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The Galactic flux of cosmic-ray (CR) positrons in the GeV to TeV energy range is very likely due to
different Galactic components. One of these is the inelastic scattering of CR nuclei with the atoms of the
interstellar medium. The precise amount of this component determines the eventual contribution from other
sources. We present here a new estimation of the secondary CR positron flux by incorporating the latest
results for the production cross sections of e� from hadronic scatterings calibrated on collider data. All the
reactions for CR nuclei up to silicon scattering on both hydrogen and helium are included. The propagation
models are derived consistently by fits on primary and secondary CR nuclei data. Models with a small halo
size (L ≤ 2 kpc) are disfavored by the nuclei data although the current uncertainties on the beryllium
nuclear cross sections may impact this result. The resulting positron flux shows a strong dependence on the
Galactic halo size, increasing up to factor 1.5 moving L from 8 kpc to 2 kpc. Within the most reliable
propagation models, the positron flux matches the data for energies below 1 GeV. We verify that secondary
positrons contribute less than 70% of the data above a few GeV, corroborating that an excess of positrons
is already present at very low energies. At larger energies, our predictions are below the data with the
discrepancy becoming more and more pronounced. Our results are provided together with uncertainties due
to propagation and hadronic cross sections. The former uncertainties are below 5% at fixed L, while the
latter are about 7% almost independently of the propagation scheme. In addition to the predictions of
positrons, we provide new predictions also for the secondary CR electron flux.

DOI: 10.1103/PhysRevD.108.063024

I. INTRODUCTION

A guaranteed component of cosmic rays (CRs) is due
to the so-called secondary production, originating from
spallation reactions of CR nuclei against the atoms of the
interstellar medium (ISM). Most of the secondary contri-
bution is produced by the collision of CR protons or alpha
particles interacting with hydrogen and helium ISM atoms.
The secondary component plays an undisputed role in
explaining the data collected by different space-based and
ground-based experiments. This is particularly true for the
fluxes of cosmic antiprotons [1,2] and positrons (eþ),
which have been measured with high accuracy and in a
wide energy range [3–6]. Indeed, the antiproton flux is
explained at a large extent to be of secondary origin [7,8].

On the other side, the measured eþ flux and eþ fraction,
defined as the ratio between the flux of eþ and the sum of
eþ and electrons (e−), clearly indicate that a secondary
component alone cannot explain the data [6,9–11]. In fact,
secondary eþ contribute mostly at energies below tens of
GeV while at higher energies this process contributes to the
data very likely less than a few tens of %. This is even more
pronounced in the e− flux data, which are mainly explained
by the cumulative flux of e− accelerated by Galactic
supernova remnants [12–15].
The presence of one or more astrophysical primary

sources in the eþ flux has stimulated a vivid activity,
exploring lepton production from astrophysical sources like
pulsars and supernova remnants [9,11,15–28], and particle
dark matter annihilation or decay into antimatter [29–32].
The room left to primary eþ’s is gauged by the exact
amount of secondary eþ’s predicted in the whole energy
range in which data are available. One should notice that
the most recent eþ flux measurement by AMS-02 extends
from 0.5 to 1000 GeV with an uncertainty smaller than 5%
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for almost the whole energy range [6]. Even though it is
currently not achievable, significant effort should be
devoted to produce a prediction of secondary production
with a theoretical uncertainty that converges to the level of
the AMS-02 data points. This is essential for investigating
potential primary sources of eþ.
The flux of secondary e� is mainly determined by the

physics of CR transport in the Galaxy, also known as CR
propagation, and by the spallation and fragmentation cross
sections of CRs scattering off the atoms of the ISM. A
remarkable progress has been made on the propagation
side, thanks to high quality data from AMS-02 nuclei and
on parallel theoretical efforts to explain them [33–39].
Nevertheless, the exact size of the MilkyWay diffusive halo
(L) is still not known. This has important consequences for
the predictions of the flux of secondary cosmic particles
(see, e.g., [34]). Very recently, also the theoretical uncer-
tainties on the parametrization of cross sections for the
production of e� have been remarkably reduced thanks to a
new determination of the Lorentz invariant cross section for
the production of π� and K� by fitting data from collider
experiments [40]. In that paper, the invariant cross sections
for several other channels contributing at the few percent
level on the total cross section, as well as the contribution
from scattering on nuclei, have been determined. The total
differential cross section dσ=dTe�ðpþ p → e� þ XÞ was
predicted from 10 MeV up to 10 TeVof e� energy with an
uncertainty of about 5–7% in the energies relevant for
AMS-02 eþ flux. The result in [40] dramatically improved
the precision of the theoretical model with respect to the
state of the art [10,41–50].
In this paper we provide a new evaluation of the CR flux

of secondary eþ and e− at Earth by implementing the new
results on the production cross sections [40]. In order to
estimate the uncertainties coming from the propagation
model, we perform a new fit to the 7 years fluxes of primary
and secondary CRs measured by AMS-02 [51], by using
different assumptions for the physical processes that
characterize the propagation of particles in the Galaxy
and the diffusive halo size L. In particular, we estimate the
uncertainties in the secondary flux which is due to various
propagation parameters, devoting a specific discussion to
the effect of the value of L, and to the e� production cross
sections. Our eþ and e− secondary fluxes are predicted
from the implementation of the innovative results from both
sectors, production cross sections and Galactic propagation.
The paper is organized as follows: In Sec. II we

summarize the modeling for the production and propaga-
tion of CRs in the Galaxy and we illustrate the benchmark
models used to compute the CR flux at Earth. In Sec. III
we explain our methods, by detailing how we solve the
transport equation, and the strategies used to fit CR data to
calibrate the transport parameters. Our main results for the
flux of secondary e�, the primary and secondary CRs and
the propagation parameters are discussed in Sec. IV.

In Sec. VI we draw our conclusions. Finally, in the
appendixes we extend the discussion about the propagation
parameters, the resulting fluxes of primary and secondary
CRs, and further tests performed on the numerical solutions
to the CR transport equation.

II. COSMIC-RAY PRODUCTION
AND PROPAGATION

A. The propagation of CRs in the Galaxy

The charged particles injected in the ISM by their
sources encounter several processes due to interaction with
the Galactic magnetic fields, atoms or photons in the ISM,
or Galactic winds. All these processes can be modeled in a
chain of coupled propagation equations for the densities ψ i
of the CR species i. In general, ψ i depends on the position
in the Galaxy (x), the absolute value of the momentum (p),
and time (t) (see, e.g., [52]):

∂ψ iðx; p; tÞ
∂t

¼ qiðx; pÞ þ ∇ · ðDxx∇ψ i − Vψ iÞ

þ ∂

∂p
p2Dpp

∂

∂p
1

p2
ψ i

−
∂

∂p

�
dp
dt

ψ i −
p
3
ð∇ · VÞψ i

�

−
1

τf;i
ψ i −

1

τr;i
ψ i: ð1Þ

The equation content and the propagation setup is very
similar to the ones discussed in [36], KoCu22 in the
following. Here we only explain the contents necessary
to follow our analysis, and refer to KoCu22 for more
details. From left to right, the equation describes eventual
nonstationary condition, the source terms, diffusion on the
inhomogeneities of the Galactic magnetic field, convection
due to the Galactic winds, reacceleration, energy losses,
and catastrophic losses by fragmentations or radioactive
decays. We model the diffusion coefficient by a double
broken power law in rigidity, R, with the functional form

DxxðRÞ ∝ βRδl

�
1þ

�
R

RD;0

� 1
sD;0

�sD;0ðδ−δlÞ
;

�
1þ

�
R

RD;1

� 1
sD;1

�sD;1ðδh−δÞ
ð2Þ

Here β is the CR velocity in units of speed of light, RD;0

and RD;1 are the rigidities of the two breaks, δl, δ, and δh
are the power-law index below, between, and above the
breaks, respectively. We also allow a smoothing of the
breaks through the parameters sD;0 and sD;1. The diffusion
coefficient is normalized to a value D0 at a reference
rigidity of 4 GV so that DxxðR ¼ 4 GVÞ ¼ D0. The first
break, if included in the model, is typically in the range of
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1–10 GV while the second break, whose existence is
suggested by the flux data for secondary CRs, is at about
200–400 GV (see, e.g., [36,37,53,54]).
The term ∇ðVψ iÞ accounts for convection of CRs. We

assume that the convection velocity is orthogonal to the
Galactic plane VðxÞ ¼ signðzÞvcðzÞez.
Diffusive reacceleration describes diffusion in momen-

tum space throughDpp ∼ v2A=Dxx, where vA is the speed of
Alfvén magnetic waves. Energy losses are included in the
propagation equations through the term dp=dt. Nuclear
CRs can also encounter fragmentation due to the interaction
with ISM atoms or decay. These processes are taken into
account by the respective fragmentation and decay times
τf;i and τr;i.
The source term for each primary CR species accelerated

by astrophysical sources can be factorized as qðx; pÞ ¼
QðRÞρðxÞ. The energy spectrum QðRÞ is parametrized as a
smoothly broken power law in rigidity:

QðRÞ ¼ Q0Rγ1

�
1þ

�
R
Rinj

�
1=sinj

�
sinjðγ2−γ1Þ

; ð3Þ

where Rinj is the break rigidity, and γ1 and γ2 are the two
spectral indices above and below the break. The smoothing
of the break is parametrized by sinj. For the spatial
distribution of sources ρðxÞ we assume the one of super-
nova remnants reported in Ref. [55].
By solving Eq. (1) one finds the interstellar CR density,

for example at the location of the solar system. Finally, we
include the effect of the solar wind on particles entering the
heliosphere, with the so called solar modulation, using the
force-field approximation [56], which is fully determined
by the solar modulation potential φ. In particular, for CRs
with rigidities above 1 GV the force-field approximation
reproduces with a good precision the solar modulation
of eþ and e−, as demonstrated in Ref. [57]. A similar
conclusion is obtained by using SOLARPROP [58], a code
that numerically solves the transport of CRs in the helio-
sphere. By using input parameters similar to the standard
ones suggested within SOLARPROP, we obtained results
that closely aligned with the force-field approximation,
for both eþ and p. In particular, for p with a rigidity above
1–2 GV and eþ with an energy above 0.5–1 GeV, the
differences between the SOLARPROP models and the
force-field approximation are within the uncertainty range
of the AMS-02 data.

