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A NOTE ON THE DENSITY OF k-FREE POLYNOMIAL SETS, HAAR

MEASURE AND GLOBAL FIELDS

LUCA DEMANGOS AND IGNAZIO LONGHI

Abstract. In this work we investigate the general relation between the density of a subset of the

ring of integers D of a general global field and the Haar measure of its closure in the profinite

completion D̂. We then study a specific family of sets, the preimages of k-free elements (for any

given k ∈ N \ {0, 1}) via one variable polynomial maps, showing that under some hypotheses their

asymptotic density always exists and it is precisely the Haar measure of the closure in D̂ of their set.

1. Introduction

This work is intended to be part of a more general treatment that we develop in [4]. Our main
purpose is to present a reasonably general notion of density on any global ring (see Definition 1.1)
which shall include the most commonly used ones and to investigate the relation between it and the
Haar measure on the profinite completion. Several researches have been already undertaken in this
respect for the subsets of N, see for example [3], while in [9] a reasonably general first axiomatization
of the main properties of a density in the framework of a general notion has been proposed. The very
nice work [12] of G. Micheli also offers a notion of asymptotic density on a positive characteristic global
ring and we have been inspired by such an approach (see section 2).

We will discuss a concrete example of a general class of subsets of a global ring which are largely
studied in number theory, the k-free elements, showing that the asymptotic density of their one-
variable polynomial preimages exists and it is equal to the Haar measure of the closure of their set
in the profinite completion of the ring. The k-free elements (see [13] for a complete survey) are the
natural generalization of square-free numbers of N, which have been analyzed in many of their most
relevant aspects by the distinguished work of many researchers, among whom B. Poonen (see [14])
and M. Bhargava (see [2]). In particular, in [14] it is computed the asymptotic density of the square-
free preimage of any multivariate polynomial in Zn under the assumption of abc conjecture, while in
[2] it is developed a general method to determine the asymptotic density of square-free preimages of
multivariate integer polynomials that are invariants for the action of an algebraic group on a vector
space. We will analyze such sets in the simpler case of one variable polynomial preimages, but for any
k ≥ 2 and on a quite special class of Dedekind domains D, which we call global rings, as a concrete
application of the proposed techniques.

Definition 1.1. We call global ring a Dedekind domain D which is either the ring of integers of a
number field or the ring of rational functions of a smooth projective and irreducible curve over a finite
field1 Fq, regular outside a chosen nonempty and finite set S of points of the curve.

Let k ∈ N \ {0, 1}. The k-free elements of D are all the elements x ∈ D such that vp(x) ∈
{0, 1, ..., k− 1} for every finite place vp (associated to a non-zero prime ideal p of D). Our main result
will consist in showing that the polynomial (separable and in one variable) preimage of the k-free
elements of a general global ring D has asymptotic density, which is precisely the Haar measure of its

closure in D̂.

A natural development of this work would be to extend it to the more general case of the ring of
S-integers in any given number field. In other words, given S a finite set of places including (but
not limited to) the places at infinity, one may consider the same problem on the ring consisting of
v-integers for every v /∈ S (see Definition 2.1 for the function field analog). No conceptual obstacles

1See for example [19], section 3.2, for a quite complete overview.
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2 DEMANGOS AND LONGHI

seem to stand in the way but the technicalities which are involved in providing a precise analog of the
crucial estimate (5) appear sufficiently long to be avoided in the present treatment.

In section 2 we will provide a generalization of the notion of density (which will be discussed ex-
tensively in [4]) for a global ring and we will discuss more in detail how to treat global rings in order to
attach to them an asymptotic density which extends the typical one on N, showing that it satisfies the
general requirements mentioned before. We will then recall the main properties of the Haar measure on

a compact topological group (like D̂), showing that the general notion of density previously introduced

easily implies the identification between density and measure of the closure of the ideals of D in D̂,
which form a fundamental basis of open neighborhoods of 0. In particular, all their cosets form a basis

of closed and open neighborhoods of the points of D̂. This will be one of the keys in our proof of the
main Theorem (see Theorem 3.2). The main Theorem we prove in the present work will be treated
then in section 3. It represents a class of examples (for every global ring) of sets for which we can
prove the existence of asymptotic density by directly showing that it is precisely the Haar measure of
the closure of such sets. It extends in particular to the number field case, and by the use of different
techniques, the analogous result proved by K. Ramsay for the global function fields (see [16]).

Acknowledgments. We would like to thank the reviewer for the crucial remarks and the very useful
suggestions made to us.

2. Preliminaries

As anticipated, we will be interested in a quite large class of Dedekind domains, called global rings.
As introduced in the previous section, a global ring is either the ring of integers of a number field
or a ring of regular functions in the following sense. Let F be a global function field, of positive
characteristic. As known to the experts in function field arithmetic, F has a powerful geometric
meaning represented by a smooth projective irreducible curve ΣF over a finite field Fq which is attached
to it, and of which it is the field of rational functions (see for example [19], Appendix B for a general
introduction).

Definition 2.1. Given a chosen nonempty finite set S of places of F , we define:

DS := {x ∈ F, v(x) ≥ 0, ∀v /∈ S}.

This is called a global ring of positive characteristic and we will briefly indicate it as D := DS .

All global rings D satisfy the two following conditions, which are crucial to introduce a general
notion of density, including all the most commonly used ones: asymptotic, logarithmic, uniform and
analytic density (see [9] for subsets of N and [4], section 4 for a more general case of a global ring).

(A1) D is countable;
(A2) all non-zero ideals of D have finite index.

Global rings only form a proper subclass of the more general class of Dedekind domains of the form
described above. For example one can localize any global ring at any maximal ideal, obtaining a
Dedekind domain, still satisfying (A1) and (A2), but which clearly cannot be a global ring anymore.

To introduce the notion of density in a general fashion we proceed as follows.

