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A FOUNTAIN OF POSITIVE BUBBLES ON A CORON’S PROBLEM FOR A

COMPETITIVE WEAKLY COUPLED GRADIENT SYSTEM

ANGELA PISTOIA, NICOLA SOAVE, AND HUGO TAVARES

Rsum Nous considrons le suivant systme elliptique (Sobolev-critique) :−∆ui = µiu
3
i + βui

∑
j 6=i

u2
j dans Ωε

ui = 0 sur ∂Ωε, ui > 0 dans Ωε
i = 1, . . . ,m,

dans un domaine Ωε ⊂ R4 avec un petit trou rtrcissant Bε(ξ0).
Dans le cas µi > 0, β < 0 et ε > 0 petit, nous prouvons l’existence d’une solution non
synchronise qui ressemble une fontaine de bulles positives, cest--dire que chaque composant
ui prsente une explosion autour de ξ0 en tant que ε→ 0.
La preuve est base sur la mthode de rduction de Ljapunov-Schmidt. La vitesse de concen-
tration de chaque couche dans une tour donne est choisie de telle sorte que linteraction
entre bulles de composants diffrents quilibre linteraction de la premire bulle de chaque
composant avec le bord du domaine. De plus, elle est dominante par rapport linteraction
de deux bulles conscutives du mme composant.

Abstract. We consider the following critical elliptic system:−∆ui = µiu
3
i + βui

∑
j 6=i

u2j in Ωε

ui = 0 on ∂Ωε, ui > 0 in Ωε

i = 1, . . . ,m,

in a domain Ωε ⊂ R4 with a small shrinking hole Bε(ξ0). For µi > 0, β < 0, and ε > 0 small, we

prove the existence of a non-synchronized solution which looks like a fountain of positive bubbles,
i.e. each component ui exhibits a towering blow-up around ξ0 as ε→ 0. The proof is based on

the Ljapunov-Schmidt reduction method, and the velocity of concentration of each layer within a
given tower is chosen in such a way that the interaction between bubbles of different components

balances the interaction of the first bubble of each component with the boundary of the domain,

and in addition is dominant when compared with the interaction of two consecutive bubbles of
the same component.

1. Introduction

This paper deals with the existence of solutions to the elliptic critical system−∆ui = µiu
p
i + βu

p−1
2

i

∑
j 6=i

u
p+1
2

j in Ω

ui = 0 on ∂Ω, ui > 0 in Ω
i = 1, . . . ,m, (1.1)
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2 A. PISTOIA, N. SOAVE, AND H. TAVARES

when Ω is a bounded smooth domain in RN , and p = N+2
N−2 = 2∗ − 1, with 2∗ critical Sobolev

exponent. Thinking at ui as a density function (which is natural since (1.1) is studied in connection
with problems in nonlinear optics and Bose-Einstein condensation), the sign of the real parameters
µi describes the self-interaction between particles of the same density ui, and will always be
positive: that is, we have attractive self-interaction. On the contrary, the coupling parameter β,
which describes the interaction between particles of different densities, will always be negative:
that is, we have repulsive mutual interaction.

The system (1.1) has the trivial solution, i.e. all the components ui vanish. It can also have a
semi-trivial solution, i.e. only ` < m components vanish. It is clear that in this case (1.1) reduces
to a system with m − ` nontrivial components, so we are naturally lead to find fully nontrivial
solutions, namely solutions where all the components are nontrivial. In fact, we will be concerned
with positive solutions, namely fully nontrivial solutions with ui > 0 for every i.

It is useful to point out that (1.1) can have solutions with synchronized components, i.e. all the
components satisfy ui = siu for some si ∈ R and u solves the single equation

−∆u = up in Ω, u = 0 on ∂Ω, u > 0 in Ω. (1.2)

For instance, if the number of components is m = 2, the space dimension is N = 4 (so that p = 3),
and

−√µ1µ2 < β < min{µ1, µ2} or β > max{µ1, µ2},

then a solution of (1.2) gives rise to a synchronized solution. In this way, results available for the
single equation can be translated in terms of (1.1): for instance, if Ω has nontrivial Z2−homology,
then the celebrated Bahri-Coron’s result [2] claims the existence of a positive solution for (1.2),
and in turn this gives existence of a synchronized solution for (1.1). It is worthwile to recall also
the Coron’s result [11], where the case of a domain with a small hole has been considered, namely

Ω is replaced by Ωε := Ω \Bε(ξ0), and problem (1.2) has a solution which blows-up at ξ0 as ε→ 0
(see also [16,22]). Again, this family of solutions can be used to construct an associated family of
synchronized solutions for (1.1).

The assumptions on the domain are natural, since, exactly as in the scalar case, a Pohozaev-type
identity shows that there is no solution if Ω is starshaped (see for instance [7, p. 519] or [8]).

The above discussion induced the first two authors to investigate the following problem: does
(1.1) have non-synchronized solutions? An affirmative answer is given in [20], where (1.1) is posed

in a domain Ωε ⊂ RN , with N = 3, 4, having κ distinct holes; that is, Ωε := Ω \ ∪κi=1Bε(ξi), with
2 6 κ 6 m; for a quite general choice of interaction terms βij (which can be both of cooperative
type, and of competitive type), Pistoia and Soave proved existence and concentration results of
solutions whose components are splitted in several groups G1, ..., Gκ, in such a way that each
component within a given group Gi concentrates around a point ξi in a somehow synchronized
fashion (in the sense that the velocity of concentration of different components belonging the same
group is the same), while the different groups concentrate around different points. In particular,
the main results in [20] regard the case when at least two components concentrate around different
points, and hence cannot be synchronized.

In view of the above discussion, it is natural to ask the following question: if the domain has
only one small hole, is it still possible to find a non-synchronized solution? The main purpose of
this paper is to give a positive answer for β < 0 and N = 4 - so that p = 3 (for a discussion of the
cases N = 3 or other dimensions, see Remark 1.9 below). More precisely, we take

Ω ⊂ R4 bounded domain, symmetric with respect to one of its points ξ0 ∈ Ω, (1.3)
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i.e. x ∈ Ω if and only if 2ξ0 − x ∈ Ω, and consider the following elliptic problem with m ∈ N
equations: −∆ui = µiu

3
i + βui

∑
j 6=i

u2
j in Ωε

ui = 0 on ∂Ωε, ui > 0 in Ωε

i = 1, . . . ,m, (1.4)

where Ωε is a domain with one hole, Ωε := Ω \ Bε(ξ0) ⊂ R4, and Bε(ξ0) denotes the open ball
of R4 centered at ξ0 with radius ε. Throughout this paper we take µi > 0, the so called focusing
case, and β < 0, which means that the coupling terms in (1.4) are of competitive type.

We find solutions of (1.4) which look like a fountain of bubbles, namely their components are a
superposition of bubbles centered at ξ0 with different rates of concentration. In particular, all the
components have a towering blow-up point at ξ0. This new phenomena is quite surprising, since it
is in sharp contrast with the case of the single equation for which positive solutions cannot have
neither clustering or towering blow-up points, i.e. at every blow-up point there is at most one bubble
concentrating there (see Schoen [23]). We also mention that it is somehow unexpected that in a
competitive regime (with a possibly large |β|) we find solutions whose components concentrate at
the same point; this is only possible because the concentration rates are different, and in particular
such solutions are not synchronized.

In order to state our results we need to introduce some notations. We define

Uδ,ξ = α4
δ

δ2 + |x− ξ|2
, δ > 0, x, ξ ∈ RN (1.5)

(a bubble) with α4 = 2
√

2: these functions are all the positive solutions of the problem

−∆U = U3, U ∈ D1,2(R4).

(see [1, 4, 24]). Also, we denote by Pε : D1,2(R4)→ H1
0 (Ωε) the projection map and we define the

projection of the bubble defined in (1.5) as W := PεUδ,ξ ∈ H1
0 (Ωε), which is the unique solution of

−∆W = −∆Uδ,ξ = U3
δ,ξ in Ωε, W = 0 on ∂Ωε. (1.6)

We shall use many times the fact that, by the maximum principle, 0 6 PεUδ,ξ 6 Uδ,ξ in Ωε.
Take k ∈ N (the total number of bubbles) larger than or equal to m . Consider I1, . . . , Im ⊂

{1, . . . , k} satisfying the following properties:

(1) 1 ∈ I1;
(2) Ii 6= ∅ for every i = 1, . . . ,m;
(3) Ii ∩ Ij = ∅ whenever i 6= j;
(4) I1 ∪ . . . ∪ Im = {1, . . . , k};
(5) for every j ∈ {1, . . . , k} and i ∈ {1, . . . ,m}, if j ∈ Ii then j − 1, j + 1 6∈ Ii.

Observe that one considers condition (1) without loss of generality, simply to fix ideas and simplify
some statements. Conditions (2)-(3)-(4) imply that I1, . . . , Im form a partition of {1, . . . , k}, while
condition (5) means that each set Ii does not contain two consecutive integers. Our main result is
the following

Theorem 1.1. Take Ω satisfying (1.3) and let µi > 0, β < 0. For any integer k > m and for
every partition I1, . . . , Im of {1, . . . , k} satisfying (1)–(5), there exists ε0 > 0 such that for any
ε ∈ (0, ε0) problem (1.4) has a solution (symmetric with respect to ξ0) of the form

ui,ε = µ
− 1
p−1

i

∑
j∈Ii

PεUδεj ,ξ0 + φεi , i = 1, . . . ,m
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with

δεj = dεj ε
j
k+1

(
log

1

ε

) 1
2−

j
k+1

for some dεj → d∗j , j = 1, . . . , k

for

d∗j = Γ
i

2(k+1)
(
A2τ(0)

) i
2(k+1)

− 1
2

(
|β|α4

4|S3|
k + 1

) 1
2−

i
k+1

(see the upcoming (1.12) and (1.13) for the expressions of the constants A,Γ) and

‖φεi‖H1
0 (Ωε) → 0 as ε→ 0, i = 1, . . . ,m.

Remark 1.2. As stated in the theorem, each component of the solution, ui,ε, belongs to the space

Hε,ξ0 = {u ∈ H1
0 (Ωε) : u(x) = u(2ξ0 − x) ∀x ∈ Ωε}.

Since also Uδ,ξ0 is symmetry with respect to ξ0, then PεUδεj ,ξ0 ∈ Hε,ξ0 , as well as the remainder

terms φεi .

In order to better explain our result, let us take a particular case of (1.4) and Theorem 1.1:

m = 2, k > 2, and N = 4 (so that p = 3).

and the following partition of {1, . . . , k}:

I1 = {odd numbers between 1 and k}, I2 = {even numbers between 1 and k}. (1.7)

Clearly, I1, I2 satisfies conditions (1)–(5), and it is actually the only admissible partition for m = 2.
Problem (1.4) now reads as

−∆u1 = µ1u
3
1 + βu1u

2
2 in Ωε,

−∆u2 = µ2u
3
2 + βu2

1u2 in Ωε

u1 = u2 = 0 on ∂Ωε, u1, u2 > 0 in Ωε.

(1.8)

In this particular situation, Theorem 1.1 can be stated in the following way.

Theorem 1.3. Take Ω satisfying (1.3) and let µ1, µ2 > 0, β < 0. For any integer k > 2, let I1, I2
be respectively the set of all odd and even numbers between 1 and k, as in (1.7). Then there exists
ε0 > 0 such that for any ε ∈ (0, ε0) problem (1.8) has a solution (symmetric with respect to ξ0) of
the form

u1,ε = µ
− 1

2
1

∑
j∈I1

PεUδεj ,ξ0 + φε1 and u2,ε = µ
− 1

2
2

∑
j∈I2

PεUδεj ,ξ0 + φε2

with

δεj = dεj ε
j
k+1

(
log

1

ε

) 1
2−

j
k+1

for some dεj → d∗j , j = 1, . . . , k

for

d∗j = Γ
j

2(k+1)
(
A2τ(0)

) j
2(k+1)

− 1
2

(
|β|α4

4|S3|
k + 1

) 1
2−

j
k+1

and

‖φε1‖H1
0 (Ωε) → 0, ‖φε2‖H1

0 (Ωε) → 0 as ε→ 0.
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In order to avoid insignificant technicalities that would make the presentation harder to follow,
we will simply prove Theorem 1.3; in order to convince the reader that the proof of Theorem 1.4
follows precisely in the same way we will make some remarks along the paper (see Remarks 2.2,
3.7, 4.8 and 5.2).

Our result is inspired by the construction performed by Musso and Pistoia in [18] and Ge,
Musso and Pistoia in [12], where the authors built sign-changing solutions to Coron’s problem
whose shape resembles a superposition of bubbles centered at the point ξ0 with alternating sign
and with different rate of concentration. The proof here also follows the same scheme which is
based on a Ljapunov-Schmidt procedure: we find a good first order approximation term (see (3.2)),
we perform a linear theory for the linearized system around the ansatz (see Proposition 3.2), we
reduce the problem to a finite dimensional one (see Proposition 3.1) and finally we study the
reduced problem (see Section 4). However, the main steps of our proof require rather delicate and
careful estimates, see for instance the estimates involving the interacting term in the study of the
linear part in Subsection 3.1, the asymptotic expansion of the interaction energy (Lemma 4.4),
and the estimate of the remainder term in Lemma 4.6. Indeed, the interaction between bubbles of
different components has to balance the interaction of the first bubble of each component with the
boundary of the domain, and most of all it has to be dominant compared with the interaction of
two consecutive bubbles of the same component. Actually, this is possible because of the presence
of an | log ε|-order term which turns out to be crucial in our construction (see estimate (4.12)).