B. Secondary source term for cosmic nuclei and e�

Secondary CRs such as e� are produced in the inter-
action and fragmentation of primary CRs with the atoms of
the ISM. The source term of secondary CRs is generically
given by the convolution of the primary fluxes, the ISM
components and the fragmentation cross sections. In
particular, for e�,

qðTe� ;xÞ ¼
X
i;j

4πnISM;jðxÞ
Z

dTiϕiðTi;xÞ
dσij
dTe�

ðTi;Te�Þ;

ð4Þ

where Te� is the e� kinetic energy, ϕi is the CR flux at the
kinetic energy Ti, nISM;j is the number density of the ISM
jth atom, and dσij=dTe� is the energy-differential pro-
duction cross section for the reaction iþ j → e� þ X. We
note that, in general, the source term depends on the
position in the Galaxy because both the CR gas density
and the CR flux are a function of the position. The factor
4π corresponds to the angular integration of the isotropic
CR flux. Almost the entire ISM (99%) consists of hydro-
gen and helium atoms [59]. The main channels for the
production of secondary e� are pþ p, pþ He, Heþ p
and Heþ He.
The calculation of the secondary e� follows from the e�

production cross sections recently published in Ref. [40],
which include all the possible channels due to pions, kaons
and hyperons, and take into account nuclei contribution
both in the ISM and in the incoming CR fluxes. The
implementation of these new cross sections is the main
novelty of this paper. They have been obtained with a very
small uncertainty bands, whose effect is discussed in the
following of this paper. In order to provide a reliable
prediction for the secondary e� flux at Earth, we embark
here in a novel determination of the propagation models by
fitting the chain of primary and secondary nuclei on AMS-
02 data (see Secs. II C and III). The properties of source
term for secondary e� in Eq. (4) have been discussed
extensively in Ref. [40], to which we refer to any further
detail (see e.g., their Fig. 13). We have verified that the
source term obtained by our new determination of the
propagation models differs from the one illustrated in
Ref. [40] at most by 10% in all the energy range.
In principle, the equation to calculate the source term of

secondary nuclei is the same as for electrons and positrons.
However, the kinetic energy per nucleon is conserved
which simplifies Eq. (4). The uncertainty of fragmentation
cross sections severely affects the production of secondary
nuclei as well. The level of precision of fragmentation
cross sections is for many channels significantly worse
compared to the AMS-02 CR flux measurements (see,
e.g., [60]). Uncertainties are very often at the level of
20–30%, or even more for those cases with very poor data,
and they represent the main limiting factor for the
interpretation of the AMS-02 data. For example, the
uncertainties for the production cross sections of beryllium
and its isotopes prevent to constrain precisely the value of
the size of the diffusive halo (see, e.g., [38,61]). In our
analysis we allow some flexibility in the fragmentation
cross sections in order to take into account the related
uncertainties. This is the same procedure used in several
other papers (see, e.g., [34,36,37,39,62]).
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In particular, in Ref. [53] they used Gaussian priors for
the scale, normalization and slope uncertainties in the cross
sections. They fitted the average and the width of the
Gaussian priors finding that the CR data need a rescaling of
about�10–30%with a change of slope of about�0.10. We
are going to use this result to justify our assumptions for the
priors in the fragmentation cross sections.

C. Models for cosmic-ray propagation

We test the following models for the propagation of CRs:
(i) Conv v0;c: It contains convection with a fixed

velocity v0;c orthogonal with respect to the Galactic
plane: vcðzÞ ¼ v0;c. The CR injection spectra are
taken as simple power laws [γ1 ¼ γ2 in Eq. (3)]
with separate spectral indexes for proton (γp),
helium (γHe) and CNO (γCNO). The fact that
these CR species have different injection spectra
has been extensively demonstrated, e.g., in
Refs. [36,37,39,63]. The observed low- and high-
rigidity breaks in CR fluxes are reproduced by a
double smooth broken power-law shape for the
diffusion coefficient as reported in Eq. (2). The free
propagation parameters are thus the following: γp,
γHe − γp, γCNO − γp, the diffusion coefficient param-
etersD0, δl, δ, δh, RD;0, RD;1, sD;0, and sD;1, v0;c and
the same solar modulation potential ϕ for all the
CR species.

(ii) Conv dvc=dz: This model is very similar to Conv
v0;c, but instead of using a constant convection
velocity v0;c, here vcðzÞ increases linearly as func-
tion of z. The exact functional form is vcðzÞ ¼
dvc=dz · jzj, where dvc=dz replaces v0;c as the free
parameter in the fit.

(iii) Reacc0: This model has no convection while the
reacceleration is turned on and modulated through
the Alfvèn velocity va, which is a free parameter in
the fit. The diffusion coefficient and the injection
spectra are modeled as in Conv v0;c. As we will see
in Sec. IV the best-fit value for va is around 0 km=s,
this is why the label of the model reports 0 as
subscript.

(iv) Reacc10: This model is the same as the previous
one except that the Alfvèn velocity is fixed
to 10 km=s.

(v) Reacc30-Inj: In this model we replace the low-
rigidity break in the diffusion coefficient with a low-
rigidity break in the injection CR spectra. Therefore,
we model the injection spectra of CRs with separate
spectral indexes for p (γ1;p and γ2;p), He (γ1;He and
γ2;He) and CNO (γ1;CNO and γ2;CNO), which have a
common rigidity break Rinj and smoothing sinj. The
diffusion coefficient is modeled with a single smooth
broken power law with free parameters: D0, δ, δh,
RD;1 and sD;1, and we leave free va. This model has

30 as a subscript because the best-fit value for va is
found at 30 km=s.

For all the above mentioned models we also leave free
the abundance of primary CRs. Specifically, we leave free
the abundance of proton and helium using a renormaliza-
tion factor with respect to the reference values used in
GALPROP. For this, we iteratively adjust the reference
isotopic abundances in GALPROP to ensure that the renorm-
alizations converge to values close to 1.1 We call these
parameters RenAbdp and RenAbdHe for proton and helium,
respectively. This procedure is equivalent of having as
free parameters the normalization factors Q0 of the source
terms in Eq. (3) and allows a fast profiling over the
parameters (see Sec. III). For the heavier nuclei, we leave
free to vary the isotopic abundance of carbon 12C, nitrogen
14N and oxygen 16O, which are all of primary origin,
through the parameters: Abd12C, Abd14N, and Abd16O. We do
not use renormalizations as for p and He here because the
isotopic abundances also affect the fluxes of the seconda-
ries Li, Be, and B.

III. METHODS

In this section we illustrate the methods used to evaluate
the CR flux of secondary eþ and e− at Earth. Specifically,
we discuss the numerical solution of the transport equation,
and the statistical methods for the determination of the
propagation parameters and injection spectrum of primary
CRs, obtained by fitting AMS-02 nuclei data. We then
detail how we evaluate the uncertainties in the secondary
eþ and e− prediction coming from the new propagation
models and from the production cross sections.

A. Modeling cosmic-ray propagation with GALPROP

We employ the GALPROP code2 [64,65] to solve the CR
propagation equation numerically. GALPROP divides the
Galaxy, which is assumed to be a cylinder, in a spatial grid
with respect to Galactocentric coordinates. We use the 2D
grid where r is the distance from the Galactic center and z is
the distance from the plane. We assume the Galactic plane
to be extended 20 kpc, while for the half-height of the
diffusion halo L we test values from 0.5 kpc to 8 kpc. We
discuss in the Appendix further details on the grid for the
numerical solution of CR propagation with GALPROP. We
include in the calculation of secondary leptons CR nuclei
up to silicon. We use the new version of GALPROP v. 57 [66]
which includes new solvers for the propagation equation,

1Technically, in GALPROP the isotopic abundance of protons is
not fixed by the Q0 of the source terms in Eq. (3) but rather
indirectly by a posteriori choosing a normalization of the proton
flux. In our case, we use 4.3 × 10−9 cm−2 sr−1 s−1 MeV−1 at
100 GeV. For all other primary CRs, the isotopic abundance is
then provided as the ratio with respect to protons (in units of
1.06 × 106). We fix the 4He abundance to 9.65 × 104.

