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Abstract
Let (X , J , ω) be a compact 2n-dimensional almost Kähler manifold. We prove primitive
decompositions for Bott–Chern and Aeppli harmonic forms in special bidegrees and show
that such bidegrees are optimal. We also show how the spaces of primitive Bott–Chern,
Aeppli, Dolbeault and ∂-harmonic forms on (X , J , ω) are related.
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1 Introduction

Let (X , J , ω) be an almost Hermitian manifold of real dimension 2n. Denote by

L : �k X → �k+2X , α �→ ω ∧ α

the Lefschetz operator, and by

� : �k X → �k−2X , � := ∗−1L∗
its dual, where ∗ : �k X → �2n−k is the Hodge ∗ operator. A k-form α ∈ �k X , for k ≤ n,
is said to be primitive if �α = 0, or equivalently if Ln−k+1α = 0. Given that, the following
vector bundle decomposition holds

�k X =
⊕

r≥max(k−n,0)

Lr (Pk−2r X), (1)
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where we denoted by

Ps X := ker
(
� : �s X → �s−2X

)

the bundle of primitive s-forms.Theoperators L and� extend to smooth sections, in particular
to smooth k-forms Ak := �(X ,�k X) and to smooth (p, q)-forms Ap,q := �(X ,�p,q X).
We also set Ps := �(X , Ps X) and P p,q := �(X , P p,q X), where P p,q X := P p+q X ∩
�p,q X is the bundle of primitive (p, q)-forms.

If (X , J , ω) is a compact Kähler manifold, then the Lefschetz decomposition theorem
says that the primitive decomposition of forms (1) descends to de Rham cohomology, i.e.,

Hk
dR X =

⊕

r≥max(k−n,0)

Lr ( ker
(
� : Hk−2r

dR X → Hk−2r−2
dR X

))
.

Cirici and Wilson recently proved a generalized Lefschetz decomposition theorem for
compact almost Kähler manifolds. Denote by�d := dd∗ +d∗d the Hodge Laplacian, where
d is the exterior differential and d∗ := − ∗ d∗ is its formal adjoint. The space of harmonic
(p, q)-forms ker�d ∩ Ap,q will be indicated byHp,q

d . They showed, see [3, Corollary 5.4],
that if (X , J , ω) is a compact almost Kähler manifold, then

Hp,q
d =

⊕

r≥max(p+q−n,0)

Lr (Hp−r ,q−r
d ∩ P p−r ,q−r ). (2)

Let (X , J , ω) be an almost Hermitian manifold, then other natural spaces of harmonic forms
can be introduced. The exterior differential decomposes into d = μ + ∂ + ∂̄ + μ, and we set
∂∗ = − ∗ ∂̄∗, ∂̄∗ = − ∗ ∂∗ as the formal adjoints of ∂ , ∂̄ , where ∗ is the C-linear extension
of the real Hodge ∗ operator. Recall that

�∂ = ∂∂∗ + ∂∗∂, �∂̄ = ∂̄ ∂̄∗ + ∂̄∗∂̄,

are respectively the ∂ and ∂̄ , or Dolbeault, Laplacians, and

�BC = ∂∂̄∂̄∗∂∗ + ∂̄∗∂∗∂∂̄ + ∂∗∂̄ ∂̄∗∂ + ∂̄∗∂∂∗∂̄ + ∂∗∂ + ∂̄∗∂̄,

and

�A = ∂∂̄∂̄∗∂∗ + ∂̄∗∂∗∂∂̄ + ∂∂̄∗∂̄∂∗ + ∂̄∂∗∂∂̄∗ + ∂∂∗ + ∂̄ ∂̄∗,

are respectively the Bott–Chern and the Aeppli Laplacians. Denote by

Hp,q
∂ , Hp,q

∂̄
, Hp,q

BC , Hp,q
A ,

the kernels of these Laplacians intersected with the space of (p, q)-forms. If X is compact
these spaces are finite-dimensional but they do not have a cohomological counterpart. In fact,
the almost complex Dolbeault, Bott–Chern and Aeppli cohomology groups might be infinite
dimensional (see [2], [4]).

In the integrable case, i.e., when d = ∂ + ∂̄ and (X , J ) is a complex manifold, if we
further assume that X is compact and we endow (X , J ) with any Hermitian metric ω, all
these spaces of harmonic (p, q)-forms have a cohomological meaning and, if ω is Kähler,
they coincide, i.e.,

Hp,q
d = Hp,q

∂ = Hp,q
∂̄

= Hp,q
BC = Hp,q

A .

Considered that, we are interested in understanding whether the primitive decomposition of
harmonic forms (2) holds also for these spaces of harmonic forms, and how these spaces are
related on a given compact almost Kähler manifold of real dimension 2n.
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Another motivation for this problem is the following. In [7] and [8] Holt and Zhang
studied Dolbeault harmonic forms on the Kodaira-Thurston manifold to answer a famous
question of Kodaira and Spencer which appeared as Problem 20 in Hirzebruch’s 1954 prob-
lem list [5]. Introducing an effective method to solve the PDE system associated to Dolbeault
harmonic forms on the Kodaira-Thurston manifold, they proved that the dimension of the
space of Dolbeault harmonic forms depends on the choice of the almost Hermitian met-
ric. In [12], Tomassini and the second author answered again to the same question, with
a different approach, analyzing locally conformally almost Kähler metrics on almost com-
plex 4-manifolds. In [9], Tomassini and the first author introduced Bott–Chern and Aeppli
harmonic forms on almost Hermitian manifolds and studied their relation with Dolbeault
harmonic forms. See also [6] and [10] for recent results concerning the dimension of the
spaces of Dolbeault and Bott–Chern harmonic (1, 1)-forms on compact almost Hermitian
4-manifolds. In particular, in [7, Proposition 6.1], in [12, Theorem 3.6] and in [9, Corol-
lary 4.4], the primitive decomposition of (1, 1)-forms is used to deduce, in fact, primitive
decompositions of Dolbeault and Bott–Chern harmonic (1, 1)-forms on a compact almost
Hermitian 4-manifold. Given that, the study of primitive decompositions of Dolbeault, Bott–
Chern, Aeppli harmonic forms can be seen as a generalisation of the just mentioned results
in higher dimension 2n ≥ 4 and for every bidegree (p, q).