Remark 1.4. We prove the existence of solutions which look like fountains of positive bubble
all centered at the point ξ0 when Ω is symmetric with respect ξ0. It is clear that using the same
arguments of Ge, Musso and Pistoia [12] we can remove the symmetry assumption, just centering
all the bubbles Uδi,ξi at suitable points ξi = ξi(ε) which approach ξ0 with a suitable rate as ε→ 0.

Remark 1.5. For the sake of completeness, we also mention some recent results concerning the
existence of solutions to system (1.1) when Ω is the whole space RN . As far as we know, all
the results deal with systems with only two components. Guo, Li and Wei in [15] established
the existence of infinitely many positive nonradial solutions of (1.1), only when N = 3, in the
competitive case. Peng, Peng and Wang discussed in [19] uniqueness of the least energy solution
for β > 0, and the non-degeneracy of the manifold of the synchronized positive solutions. Clapp
and Pistoia in [10] proved that system (1.1) in any dimension has infinitely many fully nontrivial
solutions, which are not conformally equivalent. Gladiali, Grossi and Troestler in [13,14] obtained
radial and nonradial solutions to some critical systems like (1.1) using bifurcation methods.

Remark 1.6. A Brezis-Nirenberg type problem has been studied for systems, see for instance
[6, 7, 8] for existence results, while for concentration and blow-up type results see [5, 21].

Remark 1.7. As already mentioned, appropriate assumptions on β allows to obtain a synchronized
solution to (1.1) if Ω has nontrivial Z2−homology. We conjecture that system (1.1) has at least
one (actually we would say infinitely many) positive non-synchronized solution if Ω has nontrivial
Z2−homology (as in Bahri-Coron’s result for the single equation (1.2)) and β < 0 is arbitrary.
A first attempt in this direction is due to Clapp and Faya [9], who establish the existence of a
prescribed number of fully nontrivial solutions to the system with only two components under
suitable symmetry assumptions on the topologically nontrival domain Ω.

We would like to remark that the difficulty in finding positive solutions to system (1.1), even
with only two components, is similar to the difficulty in finding sign-changing solutions for the
single equation (1.2). One key point is the blow-up analysis of solutions: in the case of positive
solutions the blow-up, whenever it occurs, is isolated and simple, while in the case of sign-changing
solution multiple bubbling naturally appears.
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Without loss of generality, we will work from now on with

µ1 = µ2 = 1, and take ξ0 = 0 ∈ Ω, (1.9)

assuming that Ω is symmetric with respect to the origin. Observe that we are conduced to such

situation by eventually replacing ui with µ
− 1

2
i ui(x+ ξ0).

Remark 1.8. Solutions of (1.4) correspond to critical points with nontrivial components of the
C1–energy functional Jε : H1

0 (Ω;Rm)→ R defined by

Jε(u1, . . . , um) =

m∑
i=1

ˆ
Ωε

(
|∇ui|2

2
− µi(u

+
i )p+1

p+ 1

)
− 2β

p+ 1

m∑
i,j=1
i<j

ˆ
Ωε

|ui|
p+1
2 |uj |

p+1
2 .

Indeed, if (u1, . . . , um) is a critical point of Jε, then it satisfies

−∆ui = µi(u
+
i )p + β

∑
j 6=i

ui|ui|
p−3
2 |uj |

p+1
2 , i = 1, . . . ,m.

Multiplying this equation by u−i and integrating by parts yields (since β < 0)

0 > −
ˆ

Ωε

|∇u−i |
2 = −β

∑
j 6=i

ˆ
Ωε

|u−i |
p+1
2 |uj |

p+1
2 > 0.

If ui 6≡ 0, then by the maximum principle we deduce that ui > 0.

Remark 1.9. The Sobolev critical exponent is defined only for N > 3. On the other hand, for p
defined as before, the right hand sides of (1.1) are C1 nonlinearities if and only if we have p−1

2 > 1,
if and only if N 6 4. Therefore, it is reasonable to work in dimension N = 3 or N = 4. Here we
chose to deal with the case N = 4 only since it requires less technicalities: all the exponents are
positive integers, which makes some expansions explicit. Using Taylor expansions we could have
takled the case N = 3. We conjecture that in this case the main results (and in particular the
rates) would be the same.

Remark 1.10. A similar approach could also be used to find solutions for critical systems in
pierced domains when the interaction term is more in general like (e.g. Lotka-Volterra systems)−∆ui = µiu

p
i + βiu

qi
i

∑
j 6=i

u
qj
j in Ωε

ui = 0 on ∂Ωε, ui > 0 in Ωε

i = 1, . . . ,m,

when µi > 0, βi < 0 and qi, qj > 1. In the non-variational cases, one has to replace the asymptotic
estimates on the energy of Section 4 with an argument that simply uses the system like in [17,
Section 2].

Notations. Working with dimension N = 4, we deal with the following bubbles concentrated at
the origin

Uδ,0(x) = α4
δ

δ2 + |x|2

(where α4 = 2
√

2), which we denote also by Uδ; in many cases we deal with different concentration
parameters δi, i = 1, . . . , k, and we shall simply write Uδi = Ui. These correspond to all positive
solutions of −∆U = U3 in R4 which are symmetric with respect to the origin. It is well known
(see [3]) that the space of solutions of the linearized equation

−∆V = 3U2
δ V (1.10)
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has dimension 4 + 1 = 5 in D1,2(R5), being spanned by

∂Uδ
∂δ

(x) = α4
|x|2 − δ2

(δ2 + |x|2)2
,

∂Uδ
∂ξi

(x) = 2α4
δxi

(δ2 + |x|2)2
, i = 1, . . . , 4.

Therefore, the space of solutions to (1.10) which belong to

D1,2
s (R4) := {ψ ∈ D1,2(R4) : ψ(−x) = ψ(x) ∀x ∈ R4}

has dimension 1, being spanned by ∂Uδ
∂δ . For future convenience, we observe that∣∣∣∣∂Uδ∂δ

(x)

∣∣∣∣ 6 Uδ(x)

δ
. (1.11)

We take the following inner product and norm in H1
0 (Ωε):

〈u, v〉H1
0

:=

ˆ
Ωε

∇u · ∇v, ‖u‖2H1
0

=

ˆ
Ωε

|∇u|2

and the standard Lp norm by ‖ · ‖p (we omit the dependence on ε for simplicity).
The Green function of the Laplace operator in Ω with Dirichlet boundary conditions is denoted

by G(x, y), and can be decomposed as

G(x, y) =
γ4

|x− y|2
−H(x, y),

where γ4 := (2|∂B1|)−1, and H is the regular part of G which, for every x ∈ Ω, satisfies{
−∆yH(x, y) = 0 for y ∈ Ω,

H(x, y) = γ4
|x−y|2 for y ∈ ∂Ω.

The Robin function of Ω is defined as τ(x) := H(x, x), and satisfies τ(x)→ +∞ as dist(x, ∂Ω)→ 0.
Throughout the paper, we will always label the following constants:

A :=

ˆ
R4

U3
1,0 =

ˆ
R4

α3
4

(1 + |y|2)3
dy, B :=

ˆ
R4

U4
1,0 =

ˆ
R4

α4
4

(1 + |y|2)4
dy, (1.12)

Γ :=

ˆ
RN

α4
4

|y|2(1 + |y|2)3
dy, (1.13)

and use Bε, ∂Bε instead of Bε(0), ∂Bε(0) respectively. We will denote the Lp(Ωε) norms by ‖ · ‖Lp ,
while ‖u‖2

H1
0

:=
´

Ωε
|∇u|2 for every u ∈ H1

0 (Ωε).

2. The ansatz and reduction scheme

Recall that, without loss of generality, we assume (1.9); due to the symmetry, by the principle
of symmetric criticality we can work in the space

Hε := Hε,0 = {u ∈ H1
0 (Ωε) : u(−x) = u(x) ∀x ∈ Ωε}.

We deal with solutions of 
−∆u1 = f(u1) + βu1u

2
2

−∆u2 = f(u2) + βu2u
2
1

u1, u2 ∈ H1
0 (Ωε),

(2.1)
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where f : R → R, f(s) := (s+)3. Denote by I∗ : L
4
3 (Ωε) → H1

0 (Ωε) the adjoint operator of the
canonical Sobolev embedding I : H1

0 (Ωε)→ L4(Ωε). This means that v := I∗u can be defined as
the (unique) weak solution of

−∆v = u in Ωε, v = 0 on ∂Ωε.

Observe that, if u is symmetric with respect to the origin, so is I∗u. The operator I∗ is continuous:
there exists C > 0, independent of ε, such that

‖I∗u‖H1
0
6 C‖u‖

L
4
3

∀u ∈ L 4
3 (Ωε).

Using this operator, we can rewrite (2.1) as

u1 = I∗
(
f(u1) + βu1u

2
2

)
, u2 = I∗

(
f(u2) + βu2u

2
1

)
.

Denote Uj := Uδj for j = 1, . . . , k. Our ansatz is the following: for any integer k > 2, we look for
a solution of (2.1) in Hε of the form

u1 =
∑
j∈I1

PεUj + φ1 and u2 =
∑
j∈I2

PεUj + φ2,

where

δj = djε
j
k+1

(
log

1

ε

) 1
2−

j
k+1

, j = 1, . . . , k, (2.2)

d = (d1, . . . , dk) belongs to the set

Xη =
{
d ∈ Rk : η < d1, . . . , dk < 1/η

}
for some η � 1,

and φ1, φ2 ∈ Hε.

Remark 2.1. For future reference, we collect in this remark several important relations between
the different rates δj . Given η > 0, we have

ε

δj
=

1

dj
ε
k+1−j
k+1

(
log

1

ε

) j
k+1−

1
2

→ 0 and
δj+1

δj
=
dj+1

dj
ε

1
k+1

(
log

1

ε

)− 1
k+1

→ 0

as ε→ 0, uniformly for d ∈ Xη.

For each ε > 0 small, our aim is to find η > 0, d ∈ Xη and φ1, φ2 ∈ Hε such that, for i, j = 1, 2,
i 6= j, ∑

l∈Ii

PεUl + φi = I∗
f(

∑
l∈Ii

PεUl + φi) + β(
∑
l∈Ii

PεUl + φi)(
∑
l∈Ij

PεUl + φj)
2

 . (2.3)

Given ε > 0 and d1, . . . , dk > 0, for δi defined as before define

ψi(x) :=
∂Ui
∂δi

(x) = α4
|x|2 − δ2

i

(δ2
i + |x|2)2

(recall the Notation section) and

K1 = K1,d,ε := span {Pεψj : j ∈ I1} , K2 = K2,d,ε := span {Pεψj : j ∈ I2} , Kd,ε := K1×K2.

Observe that K⊥d,ε = K⊥1 ×K⊥2 . Moreover, consider the projection maps

Πi : Hε → Ki, Π⊥i : Hε → K⊥i , i = 1, 2.
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We can rewrite (2.6) as a system of 4 equations: for i, j = 1, 2, j 6= i,

Πi

(∑
l∈Ii

PεUl + φi

)
= Πi ◦ I∗

f(
∑
l∈Ii

PεUl + φi) + β(
∑
l∈Ii

PεUl(x) + φi)(
∑
l∈Ij

PεUl + φj)
2

 , (2.4)

Π⊥i

(∑
l∈Ii

PεUl + φi

)
= Π⊥i ◦ I∗

f(
∑
l∈Ii

PεUl + φi) + β(
∑
l∈Ii

PεUl + φi)(
∑
l∈Ij

PεUl(x) + φj)
2

 .

(2.5)
In the next section, given ε, η > 0 sufficiently small and d ∈ Xη, we find a unique (φ1, φ2) =

(φd,ε1 , φd,ε2 ) ∈ K⊥d,ε solution to (2.5). By plugging this result in (2.4), we end up having a problem

with unknown d ∈ Rk (thus a finite dimensional problem), which can be stated in terms of a
reduced energy. We analyse this reduced energy in Section 4.

Remark 2.2. For the general system (1.4) and given a partition I1, . . . , Im of {1, . . . , k}, the
ansatz is exactly the same: ui =

∑
j∈Ii Ui +φi, for i = 1, . . . ,m, where φi ∈ Ki. We denote in this

case Kd,ε = K⊥1 × . . .×K⊥m, and split the system of m equations:

∑
l∈Ii

PεUl + φi = I∗

f(
∑
l∈Ii

PεUl + φi) + β(
∑
l∈Ii

PεUl + φi)

m∑
j=1

j 6=i

(
∑
l∈Ij

PεUl + φj)
2

 (2.6)

(i = 1, . . . ,m) in 2m equations using the projection maps Πi and Π⊥i .