2http://galprop.stanford.edu/.
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the possibility of using nonuniform grids, improved imple-
mentation of the convection velocity, new source distribu-
tions and improved parameterisations for calculations of
the cross sections.
Particularly relevant ingredients for the prediction of the

secondary e� are the ISM gas density and the treatment of
the energy losses. For the gas, we use the 2D default models
implemented in GALPROP [66]. The numerical solution of
the transport equation permits to include all relevant energy
losses for e�, additionally modeling its spatial dependence.
We include synchrotron losses on the Galactic magnetic
field and inverse Compton losses on the interstellar
radiation fields (ISRFs), which are the dominant losses
for e� detected at energies larger than about 10 GeV, as
well as adiabatic, bremsstrahlung, and ionization losses,
which affect the prediction at few GeV. The ISRF model is
the default GALPROP model, which is consistent with more
recent estimates in the few kpc around the Earth [67], where
most of the secondary leptons are produced. The synchro-
tron energy losses are computed by assuming a simple
exponential magnetic field. Specifically, we include a
regular magnetic field in the Galactic disk and a random
component modeled as exponential functions as Breg;ran ¼
B0;reg;ran · exp ð−ðr− r⊙Þ=r0;reg;ranÞ · expð−z=z0;reg;ranÞ, with
B0;reg;ran ¼ 4 μG, z0;reg ¼ 4 kpc, z0;ran ¼ 2 kpc, r0;reg ¼
13 kpc and an infinite r0;ran. This gives a local total

magnetic field of Btot ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
reg þ B2

ran

q
¼ 5.65 μG, which

is compatible with what found with state-of-the-art mag-
netic field spatial models fitted to CR and multiwavelength
emissions [68].
We have implemented the following custom modifica-

tions in GALPROP, which have been detailed in Ref. [37].
Smoothly broken power laws with up to two breaks are
considered both for the primary injection spectra and for
the diffusion coefficient, see Eqs. (2) and (3). The pos-
sibility to adjust the injection spectrum individually for
each CR species is included, as well as nuisance para-
meters to allow freedom in the default fragmentation
cross sections for the production of secondary CRs. A
new custom modification introduced for this paper is the
inclusion of the e� production cross section following the
recent in Ref. [40] as detailed in Sec. II B.

B. Fit to nuclei cosmic-ray data

1. Dataset

We fit the latest data measured by the AMS-02 experi-
ment after 7 years of data taking, from 2011 to 2018, [51].
In particular we fit the absolute fluxes of protons, He, C, O,
N, B/C, Be/C, and Li/C. The ratio of secondaries over
primaries (B/C, Be/C, and Li/C) are particularly relevant
for fixing the propagation parameters, while the one of He,
C, O, and N to derive the injection spectra. Moreover, in the
ratio some systematic uncertainties cancel out with respect

to the absolute flux of secondary CRs. Since all the
AMS-02 measurements considered have been measured
for the same data-taking period, we adopt one unique Fisk
potential for the all the species.
The AMS-02 data for the fluxes available for R > 1 GV

are complemented with the proton and helium data from
Voyager [69] above 0.1 GeV=nuc. The addition of Voyager
data helps to calibrate the interstellar injection spectrum.
We use Voyager data only above 0.1 GeV=nuc to avoid
further complications which might arise at very low
energies, like stochasticity effects due to local sources or
the possible presence of a further low-energy break in the
spectra [70].
The total number of data points considered in the

analysis is 552. Since the number of free parameters in
the model is between 25 and 30, a good χ2 is expected to be
of the order or below 500.

2. Fitting procedure

The statistical analysis performed in this paper is similar
to the one presented in [36,37,71]. We recap in what
follows the key points and the novelties introduced.
The main goal of the analysis is to find the parameters

of the model by fitting CR absolute flux data or flux ratios
between secondary and primary CRs. To optimize the
computation time, we rely on a hybrid strategy to explore
the wide parameter space, comprising of up to about 30
free parameters, as done in Refs. [36,37]. We use the
MultiNest [72] algorithm to sample all parameters that
depend on the evaluation of GALPROP.3 As a result, we
obtain the posterior distributions and the Bayesian evi-
dence. For the other parameters which do not need a new
evaluation of GALPROP (for example, the renormalization
of secondary CRs), we profile over those parameters
on-the-fly with respect to the likelihood of Eq. (6) and
directly pass the maximum value to MultiNest. The profiling
is performed using MINUIT [73]. The best-fit and errors as
well as the uncertainty bands for the fluxes and parameters
correlations will be given in the Bayesian framework. We
will use the Bayesian evidence and Bayes factors to
compare the different propagation models. In contrast,
to quantify the goodness of fit for each model we employ
the reduced chi-square statistics.
The posterior probability for the parameter θi is

given by

pðθijDÞ ¼
Z

dθ1…dθi−1dθiþ1…dθn
pðDjθÞpðθÞ

Z
; ð5Þ

where pðDjθÞ ¼ LðθÞ is the likelihood given the data D,
pðθÞ is the prior, and Z ¼ R

dθpðDjθÞpðθÞ is the evidence.

3We use a MultiNest setting with 400 live points, an enlargement
factor of EFR ¼ 0.7, and a stopping criterion of TOL ¼ 0.1.
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As the log-likelihood we use a chi-square (χ2) function to
compare our CR model with the available data,

logðLðθCR; θXSÞÞ ¼ −
1

2
χ2ðθCR; θXSÞ

¼ −
1

2

X
s;i

�
ϕs;i − ϕðmÞ

s;i ðθCR; θXSÞ
σs;i

�2

: ð6Þ

Here the sum is performed over the CR data sets s and the

rigidity or energy bins i, and ϕs;i and ϕ
ðmÞ
s;i are the measured

and modeled CR flux of species s at the rigidity Ri,
respectively. The errors of the fluxes, labeled as σs;i,
include both statistical and systematic uncertainties added
in quadrature. We note that systematic uncertainties of
the AMS-02 flux data are expected to exhibit correlation
in R. Such correlations play only a marginal role on the
inferred propagation parameters [37], while they can have
an important impact for dark matter searches with CR
antiprotons [8,62,74].
When fitting the model to AMS-02 data, we distinguish

between two type of free parameters. The parameters θCR in
Eq. (6) are connected to the physics of CR propagation
as introduced in Sec. II. Instead, the θXS are related to
uncertainties in the nuclear fragmentation cross sections
which are considered in the fit as nuisance parameters.
This strategy permits marginalizing over the uncertainties
in the fragmentation and production cross sections, as
introduced in Refs. [36,37]. In particular, we parametrize
the cross sections for the production of secondaries CRs
with a renormalization factor, which for boron production
is labeled as AXS → Be, and a change of slope, which for B
is δXS → Be. In particular, we use priors for the renorm-
alization and change of slope of the nuclear cross sections
values of 0.8, 1.2 for the former, which means a variation of
20%, and −0.1, 0.1 for the latter.
We provide a summary of the fit parameters and priors

for each model tested in Appendix A. We assume linear
priors for all the parameters.

C. Secondary lepton prediction

The predictions for the secondary eþ and e− is computed
once the propagation parameters best-fit and uncertainties
have been found by fitting CR data as explained above. In
particular, we take the local CR flux found by fitting the data
and then we compute, within the same propagation setup, the
secondary e� fluxes due to the collision of CRs with the
atoms of the ISM as in Eq. (4). For each propagation model,
the mean and the 1σ Bayesian uncertainty are computed.
This represents the statistical uncertainty connected to the fit
to the CR propagation parameters only. This procedure is
repeated for each propagation model benchmark. Additional
uncertainty coming from the e� production cross section is
considered separately as obtained in Ref. [40] and summed
in quadrature to build the final uncertainty bands for the

predictions. We believe this choice to be conservative
enough, since the propagation and cross section uncertainties
can be considered independent and Gaussian to a good
approximation. Additional systematic uncertainties con-
nected for example to the size of the diffusion halo or to
the choice of the propagation model are discussed separately,
and are found to be the dominant ones.

IV. RESULTS

In this section we report the results for the prediction of
secondary electrons and positrons (Sec. IVA), primary and
secondary nuclei fluxes (Sec. IV B) and for the propagation
parameters (Sec. IV C).

A. Secondary leptons

In Fig. 1 we display the predictions for the secondary
positron flux obtained with all the different models intro-
duced in Sec. II C for L fixed to 4 kpc. We show the best-fit
and 1σ uncertainty band found in the Bayesian framework.
The models Conv v0;c, Reacc0 and Reacc10 predict a
similar flux in the entire energy range. In particular, at the
lowest measured energies the secondary fluxes are com-
parable to the eþ data, while they are increasingly smaller
with respect to the AMS-02 measurements at larger
energies. At 5 GeV the secondary positrons can account
for about 50–70% of the data while at the highest energy
they are about 20–30% of the measured eþ flux.
The Reacc Inj30 provides a smaller flux by a factor of

about 1.6 between 2 GeV and 100 GeV with respect to the
other cases, which can directly be related to the fact
the model converges to a larger value for the diffusion
coefficient. The larger diffusion coefficient in turn is partly