We call respectively upper and lower density on D the following two maps:

d+, d− : 2D −→ [0, 1]

such that the following conditions hold for every X,Y ⊆ D:

(Dn1) d−(D) = 1 ;
(Dn2) d−(X) ⩽ d+(X) ;
(Dn3) X ⊆ Y implies d−(X) ⩽ d−(Y ) and d+(X) ⩽ d+(Y );
(Dn4) if D is the disjoint union of X and Y , then d+(X) + d−(Y ) = 1;
(Dn5) if X and Y are disjoint, then

(1) d+(X ∪ Y ) ⩽ d+(X) + d+(Y )
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and

(2) d−(X ∪ Y ) ⩾ d−(X) + d−(Y ) ;

(Dn6) for every a ∈ D, one has

d−({x+ a | x ∈ X}) = d−(X)

and

d+({x+ a | x ∈ X}) = d+(X)

(Dn7) for every ideal a of D, we have that

d−(a) = d+(a) =
1

||a||
where we denote ||a|| the index of a in D.

In the whole document we will use the convention that if κ is an infinite cardinal, then 1/κ = 0. This
shows in particular that the 0 ideal has density 0 as its index is infinite.

Definition 2.2. We say that the density of a set S ⊆ D exists if d+(S) = d−(S) and we call it d(S).

Lemma 2.3. Assume d+ and d− satisfy conditions (Dn4) and (Dn5). If Y ⊆ D has a density, then
the equality

(3) d+(X) = d(Y )− d−(Y −X)

holds for every X ⊆ Y .

Proof. Let X be a subset of Y and Z the complement of Y in D. Then Z ∪ (Y −X) is the complement
of X and it follows

d+(X)
by (Dn4)

= 1− d−(Z ∪ (Y −X))
by (2)

⩽ 1− d−(Z)− d−(Y −X) = d+(Y )− d−(Y −X) ,

that is, d+(X) + d−(Y −X) ⩽ d+(Y ).
On the other hand, the complement of Y −X is Z ∪X and thus

d−(Y −X)
by (Dn4)

= 1− d+(Z ∪X)
by (1)

⩾ 1− d+(Z)− d+(X) = d−(Y )− d+(X) ,

that is, d+(X) + d−(Y −X) ⩾ d−(Y ).
Therefore, if the density of Y exists then one has d(Y ) = d+(X) + d−(Y −X). □

We now extend the quite common notion of asymptotic density to a general global ring. It is
necessary to provide two different specific constructions depending on the characteristic zero or finite
characteristic setting. The main difficulty is represented by introducing a meaningful metric on D in
a canonical way, which is normally not possible. Indeed, if D is the ring of integers of a number field
it does not necessarily embed discretely in C and must be seen instead as a lattice of Rr × Cs, where
r is the number of distinct real embeddings of ∞ into D and s is the number of distinct couples of
complex conjugate extensions of the Archimedean place to D.

Definition 2.4. Let k ∈ N \ {0, 1}. The k-free elements of D are all the elements x ∈ D such that:

vp(x) ∈ {0, 1, ..., k − 1}
for every finite place vp (corresponding to a non-zero prime ideal p of D).

2.0.1. The number field case. Let D be the ring of integers of a number field F . As anticipated, it can
be embedded into Rr × Cs in the following way. Note that r + 2s = [F : Q]. Let us call:

N := [F : Q].

Let F = Q(α). Let αi := σi(α) be the general conjugate of α by any F -isomorphism σi. The map:

α 7→ (αi)

embeds then F into Rr×Cs and the Z-basis of D into a R-basis of Rr×Cs, making D a rank N lattice
in Rr × Cs. We define the following metric on Rr × Cs:

|x| := max
i
{|xi|}
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where x = (x1, ..., xr+2s) is the generic element of Rr × Cs. Note that up to the canonical R-vector
space isomorphism C ≃ R2 which assigns to C the basis {1, i}, we can identify Rr × Cs with RN and
for brevity we will identify the two vector spaces from now on.

We now define as follows the open balls induced by the given metric:

B(x, r) := {y ∈ RN , |x− y| < r}
where x ∈ RN and r > 0. Note that the definition we have provided ensures that a ball only contains
finitely many elements of D (see for example [8], chapter 5). Indeed, choose a Z-basis x1, ..., xN of D.
The matrix

(σi(xj))

is nonsingular because the field extension F/Q is nontrivial and separable (see for example [11], page
96 item 39 a.), hence if we call BD(x, r) the set of all the elements of B(x, r) which belong to D via the
identification of D with a lattice of RN , the system of inequalities which describe all points of BD(0, r)∣∣∣∣∣∣

N∑
j=1

njσi(xj)

∣∣∣∣∣∣ < r


0≤i≤N−1,1≤j≤N

can only have finitely many solutions (n1, ..., nN ) ∈ ZN . Analogous argument repeats for the balls
centered in arbitrary points other than 0.

Definition 2.5. Let X be a subset of D. We define as follows the upper and lower asymptotic
density of X:

das
+(X) := lim sup

r→∞

|X ∩B(0, r)|
|D ∩B(0, r)|

and das
−(X) := lim inf

r→∞

|X ∩B(0, r)|
|D ∩B(0, r)|

.

If das
+(X) = das

−(X) we say that X has asymptotic density, which we call das(X).

2.0.2. The positive characteristic case. Let F be a global field in positive characteristic. Then, let us
consider a finite set S of places of the corresponding projective curve ΣF over Fq. To each v ∈ S we
can attach a non-Archimedean metric on F as follows. For every place v, let Ov be the v-valuation
ring and let mv be its maximal ideal. We call degv the degree of Ov/mv as Fq-vector space. Then, we
set the following absolute value:

|x|v = q−v(x) degv for every v ∈ S
for every x ∈ F . Let us call Fv the completion of F with respect to such a metric. We define the
following Dedekind domain:

D =: DS :=
∩
v/∈S

Ov.

We can therefore consider on it the metric induced by
∏

v∈S Fv, given as usual as:

|x| := max
v∈S
{|xv|v}

where x = (xv) is the general tuple in
∏

v∈S Fv and each factor Fv is endowed by its corresponding
non-Archimedean metric | · |v defined by v as above. We then define all open balls in such a space as
follows:

B(x, r) := {y ∈
∏
v∈S

Fv, |x− y| < r}

for each x ∈
∏

v∈S Fv and r > 0. We call again BD(x, r) the intersection of B(x, r) with the image of
D by the embedding F ↪→

∏
v∈S Fv analogous to the one described above. In particular, the diagonal

embedding of F into
∏

v∈S Fv is such that each Fv gives to the elements of D the corresponding metric
attached to v. Our aim in the discussion we are about to make below is to show that BD(x, r) has at
most finitely many elements, being a Riemann-Roch space and therefore having finite dimension on
the finite field Fq (see [19], chapter 1).

