophysi-
cal BHs. Due to the special waveform morphology, these systems
might be either missed or incorrectly analyzed using standard
quasi-circular templates [240, 241, 209, 242, 243].

Physically faithful waveform models to systematically study
the phenomenology of dynamical captures do not currently exist.
Similarly, NR studies of BBH mergers from dynamical capture
conducted thus far are only few [240, 244, 245, 246]. EOB-based
models are a suitable candidate to fill this gap, since they solve
the system dynamics instead of having a prescription to generate
the waveform itself [247].

In the following, we will describe the application of a state-
of-the-art EOB model to the generation of multipolar merger-
ringdown waveform from dynamical capture BH mergers with
arbitrary mass-ratios and nonprecessing spins. The model relies
on analytical descriptions of the radiation reaction and wave-
form along generic orbits proposed in Ref. [170]. However, it
is currently impossible to make precise quantitative statements
on the actual faithfulness of the analytical waveforms because
of the lack of systematic predictions from NR simulations of
dynamical capture coalescing binaries.

The contents of this section were originally published as “A.
Nagar et al., Phys. Rev. D 103 064013 (2021)” [248].
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Figure 9: Waveform phenomenology for q = 1: selected configuration to illus-
trate two distinct single-burst phenomenologies: a direct plunge (left panel)
and a configuration with a quasi-circular orbit preceding the plunge (right
panel). Each configuration is characterized by initial data (q, E0/M, p0

ϕ).
The top row of each panel shows the real part of the ` = m = 2 waveform,
completed with merger and ringdown (black line), with close ups onto the
final merger part. The left-bottom panel exhibits the gravitational wave fre-
quency, while the right-bottom the last part of the relative separation r(ϕ).
The panels also show: (i) the purely analytical EOB (inspiral) waveform
and frequency (orange line); (ii) the waveform completed by NR-informed
next-to-quasi-circular corrections (NQC, blue line). Note that the analytical
EOB waveform accounts for the GW emission up to the largest peak of the
orbital frequency Ω (red line). It is only after that this point is reached that
the postmerger-ringdown description is attached, analogously to the quasi-
circular case [190, 192, 166, 195, 196].

5.1 Dynamical capture phenomenology

Let us give a general overview of the properties of the relative
dynamics and waveforms from dynamical capture as predicted
by our EOB model. Note that we will discuss the scattering
scenario in Sec. 5.2 below. To simplify the discussion, we start
by considering the q = 1, non-spinning case. To setup initial
data, we consider values of the angular momentum pϕ sufficiently
larger than the value at the LSO, pLSO

ϕ so as to allow for the peak
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Figure 10: Same as Fig. 9, but to illustrate a waveform with a double
burst phenomenology, that corresponds to a close encounter then followed
by plunge, merger and ringdown.

of the potential energy to be larger than one 6. For each value of
pϕ we select values of the energy between (Emin, Emax) as men-
tioned above. At a qualitative level, for a given value of p0

ϕ, as
the energy is decreased from Êmax ≡ Emax/M , the system passes
through the following stages: (i) direct capture/plunge; (ii) one,
or more, close encounters before merger; (iii) close passage and
scattering. In practice, the detailed behavior as energy is de-
creased is more complicated, because, as Ê0 ≡ E0/M → 1 the
system moves from scattering configurations to (many) close
encounters that eventually end up with gravitational capture.
More details on this phenomenology will be given below.

To start with, Figures 9 and 10 show three waveforms with
nearly the same value of the angular momentum where the en-
ergy is progressively decreased. The configurations were selected
so that one can appreciate the transition from immediate scat-

6For the non-spinning case, from the conservative EOB Hamiltonian one obtains
pLSO
ϕ (ν) = 3.4643− 0.774482ν − 0.692ν2.
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Figure 11: Analysis of the parameter space of hyperbolic encounters of non-
spinning BBHs parameterized in terms of initial data (q, E0/M, p0

ϕ). The
number of multiple encounters (N ≥ 2) increases with q, while the corre-
sponding area on the parameter space gets smaller and smaller. Note the
separation, given by the colored area, between configurations that scatter
and configurations that eventually merge.

tering (left panel of Fig. 9) to a quasi-circular capture (right
panel of Fig. 9 ), where the system does a full quasi-circular or-
bit before plunging, and the case when there is a close encounter
followed by capture and merger, Fig. 10. For each configuration,
we show: (i) the real part of the waveform; (ii) the gravitational
wave frequency ω22 together with twice the orbital frequency
2Ω; and (iii) the orbit r(ϕ) of the relative separation. For com-
pleteness, in both the waveform and frequency panels we include
three curves: (i) the simple, analytical, EOB waveform, with the
general Newtonian prefactor as explained in Ref. [170] (dashed,
orange); (ii) the waveform corrected by additional next-to-quasi-
circular (NQC) factors, that are informed by quasi-circular NR
simulations following now standard procedures (light blue, dash-
dotted) and the waveform completed with the, similarly NR-
informed, ringdown. More precisely, the ringdown is attached
at t = 2M after the peak of the ` = m = 2 analytic wave-
form, according to the standard procedure implemented in the
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Figure 12: Extreme configuration with (q, E0/M, p0
ϕ) = (8, 1.0003, 4.3142)

that undergoes eight periastron passages before merger. Note, after the first
encounter, the very eccentric orbit, with apastron that reaches r ' 1200
(bottom left panel). Top right panel: close up on the final plunge, merger
and ringdown part of the waveform. For completeness we also incorporate
the purely analytical waveform (orange).

various flavors of TEOBResumS [196, 170]. To characterize the
dynamics, it is useful to look at the morphology of the orbital
frequency. In the case of immediate plunge, Ω = ϕ̇ has a single
peak, corresponding to the crossing of the EOB effective light-
ring. When the energy is lowered (see right panel of Fig. 9),
the frequency progressively flattens and an earlier peak appears
well before the merger one. This “precursor” peak corresponds
to a periastron passage with rperiastron ' 3.47; after this, r in-
creases again and eventually the system plunges, with a second
peak in Ω. As the energy is further lowered (see Fig. 10), the
first peak, that corresponds to the first close passage, becomes
clearly distinguishable and separate from the one corresponding
to merger. Inspecting the right panel of Fig. 9, one then un-
derstands that the divide between having an immediate plunge
and a close encounter followed by a plunge is determined by the
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condition Ω̇ = Ω̈ = 0, i.e. the orbital frequency should have an
inflection point at some time. Inspecting the left panel of Fig. 9,
one understands how the late, inspiral-like, part of the orbit is
fully mirrored by an entire GW cycles in the purely analytical
waveform before the ringdown signal actually occurs. Similarly,
in the right panel of the figure one finds that the waveform mir-
rors the quasi-circular dynamics giving four, entire, GW cycles
before merger and ringdown.

On the basis of the morphological analysis of above, a simple
way to characterize the parameter space of dynamical capture
is to focus on the orbital frequency as function of time, Ω(t),
and count how many peaks are present. A single peak may
correspond to either immediate plunge or scattering. More gen-
erally, when many peaks are present, each peak corresponds to
a periastron passage. So, the number of peaks of Ω(t) is a sim-
ple observable, function of (q, E0/M, p0

ϕ) that could be used to
characterize the parameter space of dynamical capture BBHs 7.

We then consider different mass ratios, q = {1, 2, 4, 8, 16, 32, 64, 128}
to provide a comprehensive mapping of the parameter space. For
each value of the angular momentum, we lower the energy and
count the number of peaks of Ω. The result of this analysis is re-
ported in Fig. 11. The colors characterize how many periastron
passages the system has undergone before merging. Focusing
first on the q = 1 case (top-left panel of the figure), one sees
that when the energy is decreased from Êmax there are differ-
ent islands of initial parameters that correspond to progressively
more complicated physical behaviors. The plot is split in two by
an area that corresponds to the frequency developing two peaks
before merger (magenta line). As mentioned above, the upper

7An equivalent observable is given by the number of peaks of the gravitational wave
frequency, any isolated peak corresponding to a periastron passage. Using the GW fre-
quency has the advantage that the analysis we are discussing here can be directly extended
to NR simulations, using then the same peak number as function of initial ADM energy
and angular momentum to fully characterize the parameter space.
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boundary of this region is defined by those values of (E0/M, p0
ϕ)

such that Ω̇ = Ω̈ = 0 at some time. Now, the N = 1 part of the
parameter space above the magenta region corresponds to direct
plunge, with a waveform phenomenology similar to the one in
the left panel of Fig. 9. By contrast, the N = 1 part on the
right and below the magenta region corresponds to scattering
events instead of capture. For a given value of E0, configura-
tions in the first N = 1 region have smaller angular momentum
and larger radial momentum, so that the capture is favored. On
the contrary, in the second N = 1 region it is the angular mo-
mentum that dominates, and thus, after a close encounter, the
two objects separate again instead of merging. When the initial
energy is lowered further, getting close to the stability region,
the system attempts to stabilize again and the number of pe-
riastron passages before merger increases progressively also for
large values of p0

ϕ. The phenomenology remains qualitatively
the same also when the mass ratio is increased, but the region
with N = 2 becomes narrower and narrower as q increases, no-
tably for q ≥ 32, when the divide between N = 1 configuration
is barely visible on the plots (we shall quantify this behavior
better below). By contrast, for energies just slightly larger than
the (adiabatic) stability limit, the number of possible encoun-
ters can grow considerably, up to several tens, although limited
to a region of p0

ϕ much smaller than in the equal-mass case. We
qualitatively interpret this behavior as mirroring the effect that
radiation reaction, that is proportional to ν, becomes less and
less efficient as ν is decreased and so the system can persist in
a metastable state much longer.