FIG. 1. Prediction for the secondary positron flux at Earth as
obtained for all the propagation model tested in this work (see
Sec. II C) when fixing L ¼ 4 kpc. For each case, we show the
interstellar (IS, dashed lines) and modulated top of atmosphere
flux (TOA, solid lines). We display the best-fit and 1σ Bayesian
uncertainty band. AMS-02 data are included for comparison.
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obtained because we allow for larger uncertainties in the
nuisance parameters of the nuclei fragmentation cross
sections, as further discussed in Sec. IV C. Moreover, this
model is the only one that slightly overshoots the lowest
AMS-02 data point at about 500 MeV and 700 MeV.
This result is expected because strong reacceleration
significantly increases the lepton fluxes at low energies;
similar results have been obtained by Ref. [34] in the
QUAINT model.
All models predict a similar flux of secondary eþ at

energies larger than 100 GeV, which is about a factor of five
below the data. The variation at 1 TeV is about a factor of
two from the minimum to the maximum contribution.
In Fig. 2 we show the eþ flux predicted for different

values of the diffusive halo size between 0.5 kpc and 8 kpc
within the Conv v0;c model. Above about 5 GeV, the
secondary eþ E3Φ flux decreases systematically with L.
This can be understood from the well-known degeneracy
between L and the normalization of the diffusion coef-
ficient [75]. For small L, CR nuclei spend on average more
time in the Galactic disc, which increases the secondary
nuclei production. The latter has then to be compensated
by a smaller diffusion coefficient (i.e. faster diffusion).
Therefore, to a first approximation, CR nuclei data only
constrain the ratio D0=L. Indeed, we confirm in Sec. IV C
that there is a linear correlation between L and D0. In
contrast, eþ (and also e−) suffer from stronger energy
losses which restrict them more locally than nuclei, such
that they do not perceive the same effect of the boundary at
L as nuclei. For them the degeneracy between L and D0 is
broken and they only sense the effect of decreasing D0,
which increases the secondary flux. For L ¼ 0.5 kpc the eþ

flux is at the level of the data between 0.5 GeV to 20 GeV,
while the flux for L ¼ 2 kpc (4 kpc) decreases by of 20%
(40%) at 5 GeV. For 8 kpc, the predicted secondary flux is

about 50% of the data at 5 GeV. The predictions obtained
with different L converge to very similar values below
2 GeV because energy losses become less important at
small positron energies. The contribution of secondary
positrons to the highest AMS-02 energy at E ∼ TeV spans
from few percent to 50% of the data, mostly depending on
the value of L.
In Fig. 3 we show the flux for secondary electrons and

positrons compared to e� AMS-02 data. As expected,
secondary electrons have a smaller flux with respect to
positrons, reflecting the charge asymmetry in the colliding
CR and ISM particles, mostly positively charged. We
verified that the variation of the secondary electrons with
the size of the diffusive halo and propagation model follows
the eþ trends, as shown in Fig. 1 and Fig. 2.
In all the predictions shown in Figs. 1–3 we report the

uncertainty band related to the fit to the CR propagation
parameters and on the e� cross sections. We detail in Fig. 4
the uncertainties related to both contributions for the case
Conv v0;c with L ¼ 4 kpc. The propagation parameters’
uncertainties are in general smaller than the cross section
ones up to 1 TeV, above which they both reach 10%, and
they are at the level of few percent between 1 GeV and
100 GeV, always comparable or smaller than the size of
experimental errors. The latter are shown as the sum in
quadrature of the AMS-02 statistical and systematic errors
on the eþ flux. Instead, the uncertainties related to the e�
production cross sections are almost energy independent
and at the level of 5–7%.

B. Primary and secondary nuclei

We show here the results for the fit to the primary and
secondary CR nuclei. The procedure that we use for fitting
the data is explained in Sec. III while the free parameters in

FIG. 2. Prediction for the positron flux at Earth within the
model Conv v0;c when varying the size of diffusive halo from
L ¼ 0.5 to 8 kpc. Line styles and data as in Fig. 1.

FIG. 3. Flux of positrons (black line and band) and electrons
(blue line and band) obtained for the model Conv v0;c with
L ¼ 4 kpc. We show the AMS-02 data for positrons (black data)
and electrons (blue data).
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each model are reported in Sec. II C. Figure 5 summarizes
the results of the fit for Conv v0;c along with the AMS-02
data for primaries and secondaries species as a function of
rigidity. In the left panel we report the results for the
primary p, He, O and C nuclei, and the half-primary N flux.
On the left panel we show the secondary-to-primary flux
ratios for B/C, Li/C and Be/C. In Appendix A we report
the best-fit values for the propagation parameters and the
residual plots for different cases.
We obtain reduced χ2 (χ̃) smaller than 1 within each of

the tested models. The convective models Conv v0;c and
Conv dv=dz have χ̃ ≈ 0.7–0.8 and the models Reacc0 and
Reacc10 χ̃ ≈ 0.8–0.9. The lowest χ̃ of 0.50 is provided by

the Reacc30 Inj model. The Bayesian evidence is
logðZÞ ¼ −207.9 for the Reacc30 Inj and logðZÞ ¼
−237.7 for the Conv v0;c model, which implies a sta-
tistically strong preference of the first model. We note,
however, that this is the only model for which we allow
for larger priors of the nuclear cross section uncertainties
and with the highest number of free propagation param-
eters. Namely, instead of only three free slopes in the
Conv v0;c, this model has six free slopes as well as a free
position and smoothing of the break. We confirmed that
indeed the improvement of χ̃ mostly comes from the
primary CR spectra.
The fact that all our models converge to a best-fit with

of χ̃ smaller than one is expected and in agreement with
previous studies. The reason for the small χ̃ values is that
the systematic uncertainties of the CR data points of
AMS-02 are correlated. Those correlations are not provided
by the collaboration. However, there have been different
attempts to model these correlations [8,62,74]. The corre-
lations typically slightly reduce the uncertainty on the
propagation parameters and increase the χ̃. Taking them
into account can be crucial, for example, when searching
for dark matter signatures in CR antiprotons. In the absence
of correlations provided by the AMS-02 Collaboration we
follow a conservative approach and assume uncorrelated
uncertainties, adding statistical and systematic uncertainty
in quadrature for each data point as explained above.
In contrast, the quality of the fit to p and He Voyager data

is slightly worse with a χ̃ ¼ 2–3. However, the Voyager
data are at very low energy, below the main focus of this
work. A better fit of those data typically would require an
additional low-energy break in the injection spectra [76].
Our models, except for Reacc30 Inj, does not perfectly fit
the highest-energy data points, especially the N spectra,
see Appendix A.

FIG. 4. Uncertainty for positron flux due to the propagation
parameters and e� production cross sections for the case Conv
v0;c with L ¼ 4 kpc. We also show the total uncertainty obtained
with the sum in quadrature of the two uncertainties. For
comparison, we show the errors of the eþ AMS-02 data.

FIG. 5. Left: Fluxes of p, He, O, C and N nuclei as predicted by the parameters fitted on the data by AMS-02 and Voyager (for p and
He). Right: Secondary-to-primary flux ration for B/C, Li/C and Be/C along with AMS-02 data.
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C. Propagation and cross section parameters

In this section we report the results on the propagation
parameters as derived from the fits to the nuclear data. We
start by discussing the results of the Conv v0;c model for
different values of L. The injection spectra of primaries are
well constrained. For L ≥ 2 kpc, the injection slope for
protons is very similar and converges to values between
2.36 and 2.37, while for smaller L the spectrum softens
slightly to γp up to 2.40. We find that the injection slope
for He and CNO are significantly different from proton by
about 0.055 and 0.02, respectively.
In contrast, the diffusion coefficient changes signifi-

cantly as function of L. The main impact concerns its
normalization D0. This is due to the well-known degen-
eracy between L and D0 [75] as already discussed above.
By fitting a power law to the fit’s result for L∈ ½0.5; 6� kpc
we obtain the empirical relation,

D0ðLÞ ¼ 4.70 × 1027 cm2=s

�
L
kpc

�
1.08�0.01

: ð7Þ

The slope of 1.08� 0.01 is close to 1 indicating that a L
and D0 are almost direct proportional to each other. We
note that for large L the relation breaks down because the
height of the Galactic halo starts to be comparable to the
radial size of the Galaxy. We see that already at L ¼ 8 kpc
this relation starts to break, explaining why we did not
include it in the fit of Eq. (7). Next to the strong correlation
of D0 and L there is a smaller correlation between v0;c
and L. We show in Fig. 6 the 1σ, 2σ, and 3σ contours,
obtained in the Bayesian framework for the parameters D0

and v0;c obtained from the fit to the data and assuming
different L sizes. The best-fit values of v0;c increase as a

function of L, namely, we find 9 km=s for L ¼ 0.5 kpc
and 14 km=s for L ¼ 8 kpc. Moreover, for fixed L there
is a small anticorrelation between D0 and v0;c meaning
that for smaller values of vc it is possible to have larger
values of D0.
The shape of the diffusion coefficient as a function of

rigidity is very similar for all L, as we show in Fig. 7.
In order to focus on the shape rather than the normali-

zation, we use Eq. (7) to rescale all the diffusion coef-
ficients to L ¼ 4 kpc, more specifically, we define the
rescaled diffusion coefficient,

D̃ ¼ ð4 kpc=LÞ1.08D: ð8Þ

All the curves in the left panel of Fig. 7, except the case
with L ¼ 8 kpc, which is not fitted, have the same
normalization within the 1σ error band at 4 GV, where
the value ofD0 is fixed. The differences at lower and higher
rigidities are due to small differences in the best-fit values
of the slope parameters.
The case for L ¼ 8 kpc has a 20% normalization shift

with respect to the other cases because, as explained
before, the correlation between D0 and L breaks for large
values of L.
In order to compare the shape of DðRÞ we plot in the

right panel of Fig. 7 the slope of that function defined as
δðRÞ ¼ dD=dR. As clearly shown in the figure, the slope
of the diffusion coefficient is very similar in all the tested
cases. In particular the variations obtained for the best
cases in the paper, i.e. for L > 1 kpc, are compatible
within the statistical errors. In addition, the shape of
δðRÞ that we find here is similar with respect to the results
in Refs. [38,53].
In Fig. 8 we show the interplay between the value of L

and the normalization of the beryllium cross section. We do
this exercise for the Conv v0;c model. In the upper panel
the points show the evidences obtained from CR fits with L
as a fixed parameter. Instead, for the cases with fixed Be
cross section normalization we allow L as a free parameter.
The connection between the evidence with free and fixed L
can be derived as follows. Let us denote with θ all fit
parameters except L. If L is a fixed parameter the evidence
is given by

