
J
H
E
P
1
0
(
2
0
2
3
)
0
9
9

Published for SISSA by Springer

Received: August 1, 2023
Revised: September 22, 2023

Accepted: October 6, 2023
Published: October 17, 2023

The generalized Born oscillator and the Berry-Keating
Hamiltonian

Francesco Giordano,a Stefano Negrob and Roberto Tateoa

aDipartimento di Fisica, Università di Torino and
INFN, Sezione di Torino,
Via P. Giuria 1, Torino 10125, Italy

bCenter for Cosmology and Particle Physics, New York University,
726 Broadway, New York, NY 10003, U.S.A.
E-mail: giordano.f413@gmail.com, stefano.negro@nyu.edu,
roberto.tateo@unito.it

Abstract: In this study, we introduce and investigate a family of quantum mechani-
cal models in 0 + 1 dimensions, known as generalized Born quantum oscillators. These
models represent a one-parameter deformation of a specific system obtained by reducing
the Nambu-Goto theory to 0 + 1 dimensions. Despite these systems showing significant
similarities with TT-type perturbations of two-dimensional relativistic models, our analy-
sis reveals their potential as interesting regularizations of the Berry-Keating theory. We
quantize these models using the Weyl quantization scheme up to very high orders in ℏ.
By examining a specific scaling limit, we observe an intriguing connection between the
generalized Born quantum oscillators and the Riemann-Siegel θ function.

Keywords: Bethe Ansatz, Integrable Field Theories

ArXiv ePrint: 2307.15025

Open Access, c⃝ The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP10(2023)099

mailto:giordano.f413@gmail.com
mailto:stefano.negro@nyu.edu
mailto:roberto.tateo@unito.it
https://arxiv.org/abs/2307.15025
https://doi.org/10.1007/JHEP10(2023)099


J
H
E
P
1
0
(
2
0
2
3
)
0
9
9

Contents

1 Introduction 1

2 The Berry-Keating theory 3

3 The Born oscillator 6
3.1 Quantization of the Born oscillator 10
3.2 The asymptotic behavior of the Born oscillator counting function 11

4 The generalized Born oscillator 12
4.1 Quantization of the generalized Born oscillator 14
4.2 The asymptotic behavior of the generalized Born oscillator counting function 15

5 Conclusions 17

A Counting functions, Riemann ζ and Riemann-Siegel θ functions 18

B The Weyl quantization 19
B.1 The Weyl correspondence and the Moyal product 20
B.2 An integral representation for S 21

C An iterative procedure 22

D Weyl vs. WKB quantizations 24
D.1 Operator ordering from Weyl quantization 24
D.2 WKB analysis of Born oscillator 26

E Expansion of the quantization condition 28
E.1 The Born oscillator 28
E.2 The generalized Born oscillator 29

1 Introduction

In the early 20th century, Hilbert and Pólya speculated about the imaginary parts of the
complex zeros of the Riemann zeta function. They proposed that a self-adjoint operator H
could have these imaginary parts as eigenvalues; discovering such an operator would confirm
the famous Riemann hypothesis. Assuming the Riemann hypothesis is valid, Montgomery
and Odlyzko deduced that the local statistical behavior of the Riemann roots resembles
the Gaussian unitary ensemble (GUE) in random matrix theory. Building on this insight,
Berry [1] suggested the likely existence of a classical Hamiltonian system with chaotic
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behavior and isolated periodic prime-number-related orbits. The quantum theory’s spec-
trum from this system would reveal the complex Riemann roots, with their GUE statistics
implying time-reversal symmetry violation by the Hamiltonian.

In 1999, Connes [2], Berry and Keating [3] explored a semiclassical model involving
a one-dimensional particle with a classical Hamiltonian HBK = pq. This Hamiltonian
breaks time-reversal symmetry, HBK(p, q) = −HBK(−p, q) and the classical orbits in this
model are unbounded hyperbolas in phase space. By imposing boundary conditions, the
Hamiltonian HBK is “regularized” to a well-defined Hermitian operator with a discrete
spectrum. In this setting, the count of states with positive energy less than E = ℏT
is related to the leading asymptotic contributions to the function N(T ), measuring the
average number of complex zeroes of the Riemann zeta function with positive imaginary
part less than T . The approaches of Berry and Keating and of Connes differ in the way the
classical Hamiltonian is regularized and, consequently, on how the asymptotics of N(T ) is
recovered: respectively as the number of states present in the spectrum [3] and as those
missing from the continuum [2].

In 2008, Sierra and Townsend [4] put forward a physical realization of the Hamilto-
nian HBK, by considering the lowest Landau level limit of a quantum-mechanical model.
The model describes a charged particle moving on a planar surface subjected to a static
electrostatic potential V = V0 xy and a uniform magnetic field B, perpendicular to the
x− y plane. Various variants of the Berry-Keating Hamiltonian have been introduced and
studied [5, 6], including one that incorporates broken time-reversal symmetry and closed
orbits [7]. Studying these models and their quantization has its own physical and mathe-
matical significance, not necessarily tied to the initial proposal associated with the Hilbert
and Polya’s conjecture.

This work introduces a novel two-parameter time-reversal symmetric regularization of
the Berry-Keating model — the Generalized Born oscillator — which incorporates natu-
rally the regularization prescription of Connes. The Generalized Born oscillator is a system
with closed trajectories, and its quantization does not necessitate a regularization prescrip-
tion. Thus, by using Weyl’s quantization technique, we are able to extract the number of
states N(E) beyond the leading semiclassical approximation to an in-principle arbitrary
order in ℏ. As an interesting by-product, we will see that this expansion reproduces that
of N(T ), together with correction terms that vanish as one of the system’s parameters is
sent to ∞. Additionally, the asymptotics of the number of states displays a term linear
in T which accounts for the fact that our model can be interpreted as a regularization of
Connes boundary conditions.

This work is structured as follows. Section 2 contains a short review of the known
results on the Berry-Keating theory. The Born oscillator, a special case of the Generalized
Born oscillator, will be introduced in section 3 as a dimensional reduction of relativistic free
scalar theory in 1 + 1 dimensions, deformed with the TT operator. In this same section,
we will describe the properties of the Born oscillator and study the spectrum arising from
its Weyl quantization, comparing the state-counting function N(E) to the function N(T ).
We will see that for large E = ℏT the latter is reproduced order by order, although
it is accompanied by a number of spurious terms that cannot be eliminated naturally.
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Furthermore, in section 4 we introduce an additional parameter u in the system, defining
the Generalized Born oscillator. Studying its properties and its spectrum, we find that
this system constitutes a regularization of Connes’ regularization for the Berry-Keating
theory, and it is such that in the u → ∞ limit, the large E behaviors of N(E) and N(T )
coincide, up to a term linear in E. In section 5 we conclude and give some outlook. In
addition, there are five appendices. In appendix A, we give a concise overview of counting
functions and the Riemann-Siegel θ-function, with a focus on their emergence in the context
of the Riemann ζ function, which initially inspired the work of Berry and Keating. Some
technical details about the Weyl quantization are collected in appendix B, while appendix C
describes the procedure that we employed to determine the spectrum. Appendix D contains
a comparison of the Weyl quantization with the more familiar WKB approach. Finally, in
appendix E we collect some lengthy expressions pertaining to the ℏ → 0 expansions of the
quantization conditions for the Born oscillator and for the Generalized one.

2 The Berry-Keating theory

In [3], M. Berry and J. Keating studied the strikingly simple classical Hamiltonian

HBK(p, q) = pq , (2.1)

hereafter referred to as the Berry-Keating Hamiltonian, in relation to the smooth part N(T )
of the counting function (A.6). In particular, they proposed that the counting function
for the spectrum of an appropriate quantization of (2.1) will reproduce N(T ) in the large
T limit.

The Hamiltonian (2.1) generates a flow on the 2-dimensional phase space (p, q) whose
classical trajectories are branches of hyperbolas (see figure 1)

HBK(p, q) = pq = E . (2.2)

Since the trajectories are open, the associated quantum mechanical system will have a
continuum spectrum. This, of course, is problematic if one’s goal is to establish a link
between the distribution of the spectrum of (2.2) and N(T ). In order to overcome this
problem, we can proceed in two complementary ways. The first, proposed by Berry and
Keating [3], is to impose the following constraints

|q| ≥ lq , |p| ≥ lp , l(p,q) > 0 . (2.3)

With these cutoffs, the trajectories are now bounded (see figure 2) and it is possible to
employ semi-classical analysis to evaluate the number of states NBK as the area ABK
enclosed by the curve pq = E and the lines p = lp, q = lq, in units of Planck cells (2πℏ)
and corrected by the Maslov index1 iM = −1/8 (see [8] for details)

NBK = ABK
2πℏ + iM = E

2πℏ

(
log E

lqlp
− 1

)
+ lqlp

2πℏ − 1
8 . (2.4)

1The Maslov index is what gives the 1/2 correction in the quantization of the harmonic oscillator.
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Figure 1. Classical trajectories E = pq for E = 1, 2, 3, 4.