3. Reduction to a Finite Dimensional Problem

In this section we study the solvability of (2.5). We rewrite (2.5) as

Lid,ε(φ) = N i
d,ε(φ) +Rid,ε, (3.1)

where L stays for the linear part

L1
d,ε(φ) = Π⊥1

{
φ1 − I∗

[
f ′(
∑
j∈I1

PεUj)φ1 + β(
∑
j∈I2

PεUj)
2φ1

+ 2β(
∑
j∈I1

PεUj)(
∑
j∈I2

PεUj)φ2

]}
,

(3.2)
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N stays for the nonlinear part

N1
d,ε(φ) = Π⊥1 ◦ I∗

f(
∑
j∈I1

PεUj + φ1)− f(
∑
j∈I1

PεUj)− f ′(
∑
j∈I1

PεUj)φ1

+ β(
∑
j∈I1

PεUj + φ1)(
∑
j∈I2

PεUj + φ2)2 − β(
∑
j∈I1

PεUj)(
∑
j∈I2

PεUj)
2

− β(
∑
j∈I2

PεUj)
2φ1 − 2β(

∑
j∈I1

PεUj)(
∑
j∈I2

PεUj)φ2


= Π⊥1 ◦ I∗

f(
∑
j∈I1

PεUj + φ1)− f(
∑
j∈I1

PεUj)− f ′(
∑
j∈I1

PεUj)φ1

+ β(
∑
j∈I1

PεUj)φ
2
2 + 2β(

∑
j∈I2

PεUj)φ1φ2 + βφ1φ
2
2

 ,
and R is the remainder term

R1
d,ε = Π⊥1

{
−
∑
j∈I1

PεUj + I∗
[
f(
∑
j∈I1

PεUj) + β(
∑
j∈I1

PεUj)(
∑
j∈I2

PεUj)
2

]}

= Π⊥1 ◦ I∗
[
f(
∑
j∈I1

PεUj)−
∑
j∈I1

f(Uj) + β(
∑
j∈I1

PεUj)(
∑
j∈I2

PεUj)
2

]
where the last equality is a consequence of the definitions of I∗ and of f (analogue expressions
hold for L2

d,ε, N
2
d,ε and R2

d,ε).
We also define

Ld,ε := (L1
d,ε, L

2
d,ε) : K⊥d,ε → K⊥d,ε,

and Rd,ε and Nd,ε in an analogue way.

Proposition 3.1. Let β < 0. Then for every η > 0 sufficiently small there exists ε0 > 0 and
C > 0 such that, whenever ε ∈ (0, ε0) and d ∈ Xη, there exists a unique function φ = φd,ε ∈ K⊥d,ε
solving the equation

Ld,ε(φ) = Rd,ε + Nd,ε(φ).

and satisfying

‖φd,ε‖H1
0 (Ωε) 6 Cε

1
k+1

(
log

(
1

ε

))− 1
k+1

= o(δ1)

Moreover, the map Xη → K⊥d,ε, d 7→ φd,ε is of class C1.

The proof of the proposition takes the rest of this section, and is divided into several intermediate
lemmas.

3.1. Study of the linear part. As a first step, it is important to understand the solvability of
the linear problem associated with (3.1), i.e.

Lid,ε(φ) = fi, with fi ∈ K⊥i .
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Proposition 3.2. For every η > 0 small enough there exists ε0 > 0 small, and C > 0, such that
if ε ∈ (0, ε0) then

‖Ld,τ ,ε(φ)‖H1
0 (Ωε) > C‖φ‖H1

0 (Ωε) ∀φ ∈ H1
0 (Ωε,R2)

for every d ∈ Xη. Moreover, Ld,ε is invertible in K⊥d,ε, with continuous inverse.

The long proof proceeds by contradiction. For a fixed η > 0 small, let us suppose that there
exist sequences

{εn} ⊂ R+, εn → 0, {dn} ⊂ Xη, {φn} ⊂ K⊥1,n ×K⊥2,n
such that

‖φn‖H1
0 (Ωεn ) = 1 and ‖Ln(φn)‖H1

0 (Ωεn ) → 0

as n→∞, where we wrote Ki,n := Ki,dn,εn and Ln := Ldn,εn for short. In the same spirit, in this
proof we write Pn := Pεn , Ui,n := Uδi,n,0, ψi,n := ψδi,n,0, and Ωn := Ωεn .

Let hn := Ln(φn). Then, by definition of Ln,

φ1,n = h1,n + w1,n

+ I∗
[

3(
∑
j∈I1

PnUj,n)2φ1,n + β(
∑
j∈I2

PnUj,n)2φ1,n + 2β(
∑
j∈I1

PnUj,n)(
∑
j∈I2

PnUj,n)φ2,n

]
(3.3)

(an analogue equation holds for φ2,n) for some wi,n ∈ Ki,n.

Lemma 3.3. ‖wi,n‖H1
0 (Ωn) → 0 as n→∞.

Proof. We focus on w1,n, the proof for w2,n is analogue. As w1,n ∈ K1,n = span{Pnψj,n : j ∈ I1},
there exist constants cj,n such that

w1,n =
∑
j∈I1

cj,nδj,nPnψj,n.

Now we consider the scalar product in H1
0 (Ωε) of both sides in (3.3) with δi,nPnψi,n, with i ∈ I1:

as h1,n, φ1,n ∈ K⊥1,n, we obtain

δi,n

ˆ
Ωn

∇w1,n · ∇(Pnψi,n) = 3δi,n

ˆ
Ωn

(
∑
j∈I1

PnUj,n)2φ1,n(Pnψi,n)

+ δi,nβ

ˆ
Ωn

(
∑
j∈I2

PnUj,n)2φ1,n(Pnψi,n)

+ 2βδi,n

ˆ
Ωn

(
∑
j∈I1

PnUj,n)(
∑
j∈I2

PnUj,n)φ2,n(Pnψi,n).

(3.4)

The left hand side can be estimated using [12, Remark 5.2] and (1.11) (see also [21, p. 417], noting
that therein ψi,n corresponds to δi,nψi,n in the present paper) and obtainingˆ

Ωn

∇w1,n · ∇(δi,nPnψi,n) = ci,n(σ0 + o(1)) + o(1)
∑
j∈I1
j 6=i

cj,n

as n→∞, where

σ0 = 3α4
4

ˆ
R4

(|y|2 − 1)2

(1 + |y|2)6
dy.
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The first integral on the right hand side in (3.4) can be estimated as in [12, Formula (5.7)]:

3δi,n

ˆ
Ωn

(
∑
j∈I1

PnUj,n)2φ1,n(Pnψi,n) = o(1)

as n → ∞. We have now to estimate the interaction terms. To this purpose, we observe that
by Hölder and Sobolev inequality, by (1.11), and recalling that 0 6 PεUi 6 Ui (by the maximum
principle), we have that∣∣∣∣∣∣

ˆ
Ωn

(
∑
j∈I2

PnUj,n)2φ1,n(Pnψi,n)

∣∣∣∣∣∣ 6
ˆ

Ωn

(
∑
j∈I2

PnUj,n)
8
3 |Pnψi,n|

4
3

 3
4

‖φ1,n‖L4

6 C

ˆ
Ωn

(
∑
j∈I2

Uj,n)
8
3 |ψi,n|

4
3

 3
4

‖φ1,n‖H1
0

+ h.o.t.

6
C

δi,n

∑
j∈I2

(ˆ
Ωn

U
8
3
j,nU

4
3
i,n

) 3
4

+ h.o.t.

(3.5)

as n → ∞. The precise rate of the higher order terms (h.o.t.) does not play any role, and in any
case can be derived using Lemmas A.1 and A.2. Moreover, the leading integral on the right hand
side can be estimated using Lemma A.4, obtaining

ˆ
Ωn

U
8
3
j,nU

4
3
i,n =


O

((
δi,n
δj,n

) 4
3

)
if i > j

O

((
δj,n
δi,n

) 4
3

)
if j > i.

Coming back to (3.5), we have

δi,n

∣∣∣∣∣∣
ˆ

Ωn

(
∑
j∈I2

PnUj,n)2φ1,n(Pnψi,n)

∣∣∣∣∣∣ =

O
(
δi,n
δj,n

)
= o(1) if i > j

O
(
δj,n
δi,n

)
= o(1) if i < j

as n→∞, which proves that the second integral on the right hand side in (3.4) is of order o(δi,n).
As far as the third integral is concerned, we note that∣∣∣∣∣

ˆ
Ωn

(
∑
j∈I1

PnUj,n)(
∑
j∈I2

PnUj,n)φ2,n(Pnψi,n)

∣∣∣∣∣
6

ˆ
Ωn

(
∑
j∈I1

PnUj,n)
4
3 (
∑
j∈I2

PnUj,n)
4
3 |Pnψi,n|

4
3

 3
4

‖φ2,n‖L4

6 C

ˆ
Ωn

(
∑
j∈I1

Uj,n)
4
3 (
∑
j∈I2

Uj,n)
4
3 |ψi,n|

4
3

 3
4

‖φ2,n‖H1
0

+ h.o.t.

6
C

δi,n

∑
h∈I1

∑
j∈I2

(ˆ
Ωn

U
4
3

h,nU
4
3
j,nU

4
3
i,n

) 3
4

+ h.o.t.

=
C

δi,n
o(1)
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as n→∞. The last inequality follows by Lemma A.6 if h 6= i, and by Lemma A.4 if h = i. In any
case

δi,n

∣∣∣∣∣∣
ˆ

Ωn

(
∑
j∈I1

PnUj,n)(
∑
j∈I2

PnUj,n)φ2,n(Pnψi,n)

∣∣∣∣∣∣ = o(1)

as n→∞. To sum up, by expanding (3.4), we proved that for every index i ∈ I1 it results that

ci,n(σ0 + o(1)) + o(1)
∑
j∈I1
j 6=i

cj,n = o(1)

as n→∞. From this and by Cramer’s rule, we deduce that ci,n → 0 for every i ∈ I1. From this,
the conclusion ‖w1,n‖ → 0 follows. �

Let us set now zi,n := φi,n − hi,n − wi,n. Notice that, since ‖hi,n‖H1
0 (Ωn), ‖wi,n‖H1

0 (Ωn) → 0, we

have ‖z1,n‖2H1
0 (Ωn)

+ ‖z2,n‖2H1
0 (Ωn)

→ 1. In terms of zi,n, equation (3.3) can be rewritten as

z1,n = I∗
{[

3(
∑
j∈I1

PnUj,n)2 + β(
∑
j∈I2

PnUj,n)2
]
(z1,n + h1,n + w1,n)

+ 2β(
∑
j∈I1

PnUj,n)(
∑
j∈I2

PnUj,n)(z2,n + h2,n + w2,n)

}
.

(3.6)

Of course, a similar equation holds for z2,n.

Lemma 3.4. It results that at least one of the following lower estimates holds:

lim inf
n→∞


ˆ

Ωn

[
3(
∑
j∈I1

PnUj,n)2 + β(
∑
j∈I2

PnUj,n)2

]
z2

1,n

+2β

ˆ
Ωn

(
∑
j∈I1

PnUj,n)(
∑
j∈I2

PnUj,n)z1,nz2,n

 > 0,

or

lim inf
n→∞


ˆ

Ωn

[
3(
∑
j∈I2

PnUj,n)2 + β(
∑
j∈I1

PnUj,n)2

]
z2

2,n

+2β

ˆ
Ωn

(
∑
j∈I1

PnUj,n)(
∑
j∈I2

PnUj,n)z1,nz2,n

 > 0.

Proof. Since ‖z1,n‖2H1
0 (Ωn)

+‖z2,n‖2H1
0 (Ωn)

→ 1, we can suppose that up to a subsequence {‖z1,n‖2H1
0 (Ωn)

}n
or {‖z2,n‖2H1

0 (Ωn)
}n is uniformly bounded from below by 1/2. Suppose for instance that {‖z1,n‖2H1

0 (Ωn)
}n
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is bounded from below. Then we test equation (3.6) with z1,n, obtaining

‖z1,n‖2H1
0 (Ωn) =

ˆ
Ωn

[
3(
∑
j∈I1

PnUj,n)2 + β(
∑
j∈I2

PnUj,n)2

]
z2

1,n

+ 2β

ˆ
Ωn

(
∑
j∈I1

PnUj,n)(
∑
j∈I2

PnUj,n)z1,nz2,n

+ 3

ˆ
Ωn

(
∑
j∈I1

PnUj,n)2(h1,n + w1,n)z1,n + β(
∑
j∈I2

PnUj,n)2(h1,n + w1,n)z1,n

+ 2β

ˆ
Ωn

(
∑
j∈I1

PnUj,n)(
∑
j∈I2

PnUj,n)(h2,n + w2,n)z1,n.

Arguing as in [12, Formula (5.12)], we can easily check that the last two integrals are 0. Therefore,
in this case the first lim inf in the thesis is positive. If {‖z2,n‖2H1

0 (Ωn)
}n is bounded from below, in

the same way we find that the second lim inf is positive. �

We aim to obtain a contradiction with Lemma 3.4. To this end, we fix ρ > 0 so that Bρ ⊂⊂ Ω,

and we decompose Bρ \Bεn into the union of disjoint annuli as follows:

Bρ \Bεn =

k⋃
`=1

A`,n, where A`,n = B√
δ`,nδ`−1,n

\B√
δ`,nδ`+1,n

for ` = 1, . . . , k,

with the convention δ0,n = δ−1
1,nρ

2 and δk+1,n = δ−1
k,nε

2
n. Recall from Remark 2.1 that δl+1,n/δl,n → 0

as n→∞. We also set

B`,n = B
2
√
δ`,nδ`−1,n

\B√
δ`,nδ`+1,n/2

,

and, for every ` = 1, . . . , k, we define a cut-off function χ`,n ∈ C∞c (RN ) with the properties that
χ`,n = 1 in A`,n, χ`,n = 0 in R4 \ B`,n,
|∇χ`,n| 6 C√

δ`,nδ`+1,n

, |D2χ`,n| 6 C
δ`,nδ`+1,n

in B√
δ`,nδ`+1,n

\B√
δ`,nδ`+1,n/2

|∇χ`,n| 6 C√
δ`,nδ`−1,n

, |D2χ`,n| 6 C
δ`,nδ`−1,n

in B
2
√
δ`,nδ`−1,n

\B√
δ`,nδ`−1,n

(3.7)

for a positive universal constant C. Finally, we define for ` = 1, . . . , k and i = 1, 2 the D1,2(R4)
functions

ẑ`i,n(x) := δ`,nzi,n(δ`,nx)χ`,n(δ`,nx) for x ∈ B`,n
δ`,n

=: B̃`,n,

naturally extended by 0 in R4 \ B̃`,n. We have ẑ`i,n(x) = δ`,nzi,n(δ`,nx) if x ∈ Ã`,n := A`,n/δ`,n.