ZL ¼
Z

dθpðDjθ; LÞpðθÞ: ð9Þ

On the other hand, if L is a free parameter in the fit, the
posterior probability for L is defined by

pðLjDÞ ¼
R
dθpðDjθ; LÞpðθÞpðLÞR

dθdLpðDjθ; LÞpðθÞpðLÞ

¼ pðLÞ
Z

Z
dθpðDjθ; LÞpðθÞ; ð10Þ

FIG. 6. This figure shows the 1σ, 2σ, 3σ Bayesian contours for
the parameters D0 and v0;c obtained from the fit to the CR data
when we assume different L.
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assuming that the prior of L factorizes (i.e. is uncorrelated)
from θ. It is thus possible to extract the equivalent of the
evidence with fixed L,

ZL ¼ pðLjDÞZ
pðLÞ ; ð11Þ

where Z is the evidence of the fits with free L.
Among the tested cases for L the best propagation model

is the one for L ¼ 8 kpc. In fact, we can see from the top
panel of Fig. 8 that the smaller is L and the worse is the fit.
We expect however that the Bayesian evidence ZL has a
plateau for L > 8 kpc. Taking the statistical results for L at
face value, our findings can be used to put a frequentist
lower limit for L which is at the level of 4 kpc at 5σ C.L.
The ratio of the Bayesian evidence between the case with
L ¼ 4 kpc and 8 kpc is about 2.6 × 104, similarly to the
result obtained in the frequentist statistical framework on
the lower limit for L. This result is qualitatively compatible
with the one shown in Ref. [37].
The results for L are affected by the uncertainties on the

nuclear cross sections, in particular the ones for the
beryllium production. The peculiarity here is the β-decay
of 10Be to 10B in a τ1=2 ¼ 1.37 Myr, which alters both the
Be and the B fluxes [38,61,77,78]. Given their short
lifetime, the radioactive clocks such as 10Be can be used
to set bounds of the thickness of the diffusive halo [77].

FIG. 7. Left Panel: Shape of the diffusion coefficient rescaled as D̃ðRÞR−0.4 as a function of R found from the fit to the nuclei data for
different values of L. The value ofD0 is rescaled according to Eq. (8) at L ¼ 4 kpc. The bottom part of the plot shows the ratio between
the value obtained in the different cases with respect to the one obtained in the case where L ¼ 4 kpc. The bands represent the 1σ C.L.
band obtained from the fit to CR data in each case. Right panel: Slope of the diffusion coefficient δðRÞ as a function of rigidity,
as selected by the fit to the nuclei data. The bottom part of the plot shows the difference between the value of δ obtained in the different
cases with respect to the one obtained in the case where L ¼ 4 kpc. The purple band represents the 1σ C.L. band obtained from the fit to
CR data.

FIG. 8. Evidence as function of L. The dots combine the results
of the six fits of the Conv v0;c model to construct the posterior.
Additionally, we show the evidences of L for different fixed
values of the Be cross section renormalization (this is rescaled
from the posteriors, see text for details). In the bottom panel, we
display the renormalization factors for Be and B production cross
sections within the Conv v0;c model for different L, i.e. in
correspondence of the dots in the upper panel.
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The impact of 10Be is maximal in the 10Be=9Be ratio, but
can be sizeable also in the Be/B ratio.
In the bottom panel of Fig. 8 we report the best-fit value

for the parameter AXS → Be and AXS → B that we obtain
when we perform the fit fixing the value of L to different
values. We remind that the parameters AXS → Be and
AXS → B remormalize the nuclear cross sections imple-
mented in GALPROP for the Be and B production. We can
see that AXS → Be takes values of the order of 0.95 when
L ¼ 0.5 kpc and increases with L reaching a plateau at 1
for L > 6 kpc. This is expected because the beryllium, and
in particular 10Be, is the only isotope with a decay time
comparable to the size of the diffusive halo. Therefore, the

exact value of AXS → Be can affect the best-fit value of L in
our results.
Due to the ignorance of the cross sections for the

production of Be, B and Li, we marginalize over the cross
section parameters by assuming they are nuisance param-
eters. In particular, values of these renormalizations of the
order of 10%, which are reasonable given the current
collider data, bring very different best-fit values of the
diffusive halo. In order to demonstrate this, we perform a fit
to the data by fixing the cross sections for the production of
B, Be and Li, and leaving free the value of L. We work with
the model Conv v0;c and we fix AXS → B, AXS → Li, and
δXS → B, Be, Li to the best-fit values reported in Table I.

TABLE I. Summary of the best-fit parameters of the Conv v0;c model for different sizes of the diffusion halo. The asterisk denotes that
a parameter is sampled on-the-fly. The degeneracy between L and D0 is clearly visible. Actually, we take this also into account when
choosing the prior for D0. The value in the table states the maximal considered range. The priors for the individual fits are (in units of
1027 cm2=s): [1, 8], [2, 10], [5, 30], [8, 50], [10, 70], [15, 90].