The case of primitive decompositions of Dolbeault harmonic forms is studied in [1]. In
this paper, we are interested in studying primitive decompositions of Bott–Chern and Aeppli
harmonic forms on a given 2n-dimensional compact almost Kähler manifold (X , J , ω).
Indeed, we prove

Theorem 1.1 (Theorems 3.2, 3.3, 3.4) Let (X , J , ω) be a compact almost Kähler manifold
of dimension 2n. Then,

H1,1
BC = C ω ⊕

(
H1,1

BC ∩ P1,1
)

,

H1,1
A = C ω ⊕

(
H1,1

A ∩ P1,1
)

,

Hn−1,n−1
BC = C ωn−1 ⊕ Ln−2

(
H1,1

A ∩ P1,1
)

,

Hn−1,n−1
A = C ωn−1 ⊕ Ln−2

(
H1,1

BC ∩ P1,1
)

.

This, in particular, generalizes the decomposition of H1,1
BC in real dimension 4 of [9, Corol-

lary 4.4] to higher dimensions. As a corollary of Theorem 1.1, [7, Proposition 6.1] and [9,
Corollary 4.4], we derive

Corollary 1.2 (Corollaries 3.5, 3.6) Let (X , J , ω) be a compact almost Kähler manifold of
dimension 4. Then,

H1,1
d = H1,1

∂ = H1,1
∂̄

= H1,1
BC = H1,1

A .

Considered that the spaces of primitive Bott–Chern and Aeppli harmonic (1, 1)-forms
turned out to be useful for the above decompositions, and that the same holds for ∂ and
Dolbeault harmonic (1, 1)-forms by the results of [1], we study the relations among all these
spaces of primitive harmonic forms on compact almost Kähler manifolds. In particular, we
analyze inclusions and non inclusions between these spaces. We prove
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Proposition 1.3 (Propositions 4.1 and 4.2) Let (X , J , ω) be a compact almost Kähler man-
ifold of dimension 2n. Then, for p + q ≤ n,

Hp,q
BC ∩ P p,q = Hp,q

∂̄
∩ Hp,q

∂ ∩ P p,q ,

Hp,q
∂̄

∩ P p,q ⊆ Hp,q
A ∩ P p,q .

Moreover, for p + q = n,

Hp,q
BC ∩ P p,q = Hp,q

∂̄
∩ P p,q = Hp,q

∂ ∩ P p,q = Hp,q
A ∩ P p,q .

In Proposition 4.4 we show that such inclusions are in general strict, and provide other
non inclusions.

Finally, we show that the primitive decompositions of Bott–Chern and Aeppli harmonic
forms obtained for the bidegrees (1, 1) and (n − 1, n − 1) are exclusive for these bidegrees.
In fact, working on an explicit almost Kähler structure on the Iwasawa manifold, we show
that the natural primitive decomposition of Bott–Chern harmonic forms one would expect
on (2, 1)-forms in real dimension 6 does not hold.

The paper is organised in the following way. In section 2 we introduce some preliminaries
of almost Hermitian geometry, including some observations on the other possible definitions
of the Bott–Chern and Aeppli Laplacians. In section 3, we write down some trivial decom-
positions of Bott–Chern and Aeppli harmonic forms for the special bidegrees (p, 0), (0, q),
(n, n− p) and (n−q, n), and then we prove the non trivial decompositions for the bidegrees
(1, 1) and (n− 1, n− 1) stated in Theorem 1.1. In section 4 we study the possible inclusions
and non inclusions among the spaces of primitive ∂ , ∂̄ , Bott–Chern and Aeppli harmonic
forms. Finally, in section 5, we analyze primitive decompositions of Bott–Chern and Aeppli
harmonic forms in dimension 6.

2 Preliminaries of almost Hermitian geometry

Throughout this paper, we will only consider connected manifolds without boundary. Let
(X , J ) be an almost complex manifold of dimension 2n, i.e., a 2n-differentiable manifold
together with an almost complex structure J , that is J ∈ End(T X) and J 2 = − id. The
complexified tangent bundle TCX = T X ⊗ C decomposes into the two eigenspaces of J
associated to the eigenvalues i,−i , which we denote respectively by T 1,0X and T 0,1X ,
giving

TCX = T 1,0X ⊕ T 0,1X .

Denoting by �1,0X and �0,1X the dual vector bundles of T 1,0X and T 0,1X , respectively,
we set

�p,q X =
p∧

�1,0X ∧
q∧

�0,1X

to be the vector bundle of (p, q)-forms, and let Ap,q = �(X ,�p,q X) be the space of
smooth sections of �p,q X . We denote by Ak = �(X ,�k X) the space of k-forms. Note that
�k X ⊗ C = ⊕

p+q=k �p,q X .
Let f ∈ C∞(X , C) be a smooth function on X with complex values. Its differential d f is

contained in A1 ⊗ C = A1,0 ⊕ A0,1. On complex 1-forms, the exterior differential acts as

d : A1 ⊗ C → A2 ⊗ C = A2,0 ⊕ A1,1 ⊕ A0,2.
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Therefore, it turns out that the differential operates on (p, q)-forms as

d : Ap,q → Ap+2,q−1 ⊕ Ap+1,q ⊕ Ap,q+1 ⊕ Ap−1,q+2,

where we denote the four components of d by

d = μ + ∂ + ∂̄ + μ.