We point out that the treatment we are about to develop was already known essentially by sev-
eral important works made in the past: we mention J. V. Armitage (see [1]), M. Eichler ([5]) and K.
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Mahler ([10]).

We start by providing the necessary definitions.

Definition 2.6. Let Σ be an algebraic curve over Fq. The group of divisors on Σ is the free abelian
group generated by the places of Σ, i.e. formed by all formal sums∑

v places of Σ

nv[v]

with nv ∈ Z for every place v and nv = 0 for all but finitely many places. The degree of a divisor
D =

∑
nv[v] is defined as:

deg(D) :=
∑

v places of Σ

nv.

See also [19], Definition 1.4.1, page 16. The following partial order relation is established between
divisors:

D1 ≥ D2 ⇐⇒ nv,1 ≥ nv,2 ∀ v place of Σ

where

Di =
∑

v places of Σ

nv,i[v]

for i = 1, 2.

Let F be a global function field and let ΣF be as before the smooth projective curve associated to
F as previously mentioned. Let v(x) ∈ Z be the order of an element x ∈ F ∗ at v for any place v of F .
The principal divisors of F are divisors on ΣF defined as follows:

div(x) :=
∑

v places of F

v(x)[v] where x ∈ F ∗.

It is well known (see [19], Theorem 1.4.11) that

deg(div(x)) = 0

for every x ∈ F ∗.

Definition 2.7. Let D be a divisor on ΣF . The Riemann-Roch space associated to D is defined
as follows:

L(D) := {x ∈ F, div(x) ≥ −D} ∪ {0}.

The dimension of a Riemann-Roch space over Fq is finite and strictly related to the genus of ΣF

(see [19], section 1.5).

Lemma 2.8. The balls induced by the metric described above on the image of D embedded into
∏

v∈S Fv

are Riemann-Roch spaces of positive divisors with support contained in S related to ΣF , while all such
spaces are a finer but equivalent basis of neighborhoods of 0.

Proof. All balls centered at 0 are Riemann-Roch spaces: In the following, we always assume r ∈ qZ.
To each such r, it corresponds a positive divisor Dr of ΣF , with support in S, such that:

BD(0, r) = L(Dr).

Indeed, let x ∈ BD(0, r) for a given r > 0. Let v(x) ∈ Z be the order of x at v for any place v of F .
By the definition we gave to D = DS it follows that we can have that v(x) < 0 only if v ∈ S. For
every x ∈ BD(0, r) \ {0} we have that:

div(x) =
∑

v places of F

v(x)[v].

Note that if r < q then BD(0, r) = {0} because v(x) can be negative only if v ∈ S and deg(div(x)) = 0
for every x ∈ F ∗. Remembering that we are assuming without loss of generality (since each place of
F corresponds to a discrete valuation) that r ∈ qZ:

BD(0, r) = {x ∈ D, v(x) degv ≥ − logq(r), ∀v places of F}.
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Indeed, we set the following divisor:

Dr :=
∑
v∈S

⌊
logq(r)

degv

⌋
· [v].

It then follows that div(x) =
∑

v places of F v(x)[v] ≥ −Dr for every x ∈ BD(0, r) (note that v(x) ≥ 0

for every v /∈ S and that −
⌊
logq(r)

degv

⌋
=

⌈
− logq(r)

degv

⌉
, while v(x) ∈ Z). Also, if x ∈ F is such that

div(x) ≥ −Dr, this implies that v(x) ≥ −
⌊
logq(r)

degv

⌋
≥ − logq(r)

degv
for each v ∈ S, which means that

x ∈ BD(0, r).

Riemann-Roch spaces are equivalent to balls centered at 0: Let D =
∑

v places of F Mv[v] be a pos-

itive divisor with support in S. If x ∈ L(D) \ {0} it follows that div(x) =
∑

v places of F v(x)[v] is such

that v(x) ≥ −Mv for every v places of F . By assumption, Mv = 0 for every v /∈ S and Mv ≥ 0 for
every v ∈ S. By definition:

L(D) = {x ∈ D, v(x) ≥ −Mv, ∀v places of F} ∪ {0}

then if we call r := maxv∈S{qMv degv} and s := minv∈S{qMv degv} we easily see that:

BD(0, s) ⊆ L(D) ⊆ BD(0, r).

□

Since the sum is a continuous operation, we conclude that all translations of the Riemann-Roch
spaces by any point x ∈ D are a basis of neighborhoods of all points of D, equivalent to the open balls
we introduced before. This immediately implies now that BD(x, r) has at most finitely many elements,
because the Riemann-Roch spaces all have finite dimension on Fq.

In particular, the definition of asymptotic density we gave for number fields (see Definition 2.5) also
extends to the global function fields case.

Lemma 2.9. Let a be an ideal of DS . Let Ba(0, t) be the set of all points of a embedded into BD(0, t)
as described before. We have that:

|Ba(0, t)|
|BD(0, t)|

∼t→+∞
1

||a||
.

Proof. Let Dt be the divisor associated to t as explained before. We know that:

BD(0, t) = L(Dt).

By Remark 2.8 and the Riemann-Roch Theorem (see [19], Theorem 1.5.15), we have that if t is
sufficiently large it follows that:

|B(0, t)| = qlt

where:

lt = deg(Dt)− g + 1

and g is the genus of ΣF . Let:

a =
n∏

i=1

mmi
i

be the decomposition of a in prime factors, each one of them corresponds to a place not belonging to
S. More specifically, if Pi is the point of ΣF associated to mi for each i = 1, ..., n, a is the ideal of all
the rational functions on the curve which not only are regular outside of the points associated to the
places of S, but vanish with order at least mi at Pi for each i = 1, ..., r. Therefore:

Da,t := Dt −
r∑

i=1

mi · [vPi ]

is such that:

Ba(0, t) = L(Da,t).
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By the same arguments as before we have that:

(4) |Ba(0, t)| ∼t→+∞ qdeg(Da,t)+1−g.

It follows that:
|Ba(0, t)|
|BD(0, t)|

∼t→+∞ q−
∑n

i=1 mi degmi .