Lemma 3.5. It results that ẑ`i,n → 0 weakly in D1,2(R4), and strongly in Lqloc(R4), for every
q ∈ [2, 2∗), for every i = 1, 2, ` = 1, . . . , k.

Proof. We have

∇ẑ`i,n(x) = δ2
`,n [χ`,n(δ`,nx)∇zi,n(δ`,nx) + zi,n(δ`,nx)∇χ`,n(δ`,nx)]

and

∆ẑ`i,n(x) = δ3
`,n

[
χ`,n(δ`,nx)∆zi,n(δ`,nx) + 2∇zi,n(δ`,nx) · ∇χ`,n(δ`,nx)

+ zi,n(δ`,nx)∆χ`,n(δ`,nx)
] (3.8)
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for x ∈ B̃`,n, that is,

1

2

√
δ`+1,n

δ`,n
< |x| < 2

√
δ`−1,n

δ`,n
.

Notice that B̃`,n exhausts RN as n→∞, by Remark 2.1. Now

ˆ
R4

|∇ẑ`i,n|2 6 2δ4
`,n

ˆ
B̃`,n

(
|∇zi,n(δ`,nx)|2 + z2

i,n(δ`,nx)|∇χ`,n(δ`,nx)|2
)
dx

= 2

ˆ
B`,n

(
|∇zi,n(y)|2 + z2

i,n(y)|∇χ`,n(y)|2
)
dy.

The integral of |∇zi,n|2 is clearly bounded, since ‖zi,n‖H1
0 (Ωn) 6 1. Also, by (3.7),

ˆ
B`,n

z2
i,n|∇χ`,n|2 6

C

δ`,nδ`+1,n

ˆ
B√δ`,nδ`+1,n

\B√δ`,nδ`+1,n/2

z2
i,n

+
C

δ`,nδ`−1,n

ˆ
B2
√
δ`,nδ`−1,n

\B√δ`,nδ`−1,n

z2
i,n

6

(
C

δ`,nδ`+1,n
|B√

δ`,nδ`+1,n
\B√

δ`,nδ`+1,n/2
| 12

+
C

δ`,nδ`−1,n
|B

2
√
δ`,nδ`−1,n

\B√
δ`,nδ`−1,n

| 12
)
‖zi,n‖2H1

0 (Ωn)

6 C‖zi,n‖2H1
0 (Ωn) 6 C,

and we infer that ‖ẑ`i,n‖D1,2(R4) 6 C. Then, up to a subsequence, we have that ẑ`i,n ⇀ ẑ`i weakly in

D1,2, and ẑ`i,n → ẑ`i strongly in Lqloc(R4) for q ∈ [2, 2∗). The equation satisfied by the weak limit

can be determined using (3.6) and (3.8): for every ϕ ∈ C∞c (R4 \ {0}), by combining (3.6) with
(3.8) we have that

ˆ
RN
∇ẑ`1,n · ∇ϕ

= δ3
`,n

ˆ
B̃`,n

χ`,n(δ`,nx)

3

(∑
i∈I1

PnUj,n(δ`,nx)

)2

+ β

∑
j∈I2

PnUj,n(δ`,nx)

2


· (z1,n(δ`,nx) + h1,n(δ`,nx) + w1,n(δ`,nx))ϕ(x) dx

+ 2βδ3
`,n

ˆ
B̃`,n

χ`,n(δ`,nx)

(∑
i∈I1

PnUj,n(δ`,nx)

)(∑
i∈I2

PnUj,n(δ`,nx)

)
· (z2,n(δ`,nx) + h2,n(δ`,nx) + w2,n(δ`,nx))ϕ(x) dx

− δ3
`,n

ˆ
B̃`,n

(2∇χ`,n(δ`,nx) · ∇z1,n(δ`,nx) + z1,n(δ`,nx)∆χ`,n(δ`,nx))ϕ(x) dx.
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The last integral and all the terms involving hi,n and wi,n tend to 0 as n → ∞, exactly as
in [12, Formula (5.20)]. Therefore,

ˆ
RN
∇ẑ`1,n · ∇ϕ = o(1)

+ δ3
`,n

ˆ
B̃`,n

χ`,n(δ`,nx)

3

(∑
i∈I1

PnUj,n(δ`,nx)

)2

+ β

∑
j∈I2

PnUj,n(δ`,nx)

2
 z1,n(δ`,nx)ϕ(x) dx

+ 2βδ3
`,n

ˆ
B̃`,n

χ`,n(δ`,nx)

(∑
i∈I1

PnUj,n(δ`,nx)

)(∑
i∈I2

PnUj,n(δ`,nx)

)
z2,n(δ`,nx)ϕ(x) dx

= o(1) + δ2
`,n

ˆ
B̃`,n

3

(∑
i∈I1

PnUj,n(δ`,nx)

)2

ẑ`1,n(x)ϕ(x) dx

+ βδ2
`,n

ˆ
B̃`,n

∑
j∈I2

PnUj,n(δ`,nx)

2

ẑ1,n(x)ϕ(x) dx

+ 2βδ2
`,n

ˆ
B̃`,n

(∑
i∈I1

PnUj,n(δ`,nx)

)(∑
i∈I2

PnUj,n(δ`,nx)

)
ẑ`2,n(x)ϕ(x) dx

=: o(1) +A1 +A2 +A3.

In order to study the behavior of the integrals as n→∞, it is convenient to observe (see Lemma
A.1) that, if ` ∈ I1, then

∑
j∈I1

PnUj,n(δ`,nx) =
∑
j∈I1

Uj,n(δ`,nx) + h.o.t. =
∑
j∈I1

α4
δj,n

δ2
j,n + δ2

`,n|x|2
+ h.o.t.

=
1

δ`,n
U1,0(x) +

∑
j∈I1
j 6=`

α4
δj,n

δ2
j,n + δ2

`,n|x|2
+ h.o.t.

=
1

δ`,n
U1,0(x) +

∑
j∈I1
j<`

O

(
1

δj,n

)
+
∑
j∈I1
j>`

O

(
δj,n

δ2
`,n|x|2

)
+ h.o.t.,
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as n→∞. If instead ` 6∈ I1, then we have a similar expansion, but without the term U1,0(x)/δ`,n.
We focus at first on the first possibility. We have,

A1 = 3δ2
`,n

ˆ
B̃`,n

(
U1,0(x)

δ`,n

)2

ẑ`1,n(x)ϕ(x) +

∑
j∈I1
j<`

O

(
1

δ2
j,n

)
+
∑
j∈I1
j>`

O

(
δ2
j,n

δ4
`,n|x|4

) ẑ`1,n(x)ϕ(x) dx

+ 3δ2
`,n

ˆ
B̃`,n

2

δ`,n
U1,0(x)

∑
j∈I1
j<`

O

(
1

δj,n

)
+
∑
j∈I1
j>`

O

(
δj,n

δ2
`,n|x|2

) ẑ`1,n(x)ϕ(x) dx

+ 3δ2
`,n

ˆ
B̃`,n

2
∑
i∈I1
i<`

∑
j∈I1
j>`

O

(
δj,n

δi,nδ2
`,n|x|2

)
ẑ`1,n(x)ϕ(x) dx+ h.o.t.

(3.9)

Now, for every j < `

δ2
`,n

δ2
j,n

∣∣∣∣∣
ˆ
B̃`,n

ẑ`1,nϕ

∣∣∣∣∣ 6 o(1)‖ẑ`1,n‖L4 → 0,

and, by Lemma A.3,∣∣∣∣∣δ`,nδj,n

ˆ
B̃`,n

U1,0ẑ
`
1,nϕ

∣∣∣∣∣ 6 δ`,n
δj,n
‖U1,0‖L4‖ẑ`1,n‖L4‖ϕ‖L2 → 0.

Moreover, for every j > `, using the fact that suppϕ ⊂ BR \ Bρ for suitable 0 < ρ < R, we have
that

δ2
j,n

δ2
`,n

∣∣∣∣∣
ˆ
B̃`,n

ẑ`1,n(x)
ϕ(x)

|x|4
dx

∣∣∣∣∣ 6 C δ2
j,n

δ2
`,n

‖ẑ`1,n‖L4

(ˆ
BR\Bρ

dx

|x| 163

) 3
4

6 C
δ2
j,n

δ2
`,n

→ 0,

and that

δj,n
δ`,n

∣∣∣∣∣
ˆ
B̃`,n

U1,0(x)ẑ`1,n(x)
ϕ(x)

|x|2
dx

∣∣∣∣∣ 6 C δj,nδ`,n
‖ẑ`1,n‖L4

ˆ
BR\Bρ

U
4
3

1,0(x)

|x| 83
dx

 3
4

6 C
δj,n
δ`,n
→ 0.

The previous estimates yield

A1 = 3

ˆ
B̃`,n

U2
1,0ẑ

`
1,nϕ+ o(1)→ 3

ˆ
R4

U2
1,0ẑ

`
1ϕ (3.10)

as n→∞, for every ϕ ∈ C∞c (R4 \ {0}).
Notice that, in the above computations, we never used the fact that the indexes j were in I1.

Therefore, we directly deduce that

A2 → 0 as n→∞. (3.11)
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Finally, in an analogue way

A3 = 2βδ2
`,n

ˆ
B̃`,n

 1

δ`,n
U1,0(x) +

∑
j∈I1
j<`

O

(
1

δj,n

)
+
∑
j∈I1
j>`

O

(
δj,n

δ2
`,n|x|2

) ·

·

∑
j∈I2
j<`

O

(
1

δj,n

)
+
∑
j∈I2
j>`

O

(
δj,n

δ2
`,n|x|2

) ẑ`1,n(x)ϕ(x) dx+ h.o.t.→ 0

(3.12)

as n→∞.
Collecting together (3.10), (3.11) and (3.12), and coming back to (3.9), we finally obtain that

the weak limit of ẑ`1,n satisfies

−∆ẑ`1 = 3U2
1,0ẑ

`
1 in R4 \ {0}.

Let now θρ ∈ C∞(RN ) be such that θρ ≡ 1 in Bc2ρ, θρ ≡ 0 in Bρ, and |∇θρ| 6 C/ρ; and let

ϕ ∈ C∞c (R4); testing the above equation with θρϕ, and passing to the limit as ρ → 0+, using the
fact that ẑ`1 ∈ D1,2(R4) (since it is the weak limit of D1,2 functions), we easily deduce that

−∆ẑ`1 = 3U2
1,0ẑ

`
1 in the whole space R4.

In order to show that ẑ`1 ≡ 0, recalling that it is symmetric with respect to 0, it is sufficient to
verify that ẑ`1 ⊥ ψ1,0. This can be done exactly as in [12, Formula (5.19)], and completes the proof.

It still remains to analyze the case ` 6∈ I1. In such a situation we can proceed exactly as before,
but this time we end up with

−∆ẑ`1 = βU2
1,0ẑ

`
1 in the whole space R4.

Since β < 0 and ẑ`1 ∈ D1,2(R4), we infer that

0 6
ˆ
RN
|∇ẑ`1|2 = β

ˆ
RN

(U1,0ẑ
`
1)2 6 0,

and the conclusion follows also in this case. �

Conclusion of the proof of Proposition 3.2. Using Lemma 3.5, we will obtain a contradiction with
Lemma 3.4. Let us consider
ˆ

Ωn

(
∑
i∈I1

PnUi,n)2z2
1,n 6 C

∑
i∈I1

ˆ
Ωn

U2
i,nz

2
1,n = C

∑
i∈I1

(ˆ
Ωn\Bρ

U2
i,nz

2
1,n +

k∑
`=1

ˆ
A`,n

U2
i,nz

2
1,n

)
,

(3.13)
where we used the fact that 0 6 PnUi,n 6 Ui,n. We show that the right hand side tends to 0 as
n→∞. At first, we haveˆ

Ωn\Bρ
U2
i,nz

2
1,n 6 Cδ

2
i,n

ˆ
Ωn\Bρ

z2
1,n 6 Cδ

2
i,n‖zi,n‖2H1

0 (Ωn) → 0. (3.14)

Now, let i 6= `. Then we have

ˆ
A`,n

U2
i,nz

2
1,n 6 C‖zi,n‖2H1

0 (Ωn)

(ˆ
A`,n

U4
i,n

) 1
2

= C‖zi,n‖2H1
0 (Ωn)

(ˆ
A`,n/δi,n

U4
1,0

) 1
2

.
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Since i 6= `, we have that

A`,n
δi,n

⊂


B

(
0,

√
δ`−1,nδ`,n
δi,n

)
if i < `

RN \B
(

0,

√
δ`+1,nδ`,n
δi,n

)
if i > `,

and √
δ`−1,nδ`,n

δi,n
→ 0 if i < `, and

√
δ`+1,nδ`,n

δi,n
→ +∞ if i > `.