In order to give an explicit example of the complicated phe-
nomenology of a capture that occurs after many close encoun-
ters, let us consider a configuration with
(q, E0/M, p0

ϕ) = (8, 1.00026983016, 4.3141870095), that is exhib-
ited in Fig. 12. The top row of the figure shows the real part
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Figure 13: Importance of radiation reaction to determine the multiple-
encounters behavior of Fig. 12, with the same initial conditions
(q, E0/M, p0

ϕ) = (8, 1.0003, 4.3142) considered there. The black lines cor-
respond to the full dynamics with radiation reaction, while the red ones
correspond to the conservative dynamics alone. The left panel compares the
waveforms during the first periastron passage, while the the right one shows
the subsequent encounters and final merger.

of the waveform, each burst corresponding to a close passage.
Analogously to what done in Fig. 9, the close up of the wave-
form around merger (top-right panel) also includes the analyti-
cal EOB waveform (orange). The bottom row exhibits the time
evolution of the frequency around merger as well as the relative
trajectory. After the first encounter, the system undergoes an
extremely elliptic orbit, with apastron reaching r ' 1200, be-
fore being captured again. This behavior is determined by the
action of radiation reaction around the first close encounter: in
that situation the system emits a burst of radiation that eventu-
ally makes the orbit close again instead of scattering away. We
prove this by setting up the EOB dynamics with the same initial
data, but switching off radiation reaction, i.e. both F̂ϕ = F̂r = 0
in the model of Ref. [170]. Figure 13 compares the orbital fre-
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quency and waveform of Fig. 12 with the waveform obtained
from the conservative dynamics only. The location of the first
burst, that corresponds to the first encounter, is essentially the
same for both configurations, highlighting that the effect of ra-
diation reaction is practically negligible up to that point. The
differences in the waveform (and thus dynamics) occur later,
consistently with the fact mentioned above that the effect of
radiation reaction is localized around the periastron passage.
In the top panel of the figure we also compare the full GW
frequency, ω22 with twice the orbital frequency Ω, to highlight
that ω22 6= 2Ω because of the various noncircular effects occur-
ring near the periastron. From this example one also argues
that the span of the capture region in the parameter space de-
pends on the details of the model for radiation reaction and may
thus change if an improved version of the latter is implemented
within the model. We will comment more on the issue of ana-
lytical uncertainty of the model, and the related importance of
NR simulations as a benchmark, in Sec. 5.2 below.

Finally, to put on a more quantitative ground the specific
qualitative observations made so far, we compute, for each value
q = {1, 2, 4, 8, 16, 32, 64, 128} the fraction YN of events with N
encounters (where the N -th encounter corresponds to merger in
case of final capture). Figure 14 exhibits this quantity versus
ν = q/(1 + q)2. Configurations with two encounters are always
the most frequent ones, although their fraction quickly decreases
below 10% for q > 4 (ν < 0.16).

5.1.1 Spin

Let us turn now to discussing the effect of the spins (anti)aligned
with the angular momentum. At a qualitative level, the wave-
form phenomenology is analogous to the non-spinning case con-
sidered above, though with some quantitative differences due
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Figure 14: Fraction of BBH configurations (including also scattering events)
that end up with N encounters (where the N -th encounter corresponds to
merger) for non-spinning binaries. Configurations with N = 2 are the most
frequent ones, although their frequency quickly decreases below 10% as q > 4
(ν < 0.16).

to the spin-orbit and spin-spin interactions. We shall focus
first on a special example to highlight the phenomenology. As
mentioned above, due to the large initial separation the setup
of initial data is insensitive to spin effects, so that the system
can be consistently started with the same initial data setup for
non-spinning binaries discussed above. In order to single out
the effects of spins, we consider the same initial configuration
(q, E0/M, p0

ϕ) = (1, 1.0055, 3.97) as above, with the following
three choices for spins: χ1 = χ2 = +0.50; χ1 = χ2 = −0.50;
χ1 = +0.50 and χ2 = −0.50. The corresponding waveforms are
exhibited in Fig. 15. One clearly sees the following facts. When
the BHs are spinning in opposite directions, the waveform is
essentially equivalent to the non-spinning one. This is due to
the well known cancellation of the spin-orbit interaction in the
equal mass case, with the little differences in the waveforms
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Figure 15: Effect of the spins on the (q, E0/M, p0
ϕ) = (1, 1.0055, 3.97) config-

uration discussed above. Top panel: when χ1 and χ2 are anti-aligned among
themselves, the spin-orbit interaction cancels out and the waveform is almost
equivalent to the non-spinning one. Middle panel: the repulsive character of
spin-orbit interaction for spins aligned with the angular momentum is such to
have a scattering instead of a dynamical capture. Bottom panel: when spins
are anti-aligned with the angular momentum, the system plunges faster, with
a short burst of radiation corresponding to the final capture.

predominantly due to spin-spin effects 8. To appreciate this at
the level of dynamics, Fig. 16 shows that the potential energy
H0

EOB/M (i.e. Eq. (2) with pr∗ = 0) for (χ1, χ2) = (+0.50,−0.50)
is visually indistinguishable from the non-spinning one. When
the spins are both aligned with the orbital angular momentum,
the centrifugal barrier is higher than in the non-spinning case
(compare black and red lines in Fig. 16, and thus the system
undergoes a scattering instead of a capture. The corresponding,

8For completeness, some of the waveform differences also come from the merger-
ringdown modelization, that is spin-dependent.
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Figure 16: Potential energy HEOB
0 (r)/M for the four configurations shown in

Fig. 15, that share the same p0
ϕ = 3.97 but have different values of the spins.

The horizontal line corresponds to E0/M = 1.0055. The larger centrifugal
barrier present when χ1 = χ2 = +0.5 is responsible of the scattering behavior
in the middle panel of Fig. 15. In addition, the case (χ1, χ2) = (+0.50,−0.50)
is extremely close to (χ1, χ2) = 0 because of spin-orbit coupling cancellation,
consistently with the waveform shown in the top panel of Fig. 15.

burst-like, waveform is shown in the middle panel of Fig. 15.
Finally, when spins are both anti-aligned with the orbital angu-
lar momentum, the spin-orbit interaction makes the attraction
stronger than the non-spinning case (i.e. the potential barrier is
much lower, see blue curve in Fig. 16) and the system plunges
faster, with a signal whose pre-ringdown phase is much shorter
than the non-spinning case.

5.1.2 Higher modes

Higher modes are incorporated in both the latest quasi-circular
and eccentric realizations of TEOBResumS [195, 196, 170]. In the
non-spinning case, all modes up to ` = m = 5 included are
robustly completed by the NR-informed, quasi-circular, merger
and ringdown part [195]. By contrast, in the spinning case, due
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Figure 17: Calculation of higher modes for a non-spinning configuration
with (q, E0/M, p0

ϕ) = (3.5, 1.0067, 4.1361). The phenomenology is quali-
tatively analogous to the (q, E0/M, p0

ϕ) = (1, 1.0055, 3.97) case shown in
Fig. 9 above. DLh+ and DLh× waveform polarizations for (q, E0/M, p0

ϕ) =
(3.5, 1.0067, 4.1361) at various inclinations: θ = 0 (face on), θ = π/4 and
θ = π/2 (edge on).

to numerical noise in the NR data, it was not possible to model
the postmerger-ringdown part in modes modes like (3, 1), (4, 2)
and (4, 1) (see [196]). Figure 17 shows, in the first three rows,
several multipoles for (q, E0/M, p0

ϕ) = (3.5, 1.0067, 4.1361). For
this choice of initial conditions, the system undergoes a quasi-
circular orbit before plunge and merger, analogously to the cor-
responding q = 1 case shown above in the middle panel of Fig. 9.
One can appreciate that all modes can be obtained robustly
with the standard ringdown matching procedure discussed in
Refs. [195, 196]. For visual completeness, the last two rows of
the figure also show the corresponding two polarizations (h+, h×)
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for various inclinations.

5.2 EOB/NR scattering angle: the equal-mass case

So far, we have investigated the analytical predictions of our
EOB model for dynamical capture under the assumption that it
provides a reasonably faithful representation of true signals. Ev-
idently, given the many approximations adopted to construct the
model, a proof of this statement can only come from a system-
atic analysis of NR simulations of dynamical captures. Unfortu-
nately, such NR simulations are currently not available. Despite
this, we can actually test our model using some NR computa-
tion of the scattering angle previously published in Ref. [247].
The scattering angle, χ, is the natural, gauge-invariant, observ-
able that is used to characterize hyperbolic encounters. Refer-
ence [247] provided the first measurement of χ from NR simu-
lations and its comparison with an EOB prediction. The work
of Ref. [247] was a very preliminary investigation of a new ter-
ritory and thus was limited to only q = 1 binaries. Moreover,
the EOB calculation of scattering angles of Ref. [247] was not
EOB-self consistent, since it was relying on energy and angular
momentum losses computed from NR simulations. In this re-
spect, Ref. [247] allowed for a detailed analysis of the properties
of the EOB Hamiltonian, but not of the full dynamical model.
Now, thanks to the improved radiation reaction of Ref. [170], re-
liable in the strong field, we can finally go beyond the approach
of [247] and explore the reliability of the full model in hyperbolic
encounters. This will allow us to put on a more solid ground the
results discussed above. Reference [247] considered 10 configu-
rations, specified by Arnowitt-Deser-Misner (ADM) energy and
angular momentum, of q = 1 non-spinning BH binaries. Each
configuration was then evolved numerically. The initial data
were chosen so as to always have a scattering and not a capture.
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Details of the NR simulations are reported in Table I of [247].
The values of the dimensionless initial ADM energy E0/M and
dimensionless initial angular momentum J0/M2 (with the rel-
ative errors) are reported in the third and fourth columns of
Table 2. The ninth column of the table collects the values of
the NR scattering angle, with their uncertainty, as published in
Ref. [247]. As above, the initial EOB separation is chosen to
be r0 = 10000. The EOB values of the scattering angles are
listed in the tenth column of the table, while the last one lists
fractional NR/EOB difference, ∆̂χ ≡ |χNR − χEOB|/χNR. A few
comments are in order: (i) the EOB/NR agreement between
scattering angles is of the order of or below 1% fractional differ-
ence except for three outliers that correspond, not surprisingly,
to the smallest values of the impact parameter, although such
fractional difference is within the NR uncertainty; (ii) for the
first three configurations, the EOB model systematically overes-
timates the scattering angle, indicating that the system tends to
be trapped and eventually plunge, instead of scatter away. This
is indeed what happens for configuration #1, where the system
does a first close encounter, followed by a second one and the
plunge.