From the relation d2 = 0, we derive
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ2 = 0,

μ∂ + ∂μ = 0,

∂2 + μ∂̄ + ∂̄μ = 0,

∂∂̄ + ∂̄∂ + μμ + μμ = 0,

∂̄2 + μ∂ + ∂μ = 0,

μ∂̄ + ∂̄μ = 0,

μ2 = 0.

Let (X , J ) be an almost complex manifold. If the almost complex structure J is induced
from a complex manifold structure on X , then J is called integrable. It is equivalent to the
decomposition of the exterior differential as d = ∂ + ∂̄ .

A Riemannian metric on X for which J is an isometry is called almost Hermitian. Let g
be an almost Hermitian metric, the 2-form ω such that

ω(u, v) = g(Ju, v) ∀u, v ∈ �(T X)

is called the fundamental form of g. We will call (X , J , ω) an almost Hermitian manifold.
We denote by h the Hermitian extension of g on the complexified tangent bundle TCX , and
by the same symbol g the C-bilinear symmetric extension of g on TCX . Also denote by the
same symbol ω the C-bilinear extension of the fundamental form ω of g on TCX . Thanks
to the elementary properties of the two extensions h and g, we may want to consider h as a
Hermitian operator T 1,0X×T 1,0X → C and g as aC-bilinear operator T 1,0X×T 0,1X → C.
Recall that h(u, v) = g(u, v̄) for all u, v ∈ �(T 1,0X).

Let (X , J , ω) be an almost Hermitian manifold of real dimension 2n. Extend h on (p, q)-
forms and denote the Hermitian inner product by 〈·, ·〉. Let ∗ : Ap,q −→ An−q,n−p the
C-linear extension of the standard Hodge ∗ operator on Riemannian manifolds with respect
to the volume form Vol = ωn

n! , i.e., ∗ is defined by the relation

α ∧ ∗β = 〈α, β〉Vol ∀α, β ∈ Ap,q .

Then the operators

d∗ = − ∗ d∗, μ∗ = − ∗ μ∗, ∂∗ = − ∗ ∂̄∗, ∂̄∗ = − ∗ ∂∗, μ∗ = − ∗ μ∗,

are the formal adjoint operators respectively of d, μ, ∂, ∂̄, μ. Recall that �d = dd∗ + d∗d
is the Hodge Laplacian, and, as in the integrable case, set

�∂ = ∂∂∗ + ∂∗∂, �∂̄ = ∂̄ ∂̄∗ + ∂̄∗∂̄,

respectively as the ∂ and ∂̄ Laplacians. Again, as in the integrable case, set

�BC = ∂∂̄∂̄∗∂∗ + ∂̄∗∂∗∂∂̄ + ∂∗∂̄ ∂̄∗∂ + ∂̄∗∂∂∗∂̄ + ∂∗∂ + ∂̄∗∂̄,
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and

�A = ∂∂̄∂̄∗∂∗ + ∂̄∗∂∗∂∂̄ + ∂∂̄∗∂̄∂∗ + ∂̄∂∗∂∂̄∗ + ∂∂∗ + ∂̄ ∂̄∗,

respectively as the Bott–Chern and the Aeppli Laplacians. Note that

∗ �BC = �A ∗ �BC∗ = ∗�A. (3)

If X is compact, then we easily deduce the following relations, for any k-form β and any
(p, q)-form α,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

�dβ = 0 ⇐⇒ dβ = 0, d ∗ β = 0,

�∂α = 0 ⇐⇒ ∂α = 0, ∂̄ ∗ α = 0,

�∂̄α = 0 ⇐⇒ ∂̄α = 0, ∂ ∗ α = 0,

�BCα = 0 ⇐⇒ ∂α = 0, ∂̄α = 0, ∂∂̄ ∗ α = 0,

�Aα = 0 ⇐⇒ ∂ ∗ α = 0, ∂̄ ∗ α = 0, ∂∂̄α = 0,

which characterize the spaces of harmonic forms

Hk
d , Hp,q

∂ , Hp,q
∂̄

, Hp,q
BC , Hp,q

A ,

defined as the spaces of forms which are in the kernel of the associated Laplacians. All these
Laplacians are elliptic operators on the almost Hermitian manifold (X , J , ω) (cf. [5], [9]),
implying that all the spaces of harmonic forms are finite dimensional when the manifold is
compact. Denote by

bk, h p,q
∂ , h p,q

∂̄
, h p,q

BC , h p,q
A

respectively the real dimension of Hk
d and the complex dimensions of Hp,q

∂ , Hp,q
∂̄

, Hp,q
BC ,

Hp,q
A .

Remark 2.1 By (3), note that

∗ Hp,q
BC = Hn−q,n−p

A , ∗Hp,q
A = Hn−q,n−p

BC . (4)

In the following, it will be often useful to study the spaces Hp,q
BC and Hp,q

A for p + q ≤ n in

order to obtain information respectively on the spaces Hn−q,n−p
A and Hn−q,n−p

BC .