Therefore, the fact that ˆ
A`,n

U2
i,nz

2
1,n → 0 as n→∞, ∀i 6= ` (3.15)

follows from the integrability of U4
1,0 on RN . If moreover i = `, recalling that Ã`,n = A`,n/δ`,n we

haveˆ
A`,n

U2
`,nz

2
1,n = δ2

`,n

ˆ
Ã`,n

U2
l,n(δ`,nx)(ẑ`1,n)2(x) dx = α2

4

ˆ
RN

(
1

1 + |x|2

)2

(ẑ`1,n)2(x) dx+ o(1)→ 0

as n → ∞, since U2
1,0 ∈ L2(RN ) and (ẑ`1,n)2 ⇀ 0 weakly in L2(R4) by Lemma 3.5. By (3.14) and

(3.15), we obtain in (3.13) thatˆ
Ωn

(
∑
j∈I1

PnUj,n)2z2
1,n → 0 as n→∞. (3.16)

In a completely analogue way, we also haveˆ
Ωn

(
∑
j∈I2

PnUj,n)2z2
1,n → 0 as n→∞. (3.17)

Finally,∣∣∣∣∣
ˆ

Ωn

(
∑
j∈I1

PnUj,n)(
∑
j∈I2

PnUj,n)z1,nz2,n

∣∣∣∣∣ 6
∑
j∈I1

ˆ
Ωn

U2
j,nz

2
1,n

2∑
j∈I2

ˆ
Ωn

U2
j,nz

2
2,n

2

→ 0 (3.18)

as n→∞. But (3.13), estimates (3.16), (3.17) and (3.18) imply that

lim inf
n→∞


ˆ

Ωn

[
3(
∑
j∈I1

PnUj,n)2 + β(
∑
j∈I2

PnUj,n)2

]
z2

1,n

+2β

ˆ
Ωn

(
∑
j∈I1

PnUj,n)(
∑
j∈I2

PnUj,n)z1,nz2,n

 = 0,

in contradiction with Lemma 3.4. �

3.2. Estimates on the reminder term. In this subsection we prove the following

Proposition 3.6. Let η > 0. There exists ε0 > 0 and C > 0 such that

‖Rid,ε‖ 6 Cε
1
k+1

(
log

(
1

ε

))− 1
k+1

,

for i = 1, 2, for every d ∈ Xη and for every ε ∈ (0, ε0).
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Proof. We focus on i = 1. By continuity of Π⊥1 and of I∗, there exists C > 0 such that

‖R1
d,ε‖ 6 C

∥∥∥f(
∑
j∈I1

PεUj)−
∑
j∈I1

f(Uj) + β(
∑
j∈I1

PεUj)(
∑
j∈I2

PεUj)
2
∥∥∥
L

4
3

6 C
∥∥∥f(

∑
j∈I1

PεUj)−
∑
j∈I1

f(Uj)
∥∥∥
L

4
3

+ C
∥∥∥(
∑
j∈I1

PεUj)(
∑
j∈I2

PεUj)
2
∥∥∥
L

4
3

=: C(A+ B).

(3.19)

We estimate separately A and B. At first we note that

A 6
∥∥∥f(

∑
j∈I1

PεUj)−
∑
j∈I1

f(PεUj)
∥∥∥
L

4
3

+
∥∥∥∑
j∈I1

(f(PεUj)− f(Uj))
∥∥∥
L

4
3

=: A1 +A2. (3.20)

Recalling that f(s) = (s+)3, and using the fact that

(a1 + · · ·+ an)3 6
(
a3

1 + · · ·+ a3
n

)
+ Cn

∑
16j 6=h6n

a2
jah

for a positive constant Cn depending only on n, we obtain

A
4
3
1 6 C

ˆ
Ωε

∣∣∣ ∑
j 6=h
j,h∈I1

(PεUj)
2(PεUh)

∣∣∣ 43 6 C ∑
j 6=h
j,h∈I1

ˆ
Ωε

(U2
j Uh)

4
3 .

(3.21)

Let us fix j 6= h. Then, by Lemma A.4,

ˆ
Ωε

(U2
j Uh)

4
3 6

C
(
δh
δj

) 4
3

if h > j

C
(
δj
δh

) 4
3

if h < j.
(3.22)

Recalling (2.2), we see that if h > j and d ∈ Xη

δh
δj
6 C

(
ε
h−j
k+1

(
log

(
1

ε

))−h−jk+1

)
6 Cε

2
k+1

(
log

1

ε

)− 2
k+1

,

where C denotes a positive constant depending on η (but not on d) and we used the fact that
h − j > 2 since j, h ∈ I1 with j 6= h. The same estimate holds in case h < j. Plugging this into
(3.22), and coming back to (3.21), we finally conclude that

A1 6 Cε
2
k+1

(
log

1

ε

)− 2
k+1

6 Cε
1
k+1

(
log

1

ε

)− 1
k+1

. (3.23)

Regarding A2, we have

A2 6
∑
j∈I1

∥∥(PεUj)
3 − U3

j

∥∥
L

4
3
6
∑
j∈I1

(∥∥(Uj − PεUj)3
∥∥
L

4
3

+ C
∥∥U2

j (Uj − PεUj)
∥∥
L

4
3

)
. (3.24)

Using the estimate for Ui − PεUi contained in Lemma A.1 together with the fact that H(x, 0) in
bounded in Ω, we deduce that∥∥(Uj − PεUj)3

∥∥ 4
3

L
4
3

=

ˆ
Ωε

|Uj − PεUj |4 6 C
ˆ

Ωε

(
δ4
j +

(
ε

δj

)8 δ4
j

|x|8

)

6 Cδ4
j + C

ε8

δ4
j

ˆ R

ε

r−5 dr 6 C

(
δ4
j +

(
ε

δj

)4
)
.

(3.25)
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In a similar way∥∥U2
j (Uj − PεUj)

∥∥ 4
3

L
4
3
6 C

ˆ
Ωε

(
δ

4
3
j U

8
3
j (x) + δ

4
3
j

(
ε

δj

Uj(x)

|x|

) 8
3

)
dx

6 Cδ
8
3
j

ˆ
Ωε/δj

dx

(1 + |x|2)
8
3

+ C

(
ε

δj

) 8
3
ˆ

Ωε/δj

dx

(1 + |x|2)
8
3 |x| 83

6 C

(
δ

8
3
j +

(
ε

δj

) 8
3

)
.

(3.26)

Plugging (3.25) and (3.26) into (3.24), and recalling again Remark 2.1, we obtain

A2 6 C
∑
j∈I1

(
δ2
j +

(
ε

δj

)2
)
6 Cε

1
k+1

(
log

(
1

ε

))− 1
k+1

. (3.27)

Therefore, (3.20), (3.23) and (3.27) give

A 6 Cε
1
k+1

(
log

(
1

ε

))− 1
k+1

, (3.28)

and it remains to estimate B. By Lemma A.4

B 6 C
∑

(j,h)∈I1×I2

∥∥∥(PεUj)(PεUh)2
∥∥∥
L

4
3
6 C

∑
(j,h)∈I1×I2

∥∥∥UjU2
h

∥∥∥
L

4
3

= C
∑

(j,h)∈I1×I2

(ˆ
Ωε

U
4
3
j U

8
3

h

) 3
4

=

O
(
δj
δh

)
if j > h

O
(
δh
δj

)
if j < h,

(3.29)

and for any h > j we have

δh
δj
6 Cε

h−j
k+1

(
log

(
1

ε

))−h−jk+1

6 Cε
1
k+1

(
log

(
1

ε

))− 1
k+1

,

The same estimate holds for δj/δh in case j > h. Therefore, gathering (3.19), (3.28) and (3.29),
we obtain the desired result. �

3.3. The nonlinear part: end of the proof of Proposition 3.1. In virtue of Proposition 3.2,
solving the equation

Ld,ε(φ) = Rd,ε + Nd,ε(φ).

reduces to finding a fixed point of the operator

Td,ε(φ) := (Ld,ε)
−1

(Rd,ε + Nd,ε(φ)) .

in the ball

Bρ :=

{
φ ∈ K⊥d,ε : ‖φ‖H1

0
6 ρε

1
k+1

(
log

(
1

ε

))− 1
k+1

}
for some ρ > 0. It is quite standard to show that Td,ε : Bρ → Bρ is a contraction mapping for ε
small enough. Indeed, Proposition 3.2 together with straightforward computations lead to

‖Td,ε(φ)‖H1
0
6 C

(
‖Rd,ε‖H1

0
+ ‖Nd,ε(φ)‖H1

0

)
6 C

(
‖Rd,ε‖H1

0
+ ‖φ‖2H1

0

)
and

‖Td,ε(φ1 − φ2)‖H1
0
6 C

(
‖Nd,ε(φ1)−Nd,ε(φ2)‖H1

0

)
6 `‖φ1 − φ2‖H1

0
for some ` ∈ (0, 1).

A standard argument also shows that the map d→ φd,ε is of class C1.
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Remark 3.7. Suppose that, instead of dealing with the set of odd and even numbers of {1, . . . , k}
in the two equation case, we are dealing with system (1.4) with m equations and with a general
partition I1, . . . , Im satisfying (1)–(5). Having already splitted the original problem into 2m equa-
tions (see Remark 2.2), we can repeat the argument used for m = 2 without substantial changes,
using the fact that each set Ij does not contain consecutive integers.

4. Expansion of the reduced energy

Recall that the energy funcional is given by

Jε(u1, u2) =

2∑
i=1

ˆ
Ωε

(
|∇ui|2

2
− F (ui)

)
− β

2

ˆ
Ωε

u2
1u

2
2.

where F (s) = (s+)4/4. Recall that we denote f(s) := F ′(s) = (s+)3. For every η > 0 small fixed,

we introduce the reduced functional J̃ε : Xη → R as being

J̃ε(d) = Jε

∑
j∈I1

PεUδj + φd,ε1 ,
∑
j∈I2

PεUδj + φd,ε2


This is a C1 functional due to Proposition 3.1 and since δi depends on di via (2.2). Finding critical

point of J̃ε corresponds to find solutions of our original system, as we prove next.

Lemma 4.1. Given ε ∈ (0, ε0) and η > 0 small, let d ∈ Xη. We have that∑
j∈I1

PεUδj ,0 + φd,ε1 ,
∑
j∈I2

PεUδj ,0 + φd,ε2

 is a solution of (2.1)

if, and only if,

d is a critical point of J̃ε.

Proof. To simplify notations, define V d,ε
i :=

∑
j∈Ii PεUδj + φd,εi for i = 1, 2. From (2.2) we see

that

∂dl J̃ε(d) = ε
l

k+1

(
log

1

ε

) 1
2−

l
k+1

J ′ε(V
d,ε
1 , V d,ε

2 )[∂δlV
d,ε
1 , ∂δlV

d,ε
2 ] (4.1)

Hence, if (V d,ε
1 , V d,ε

2 ) solves (2.1) then J ′ε(V
d,ε
1 , V d,ε

2 ) = 0 and so J̃ ′ε(d) = 0. Conversely, assume

d ∈ Xη is a solution of J̃ ′ε(d) = 0. For i ∈ {1, 2} and l ∈ Ii, recalling that ψl := ∂δlUδl , we have
from (4.1) that

0 =J ′ε(V
d,ε
1 , V d,ε

2 )[∂δlV
d,ε
1 , ∂δlV

d,ε
2 ]

=J ′ε(V
d,ε
1 , V d,ε

2 )[
∑
j∈I1

Pε∂δlUδj + ∂δlφ
d,ε
1 ,

∑
j∈I2

Pε∂δlUδl + ∂δlφ
d,ε
2 ]

=∂δlJε(V
d,ε
1 , V d,ε

2 )[Pεψl] + J ′ε(V
d,ε
1 , V d,ε

2 )[∂δlφ
d,ε
1 , ∂δlφ

d,ε
2 ]

=〈V d,ε
i − I∗(f(V d,ε

i ) + βV d,ε
i

∑
j 6=i

(V d,ε
j )2), Pεψl〉

+

2∑
n=1

〈V d,ε
n − I∗(f(V d,ε

n ) + βV d,ε
n

∑
m 6=n

(V d,ε
m )2), ∂δlφ

d,ε
n 〉
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From (2.5), Proposition 3.1 and recalling that Ki is spanned by Pεψj for j ∈ Ii, we deduce the

existence of coefficients cji = cji (ε,d), j ∈ Ii such that

V d,ε
i − I∗(f(V d,ε

i ) + βV d,ε
i

∑
j 6=i

(V d,ε
j )2) =

∑
j∈Ii

cji δjPεψj , i = 1, 2. (4.2)

In conclusion, for i ∈ {1, 2} and l ∈ Ii,∑
j∈Ii

cji 〈δjPεψj , δlPεψl〉+

2∑
n=1

∑
j∈In

cjn〈δjPεψj , δl∂δlφd,εn 〉 = 0

A straightforward computation shows that

〈δjPψj , δlPψl〉 = o(1) for l 6= j, 〈δlPψl, δlPψl〉 = ‖δlPψl‖2 = σll + o(1) as ε→ 0

for some constant σll > 0 (see for instance [21, p. 417]). On the other hand, we have 〈Pεψj , ∂δlφd,εn 〉 =
o(1). Indeed, since φd,εn ∈ K⊥n (n = 1, 2), then 〈Pεψj , φd,εn 〉 = 0 for every d. Therefore, tak-
ing the derivative of the previous identity with respect to δl (l ∈ In), we get 〈Pεψj , ∂δlφd,εn 〉 =
−〈∂δlPεψj , φd,εn 〉. Combining (1.11) with Lemma A.3 we have ‖δl∂δlPεφj‖ = O(1), while Propo-
sition 3.1 yields ‖φd,εn ‖ = o(δ1). Therefore, 〈Pεψj , δl∂δlφd,εn 〉 = o(δ1) = o(1), as claimed. In
conclusion, we end up with a linear system of the form

cliσll +
∑

j∈Ii\{l}

cjio(1) +

2∑
n=1

∑
j∈In

cjno(1) = 0, i = 1, 2, l ∈ Ii

which, as ε→ 0, has the unique solution cji = 0 for every i = 1, 2, j ∈ Ii. Looking back at (4.2) we

see that (V d,ε
1 , V d,ε

2 ) solves (2.1), as we wanted. �

We now compute the leading term of the reduced energy. For simplicity, and when there is no

risk of confusion, we denote φi = φd,εi and Ui = Uδi . We have

J̃ε(d) = Jε

∑
j∈I1

PεUj + φ1,
∑
j∈I2

PεUj + φ2


=

2∑
i=1

ˆ
Ωε

1

2
|∇(
∑
j∈Ii

PεUj + φi)|2 − F (
∑
j∈Ii

PεUj + φi)

