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Abstract: We consider spatio-temporal data and functional data with spatial dependence,
characterized by complicated missing data patterns. We propose a new method capable to
efficiently handle these data structures, including the case where data are missing over large
portions of the spatio-temporal domain. The method is based on regression with partial
differential equation regularization. The proposed model can accurately deal with data
scattered over domains with irregular shapes and can accurately estimate fields exhibiting
complicated local features. We demonstrate the consistency and asymptotic normality of
the estimators. Moreover, we illustrate the good performances of the method in simulations
studies, considering different missing data scenarios, from sparse data to more challenging
scenarios where the data are missing over large portions of the spatial and temporal do-
mains and the missing data are clustered in space and/or in time. The proposed method is
compared to competing techniques, considering predictive accuracy and uncertainty quan-
tification measures. Finally, we show an application to the analysis of lake surface water
temperature data, that further illustrates the ability of the method to handle data featur-
ing complicated patterns of missingness and highlights its potentiality for environmental
studies.

Key words: functional data with spatial dependence; incomplete and partially observed
functional data; nonparametric regression with partial differential equation regularization;
smoothing with roughness penalties

1 Introduction

In this work we consider space-time data and spatially dependent functional data affected
by complicated missing data patterns. These data have recently attracted an increasing
interest, and various approaches have been proposed to handle them, some born within the
classical framework of spatio-temporal data analysis (Cressie and Wikle, 2015), while others
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more influenced by the literature on functional data analysis (Ramsay and Silverman, 2005;
Ferraty and Vieu, 2006; Horváth and Kokoszka, 2012; Kokoszka and Reimherr, 2017) and in
particular on functional data with spatial dependence (see, e.g., the reviews and collections
in Delicado et al., 2010; Mateu and Romano, 2017; Menafoglio and Secchi, 2017).

Sparsely observed space-time data and incomplete or partially observed functional data with
spatial dependence are in fact frequently encountered in applications, especially in geo- and
environmental sciences. Gromenko et al. (2017) propose a functional regression approach
that can handle spatially indexed incomplete curves with large gaps in temporal coverage,
appropriately weighting data at neighbouring locations. Partially observed functional data
with spatial dependence are also addressed by Liu et al. (2017), who develop functional
principal component analysis for spatially correlated data. Gong et al. (2018) and Gong
et al. (2021) investigate two hierarchical dynamic spatio-temporal models constructed under
the state-space framework (Cressie and Wikle, 2015). The authors introduce an approach
similar to the Kalman filter for sparse data. Another possible approach to fill in unobserved
values in this kind of data is the so-called Data INterpolating Empirical Orthogonal Func-
tions (DINEOF). This method, proposed in Alvera-Azcárate et al. (2005) and Beckers and
Rixen (2003), is also studied, for example, by Ping et al. (2016), who propose a version of
DINEOF that improves the method from the point of view of the reconstruction accuracy
and of the computational time.

In this work we propose a spatio-temporal regression model with differential regularization,
capable to efficiently handle sparse space-time data and partially observed functional data
with spatial dependence. The regularizing term in the model involves a Partial Differential
Equation (PDE), enabling the inclusion of the available problem-specific information. We
recall that the exploration of possible spatio-temporal methods based on PDEs or stochastic
PDEs has attracted a strong interest since the pioneering work of Whittle (1954). Cameletti
et al. (2013) propose for instance a sPDE approach based on Lindgren et al. (2011) and
extensions (see, e.g., Fuglstad et al., 2015; Bakka et al., 2019). Cressie and Wikle (2015),
Wikle and Hooten (2010) and Kuhnert (2014) present overviews on how to incorporate
physical information in dynamical spatio-temporal models. The framework is the one of
hierarchical modeling. From the seminal work of Berliner (2003), who coined the term
physical statistical models, many works have contributed to this research area. Wikle
(2003) presents a Bayesian hierarchical model where the process model is based on a PDE
with space-varying coefficients, estimated with MCMC, while Stroud et al. (2010) propose
an ensemble Kalman filter algorithm where the parameters of the PDE can also be time-
dependent. Malmberg et al. (2008) propose a three dimensional spatial model plus temporal
dynamics. The high computational cost is a major drawback for these methods, and a lot
of attention has been dedicated to techniques to reduce the computational burden. Xu
and Wikle (2007) explore EM and general EM algorithms for simple dynamical models;
Sigrist et al. (2015) present a discretization based on Fourier expansions, able to reduce
the computational cost when the shape of the spatial domain is simple and the PDE is
stationary; Hefley et al. (2017) apply the homogenisation of PDEs to reduce the dimension
of the problem; Richardson (2017) proposes a dynamical spatio-temporal model where the
inverse evolution matrix is sparse, in order to avoid the inversion of dense matrices.
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Our proposal instead originates from a different literature, that is about nonparametric
and semiparametric regression with roughness penalties. Some instances in this line of
research include among the others: Ugarte et al. (2009) that consider a semiparametric
model combining a small area random effect and a non-parametric trend based on P-splines
(Eilers and Marx, 1996, 2021); Ugarte et al. (2010) and Aguilera-Morillo et al. (2017) that
consider a space-time penalized regression model, based on tensor product of univariate P-
splines; Marra et al. (2012) and Augustin et al. (2013) that extend the soap film smoothing,
introduced by Wood et al. (2008), to space-time data. Our current proposal in particular
constitutes an addition to the class of semiparametric and nonparametric regression models
with PDE regularization, reviewed in Sangalli (2021); see also Sangalli et al. (2013) and
Azzimonti et al. (2015). We discretize the considered estimation functional using B-splines
over the temporal domain and finite elements over a triangulation of the spatial domain.
Thanks to the unstructured basis used in space, the method is able to deal with data
observed over spatial domains with irregular shapes; moreover, it can accurately capture
complicated fields with localized features. The methods are implemented in the R package
fdaPDE (Lila et al., 2020).