Remark 2.2 We observe that, since the operators ∂ and ∂̄ do not anticommute in the non
integrable setting, we could have made a different choice for the Bott–Chern and Aeppli
Laplacians, namely we could have taken

�BC,2 = ∂̄∂∂∗∂̄∗ + ∂∗∂̄∗∂̄∂ + ∂̄∗∂∂∗∂̄ + ∂∗∂̄ ∂̄∗∂ + ∂̄∗∂̄ + ∂∗∂
�A,2 = ∂̄∂∂∗∂̄∗ + ∂∗∂̄∗∂̄∂ + ∂̄∂∗∂∂̄∗ + ∂∂̄∗∂̄∂∗ + ∂̄ ∂̄∗ + ∂∂∗

However, we notice that they differ by conjugation, namely

�BC = �BC,2, �A = �A,2.

Hence,

α ∈ Ker�BC ⇐⇒ α ∈ Ker�BC,2,

therefore it is not restrictive to study only the spaceH•,•
BC (X). A similar argument shows that

it is not restrictive to study only the space H•,•
A (X).
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3 Primitive decompositions of Bott–Chern harmonic forms

In the following we are going to show that, in special bidegrees, we have natural primitive
decompositions for Bott–Chern harmonic forms on compact almost Kähler manifolds. We
first need to introduce some notations and recall some well known facts about primitive
forms. Let (X , J , ω) be a 2n-dimensional almost Hermitian manifold. We denote with

L : �k X → �k+2X , α �→ ω ∧ α

the Lefschetz operator and with

� : �k X → �k−2X , � = ∗−1L∗
its dual. A differential k-form αk on X , for k ≤ n, is said to be primitive if �αk = 0, or
equivalently Ln−k+1αk = 0. Then, the following vector bundle decomposition holds (see
e.g., [14, p. 26, Théorème 3])

�k X =
⊕

r≥max(k−n,0)

Lr (Pk−2r X), (5)

where we denoted

Ps X := ker
(
� : �s X → �s−2X

)

the bundle of primitive s-forms. Accordingly to such decomposition, given any k-form αk ∈
�k X , we can write

αk =
∑

r≥max(k−n,0)

1

r ! L
rβk−2r , (6)

where βk−2r ∈ Pk−2r X , namely

�βk−2r = 0,

or equivalently

Ln−k+2r+1βk−2r = 0.

Furthermore, the decomposition above is compatible with the bidegree decomposition on the
bundle of complex k-forms �k

C
X induced by J , that is

Pk
C
X =

⊕

p+q=k

P p,q X ,

where

P p,q X = Pk
C
X ∩ �p,q X .

For any given βk ∈ Pk X , we have the following formula (cf. [14, p. 23, Théorème 2])

∗ Lrβk = (−1)
k(k+1)

2
r !

(n − k − r)! L
n−k−r Jβk . (7)

Let us set Ps := �(X , Ps X) and P p,q := �(X , P p,q X). We recall that the map Lh :
�k X → �k+2h X is injective for h + k ≤ n and is surjective for h + k ≥ n.
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Remark 3.1 In [3, Corollary 5.4] it is proven that on a 2n-dimensional compact almost Kähler
manifold such primitive decompositions pass to d-harmonic forms, namely

Hp,q
d =

⊕

r≥max(p+q−n,0)

Lr (Hp−r ,q−r
d ∩ P p−r ,q−r ).

In fact, this holds true also for the spaces of harmonic forms introduced in [11].More precisely,
setting

δ̄ := ∂̄ + μ, δ := ∂ + μ̄

one has, on compact almost Kähler manifolds, for every p, q ( [11, Proposition 6.2, Theorem
6.7])

Hp,q
d = Hp,q

δ̄
= Hp,q

δ .

Here we are interested in investigating when the decomposition (5) descends to Bott–
Chern andAeppli harmonic forms. Note that, since (p, 0)-forms and (0, q)-forms are trivially
primitive, we immediately derive for p, q ≤ n

Hp,0
BC = Hp,0

BC ∩ P p,0, H0,q
BC = H0,q

BC ∩ P0,q ,

Hp,0
A = Hp,0

A ∩ P p,0, H0,q
A = H0,q

A ∩ P0,q .

Applying the Hodge ∗ operator to the previous trivial primitive decompositions of the spaces
of Bott–Chern and Aeppli harmonic forms, from (4) and (7) we easily obtain respectively

Hn,n−p
A = Ln−p

(
Hp,0

BC ∩ P p,0
)

, Hn−q,n
A = Ln−q

(
H0,q

BC ∩ P0,q
)

,

Hn,n−p
BC = Ln−p

(
Hp,0

A ∩ P p,0
)

, Hn−q,n
BC = Ln−q

(
H0,q

A ∩ P0,q
)

.

In particular, taking p = q = n we obtain

Hn,0
BC = Hn,0

A and H0,n
BC = H0,n

A .

In fact, this can be obtained directly using formula (7) as done in Proposition 4.2 recalling
that (n, 0)-forms and (0, n)-forms are trivially primitive. We find more interesting primitive
decompositions when we look at the space of Bott–Chern and Aeppli harmonic forms of
bidegree (1, 1).

Theorem 3.2 Let (X , J , ω) be a compact almost Kähler manifold of dimension 2n. Then,

H1,1
BC = C ω ⊕

(
H1,1

BC ∩ P1,1
)

.