Qualitatively speaking, this behavior is just mirroring the fact
that the gravitational attraction as modeled within the EOB
model is stronger than the actual NR prediction. At a more
quantitative level, it is difficult to precisely quantify to which
extent this is due to the conservative or nonconservative part of
the dynamics. For what concerns the GW losses, columns 5-8
of Table 2 compare the total fraction of energy and angular mo-
mentum emitted in the NR simulation with the same quantity
computed within the EOB formalism. This is what is accounted
by the analytical fluxes entering the r.h.s. of Hamilton’s equa-
tion. The analytical fluxes are found to always underestimate
the numerical ones (sometimes also by ∼ 50%), except for con-
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figuration #2. Despite this, the estimate of the scattering angle
comes out consistent at a few percent level up to configuration
#4, thus suggesting the crucial importance of the conservative
part of the dynamics. We shall come back to this point in the
next section.

5.2.1 Impact of beyond 3PN corrections in the Q and D EOB
potentials

To have a deeper understanding of the results obtained above, let
us first remember that Ref. [247] showed that the best EOB/NR
agreement was obtained by using a D function at (incomplete)
4PN, that was taking into account only the linear-in-ν contribu-
tions available at the time [249]. Now that the 4PN knowledge
of the Hamiltonian is complete [250, 251], the 5PN information
is complete except for two undetermined numerical parameters,
d̄ν

2

5 and aν2

6 , and similarly the 6PN is known except for four un-
determined numerical parameters, (qν2

45, d̄
ν2

6 , a
ν2

7 , a
ν3

7 ) [136, 137],
it is worth to revive and improve the comparison of Ref. [247].
Note however that we do this here using the full model with
radiation reaction and taking into account the contributions to
either the D and the Q functions (while Ref. [247] was just us-
ing the 3PN-accurate Q). In principle, we should also explore,
within the present context, the effect of higher PN corrections
to the A function. However, we decided not to do so now for
the following two reasons. On the one hand, the analytically
known numerical value of the 5PN correction to the potential
ac6 is such that the usual (1, 5) Padé approximant has a spurious
pole, making thus this additional analytical knowledge practi-
cally useless within the current EOB context. Exploring differ-
ent resummation strategies (e.g. changing Padé approximant)
would be necessary in order to fruitfully use the analytically
known 5PN result. On the other hand, we have verified that
even large changes (∼ 100%) of the NR-informed effective 5PN
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parameter ac6(ν) obtained in Refs. [195, 196] and used here have
little to negligible impact on the calculation of the scattering
angle within the EOB model. This is consistent with the fact
that the A function rules the azimuthal part of the energy and
it is less important in a hyperbolic-like context when the radial
part of the Hamiltonian, i.e. ∝ p2

r∗
becomes predominant. To

avoid additional complications we thus prefer to keep working
with the NR-informed expression of the A function used in pre-
vious work, focusing instead only on the high-PN corrections to
the Q and D functions.

Q function Let us start discussing the Q function. To simplify
the logic, we keep D fixed at 3PN order and consider only Q at
4PN and at 5PN, though incorporating only local terms. The
result of the χ computation is displayed in Table 3. One sees that
the 4PN terms bring a small, though significative, contribution
to the scattering angle that goes in the direction of reducing
the EOB/NR difference. Despite this, the magnitude of the
correction is too small to avoid configuration #1 to plunge. By
contrast, the effect of the 5PN local-in-time terms goes in the
wrong direction and, moreover, is significantly smaller than the
numerical uncertainty. At a practical level, and especially in
view of the analytic complexity of the Q function at 6PN, we
don’t think it is worth, for the current study, to push Q at 6PN
accuracy and we shall just work, from now on, at 4PN accuracy
in Q.

D function Now that we have explored the (ir)relevance of the
various PN truncations of the Q function, let us move to ex-
ploring the D function. We consider all terms up to 6PN, i.e.
separately work with 4PN, 5PN and 6PN truncations, keeping
the accuracy of Q fixed at 4PN. Each D function, that comes
as a PN-truncated series, is resummed. Let us write here, for
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Table 3: Impact of 4PN and 5PN terms in the Q function on the calculation
of the scattering angle χ. Angles are measured in degrees.

# χNR χEOB
Q3PN

χEOB
Q4PN

χEOB
Q5PN

1 305.8(2.6) . . . . . . . . .
2 253.0(1.4) 279.35 278.21 278.75
3 222.9(1.7) 234.22 233.27 233.62
4 172.0(1.4) 174.23 173.57 173.72
5 152.0(1.3) 153.01 152.47 152.57
6 120.7(1.5) 120.79 120.44 120.49
7 101.6(1.7) 101.51 101.28 101.29
8 88.3(1.8) 88.19 88.03 88.04
9 78.4(1.8) 78.28 78.16 78.17
10 70.7(1.9) 70.54 70.44 70.45

Table 4: EOB scattering angle obtained using both D and Q functions and
4PN. The EOB/NR agreement is improved with respect to the standard
case of Table 2 that adopt 3PN accuracy for these functions. Note that
configuration #1 does not plunge anymore.

# rmin ∆EEOB/M ∆JEOB/M2 χNR χEOB ∆̂χ [%]
1 3.31 0.022693 0.190585 305.8 381.93 24.89
2 3.71 0.012995 0.126256 253.0 264.21 4.43
3 4.03 0.008920 0.097128 222.9 225.12 0.99
4 4.85 0.003997 0.057269 172.0 170.53 0.85
5 5.34 0.002646 0.044311 152.0 150.60 0.92
6 6.49 0.001151 0.027202 120.7 119.72 0.81
7 7.59 0.000588 0.018878 101.6 100.93 0.66
8 8.66 0.000330 0.014074 88.3 87.85 0.51
9 9.72 0.000196 0.011008 78.4 78.05 0.44
10 10.78 0.000122 0.008912 70.7 70.38 0.45
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Table 5: EOB scattering angle computed using Q at 4PN and D at 5PN,
though resummed with a (1, 4) Padé approximant since P 0

5 develops a spuri-
ous pole. The EOB/NR agreement is worsened with respect to Table 4 and
configuration #1 plunges again. See text for discussion.

# rmin ∆EEOB/M ∆JEOB/M2 χNR χEOB ∆̂χ [%]
1 . . . 0.031705 0.347309 305.8 . . . . . .
2 3.71 0.013463 0.129751 253.0 270.26 6.82
3 4.03 0.009161 0.099057 222.9 228.48 2.50
4 4.85 0.004054 0.057809 172.0 171.63 0.22
5 5.34 0.002673 0.044589 152.0 151.22 0.51
6 6.49 0.001157 0.027273 120.7 119.92 0.65
7 7.59 0.000590 0.018901 101.6 101.01 0.58
8 8.66 0.000330 0.014083 88.3 87.88 0.47
9 9.72 0.000197 0.011012 78.4 78.07 0.42
10 10.78 0.000122 0.008914 70.7 70.39 0.44

Table 6: EOB scattering angle computed using D function at 6PN and the
Q function at 4PN [135, 136]. The 6PN-accurate D function is essential to
get an improved EOB/NR agreement for small values of the EOB impact
parameter. Note, however, that this also brings slightly larger deviations
with respect to the previous cases for intermediate values of rmin.

# rmin ∆EEOB/M ∆JEOB/M2 χNR χEOB ∆̂χ [%]
1 3.33 0.015559 0.141465 305.8 274.68 10.18
2 3.71 0.010137 0.105088 253.0 228.49 9.69
3 4.03 0.007422 0.085263 222.9 204.52 8.24
4 4.85 0.003654 0.054047 172.0 163.99 4.66
5 5.34 0.002490 0.042707 152.0 146.99 3.30
6 6.49 0.001121 0.026816 120.7 118.63 1.71
7 7.59 0.000580 0.018755 101.6 100.51 1.07
8 8.66 0.000327 0.014027 88.3 87.66 0.72
9 9.72 0.000195 0.010987 78.4 77.96 0.56
10 10.78 0.000122 0.008902 70.7 70.33 0.52
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Figure 18: Comparing the NR scattering angles with various EOB predic-
tions using different PN accuracies of the (Q,D) potential. The 6PN-accurate
D function allows for the closest EOB/NR agreement for the smallest values
of the EOB impact parameter.

completeness, the Taylor expansion of D up to 6PN

DTaylor
6PN = 1− 6νu2 − (52ν − 6ν2)u3 + ν d4u

4+
+ ν d5u

5 + ν d5.5u
11/2 + ν d6u

6. (135)

The standard resummation procedure for this function is to
take a P 0

n approximant of this equation. This approach is now
so standard that any analytical result is usually given in terms
of the inverse function D̄ ≡ 1/D (see e.g. Refs. [134, 135, 136,
137]). The coefficients (d4, d5, d5.5, d6) in Eq. (135) are obtained
by just expanding 1/D̄ as given in the literature. One finds that
the 5PN D function resummed taking the (0, 5) Padé approxi-
mant has a spurious pole around u ≈ 0.5 and thus it cannot be
used robustly to deliver analytical predictions. That is the rea-
son why we prefer to give the results of Refs. [134, 135, 136, 137]
in terms of the D function in Eq. (135) and then, at 5PN accu-
racy, proceed by resumming it with a (1, 4) Padé approximant,
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that is D5PN = P 1
4

[
DTaylor

5PN

]
, that is found to have a pole-free

behavior. The results of the calculations of the scattering angle
with higher PN knowledge in D are listed in Tables 4-6, while a
visual representation can be found in Fig. 18. The following con-
clusions are in order: (i) increasing the analytic information ofD
to 4PN brings the first, important, qualitative and quantitative
improvement, since configuration #1 is found to correctly scat-
ter (though the scattering angle is still significantly larger than
the NR one) instead of plunging; (ii) moving to 5PN is a step
back, since configuration #1 plunges again. By contrast, (iii),
a certain improvement is obtained working at 6PN, retaining
all the currently unknown numerical parameters fixed to zero.
For the smallest impact parameters, the EOB/NR difference is
at most of the order of 10%, an improvement of more than a
factor two with respect to the cases discussed above. One also
notes, however, that for intermediate values of the EOB impact
parameter the EOB/NR agreement is slightly worse than, for in-
stance, the (D4PN, Q4PN) case. It should keep in mind that these
conclusions rely on yet incomplete 5PN and 6PN knowledge and
may change once these calculations will be completed.