By the definition of degree of a place we have given before, it is now easy to see that:

q
∑n

i=1 mi degmi = ||m1||m1 ...||mn||mn = ||a||.
□

Remark 2.10. It is worthwhile to remark that the description we gave of |Ba(0, t)| (the number
of elements of a embedded into the ball of radius r) in the proof above provides a function field
analogue of [8, VI,§2, Theorem 2]. More specifically, it suggests that while the volume formula for the

fundamental parallelogram of a number field F is

√
|disc(F )|

2s , if F is the global function field associated
to a curve ΣF of genus g over Fq then the ”fundamental parallelogram” (

∏
v∈S Fv)/D (remember that

D embeds diagonally in
∏

v∈S Fv) in this setting will be expected having volume qg−1. This agrees
with the computation made by A. Weil in [20], pag. 13 item b, in which the measure of the adelic

quotient AF /F ≃ (
∏

v∈S Fv)/D × F̂ (corresponding to the volume of the fundamental parallelogram

of D embedded into F∞) is precisely qg−1.

2.1. The asymptotic density on a global ring.

Proposition 2.11. Let D be a global ring. The pair (das
+, das

−) satisfies all conditions (Dn1) -
(Dn7).

Proof. It is a straightforward remark that das
+ and das

− satisfy (Dn1) - (Dn5), mainly because of the
set-theoretic nature of such conditions. To show (Dn6) and (Dn7) is instead more delicate and it will
be done case by case. We start by proving (Dn6) and (Dn7) for a number field first.
Let a ∈ D and X ⊆ D, where D is the ring of integers of a number field F . It is clear that |(a+X) ∩
B(0, r)| = |X ∩B(−a, r)| for every r > 0. The metric we have chosen also implies:

Vol(B(0, r)) = Vol(B(−a, r)) = rN

where the volume Vol(B(−a, r)) of the ball of center −a and radius r > 0 (which is actually a cube of
side length r in RN ) will be rN . In particular, as B(0, r) ∪B(−a, r) ⊆ B(0, |a|+ r), it follows that:

Vol(B(0, |a|+ r) \B(0, r)) = Vol(B(0, |a|+ r) \B(−a, r)) = Or→+∞(rN−1).

We remind that a must be thought as a point of RN and |a| = maxi=1,...,N{|a|i}. We also know that:

|X ∩B(0, |a|+ r)| − |X ∩B(0, r)|
|D ∩B(0, r)|

≤ Vol(B(0, |a|+ r) \B(0, r))

|D ∩B(0, r)|
.

By [8, VI,§2, Theorem 2] (see also below) we know that |D ∩B(0, r)| = Or→+∞(rN ). Hence the limit
for r tending to infinity of the latter value will be 0. Therefore, by repeating the same argument with
B(0, |a|+ r) and B(−a, r) we obtain:

|X ∩B(0, r)|
|D ∩B(0, r)|

∼r→+∞
|X ∩B(0, |a|+ r)|
|D ∩B(0, r)|

∼r→+∞
|(a+X) ∩B(0, r)|
|D ∩B(0, r)|

.

It is now easy to see that (Dn6) follows. Now let a be an ideal of D. Assume D be a ring of integers
of a number field. By [8, VI,§2, Theorem 2], if we see a as a sub-lattice of D embedded into RN by an
R-vector space isomorphism, we have that:

(5) |Ba(0, r)| =
Vol(B(0, 1))

Vol(∆a)
rN +Or→+∞(rN−1)

for r sufficiently large, where ∆a is the fundamental domain of a. We know that Vol(B(0, 1)) = 1.
Repeating the same remark by replacing a by D we have:

|Ba(0, r)|
|BD(0, r)|

=
Vol(∆a)

−1rN +Or→+∞(rN−1)

Vol(∆D)−1rN +Or→+∞(rN−1)
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which yields:
|Ba(0, r)|
|BD(0, r)|

∼r→+∞
1

||a||
.

This because it is well known (see for example [11], page 135) that Vol(∆a) = Vol(∆D)||a||. This
shows (Dn7). Now let D be a global ring of positive characteristic. By the non-Archimedean metric on∏

v∈S Fv it is also easy to see that B(0, r) = B(−a, r) for any r > |a|. This implies (Dn6) immediately
again as |(a+X) ∩B(0, r)| = |X ∩B(−a, r)|. By Lemma 2.9 we now have that:

d(a) =
1

||a||
.

□
Although the discussion above has shown that the asymptotic density defined on any global ring

satisfies the conditions (Dn1) - (Dn7) we have previously set, we would like to warn the reader that
such a density may still show undesired features. For example, one can remark that in the case of
the ring of integers of a number field of degree N > 1 the asymptotic density of a given subset X of
such a ring is not necessarily preserved by a unimodular linear automorphism of RN or by the choice
of a metric equivalent to the one given on page 4. We illustrate the meaning of this in the following
example.

Example 2.12. Consider D the ring of Gaussian integers Z[i] and let us define the following subset:

X := {x+ iy, x, y ∈ N}.
It is not hard to see that X has asymptotic density 1/4. Now, if we identify C with R2 as an R-vector
space by assuming on it the canonical basis {1, i}, we also see X as the subset N2 of R2. If we take on
R2 the topology generated by the ”slanted” squared balls obtained by modifying the ”straight” ones
after the linear transformation of R2 represented by the matrix(

1 1
0 1

)
the set X will now have density 1/8 with respect to the new topology, although the two topologies are
clearly equivalent to each other. A more detailed discussion of this kind phenomena can be found in
[4], Remarks 4.19.

2.2. Haar measure and profinite completion. We introduce now the key tools developed in [4].
The main idea consists to study specific subsets of D (like the one we specifically analyze in this work)

by taking their closure in D̂. The main advantage by such an operation relies in being allowed to deal
with the Haar measure on the compact ring:

D̂ := lim←−
a⊂D

D/a

where a ranges over all nonzero ideals of D. This tool is expected to allow interpreting algebraically
the general notion of density by a different point of view and what we propose in this work is precisely
a class of concrete examples where the two notions are strictly and very easily related. In the following,

given any subset X of D we will denote as X̂ the closure of X in D̂.

Lemma 2.13. An ideal of D̂ is closed if and only if it is principal.