Proof Let ψ ∈ H1,1
BC , i.e., ψ ∈ A1,1 and

∂ψ = 0, ∂̄ψ = 0, ∂∂̄ ∗ ψ = 0. (8)

By (6), we derive

ψ = f ω + γ,

where f is a smooth function with complex values on X , and γ is a primitive (1, 1)-form,
i.e., �γ = 0. Since both f and γ are primitive forms, we apply (7) to compute ∗ψ . We
obtain

∗ψ = ωn−1

(n − 1)! f − ωn−2

(n − 2)! ∧ γ.
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Now, from (8) and from the assumption that the metric is almost Kähler, it follows that

0 = ∂ψ = ∂ f ∧ ω + ∂γ,

0 = ∂̄ψ = ∂̄ f ∧ ω + ∂̄γ ,

0 = ωn−1

(n − 1)! ∧ ∂∂̄ f − ωn−2

(n − 2)! ∧ ∂∂̄γ

= ωn−1

(n − 1)! ∧ ∂∂̄ f − ωn−2

(n − 2)! ∧ ∂(−∂̄ f ∧ ω)

= ωn−1

(n − 1)! ∧ ∂∂̄ f + ωn−1

(n − 2)! ∧ ∂∂̄ f

=
(

1

(n − 1)! + 1

(n − 2)!
)

ωn−1 ∧ ∂∂̄ f .

Arguing like in [9, Theorem 4.3] or in [12, Proposition 3.4], one can show that the differential
operator L : C∞(X , C) → C∞(X , C) defined by

L : f �→ −i ∗ (∂∂̄ f ∧ ωn−1)

is strongly elliptic and, being f ∈ Ker L , it follows that f is a complex constant by the
maximum principle. Since f ∈ C, the equations in (8) are equivalent to

∂γ = 0, ∂̄γ = 0.

Note that ∂γ = ∂̄γ = 0 and �γ = 0 implies ∂∂̄ ∗ γ = 0. Summing up, we showed that
if ψ = f ω + γ ∈ H1,1

BC , where f ∈ C∞(X , C) and γ ∈ P1,1, then f ∈ C and γ ∈ H1,1
BC

proving the inclusion ⊆ of the statement. The converse inclusion ⊇ is trivial, therefore the
theorem is proved. ��

For Aeppli harmonic (1, 1)-forms, we find the following similar decomposition.

Theorem 3.3 Let (X , J , ω) be a compact almost Kähler manifold of dimension 2n. Then,

H1,1
A = C ω ⊕

(
H1,1

A ∩ P1,1
)

.

Proof Let ψ ∈ H1,1
A , i.e., ψ ∈ A1,1 and

∂ ∗ ψ = 0, ∂̄ ∗ ψ = 0, ∂∂̄ψ = 0. (9)

By (6), we derive

ψ = f ω + γ,

where f is a smooth function with complex values on X , and γ is a primitive (1, 1)-form,
i.e., �γ = 0. Since both f and γ are primitive forms, we apply (7) to compute ∗ψ . We
obtain

∗ψ = ωn−1

(n − 1)! f − ωn−2

(n − 2)! ∧ γ.
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Now, from (8) and from the assumption that the metric is almost Kähler, it follows that

0 = ∂ ∗ ψ = ωn−1

(n − 1)! ∧ ∂ f − ωn−2

(n − 2)! ∧ ∂γ,

0 = ∂̄ ∗ ψ = ωn−1

(n − 1)! ∧ ∂̄ f − ωn−2

(n − 2)! ∧ ∂̄γ , (10)

0 = ∂∂̄ f ∧ ω + ∂∂̄γ . (11)

We apply Ln−2 to (11), obtaining

0 = ωn−1 ∧ ∂∂̄ f + ωn−2 ∧ ∂∂̄γ .

We apply ∂ to (10), deriving

0 = ωn−1

(n − 1)! ∧ ∂∂̄ f − ωn−2

(n − 2)! ∧ ∂∂̄γ .

Combining the last two equations, we find

0 = ωn−1

(n − 1)! ∧ ∂∂̄ f + ωn−1

(n − 2)! ∧ ∂∂̄ f

=
(

1

(n − 1)! + 1

(n − 2)!
)

ωn−1 ∧ ∂∂̄ f .

Arguing like in Theorem 3.2, it follows that f is a complex constant. Since f ∈ C, the
equations in (9) are equivalent to

∂ ∗ γ = 0, ∂̄ ∗ γ = 0, ∂∂̄γ = 0.

Summing up, we showed that if ψ = f ω + γ ∈ H1,1
A , where f ∈ C∞(X , C) and γ ∈ P1,1,

then f ∈ C and γ ∈ H1,1
A proving the inclusion ⊆ of the statement. The converse inclusion

⊇ is trivial, therefore the theorem is proved. ��
As a corollary of the previous results we obtain also the following decompositions of the

spaces of (n − 1, n − 1) Bott–Chern and Aeppli harmonic forms.

Theorem 3.4 Let (X , J , ω) be a compact almost Kähler manifold of dimension 2n. Then,
the following decompositions hold

Hn−1,n−1
BC = C ωn−1 ⊕ Ln−2

(
H1,1

A ∩ P1,1
)

, (12)

Hn−1,n−1
A = C ωn−1 ⊕ Ln−2

(
H1,1

BC ∩ P1,1
)

. (13)

Proof Decompositions (12) and (13) follow respectively from the decompositions of Theo-
rems 3.3 and 3.2 applying the Hodge star operator and using formulae (7) and (4). ��

From Theorems 3.2, 3.3 and 3.4, it immediately follows

Corollary 3.5 Let (X , J , ω) be a compact almost Kähler manifold of dimension 4. Then,

H1,1
BC = H1,1

A = C ω ⊕
(
H1,1

BC ∩ P1,1
)

.

Combining Corollary 3.5 with [7, Proposition 6.1] and [9, Corollary 4.4], we derive
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Corollary 3.6 Let (X , J , ω) be a compact almost Kähler manifold of dimension 4. Then,

H1,1
d = H1,1

∂ = H1,1
∂̄

= H1,1
BC = H1,1

A .

These last two results will be generalized in Proposition 4.2.