It is useful to visualize the functional behavior of the re-
summed D function for the various PN orders considered above,
see Fig. 19. The effect of higher PN order is to reduce the mag-
nitude of the D potential for u & 0.15, i.e. r . 7. This is
indeed the regime of radii explored by configurations #1−#7.
The figure then indicates that the D function that best approx-
imates the NR values of the scattering angle (within the cur-
rent analytical framework) should be slightly larger than the
analytically known 6PN one, starting from u ≈ 0.18. Still,
it has to stay well below the 4PN curve. Although our find-
ing is rather interesting because it demonstrates that, by vary-
ing a single analytical element, one can progressively improve
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Figure 19: The resummed D function for q = 1 at various PN orders. The
function gets progressively steeper as the PN order is increased. The or-
ange lines corresponds to the flexed 6PN function where we put dν2

5 = −3500
(dashed) and dν

2
5 = −4500 (dash-dotted). This latter brings the EOB/NR

agreement of the order of percent for any configuration considered. See Ta-
ble 7 and additional discussion in text.

the EOB/NR agreement of the scattering angle, it is not yet
satisfactory because the difference is still larger than the NR
error bar. It is then reasonable to ask whether it is possible
to effectively flex the current D6PN so as to further improve
the EOB/NR agreement for the smallest values of rmin. As
noted above D6PN is analytically known modulo three param-
eters, (aν2

6 , d̄
ν2

5 , d̄
ν2

6 ). We found that changing only d̄ν2

5 gives us
enough flexibility for our aim. Figure 19 exhibits, with a or-
ange line, the curve corresponding to d̄ν2

5 = −3500. This value
of the parameter was determined so to provide an EOB/NR
agreement below the percent level for the smallest values of the
impact parameter, as shown in Table 7. One should however
note that for half of the configurations, the EOB/NR difference
is still larger than the NR error bar, that is always of the order
of percent or smaller. One then verifies that d̄ν2

5 = −4500 al-
lows one to obtain values of ∆̂χ = (2.52, 2.07, 2.57, 1.73, 1.13)%
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Table 7: Tuned D potential with d̄ν2
5 = −3500. This number is chosen so to

have an excellent EOB/NR agreement for configuration #1. Still, for half
of the configurations the EOB/NR difference is slightly larger than the NR
error bar. See text for additional discussion.

# rmin ∆EEOB/M ∆JEOB/M2 χNR χEOB ∆̂χ[%]
1 3.32 0.017860 0.157308 305.8 303.17 0.86
2 3.71 0.011289 0.113663 253.0 243.02 3.9
3 4.03 0.008109 0.090735 222.9 214.15 3.9
4 4.85 0.003853 0.055929 172.0 167.87 2.4
5 5.34 0.002591 0.043749 152.0 149.36 1.7
6 6.49 0.001145 0.027120 120.7 119.50 0.10
7 7.59 0.000587 0.018867 101.6 100.89 0.69
8 8.66 0.000330 0.014075 88.3 87.85 0.51
9 9.72 0.000197 0.011010 78.4 78.06 0.43
10 10.78 0.000122 0.008914 70.7 70.39 0.44

for the first five configurations, and below 1% for the following
ones, i.e. ∆̂χ = (0.79, 0.59, 0.45, 0.39, 0.41)%. One should note,
however, that χEOB

#1 = 313.51, i.e. it is now larger than the NR
value. The curve with d̄ν2

5 = −4500 is also shown on Fig. 19 for
completeness. Evidently, seen the still large errors in the NR
computations, that date back to a few years ago, the various
approximations involved in our analytical model (notably, the
radiation reaction) and various possibilities of tuning free pa-
rameters, we do not want to make any strong claim about the
physical meaning to the NR-tuning of d̄ν2

5 . Still, our exercise
shows that there is a large amount of yet unexplored analyt-
ical flexibility within the EOB model that can be constrained
using the NR knowledge of the scattering angle, as originally
advocated in Ref. [247].

As an additional exploratory study, we show in Fig. 20 how
would change the waveform for (q, E0/M, p0

ϕ) = (8, 1.0003, 4.3142)
of Fig. 12 when we replace (D3PN, Q3PN) with (D6PN, Q4PN).
The less attractive character of D6PN, as discussed above, re-
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Figure 20: Waveforms for configuration with (q, E0/M, p0
ϕ) =

(8, 1.0003, 4.3142) considered in Figures. 12 and 13 with (D,Q) at 3PN
(resummed) accuracy contrasted with the analytical prediction obtained
with D at 6PN and Q at 4PN. The left panel compares the waveforms during
the first encounter; the right panel the subsequent periastron passages, up
to the final merger. The phenomenology is qualitatively the same, but the
less attractive character of D6PN with respect to D3PN results in a larger
time-lag between one encounter and the other and in a waveform that is
globally almost twice longer.

sults in a larger time-lag between the various bursts after the
first encounter and the waveform is almost twice longer than
with D3PN case. We conclude that there is a urgent need of
specifically tuned NR simulations of dynamical capture BH bi-
naries aiming at understanding to which extent the analytical
elements entering our model are trustable and what needs to be
changed in order to achieve a level of NR-faithfulness sufficient
for parameter-estimation purposes.

5.3 Summary

We presented an extension of TEOBResumS able to describe the
dynamics of spin-aligned BBH hyperbolic encounters and the
emitted gravitational waveform. The dynamics includes radia-
tion reaction and multipolar waveforms for BBH with arbitrary
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mass ratio and aligned-spin interactions.
We have extensively explored the parameter space of non-

spinning dynamical captures, parameterizing it in terms of ini-
tial energy and angular momentum. In particular, we have char-
acterized various regions on the basis of the number of close
encounters that happen before merger, that are measured look-
ing at the number of peak of the orbital frequency. We have
found that the region of parameter space with two peaks, i.e.
an encounter followed by the merger, gets smaller and smaller
as the mass ratio increases. By contrast, the number of encoun-
ters before merger in the special region close to the stability
regime increases with the mass ratio. The dynamical behavior
is mirrored in the waveform, that is completed with a merger
and ringdown part informed by quasi-circular NR-simulation.

We have briefly explored the effect of spin, in order to get a
qualitative idea of the general behavior. When spin are aligned
with respect to the orbital angular momentum, a capture that
is present in the non-spinning case, may transform in scattering
if the spin-orbit interaction is sufficiently strong. By contrast,
spins anti-aligned with the orbital angular momentum acceler-
ate the capture process, so that the corresponding waveform
eventually ends up with less gravitational wave cycles, and is
dominated by the final ringdown part.

Beyond the need, for GW-data purposes, of providing an an-
alytical description of the dynamics and radiation of relativistic
hyperbolic encounters, we have refreshed the EOB/NR compari-
son between scattering angles χ that was pioneered in Ref. [247].
Two are our most relevant findings. On the one hand, work-
ing with the D function at 3PN, i.e. exactly with the eccentric
EOB model of Ref. [170], we showed that an EOB-self-consistent
calculation of the scattering angle (that is, including radiation
reaction) is well compatible with the NR results of Ref. [247],
although things become quantitatively and qualitatively differ-
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ent (i.e. plunge instead of scattering) for the smallest value
of the EOB impact parameter. On the other hand, we have
systematically explored the impact of 4PN, 5PN and 6PN cor-
rections to the D function. Our most important finding is that
the recently computed, 6PN-accurate, D function allows one
to obtain an EOB/NR agreement for the scattering angle of a
few percent also for the configurations with the smallest im-
pact parameter. We thus argue that our model for hyperbolic
scattering/dynamical capture is, probably, more accurate using
D6PN instead of D3PN. Due to the absence of additional NR
simulations, we take the difference between D3PN and D6PN re-
sults as a (rather conservative) error bar that might be taken
into account, using the current model, in a possible parameter
estimation on a GW detection qualitatively and morphologi-
cally compatible with a dynamical capture scenario. We have
also shown that it is rather easy to additionally tune the D6PN
function so as to further improve the EOB/NR agreement of
the scattering angle, at the level of the actual estimate of the
uncertainty on the NR scattering angle. This is done by tuning
only the uncalculated 5PN numerical parameter d̄ν2

5 . Concretely,
our results indicate that, one the one hand, it would be a good
idea to incorporate the 6PN-accurate D function in waveform
model for quasi-circular coalescing BBHs; on the other hand, it
proves that NR simulations of the scattering angle can be used
to inform the EOB model and thus dedicated NR simulations to
systematically and usefully explore the parameter space should
be performed at some stage. Similarly, systematic NR surveys of
dynamical captures are needed to test our model and to improve
the merger-ringdown part, that at the moment is informed by
quasi-circular simulations.
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6 Impact of high-order analytical information
on a generic-orbit EOB model

A lot of effort has been put into the construction of accurate
waveform model for noncircularized coalescing BBHs [252, 253,
170, 254, 171, 172, 207, 208, 173, 174, 208, 255]. Eccentric wave-
form models are needed in order to correctly analyse GW signals
from non-circular systems detected by current and (especially)
future GW detectors [256, 257, 237]. At the same time, hyper-
bolic models will be useful to discern highly precessing systems
from dynamical captures and head-on collisions, as they can
have a very similar morphology [209, 242, 243, 258].

As we saw in last section, EOB-NR models are flexible enough
to model all these different scenarios. Typically, however, dif-
ferent resummations and NR-informed parameters are imple-
mented, so that the eccentric or hyperbolic model is not as accu-
rate when used to generate quasi-circular waveforms. This is the
case for TEOBResumS, whose eccentric implementation [170, 171]
in the quasicircular limit is considerably less accurate (EOB/NR
unfaithfulness' 1%) than the native quasi-circular model TEOBResumS
[196, 178] (EOB/NR unfaithfulness ' 0.1%).

We hence try and build an updated TEOBResumS designed to
deal with any orbital configuration, so that EOB/NR agreement
is satisfactory for quasi-circular, eccentric and hyperbolic simu-
lations. In doing so, we will implement newly computed 5PN-
accurate information [134, 135] in the EOB potentials (D,Q);
contributions up to 4PN (NNLO) in the spin-spin sector [223,
259]; and (next-to)3-leading order (N3LO) terms in the spin-
orbit one [154, 138]. We will also need to change the resumma-
tion choices that have been shared by all realizations of TEOBResumS
up to now.

The contents of this section were originally published as “A.
Nagar and P. Rettegno, Phys. Rev. D 104 104004 (2021)” [260].
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Figure 21: Comparison between different realizations of the D function for
q = 1: the P 0

3 [D3PN] used in the standard implementation of TEOBResumS
(blue online). Since the P 0

5 [D5PN] develops a spurious pole for 0 < u < 1, we
plot instead P 3

2 [D5PN] and P 2
3 [D5PN], that are almost identical. However, the

latter develops a spurious pole well outside the domain (around u ∼ 8). Note
that both approximants are quantitatively consistent with the Schwarzschild
potential, D = 1 (dotted line). We choose the P 3

2 [D5PN] Padé approximant
to represent the D function.