This work focuses in particular on the properties of this method when dealing with sparsely
observed space-time data and incomplete or partially observed functional data with spatial
dependence. In particular, we study the asymptotic properties of the considered estimator
in the context of missing data, demonstrating its consistency and asymptotic normality. The
obtained results cover also the models for fully observed spatio-temporal data in Bernardi
et al. (2017), whose asymptotic properties have never been investigated. We moreover assess
the performance of the proposed method under different patterns of observability, from
sparse data to more challenging scenarios where the data are missing over large portions
of the spatial and temporal domains and the missing data are clustered in space and/or
in time. Simulations studies show the comparative advantages of the proposed method
with respect to available alternatives, including spatio-temporal kriging, other space-time
methods with roughness penalties based on thin-plate splines and soap film smoothing,
DINEOF, and the space-time stochastic PDE approach in Cameletti et al. (2013). We
also apply the proposed model to study monthly averages of surface water temperature of
Lake Victoria. These data, shown in Figures 1 and 2, are affected by complex missingness
patterns, with several months where data are missing over a large surface of the lake, and
even an interval of some consecutive months were data are completely missing. The same
data are also considered by Gong et al. (2018), where the analyses are though restricted to
a small rectangular portion of the lake. Here instead we consider the data observed over
the whole lake, appropriately complying with its irregular shorelines.

The paper is organized as follows. In Section 2 we present the proposed methodology. In
Section 3 we detail the implementation of the proposed method. In Section 4 we study the
asymptotic properties. Simulation studies are in Section 5 and the application to surface
temperature data in Section 6. Finally, in Section 7, we draw some conclusions and discuss
possible future developments.
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Figure 1: Spatial frames of Lake Victoria surface water temperatures (monthly averages),
for five months. For most months, data are missing over large portions of the lake; for some
months, no data is available. The bottom right panel displays the proportion of missing
data over the considered time period; fewer observations are available on the west part of
the lake with respect to the east part.

2 Mathematical framework

In this section we present Spatio-Temporal regression with Partial Differential Equation
regularization (ST-PDE) for partially observed data.

2.1 Missing data setting

Let {pi = (xi, yi) ; i = 1, . . . , n} be a set of n points on a spatial domain Ω ⊂ R2 with
boundary ∂Ω ∈ C2, and let {tj ; j = 1, . . . ,m} be a set of m instants in a time interval
T ⊂ R. Denote with zij the value of a real-valued variable observed at point pi and time
tj . We are particularly interested in the case where the values of zij are missing over
possibly large portions of the spatial and temporal domain. For example, for any fixed
spatial location pi, the temporal profile may be observed in a fragmented way and display
long gaps in time; analogously, for any fixed temporal instant tj , the spatial field may be
unobserved over large regions of Ω. This is illustrated in Figures 1 and 2 that display the
surface temperature data analyzed in Section 6. The two figures highlight the complicated
missingness pattern affecting the data, with missing data clustered in space and time. For
notation convenience, let O be the set of indices of observed data:

O = {(i, j) : zij is observed, i = 1, . . . n, j = 1, . . .m}.
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Figure 2: Temporal profiles of Lake Victoria surface water temperatures (monthly averages)
observed over a fine uniform grid covering the lake (the spatial grid of observation is shown
in the bottom right panel of Figure 1). Values observed at consecutive time instants are
linked by a line. Highlighted in color are the temporal profiles measured at three random
locations over the lake. The bottom panels shows the proportion of missing data along time,
pointing out the high proportion of missing data at various months, including an interval
of some consecutive months where no datum is recorded.