Proof. One implication is trivial: since D̂ is compact and multiplication is continuous, aD̂ must be

closed for every a ∈ D̂.
As for the converse, we start with the observation that by the Chinese Remainder Theorem one has

that
D̂ =

∏
p∈Max(D)

Dp

where Dp is the p-adic completion of D. Hence we can express x ∈ D̂ as x = (xp)p, with xp ∈∏
p∈Max(D) Dp. For any set S of non-zero prime ideals of D, let eS = (eS,p)p be defined by

eS,p :=

{
1 if p ∈ S

0 if p /∈ S
.
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Then eSD̂ is a subring of D̂, isomorphic to
∏

p∈S Dp .

Also, for every non-zero prime p choose ũp ∈ D satisfying vp(ũp) = 1 and put up := e{p}ũp . The

subring e{p}D̂ is a principal ideal domain having up as a uniformizer.

Let I be any ideal of D̂. By the above, e{p}I is a principal ideal and we have e{p}I = u
vp(I)
p D̂ for

some vp(I) ∈ N ∪ {∞}. If S is any finite set of non-zero primes, then the equality

eS =
∑
p∈S

e{p}

implies

eSI =
∑
p∈S

e{p}I = aS,ID̂ ,

with aS,I =
∑

u
vp(I)
p . Moreover, aS,I ∈ I, since eS · I ⊆ I.

Let aI ∈ D̂ be the point corresponding to (u
vp(I)
p )p by the Chinese Remainder Theorem. The

inequality
vp(x) ⩾ vp(I) = vp(aI)

holds for every x ∈ I and every p, proving the inclusion I ⊆ aID̂.
Moreover aI is an accumulation point of the set {aS,I} (where S varies among all finite subsets of

non-zero primes). Indeed, let U be any open neighborhood of aI . Without loss of generality, we can
assume U =

∏
p Up, where each Up is open in Dp and Up = Dp for every p outside of a finite set T ;

but then aS,I ∈ U if T ⊆ S. If I is closed this yields aI ∈ I and hence aID̂ ⊆ I. In the general case,

one gets the equality Î = aID̂. □

Remark 2.14. We would like to remark that Lemma 2.13 remains valid under the only assumption
that D is a Dedekind domain. The “residually finite” hypothesis was used to prove the first implication

(all principal ideals of D̂ are closed) and it can be removed up to a slightly harder argument, which
we leave to the reader. The argument remains valid and identical in proving the other implication.

Lemma 2.13 easily implies also that an ideal of D̂ is principal if and only if it is finitely generated,
which is also equivalent to be of the form ∏

p∈Max(D)

ap

with ap any ideal of Dp for every p ∈ Max(D). Indeed, as sum and multiplication are both continuous

it follows that a finitely generated ideal of D̂ is closed, while an ideal in the shape as above is the limit
of a converging sequence of principal ideals in the sense explained in the proof of Lemma 2.13.

As D̂ is a topological compact Hausdorff ring we can define the Haar measure on it. Let us briefly
recall the general definition of an Haar measure.

Definition 2.15. Let G be a topological compact Hausdorff group. The family of all its closed subsets
generates the Borel σ-algebra B, on which it is defined a measure

µ : B −→ [0, 1]

called Haar measure, satisfying the following requirements.

(1) Let H be a closed subgroup of G. Then

µ(H) =
1

(G : H)
.

(2) µ is invariant with respect to the group operation (In other words, all cosets of any closed
subgroup of G have all the same measure).

(3) For every open (non-empty) subset U of G we have that µ(U) > 0.

Note that the group G being compact, it is also well known to be unimodular, which gives no
ambiguity to condition (2).

Theorem 2.16. All measures on a given group G as above, which satisfy condition (2) and (3), are
the same up to positive constant multiple and are countably additive.
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Proof. See for example [7], Theorem C, page 263. □

Note that as G is clearly a closed subgroup of itself it follows that µ(G) = 1, hence by the statement
above the Haar measure on G is unique.

Also, in the case of our interest, when G is a profinite group, the proof of Theorem 2.16 (and in-
deed of the existence of the Haar measure on G) is considerably easier: see for example [6], section
18.1 and 18.2.

We now give some useful consequences of the given properties of the Haar measure on D̂.

Lemma 2.17. Let a be an ideal of D. We have that:

d(a) = µ(â).

Proof. Immediate from (Dn7) and by the ring isomorphism:

D̂/â ≃ D/a

for any ideal a of D. This is constructed by composing the quotient map by â with the diagonal
embedding:

D ↪→ D̂.

□

We note that (Dn6) agrees with the invariance by sum of µ, extending the equality above to all
cosets of a.

Lemma 2.18. A subset X of D̂ is at the same time closed and open if and only if there exists a
nonzero ideal a of D such that X is a finite union of cosets of â.

Proof. We know that all the closures of ideals of D in D̂ form a basis of open neighborhoods of 0 in

the Tychonoff topology of D̂. Because of (A2) and the quotient identification above we can conclude

that they are all at the same time closed and open, and the same holds for all their cosets because D̂

is a topological ring. We therefore conclude that the cosets of all closures of the ideals of D in D̂ form

a basis for the closed and opens. Because D̂ is compact, this makes all open covers finite without loss

of generality. Now, given a1, ..., an ideals of D and x̂1, ..., x̂n ∈ D̂ such that

X =
n∪

i=1

(x̂i + âi)

we define

a :=
n∩

i=1

ai.

As

â ⊆
n∩

i=1

âi

we call

mi := (âi : â)

for i = 1, ..., n. For every i = 1, ..., n there exist ŷ1,i, ..., ŷmi,i ∈ D̂ such that

âi =

mi∪
j=1

(ŷj,i + â)

which proves the existence of some finite subset A of D̂ such that

X =
∪
ŷ∈A

(ŷ + â)

showing then the first implication. The opposite one is immediate. □
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2.3. Supernatural elements. We introduce here a slightly abstract notion, extending the notion of
supernatural integers2 of Z to D. The supernatural integers of Z are defined to be the set S(Z) of all
formal products ∏

p primes of Z

pnp

where np ∈ N∪{∞}. (If np =∞ for all p, the product is 0.) It is not hard to see that the supernatural

integers are in bijection with the principal ideals of Ẑ. Indeed, by Remark 2.14 we know that the

principal ideals of Ẑ are exactly those of the following shape:∏
p primes of Z

pnpZp

where np ∈ N∪{∞}, and this induces an identification with the infinite strings (pnp) with np as before,

which are obviously in bijection with the supernatural integers. Let us call D̂∗ the unit group3 of D̂.
We call:

S(D) := D̂/D̂∗

the set of all supernatural elements of D.