6.1 EOB dynamics with 5PN terms
6.1.1 The EOB potentials

Within the EOB Hamiltonian, the A and D potentials are re-
summed PN series. Their Taylor expanded expressions read

A5PN(u) = 1− 2u+ 2ν u3 + ν

(
94
3 −

41π2

32

)
u4+

+

(2275π2

512 − 4237
60 + 128

5 γE + 256
5 ln(2)

)
ν+

+
(

41π2

32 − 221
6

)
ν2 + 64

5 ν ln(u)

u5+

+ ν

[
ac6 +

(
−7004

105 −
144
5 ν

)
ln(u)

]
u6, (136)
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Figure 22: Comparison between different A functions (top panel) and ef-
fective photon potentials, u2A (bottom panel) for q = 1. The grey dotted
line represents the Schwarzschild equivalent functions. The picture high-
lights that the commonly used P 1

5 [A] approximant develops an unphysical
pole when ac6 = ac6anlyt from Eq. (138). One also notices the consistency
between the two NR-informed A functions up to the effective light-ring, i.e.
the peak of the function u2A. Note however that the difference between the
potentials around u ' 0.4 is ∼ 10−2, so that they do actually yield different
EOB dynamics.

D5PN(u) = 1− 6ν u2 −
(
52ν − 6ν2

)
u3+

+

(533
45 + 23761π2

1536 − 1184
15 γE + 6496

15 ln(2)− 2916
5 ln(3)

)
ν+

+
(
−123π2

16 + 296
)
ν2 − 592

15 ν ln(u)

u4+

+

(−294464
175 + 63707π2

512 + 2840
7 γE −

120648
35 ln(2) + 19683

7 ln(3)
)
ν+

+
(
−dν2

5 −
2216
105 + 6784

15 γE + 326656
21 ln(2)− 58320

7 ln(3)
)
ν2+

+
(
−1285

3 + 205π2

16

)
ν3 +

(1420
7 ν + 3392

15 ν2
)

ln(u)

u5, (137)
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where γE = 0.577216 . . . and we kept implicit the coefficient
ac6(ν). Its analytically known expression reads [249, 131, 250,
251]

ac6 anlyt(ν) = −1066621
1575 + 246367π2

3072 +

− 14008
105 γE −

31736
105 ln(2) + 243

7 ln(3)+ (138)

+
64

5 −
288
5 γE + 928

35 ln(2)− 972
7 ln(3) + aν

2

6

 ν + 4ν2.

Note that both Eq. (137) and (138) present two yet undetermined
analytical coefficients, (aν2

6 , d
ν2

5 ). For simplicity, in this work
we impose dν2

5 = 0. By contrast, following previous works, we
will not use the analytical expression ac6 anlyt(ν), but rather con-
sider ac6(ν) as an undetermined function of ν that is informed
using NR simulations. The differences between the resulting
NR-informed A function and the one that uses ac6 anlyt(ν) will be
discussed below. The Q function at 5PN accuracy was obtained
in Ref. [135]. For simplicity, here we only consider the local part
of Q at 5PN 9. Once pr is rewritten in terms of pr∗, the function

9We have also attempted to incorporate the nonlocal part, but the expression is rather
complicated and it seems to degrade the robustness of the model in strong field.
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reads
Q5PNloc(u, pr∗) = 2(4− 3ν)ν u2p4

r∗+

+

(−4348
15 + 496256

45 ln(2)− 33048
5 ln(3)

)
ν − 131ν2 + 10ν3

u3p4
r∗+

+

(−827
3 − 2358912

25 ln(2) + 1399437
50 ln(3) + 390625

18 ln(5)
)
ν+

− 27
5 ν

2 + 6ν3

u2 p6
r∗+

+

(−32957
10 − 28306944

25 ln(2) + 8396622
25 ln(3) + 781250

3 ln(5)
)
ν+

− 393
5 ν2 + 188ν3 − 14ν4

u3p6
r∗+

+

(−6328799
3150 − 93031π2

1536 + 3970048
45 ln(2)− 264384

5 ln(3)
)
ν+

+
(
−5075

3 + 31633π2

512

)
ν2 +

(
792− 615π2

32

)
ν3

u4p4
r∗+

+
(6

7ν + 18
7 ν

2 + 24
7 ν

3 − 6ν4
)
u2p8

r∗ . (139)

Here we will keep the function Q in its PN-expanded form.
By contrast, both the (A,D) functions will be resummed using
Padé approximants, although with different choices with respect
to previous work. Within the TEOBResumS models, the formal
5PN-accurate A function is always resummed via a (1, 5) Padé
approximant. As we will illustrate below, this approximant de-
velops a spurious pole when ac6 = ac6anlyt. Since we also want
to get a handle on the performance of the pure analytical in-
formation, we are forced to change the resummation choice. To
do so, we follow the most straightforward approach and use the
diagonal Padé approximant, that is

A(u, ν; ac6) = P 3
3 [A5PN(u, ν; ac6)], (140)
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where it is intended that the ln(u) terms are treated as numer-
ical constants when computing the Padé. x The 3PN-accurate
D function, that in TEOBResumS, is resummed using a (0, 3) ap-
proximant. When the same is attempted with the 5PN-accurate
function (with dν

2

5 = 0), spurious poles again show up for any
value of ν. By contrast, the quasi-diagonal Padé approximants
P 3

2 and P 2
3 stabilize the series: they are very similar to each

other and generally consistent with the Schwarzschild value,
DSchw = 1. Figure 21 highlights these facts for the case q = 1.
Eventually, we choose to resum D as

D = P 3
2 [D5PN], (141)

because the P 2
3 develops a spurious pole for large (even though

unphysical, u ∼ 8) values of ν. By contrast, for simplicity we
use Q in its PN-expanded form.

6.1.2 The spin sector

When taking into account spinning bodies, the radial variable r
is replaced, within Ĥorb

eff , by the centrifugal radius rc that is used
to incorporate spin-spin terms [190]. Its explicit expression, that
includes spin-spin terms up to NNLO, will be described in detail
below.

For what regards the spin-orbit sector, the PN information
enters the residual gyro-gravitomagnetic functions ĜS and ĜS∗

(see Sec. 4.2 for details). These PN corrections are formally at
N3LO, corresponding to 4.5PN order in the following resummed
form

ĜS = (1 + c10uc + c20u
2
c + c30u

3
c + c40u

4
c + c02p

2
r∗

+ c12ucp
2
r∗

+
+ c04p

4
r∗

+ c22p
2
r∗
u2
c + c14ucp

4
r∗

+ c06p
6
r∗

)−1, (142)

ĜS∗ = (1 + c∗10uc + c∗20u
2
c + c∗30u

3
c + c∗40u

4
c + c∗02p

2
r∗

+ c∗12ucp
2
r∗

+
+ c∗04p

4
r∗

+ c∗22p
2
r∗
u2
c + c∗14ucp

4
r∗

+ c∗06p
6
r∗

)−1, (143)
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where however we also have included two coefficients (c40, c
∗
40)

that belong to the (next-to)4-leading (N4LO) order. Following
previous work, we fix c40 = 0 and c∗40 = 2835/256. The second
value comes from the expansion of the Hamiltonian of a spinning
particle around a spinning BH [190]. Within this gauge, spec-
ifying the N3LO spin-orbit contribution is equivalent to speci-
fying 8 numerical coefficients. Here we consider two separate
options: (i) on the one hand, we use a N3LO parametrization
that is tuned to NR simulations, following the usual procedure
adopted within the TEOBResumS model; (ii) on the other hand,
we also consider an analytical version of the N3LO contribu-
tion that has been recently obtained with a mixture of several
analytical techniques [154, 138].

NR-informed spin-orbit description Following previous work [190],
at N3LO order we only consider

c30 = νc3, (144)

c∗30 = νc3 + 135
32 , (145)

where c3 is the NR-informed tunable parameter, while all other
N3LO coefficients are fixed to zero c22 = c14 = c06 = c∗22 = c∗04 =
c∗06 = 0. The NR-informed expression of c3, that will be found to
be a function of ν and of the spins, will be discussed in Sec. 6.2.1
below.

Fully analytical spin-orbit description Recently, Refs. [154, 138]
used first-order self-force (linear-in-mass-ratio) results to obtain
arbitrary-mass-ratio results for the N3LO correction to the spin-
orbit sector of the Hamiltonian. The N3LO contribution is given
by Eqs.(8) and (9) of Ref. [154]. Once incorporated within the
expression of (GS, GS∗) of Eqs. (142)-(143) above, the explicit ex-
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pressions of the N3LO coefficients read

c30 =
80399

2304 −
241
384π

2
 ν − 31

16ν
2 + 397

4096ν
3, (146)

c22 = 10563
128 ν − 2273

64 ν2 − 2999
4096ν

3, (147)

c14 = −1421
256 ν + 1257

128 ν
2 − 2201

4096ν
3, (148)

c06 = − 7
256ν −

9
128ν

2 + 83
4096ν

3, (149)

c∗30 = 135
32 +

5501
144 −

41
48π

2
 ν − 5

32ν
2 + 5

16ν
3, (150)

c∗22 = 773
64 + 2313

32 ν − 245
8 ν2 − 2ν3, (151)

c∗14 = 35
48 + 115

6 ν + 395
96 ν

2 − 9
16ν

3, (152)

c∗06 = − 5
96 + 5

16ν + 37
32ν

2 − ν3

16 . (153)

Spin-spin effects: NNLO accuracy The spin-spin sector incorpo-
rates NNLO information [223, 259] within the centrifugal radius
rc, according to the usual scheme typical of the TEOBResumS
Hamiltonian [190]. In particular, we use here the analytical ex-
pressions obtained in Ref. [194] once specified to the BBH case.
However, to robustly incorporate NNLO information in strong
field, it is necessary to implement it in resummed form. To start
with, we formally factorized the centrifugal radius as

r2
c = (rLO

c )2r̂2
c , (154)

where the (rLO
c )2 is the LO contribution, r̂2

c the PN corrections
up to NNLO. Concretely, we have

(rLO
c )2 = r2 + ã2

0

1 + 2
r

 , (155)
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where r̂2
c explicitly reads

r̂2
c = 1 + δa2

NLO
r(rLO

c )2 + δa2
NNLO

r2(rLO
c )2 , (156)

and we have {see Eqs. (19) and (20) of Ref. [194]}

δa2
NLO = −9

8 ã
2
0 −

1
8(1 + 4ν)ã2

12 + 5
4X12ã0ã12, (157)

δa2
NNLO = −

189
32 + 417

32 ν
 ã2

0+

+
11

32 −
127
32 ν + 3

8ν
2
 ã2

12+

+
89

16 −
21
8 ν

X12ã0ã12 , (158)

where X12 ≡ X1 − X2 and ã12 ≡ ã1 − ã2. Direct inspection
of the Taylor-expanded expression of r2

c shows its oscillatory
behavior when moving from LO to NNLO. This suggests that
to fruitfully incorporate the NNLO term, some resummation
procedure should be implemented. To do so, we simply note
that r̂2

c given by Eq. (156) has the structure 1 + cNLOε+ cNNLOε
2,

where ε is a formal PN ordering parameter10, and it can be
robustly resummed taking a P 0

2 approximant in ε. From now on,
it is thus intended that we will work with the Padé resummed
quantity P 0

2 [r̂2
c , ε] instead of r̂2

c in Taylor-expanded form.