Remark 3.7 Notice that, in fact, on 4-dimensional almost Hermitian manifolds the primitive
decomposition of H1,1

BC was proved in [9, Corollary 4.4], where it is shown that

H1,1
BC ∩ P1,1 = {α ∈ A1,1 : �dα = 0, ∗α = −α}.

4 Relations among the spaces of primitive harmonic forms

We saw that the spaces of primitive Bott–Chern and Aeppli harmonic forms are important
in Theorems 3.2, 3.3 and 3.4. Moreover, the spaces of primitive ∂- and Dolbeault harmonic
forms play a similar role as shown in [1]. Let us then study the possible inclusions and non
inclusions between these spaces.

Proposition 4.1 Let (X , J , ω) be a compact almost Kähler manifold of dimension 2n. Then,
for p + q ≤ n,

Hp,q
BC ∩ P p,q = Hp,q

∂̄
∩ Hp,q

∂ ∩ P p,q , (14)

Hp,q
∂̄

∩ P p,q ⊆ Hp,q
A ∩ P p,q . (15)

In particular,

Hp,q
BC ∩ P p,q ⊆ Hp,q

∂̄
∩ P p,q ,

Hp,q
BC ∩ P p,q ⊆ Hp,q

∂ ∩ P p,q ,

Hp,q
BC ∩ P p,q ⊆ Hp,q

A ∩ P p,q .

Proof We start by showing (14). Let α ∈ Hp,q
∂̄

∩ Hp,q
∂ ∩ P p,q , i.e.,

∂α = ∂̄α = ∂ ∗ α = ∂̄ ∗ α = 0.

Hence, ∂α = ∂̄α = ∂∂̄ ∗ α = 0 and so α ∈ Hp,q
BC . Notice that in fact we did not use that α is

a primitive form. Viceversa, let α ∈ Hp,q
BC ∩ P p,q , i.e.,

∂α = ∂̄α = ∂∂̄ ∗ α = 0.

Since α is primitive, ∗α = cωn−p−q ∧ α, with c = (−1)
(p+q)(p+q+1)

2

(n−p−q)! i p−q and since ω is
d-closed we have

∂ ∗ α = c ∂(ωn−p−q ∧ α) = cωn−p−q ∧ ∂α = 0

and similarly

∂̄ ∗ α = c ∂̄(ωn−p−q ∧ α) = cωn−p−q ∧ ∂̄α = 0

so α ∈ Hp,q
∂̄

∩ Hp,q
∂ ∩ P p,q .

Now we show (15). Let α ∈ Hp,q
∂̄

∩ P p,q , i.e.,

∂̄α = ∂ ∗ α = 0.
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In particular ∂∂̄α = ∂ ∗ α = 0. To prove ∂̄ ∗ α = 0, which implies α ∈ Hp,q
A ∩ P p,q , recall

that ∗α = cωn−p−q ∧ α, and again since ω is d-closed we have

∂̄ ∗ α = c ∂̄(ωn−p−q ∧ α) = cωn−p−q ∧ ∂̄α = 0. ��

In fact, without any assumption on the almost Hermitian metric, when the total degree of
the forms is half the dimension, all the spaces of primitive harmonic forms coincide.

Proposition 4.2 Let (X , J , ω) be a compact almost Hermitian manifold of dimension 2n.
Then, for p + q = n,

Hp,q
BC ∩ P p,q = Hp,q

∂̄
∩ P p,q = Hp,q

∂ ∩ P p,q = Hp,q
A ∩ P p,q .

Proof Let α ∈ P p,q for p + q = n, then by Formula (7) ∗α = cp,qα, with cp,q =
(−1)

n(n+1)
2 i p−q . Therefore,

∂α = 0 ⇐⇒ ∂ ∗ α = 0 ⇐⇒ ∂̄∗α = 0

and

∂̄α = 0 ⇐⇒ ∂̄ ∗ α = 0 ⇐⇒ ∂∗α = 0.

The equalities follow then directly from the definitions. For instance, to proveHp,q
∂̄

∩P p,q ⊆
Hp,q

BC ∩ P p,q , let α ∈ Hp,q
∂̄

∩ P p,q , then ∂̄α = 0 and ∂ ∗ α = 0. Hence, by the previous

observation one has also that ∂̄ ∗ α = 0 and ∂α = 0, giving in particular that ∂∂̄ ∗ α = 0,
∂̄α = 0 and ∂α = 0 which means that α ∈ Hp,q

BC ∩ P p,q . Viceversa, to proveHp,q
BC ∩ P p,q ⊆

Hp,q
∂̄

∩ P p,q , let α ∈ Hp,q
BC ∩ P p,q , then ∂̄α = 0, ∂α = 0 and ∂∂̄ ∗ α = 0. Hence, by the

previous observation one has also that ∂ ∗ α = 0 which means that α ∈ Hp,q
∂̄

∩ P p,q . The
other inclusions can be proved similarly. ��

For p + q < n, the inclusions of Proposition 4.1 can be summed up in the following
diagram.

Hp,q
∂̄

∩ P p,q

Hp,q
BC ∩ P p,q Hp,q

A ∩ P p,q

Hp,q
∂ ∩ P p,q

⊆

⊆

⊆
⊆

Notice that even though we have the inclusion Hp,q
∂̄

∩ P p,q ⊆ Hp,q
A ∩ P p,q , we cannot

expect a similar inclusion for Hp,q
∂ ∩ P p,q in Hp,q

A ∩ P p,q . Indeed, since ∂ and ∂̄ do not
anticommute, the condition ∂α = 0 does not imply ∂∂̄α = 0. See Proposition 4.4 for more
details.