− β

2

ˆ
Ωε

(
∑
j∈I1

PεUj + φ1)2(
∑
j∈I2

PεUj + φ2)2

=

2∑
i=1

∑
j∈Ii

ˆ
Ωε

(
1

2
|∇PεUj |2 − F (PεUj)

)
− β

2

∑
i∈I1,j∈I2

ˆ
Ωε

(PεUi)
2(PεUj)

2 +R(d, ε)

=

k∑
i=1

ˆ
Ωε

(
1

2
|∇PεUi|2 −

1

4
(PεUi)

4

)
− β

2

∑
i∈I1,j∈I2

ˆ
Ωε

(PεUi)
2(PεUj)

2 +R(d, ε), (4.3)

where

R(d, ε) = Jε

∑
j∈I1

PεUj + φ1,
∑
j∈I2

PεUj + φ2

− ∑
i∈I1,j∈I2

Jε (PεUi, PεUj)

will be an higher order term.
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In what follows we show that the reduced energy reads as

J̃ε(d) = c1 + c2δ
2
1 + c3

(
ε

δk

)2

− βc4
k−1∑
i=1

(
δi+1

δi

)2

log
δi
δi+1

+ h.o.t.,

for some constants c1, c2, c3, c4 > 0. This yields the choice of parameters (2.2) (which for conve-
nience of the reader we recall)

δj := djε
j
k+1

(
log

1

ε

) 1
2−

j
k+1

with dj > 0 for j = 1, . . . , k.

and the existence of towers of bubbles as we want. Observe that, as ε→ 0,

δ2
1 ∼

(
ε

δk

)2

∼
(
δi+1

δi

)2

log
δi
δi+1

∼ ε
2
k+1

(
log

1

ε

) k−1
k+1

(see ahead for the details).

Lemma 4.2. Given i = 1, . . . , k we haveˆ
Ωε

(
1

2
|∇PεUi|2 −

1

4
(PεUi)

4

)
=
B

4
+
A2

2
τ(0)δ2

i +
Γ

2

(
ε

δi

)2

+ o(δ2
i ) + o

((
ε

δi

)2
)

as ε → 0, uniformly for every d ∈ Xη. We recall that A,B and Γ are defined in (1.12)–(1.13),
while τ is the Robin function (see the notation section).

Proof. We reason similarly to [20, Lemma 4.3], to which we refer for more details.
First of all, using (1.6), we have that

1

2

ˆ

Ωε

|∇PεUi|2 −
1

4

ˆ

Ωε

(PεUi)
4 =

1

2

ˆ

Ωε

(PεUi)U
3
i −

1

4

ˆ

Ωε

(PεUi)
4

=
1

4

ˆ

Ωε

U4
i +

1

2

ˆ

Ωε

(PεUi − Ui)U3
i −

1

4

ˆ

Ωε

((PεUi)
4 − U4

i ) (4.4)

Using a Taylor expansion up to second order, we have that

(PεUi)
4 − U4

i = 4U3
i (PεUi − Ui) + 6(Ui + ξ(PεUi − Ui))2(PεUi − Ui)2,

for some function ξ(x) ∈ [0, 1]. Therefore, we can rewrite (4.4) as

1

4

ˆ

Ωε

U4
i −

1

2

ˆ

Ωε

(PεUi − Ui)U3
i −

3

2

ˆ

Ωε

(Ui + ξ(PεUi − Ui))2(PεUi − Ui)2. (4.5)

We now estimate each one of the three terms separately. The first term in (4.5) is, after a change
of variables x = δiy and recalling that Ωε = Ω \Bε and ε/δi → 0,ˆ

Ωε

U4
i =

ˆ

Ωε

α4
4δ

4
i

(δ2
i + |x|2)4

dx =

ˆ

Ωε\δi

α4
4

(1 + |y|2)4
dy

= B +

ˆ

RN\(Ω/δi)

α4
4

(1 + |y|2)4
dy +

ˆ

Bε/δi

α4
4

(1 + |y|2)4
dy = B + O

(
δ4
i

)
+ O

((
ε

δi

)4
)

= B + o(δ2
i ) + o

((
ε

δi

)2
)

(4.6)
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As for the second term, we use the fact that

PεUi − Ui = −AδiH(x, 0)− α4

δi

ε2

|x|2
+R(x)

(by Lemma A.1, which we can apply since ε/δi → 0 as ε→ 0). We have

ˆ

Ωε

(PεUi − Ui)U3
i =

ˆ

Ωε

(−AδiH(x, 0)− α4ε
2

δi|x|2
)U3

i +

ˆ

Ωε

R(x)U3
i

=

ˆ

Ωε

α3
4δ

3
i

(δ2
i + |x|2)3

(−AδiH(x, 0)− α4ε
2

δi|x|2
) +

ˆ

Ωε

R(x)U3
i

= −A
ˆ

Ωε/δi

α3
4δ

2
i

(1 + |y|2)3
H(δiy, 0)−

ˆ

Ωε/δi

(
ε

δi

)2
α4

4

|y|2(1 + |y|2)3
+

ˆ

Ωε

R(x)U3
i

= −A2τ(0)δ2
i − Γ

(
ε

δi

)2

+ o(δ2
i ) + o

((
ε

δi

)2
)

(4.7)

where we have used the estimates for the remainder term R contained in Lemma A.1.
As for the last term in (4.5), since 0 6 PεUi 6 Ui (by the maximum principle) and ξ(x) ∈ [0, 1],

we have 0 6 Ui + ξ(PUi − Ui) 6 Ui. Combining this with Lemma A.2 and since ε/δi → 0,∣∣∣∣∣∣
ˆ

Ωε

(Ui + ξ(PUi − Ui))2(PUi − Ui)2

∣∣∣∣∣∣ 6
ˆ

Ωε

U2
i (PUi − Ui)2 = O

(
δ4
i | log δi|+

(
ε

δi

)4 ∣∣∣∣log

(
ε

δi

)∣∣∣∣
)

= o(δ2
i ) + o

((
ε

δi

)2
)
. (4.8)

The result follows combining (4.5) with (4.6)–(4.7)–(4.8). �

Corollary 4.3. The following estimate holds

k∑
i=1

ˆ
Ωε

1

2
|∇PεUi|2 −

1

4
(PεUi)

4 dx = k
B

4
+
A2

2
τ(0)δ2

1 +
Γ

2

(
ε

δk

)2

+ o(δ2
1) + o

((
ε

δk

)2
)

= k
B

4
+

(
A2

2
τ(0)d2

1 +
Γ

2

(
1

dk

)2
)
ε

2
k+1

(
log

1

ε

) k−1
k+1

+ o

(
ε

2
k+1

(
log

1

ε

) k−1
(k+1)

)
as ε→ 0, uniformly for every d ∈ Xη.

Proof. From the previous lemma we see that

k∑
i=1

ˆ
Ωε

1

2
|∇PεUi|2−

1

4
(PεUi)

4 dx = k
B

4
+
A2

2
τ(0)

k∑
i=1

δ2
i +

Γ

2

k∑
i=1

(
ε

δi

)2

+

k∑
i=1

(
o(δ2

i ) + o

((
ε

δi

)2
))

and the first identity of the lemma follows because d ∈ Nη and δi = o(δ1) for every i ∈ {2, . . . , k}
(recall Remark 2.1), which implies that ε2/δ2

i = o(ε2/δ2
k) for i ∈ {1, . . . , k − 1} as ε → 0. The

second identity follows directly from the definition of di (see (2.2)). �
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Lemma 4.4. Given i, j ∈ {1, . . . , k} with i > j, we have

ˆ
Ωε

(PεUi)
2(PεUj)

2 = α4
4|S3|

(
δi
δj

)2

log
δj
δi

+ o

((
δi
δj

)2

log
δj
δi

)

as ε→ 0, uniformly for every d ∈ Xη.

Proof. First, we rewrite

ˆ

Ωε

(PεUi)
2(PεUj)

2 =

ˆ

Ωε

U2
i U

2
j +

ˆ

Ωε

(
(PεUi)

2(PεUj)
2 − (Ui)

2(Uj)
2
)

=

ˆ

Ωε

U2
i U

2
j + h.o.t.

(by Lemma A.1). We estimate the leading term as follows: for ε > 0 small and r > 0 such that
Bε ⊂ Br ⊂ Ω and ε <

√
δiδj ,

ˆ

Ωε

U2
i U

2
j =

ˆ

{ε6|x|6
√
δiδj}

U2
i U

2
j

︸ ︷︷ ︸
(I)

+

ˆ

{
√
δiδj6|x|6r}

U2
i U

2
j

︸ ︷︷ ︸
(II)

+

ˆ

Ω\Br

U2
i U

2
j

︸ ︷︷ ︸
(III)

.

Asymptotic estimate of (I): scaling x = δiy,

(I) =

ˆ

{ε6|x|6
√
δiδj}

U2
i U

2
j = α4

4δ
2
i δ

2
j

ˆ

{ε6|x|6
√
δiδj}

1

(δ2
i + |x|2)

2

1(
δ2
j + |x|2

)2 dx
= α4

4δ
2
i δ

2
j

ˆ
{
ε
δi

6|y|6
√
δj
δi

}
1

(1 + |y|2)
2

1(
δ2
j + δ2

i |y|2
)2 dy

= α4
4

(
δi
δj

)2 ˆ
{
ε
δi

6|y|6
√
δj
δi

}
1

(1 + |y|2)
2

1

(1 + (δi/δj)2|y|2)
2 dy (4.9)

We have:
ˆ

{
ε
δi

6|y|6
√
δj
δi

}
1

(1 + |y|2)
2

1

(1 + (δi/δj)2|y|2)
2 dy

=

ˆ
{
ε
δi

6|y|6
√
δj
δi

}
1

(1 + |y|2)
2 dy

︸ ︷︷ ︸
(I.a)

+

ˆ
{
ε
δi

6|y|6
√
δj
δi

}
1

(1 + |y|2)
2

(
1

(1 + (δi/δj)2|y|2)
2 − 1

)
dy

︸ ︷︷ ︸
(I.b)

.

The first term can be estimated as follows:
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(I.a) = |S3|

√
δj
δiˆ

ε
δi

r3

(1 + r2)
2 dr =

1

2
|S3|

[
1

1 + r2
+ log(1 + r2)

]r=√ δj
δi

r= ε
δi

=
1

2
|S3|

(
1

1 + δj/δi
− 1

1 + ε2/δ2
i

+ log

(
1 +

δj
δi

)
− log

(
1 +

ε2

δ2
i

))
=

1

2
|S3| log

δj
δi

+ o

(
log

δj
δi

)
,

since, as δj/δi →∞ (i > j) and ε/δi → 0 (recall Remark 2.1):

1

1 + δj/δi
− 1

1 + ε2/δ2
i

= −1 + o(1) = o

(
log

δj
δi

)
, log (1 + δj/δi) = log

δj
δi

+ o

(
log

δj
δi

)

and

log(1 + ε2/δ2
i ) = o(1) = o

(
log

δj
δi

)
.

As for the second term, because (δi/δj)|y| 6
√
δi/δj 6 c for |y| 6

√
δj/δi, as ε→ 0, and recalling

the computation done for (I.a), we have

|(I.b)| =
ˆ

{
ε
δi

6|y|6
√
δj
δi

}
1

(1 + |y|2)
2

(
|(δi/δj)4|y|4 + 2(δi/δj)

2|y|2

(1 + (δi/δj)2|y|2)
2

)
dy

6 c′
δi
δj

ˆ
{
ε
δi

6|y|6
√
δj
δi

}
1

(1 + |y|2)
2 dy 6 c

′′ δi
δj

log
δj
δi

= o

(
log

δj
δi

)
.

Combining the expansions of (I.a) and (I.b) with (4.9) yields, in conclusion, that

(I) =
α4

4

2
|S3|

(
δi
δj

)2

log
δj
δi

+ o

((
δi
δj

)2

log
δj
δi

)
.

Asymptotic estimate of (II): by using this time the scaling x = δjy and the fact that

ˆ
1

r(1 + r2)2
dr = log r − 1

2
log(1 + r2) +

1

2(1 + r2)
,
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we have

(II) =

ˆ

{
√
δiδj6|x|6r}

U2
i U

2
j = α4

4δ
2
i δ

2
j

ˆ

{
√
δiδj6|x|6r}

1

(δ2
i + |x|2)

2

1(
δ2
j + |x|2

)2 dx
= α4

4δ
2
i δ

2
j

ˆ
{√

δi
δj

6|y|6 r
δj

}
1(

δ2
i + δ2

j |y|2
)2 1

(1 + |y|2)
2 dy

= α4
4

(
δi
δj

)2 ˆ
{√

δi
δj

6|y|6 r
δj

}
1

((δi/δj)2 + |y|2)
2

1

(1 + |y|2)
2 dy

= α4
4

(
δi
δj

)2 ˆ
{√

δi
δj

6|y|6 r
δj

}
1

|y|4 (1 + |y|2)
2 dy + o

((
δi
δj

)2

log
δj
δi

)

= α4
4

(
δi
δj

)2

|S3|

r
δjˆ

√
δi
δj

1

r(1 + r2)2
dr + o

((
δi
δj

)2

log
δj
δi

)

=
α4

4

2
|S3|

(
δi
δj

)2

log
δj
δi

+ o

((
δi
δj

)2

log
δj
δi

)
.