6.1.3 Radiation reaction and waveform

The prescription for the radiation reaction force we are using fol-
lows Ref. [171] (see also [207]), although minimal details about
the structure of F̂ϕ were explicitly reported there. We comple-
ment here the discussion of [171] for clarity and completeness.

10Note that NNLO spin-spin effect correspond to 4PN accuracy, while the LO is 2PN
accuracy [223]. So, when LO is factored out one is left with a residual expansion that is
2PN accurate.
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The global structure of F̂∞ϕ is that of the quasi-circular version of
TEOBResumS, as discussed in Ref. [190]. In particular, its formal
expression reads

F̂∞ϕ = −32
5 ν r

4
ω Ω5f̂(Ω), (159)

where rω is given by Eq. (70) of Ref. [190], Ω = ϕ̇ is the orbital
frequency and f̂(Ω) is the Newton-normalized flux function. For
the quasi-circular model f̂(Ω) is the circular flux function given
by the sum of several modes f̂`m where the hat indicates that
each (`,m) multipole is normalized by the ` = m = 2 Newtonian
flux FNewt

22 = 32/5 ν Ω10/3. Each circularized multipole is then
factorized and resummed according to Ref. [196]. In the most
general case of motion along noncircular orbits, each Newton-
normalized multipoles acquires a noncircular factor, so that the
flux can be formally written as

f̂(Ω) =
8∑
`=2

∑̀
m=−`

f̂`mf̂
non−circular
`m . (160)

Here we will consider only f̂non−circular
22 6= 0 and use it in its

Newtonian approximation, see Ref. [170]. The Newtonian non-
circular factor reads

f̂non−circular
22 = f̂Newtnc

22 = 1 + 3
4
r̈2

r2Ω4 −
Ω̈

4Ω3 + 3ṙΩ̇
rΩ3 +

+ 4ṙ2

r2Ω2 + Ω̈ṙ2

8r2Ω5 + 3
4
ṙ3Ω̇
r3Ω5 + 3

4
ṙ4

r4Ω4 + 3
4

Ω̇2

Ω4 + (161)

− ...
r

 ṙ

2r2Ω4 + Ω̇
8rΩ5

 + r̈

− 2
rΩ2 + Ω̈

8rΩ5 + 3
8
ṙΩ̇
r2Ω5

 .
For what concerns the ` = m = 2 waveform, everything fol-
lows Ref. [196] except for a change in one of the functions that
determine the next-to-quasi-circular (NQC) correction to the
amplitude. In particular, it turns out that the function n22

2 =
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Figure 23: Unfaithfulness F̄EOB/NR(M) between the quasi-circular limit of
the general TEOBResumS model and the complete SXS catalog of non-eccentric
and non-precessing (spin-aligned) waveforms. These results are obtained
using the NR-tuned N3LO spin-orbit contribution. The horizontal dotted
lines mark the 0.01 (black) and 0.03 (blue) values.

r̈(0)/(rΩ2), where r̈(0) is an approximation to the second deriva-
tive of the radial separation, given by Eq. (3.37) of Ref. [195],
is not robust in strong field in conjunction with the new EOB
potentials. As an alternative, we use instead

n22
2 = n22

1 (pr∗)2 , (162)

where
n22

1 =
(
pr∗
rΩ

)2
. (163)

These choices ensure the construction of the NR-informed ampli-
tude around merger that is robust, although it might sometimes
slightly overestimate (by a few percents) the corresponding NR
one.
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Figure 24: EOB/NR time-domain phase difference ∆φEOBNR
22 and relative

amplitude difference, ∆AEOBNR
22 /ANR

22 for a sample of equal-mass, equal-spin
configurations. The model uses here the c3 parameter from Eq. (165). The
dash-dotted vertical lines indicate the alignment region, while the dashed
line indicates the merger location. Note that F̄max

EOBNR . 1% even if the
accumulated phase difference ∼ 1 rad at merger for some configurations.

6.2 Quasi-circular configurations
6.2.1 EOB dynamics informed by NR simulations

We now proceed in determining new analytical representations
of (ac6, c3). The procedure is the same as the one discussed in
Ref. [171].

We find ac6 has a rather simple behavior, that is fitted as

ac6(ν) = 599.96ν2 − 503.57ν − 4.6416. (164)

It is interesting to note that, although the physics that the model
describes is the same of the model of Ref. [171], the differences in
the analytical content and in the resummations yield a very sim-
ple behavior of ac6(ν). This is in striking contrast with Ref. [171],
where it was needed an exponential function to fit (at a lower
accuracy level) the single values of ac6.

The new functional form of ac6(ν) given by Eq. (164) calls for a
similarly new determination of the effective spin-orbit parameter
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Figure 25: Complement to Fig. 23: F̄max
EOB/NR values for all SXS non-spinning

configurations. The current iteration of TEOBResumS is compared to the
quasi-circular model of Ref. [196], with errorbars that represent the values of
F̄max

NR/NR cited therein (see Tables XVIII-XIX). Note that SXS datasets with
the same q have different NR accuracies. The EOB/NR agreement for this
subset of data is largely improved with respect to Fig. 3 of Ref. [171] and
mostly consistent with the result of the quasi-circular model.

c3. c3 is fitted with a global function of the spin variables ãi of
the form

c3(ã1, ã2, ν) = p0
1 + n1ã0 + n2ã

2
0 + n3ã

3
0 + n4ã

4
0

1 + d1ã0
+

+ p1ã0ν
√

1− 4ν + p2 (ã1 − ã2) ν2 + p3ã0ν
2√1− 4ν, (165)

where the functional form is the same of previous works11. This
term helps in improving the fit flexibility as the mass ratio in-

11Note that this function is not symmetric for exchange of 1 ↔ 2. This can create an
ambiguity for q = 1, so that the value of c3 for (1, 0.6, 0.4) is in fact different from the one
for (1, 0.4, 0.6). In fact, our convention and implementations are such that for q = 1, χ1
is always the largest spin.
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creases. The fitting coefficients read

p0 = 35.482253,
n1 = −1.730483,
n2 = 1.144438,
n3 = 0.098420,
n4 = −0.329288,
d1 = −0.345207,
p1 = 244.505,
p2 = 148.184,
p3 = −1085.35. (166)

Consistency between EOB potentials Now that we have deter-
mined the new expression of ac6(ν) it is instructive to compare
different realizations of the potential. The top panel of Fig. 22
shows together different curves for the case q = 1: (i) The P 3

3 [A]
potential with the NR-informed ac6(ν) given by Eq. (164) above;
(ii) the P 1

5 [A] potential of TEOBResumS, where the NR-informed
function is given by Eq. (33) of Ref. [196]; (iii) the P 1

5 [A] func-
tion with ac6 = ac6anlyt; (iv) the P 3

3 [A] function with ac6 = ac6anlyt.
In the bottom panel of the figure we show the effective photon
potential u2A. The most interesting outcome is the visual con-
sistency between the two NR-informed potentials up to u ' 0.4.
This reflects in two close dynamics, that eventually yield highly
faithful EOB/NR phasing for the non-spinning case, as we will
see below. The fact is remarkable because both the radiation
reaction and the (D,Q) potentials are different in the two cases.
One should note, however, that the fact that the two potentials
are consistent up to u = 0.4 does not mean that they are equiv-
alent and that the conservative dynamics coincide. In fact, it
is known [219] that two A potentials are equivalent when their
difference is of the order of 10−4. The two NR-informed poten-
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tials differ by just 10−2, so that even if they look close, they
are meaningfully different. A similar visual consistency shows
up also for the P 1

5 [A] analytical function, despite the presence
of the spurious pole. By contrast the fully analytical P 3

3 [A]
is significantly separated from the others. In practical terms,
when used in the EOB dynamics, the P 3

3 [A] analytical poten-
tial will accelerate the inspiral with respect to the NR-informed
ones, eventually yielding unacceptably large phase differences at
merger. If one wished to incorporate this specific resummation,
some other element of the model [e.g. radiation reaction or the
(D,Q) functions] should be modified to balance its attractive
effect. This gives a pedagogical example of the fact that the ac-
cessibility of high-order PN information12 does not necessarily
simplify or help the construction of waveform models and it is
pragmatically more efficient to resort to NR-informed functions.