Figure 2. Area of the phase space with the constraints |q| ≥ lq, |p| ≥ lp. ABK is the area enclosed
by the curves E = pq, q = lq and p = lp.
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Figure 3. Phase space with the constraints |q| ≤ Λ, |p| ≤ Λ. The area is AC .

It is a straightforward check that with the choice

E = ℏT , lplq = 2πℏ , (2.5)

the first two terms of the expansion (A.7) are exactly reproduced.
The other possibility to regularize the semi-classical spectrum of (2.1) was proposed

by A. Connes [2]. In this case, one imposes a large cut-off Λ on both q and p

|q| ≤ Λ , |p| ≤ Λ , Λ > 0 . (2.6)

Here too, the trajectories become bounded (see figure 3) and the number of states NC in
semi-classical quantization reads

NC = AC
2πℏ = E

2πℏ log Λ2

2πℏ − E

2πℏ

(
log E

2πℏ − 1
)
. (2.7)

This expression contains two terms, one which diverges as Λ → ∞, corresponding to the
continuum spectrum, and a second one reproducing to the leading asymptotic behavior of
N(T ) with E = ℏT and a negative sign overall. Due to their expressions, NC and NBK are
often referred to as the absorption and emission spectrum, respectively. Let us notice that,
by choosing the cutoff Λ to be

Λ = E√
lplq

= E√
2πℏ

, (2.8)
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we can rewrite

NC = E

2πℏ

(
log E

2πℏ + 1
)
= E

2πℏ

(
log E

2πℏ − 1
)
+ 1 + 2E − 2πℏ

2πℏ . (2.9)

We recognize in the last addend the area 2E − lplq (with lplq = 2πℏ) of the two rectangles
that were omitted in the Berry-Keating regularization (2.3) (see figure 2). The addition of
the Maslov index iM = −1/8 reproduces the 7/8 constant term of (A.7).

The derivation of the spectra NBK and NC are quite simple and far from being formal.
However, Berry and Keating in their work [8], remarked that the fact they reproduce the
leading asymptotic of N(T ) is unlikely to be a coincidence. They also emphasized the
necessity of replacing the semiclassical regularization (2.3) — or (2.6) for that matter —
with a procedure that naturally generates a discrete spectrum.

One of the main results of this paper is the introduction of such a procedure, in
the form of a family of deformations of the Berry-Keating Hamiltonian (2.1). As we
will see, the parameters controlling these deformations serve as natural regulators of the
trajectories (2.2) and the quantum spectrum, obtained with the Weyl quantization of the
classical Hamiltonian, is such that the subleading terms of the asymptotic expansion (A.7)
are reproduced in a limiting regime.

3 The Born oscillator

In order to formulate a deformation of the Berry-Keating Hamiltonian (2.1) we start, per-
haps counterintuitively, from 1+1 space-time dimensions. Let us consider the Nambu-Goto
model in the static gauge with a single transversal field φ(t, x), describing the fluctuations
of a 2-dimensional surface embedded in 3-dimensional space-time. The Lagrangian of this
model is

LNG =
∫
dxLNG =

∫
dx

1−
√
1 + λφ′(t, x)2 − λφ̇(t, x)2

λ
, (3.1)

where LNG is the Lagrangian density and the primes φ′(t, x) and dots φ̇(t, x) denote
derivations with respect to x and t, respectively. As shown in [9], the model described
by (3.1) can be considered as a TT deformation of a free massless scalar field in 1 + 1
dimensions. From this point of view, λ — that in the string theory perspective is the
inverse of the string tension — plays the role of a deformation parameter and the theory
is defined by a flow equation for the action

d

dλ
LNG = −1

2

∫
dx det

µν
Tµν(t, x) ,

lim
λ→0

LNG =
∫
dx

φ̇(t, x)2 − φ′(t, x)2

2 ,

(3.2)

where Tµν(t, x) is the canonical energy-momentum tensor of the theory described by LNG.
Performing a Legendre transformation, we readily derive the Hamiltonian of the model

HNG =
∫
dx

√
1 + λπ(x)2

√
1 + λφ′(x)2 − 1
λ

, (3.3)
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which obeys the following limiting behaviors

lim
λ→0

HNG =
∫
dx

π(x)2 + φ′(x)2

2 , lim
λ→∞

HNG =
∫
dx |π(x)| |φ′(x)| . (3.4)

We see that the TT deformation (3.2) determines a one-parameter family of models that
interpolate — at least at the classical level — from a theory of a free massless scalar to
one with vanishing Lagrangian. The latter is suggestively similar to the Berry-Keating
theory (2.1), albeit in 1 + 1 dimensions instead of 1 + 0.

One way to move from a field theory to quantum mechanics is to perform a standard
dimensional reduction, compactifying the space dimension on a circle of vanishing radius.
This route was followed in [10], where a whole family of “TT-like” flows was introduced:

d

dλ
Hλ = f(Hλ) . (3.5)

These flows are such that the deformed Hamiltonian Hλ is a function of the undeformed one
Hλ = Hλ(H0). As a consequence, the theories determined by (3.5) are not of interest for
our purposes, since they cannot yield deformations of the Berry-Keating theory (2.1) with
compact trajectories.2 We instead follow a dual route and discretize the space direction on
a lattice with spacing ∆x. Using the notation fn = f(n∆x) for any function f and choosing
a symmetric version of the first derivative squared, we can write the Hamiltonian (3.3) as

HNG =
∑
n∈Z

∆x
√
1 + λπ2

n

√
1 + λ (φn+1−φn)2

2∆x2 + λ (φn−φn−1)2

2∆x2 − 1
λ

. (3.6)

This can be interpreted as describing a system of infinitely many particular oscillators,
coupled by some potential:

HNG =
∑
n∈Z

∆x [Hn + Vn] , (3.7)

where

Hn =
√
1 + λπ2

n

√
1 + λ φ2

n
∆x2 − 1

λ
, (3.8)

and

Vn =
√
1 + λπ2

n

∞∑
m=1

(
1/2
m

)
λm−1

2m∆x2m

(
φ2

n+1 + φ2
n−1 − 2φn (φn+1 + φn−1)

)m
(1 + λφ2

n)
2m−1

2
. (3.9)

Isolating a single site, say n = 0, and setting π0 = p, φ0 = ∆xq, we obtain a theory
determined by the Hamiltonian

HBO =
√
(1 + λp2) (1 + λq2)

λ
, (3.10)

2In fact if we want (2.1) to be reproduced by Hλ = Hλ(H0) at some point of the flow Hλk = HBK, we
must have Hλ = Fλ(HBK), where Fλ = Hλ ◦ H−1

λk
. Then the trajectories will have the form pq = F−1

λ (E),
which are clearly open.
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Figure 4. Some classical trajectories of the Born oscillator HBO = E for fixed λ = 1.

where we discarded the “cosmological constant” term −1/λ. Following [11],3 we will call the
model determined by HBO the Born oscillator. It is interesting to remark that, while (3.10)
clearly does not satisfy a flow equation of the form (3.5) proposed in [10], the corresponding
Lagrangian

LBO = −
√
1 + λq2 − λq̇2

λ
, (3.11)

obeys the flow equation
d

dλ
LBO = 1 + λ2L2

BO
2λLBO

. (3.12)

We plan to study in detail theories determined by flow equations of this kind in a fu-
ture work.

Just as it happened in Nambu-Goto (3.4), by dialing the deformation parameter λ,
the Born oscillator (3.10) interpolates between a standard harmonic oscillator (up to a 1/λ
term) and a theory with vanishing Lagrangian which is nothing else but the Berry-Keating
one (2.1):

lim
λ→0

(
HBO − 1

λ

)
= p2 + q2

2 = HHO , lim
λ→∞

HBO = |pq| = |HBK| . (3.13)

Importantly, by studying the classical trajectories of the Born oscillator (3.10), we see
that they are closed for any finite value of λ and approach the Berry-Keating ones as this
parameter grows larger (see figures 4 and 5). Another important fact that we notice is that

3See [12], for some complementary results on this interesting quantum mechanical model.
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Figure 5. Some classical trajectories of the Born oscillator HBO = E for fixed E = 2.

the hyperbolic classical trajectories (2.2) of the Berry-Keating theory are also approached
as the energy grows, in accordance with the limiting behaviors

HBO ∼
|p|,|q|→∞

pq>0

HBK + pq

2λ

( 1
p2 + 1

q2

)
+ · · · ,

HBO ∼
|p|,|q|→∞

pq<0

−HBK − pq

2λ

( 1
p2 + 1

q2

)
+ · · · .

(3.14)

Finally, from both the expression (3.10) and the figures 4 and 5 it is clear that our systems
possess a D4 dihedral symmetry. Thus, we can consider HBO as a “D4 regularization” of
the Berry-Keating model.