2.2 ST-PDE for partially observed data

We model {zij : (i, j) ∈ O} as noisy observations of an underlying spatio-temporal smooth
function f(p, t) on Ω× T :

zij = f (pi, tj) + εij (i, j) ∈ O (2.1)

where {εij : (i, j) ∈ O} are independently distributed residuals with zero mean and constant
variance σ2.

To estimate f we minimize the following regularized sum of square error functional:

J(f) =
∑

(i,j)∈O

(zij − f (pi, tj))
2 +

+ λS

∫
T

∫
Ω

(Lf − u)2dpdt+ λT

∫
Ω

∫
T

(
∂2f

∂t2

)2

dtdp

(2.2)



6 Eleonora Arnone et al.

where λS > 0 and λT > 0 are two positive smoothing parameters and Lf = u is a known
PDE that formalises the available problem-specific information about the unknown spatial
field. The use of a PDE in the regularizing term allows for a rich modeling of the space
variation. The differential operator L can for instance be a diffusion-transport-reaction
operator of the form:

Lf = −div(K∇f) + b · ∇f + cf

where K ∈ R2 is the symmetric and positive definite diffusion tensor, b ∈ R2 the transport
vector and c ∈ R+ the reaction term. The second order term −div(K∇f) induces a
smoothing in all the directions, that can be a isotropic smoothing (when K is a multiple
of the identity) or a anisotropic smoothing along a preferential direction and with a certain
intensity of anisotropy. Unidirectional effects in space can be modeled with a transport
term b ·∇f . The reaction term cf instead has a shrinkage effect because of the penalization
of the L2(Ω) norm of f . Moreover, the parameters K, b and c, as well as the forcing term
u, can be space-varying on Ω, further increasing the flexibility in the modeling of space
variation, to model various forms of non-stationarity. For simplicity of the presentation,
to avoid more involved formulae, we consider here the case in which the forcing term u
in the PDE is null. Non-null forcing terms can be handled analogously to what done
by Azzimonti et al. (2015) in a model involving only spatial data. The regularization
in the temporal dimension, instead of the second derivative in time, could also involve a
more general differential operator, encoding the available information about the temporal
evolution of the phenomenon. For simplicity, we do not prosecute this direction in this
work.

In order to appropriately account for the shape of the domain, we impose conditions on
f at the boundary ∂Ω of the spatial domain. These conditions, that depend on the spe-
cific problem being considered, can for instance involve the values of f on ∂Ω (Dirichlet
conditions), the value of the normal derivative of f on ∂Ω (Neumann conditions), and com-
binations of the previous conditions, with different conditions on different portions of ∂Ω
(mixed conditions); see, e.g., Arnone et al. (2019). For sake of simplicity, in this work we
consider homogeneous Neumann conditions, i.e., null normal derivative of f on ∂Ω. These
are natural conditions for the considered estimation problems (and are the default option
in the function smooth.FEM.time of the R package fdaPDE), and should be preferred unless
problem-specific information suggests the use of Dirichlet or mixed conditions.

In the special case where the data are observed without missingness, the differential operator
L coincides with the Laplace operator (L = ∆, isotropic and stationary case), the forcing
term is null (u = 0), and homogeneous Neumann boundary conditions are imposed, the
method reduces to the one considered in Bernardi et al. (2017).

Alternatively to the use of two separate penalty terms for space and time regularization, it
is also possible to consider a unique regularizing term, jointly modeling the regularity of the
field in space and time. This choice is particularly convenient when a strong information
on the spatio-temporal dynamic of the phenomenon is available and can be formalized in
terms of a time-dependent PDE ∂f

∂t + Lf = u. In this case, the functional (2.2) is replaced
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by ∑
(i,j)∈O

(zij − f (pi, tj))
2 + λ

∫
T

∫
Ω

(
∂f

∂t
+ Lf − u

)2

dpdt. (2.3)

Arnone et al. (2019) studies analogous models under various fully observed samplings de-
signs and demonstrated the well-posedness of the associated estimation problems (i.e., the
existence of one and only one solution to the estimation problem).