Combining Proposition 4.1 for (p, q) = (1, 1) with Theorems 3.2, 3.3 and 3.4 we obtain
the following

Corollary 4.3 Let (X , J , ω) be a compact almost Kähler manifold of dimension 2n. Then,

H1,1
BC (X) ⊆ H1,1

A (X),

and

Hn−1,n−1
A (X) ⊆ Hn−1,n−1

BC (X).
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Now we study whether the inclusions in Proposition 4.1 are strict, and in general if there
are other inclusions between the spaces of primitive harmonic forms.

Proposition 4.4 There exists a compact almost Kähler 6-manifold (X , J , ω) such that

H1,1
∂̄

∩ P1,1
� H1,1

BC ∩ P1,1, (16)

H1,1
∂̄

∩ P1,1
� H1,1

∂ ∩ P1,1, (17)

H1,1
A ∩ P1,1

� H1,1
BC ∩ P1,1, (18)

H1,1
A ∩ P1,1

� H1,1
∂ ∩ P1,1, (19)

H1,1
∂ ∩ P1,1

� H1,1
∂̄

∩ P1,1, (20)

H1,1
∂ ∩ P1,1

� H1,1
BC ∩ P1,1, (21)

H1,1
∂ ∩ P1,1

� H1,1
A ∩ P1,1. (22)

Proof We refer to Example 4.5 for the proof of this Proposition. ��
Example 4.5 We recall the following construction of [1]. Let X = T

6 = Z
6\R

6 be the
6-dimensional torus with (x1, x2, x3, y1, y2, y3) coordinates on R

6. Let g = g(x3, y3) be
a non-constant function on T

6. We define an almost complex structure J setting as global
co-frame of (1, 0)-forms

ϕ1 := egdx1 + i e−gdy1, ϕ2 := dx2 + i dy2, ϕ3 := dx3 + i dy3.

The structure equations are

dϕ1 = V3(g)ϕ
31̄ − V̄3(g)ϕ

1̄3̄, dϕ2 = dϕ3 = 0,

where {V1, V2, V3} denotes the global frame of vector fields dual to
{
ϕ1, ϕ2, ϕ3

}
. Notice that

in particular J is not integrable. Then, the (1, 1)-form

ω := i

2
ϕ11̄ + i

2
ϕ22̄ + i

2
ϕ33̄

is a compatible symplectic structure, namely (J , ω) is an almost Kähler structure on T
6.

We will show that the form ϕ21̄ verifies claims (16), (17), (18), (19), while the form ϕ12̄

verifies (20), (21), (22).
First, note that

∂̄ϕ21̄ = 0

and

∂ ∗ ϕ21̄ = −ω ∧ ∂ϕ21̄ = V3(g)ω ∧ ϕ123̄ = 0,

thus

ϕ21̄ ∈ H1,1
∂̄

∩ P1,1 ⊆ H1,1
A ∩ P1,1.

On the other hand

∂ϕ21̄ = −V3(g)ϕ
123̄ �= 0

and so

ϕ21̄ /∈ H1,1
∂ ∩ P1,1 ⊇ H1,1

BC ∩ P1,1.
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This proves (16), (17), (18), (19).
Now, note that

∂ϕ12̄ = 0

and

∂̄ ∗ ϕ12̄ = −ω ∧ ∂̄ϕ12̄ = −V3(g)ω ∧ ϕ31̄2̄ = 0,

thus

ϕ12̄ ∈ H1,1
∂ ∩ P1,1.

On the other hand

∂∂̄ϕ12̄ = ∂(V3(g)ϕ
31̄2̄) = −V3(g)V3(g)ϕ

33̄12̄ �= 0

and so

ϕ12̄ /∈ H1,1
A ∩ P1,1 ⊇ H1,1

∂̄
∩ P1,1 ⊇ H1,1

BC ∩ P1,1.

This proves (20), (21), (22). ��
Combining Propositions 4.1 and 4.4 one finds the following diagram of strict inclusions.

Hp,q
∂̄

∩ P p,q

Hp,q
BC ∩ P p,q Hp,q

A ∩ P p,q

Hp,q
∂ ∩ P p,q

⊆

�

�

� (23)

The remaining non-inclusions of Propositions 4.4 (which are not already included in diagram
(23)) can be summed up in the following diagram.

Hp,q
∂̄

∩ P p,q

Hp,q
BC ∩ P p,q Hp,q

A ∩ P p,q

Hp,q
∂ ∩ P p,q

�

�

�

� (24)

It remains open to understand if Hp,q
A ∩ P p,q is either contained or not in Hp,q

∂̄
∩ P p,q in

general.

Remark 4.6 We notice that in [11] the spaces of Bott–Chern and Aeppli harmonic forms
were introduced using the operators δ̄ and δ. In fact, it was shown that with respect to such
operators, on compact almost Kähler manifolds one has the usual equalities (that are true for
Kählermanifolds), namely (cf. [11, Proposition 6.2, Theorem6.7, Proposition 6.10,Corollary
6.12])

Hp,q
BC(δ,δ̄)

(X) = Hp,q
A(δ,δ̄)

(X) = Hp,q
δ̄

(X) = Hp,q
δ (X) = Hp,q

d (X).
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5 Primitive decompositions of harmonic forms in dimension 6

Let (X , J , ω) be a compact almost Kähler manifold of dimension 2n. In Sect. 3 we saw that
the primitive decompositions of (p, q)-forms descend to Bott–Chern and Aeppli harmonic
forms for the special bidegrees (1, 1), (p, 0) and (0, q). By Bott–Chern and Aeppli duality,
we saw that we can also deduce primitive decompositions for the bidegrees (n − 1, n − 1),
(n, n− p) and (n−q, n). But do these decompositions hold only for these special bidegrees?
Are there other bidegrees with nice primitive decompositions of the spaces of Bott–Chern
and Aeppli harmonic forms? For 2n = 2, 4, since the previous bidegrees are all the possible
bidegrees, the situation is well understood. Therefore, to answer our question, we should
investigate what happens in the dimension 2n = 6.