The properties of the Hamiltonian (3.10) we just described raise the hope that its
quantum spectrum may indeed reproduce the expansion (A.7) at large energies. We can
get a first confirmation of this by evaluating the number of states NBO at the first semi-
classical order:

NBO + 1
2 = 1

2πℏ

∫∫
HBO≤E

dpdq +O(ℏ) . (3.15)

With some simple manipulations, we arrive at the expression

NBO + 1
2 = 2

(
1 + λq2

t

)
K(−λq2

t )− E(−λq2
t )

πℏλ
+O(ℏ) , (3.16)

where qt =
√
(λ2E2 − 1)/λ is the positive turning point of the trajectory at energy E and

K(x), E(x) are the Legendre complete elliptic integrals (see section 19 in [13]). For large
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values of the spectral parameter E we find the behavior

NBO + 1
2 = 2 E

πℏ
(log(4Eλ)− 1) +O(ℏ) . (3.17)

If we now perform the following identifications

NBO = 4N(T )− 4 ,

E = ℏT ,

λ = 1
4

1
2πℏ ,

(3.18)

we obtain the first two terms in (A.7)

N(T ) = T

2π

(
log

(
T

2π

)
− 1

)
+ 7

8 +O
( 1
T

)
. (3.19)

Let us provide some justification for the choices (3.18). The overall factor 4 in front
of N(T ) accounts for the Z4 symmetry of the Born oscillator trajectories. In fact, this
symmetry divides the space of states of the theory into disjoint super-selection sectors,
and we are counting only the states belonging to one of the sectors, the one connected
to the fundamental state. Comparing with (2.5), we see that λ is, up to a factor of 4,
the inverse of the cutoff lplq used in the Berry-Keating regularization (2.3). Finally, the
−1 shift of N(T ) is there because the lower energy state with energy E = E1 = T1/ℏ
corresponds to NBO(E1) = 0, while we want N(T ) to be a counting function and thus
satisfying N(T1) = 1.

While the expansion (3.19) is an encouraging signal that the Born oscillator might
indeed provide the sought-after trajectories of the Berry-Keating system, we need to devise
a way to check that the sub-leading terms in the semi-classical expansion of the number
of states NBO agree with the expansion of the Riemann-Siegel θ function (A.7). This
task requires us to properly quantize the Hamiltonian HBO. The canonical procedure of
promoting (p, q) to operators, say in position space representation (p̂, q̂) =

(
−iℏ d

dq , q
)
, is

severely complicated by the fact that HBO is non-polynomial in p and q. One might think
that expanding the square roots simplifies the problem, however, the resulting stationary
Schrödinger equation is a differential eigenvalue problem of infinite order, whose study is,
to put it mildly, unwieldy. For this reason, we are going to employ a different approach,
called Weyl quantization, to the evaluation of the number of states of the Born oscillator.
This procedure is detailed in appendix B.

3.1 Quantization of the Born oscillator

Using the Weyl quantization procedure to quantize the Born oscillator Hamiltonian (3.10)
brings us to the following expansion (see appendix C for more details)

n+ 1
2 = 1

ℏ
Σ0(E) +

∞∑
m=1

Σm(E)ℏ2m−1 . (3.20)
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The formulas needed to compute the coefficients Σ0 and Σm are given in (C.10). The
first we already obtained in the previous section: it is 2/π times the area under the curve
determined by the condition HBO(p, q) = E

Σ0(E) = 2
(
1 + q̃2

t

)
K
(
−q̃2

t

)
− E

(
−q̃2

t

)
πλ

, q̃t =
√
λ2E2 − 1 . (3.21)

The other coefficients require some more work. They all turn out to be of the following form

Σm(E) = λ2m−1Pm(q̃2
t )K

(
−q̃2

t

)
+Qm(q̃2

t )E
(
−q̃2

t

)
πq̃4m−2

t

(
1 + q̃2

t

)2m−1 , (3.22)

where Pm(x) and Qm(x) are polynomials of order 3m−2. Here we display their expressions
for m = 1, 2

P1(x) =
1 + x

12 ,

Q1(x) =
−1 + x

12 ,

(3.23)

P2(x) = −56 + 233x+ 363x2 + 5323x3 + 2257x4

2880 ,

Q2(x) =
56 + 205x+ 264x2 + 5233x3 + 14x4

2880 .

(3.24)

The polynomials for m = 3, 4, 5 are reported in appendix E, since they are quite cum-
bersome.

We are interested in the behavior of (3.20) for large E, equivalently large q̃t. For the
elliptic integrals, we have

K(−q̃2
t ) =

log(4q̃t)
q̃t

− log(4q̃t)− 1
4q̃3

t

+ 36 log(4q̃t)− 7
128q̃5

t

+O
( log q̃t

q̃7
t

)
,

E(−q̃2
t ) = q̃t +

2 log(4q̃t) + 1
4q̃t

− 4 log(4q̃t)− 3
64q̃3

t

+ 3log(4q̃t)− 1
128q̃5

t

+O
( log q̃t

q̃7
t

)
,

(3.25)

from which we can estimate the asymptotic behavior

Σm(E) ∼
E→∞

cE1−2m . (3.26)

3.2 The asymptotic behavior of the Born oscillator counting function

Having explicit expressions for m < 6, we can determine the large E behavior of (3.20) up
to order O

(
E−11). Using the identifications (3.18), this takes the following form

N(T ) = T

2π

(
log

(
T

2π

)
− 1

)
+ 7

8 + 1
48πT + 7

5760πT 3 + 31
80640πT 5

+ 127
430080πT 7 + 511

1216512πT 9 −U.T.+O
( log T
T 11

)
,

(3.27)
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where we recognize the terms in the large T expansion of the Riemann-Siegel θ func-
tion (A.7). If the expansion (3.27) looks too good to be true, that is because we hid all the
“unwanted terms” inside U.T.:

U.T. = 8π
log

(
T
2π

)
T

+ π
(
48π2 − 1

) 6 log
(

T
2π

)
− 5

3T 3

+ π
300(5− 32π2 + 1034π4) log

(
T
2π

)
− (3477− 12320π2 + 317440π4)

120T 5 + · · · .

(3.28)

So we see that, while the Weyl quantization of the Born oscillator (3.10) does indeed
seem to produce all the terms in the asymptotic expansion of the mean number of ze-
roes (A.6), it also generates several spurious terms. In principle, it is possible to elim-
inate at least part of them by performing a redefinition of T . For example, setting
T = T +

∑∞
l=1 α2l−1T

−2l+1 and carefully choosing the coefficients α2l−1 it is possible to
eliminate all the terms T−2l+1 log T/(2π) in (3.28). However, this redefinition looks very
unnatural and, what’s more, fails to eliminate completely U.T.

If the goal is to obtain a spectrum whose large energy expansion exactly reproduces
the behavior of the Riemann-Siegel θ function, a more radical step should be taken: deform
the Born oscillator by introducing an additional parameter u and tune it appropriately to
eliminate the “spurious” terms. Before proceeding in this direction, it’s worth noting that
the results obtained in this section using the iterative procedure detailed in appendix C
can also be reproduced by applying the more familiar WKB quantization method. This
involves applying this standard procedure to an operator derived from the Hamiltonian
HBO by imposing a specific ordering that follows from the Weyl quantization prescription.
For further details on this point, we refer the interested reader to appendix D.

4 The generalized Born oscillator

In this section, we introduce a one-parameter generalization of the Born oscillator. This
modified theory, referred to as the generalized Born oscillator, can be viewed as a natu-
ral implementation of the Connes cutoff (2.6) on the Berry-Keating Hamiltonian, as will
become evident shortly.

The Generalized Born oscillator is determined by the following Hamiltonian

HGBO =
(
1 + λup2u

) 1
2u
(
1 + λuq2u

) 1
2u

λ
, (4.1)

where we take λ > 0 and u to be a positive integer. This theory possesses a Z4 symmetry
under independent reflections of p and q, which allows us to focus on the p > 0, q > 0
quadrant. The trajectories of this system, depicted in figures 6 and 7, approach the ones
of the Berry-Keating Hamiltonian as the energy grows

HGBO ∼
p,q→∞

HBK + pq

2uλu

( 1
p2u

+ 1
q2u

)
+ · · · . (4.2)
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Figure 6. Some classical trajectories of the Generalized Born oscillator HGBO = E for fixed u = 3
and λ = 1. The dashed lines are the Berry-Keating trajectories pq = E.

Figure 7. Some classical trajectories of the Generalized Born oscillator HGBO = E for fixed E = 4
and λ = 1.
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Another interesting fact that we can note about the Generalized Born oscillator is that,
as u grows towards ∞, its trajectories resemble more and more the one obtained with a
Connes cutoff from the Berry-Keating ones (see figure 3). To be more precise, we can say
that in the limit u→ ∞, the trajectories become the following

pq = E , |p| ≤
√
λE , |q| ≤

√
λE . (4.3)

By choosing λ = 1/lplq = 1/(2πℏ), the above condition becomes precisely the same as the
Connes cutoff prescription, with Λ =

√
λE.