Asymptotic estimate of (III):

0 6
ˆ

Ω\Br

U2
i U

2
j = α4

4δ
2
i δ

2
j

ˆ

Ω\Br

1

(δ2
i + |y|2)2

1

(δ2
j + |y|2)2

= α4
4

(
δi
δj

)2 ˆ

Ω\Br

1

(δ2
i + |y|2)2

1

(1 + δ−2
j |y|2)2

6 α4
4

(
δi
δj

)2 ˆ

Ω\Br

1

|y|4
6 c

(
δi
δj

)2

= o

((
δi
δj

)2

log
δj
δi

)
.

By combining the estimates of (I), (II) and (III) we deduce that

ˆ

Ωε

U2
i U

2
j = α4

4|S3|
(
δi
δj

)2

log
δj
δi

+ o

((
δi
δj

)2

log
δj
δi

)

which yields the desired conclusion. �

Corollary 4.5. We have, as ε→ 0, uniformly for every d ∈ Xη,

∑
i∈I1,j∈I2

ˆ

Ωε

(PεUi)
2(PεUj)

2 = α4
4|S3|

k−1∑
i=1

(
δi+1

δi

)2

log
δi
δi+1

+

k−1∑
i=1

o

((
δi+1

δi

)2

log
δi
δi+1

)

=
α4

4

k + 1
|S3|

k−1∑
i=1

(
di+1

di

)2

ε
2
k+1

(
log

1

ε

) k−1
k+1

+ o

(
ε

1
k+1

(
log

1

ε

) k−1
(k+1)

)
(4.10)
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Proof. The first identity is a simple consequence of the previous lemma together with the fact that
δl = o(δi) as ε → 0, for l > i. In fact, since each one of the sets I1 and I2 do not contain two
consecutive integers, and that given i > j with |i− j| > 1 it holds

(
δi
δj

)2

log
δj
δi

= o

((
δj+1

δj

)2

log
δj
δj+1

)
,

then

∑
i∈I1,j∈I2

ˆ

Ωε

(PεUi)
2(PεUj)

2 =
∑

i∈I1,j∈I2

(
α4

4|S3|
(
δi
δj

)2

log
δj
δi

+ o

((
δi
δj

)2

log
δj
δi

))

= α4
4|S3|

k−1∑
i=1

(
δi+1

δi

)2

log
δi
δi+1

+

k−1∑
i=1

o

((
δi+1

δi

)2

log
δi
δi+1

)
.

The last identity of the statement is a consequence of the definition of δi and the fact that

(
δi+1

δi

)2

log
δi
δi+1

=

(
di+1

di

)2

ε
2
k+1

(
log

1

ε

)− 2
k+1

log

(
di
di+1

(
1

ε

) 1
k+1
(

log
1

ε

) 1
k+1

)

=
1

k + 1

(
di+1

di

)2

ε
2
k+1

(
log

1

ε

) k−1
k+1

+ o

(
ε

2
k+1

(
log

1

ε

) k−1
k+1

)
�

Lemma 4.6. We have

R(d, ε) = o(δ2
1) = o

(
ε

2
k+1

(
log

1

ε

) k−1
k+1

)
(4.11)

as ε→ 0, uniformly for every d ∈ Xη.

Proof. Recall that F (s) = (s+)4/4, and we denote f(s) := F ′(s) = (s+)3. We have

R(d, ε) =Jε

∑
j∈I1

PεUj + φ1,
∑
j∈I2

PεUj + φ2

− ∑
i∈I1,j∈I2

Jε (PεUi, PεUj)

=
1

2

2∑
i=1

∑
j,k∈Ii
j 6=k

ˆ
Ωε

∇PεUj · ∇PεUk +
1

2

2∑
i=1

ˆ
Ωε

|∇φi|2 +

2∑
i=1

∑
j∈Ii

ˆ
Ωε

∇PεUj · ∇φi

+

2∑
i=1

ˆ
Ωε

∑
j∈Ii

F (PεUj)− F (
∑
j∈Ii

PεUj + φi)


+
β

2

∑
i∈I1,j∈I2

ˆ
Ωε

(PεUi)
2(PεUj)

2 − β

2

ˆ
Ωε

(
∑
j∈I1

PεUj + φ1)2(
∑
j∈I2

PεUj + φ2)2
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Recalling the definition of Pε from (1.6) and adding and subtracting terms of type F (
∑
j∈Ii PεUj)

and f(
∑
j∈Ii PεUj)φi, we have

1

2

2∑
i=1

∑
j,k∈Ii
j 6=k

ˆ
Ωε

∇PεUj · ∇PεUk +
1

2

2∑
i=1

ˆ
Ωε

|∇φi|2 +

2∑
i=1

∑
j∈Ii

ˆ
Ωε

∇PεUj · ∇φi

+

2∑
i=1

ˆ
Ωε

∑
j∈Ii

F (PεUj)− F (
∑
j∈Ii

PεUj + φi)


=

1

2

2∑
i=1

∑
j,k∈Ii
j 6=k

ˆ
Ωε

U3
j PεUk dx+

2∑
i=1

ˆ
Ωε

∑
j∈Ii

F (PεUj)− F (
∑
j∈Ii

PεUj)



+
1

2

2∑
i=1

ˆ
Ωε

|∇φi|2 −
2∑
i=1

ˆ
Ωε

F (
∑
j∈Ii

PεUj + φi)− F (
∑
j∈Ii

PεUj)− f(
∑
j∈Ii

PεUj)φi


+

2∑
i=1

ˆ
Ωε

∑
j∈Ii

f(Uj)− f(
∑
j∈Ii

PεUj)

φi.

Moreover,

β

2

∑
i∈I1,j∈I2

ˆ
Ωε

(PεUi)
2(PεUj)

2 − β

2

ˆ
Ωε

(
∑
j∈I1

PεUj + φ1)2(
∑
j∈I2

PεUj + φ2)2

=− β

2

ˆ

Ωε

∑
i,j∈I1
i 6=j

∑
k,l∈I2
k 6=l

PεUiPεUjPεUkPεUl −
β

2

ˆ

Ωε

2∑
i,j=1

i 6=j

∑
k,l∈Ii

PεUkPεUl
∑
m∈Ij

PεUmφj

− β

2

ˆ

Ωε

2∑
i,j=1

i 6=j

∑
k,l∈Ii

PεUkPεUlφ
2
j −

β

2

ˆ

Ωε

4
∑

i∈I1,j∈I2

PεUiPεUjφ1φ2

− β

2

ˆ

Ωε

2

2∑
i,j=1

i6=j

∑
k∈Ii

PεUkφiφ
2
j −

β

2

ˆ

Ωε

φ2
1φ

2
2.

Let us rewrite R(d, ε) as
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R(d, ε) =
1

2

2∑
i=1

∑
j,h∈Ii
j 6=h

ˆ
Ωε

U3
j PεUh −

β

2

ˆ

Ωε

∑
i,j∈I1
i 6=j

∑
h,l∈I2
h 6=l

PεUiPεUjPεUhPεUl

︸ ︷︷ ︸
:=a1

+

ˆ

Ωε

2∑
i=1

ˆ
Ωε

∑
j∈Ii

F (PεUj)− F (
∑
j∈Ii

PεUj)


︸ ︷︷ ︸

=:a2

+

2∑
i=1

ˆ
Ωε

F (
∑
j∈Ii

PεUj)− F (
∑
j∈Ii

PεUj + φi) + f(
∑
j∈Ii

PεUj)φi


︸ ︷︷ ︸

:=a3

+

2∑
i=1

ˆ
Ωε

∑
j∈Ii

f(Uj)− f(
∑
j∈Ii

PεUj)

φi −
β

2

ˆ

Ωε

2∑
i,j=1

i 6=j

2
∑
h,l∈Ii

PεUhPεUl
∑
m∈Ij

PεUmφj

︸ ︷︷ ︸
:=a4

−β
2

ˆ

Ωε

2∑
i,j=1

i6=j

∑
h,l∈Ii

PεUhPεUlφ
2
j −

β

2

ˆ

Ωε

4
∑

i∈I1,j∈I2

PεUiPεUjφ1φ2

︸ ︷︷ ︸
:=a5

− β

2

ˆ

Ωε

2

2∑
i,j=1

i6=j

∑
h∈Ii

PεUhφiφ
2
j +

1

2

2∑
i=1

ˆ
Ωε

|∇φi|2 −
β

2

ˆ

Ωε

φ2
1φ

2
2

︸ ︷︷ ︸
=:a6

.

Estimates for a1, a2. First of all, we check that the first two terms satisfy a1, a2 = o(δ2
1). Indeed,

since 0 6 PεUi 6 Ui (by the maximum principle), a1 + a2 is controlled by a sum of terms of the
form

´
Ωε
PεUiPεUjPεUhPεUl for indices j, l, h, i not all equal at the same time; each term is of

higher order with respect to the leading term δ2
1 , as we will now check. Indeed, if i 6= j we have

by Lemma A.4 that

ˆ

Ωε

U3
i Uj =


O

(
δi
δj

)ˆ
Ωε/δi

1

(1 + |y|2)3
= O

(
δi
δj

)
if i > j

O

(
δj
δi

)ˆ
Ωε/δi

1

(1 + |y|2)3|y|2
= O

(
δj
δi

)
if j > i.

= o(δ2
1)

because we are always in a situation that i, j belong to the same set Ih, thus |i− j| > 1, and then
by the choices we did in (2.2),

δi
δj

= O

(
ε
i−j
k+1

(
ln

1

ε

)− i−j
k+1

)
= o

(
δ2
1

)
whenever i− j > 2.
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Moreover, if i 6= j, then assuming without loss of generality that i > j with |i− j| > 1 we have by
Lemma A.5

ˆ

Ωε

U2
i U

2
j = O

(
δ2
i

δ2
j

| log δi|

)
= o

(
δi
δj

)
= o(δ2

1).

(note that this term only appears in a2). In a similar way, if i, j, l ∈ Ih for some h ∈ {1, 2}, then
|i− j|, |i− l|, |j − l| > 1 and

ˆ

Ωε

U2
i UjUldx =

ˆ

Ωε

α2
4δ

2
i

(δ2
i + |x|2)2

α4δj
δ2
j + |x|2

α4δl
δ2
l + |x|2

dx =

ˆ

Ωε/δi

α4
4δ

2
i δjδ`

(1 + |y|2)2(δ2
j + δ2

i |y|2)(δ2
l + δ2

i |y|2)
dy

=


O
(
δjδl
δ2i
| log δi|

)
if i < j < l

O
(
δl
δj

)
if j < i < l

O
(
δ2i
δjδl
| log δi|

)
if j < l < i

= o(δ2
1)

(note that this term only appears in a2).Finally, if all the indices are different, then assuming
without loss of generality that i > j > h > l,

ˆ

Ωε

UiUjUhUl dx =

ˆ
Ωε

α4δi
δ2
i + |x|2

α4δj
δ2
j + |x|2

α4δh
δ2
h + |x|2

α4δl
δ2
l + |x|2

dx

6
ˆ

Ωε/δi

α4
4δ

3
i δjδhδl

(1 + |y|2)δ2
hδ

2
l |y|2

dy = O

(
δ2
1

δi
δh

δj
δl
| log δi|

)
dy = o(δ2

1).

Estimates for a3. Arguing as in the proof of Lemma 7.2 in [12] (see equation (7.6) therein), the
term a3 is quadratic in φ1 and φ2, and so by Proposition 3.1 it satisfies a2 = o(δ2

1).

Estimates for a4. The first term in a4 can be estimated as

|
ˆ

Ωε

∑
j∈Ii

f(Uj)− f(
∑
j∈Ii

PεUj)

φi dx| 6 ‖
∑
j∈Ii

f(Uj)− f(
∑
j∈Ii

PεUj)‖
L

4
3 (Ωε)

‖φi‖L4(Ωε)

= O(δ2
1)‖φi‖H1

0 (Ωε) = o(δ2
1),

because, by (3.28),

‖
∑
j∈Ii

f(Uj)− f(
∑
j∈Ii

PεUj)‖
L

4
3 (Ωε)

= O(δ2
1).
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(this term corresponds to the quantity A defined in the proof of Proposition 3.6). As for the second
term in a4, given i, j ∈ {1, 2} with i 6= j and h, l ∈ Ii with h < l, m ∈ Ij , by Lemma A.6 we have∣∣∣∣∣∣

ˆ

Ωε

PεUhPεUlPεUmφj

∣∣∣∣∣∣ 6 ‖PεUhPεUlPεUm‖L4/3‖φj‖L4 6 ‖UhUlUm‖L4/3‖φj‖L4

=


O
(
δl
δh

)
‖φj‖H1

0
if h < l < m

O
(
δm
δk

)
‖φj‖H1

0
if h < m < l

O
(
δh
δm

)
‖φj‖H1

0
if m < h < l

= o(δ2
1)

since, for instance when h < l < m,

O

(
δl
δh

)
‖φj‖H1

0
δ−2
1 = O(1)εl−h−1

(
ln

1

ε

)− k+l−hh+1

→ 0. (4.12)

Estimates for a5. Starting from the first term, by Proposition 3.1 and Lemma A.5 we see that,
given i, j ∈ {1, 2} with i 6= j, and h, l ∈ Ii with h < l,∣∣∣∣∣∣

ˆ

Ωε

PεUhPεUlφ
2
j

∣∣∣∣∣∣ 6 C‖UhUl‖L2‖φj‖2H1
0

= o

(
δlδ

2
1

δh

)
= o(δ2

1).