Parameter Prior L ¼ 0.5 kpc L ¼ 1 kpc L ¼ 2 kpc L ¼ 4 kpc L ¼ 6 kpc L ¼ 8 kpc

γp 2.2–2.5 2.394þ0.005
−0.004 2.382þ0.005

−0.004 2.363þ0.004
−0.005 2.363þ0.004

−0.004 2.365þ0.004
−0.004 2.366þ0.004

−0.004

γHe − γp −0.1–0.1 −0.056þ0.002
−0.002 −0.055þ0.002

−0.002 −0.053þ0.002
−0.002 −0.054þ0.002

−0.002 −0.054þ0.002
−0.002 −0.054þ0.002

−0.002
γCNO − γp −0.1–0.1 −0.024þ0.003

−0.003 −0.022þ0.003
−0.003 −0.020þ0.003

−0.002 −0.020þ0.002
−0.003 −0.020þ0.003

−0.003 −0.019þ0.003
−0.003

D0 ½1028 cm2=s� 0.1–9.0 0.225þ0.009
−0.012 0.49þ0.02

−0.03 1.01þ0.06
−0.06 2.22þ0.12

−0.16 3.20þ0.19
−0.20 3.91þ0.22

−0.26

δl −1.0–0.0 −0.69þ0.05
−0.04 −0.65þ0.05

−0.04 −0.60þ0.04
−0.04 −0.57þ0.04

−0.04 −0.57þ0.04
−0.04 −0.57þ0.04

−0.04

δ 0.2–1.0 0.62þ0.01
−0.01 0.64þ0.01

−0.02 0.68þ0.02
−0.02 0.66þ0.02

−0.02 0.65þ0.01
−0.02 0.65þ0.02

−0.02
δh − δ −1.0–0.0 −0.32þ0.01

−0.02 −0.33þ0.02
−0.01 −0.34þ0.01

−0.02 −0.33þ0.02
−0.02 −0.32þ0.01

−0.02 −0.32þ0.01
−0.02

R0;D ½GV� 1.0–10.0 4.84þ0.17
−0.17 4.90þ0.15

−0.15 4.97þ0.17
−0.11 4.99þ0.17

−0.15 4.99þ0.22
−0.10 4.98þ0.17

−0.15

sD;0 0.1–0.5 0.20þ0.03
−0.03 0.18þ0.03

−0.03 0.15þ0.04
−0.03 0.17þ0.04

−0.04 0.18þ0.03
−0.04 0.18þ0.04

−0.03
RD;1 ½GV� 50.0–500.0 155.89þ13.68

−16.33 148.05þ12.92
−15.82 137.13þ15.27

−13.19 145.96þ13.91
−18.29 151.75þ13.70

−17.75 155.07þ14.82
−19.06

sD;1 0.1–0.5 0.485þ0.015
−0.003 0.486þ0.014

−0.002 0.488þ0.012
−0.002 0.486þ0.014

−0.002 0.486þ0.014
−0.003 0.485þ0.015

−0.003
v0;c ½km=s� 0.0–40.0 9.19þ0.62

−0.55 11.13þ0.73
−0.67 12.69þ0.81

−0.82 13.67þ1.19
−0.92 14.01þ1.13

−1.00 14.07þ1.25
−1.04

Ren Abdp 0.9–1.1 1.004þ0.002
−0.002 1.002þ0.002

−0.001 1.001þ0.002
−0.002 1.000þ0.002

−0.002 0.999þ0.002
−0.002 0.998þ0.002

−0.002*
Ren Abd4He 0.9–1.1 0.978þ0.004

−0.005 0.984þ0.004
−0.004 0.993þ0.004

−0.005 0.992þ0.004
−0.004 0.990þ0.004

−0.004 0.989þ0.004
−0.004*

Abd12C ½104� 0.1–0.6 0.349þ0.003
−0.003 0.351þ0.003

−0.003 0.356þ0.003
−0.002 0.355þ0.003

−0.002 0.354þ0.003
−0.002 0.354þ0.003

−0.002

Abd14N ½104� 0.0–0.1 0.021þ0.002
−0.001 0.022þ0.001

−0.002 0.022þ0.002
−0.001 0.022þ0.002

−0.002 0.023þ0.001
−0.002 0.023þ0.002

−0.002

Abd16O ½104� 0.2–0.7 0.449þ0.003
−0.003 0.450þ0.002

−0.003 0.454þ0.003
−0.003 0.453þ0.003

−0.003 0.452þ0.003
−0.003 0.452þ0.003

−0.002

AXS → Li 0.8–1.2 1.197þ0.003
−−0.001 1.197þ0.003

−−0.001 1.197þ0.003
−−0.001 1.198þ0.002

−−0.001 1.198þ0.002
−−0.001 1.197þ0.003

−−0.001*
AXS → Be 0.8–1.2 0.916þ0.006

−0.004 0.930þ0.006
−0.005 0.952þ0.006

−0.004 0.975þ0.006
−0.004 0.987þ0.006

−0.004 0.995þ0.006
−0.004*

AXS → B 0.8–1.2 0.991þ0.005
−0.004 0.990þ0.006

−0.004 0.990þ0.005
−0.004 0.985þ0.006

−0.003 0.981þ0.006
−0.004 0.978þ0.006

−0.004*

δXS → Li −0.1–0.1 0.085þ0.015
−0.004 0.086þ0.012

−0.006 0.084þ0.015
−0.006 0.082þ0.013

−0.008 0.084þ0.015
−0.005 0.085þ0.014

−0.005

δXS → Be −0.1–0.1 −0.00þ0.02
−0.02 −0.01þ0.02

−0.02 −0.02þ0.01
−0.02 −0.02þ0.02

−0.01 −0.01þ0.01
−0.02 −0.00þ0.02

−0.01
δXS → B −0.1–0.1 −0.07þ0.01

−0.01 −0.07þ0.01
−0.01 −0.07þ0.01

−0.01 −0.08þ0.01
−0.01 −0.074þ0.010

−0.012 −0.07þ0.01
−0.01

δXS → C −0.1–0.1 0.088þ0.012
−0.002 0.086þ0.014

−0.003 0.086þ0.014
−0.002 0.086þ0.014

−0.002 0.086þ0.014
−0.003 0.085þ0.015

−0.003
δXS → N −0.1–0.1 −0.02þ0.01

−0.01 −0.02þ0.01
−0.01 −0.03þ0.01

−0.01 −0.04þ0.01
−0.01 −0.04þ0.02

−0.01 −0.04þ0.02
−0.01

φAMS−02 ½GV� 0.1–1.0 0.416þ0.006
−0.007 0.415þ0.006

−0.007 0.414þ0.006
−0.006 0.416þ0.006

−0.007 0.416þ0.006
−0.006 0.417þ0.006

−0.006*

χ2 465 419 377 355 342 333

logðZÞ −296 −269 −236 −238 −230 −228
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For AXS → Be we test three different values of 0.95, 0.975
and 1.00. We find that for this three possibilities the best
fit value of L are 2.4þ0.2

−0.3 kpc, 5.4þ1.0
−0.7 , and 10.8þ1.3

−1.9 kpc,
respectively. The Bayesian log-evidences we obtain for
each of the three tested cases, are −247.9, −232.7 and
−225.6, respectively.
The Bayes factors between them show that the models

with large L are statistically favored. The propagation
parameters are in good agreement with the values obtained
for fixed L at 2 kpc, 4 kpc, and 8 kpc. Alternatively, in a
frequentist interpretation the χ2 obtained in the three cases
are 379, 364, and 339 leading to a similar conclusion.
We note however that a purely statistical interpretation

of the L dependence might not cover the whole story.
The CR propagation model is phenomenological and not
only derived from first principle. Therefore, some level of
discrepancy between model and data is expected. This
might lead to some bias which is then compensated by the
cross section nuisance parameters. Thus a robust conclu-
sion will rely on a better determination of the cross section.
For example, if the Be cross sections turn out to be five
percent smaller than the default assumed in this paper, L
will be constrained to smaller values around 2 kpc (see
Fig. 8). In terms of the absolute χ2 also L∈ ½2; 4� kpc
provides a good fit to the data. So, all in all we find a
statistical preference for large values of L while noting that
because of systematic effects also smaller values around
2 kpc should not be completely discarded.

V. DISCUSSION

In this section we discuss our results in the context of
recent literature on secondary CR positrons, and we outline
their broader implications. We also assess possible further
uncertainties on our predictions. As a general caveat, we
note that a precise comparison of our results with previous
works is challenged by different treatment of many crucial
ingredients, such as the propagation models and the
production cross sections.
A first comparison can be made with what obtained with

GALPROP in [79], and specifically with their model named
B’, which includes reacceleration and high rigidity break in
the diffusion coefficient with L ¼ 3.61 kpc. Our results
within Reacc Inj30 model are lower by a factor of about
1.5 at 10 GeVand of about a factor of 2 at few GeV. As for
the Conv v0;c model, we obtain similar results at tens of
GeV. At lower energies, their model, including a reaccel-
eration velocity of about 20 km=s, drives higher fluxes of
secondary IS positrons, larger by a factor up to 1.5 at
2 GeV, and indeed overshooting the AMS-02 data.
Predictions obtained with the semi analytical propaga-

tion models SLIM, BIG and QUAINT as defined in [34]
compare to our results as follows. The case Conv v0;c with
L ¼ 4 kpc is a factor of two larger at about 5 GeV with
respect to their BIG-MED, which has zero reacceleration

and a best-fit convection velocity around zero. Similar
differences are found with respect to the SLIM model.
When comparing the QUAINT model results with our
Reacc Inj30, which both include significant reaccelera-
tion velocities, we consistently find lower-positron fluxes.
We note that these semianalytical propagation models
assume different shapes for the diffusion coefficients as
a function of rigidity, and for the source terms, as well as
of course the production cross sections, which can be the
reasons of the discrepancies.
Further predictions for the secondary positrons at Earth

have been obtained in [15] with a semianalytic model,
using primary CRs fluxes from [80]. Their results are very
similar to our predictions within the Reacc Inj30 propa-
gation model.
A general consequence of the results illustrated in

Sec. IV is that the predicted eþ secondary contribution
is not able to account for the AMS-02 data not even around
a few GeV. This is a theoretically challenging result, since
the secondary contribution is often assumed to explain the
data up to 10 GeV (see, e.g., [9,10,12,81–83]).
We have demonstrated that the uncertainties related to

the leptonic production cross section are now much smaller
than the gap between the predicted secondaries and the
positron flux data. In fact, cross section uncertainties were
considered to introduce an uncertainty of the order of
20–30% [15,33,83], which could have partially explained
the mismatch at low energies. Our results indicate that,
within the propagation model explored here, an excess of
positrons is present at energies larger than a few GeV,
where the secondary flux starts to be less than 50% than the
data. While this is consistent with a number of previous
works [18,21,53], our results prove that for fixed values of
L ∼ 4 kpc, positron cross sections uncertainties are too
small to explain the mismatch at low energies. However,
we should notice that a larger secondary production is still
not firmly excluded for smaller values of L, even if they
correspond to worse fits to current nuclei CR data. From a
study of the nuclear fragmentation cross section, we can
conclude that measurements for the nuclear cross sections
involving the production of beryllium and its isotopes are
needed with a precision below 5% in order to estimate the
size of the diffusive halo with a precision better than 50%.
Further uncertainties may derive from leptonic energy

losses, which above few GeV are dominated by inverse
Compton and synchrotron emission. Updated estimates of
the ISRF model in the solar neighborhood [67], which well
agree with the default GALPROP model, reduce significantly
the uncertainties in the ISRF provided by star and dust, as
compared e.g. with the uncertainties parametrized in the
M1-M3 models of [10]. In addition, we have verified that
accounting for the 3D structure of the ISRF as recently
modeled within GALPROP [84] by using the two bench-
marks named F98 and R12, provides consistent results.
The reason is due to the fact that the local photon densities
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are very constrained. Finally, a consistent estimate of the
uncertainties in the synchrotron losses coming from the
Galactic magnetic field model and its local value should
proceed through a combined fit of the CR propagation
models and of multi-wavelength data, such as radio, micro-
wave and gamma-ray emissions [68], which definitely
would deserve a dedicated work.
The ISM target gas density is another crucial ingredient

for the computation of the secondary positrons in Eq. (3).
The impact of updated models for the 3D ISM structure on
CR was recently studied in Ref. [85], finding variations up
to a factor of two for the column density of the local gas.
In the analysis of CR nuclei data, we expect that the ISM
density is effectively degenerate with the value of the
diffusion coefficient. As a confirmation of this hint, we
have verified that varying the ISM gas model among the
ones available within GALPROP [66] in 2D and 3D,
secondary CRs such as positrons are affected in the same
way, and the ratio of secondary positrons to Boron remains
constant to a good approximation. These results suggest
that the impact on the e� flux by varying the ISM as well as
changing from a 2D to a 3D modeling would be very
moderate.