Given the above properties, we expect the spectrum of HGBO to reproduce the Berry-
Keating one, with Connes regularization imposed, in the limits E → ∞ and u → ∞. Let
us look at the first semi-classical order

NGBO + 1
2 = 1

2πℏ

∫∫
HGBO≤E

dpdq +O(ℏ) . (4.4)

As usual, we can evaluate this solving for p

NGBO + 1
2 = 2

πℏλ

q̃t∫
0

dq

(
1 + q̃2u

t

1 + q2u
− 1

) 1
2u

= 2
Γ
(
1 + 1

2u

)2

Γ
(
1 + 1

u

) q̃2
t

πℏλ 2F1

( 1
2u,

1
2u, 1 +

1
u
;−q̃2u

t

)
,

(4.5)

where q̃t = (λ2uE2u − 1)1/2u. Taking the large E limit first, we find

NGBO + 1
2 = 2E

πℏ
(log λE − 1)− 2E

πℏu

(
γE + ψ

( 1
2u

))
+O

(
E−2u

)
+O (ℏ) , (4.6)

where ψ(x) = Γ′(x)/Γ(x) is the digamma function. Using the expansion (see [13], sec-
tion 5.7) ψ(x) ∼ −γE − 1/x+O(x) we arrive at

NGBO + 1
2 = 2E

πℏ
(log λE − 1) + 4E

πℏ
+O

(
u−1

)
+O

(
E−2u

)
+O (ℏ) . (4.7)

The identifications NGBO = 4NC and λ = 1/(2πℏ) yield precisely (2.9) (with the ad-
dition of the Maslov index −1/8), as expected from the limiting behavior of the tra-
jectories (4.3). Hence, the Generalized Born oscillator reproduces the first order in the
semi-classical expansion of the Berry-Keating spectrum, with the Connes regularization
prescription implemented. The difference is that the Hamiltonian (4.1), having naturally
bounded trajectories, allows pushing the semi-classical expansion of the spectrum beyond
first approximation to an in principle, arbitrary order in ℏ.

4.1 Quantization of the generalized Born oscillator

We are going to perform the same analysis we carried on in section 3.1 for the Born oscil-
lator. The quantization condition is expanded in ℏ as in (3.20), where now the coefficients

– 14 –



J
H
E
P
1
0
(
2
0
2
3
)
0
9
9

Σ0(E) and Σm(E) take the following form

Σ0(E) = 2
Γ
(
1 + 1

2u

)2

Γ
(
1 + 1

u

) q̃2
t

πℏλ 2F1

( 1
2u,

1
2u, 1 +

1
u
;−q̃2u

t

)
, (4.8)

and

Σm(E) = Cmλ
2m−1q̃2−4m

t

(1+ q̃2u
t )2m−1

(
Pm(q̃2u

t ) 2F1

(
1− 2m− 1

2u , 1− 2m− 1
2u , 2− 2m− 1

u
;−q̃2u

t

)
+Qm(q̃2u

t ) 2F1

(
−2m− 1

2u , 1− 2m− 1
2u , 2− 2m− 1

u
;−q̃2u

t

))
.

(4.9)
Here Pm(x) and Qm(x) are polynomials of order 2m− 1, the constants Cm have the form

Cm = 2
2m−1

u

√
π

(2m− 1)2−4m

4u− 2m+ 1
u4m−1Γ

(
1− 2m−1

2u

)
Γ
(

3
2 − 2m−1

2u

) , (4.10)

and
q̃t =

(
λ2uE2u − 1

) 1
2u . (4.11)

The explicit expression of the polynomials Pm and Qm for generic values of u rapidly
becomes unmanageable as m grows. The simplest case m = 1 is still rather simple

P1(x) = (4u− 1)(2u− 1)(4u
2 − 2u− 1)x+ 2u− 1

48u4 ,

Q1(x) = (4u− 1)(2u− 1)x− (2u− 1)2

48u4 ,

(4.12)

and we report the case m = 2 in appendix E.
In conclusion, the analytical expressions obtained are highly intricate, and as of now,

we have not been able to identify a discernible pattern. However, if one is interested in the
large E limit, things simplify considerably, as we will see in the next section.

4.2 The asymptotic behavior of the generalized Born oscillator counting
function

It turns out that for the purpose of determining the asymptotic behavior of the counting
function, the explicit expressions of the polynomials Pm and Qm are largely irrelevant.

In fact, in the large E-equivalently, large q̃t-limit of Σm, we observe that

q̃t ∼
E→∞

λE +O
(
E1−2u

)
, (4.13)

while, from (4.9) we find

Σm(E) ∼
E→∞

Cmλ
2m−1q̃1−2m−2u

t

[
pm,2m−1

(
A log q̃t +B +O

(
q̃−2u

t

))
+ qm,2m−1

(
Cq̃2u

t +D log q̃t + E +O
(
q̃−2u

t

))]
,

(4.14)
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where pm,2m−1 and qm,2m−1 are the coefficients of the power x2m−1 in the polynomials
Pm(x) and Qm(x), while A, B, C, D, E are constants arising from the large q̃t expansion
of the hypergeometric functions in (4.9). Thus, we see that for large E and u → ∞, the
expression of Σm simplifies to

Σm(E) ∼
E,u→∞

qm,2m−1CmCE
1−2m +O

(
E1−2m−2u logE

)
. (4.15)

The constant C is easily found

C =
Γ
(
2 + 1−2m

u

)
Γ
(
2 + 1−2m

2u

)
Γ
(
1 + 1−2m

2u

) , (4.16)

and, fortunately, the coefficients qm,2m−1 all take a remarkably simple expression4

qm,2m−1 = qm
(4u− 2m+ 1)(2u− 2m+ 1)

u4m
, (4.17)

where qm are rational numbers. Combining everything, we find that in the limit u → ∞,
the leading term is

Σm(E) ∼
E,u→∞

4
π

qm

(2m− 1)4m−2
2

1−2m
u

E2m−1 +O
( logE
E2u+2m−1

)
. (4.18)

The correctness of this asymptotic behavior can be verified for larger values of m by fixing
u to be a large integer and investigating the leading E → ∞ behavior of Σm. This
additionally allows the determination of the rational numbers qm:

q1 = 1
48 , q2 = 567

640 , q3 = 60546875
16128 , q4 = 12304904321689

61440 ,

q5 = 2840679949509872253
45056 , q6 = 10467483340404449525480631647

134184960 . . .

(4.19)

The final result is that, in the u → ∞ limit, the large E expansion of quantization condi-
tion (3.20) for the Generalized Born oscillator is

n+ 1
2 = 4E

πℏ
+ 2E
πℏ

(log λE − 1) + ℏ
12πE + 7ℏ3

1440πE3 + 31ℏ5

20160πE5

+ 127ℏ7

430080πE7 + 511ℏ9

1216512πE9 +O
(
E−11

)
+O

(
u−1

)
+O

(
E−2u

)
,

(4.20)

which coincides almost exactly with the large T expansion (A.7) of the mean number N(T )
of non-trivial zeroes of the Riemann ζ-function, provided we perform the identifications

E = ℏT , λ = 1
2πℏ n = 4N(T )− 4 . (4.21)

The only “fly in the ointment” is the term 4E/(πℏ) coming from the expansion of Σ0(E).
It is there to remind us that what we are computing here really is a natural regularization
of the Connes absorption spectrum (2.9).

4We verified this up to m = 8.
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Finally, it’s also important to emphasize that Weyl quantization is a perturbative
quantization method with respect to ℏ, and therefore, for practical computational reasons,
our analytical results are limited to a large but finite order. Nevertheless, the emerging
pattern at large E is already highly evident, and it would be exceedingly surprising if the
connection with the Riemann-Siegel θ function were to break down at higher perturbative
orders. Just as for the Born oscillator, the Weyl quantization of this modified theory
produces a spectrum that reproduces the asymptotic behavior of the mean number of
Riemann zeroes N(T ), together with a number of spurious terms. The difference is that,
in the present case, we have an additional parameter u. As it turns out, sending u → ∞
completely cancels out the spurious terms, leaving us purely with the terms reproducing
the asymptotic behavior of N(T ).

5 Conclusions

The main result of this article is the introduction of a specific regularization scheme for
the Berry-Keating Hamiltonian and the investigation of its quantum corrections at very
high perturbative orders in ℏ, using Weyl quantization. This allowed us to observe the
emergence of contributions related to the smooth part of the counting function for the
Riemann zeros. In our view, this represents a non-trivial advancement in the exploration of
the Berry-Keating proposal, which very ambitiously aims to establish a connection between
the simple Hamiltonian HBK and the Hilbert-Pólya conjecture. As expected from the
physical and mathematical considerations briefly outlined in the introductory section, as
with previous investigations [2–7], no direct evidence of a straightforward relationship with
prime numbers or the Riemann ζ function has emerged.

However, let us indulge in some speculative thinking. Firstly, we should acknowledge
that the generalized Born oscillator Hamiltonian is defined on a complex multi-sheet Rie-
mann surface, and a pressing question arises: could these characteristics potentially give
rise to chaotic behavior in a specific large-u scaling limit? To elaborate a bit further,
though still remaining in the realm of speculation, when we delve into the spectral theory
of Sturm-Liouville-type problems, we typically encounter two categories of spectral prob-
lems. On one hand, there are the “lateral problems”, which involve imposing boundary
conditions in two distinct sectors of the complex-x plane (commonly referred to as Stokes
sectors) as |x| approaches infinity. Alternatively, one can impose boundary conditions at
both the origin and infinity (in some specific sector), resulting in what is known as a
“central spectral problem”.