Similarly, the second term in a5 is also an o(δ2
1).

Estimates for a6. We have, by Proposition 3.1 and Lemma (A.3),∣∣∣∣∣∣
ˆ

Ωε

PεUhφiφ
2
j

∣∣∣∣∣∣ 6 C‖Uh‖L4‖φ‖3H1
0

= o(δ2
1)

while the second and third terms in a6 are respectively of second and fourth order in φ, thus an
o(δ2

1). This ends the proof. �

As a direct consequence of (4.3), Corollary 4.3, Corollary 4.5 and Lemma 4.6, we have the
following result, which gives us the leading term of the expansion of the reduced energy.

Proposition 4.7. We have

J̃ε(d) = k
B

4
+

(
A2

2
τ(0)d2

1 +
Γ

2

(
1

dk

)2

− β

2

α4
4

k + 1
|S3|

k−1∑
i=1

(
di+1

di

)2
)
ε

2
k+1

(
log

1

ε

) k−1
k+1

+ o

(
ε

2
k+1

(
log

1

ε

) k−1
k+1

)
(4.13)

as ε→ 0, uniformly in d ∈ Xη.

Remark 4.8. Suppose that, instead of dealing with the set of odd and even numbers of {1, . . . , k}
in the two equation case, we are dealing with system (1.4) with m equations and with a general
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partition I1, . . . , Im satisfying (1)–(5). Then the reduced energy reads as

J̃ε(d) = Jε

∑
j∈I1

PεUδj + φd,ε1 , . . . ,
∑
j∈Im

PεUδj + φd,εm


=

k∑
i=1

ˆ
Ωε

(
1

2
|∇PεUi|2 −

1

4
(PεUi)

4

)
− β

2

k∑
h1,h2=1

h1 6=h2

∑
i∈Ih1
j∈Ih2

ˆ

Ωε

(PεUi)
2(PεUj)

2 +R(d, ε)

with

R(d, ε) = Jε

∑
j∈I1

PεUδj + φd,ε1 , . . . ,
∑
j∈Im

PεUδj + φd,εm

− k∑
h1,h2=1

h1 6=h2

∑
i∈Ih1
j∈Ih2

Jε (PεUi, PεUj)

With an analogous proof of the one of Lemma 4.1, we can show that critical points of this functional
correspond to solutions of (1.4). The choice of rates is still (2.2) in the general case. As pointed
out in the proofs of Corollary 4.5 and Lemma 4.6, besides the exact shape of the rates, the other
crucial step is that each set Ih does not contain two consecutive integers. Since this property is
valid for a general partition (it corresponds to property (5)), it is straightforward to adapt the
proofs of these results and show that the quantity

k∑
h1,h2=1

h1 6=h2

∑
i∈Ih1
j∈Ih2

ˆ

Ωε

(PεUi)
2(PεUj)

2

has the asymptotic expansion (4.10), and that R satisfies (4.11). Combining this with Corollary
4.3 yields that, in the general case, the reduced expression has the exact same expansion, namely
(4.13).

5. Proof of the main result

In this section we conclude the proof of Theorem 1.3. Define Ψ : (R+)k → R as

Ψ(x1, . . . , xk) = a1x1 +
a2

xk
+ a3

k−1∑
i=1

xi+1

xi

where, since β < 0,

a1 =
A2

2
τ(0) > 0, a2 =

Γ

2
> 0, a3 = −β

2

α4
4

k + 1
|S3| > 0.

Lemma 5.1. The function Ψ achieves a unique global minimum at (x∗1, . . . , x
∗
k), with

x∗i :=

(
a2

a3

) i
k+1
(
a3

a1

) k+1−i
k+1

= Γ
i

k+1
(
A2τ(0)

) i−1−k
k+1

(
|β|α4

4|S3|
k + 1

) k+1−2i
k+1

> 0

for i = 1, . . . , k. In particular, the conclusion of Theorem 1.3 holds true.

Proof. First of all, observe that

Ψ(x)→∞ as |x| → ∞,
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since a1, a2, a3 > 0 and a1x1 → ∞ if x1 → ∞, xi+1/xi → ∞ if xi+1 → ∞ and xi is bounded.
Moreover, given x̄ ∈ (R+

0 )k with x̄i = 0,

Ψ(x)→∞ as x→ x̄,

since in this case at least one of the k + 1 terms in the expression of Ψ divergences to ∞. In
conclusion, Ψ admits a global minimum. Let us see next that it is unique, and deduce its expression.

We have

∂Ψ

∂x1
= a1 − a3

x2

x2
1

, ,
∂Ψ

∂xk
= − a2

x2
k

+
a3

xk−1

and

∂Ψ

∂xj
= a3

(
1

xj−1
− xj+1

x2
j

)
. (j = 2, . . . , k − 1)

Hence, at a critical point,

x2
1a1 = a3x2, x2

j = xj−1xj+1 (j = 2, . . . , k − 1), a3x
2
k = a2xk−1

which yields, by direct substitution,

xj =

(
a1

a3

)j−1

xj1 (j = 2, . . . , k), a3

(
a1

a3

)2k−2

x2k
1 = a2

(
a1

a3

)k−2

xk−1
1 .

The last identity gives

x1 =

(
a2

a3

) 1
k+1
(
a3

a1

) k
k+1

,

and the rest of the proof follows. �

End of the proof of Theorem 1.3. From the definition of Ψ and by Proposition 4.7, we have

J(d) = k
B

4
+ ε

2
k+1

(
log

1

ε

) k−1
k+1 (

Ψ(d2
1, . . . , d

2
k) + o(1)

)
where o(1) → 0 as ε → 0, uniformly in d ∈ Xη. Let d∗i :=

√
x∗i (cf. Lemma 5.1), and take η > 0

small enough so that (d∗1, . . . , d
∗
k) ∈ Xη. LetK b Xη be a compact set such that ((d∗1)2, . . . , (d∗k)2) ∈

intK and

Ψ((d∗1)2, . . . , (d∗k)2) = min
K

Ψ < min
∂K

Ψ.

Then

min
K

Jε 6 Jε(d
∗) < min

∂K
Jε

Therefore Jε|K has a minimizer dε, which converves to d∗ (by the uniqueness stated in Lemma
5.1). Thus J ′ε(d

∗) = 0. By invoking Lemma 4.1, the proof is finished. �

Remark 5.2. The proof of the general case, Theorem 1.1, follows exactly in the same way since,
as we commented on Remark 4.8, the reduced functional is the same as in the two equation case.
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Appendix A. Asymptotic estimates

In this appendix we collect several important asymptotic estimates which are used in the pa-
per.We assume in every statement that N = 4, that is, Ω ⊂ R4.

The following two results are taken from [12], see Lemmas 3.1 and 3.2 therein.

Lemma A.1. Let a ∈ Ω, r > 0, and τ ∈ R4. Assume that ξ = a + δτ , with δ = δ(ε) → 0 and
ε/δ → 0 as ε→ 0+. Then, for A =

´
RN U

3
1,0 = α4

γ4
and R defined by

PεUδ,ξ = Uδ,ξ −AδH(x, ξ)− α4

δ(1 + |τ |2)

(
rε

|x− a|

)2

+R(x)

there exists C = C(τ, dist(a, ∂Ω)) > 0 such that, for any x ∈ Ω \Brε(a),

|R(x)| 6 Cδ
[
ε2(1 + εδ−3)

|x− a|2
+ δ2 +

(ε
δ

)2
]

|∂δR(x)| 6 C
[
ε2(1 + εδ−3)

|x− a|2
+ δ2 +

(ε
δ

)2
]

|∂τiR(x)| 6 Cδ2

[
ε2(1 + εδ−4)

|x− a|2
+ δ2 +

ε2

δ3

]
Lemma A.2. Under the assumptions and notations of the previous lemma, we have the following
estimate: ˆ

Ωε

U2
δ,ξ(PεUδ,ξ − Uδ,ξ)2 = O

(
δ4| log δ|+

(ε
δ

)4

| log
ε

δ
|
)
.

The following concerns the asymptotic study of Lq norms of the bubble. For the proof, see for
instance [20, Lemma A.3] or [21, Lemma A.2].

Lemma A.3. We have, as δ → 0,

ˆ
Ω

Uqδ =


O(δq) if 0 < q < 2,

O(δ2| log δ|) if q = 2,

O(δ4−q) if 2 < q <∞, q 6= 4,

O(1) if q = 4.

The following lemmas will be used many times in order to estimate interaction integrals.

Lemma A.4. Let 1 < q < 2 < p be such that p + q = 4. Let ρ1 = ρ1(ε) > 0, ρ2 = ρ2(ε) > 0, be
such that

ρ2

ρ1
→ 0,

ε

ρ1
→ 0,

ε

ρ2
→ 0

as ε→ 0+. Then

ˆ
Ωε

Upρ1U
q
ρ2 = O

((
ρ2

ρ1

)q)
, and

ˆ
Ωε

Upρ2U
q
ρ1 = O

((
ρ2

ρ1

)q)
.
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Proof. We proceed by direct computations:ˆ
Ωε

Upρ1U
q
ρ2 = α4

4

ˆ
Ωε

(
ρ1

ρ2
1 + |x|2

)p(
ρ2

ρ2
2 + |x|2

)q
dx

= α4
4ρ

4−p
1

ˆ
Ωε/ρ1

(
1

1 + |y|2

)p(
ρ2

ρ2
2 + ρ2

1|y|2

)q
dy

6 α4
4

(
ρ2

ρ1

)q ˆ
Ωε/ρ1

(
1

1 + |y|2

)p
1

|y|2q
dy

6 α4
4

(
ρ2

ρ1

)q ˆ
R4

(
1

1 + |y|2

)p
1

|y|2q
dy = O

((
ρ2

ρ1

)q)
,

as desired. Analogouslyˆ
Ωε

Upρ2U
q
ρ1 = α4

4

ˆ
Ωε

(
ρ2

ρ2
2 + |x|2

)p(
ρ1

ρ2
1 + |x|2

)q
dx

= α4
4ρ

4−p
2

ˆ
Ωε/ρ2

(
1

1 + |y|2

)p(
ρ1

ρ2
1 + ρ2

2|y|2

)q
dy

6 α4
4

(
ρ2

ρ1

)q ˆ
Ωε/ρ2

(
1

1 + |y|2

)p
dy

6 α4
4

(
ρ2

ρ1

)q ˆ
R4

(
1

1 + |y|2

)p
dy = O

((
ρ2

ρ1

)q)
. �

Lemma A.5. Let ρ1 = ρ1(ε) > 0, ρ2 = ρ2(ε) > 0, be such that

ρ2

ρ1
→ 0,

ε

ρ1
→ 0,

ε

ρ2
→ 0

as ε→ 0+. Then ˆ
Ωε

U2
ρ1U

2
ρ2 = O

(
ρ2

ρ1
| log ρ2|

)
.

Proof. We have ˆ
Ωε

U2
ρ1U

2
ρ2 = α4

4

ˆ
Ωε

(
ρ1

ρ2
1 + |x|2

)2(
ρ2

ρ2
2 + |x|2

)2

dx

= α4
4ρ

2
1ρ

2
2

ˆ
Ωε/ρ2

(
1

ρ2
1 + ρ2

2|y|2

)2(
1

1 + |y|2

)2

dx

6 α4
4

(
ρ2

ρ1

)2 ˆ
Ωε/ρ2

dy

(1 + |y|2)2
.

Since Ω is bounded, there exists a sufficiently large radius R > 0 such thatˆ
Ωε/ρ2

dy

(1 + |y|2)2
6
ˆ
BR/ρ2

dy

(1 + |y|2)2
6 C + C

ˆ R/ρ2

1

r−1 dr = C + C log
R

ρ2
.

To sum up ˆ
Ωε

U2
ρ1U

2
ρ2 6 α

4
4

(
ρ2

ρ1

)2(
C + C log

R

ρ2

)
,

and the thesis follows. �
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Lemma A.6. Let ρ1 = ρ1(ε) > 0, ρ2 = ρ2(ε) > 0, ρ3 = ρ3(ε) > 0 be such that
ρj
ρi
→ 0 if 1 6 i < j 6 3,

ε

ρh
→ 0 for every h,

as ε→ 0+. Then ˆ
Ωε

(Uρ1Uρ2Uρ3)
4
3 = O

((
ρ2

ρ1

) 4
3

)
as ε→ 0+.

Proof. Again, by direct computations
ˆ

Ωε

(Uρ1Uρ2Uρ3)
4
3 = α4

4

ˆ
Ωε

(
ρ1ρ2ρ3

(ρ2
1 + |x|2)2(ρ2

2 + |x|2)2(ρ2
3 + |x|2)

) 4
3

dx

= α4
4(ρ2

3ρ1ρ2)
4
3

ˆ
Ωε/ρ3

dy

(1 + |y|2)
4
3 (ρ2

1 + ρ2
3|y|2)

4
3 (ρ2

2 + ρ2
3|y|2)

4
3

6 α4
4

(
ρ2

ρ1

) 4
3
ˆ
R4

dy

(1 + |y|2)
4
3 |y| 83

. �

References
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