Validating the model To evaluate the quality of the EOB wave-
form we computed the EOB/NR unfaithfulness weighted by the
Advanced LIGO noise over all available spin-aligned SXS con-
figurations [113, 116]. Considering two waveforms (h1, h2), the
unfaithfulness is a function of the total mass M of the binary
and is defined as

F̄ (M) ≡ 1− F = 1−max
t0,φ0

〈h1, h2〉
||h1||||h2||

, (167)

where (t0, φ0) are the initial time and phase. We used ||h|| ≡√
〈h, h〉, and the inner product between two waveforms is de-

fined as 〈h1, h2〉 ≡ 4< ∫∞fNR
min(M) h̃1(f)h̃∗2(f)/Sn(f) df , where h̃(f)

denotes the Fourier transform of h(t), Sn(f) is the zero-detuned,
high-power noise spectral density of Advanced LIGO [261] and
fNR

min(M) = f̂NR
min/M is the initial frequency of the NR wave-

form at highest resolution, i.e. the frequency measured after
12Although incomplete, seen the lack of the yet unknown (aν2

6 , dν
2

5 ) coefficients.
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Figure 26: EOB/NR time-domain phase difference ∆φEOBNR
22 and relative

amplitude difference, ∆AEOBNR
22 /ANR

22 for a sample of equal-mass, equal-spin
configurations. The model uses here the analytical description of N3LO spin-
orbit effect, with c4 = 0. The dash-dotted vertical lines indicate the align-
ment region, while the dashed line indicates the merger location. The large
values of ∆φEOBNR

22 at merger eventually end up with values of F̄max
EOBNR even

above the 3% level, see Fig. 27 below.

the junk-radiation initial transient. Waveforms are tapered in
the time-domain so as to reduce high-frequency oscillations in
the corresponding Fourier transforms. The EOB/NR unfaith-
fulness is addressed as F̄EOB/NR. The result of this computation
is shown in Fig. 23. We can see that the maximum unfaithful-
ness is mostly below 0.01 and always below 0.03. In Fig. 24 we
also display time-domain phasing comparisons for some selected
equal-mass configurations. We can see the phase differences at
merger are always between 0.5 and 1 radiant. We will highlight
in Fig. 28 below that the higher F̄EOB/NR correspond to config-
uration with large spin values, aligned with the orbital angular
momentum.

Before doing so, it is instructive also to show separately the
F̄max

EOB/NR restricted to the non-spinning case. The chosen NR
waveforms are listed in Tables XVIII-XIX of Ref. [196], with
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Figure 27: Unfaithfulness F̄EOB/NR(M) between TEOBResumS and the com-
plete SXS catalog of non-eccentric non-precessing waveforms obtained using
the analytical N3LO spin-orbit contribution. The horizontal dotted lines
mark the 0.01 (black) and 0.03 (blue) values.

the exclusion of the 3 BAM [114] ones and 6 precessing con-
figurations that were erroneously included there 13. To better
appreciate the improvement with respect to Ref. [171], Fig. 25
compares the current (non-spinning) F̄max

EOB/NR values with those
of TEOBResumS obtained in Ref. [196]. There is an excellent con-
sistency between the two dataset, although the current model is
performing slightly worse up to q = 4.

6.2.2 Fully analytical EOB spin-orbit dynamics at N3LO and be-
yond

Let us finally evaluate the EOB/NR performance using the fully
analytical expression for the N3LO spin-orbit contribution. First
of all, Fig. 26 displays time-domain phasing comparisons for the
same q = 1 configurations considered above. The phase differ-
ences at merger are rather larger, especially for large values of
the individual spins. The EOB/NR unfaithfulness computation

13Namely SXS:BBH:0850, SXS:BBH:0858, SXS:BBH:0869, SXS:BBH:2019,
SXS:BBH:2025 and SXS:BBH:2030.
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Figure 28: Global picture of the maximum EOB/NR unfaithfulness from
Fig. 23 and Fig. 27 using the NR-informed and the analytical N3LO spin-orbit
contribution respectively. The black and blue dotted lines mark the 0.01 and
0.03 values respectively. The use of the analytical spin-orbit contribution
delivers a NR-faithful model only in a rather limited range of ã0.

is reported in Fig. 27: one finds that there are many configura-
tion even above the fiducial threshold of 3%. To have a simple
understanding of the inaccurate configurations it is helpful to
plot F̄max

EOB/NR versus the effective spin ã0, Fig. 28. One sees that
the EOB/NR agreement degrades progressively as the effective
spin increases or decreases. In practice, the analytical model
can be considered robustly faithful (< 1%) only for mild values
of the effective spin. Note however that there is a region where
F̄max

EOB/NR < 1% also for large, positive spins. This corresponds
roughly to simulations where 0.6 . ã0 . 0.8 and q < 5. For
completeness, the same plot also reports (with green markers)
the values of F̄max

EOB/NR for the NR-informed value of c3, so to give
complementary information to the one of Fig. 23. To conclude,
what is striking in this comparison is that, similarly to the case
of ac6 mentioned above a suitably NR-tuned effective function is
pragmatically more efficient than the outcome of a high-order
analytical calculation.
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Figure 29: EOB/NR time-domain phase difference ∆φEOBNR
22 and relative

amplitude difference, ∆AEOBNR
22 /ANR

22 for a sample of equal-mass, equal-spin
configurations. The model uses here the analytical description of N3LO spin-
orbit effect augmented by a NR-tuned coefficient c4 at N4LO, as given by
Eq. (168). The dash-dotted vertical lines indicate the alignment region, while
the dashed line indicates the merger location. The phase difference at merger
is reduced with respect to the c4 = 0 case of Fig. 26, although it is still slightly
less good (especially for negative spins) than the simple NR-tuned c3 case of
Fig. 24.

In this respect, we recall that in our definitions of (GS, GS∗)
we introduced two formal N4LO terms, where c∗40 = 2835/256,
fixed to the spinning test-mass value. However, analogously to
the case of c3, we can flex these two coefficients as c40 = νc4 and
c∗40 = νc4 + 2835/256 introducing an effective N4LO parameter
that can be tuned to NR simulations analogously to c3. We
show this here explicitly by determining c4 for the specific case
of equal-mass, equal spin binaries and evaluating the resulting
performance in terms of phasing. c4 can be fitted by a quadratic
function of ã0, yielding the following function

c4 = 39.43 ã2
0 − 141.77 ã0 + 65.73. (168)

The corresponding time-domain comparison (either phase dif-
ference and amplitude difference) are shown in Fig. 29. The
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Figure 30: EOB/NR time-domain phasing comparison three meaningful con-
figurations SXS:BBH:1359, SXS:BBH:1374 and SXS:BBH:324. The phasing
agreement is largely improved with respect to the corresponding ones shown
in Fig. 10 of Ref. [171]. The vertical dash-dotted lines in the left panels indi-
cate the alignment interval, while the merger location is marked by a dashed
vertical line in the right panels.

phase difference at merger is notably reduced with respect to
the c4 = 0 case of Fig. 26, although it is still slightly less good
than the simple NR-tuned c3 case of Fig. 24. It seems thus that
the use of the complete analytical N3LO spin-orbit information
within the current model just moves the need of a NR-tuned pa-
rameter at the N4LO order with slightly less accuracy and with
no real advantage. This suggests that, within the current model,
it is more efficient to simply adopt the NR-tuned c3 parameter.

6.3 Eccentric inspiral configurations

Let us move now to discussing eccentric inspirals. To do so, we
precisely repeat here the analysis of Ref. [171], see Secs. IIIC
and IIID therein. To start with, Fig. 30 reports the ` = m =
2 time-domain phasing comparison for 3 NR simulation with
non-negligible eccentricity: SXS:BBH:1359, that corresponds
to a system with (q, χ1, χ2) = (1, 0, 0) and NR eccentricity at
first apastron eNR

ωa
= 0.112; SXS:BBH:1374, whose parameters
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Figure 31: EOB/NR unfaithfulness for the ` = m = 2 mode computed over
the eccentric SXS simulations publicly available. The 28 configurations are
labeled with their mass ratio and SXS id, while the other parameters can be
found in Table III of Ref. [171]. The horizontal lines mark the 0.03 and 0.01
values. All configurations are well below the 1% except for SXS:BBH:1149,
corresponding to (3,+0.70,+0.60) with eNR

ωa
= 0.037, that is grazing this

value. This is consistent with the slight degradation of the model performance
for large positive spins, as found in the quasi-circular limit.

are (3, 0, 0) and eNR
ωa

= 0.208; and SXS:BBH:324, for which
(q, χ1, χ2) = (1.22, 0.33,−0.44) and eNR

ωa
= 0.205. For each con-

figuration, (i) at the top we have the phase difference and the
relative amplitude difference; (ii) in the middle we compare the
real parts of the waveform; (iii) in the bottom panel we compare
the EOB and NR GW frequency, together with twice the orbital
frequency Ω. The phasing agreement is largely improved with
respect to what shown in Fig. 10 and Fig. 14 of Ref. [171]: the
EOB/NR phase difference is rather low and does not vary much
during the inspiral and remains of the order of 0.1− 0.2 rad up
to merger as well.

The global vision of the model performance is given by Fig. 31,
that highlights the EOB/NR unfaithfulness versus the total mass

112



of the system for all publicly available SXS simulations [118,
116]. These contain both spinning and non-spinning systems,
with mass ratios between 1 and 3 and eccentricity eNR

ωa
approx-

imately in the range 0.05 − 0.2. The typical length of such
waveforms are 10 to 20 orbits before merger. We find that all
configurations are well below 1% except for SXS:BBH:1149, that
is grazing this value. This is not surprising since SXS:BBH:1149
has parameter (3,+0.7,+0.6), that give ã0 = 0.675, a value that
belongs to the region of ã0 where it is not possible to obtain
a highly NR-faithful modelization already in the quasi-circular
case. Despite this, the improvements in the quasi-circular sec-
tor reflect all over the F̄EOB/NR behavior of Fig. 31, either for
small or for large eccentricities. This is in particular the case for
the q = 1 configurations, where F̄EOB/NR gets down to ∼ 10−3.
This is a remarkable improvement with respect to the results
of Ref. [171], where F̄EOB/NR was grazing the 1% threshold for
these configurations (see Fig. 11 therein).

Given the exploratory character of the current study, we have
just briefly looked at higher modes. The NR-accurate behavior
of all waveform modes during the inspiral is comparable to what
discussed in Ref. [171]. By contrast, for what concerns merger
and ringdown, although the modes with m = ` usually (though
not always) look generally sane, those with m 6= ` may develop
unphysical behaviors due to the action of NQC corrections, as
already noted in Ref. [171]. This problem, that has always been
present within TEOBResumS [166], is now even amplified because
of the existence of an effective horizon corresponding to the fact
that the A function has a zero at a finite value of u. The issue
of robustly determining NQC corrections for any multipole will
require more dedicated investigations, that we will postpone to
future work. We only anticipate that it is likely that a deeper
understanding of NQC corrections (especially in relation with
the dynamics) in the test-mass limit [207] will be required to
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overcome what currently seems to be the most evident Achilles’
heel of TEOBResumS-based waveform models.