The analysis undertaken in this work can be likened to a lateral problem. On the
other hand, findings from a reference like [3] (specifically section 6, page 262, penulti-
mate paragraph) seem to suggest that the Riemann ζ function might manifest itself as a
spectral determinant in what appears to be a spectral central problem (for a comparison,
see, for example, [14] or the appendix B.2 of [15]), possibly entailing boundary condi-
tions on the multivalued wave functions that involve analytic continuation onto the other
Riemann sheets.
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In principle, one can envision the emergence of non-trivial spectral determinants in
an appropriate scaling limit as the parameter u approaches infinity. Nevertheless, without
some additional guiding principles or ideas, the Hamiltonian HGBO remains one of the
infinitely possible multivalued regularizations of HBK, and translating these concepts into
concrete progress remains extremely challenging.

Finally, based on our results, an important avenue to explore is establishing a connec-
tion with integrable quantum field theories, exact S-matrices, and Bethe Ansatz equations,
following the spirit of the ODE/IM correspondence [16]. It would be particularly intriguing
to uncover the integrable system associated with the generalized Born quantum mechani-
cal model, where local conserved charges on the integrable model’s side are related to the
high-order WKB-Weyl analysis obtained in this article.
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A Counting functions, Riemann ζ and Riemann-Siegel θ functions

In order to gain an understanding of the distribution of zeroes and poles of a meromorphic
function f(z) inside a region of the complex plane one can employ the argument principle.
Let γ be a closed path (counterclockwise oriented) bounding the region of interest and f(z)
a meromorphic function with Z zeros and P poles5 in such region. Then

Z − P = 1
2πi

∮
γ
dz

f ′(z)
f(z) . (A.1)

As a noteworthy example, if we choose f(z) = ζ(z) and the region of the complex plane as
the critical strip:

Sϵ,T =
{
s ∈ C

∣∣∣ − ϵ ≤ Re s ≤ 1 + ϵ , 0 ≤ Im s ≤ T
}
, (A.2)

remembering that the Riemann zeta has no poles inside this region, we arrive at the
following integral expression for the zero counting function

N(T ) = 1
2πi

∮
γ
ds
ζ ′(s)
ζ(s) , γ = ∂Sϵ,T . (A.3)

5Counted with their multiplicity and order.
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Thanks to the famous Riemann’s reflection formula, N(T ) can be manipulated into the
following form

N(T ) = θ(T )
π

+ 1 + 1
π
Im log ζ

(1
2 + iT

)
(A.4)

where θ(T ) is the Riemann-Siegel theta function

θ(T ) = arg
[
Γ
(1
4 + iT

2

)]
− log π

2 T = 1
2i log

Γ
(

1
4 + iT

2

)
Γ
(

1
4 − iT

2

) − log π
2 T . (A.5)

Being a counting function, N(T ) is obviously piece-wise constant, while

N(T ) .= θ(T )
π

+ 1 (A.6)

can be interpreted as the average number of zeroes. The remaining term Nfl(T ) = π−1

· Im log ζ(1/2 + iT ) corresponds then to the fluctuations of N(T ) around its mean value
N(T ). Using the well known asymptotic expansion for the Γ function, from (A.5) we
readily obtain the large T behavior of the average

N(T ) ∼
T→∞

T

2π

(
log

(
T

2π

)
− 1

)
+ 7

8 + 1
48πT + 7

5760πT 3 + 31
80640πT 5

+ 127
430080πT 7 + 511

1216512πT 9 +O
(
T−11

)
.

(A.7)

This expansion is one of the central expressions for this work. As we will see in later
sections, the number of states of certain quantum-mechanical systems exhibit the same
behavior (A.7). In particular, in section 4 we present a system that reproduces (A.7), up
to a term linear in T .

B The Weyl quantization

Here we are going to review the exact quantization approach proposed in [17]. This method
is inscribed in the framework of the phase-space formulation of quantum mechanics [18] and
relies essentially on the Weyl correspondence [19] between quantum mechanical operators
and classical dynamical functions. This approach was proven in [17] to provide an exact
quantization rule for any quantum-mechanical system with a single degree of freedom and
arbitrary Hamiltonian, provided its energy spectrum is non-degenerate. Further, it was
shown that at the lowest order in ℏ the exact quantization correctly reproduces the usual
Bohr-Sommerfeld rule. We will refer to the approach described here as Weyl quantization.

Let us consider a classical Hamiltonian H(p, q) determining the dynamics of a single
degree of freedom. Further, let us suppose that we know a rule to consistently associate
a quantum-mechanical operator Ĥ to H(p, q). We will present such a rule momentarily.
Then, if the spectrum of Ĥ is non-degenerate, which we will suppose to be true, it is
possible to enumerate the energy eigenvalues En using integer numbers n ∈ Z≥0. Now, let
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Θ(x) be the Heaviside function6

Θ(x) =


1 , x > 0
1
2 , x = 0

0 , x < 0 .

(B.1)

Given a fixed value of E > 0, the number of states N(E) with energies less than E is
simply

N(E) = TrΘ(E − Ĥ) =
∞∑

m=0
Θ(E − Em) . (B.2)

For E = En this turns into a quantization condition for the energy eigenvalues

TrΘ(En − Ĥ) = n+ 1
2 . (B.3)

The main idea underlying the Weyl quantization is to express the trace on the left-hand
side of (B.3) as an integral over the classical phase space of the system. In order to do so,
one can follow the procedure used by E. Wigner in [20] and define the classical function

S(p, q|E) =
∞∫
−∞

dx eip x
ℏ
〈
q − x/2

∣∣∣Θ(E − Ĥ)
∣∣∣ q + x/2

〉
. (B.4)

As it is easily verified, the phase space integral of this function yields precisely the trace
appearing in (B.2)

1
2πℏ

∫
R2

dpdq S(p, q|E) = TrΘ(E − Ĥ) , (B.5)

and, consequently, we can recast the quantization condition (B.3) as a phase space integral

1
2πℏ

∫
R2

dpdq S(p, q|En) = n+ 1
2 . (B.6)

B.1 The Weyl correspondence and the Moyal product

The definition of the classical function (B.4) is an instance of the Weyl correspondence.
This is a rule that associates uniquely an operator Â(p̂, q̂) to a function Ac(p, q) through
the following relations

Â(p̂, q̂) =
∫
R2

dσdτ a(σ, τ)eip̂σ+iq̂τ ,

Ac(p, q) =
∫
R2

dσdτ a(σ, τ)eipσ+iqτ .
(B.7)

6The value Θ(0) = 1/2 is related to the Maslov index mentioned in section 2, and it is chosen so that
the Weyl quantization correctly reproduces the Bohr-Sommerfeld condition at first order in ℏ. In principle,
different prescriptions could be employed.
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Given that eipσ+iqτ/(2π) form a complete orthonormal set of functions and ℏ1/2/(2π)1/2eipσ+iqτ

a complete orthonormal set of operators [21], the function a(σ, τ) can be expressed in two
equivalent ways

a(σ, τ) = 1
(2π)2

∫
R2

dpdq Ac(p, q)e−ipσ−iqτ = ℏ
2πTr

[
Â(p̂, q̂)e−ip̂σ−iq̂τ

]
. (B.8)

Let us now rewrite the trace on the rightmost side above by using a version of Baker-
Campbell-Hausdorff formula

eB̂+Ĉ = eB̂/2eĈeB̂/2 iff. [B̂, [B̂, Ĉ]] = [Ĉ, [B̂, Ĉ]] = 0 . (B.9)

Thanks to this, we have

a(σ, τ) = ℏ
2π

∞∫
−∞

dqe−iqτ
〈
q
∣∣∣e−ip̂σ/2Â(p̂, q̂)e−ip̂σ/2

∣∣∣ q〉

= ℏ
2π

∞∫
−∞

dqe−iqτ
〈
q + ℏσ/2

∣∣∣Â(p̂, q̂)∣∣∣ q − ℏσ/2
〉
.

(B.10)

Finally, we can plug this expression back into (B.7), obtaining

Ac(p, q) =
∞∫
−∞

dx eip x
ℏ
〈
q − x/2

∣∣∣Â(q̂, p̂)∣∣∣ q + x/2
〉
. (B.11)

A property of the Weyl correspondence that we are going to need in the following is that
it maps the ordinary product of two operators to the Moyal product of classical functions

Ĉ = ÂB̂ =⇒ Cc(p, q) = Ac(p, q) ⋆ Bc(p, q) , (B.12)

which is defined as [21]

Ac(p, q) ⋆ Bc(p, q) = Ac(p, q) exp
[
i
ℏ
2

(←
∂ p

→
∂ q −

←
∂ q

→
∂ p

)]
Bc(p, q)

=
∞∑

n=0

1
n!

(
i
ℏ
2

)n n∑
m=0

(−1)m

(
n

m

)
∂nAc(p, q)
∂n−mp∂mq

∂nBc(p, q)
∂mp∂n−mq

.