VI. CONCLUSIONS

One of the strongest evidences for the presence of
antimatter particles in our Galaxy is in the data of CR
eþ, which reached a high precision on a wide energy range
spanning from GeV to TeV [6]. An unavoidable contribu-
tion to eþ in the Galaxy is due to the inelastic collisions of
nuclei CRs—mainly p and He—on the ISM atoms. This
secondary source strongly depends on the hadronic cross
sections at the basis of the processes. The knowledge of the
secondary eþ component in CRs is crucial to the under-
standing of this antimatter channel. A better determination
of the secondary component and its uncertainties also
implies a more precise estimation of the room left by the
data to any additional component. This gap can in principle
be ascribed to primary sources, such as pulsars or particle
dark matter annihilation.
In this paper we have provided a new prediction for the

secondary eþ flux in the Galaxy. We implement new eþ
production cross sections for pp and p-nuclei collisions
that became available recently [40]. In order to improve the
Galactic propagation as well, we have performed new fits to
CR nuclei data by computing the CR fluxes using GALPROP,
and have obtained new state-of-the-art propagation models.
We test different propagation scenarios, characterized by
specific choices on the diffusion coefficient, the convective
wind, and reacceleration amount. We obtain very good
fits to CR data, as quantified by the reduced χ̃ smaller
than 1 within each of the tested models. However, we find
that propagation models with values of L≲ 2 kpc are
disfavored by CR data. We also study the consequences

of nuisance parameters to allow some freedom in the
fragmentation cross sections for the production of secon-
dary CR nuclei.
The results on the eþ flux show that for all the

propagation models selected by nuclei CR data, the eþ
flux never exceeds AMS-02 data. The excess of the data
with respect to secondary eþ production is significant from
energies greater than few GeV. The eþ flux at Earth
depends in a significant amount on the size L of the
diffusive halo. Models with L≳ 2 kpc can only explain the
few AMS-02 data for positron energy E < 1 GeV. We also
assess the uncertainties on the eþ flux due by propagation
modeling and by production cross sections. The former are
limited to 2–5%, at fixed L and depending on E, and are
driven by the precision of AMS-02 nuclei data. A variation
of L from 8 kpc to 2 (0.5) kpc implies a maximum rise of
50% (250%) in the propagated flux. Uncertainties in the
flux due to cross sections amount to 5–7%, reflecting
directly the results on the hadronic cross sections. This
results reduces significantly this class of uncertainties with
respect to the state-of-the-art, and is a major finding of
our work.
Contextually, we have computed the flux of secondary

e− at Earth, following the same strategy as for eþ. As for
eþ, the e− flux is determined with a high accuracy on the
whole energy spectrum, thanks to the improvement in
the determination of the hadronic cross sections, and the
constraints on the propagation models. At E < 1 GeV, the
e− secondary fluxes is about 10% of AMS-02 data, while
for energies above few GeV the gap is about two orders of
magnitude. This commonly known result is now reached
with an unprecedented precision well below 10% on the
whole energy spectrum, depending on the extension of the
diffusive halo.
Summarizing, our results can be considered new in a

number of points: (i) The uncertainties on the positron flux
attributed to inelastic hadronic cross sections are reduced to
a few percent. We demonstrate that these uncertainties are
nearly independent of the propagation setup; (ii) We have
calibrated the latest theoretical propagation model against
a wide range of cosmic ray nuclei, obtaining updated
parameters along with their corresponding uncertainties.
Importantly, the size of the diffusion halo L takes values
between 2 kpc and 8 kpc, while our analysis disfavors
smaller values of L; (iii) We have computed the positron
flux utilizing the updated propagation models and quanti-
fied uncertainties. A special emphasize is placed on the
size of the diffusion halo L as it significantly impacts the
prediction of the secondary positron flux. Our findings
reveal that it is the current limiting factor for more accurate
predictions of the positron flux; (iv) In analogy to positrons,
we provide predictions for the flux of secondary electrons.
The results presented in this paper clearly indicate that a

further better determination of eþ flux—not necessarily due
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to secondary origin—is only possible after a more precise
determination of the size of the region in which CRs are
confined. An improvement in this direction could come,
i.e. from precise data of radioactive isotopes such as the
10Be=9Be ratio on a wide range of energies extending
preferably above 20 GeV=n. CR positron measurements
by the planned missions such as AMS-100 [86] and
Aladino [87] would permit to explore the secondary
positron emission up to ∼5 TeV with percent statistical
uncertainties. An increased statistics in the measurement
of positrons in the multi-TeV range could also help to
break the degeneracy between the model’s propagation
parameters.
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APPENDIX A: EXTENDED RESULTS
FOR COSMIC-RAY PROPAGATION

In this section we report an additional discussion about
the results we obtain for the propagation parameters and the
fit to the CR flux data.
In Table I we report the best-fit values obtained for the

propagation parameters when we fix the model to the Conv
v0;c and we use different values for L. Additionally, in
Table II we show the results we find when we use the
models Conv v0;c, Conv dv=dz, Reacc0, Reacc10 and
Reacc30 Inj. In Fig. 9 (Fig. 10) we show the triangle
plots for the propagation (primary CRs abundance and
nuisance parameters of the cross sections) parameters. We
display the results obtained with the models Conv v0;c with
L ¼ 1 and 4 kpc, and Reacc0. For each panel we show the
profiles and contours derived from the 1D and 2D mar-
ginalized posteriors.
When we use Conv v0;c, almost all the parameters found

for different values of L are compatible within the errors.
The only exceptions are the value of D0, which is propor-
tional to L (as explained in Sec. IV B), the convection

velocity (see Fig. 6) and the value of the normalization
cross sections for the beryllium production (AXS → Be),
see Fig. 8. The slope we obtain for injections of protons γp
is about 2.36–2.39 while γHe and γCNO are slightly softer
of about −0.05 and −0.02, respectively. The diffusion
coefficient for the best-fit model increases below the first
rigidity break at 5 GV (δl has a negative slope). The second
slope δ is about 0.6–0.7, while above the second break,
located at around 155 GV, there is an hardening of about
δ − δh ¼ 0.3. We find that there is a smooth transition of
the diffusion coefficient between both breaks with values of
the smoothing of 0.15–0.20 for the low-energy break and
0.5 for the high-energy break. The value we find for the
slope δ is much larger than what typically is found in
other references (see, e.g., [62]) because indeed we include
this smoothing also for the high-rigidity break. We also
note that the best-fit for sD;1 is at the edge of the prior
(see Fig. 9). Talking about the nuisance parameters for the
nuclear cross sections, the value of AXS → Li is 1.20 and at
the edge of the prior, as well as δXS → C and δXS → Li
(see Fig. 10).
When we use different propagation models, i.e. the

models with reacceleration, we find that leaving free
different slopes for p, He and CNO CRs, the fit improves
significantly. In particular, both the low- and high-energy
slopes of the spectra are slightly harder for He and CNO
with respect to protons. The best-fit parameters and the
goodness of the fits found for the model Conv dv=dz are
basically the same of the model Conv v0;c. The model
labeled as Reacc0 returns as best-fit value for vA about
0 km=s and the diffusion coefficient for the part above
10 GV is similar to the convective cases.
The triangle plots shown in Fig. 9 show the presence of

correlations of a few parameters such as D0 and v0;c (see
also Fig. 6). All the other parameters do not show strong
correlations.
In Fig. 11 we show the ratio between the flux of

secondary and primary CRs. In particular, we display the
result for the ratio Be/C and B/C for the model Conv v0;c
model for different values of L, and when we use the
convection and reacceleration models. All the tested
models, with convection or reacceleration, provide a good
fit to the secondary over primary ratios when we use
L ¼ 4 kpc. In fact we see in the right panels that the
differences between the tested models and the data are
minor in the energy range of the data. The reduced χ2 found
for all the models is below 1.
Instead, some differences are seen when we test different

values of L. In particular, we can see in the plots that
smaller values of L are disfavored by the Be/C data for
rigidities between a few GV up to tens of GV. The models
with L < 2 kpc struggle to fit the Be/C data and B/C data at
the same time. Future AMS-02 data for the beryllium
isotopes might help to put tight constraints for the size of
the diffusive halo (see, e.g., [38]).
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APPENDIX B: GRID TESTS

In this section we expand the discussion on the choice of
the grid for the numerical solution of the transport equation
and show tests that we perform to find the optimal choice
for the grid parameters.

GALPROP solves the propagation equation numerically
on a grid in r, z and CR kinetic energy per nucleon (Ekin)
by updating the CR densities for discrete time steps. The
properties of the grids and the time step are defined as
follows. On the other hand, the grid in Ekin is logarithmic

TABLE II. Same as Table I for the different models tested in the paper. The priors we use for the normalization and slope cross section
parameters with the model Reacc30 Inj are 0.5–2.0 and −0.3, 0.3, i.e. larger with respect to the ones used for the other models.