Remark 2.19. S(D) corresponds to all principal ideals of D̂.

Proof. Given x, y ∈ D̂, we have that xD̂ = yD̂ if and only if vp(x) = vp(y) for every p ∈ Max(D). The
reason is that

xD̂ = {z ∈ D̂, vp(z) ≥ vp(x), for all p ∈ Max(D)}
for every x ∈ D̂. Therefore, xD̂ = yD̂ if and only if for every p ∈ Max(D) there exists up ∈ (Dp)

∗ such

that xp = upyp. The strings of units in
∏

p∈Max(D) Dp being correspondent to the units of D̂ via the

obvious identification through the Chinese Remainder Theorem, we hence conclude that the condition
above is equivalent to x and y being the same up to a unit multiple. □

Remark 2.19 hence generalizes the notion of supernatural integers Ẑ/Ẑ∗ toD, a notion based morally
on the clear identification between the natural numbers and the (principal) ideals of Z.
Clearly, there is no canonical way to extend a density (upper or lower) from D to D̂, but if a is an
ideal of D we know that â belongs to the basis of open neighborhoods of 0. In particular, if X is a

subset of D̂ with non-empty intersection with D we define:

X̃a := π̂−1
a (π̂a(X))

where:
π̂a : D̂ ↠ D̂/â

is the usual projection map. If:
πa : D ↠ D/a

is the usual projection map on D it follows that:

X̃a ∩D = π−1
a (πa(X ∩D))

by the canonical ring isomorphism D̂/â ≃ D/a discussed before, which induces a one-to-one correspon-

dence between the cosets of â in D̂ and the cosets of a in D. Therefore X̃a ∩D is the disjoint union
of the cosets of a represented by each point of X ∩D. Therefore its density clearly exists. Hence by
(Dn7) and Lemma 2.17:

d(X̃a) := d(X̃a ∩D) = µ(X̃a).

This gives full meaning to this apparent abuse of notation and agrees with the conditions (Dn1) -
(Dn7) which every density must satisfy.

Note that the topology of D̂ induces the corresponding quotient topology on S(D). Such a con-
struction allows us to prove the following results.

2See for example [18] (a primary reference) or [6], section 22.8., for a more modern treatment.
3It is important not to confuse the group of units of D̂ with the closure of D∗ in D̂, which is completely different and

with totally different size, as we show in [4].
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Let σ ∈ S(D) be a principal ideal of D̂. We define:

X̃σ := π̂−1
σ (π̂σ(X))

for every X ⊆ D̂, where π̂σ : D̂ ↠ D̂/σ is the usual projection map and π̂σ(X) is the closure of π̂σ(X)

in D̂/σ. Note that such closure is taken with respect to the quotient topology on D̂/σ, which is not

necessarily the discrete one because not all principal ideals of D̂ are closures of ideals of D. We now

take the convention, given a subset X of D̂, to call X̂ its closure.

Lemma 2.20. Let T be a subset of S(D). Then for every subset X of D̂, we have

(6) X̂ =
∩
σ∈T

X̃σ

if 0 is an accumulation point of T .

Proof. By definition each X̃σ is a closed set containing X. Hence X̂ is contained in the intersection
on the right-hand side of (6).

Vice versa, let z ∈ D̂ be in the complement of X̂. By definition of the topology on D̂, there is an

ideal a of D such that (z + aD̂) ∩ X̂ = ∅ - that is, π̂a(z) /∈ π̂a(X). The assumption on T implies that

there is some σ ∈ T such that σ ⊆ â. Hence π̂σ(z) /∈ π̂σ(X), so z /∈ X̃σ. This shows that z is not in
the right-hand side of (6). □
Remark 2.21. We now remark that there exists a natural embedding of the ideals of D into S(D).

By Lemma 2.13 we know that S(D) represents all closed ideals of D̂. Therefore, if a is an ideal of D,

its closure â in D̂ will correspond to an element of S(D). The association is obviously injective.

Remarks 2.22.
1. In Lemma 2.20 one can take T the subset of all those σ ∈ S(D) corresponding to ideals a ⊂ D

to obtain X̂ = ∩X̃a.
2. From (A1) and (A2) we have that S(D) is second-countable. Indeed, the closures of the ideals

of D form a base of open neighborhoods of 0 and hence, shifting by x, of any x ∈ D̂; and

D̂ contains a countable dense subset, namely D. Thus the closures of cosets of ideals in D

form a countably infinite base for the topology of D̂. In particular, 0 has a countable basis of
open neighborhoods: it follows that for any T having 0 as an accumulation point there is a
countable set T ′ ⊆ T having the same property.

We now conclude this section by proving the two following technical lemmas which will be needed
crucially in the proof of the main result of this paper. They will be used in the proof of Theorem 3.2 to
provide an upper bound for the upper asymptotic density of the set of k-free integers (the final object
of our study).

Lemma 2.23. For every X ⊆ D̂ and T ⊆ S(D) having 0 as a limit point,

(7) µ(X̂) = lim
σ→0

µ(X̃σ) ,

where the limit is taken letting σ vary in T .

Proof. One has µ(X̂) ⩽ µ(X̃σ) for every σ, because X̂ ⊆ X̃σ holds by definition. The equality (7) then
follows from (6) and Remark 2.22.2. □

Lemma 2.24. Let X be a subset of D̂. Then one has the inequality

(8) d+(X ∩D) ⩽ µ(X̂).

Proof. By Remark 2.22.1 we can take a subset T of S(D) having 0 as an accumulation point and such

that all elements of T are closures in D̂ of ideals of D (which by Lemma 2.13 are all elements of S(D)).

By (Dn7) we then have that for each σ ∈ T the density of X̃σ ∩ D exists and it is precisely µ(X̃σ).

The inclusion X ⊂ X̃σ implies d+(X ∩D) ⩽ d(X̃σ ∩D) for every σ ∈ T and hence

d+(X ∩D) ⩽ lim sup
σ→0 , σ∈T

d(X̃σ) = lim sup
σ→0 , σ∈T

µ(X̃σ) = µ(X̂)



A NOTE ON THE DENSITY OF k-FREE POLYNOMIAL SETS, HAAR MEASURE AND GLOBAL FIELDS 13

where the last equality follows from Lemma 2.23. □

3. The main Theorem

We now present the main result of this work, after first proving the following Lemma.