(B.13)

B.2 An integral representation for S

Now that we have a Weyl correspondence (B.11) for generic operators Â and functions
Ac, we can return to the expression (B.4). Let us use the following representation of the
Heaviside function

Θ(x) = lim
η→0+

i

2π

∞∫
−∞

dz

z + iη
e−izx , (B.14)

to write

S(p, q|E) = lim
η→0+

i

2π

∞∫
−∞

dx

∞∫
−∞

dz

z + iη

〈
q − x/2

∣∣∣e−iz(E−Ĥ)
∣∣∣ q + x/2

〉
. (B.15)
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Interchanging the integration order and using (B.11), we arrive at the integral repre-
sentation

S(p, q|E) = lim
η→0+

i

2π

∞∫
−∞

dz

z + iη
Ec(p, q|z) , (B.16)

where the function Ec is in Weyl correspondence with the operator Ê = exp(−iz(E − Ĥ)),
which satisfies the differential equation7

1
i

∂

∂z
Ê = 1

2
(
ÊĤ+ ĤÊ

)
, Ĥ = Ĥ − E . (B.17)

As a consequence and owing to the Weyl correspondence, the classical function Ec is a
solution of the initial value problem

1
i

∂

∂z
Ec(p, q|z) =

Hc(p, q) ⋆ Ec(p, q|z) + Ec(p, q|z) ⋆Hc(p, q|z)
2 ,

Ec(p, q|0) = 1 ,
(B.18)

with Hc(p, q) = H(p, q)− E.

C An iterative procedure

In order to solve (B.18) and, consequently, explicitly determine the exact quantization
condition (B.6) through (B.16), we can expand the function Ec in powers of ℏ. In particular,
it is convenient to use the following expansion

Ec(p, q|z) = eizHc(p,q)
[
1 +

∞∑
m=1

Gm(p, q|z)ℏ2m

]
. (C.1)

Inserting this expansion into (B.18) and massaging the expression, we arrive at a recursion
relation for the functions Gm

1
i

∂

∂z
Gm(p, q|z) =

m∑
n=1

(−2)−2n

(2n)!

2n∑
k=0

(−1)k

(
2n
k

)
e−izH(p,q)

× ∂2n

∂p2n−k∂qk

(
eizH(p,q)Gm−n(p, q|z)

) ∂2nH(p, q)
∂pk∂q2n−k

.

(C.2)

This relation allows us to determine Ec(p, q|z) at order O(ℏn) in terms of the same function
at order O(ℏn−1). We can then expand the function S in powers of ℏ

S(p, q|E) = Θ
(
E −H(p, q)

)
+
∞∑

m=1
Sm(p, q|E)ℏ2m , (C.3)

where

Sm(p, q|E) = lim
η→0+

i

2π

∞∫
−∞

dz
eizHc(p,q)

z + iη
Gm(p, q|z) . (C.4)

7The symmetrization of the operators in the differential equation (B.17) is needed to recover the usual
quantization rule for standard Hamiltonians H = p2/2m + V (q).
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Looking closely at (C.2) we realize that the functions Gm must be polynomials in z, of
lowest order 2 and highest 3m

Gm(p, q|z) =
3m∑
ℓ=2

gm,ℓ(p, q)zℓ . (C.5)

Thus, using the identity

lim
η→0+

i

2π

∞∫
−∞

dz
eizHc(p,q)

z + η
zℓ =

(
i
d

dE

)ℓ

Θ
(
E −H(p, q)

)
, (C.6)

we can write

Sm(p, q|E) = i
3m∑
ℓ=2

gm,ℓ(p, q)
(
i
d

dE

)ℓ−1
δ
(
E −H(p, q)

)
, (C.7)

where we used the identity d/dxΘ(x) = δ(x).
Collecting everything we have derived, we can write the quantization condition (B.6) as

n+ 1
2 = 1

ℏ
Σ0(E) +

∞∑
m=1

Σm(E)ℏ2m−1 , (C.8)

where

Σ0(E) = 1
2π

∫
R2

dpdqΘ
(
E −H(p, q)

)
,

Σm(E) = i

2π

3m∑
ℓ=2

(
i
d

dE

)ℓ−1 ∫
R2

dpdq gm,ℓ(p, q)δ
(
E −H(p, q)

)
.

(C.9)

We can further simplify these expressions by changing integration variables from (p, q) to
(H, q), inverting the expression H = H(p, q) in favor of p = p(H, q). One need to be
careful about multivaluedness of p as a function of H. In the case considered in the main
text, we can exploit the Z4 symmetry of the systems to focus on the region p ≥ 0 and
q ≥ 0. Then we can see that p(H, q) is non-negative only for 0 ≤ q ≤ qt(H), with qt(H)
being the positive turning point, such that H(0, qt(H)) = 0. With this restriction, we can
change variables

Σ0(E) = 2
π

qt(E)∫
0

dq

∞∫
0

dH
dp(H, q)
dH

Θ
(
E −H

)
= 2
π

qt(E)∫
0

dq
[
p(E, q)− p(0, q)

]
,

Σm(E) = 2i
π

3m∑
ℓ=2

(
i
d

dE

)ℓ−1 qt(E)∫
0

dq

∞∫
0

dH
dp(H, q)
dH

gm,ℓ(p(H, q), q)δ
(
E −H

)

= 2i
π

3m∑
ℓ=2

(
i
d

dE

)ℓ−1 qt(E)∫
0

dq
dp(E, q)
dE

gm,ℓ(p(E, q), q) .

(C.10)
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To recapitulate, we can expand the quantization condition around ℏ = 0 and compute the
coefficients Σm(E) using (C.10). This requires us to extract the functions gm,ℓ(p, q), which
are the coefficients of the polynomials Gm(p, q|z) (C.5). These have to be determined from
the recursion equation (C.2). All these steps can be automated in a Mathematica© script,
providing us with an iterative routine to determine the quantization condition (B.6) up to,
in principle, any desired order O

(
ℏk
)
. In practice, for the Hamiltonians considered in the

main text, the computations involved in the routine become excessively taxing for large
k, so we limited ourselves to k = 11 for the Born oscillator and k = 5 for the modified
one. For the latter, however, it is not necessary to determine the exact form of Σm(E)
to determine the order ℏ2m−1 contribution to the quantization condition in the large E

and u limits. In fact, as explained in the main text (4.18), this limit is controlled by a
set of rational numbers qm, whose value is independent of u. For this reason, they can
be computed by fixing u to be some natural number, which greatly improves the speed of
the procedure presented here and allowed us to obtain the large E and u behavior of the
quantization condition up to order O

(
ℏ11).

D Weyl vs. WKB quantizations

In this appendix, we are going to show that the Weyl quantization amounts to the choice
of a very specific ordering prescription for the quantum Hamiltonian. As such, we expect
the spectrum extracted via the procedure detailed in appendix C to coincide with the one
obtained from the usual WKB expansion. This fact is easily proven true for Hamiltonians of
the form H = p2

2m +V (q), where no ordering issue arises. We are going to provide evidence
that the identity of the spectra holds true also for more complicated classical Hamiltonians
of product form H = F (p)G(q), by computing the WKB quantization condition up to
order O

(
ℏ5) for the Born oscillator (3.10) and comparing it to the one found with the

Weyl quantization procedure (E.2)–(E.7).

D.1 Operator ordering from Weyl quantization

From the expressions (B.7), it is possible to calculate the action of the operator Â on a
generic function f(q) with sufficient fast decay at |q| → ∞

Â(p̂, q̂)f(q) =
∫
R2

dσdτ a(σ, τ)e−iℏστ
2 eiτ q̂eiσp̂f(q)

=
∫
R2

dσdτ a(σ, τ)eiℏστ
2 eiτqf(q + ℏσ) .

(D.1)

Then, using the definition (B.8) of the function a(σ, τ), we find

Â(p̂, q̂)f(q) = 1
(2π)2

∫
R2

dq′dp′
∫
R2

dσdτ Ac(p′, q′)e−iσp′e−iτ(q′−q−ℏσ/2)f(q + ℏσ)

= 1
2π

∫
R2

dpdσ Ac(p, q + ℏσ/2)e−iσpf(q + ℏσ) .
(D.2)
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The formula above defines the quantum operator Â in position representation. We can
then use it to perform a WKB expansion of the associated spectrum.

In order to gain a more concrete feel for the formula (D.2), let us make some examples
in order of increasing complexity:

1. Functions of position: Ac(p, q) = V (q).
This is a trivial case

Â(p̂, q̂)f(q) = 1
2π

∫
R2

dpdσ e−iσpf(q + ℏσ)V (q + ℏσ/2) = f(q)V (q) , (D.3)

which naturally agrees with the canonical quantization prescription.

2. Monomials in momentum: Ac(p, q) = pn.
Here we use simple manipulations to find

Â(p̂, q̂)f(q) = 1
2π

∫
R2

dpdσ f(q + ℏσ)
(
i
d

dσ

)n

e−iσp

= 1
2π

∫
R2

dpdσ e−iσp
(
−i d
dσ

)n

f(q + ℏσ)

=
(
−iℏ d

dq

)n

f(q) = p̂nf(q) ,

(D.4)

which, again, is consistent with the canonical quantization.