Parameter Prior Conv v0;c Conv dv=dz Reacc0 Reacc10 Reacc30-Inj

γ1;p 1.0–2.5 γ2;p γ2;p γ2;p γ2;p 1.62þ0.03
−0.03

γ2;p 2.1–2.6 2.363þ0.004
−0.004 2.354þ0.003

−0.005 2.355þ0.004
−0.004 2.357þ0.003

−0.004 2.440þ0.004
−0.005

γ1;He 1.0–2.5 γHe − γp þ γ2;p γHe − γp þ γ2;p γHe − γp þ γ2;p γHe − γp þ γ2;p 1.53þ0.04
−0.03

γ2;He 2.1–2.6 γHe − γp þ γ2;p γHe − γp þ γ2;p γHe − γp þ γ2;p γHe − γp þ γ2;p 2.369þ0.004
−0.005

γ1;CNO 1.0–2.5 γCNO − γp þ γ2;p γCNO − γp þ γ2;p γCNO − γp þ γ2;p γCNO − γp þ γ2;p 1.77þ0.04
−0.04

γ2;CNO 2.1–2.6 γCNO − γp þ γ2;p γCNO − γp þ γ2;p γCNO − γp þ γ2;p γCNO − γp þ γ2;p 2.377þ0.004
−0.006

Rinj ½GV� 0.5–10.0 � � � � � � � � � � � � 5.68þ0.30
−0.36

sinj 0.1–1.0 � � � � � � � � � � � � 0.38þ0.02
−0.02

γHe − γp −0.2–0.1 −0.054þ0.002
−0.002 −0.054þ0.002

−0.002 −0.061þ0.002
−0.002 −0.063þ0.002

−0.002 � � �
γCNO − γp −0.2–0.1 −0.020þ0.002

−0.003 −0.021þ0.003
−0.003 −0.024þ0.003

−0.003 −0.025þ0.003
−0.003 � � �

D0 ½1028 cm2=s� 0.5–10.0 2.22þ0.12
−0.16 2.21þ0.18

−0.19 3.80þ0.06
−0.05 3.97þ0.06

−0.04 7.07þ0.25
−0.17

δl −2.0–0.5 −0.57þ0.04
−0.04 −0.57þ0.05

−0.04 −0.58þ0.05
−0.04 −0.62þ0.04

−0.04 δ

δ 0.1–1.5 0.66þ0.02
−0.02 0.66þ0.02

−0.03 0.522þ0.005
−0.006 0.509þ0.004

−0.005 0.390þ0.005
−0.004

δh − δ −1.5–0.0 −0.33þ0.02
−0.02 −0.33þ0.02

−0.02 −0.26þ0.03
−0.02 −0.25þ0.03

−0.03 −0.22þ0.06
−0.03

R0;D ½GV� 0.5–10.0 4.99þ0.17
−0.15 4.84þ0.18

−0.17 4.22þ0.24
−0.22 3.80þ0.12

−0.20 � � �
sD;0 0.1–0.5 0.17þ0.04

−0.04 0.22þ0.03
−0.03 0.42þ0.02

−0.03 0.478þ0.022
−0.006 � � �

RD;1 ½GV� 50.0–800.0 145.96þ13.91
−18.29 156.24þ14.36

−19.32 281.77þ34.69
−38.27 318.29þ36.49

−48.36 415.79þ50.23
−104.50

sD;1 0.1–0.5 0.486þ0.014
−0.002 0.484þ0.016

−0.003 0.461þ0.039
−0.008 0.45þ0.05

−0.01 0.32þ0.10
−0.08

v0;c ½km=s� 0.0–40.0 13.67þ1.19
−0.92 � � � � � � � � � � � �

dv=dz [km=s=kpc] 0.0–40.0 � � � 11.71þ1.38
−1.39 � � � � � � � � �

vA ½km=s� 0.0–100.0 � � � � � � 1.59þ0.41
−1.59 � � � 32.16þ1.56

−1.34
Ren Abdp 0.9–1.1 1.000þ0.002

−0.002 0.998þ0.002
−0.002 1.005þ0.002

−0.002 1.005þ0.002
−0.002 1.030þ0.002

−0.002*

Ren Abd4He 0.9–1.1 0.992þ0.004
−0.004 1.000þ0.004

−0.004 0.994þ0.003
−0.004 0.997þ0.004

−0.003 0.946þ0.004
−0.005*

Abd12C ½104� 0.1–0.8 0.355þ0.003
−0.002 0.358þ0.003

−0.002 0.360þ0.003
−0.003 0.360þ0.004

−0.003 0.344þ0.005
−0.003

Abd14N ½104� 0.0–0.1 0.022þ0.002
−0.002 0.022þ0.001

−0.002 0.023þ0.002
−0.002 0.022þ0.002

−0.002 0.025þ0.001
−0.002

Abd16O ½104� 0.1–0.8 0.453þ0.003
−0.003 0.458þ0.002

−0.003 0.461þ0.003
−0.003 0.463þ0.003

−0.003 0.403þ0.002
−0.004

AXS → Li 0.8–1.2 1.198þ0.002
−−0.001 1.198þ0.002

−−0.001 1.197þ0.003
−−0.000 1.197þ0.003

−−0.001 1.96þ0.04
−0.01

AXS → Be 0.8–1.2 0.975þ0.006
−0.004 0.971þ0.006

−0.004 0.978þ0.007
−0.004 0.980þ0.007

−0.004 1.52þ0.04
−0.01*

AXS → B 0.8–1.2 0.985þ0.006
−0.003 0.986þ0.005

−0.004 0.985þ0.007
−0.004 0.986þ0.006

−0.004 1.49þ0.04
−0.02*

δXS → Li −0.1–0.1 0.082þ0.013
−0.008 0.080þ0.015

−0.007 0.090þ0.010
−0.003 0.090þ0.010

−0.003 0.292þ0.008
−0.002

δXS → Be −0.1–0.1 −0.02þ0.02
−0.01 −0.02þ0.01

−0.01 −0.02þ0.01
−0.01 −0.02þ0.01

−0.01 0.24þ0.01
−0.01

δXS → B −0.1–0.1 −0.08þ0.01
−0.01 −0.076þ0.010

−0.011 −0.059þ0.010
−0.011 −0.055þ0.010

−0.011 0.176þ0.009
−0.012

δXS → C −0.1–0.1 0.086þ0.014
−0.002 0.089þ0.011

−0.002 0.090þ0.010
−0.002 0.090þ0.010

−0.002 0.21þ0.09
−0.03

δXS → N −0.1–0.1 −0.04þ0.01
−0.01 −0.03þ0.01

−0.01 −0.02þ0.01
−0.01 −0.01þ0.01

−0.01 0.14þ0.02
−0.02

φAMS−02 [GV] 0.1–1.0 0.416þ0.006
−0.007 0.417þ0.005

−0.008 0.429þ0.007
−0.007 0.435þ0.006

−0.007 0.594þ0.008
−0.008*

χ2 355 399 437 465 264
logðZÞ −238 −263 −278 −290 −208
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with a constant factor fEkin
¼ Ekin;iþ1=Ekin;i. Finally, the

time steps are defined in a more involved way. GALPROP

solves the propagation equation starting with a large time
step to quickly converge to an approximate solution and
then logarithmically reduces the time step to converge to
the accurate solution. Therefore, the following parameters
can be defined; a starting time step and final time step, the
number of repetitions at each time step and the time step

factor (analogous to the fEkin
). We note that also the

minimal value for the Ekin grid is an important quantity.
We use 1 MeV. A value larger than 10 MeV can have a
significant impact also on the spectrum above 1 GeV
because the CR density if forced to be 0 at the grid
boundary. In particluar, this is important for models with
reacceleration while for the Conv v0;c models the effect is
smaller.

FIG. 9. Triangle plot for the propagation parameters obtained with the models Conv v0;c with L ¼ 1 and 4 kpc and Reacc0. For each
panel we show the 1σ, 2σ, and 3σ contours for each combination of two parameters, while the diagonal shows the posterior distribution
for each individual parameter.
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For the fits shown in the main text of the paper, we fix the
grid by choosing the following values: dz ¼ 0.1 kpc,
dr ¼ 1 kpc, fEkin

¼ 1.1, starting and ending time step of
109 and 102 years, time step factors of 0.5 and 20
repetitions. These choices allow for a reasonably fast
evaluation of GALPROP while keeping the systematics at
the level of a few percent.
We perform dedicated tests to verify that this is the

appropriate choice. In particular, we run GALPROP with
different choices for the space, time and kinetic energy

grid. We vary the grid in z by choosing dz from 0.05 kpc to
0.30 kpc, in r by varying dr from 0.2 to 1.8, in Ekin by
using fEkin

from 1.01 to 1.50. Instead, for the time grid we
choose a few different combinations of the starting and
ending time and the parameters ft and rt. We show the
results in Fig. 12 where we report the ratio between
the flux obtained for proton, positrons and B/C with the
different choices of the grid with respect to our benchmark
case. The kinetic factor fEkin

impacts significantly the
positron flux. In fact, values smaller than 1.15 should be

FIG. 10. Same as Fig. 9 for the abundance of primary CRs and nuisance parameters of the cross sections.
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considered to keep the systematics below the few percent
level. The impact on CRs and B/C is smaller. The spatial
grid should be taken with dr ≤ 1 kpc and dz ≤ 0.30 kpc
to minimize the systematics due to the grid. In particular,
the grid in z affects the primary CRs and B/C with a
minimal amount and at energies where the AMS-02 data
are not present (e.g., for B/C below 1 GV). Instead, dr

affects significantly the positron flux for which values
larger than 1 kpc can produce systematics larger than 5%.
Finally, the time grid can generate a systematic that is
basically a normalization factor for B/C. For primary CRs,
the variation is very minor while for positrons are relevant
only at energies below 1 GeV where the data have large
errors.

FIG. 11. Plot of the flux ratio between boron and carbon (top panel) and beryllium and carbon (bottom panel). In the left panels we
show the results for the Conv v0;c model with different L, while in the right panel we report the other models tested in the paper. Below
each figure we display the ratio between the different considered cases and the result obtained for Conv v0;c with L ¼ 4 kpc. We also
show the ratio between the data and the Conv v0;c model with L ¼ 4 kpc.
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