Lemma 3.1. Let k ∈ N \ {0, 1}. Let f(x) ∈ D[x] be a separable polynomial of degree d and V =
Spec D[x]/(f) be the scheme corresponding to its zeroes (viewed as a (Spec D)-scheme). Then

|V (D/pk)| ⩽ d

for almost every prime ideal p in D.

We recall that
V (D/pk) = {x ∈ D/pk, such that f(x) = 0}

by definition of V .

Proof. We show that the natural map

πp
pk : V (D/pk)→ V (D/p)

is injective for all but finitely many p.
Assume pk|(f(a)) for some a ∈ D. Then

f(x) = (x− a)g(x) + f(a)

for some g(x) ∈ D[x]. Clearly, this is implied by the fact that x− a is monic. Hence for every s ∈ p

f(a+ s) ≡ sg(a+ s) mod pk

shows that if a+ s yields a zero of f(x) modulo pk and s ∈ p \ pk, then
(9) g(a+ s) ∈ p .

The latter condition holds only if g(a) ∈ p, which implies that πp(a) is a double root of f(x) in D/p.
Since f(x) has no multiple roots, its discriminant disc(f) is not zero. Since f(x) has a double root in
D/p only if p contains disc(f), condition (9) holds only for finitely many p.

□

Theorem 3.2. Let D be a global ring. Let k ∈ N \ {0, 1}. Let f ∈ D[x] be a separable polynomial. If
D is the ring of integers of a number field, suppose that f has degree at most k

N . The set

X := {a ∈ D, f(a) is k − free}

has asymptotic density, which is precisely µ(X̂), with µ the usual Haar measure on D̂.

Proof. Let V be the scheme corresponding to the zeroes of f(x). Let p be a prime ideal of D. Let Cp

denote the complement of V (D/pk) in D/pk. Consider the maps π̂pk : D̂ ↠ D/pk and πpk : D ↠ D/pk.
Define

X̃p := π̂−1
pk (Cp)

and
Xp := π−1

pk (Cp) = X̃p ∩D .

Note that:
X̂p ⊆ X̃p.

Indeed, the projection maps are made continuous by the choice of the quotient topology on D̂/p̂ ≃ D/p,

which turns out easily to be the discrete topology. Hence X̃p is closed, which implies that it contains
all its limit points and in particular the limit points of Xp. Then one clearly has

(10) X =
∩
p

Xp .

Moreover, the closure X̂ of X is contained in ∩pX̂p ⊆ ∩pX̃p.
Let x ∈ N. Put

Ỹx :=
∩

||p||⩽x

X̃p
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and

(11) Yx := Ỹx ∩D =
∩

||p||⩽x

Xp .

We indicate

Ỹ∞ :=
∩

p∈Max(D)

Xp.

Every X̃p is closed and open. Now, by [17, Proposition 13] only finitely many prime ideals in D

have a fixed norm. Hence the sets Ỹx form a decreasing family of closed and open subsets of D̂, each

containing X̂. To ease the notation we will always mean from now on, when referring to a density, the

asymptotic density, which we will simply denote as d+, d− or d where it exists instead of das. As Ỹx is
closed and open, we have by Proposition 2.11, Lemma 2.17 and Lemma 2.18 that Yx has asymptotic
density, with

d(Yx) = µ(Ỹx) .

Therefore we obtain by (8)

(12) d+(X) ⩽ µ(X̂) ⩽ µ(Ỹ∞) = lim
x→∞

µ(Ỹx) = lim
x→∞

d(Yx)

and the theorem follows if we can prove

d−(X) ⩾ µ(Ỹ∞) .

Since Yx has a density, we have by Lemma 2.3

(13) d−(X) = d(Yx)− d+(Yx −X) .

By (10) and (11), we find

Yx −X = Yx −
∩

||p||>x

Xp ⊆ D −
∩

||p||>x

Xp =
∪

||p||>x

π−1
pk (V (D/pk)) =: Ax,∞ .

In particular d+(Yx −X) ⩽ d+(Ax,∞). Thus it is enough to show

(14) lim
x→∞

d+(Ax,∞) = 0 ,

since then (13) yields

d−(X) = lim
x→∞

(
d(Yx)− d+(Yx −X)

)
= lim

x→∞
d(Yx) = µ(Ỹ∞) .

Thus we need to estimate

d+(Ax,∞) := lim sup
y→∞

|Ax,∞ ∩B(0, y)|
|BD(0, y)|

.

We now proceed separately distinguishing the number field case by the positive characteristic case.

Number field case: Let

c := max
v|∞
{|γ|v}

where γ is the leading coefficient of f in D. Define

Ax,z :=
∪

x<||p||⩽z

π−1
pk (V (D/pk)) ,

so that we can write Ax,∞ = Ax,z ∪Az,∞ . Note that for y ≫ 0 one has

(15) ||(f(α))|| < 2cNyNd

(where d is the degree of f(x)) for every α ∈ D such that |α|v ∈ (0, y) for every v|∞. Indeed, it is clear
that for every place v above ∞, if |α|v = |σv(α)| (where σv indicates the general embedding of F into
C or R, and we call | · |v the absolute value induced by a given choice of v), then |f(σv(α))| < 2cyd

if y is sufficiently large. As it is well known (see for example [11], Theorem 22c) that ||(f(α))|| =
|NF/Q(f(α))|, this completes the proof of (15). It follows that ||p||k > 2cNyNd implies

f(α) ∈ pk ⇐⇒ f(α) = 0 .
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Thus

(16) |A21/kcN/kyNd/k,∞ ∩B(0, y)| ≤ d,

and we have by (5)

d+(Ax,∞) = lim sup
y→∞

|Ax,21/kcN/kyNd/k ∩B(0, y)|
Vol(∆D)−1yN

.