3. The Berry-Keating Hamiltonian: Ac(p, q) = pq.
Things become more interesting in this case. Using the same manipulations as

above, we see that

Â(p̂, q̂)f(q) = 1
2π

∫
R2

dpdσ (q + ℏσ/2)f(q + ℏσ)
(
i
d

dσ

)
e−iσp

= 1
2π

∫
R2

dpdσ e−iσp
(
−i d
dσ

)
(q + ℏσ/2)f(q + ℏσ)

= −iℏ
(
qf ′(q) + 1

2f(q)
)
= q̂p̂+ p̂q̂

2 f(q) .

(D.5)

The Weyl correspondence produces the symmetrized version of the naive quantiza-
tion pq → p̂q̂.

4. Operators of factorized form: Ac(p, q) = F (p)G(q).
For this case, we further suppose that the function F (p) is expandable in Tay-

lor series

F (p) =
∞∑

n=0
Fnp

n . (D.6)

– 25 –



J
H
E
P
1
0
(
2
0
2
3
)
0
9
9

Then we can evaluate the integral as done before, finding

Â(p̂, q̂)f(q) =
∞∑

n=0
in
Fn

2π

∫
dpdσ G(q + ℏσ/2)f(q + ℏσ) d

n

dσn
e−iσp

=
∞∑

n=0
(−i)nFn

∫
dσ δ(σ) d

n

dσn
G(q + ℏσ/2)f(q + ℏσ)

=
∞∑

n=0
(−iℏ)nFn

n∑
m=0

1
2m

(
n

m

)
G(m)(q)f (n−m)(q)

=
∞∑

n=0
Fn

n∑
m=0

1
2m

(
n

m

)
p̂mG(q)p̂n−mf(q) .

(D.7)

Again, we see that the Weyl quantization yields a quantum operator with a very
specific ordering of the operators p̂ and q̂.

D.2 WKB analysis of Born oscillator

The Born oscillator Hamiltonian (3.10) is of factorized form

HBO(p, q) = F (p)F (q) , F (x) =
√
1 + λx2 =

∞∑
n=0

(
1/2
n

)
λnx2n . (D.8)

According to the analysis above, the corresponding operator obtained via the Weyl quan-
tization acts of functions of q as

ĤBO(p̂, q̂)f(q) =
∞∑

n=0
(−1)n

(
1/2
n

)
ℏ2nλn

2n∑
m=0

1
2m

(
2n
m

)
F (m)(q) f (2n−m)(q) . (D.9)

Now, let us make the WKB ansatz

f(q) = exp
[
i

ℏ

∞∑
ℓ=0

Sℓ(q)ℏℓ

]
, (D.10)

and expand the eigenvalue equation

ĤBO(p̂, q̂)f(q) = Ef(q) , (D.11)

around ℏ = 0. We will limit ourselves to order ℏ4. Let us introduce the functions d2n,m(q)
from the expansion

(−1)nℏ2n f
(2n)(q)
f(q) =

∞∑
m=0

d2n,m(q)ℏm . (D.12)
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Then the expansion for each fixed n of (D.9) is(
1/2
n

)
λn
[
Fd2n,0 +

(
Fd2n,1 +

n

i
F ′d2n−1,0

)
ℏ

+
(
Fd2n,2 +

n

i
F ′d2n−1,1 − n

2n− 1
4 F ′′d2n−2,0

)
ℏ2

+
(
Fd2n,3 +

n

i
F ′d2n−1,2 − n

2n− 1
4 F ′′d2n−2,1

− n

i

(2n− 1)(n− 1)
12 F (3)d2n−3,0

)
ℏ3

+
(
Fd2n,4 +

n

i
F ′d2n−1,3 − n

2n− 1
4 F ′′d2n−2,2

− n

i

(2n− 1)(n− 1)
12 F (3)d2n−3,1

+n(2n− 1)(n− 1)(2n− 3)
96 F (4)d2n−4,0

)
ℏ4
]
+O

(
ℏ5
)
.

(D.13)

Now we can perform the sum over n and compare the two sides of the eigenvalue equa-
tion (D.11) order by order in ℏ. Using the definition (D.12) of the functions, d2n,m(q)
we can finally derive an expression for S′l(q) with l = 0, 1, 2, 3, 4. Sparing the technical
manipulations, the results are

S′0(q) =

√
q̃2

t − λq2
√
λ
√
1 + λq2

,

S′2(q) =
λ3/2

8(1 + q̃2
t )

(1 + λq2)3 − (1 + q̃2
t )(1 + λq2)(4 + λq2) + (1 + q̃2

t )2(3 + 5λq2)
(q̃2

t − λq2)5/2
√
1 + λq2 ,

S′4(q) = − λ7/2

128(1 + q̃2
t )3

1
(q̃2

t − λq2)11/2(1 + λq2)3/2

×
[
4(1 + λq2)6(11 + λq2(58 + 31λq2))

− (1 + q̃2
t )(1 + λq2)5(263 + λq2(1334 + 703λq2))

+ 2(1 + q̃2
t )2(1 + λq2)4(326 + λq2(1595 + 829λq2))

− (1 + q̃2
t )3(1 + λq2)3(826 + λq2(4264 + 2021λq2))

+ 2(1 + q̃2
t )4(1 + λq2)2(306 + λq2(1273 + 933λq2))

+ (1 + q̃2
t )5(1 + λq2)(−303 + λq2(−666 + 17λq2))

+ (1 + q̃2
t )6(84 + 4λq2(74 + 41λq2))

]
.

(D.14)
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The functions S′2l−1(q) are total derivatives, as expected from the form of the quantization
condition (C.8)

S′1(q) = i
λq

2
q̃2

t − 1− 2λq2

(q̃2
t − λq2)(1 + λq2)

= i

4
d

dq
log

[(
q̃2

t − λq2
) (

1 + λq2
)]

,

S′3(q) = i
λ2

16
d

dq

(
2λq2

(1 + q̃2
t )2 + q̃4

t + 2q̃2
t (1 + λq2) + λq2(3 + 2λq2)

(q̃2
t − λq2)3

)
.

(D.15)

Correctly, S′1(q) produces the 1/2 in the left-hand side of (C.8), while all the functions
S′2l−1(q) with l > 1 yield a vanishing contribution. All that is left to do is perform the
integration around the cut between the two classical turning points q = ±q̃t/

√
λ. Doing

so for the above expression we obtain precisely the same expressions (3.21) and (3.22),
(3.23), (3.24).

E Expansion of the quantization condition

Here we display the expressions of the functions Σ0 and Σm in (C.8) for both the Born
oscillator (3.10) and the Generalized one (4.1).

E.1 The Born oscillator

The expression for Σ0(E) is easily obtained by evaluating the area contained inside the
curve HBO(p, q) = E in phase space. The result is

Σ0(E) = 2
(
1 + q̃2

t

)
K
(
−q̃2

t

)
− E

(
−q̃2

t

)
πλ

, q̃t =
√
λ2E2 − 1 . (E.1)

For m > 0, we find the following general form

Σm(E) = λ2m−1Pm(q̃t)K
(
−q̃2

t

)
+Qm(q̃t)E

(
−q̃2

t

)
πq̃4m−2

t

(
1 + q̃2

t

)2m−1 , (E.2)

with Pm(x) and Qm(x) polynomials of order 3m − 2. Their expressions for m ≤ 5 are
as follows

P1(x) =
1 + x

12

Q1(x) =
−1 + x

12 ,

(E.3)

P2(x) = −56 + 233x+ 363x2 + 5323x3 + 2257x4

2880

Q2(x) =
56 + 105x+ 164x2 + 5233x3 + 14x4

2880 ,

(E.4)

P3(x) =
1

161280
(
3968 + 24488x+ 63417x2 + 88604x3

+ 69614x4 − 4995660x5 − 1641631x6 + 152336x7
)

Q3(x) =
−1

161280
(
3968 + 22504x+ 52413x2 + 63680x3

+ 40426x4 − 4931256x5 + 411089x6 − 248x7
)
,

(E.5)
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P4(x) =
−1

5160960
(
390144 + 3249280x+ 11949984x2 + 25450111x3

+ 34524870x4 + 30655989x5 + 18659436x6

+ 7336600121x7 + 3680016390x8 + 271444211x9

+ 30495048x10
)

Q4(x) =
1

5160960
(
390144 + 3054208x+ 10447264x2 + 20405175x3

+ 24887603x4 + 19216558x5 + 10138454x6

+ 7264577571x7 + 420064951x8 + 109726120x9

+ 6096x10
)
,

(E.6)

P5(x) =
1

1362493440
(
586055680 + 6170450944x+ 29505390720x2

+ 84615632480x3 + 161803832495x4 + 216819152637x5

+ 208320760071x6 + 145960641489x7 + 67944358185x8

− 186959663282761x9 − 142784617345267x10

− 27482434315173x11 − 2208700224428x12

− 23790892160x13
)

Q5(x) =
−1

1362493440
(
586055680 + 5877423104x+ 26603307648x2

+ 71663003360x3 + 127463100631x4 + 156844408203x5

+ 136079957703x6 + 84851637291x7 + 30888603237x8

− 186400257077383x9 − 53425800506507x10

− 6870155121039x11 − 83250817016x12 − 2289280x13
)
.