If 2n = 6, then the only bidegrees for which we do not still have primitive decompositions
of the spaces of Bott–Chern and Aeppli harmonic forms are (2, 1), (1, 2). Let us focus on
the bidegree (2, 1). The primitive decomposition of forms reads as

A2,1 = P2,1 ⊕ L
(
A1,0) .

Passing to Bott–Chern harmonic forms, it is immediate to see that

H2,1
BC ⊇

(
H2,1

BC ∩ P2,1
)

⊕ L
(
H1,0

BC

)
. (25)

However, for Aeppli harmonic forms, a similar inclusion does not hold, because in general

L
(
H1,0

A

)
� H2,1

A .

Indeed, let α ∈ H1,0
A . For bidegree reasons, ∂∂̄α = 0 and ∂̄ ∗ α = 0 or, equivalently, since

α is primitive, ∂∂̄α = 0 and ω2 ∧ ∂̄α = 0. Note that this does not imply, in general, that
Lα = ω ∧ α ∈ H2,1

A , indeed we cannot conclude that ∂ ∗ (ω ∧ α) = −iω ∧ ∂α is equal to
zero. Therefore, we will focus only on Bott–Chern harmonic forms. At this point, we could
hope that the inclusion of (25) is indeed an identity. In fact, it does not happen, as it is shown
by the following

Proposition 5.1 There exists a compact almost Kähler 6-dimensional manifold (X , J , ω)

such that

H2,1
BC �=

(
H2,1

BC ∩ P2,1
)

⊕ L
(
H1,0

BC

)

Proof We refer to Example 5.2 for the proof of this Proposition. ��
Example 5.2 Let X := Z[i]3\(C3, ·) be the Iwasawa manifold, where the group structure on
C
3 is defined by

(w1, w2, w3) · (z1, z2, z3) = (w1 + z1, w2 + z2, w3 + w1z2 + z3).

The standard complex structure of C
3 induces, on X , the complex structure given by

ψ1 = dz1, ψ2 = dz2, ψ3 = −z1dz2 + dz3

being a global coframe of (1, 0)-forms. The complex structure equations are

dψ1 = 0, dψ2 = 0, dψ3 = −ψ12.

If we set

ψ1 = e1 + ie2, ψ2 = e3 + ie4, ψ3 = e5 + ie6,
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then the real structure equations are

de1 = de2 = de3 = de4 = 0, de5 = −e13 + e24, de6 = −e14 − e23.

Let us consider the non integrable left-invariant almost complex structure J given by

ϕ1 = e1 + ie6, ϕ2 = e2 + ie5, ϕ3 = e3 + ie4

being a global coframe of (1, 0)-forms. By a direct computation the structure equations
become (cf. also [13])

4 dϕ1 = −ϕ13 − iϕ23 + ϕ13̄ + ϕ31̄ − iϕ23̄ + iϕ32̄ + ϕ1̄3̄ − iϕ2̄3̄,

4 dϕ2 = −iϕ13 + ϕ23 − iϕ13̄ + iϕ31̄ − ϕ23̄ − ϕ32̄ − iϕ1̄3̄ − ϕ2̄3̄,

dϕ3 = 0.

Endow (X , J ) with the left-invariant almost Kähler structure given by

ω = 2(e16 + e25 + e34) = i(ϕ11̄ + ϕ22̄ + ϕ33̄).

First, we do the following observation that will allow us to work with only left-invariant
forms (cf. [1, Lemma 5.2]). Take η ∈ A2,1 and assume it is left-invariant. By (5), it follows
that

η = α + Lβ,

with α ∈ A2,1 primitive, i.e., Lα = 0 and β ∈ A1,0 (β is in fact primitive for bidegree
reasons). We apply L and find Lη = L2β. Note that Lη, and so L2β, are left-invariant, and
that L2 : �1X → �5X is an isomorphism at the level of the exterior algebra. Therefore,
also β is left-invariant. Now, since Lβ and η are left-invariant, it follows that also α is left-
invariant. Summing up, if η ∈ A2,1 is left-invariant, η = α + Lβ and Lα = 0, then α and β

are left-invariant, too.
We want to find an element η ∈ A2,1 which is contained in H2,1

BC but is not contained in
(
H2,1

BC ∩ P2,1
)

⊕ L
(
H1,0

BC

)
.

Thanks to the previous argument, if η ∈ H2,1
BC is left-invariant and η = α + Lβ, with

α ∈ H2,1
BC ∩ P2,1 and β ∈ H1,0

BC , then α and β are left-invariant.
A long, but direct and straightforward computation, shows that the space of left-invariant

Bott–Chern harmonic (2, 1)-forms is

C < ϕ131̄ + ϕ232̄, ϕ132̄ + ϕ231̄ − 2iϕ232̄ >,

while it is easy to verify that the space of left-invariant formswhich are contained in L
(
H1,0

BC

)

is

C < ϕ131̄ + ϕ232̄ > .

Since L(ϕ132̄ + ϕ231̄ − 2iϕ232̄) = −2i L(ϕ232̄) �= 0, it means that ϕ132̄ + ϕ231̄ − 2iϕ232̄

is not primitive. Therefore ϕ132̄ + ϕ231̄ − 2iϕ232̄ is a left-invariant, Bott–Chern harmonic
(2, 1)-form, but it is not contained in

(
H2,1

BC ∩ P2,1
)

⊕ L
(
H1,0

BC

)
.
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