For every prime p, denote cp := |V (D/pk)|. Then for every z > 0 one has

|π−1
pk (V (D/pk))∩B(0, z)| ⩽ cp

(
zN

Vol(∆D)||pk||
+Oz→+∞(zN−1)

)
⩽ d

(
zN

Vol(∆D)||pk||
+Oz→+∞(zN−1)

)
for all but finitely many prime ideals p of D (where the first inequality follows from (5) and the last
inequality comes from Lemma 3.1). Hence we have that:

|Ax,21/kcN/kyNd/k ∩B(0, y)| ⩽
∑

x<||p||⩽21/kcN/kyNd/k

|π−1
pk (V (D/pk)) ∩B(0, y)| ⩽

⩽ yNd
∑

x<||p||⩽21/kcN/kyNd/k

1

Vol(∆D)||pk||
+ π(x, 21/kcN/kyNd/k)Oy→+∞(yN−1) ,

where π(x, z) denotes the number of prime ideals of D with norm between x and z. Therefore

|Ax,∞ ∩B(0, y)|
|BD(0, y)|

≲y→+∞
|Ax,∞ ∩B(0, y)|

yN
≲y→+∞ d

∑
x<||p||

1

Vol(∆D)||pk||
+
π(x, 21/kcN/kyNd/k)yN−1 + d

yN

where the occurrence of d in the last numerator follows from (16). Dedekind zeta functions converge
absolutely in the half-plane s > 1 (see e.g. [8, VIII,§2]): hence

∑
||p||−k converges and therefore its

tail converges to 0. Thus we have (14) if we can bound

lim sup
y→∞

π(x, 21/kcN/kyNd/k)

y
.

By the generalized Landau’s prime numbers Theorem (see [8, XV,§5, Theorem 4])

lim sup
y→∞

π(x, 21/kcN/kyNd/k)

y
≤ lim sup

y→∞

π(0, 21/kcN/kyNd/k)

y
= lim sup

y→∞

21/kcN/kyNd/k

y(1/k log 2 +N/k log c+Nd/k log y)
= 0

since d ≤ k/N .

Positive characteristic case: Define as before

c := max
v∈S
{|γ|v}

and
Ax,z :=

∪
x<||p||⩽z

π−1
pk (V (D/pk)) ,

so that we can write Ax,∞ = Ax,z ∪ Az,∞ . Note that for y ≫ 0 we have that |f(α)|v < cyd for every
α ∈ D such that |α|v ∈ (0, y) for every v ∈ S as the absolute value we use is non-Archimedean. Now
one has:

||(f(α))|| =
∏
v∈S

q− degv v(f(α)) =
∏
v∈S

|f(α)|v < c|S|y|S|d.

It follows that ||p||k > c|S|y|S|d (where d is the degree of f(x)) implies

f(α) ∈ pk ⇐⇒ f(α) = 0 .

Again we remark that |Ac|S|/ky|S|d/k,∞ ∩B(0, y)| ≤ d, and we have by (4)

d+(Ax,∞) = lim sup
y→∞

|Ax,c|S|/ky|S|d/k ∩B(0, y)|
q1−gy|S| .

For every prime p, denote cp := |V (D/pk)|. Then for every z > 0 one has by (4)

|π−1
pk (V (D/pk)) ∩B(0, z)| ⩽ cp

(
z|S|q1−g

||p||k

)
⩽ d

(
z|S|q1−g

||pk||

)
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for all but finitely many prime ideals p of D (where the first inequality follows from (4) and the last
inequality comes from Lemma 3.1). Hence

|Ax,c|S|/ky|S|d/k∩B(0, y)| ⩽
∑

x<||p||⩽c|S|/ky|S|d/k

|π−1
pk (V (D/pk))∩B(0, y)| ⩽ q1−gy|S|d

∑
x<||p||⩽c|S|/ky|S|d/k

1

||pk||
.

Therefore
|Ax,∞ ∩B(0, y)|
|BD(0, y)|

< d
∑

x<||p||

1

||pk||

for y sufficiently large. Again, since
∑
||p||−k converges, we have (14). □

Remark 3.3. The key idea of using the limit (14) was suggested by [15].

Corollary 3.4. Let X be defined as in Theorem 3.2. We have that

d(X) =
∏

p∈Max(D)

(
1− cp
||p||k

)
where

cp := |V (D/pk)|

with V (D/pk) defined as in Lemma 3.1.

Proof. Let Ỹ∞ and X̃p be defined as in the proof of Theorem 3.2. As Theorem 3.2 proves in particular

(see (12)) that d(X) = µ(Ỹ∞), let us define Zp as the projection of X̃p in Dp (the p-adic completion of
D) via the isomorphism given by the Chinese Remainder Theorem, for every p ∈ Max(D). We clearly
have that

Ỹ∞ =
∩

p∈Max(D)

X̃p =
∏

p∈Max(D)

Zp.

Therefore

d(X) = µ

 ∏
p∈Max(D)

Zp

 (∗)
=

∏
p∈Max(D)

µp(Zp) ,

where µp is the Haar measure on Dp and the second equality follows from Lemma 2.23. Indeed, for
any finite subset S of Max(D), let σS :=

∏
p∈S p∞ . Then one has

X̃σS :=
∏
p∈S

Zp ×
∏

p∈Max(D)\S

Dp

and the definition of product measure yields

µ(X̃σS ) =
∏
p∈S

µp(Zp) .

Now one just has to apply Lemma 2.23 with T = {σS} (S varying among all finite subsets of Max(D))
to obtain the equality (∗). By the definition we gave of Zp it is now easy to see that Zp is the closure
of Xp in Dp. In particular we have that

µp(Zp) =
|Cp|
||p||k

for every p ∈ Max(D). Therefore, as |Cp| = ||p||k − cp we have that

d(X) = µ(X̂) =
∏

p∈Max(D)

(
1− cp
||p||k

)
.

□
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It is now immediate to check that in the specific example of the trivial polynomial f(x) = x on Z
the formula above agrees with the well known asymptotic density of the k-free elements to be 1/ζ(k).
An analogous argument can be repeated to compute such a density in the case of a linear polynomial
f(x) = ax+ b. One easily computes

cp =

{
∥p∥min{vp(a),k} if vp(a) ⩽ vp(b) or vp(a) > vp(b) ⩾ k

0 if vp(a) > vp(b) and vp(b) < k

and hence, if there is no p such that min{vp(a), vp(b)} ⩾ k, then

d(X) =
∏

p s.t. 0<vp(a)⩽vp(b)

(
1− ∥p∥

min{vp(a),k}

∥p∥k

) ∏
p s.t. 0=vp(a)

(
1− 1

∥p∥k

)
is a rational multiple of 1/ζD(k), where we call ζD the zeta function of D. Obviously, if we have
min{vp(a), vp(b)} ⩾ k for some p, then d(X) = 0.
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