(E.7)

E.2 The generalized Born oscillator

We will use the same notation as in E.1. As usual the first term is obtained by computing
the phase space area contained inside the classical trajectories

Σ0(E) = 2
Γ
(
1 + 1

2u

)2

Γ
(
1 + 1

u

) q̃2
t

πℏλ 2F1

( 1
2u,

1
2u, 1 +

1
u
;−q̃2u

t

)
. (E.8)

The higher coefficients Σm(E) have the general form

Σm(E) = Cmλ
2m−1q̃2−4m

t

(1+ q̃2u
t )2m−1

(
Pm(q̃2u

t ) 2F1

(
1− 2m− 1

2u , 1− 2m− 1
2u , 2− 2m− 1

u
;−q̃2u

t

)
+Qm(q̃2u

t ) 2F1

(
−2m− 1

2u , 1− 2m− 1
2u , 2− 2m− 1

u
;−q̃2u

t

))
,

(E.9)
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where Pm(x) and Qm(x) are polynomials of order 2m− 1 and

Cm = 2
2m−1

u

√
π

(2m− 1)2−4m

4u− 2m+ 1
u4m−1Γ

(
1− 2m−1

2u

)
Γ
(

3
2 − 2m−1

2u

) . (E.10)

Here, for completeness, we report the explicit polynomials for m = 1, 2. We limit ourselves
to these cases, since for higher values of m their expression is practically unmanageable

P1(x) = (4u− 1)(2u− 1)(4u
2 − 2u− 1)x+2u− 1

48u4 ,

Q1(x) = (4u− 1)(2u− 1)x− (2u− 1)2

48u4 ,

(E.11)

P2(x) = −81(4u− 3)
2u
(
2u
(
8u(3u+2)

(
4u
(
u2 +u+1

)
+7
)
− 125

)
− 205

)
+99

1280u8 x3

− 8116u(u(4u(u(u(u(4u(76u− 41)+571)− 788)− 227)+358)− 405)+180)− 513
1280u8 x2

− 812u(2u(4u(u(2u(2u(32u(2u+33)− 1155)+69)− 879)+927)− 163)+33)− 135
1280u8 x

− 243(4u− 3)(8u− 1)(4(u− 2)u+3)2

1280u8 ,

Q2(x) = 567(4u− 3)(2u− 3)
640u8 x3

+812u(4u(8u(u(u(u(2u(64u− 17)+15)+54)− 242)− 44)+1185)− 1335)+315
1280u8 x2

+812u(u(2u(2u(4u(2u(u(32u+153)+10)− 777)+1763)− 663)+589)− 147)+27
320u8 x

+81(1− 2u)2(4u− 3)(8u− 1)(2u− 3)3

1280u8 .

(E.12)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] M.V. Berry, Riemann’s Zeta function: A model for quantum chaos?, in Quantum Chaos and
Statistical Nuclear Physics, proceedings of the 2nd International Conference on Quantum
Chaos and the 4th International Colloquium on Statistical Nuclear Physics, Cuernavaca,
México, 6–10 January 1986, Lecture Notes in Physics 263, T.H. Seligman and
H. Nishioka eds., Springer (1986), pp. 1–17 [DOI:10.1007/3-540-17171-1_1].

[2] A. Connes, Trace formula in noncommutative geometry and the zeros of the Riemann zeta
function, Sel. Math. 5 (1998) 29.

[3] M. Berry and J. Keating, The Riemann Zeros and Eigenvalue Asymptotics, SIAM Rev. 41
(1999) 236.

– 30 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/3-540-17171-1_1


J
H
E
P
1
0
(
2
0
2
3
)
0
9
9

[4] G. Sierra and P.K. Townsend, Landau levels and Riemann zeros, Phys. Rev. Lett. 101 (2008)
110201 [arXiv:0805.4079] [INSPIRE].

[5] G. Sierra and J. Rodríguez-Laguna, The H = xp model revisited and the Riemann zeros,
Phys. Rev. Lett. 106 (2011) 200201 [arXiv:1102.5356] [INSPIRE].

[6] G. Sierra, The Riemann zeros as spectrum and the Riemann hypothesis, Symmetry 11 (2019)
494 [arXiv:1601.01797] [INSPIRE].

[7] M.V. Berry and J.P. Keating, A compact Hamiltonian with the same asymptotic mean
spectral density as the Riemann zeros, J. Phys. A 44 (2011) 285203.

[8] M. Berry and J. Keating, H = xp and the Riemann zeros, in Supersymmetry and Trace
Formulae: Chaos and Disorder, Plenum Press, New York, NY, U.S.A. (1999), pp. 355–367.

[9] A. Cavaglià, S. Negro, I.M. Szécsényi and R. Tateo, T T̄ -deformed 2D Quantum Field
Theories, JHEP 10 (2016) 112 [arXiv:1608.05534] [INSPIRE].

[10] D.J. Gross, J. Kruthoff, A. Rolph and E. Shaghoulian, TT in AdS2 and Quantum Mechanics,
Phys. Rev. D 101 (2020) 026011 [arXiv:1907.04873] [INSPIRE].

[11] G. Coppa, Elettrodinamica non lineare di Born e Infeld, Master Degree, Università degli
Studi di Torino, Torino, Italy (2019).

[12] G. Coppa, The Born Oscillator, in preparation (2023).

[13] F.W.J. Olver et al. eds., NIST Digital Library of Mathematical Functions, version 1.1.9
(2023) https://dlmf.nist.gov/.

[14] P. Dorey, C. Dunning, D. Masoero, J. Suzuki and R. Tateo, ABCD and ODEs, in
proceedings of the 15th International Congress on Mathematical Physics, Rio de Janeiro,
Brazil, 6–11 August 2006, arXiv:0704.2109 [INSPIRE].

[15] P. Dorey, C. Dunning, D. Masoero, J. Suzuki and R. Tateo, Pseudo-differential equations,
and the Bethe ansatz for the classical Lie algebras, Nucl. Phys. B 772 (2007) 249
[hep-th/0612298] [INSPIRE].

[16] P. Dorey and R. Tateo, Anharmonic oscillators, the thermodynamic Bethe ansatz, and
nonlinear integral equations, J. Phys. A 32 (1999) L419 [hep-th/9812211] [INSPIRE].

[17] P.N. Argyres, The Bohr-Sommerfeld quantization rule and the Weyl correspondence, Phys.
Phys. Fiz. 2 (1965) 131.

[18] T. Curtright, D. Fairlie and C. Zachos, A Concise Treatise on Quantum Mechanics in Phase
Space, World Scientific (2016).

[19] H. Weyl, Quantum mechanics and group theory, Z. Phys. 46 (1927) 1 [INSPIRE].

[20] E.P. Wigner, On the quantum correction for thermodynamic equilibrium, in Part I: Physical
Chemistry. Part II: Solid State Physics, Springer (1997), pp. 110–120.

[21] H.J. Groenewold, On the principles of elementary quantum mechanics, Springer (1946).

– 31 –

https://doi.org/10.1103/PhysRevLett.101.110201
https://doi.org/10.1103/PhysRevLett.101.110201
https://arxiv.org/abs/0805.4079
https://inspirehep.net/literature/800098
https://doi.org/10.1103/PhysRevLett.106.200201
https://arxiv.org/abs/1102.5356
https://inspirehep.net/literature/890932
https://doi.org/10.3390/sym11040494
https://doi.org/10.3390/sym11040494
https://arxiv.org/abs/1601.01797
https://inspirehep.net/literature/1414817
https://doi.org/10.1007/JHEP10(2016)112
https://arxiv.org/abs/1608.05534
https://inspirehep.net/literature/1482667
https://doi.org/10.1103/PhysRevD.101.026011
https://arxiv.org/abs/1907.04873
https://inspirehep.net/literature/1743590
https://dlmf.nist.gov/
https://arxiv.org/abs/0704.2109
https://inspirehep.net/literature/748713
https://doi.org/10.1016/j.nuclphysb.2007.02.029
https://arxiv.org/abs/hep-th/0612298
https://inspirehep.net/literature/735811
https://doi.org/10.1088/0305-4470/32/38/102
https://arxiv.org/abs/hep-th/9812211
https://inspirehep.net/literature/481408
https://doi.org/10.1103/PhysicsPhysiqueFizika.2.131
https://doi.org/10.1103/PhysicsPhysiqueFizika.2.131
https://doi.org/10.1007/BF02055756
https://inspirehep.net/literature/42740

	Introduction
	The Berry-Keating theory
	The Born oscillator
	Quantization of the Born oscillator
	The asymptotic behavior of the Born oscillator counting function

	The generalized Born oscillator
	Quantization of the generalized Born oscillator
	The asymptotic behavior of the generalized Born oscillator counting function

	Conclusions
	Counting functions, Riemann zeta and Riemann-Siegel theta functions
	The Weyl quantization
	The Weyl correspondence and the Moyal product
	An integral representation for S

	An iterative procedure
	Weyl vs. WKB quantizations
	Operator ordering from Weyl quantization
	WKB analysis of Born oscillator

	Expansion of the quantization condition
	The Born oscillator
	The generalized Born oscillator