6.4 Hyperbolic encounters and scattering angle

To conclude, we present a new calculation of the EOB scattering
angle from hyperbolic encounters and compare it with the few
NR simulations available, updating the results obtained in the
previous section (and Ref. [171]). The changes in the conserva-
tive part of the dynamics will impact quantitatively on the scat-
tering angle computation, although the phenomenology remains
unchanged. We repeat here the EOB calculation of the scatter-
ing angle χ for the 10 configurations simulated in NR [247] that
are discussed in Table 2. The EOB outcome, together with the
original NR values, (χEOB, χNR) is listed in Table 8. The table
also reports the GW energy, ∆E, and angular momentum, ∆J ,
losses for both the NR simulations and the EOB dynamics 14.
It is evident the remarkable improvement with respect to the
results of Ref. [171]. In particular, the strong-field configura-
tion #1, shows an EOB/NR disagreement of only about 4%,
four times smaller than the one Ref. [171]. On top of validat-
ing the model for extreme orbital configurations, this finding is
also a reliable cross check of the consistency and robustness of
our procedure to obtain ac6(ν): although the function was deter-
mined using quasi-circular configurations, its impact looks to be
essentially correct also for scattering configuration. This makes
us confident that our NR-informed analytical choices do repre-
sent a reliable, though certainly effective, representation of the
strong-field dynamics of two non-spinning BHs.

14Let us specify that while the NR losses are computed from the waveform, the EOB
losses are computed subtracting the initial and final energy and angular momentum, i.e.
effectively accounting for the action of the radiation reaction on the dynamics.
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6.5 Summary

We have explored the performance of a new EOB model for
spin-aligned binaries for three types of binary configurations:
(i) quasi-circular inspiral; (ii) eccentric inspiral; (iii) hyperbolic
scattering. The novelty of this model is the use of recently com-
puted high-order PN information in both the orbital and spin
sector.

In the non-spinning case, the best resummation option to
incorporate (some of) the currently available 5PN information
in the EOB potentials (A,D,Q) consists in using diagonal and
near diagonal Padé approximants. In this case, the performance
of the model in the quasi-circular limit is essentially equivalent
to the standard quasi-circular version of TEOBResumS [196].

Results in the spinning case are globally more faceted. First
of all, differently from previous work, we incorporate spin-spin
effects up to NNLO, where the centrifugal radius is now written
in a factorized and resummed form. Within this paradigm, we
have explored two options for the spin-orbit sector: (i) on the
one hand, we follow the usual TEOBResumS paradigm and include
an effective N3LO spin-orbit correction through a parameter c3
that is informed by NR simulations; (ii) on the other hand, we
exploit recent analytical results [154] that provided the complete
analytical expression for this contribution. This latter can be
additionally modified through the inclusion of a N4LO effective
spin-orbit term. In the case of the NR-informed c3 it is possible
to obtain a model that is NR faithful in the usual sense, with
F̄max . 3%. One should note however that the performance
worsens specifically when the mass ratio and the spins are large
and positive. By contrast, when the analytically known N3LO
spin-orbit information is implemented, the model remains ac-
ceptably faithful in a more limited range of −0.4 . ã0 . +0.4,
although the EOB/NR phase difference at merger can be as large
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as several radians. For the special equal-mass, equal-spin case,
we have also shown that the N3LO-accurate analytical spin-orbit
sector can be flexed and improved using an effective N4LO func-
tion c4 that can be tuned to NR simulations like c3. This allows
to achieve an EOB/NR phasing agreement that is comparable
to, although slightly less good than, the one obtained with the
NR-tuned c3 alone. This result suggests that, at least within
the current analytical paradigm, pushing the spin-orbit infor-
mation to the currently known analytical level doesn’t seem to
be fruitful.

The improvement in the quasi-circular sector of the model
also reflects on the modelization of eccentric inspirals. We per-
formed a EOB/NR waveform comparison analogous to the one
of Ref. [171] and we found that a rather small EOB/NR phase
difference is maintained up to merger, especially for the non-
spinning datasets considered. This entails EOB/NR unfaithful-
ness F̄EOB/NR(M) that are always below 1% and actually . 0.3%
for most configurations. This finding mirrors the improvement
achieved in the model in the description of the late-inspiral and
plunge phase with respect to Ref. [171].

For the hyperbolic orbits case, we repeat the EOB/NR com-
parison of the scattering angle previously performed [247, 171].
Remarkably, the joint action of the increased PN information,
new Padé resummation and NR-informed ac6 (notably, to quasi-
circular NR simulations) allows for a further improvement of the
EOB/NR agreement of the scattering angles. This amounts to
a EOB/NR disagreement of only ∼ 4% for the dataset with the
smallest impact parameter, a factor of 4 smaller than the result
of Ref. [171]. This consistency between the various configura-
tions seems to suggest that, at least in the non-spinning case,
the combination of the various analytical ingredients entering
the model can offer a reliable and robust representation of the
general BBH dynamics.
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7 Conclusions

In this thesis we have performed an extensive study of semi-
analytical EOB-NR models. The EOB approach is fundamen-
tal to resum analytical perturbative results in order to improve
their reliability during the late inspiral stages of binary systems.
NR results are then used to inform the models so to reach an
even better accuracy near merger and to describe the merger-
ringdown waveform.

EOB-NR models are unique between GW approximants be-
cause they describe both the dynamics and waveform of binary
systems. This makes them very easy to extend beyond quasi-
circular orbits so to compute eccentric or hyperbolic ones. They
are also flexible enough to take into account parametric exten-
sions of GR.

We first compared the two state-of-the-art EOB-NR models
for spin-aligned binaries, TEOBResumS and SEOBNRv4. They are
both built using the same EOB framework but differ both in the
amount of analytical information they contain and in various ar-
bitrary decisions made during their development. In fact, when
building an EOB-NR model, one can choose: how to implement
the ν-dependent deformation of the Kerr metric; how to resum
all the PN-expanded quantities; what gauge to use in the spin-
ning sector; where and how to include NR information. All these
choices contribute to the theoretical uncertainty built into these
models. In performing this analysis, we found qualitative and
quantitative differences between TEOBResumS and SEOBNRv4, es-
pecially in the spin sectors. These discrepancies are mitigated
but not eliminated by the calibration to NR simulations. While
these differences are not appreciable with the SNRs of current
detections, they could give rise to biases in the estimated pa-
rameters for signals measured by the next generation of GW
detectors. Studies of these waveform systematics will hence be
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very important to understand the theoretical limits of EOB-NR
models.

Secondly, we detailed the use of the eccentric extension of
TEOBResumS to generate waveforms for scatterings and dynam-
ical captures of BBHs. Accurate theoretical models for these
scenarios are not yet available but would be very useful to com-
plement the current analyses based on quasi-circular models. In
particular, hyperbolic models could help discerning dynamical
captures and head-on collisions from highly precessing systems,
since the emitted waveforms can have a very similar morphology.
We have thus explored the parameter space of dynamical cap-
tures, characterizing various regions on the basis of the number
of close encounters that happen before merger. We also studied
the impact that including high-order PN information in one of
the EOB potentials has on the scattering angle comparison with
the few available NR simulations of BH hyperbolic encounters.
We found it however impossible to make statements on the ac-
curacy of the model because of the scarce number of numerical
results for these scenarios.

The third work describes the effort to build a general ver-
sion of TEOBResumS with a satisfactory EOB/NR agreement for
quasi-circular, eccentric and hyperbolic simulations. We stud-
ied the effect of high-order information on both the non-spinning
and the spinning sectors of the model. In doing so, we needed
to change resummation schemes for some of the analytical per-
turbative series. We found that, even increasing the amount
of analytical content of the model, NR information is still fun-
damental to reach the desired level of accuracy. With specific
choices for the resummations of the EOB potentials, at least in
the non-spinning case, we were able to reach a reliable represen-
tation of the general BBH dynamics.

With these results in mind, we can look at the future with
optimism. TEOBResumS is not yet accurate enough to be used
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for analyses of GW signals that we expect to measure with the
third generation of detectors. However, the required unfaithful-
ness could be reached in the coming years. At the same time,
EOB-NR models show promising signs in the waveform genera-
tion for eccentric binaries, that will be detected by future GW
detectors, and even scattering systems. Numerical results will
play a fundamental role in these endeavors: simulations covering
the parameter space for eccentric and hyperbolic systems will be
needed to inform and successively validate semi-analytical mod-
els. If these efforts will be successful, and theoretical predictions
will be able to match the astounding sensitivity of the next gen-
eration of GW observatories, we will deepen our understanding
of black holes and neutron stars, general relativity, cosmology
and the universe as a whole.
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A Notation and conventions

Geometric units G = c = 1
Mass of heavier object m1
Mass of lighter object m2
Total mass M = m1 +m2
Reduced mass µ = m1m2/M
Mass ratio q = m1/m2
Symmetric mass ratio ν = m1m2/M

2

Mass fractions Xi = mi/M
Spins of the objects Si, i = 1, 2
Dimensionless spins χi = Si/m

2
i

ãi = Xiχi
Additional spin variables ã0 = ã1 + ã2

ã12 = ã1 − ã2
Ŝ = X2

1χ1 +X2
2χ2

Ŝ∗ = X1X2(χ1 + χ2)
EOB time t = T/M
EOB orbital phase ϕ
Relative EOB separation r = R/M

u = 1/r
EOB angular momentum pϕ = Pϕ/(µM)
EOB radial momentum pr = Pr/µ

pr∗ ≡
√
A/B pr

Time derivative ẋ = ∂x/∂t
Radial derivative x′ = ∂x/∂r
EOB orbital frequency Ω = ϕ̇

EOB potentials A,D,Q
B = D/A

Centrifugal radius rc
Gyro-gravitomagnetic functions GS , GS∗

EOB Hamiltonian ĤEOB =
√

1 + 2ν
(
Ĥeff − 1

)
/ν

EOB effective Hamiltonian Ĥeff = Ĥorb
eff + pϕ

(
GsŜ +GS∗Ŝ∗

)
Ĥorb

eff =
√
p2
r∗ +A

[
1 + p2

ϕ

r2
c

+Q

]
Radiation reaction fluxes F̂r, F̂ϕ
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