It should noticed that, in the estimation problems (2.2) and (2.3), we do not assume that
the f satisfies the PDE in the regularizing term: the PDE carries only partial information
about the field. Because of this, we use the PDE to regularize the estimate, rather than
constraining f̂ to be a solution of the PDE. The smoothing parameters λS and λT in
(2.2) and λ in (2.3) balance the weight given to the data, in the least-square term, and to
the differential model, in the regularizing terms. The values of these parameters can be
automatically selected, e.g., by Generalized Cross Validation (GCV); see Section 3.3. This
data-driven criterion adjusts the value of the smoothing parameters selecting relatively large
values when the considered PDE provides a good description of the phenomenon at hand,
and relatively low value when instead the data are far from solutions to the PDE.

In our experience, unless problem-specific information is available on the spatio-temporal
behavior of the phenomenon (Arnone et al., 2019), the estimation problem (2.2) is more
flexible, enabling to separately model the regularity of the phenomenon in space and in
time. There might indeed be situations where we lack information of the overall space-
time behavior, but we have some knowledge on either the temporal evolution or on the
spatial structure of the phenomenon, which can efficiently be separately included in the
two regularizing terms in (2.2). Moreover, (2.2) permits to more easily select the relative
weights of the regularity in space and in time.

It should also be noted that the proposed methodology can on the other hand be also applied
in absence of problem-specific information or any appreciable anisotropy in the data. In such
case, it is natural to assume L = ∆, thus implying isotropic and stationary regularizations.
This is the setting considered for the simulations and application presented in this work
and is also the default option in the function smooth.FEM.time of the R package fdaPDE

(Lila et al., 2020), that implements the methods corresponding to the general estimation
functionals (2.2) and (2.3).

3 From an infinite dimensional to a finite dimensional problem

The minimization of functional (2.2) does not have a closed form solution. In this section
we describe the discretization of this problem. Specifically, we look for the estimate f̂ in
the space of functions that can be expressed as an expansion on an appropriate space-time
basis system.
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3.1 Basis systems

Let {ϕk(t) : k = 1, . . . ,M} be a set of M basis functions defined on T . In this work, in
particular, we use cubic B-spline bases. Moreover, let {ψl(p) : l = 1, . . . , N} be a set of
N basis functions defined on a triangulation ΩT of Ω. As an example, Figure 3 shows the
domain Ω for the application in Section 6: the left panel of the figure displays the detailed
coastline of the Lake Victoria and the right panel gives the triangulation ΩT used for the
finite dimensional approximation. In this work, we use a linear finite element basis on ΩT :
we have a basis function ψl for each vertex of the triangulation, and ψl is a continuous piece-
wise linear function on ΩT , which takes value one at the corresponding vertex and zero at
all other vertices of the triangulation. This choice leads to an efficient discretization of the
functional and allows to deal with complex geometries of the spatial domain, which may
influence the phenomenon behaviour. Other choices for the basis systems are also possible,
for example Wilhelm et al. (2016) explores the use of Non-Uniform rational B-splines for
the discretization of the spatial penalty.

Figure 3: Left: detailed coastlines of Lake Victoria. Right: simplified lake domain and
triangulation.

The spatio-temporal field f(p, t) over ΩT × T is then expressed as:

f(p, t) =

N∑
l=1

M∑
k=1

flkψl(p)ϕk(t) (3.1)

where {flk; l = 1, . . . , N ; k = 1, . . . ,M} are the coefficients of the expansion on the separable
spatio-temporal basis.

3.2 Discretization of key elements

Let z be the vector of length ν = |O| obtained appropriately stacking the observed values
zij . Here we use a time-by-space tensorization, meaning that we insert in z all the available
observations at the first time instant, then all those at the second time instant, and so
on. We define fO to be the vector of evaluations of f in the locations corresponding to
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the observed data zij . For example, in case of completely observed data, z and fO assume
respectively the form

z = [z11, z21, . . . , zn1, . . . , z1m, z2m, . . . , zmn]> ;

fO = [f(p1, t1), f(p2, t1), . . . , f(pn, t1), . . . , (p1, tm), f(p2, tm), . . . , f(pn, tm)]> .

Let f be the vector of length NM of coefficients of the basis expansion (3.1), i.e.,

f = [f11, f21, . . . , fN1, . . . , f1M , f2M , . . . , fMN ]> .

We set ψ = [ψ1, . . . , ψN ]>, ψx = [∂ψ1/∂x, . . . , ∂ψN/∂x]>, ψy = [∂ψ1/∂y, . . . , ∂ψN/∂y]>

and ∇ψ =
[
ψx,ψy

]
. Analogously we define ϕ = [ϕ1, . . . , ϕM ]> and ϕtt =

[
∂2ϕ1/∂t

2, . . . ,

∂2ϕM/∂t
2
]>

.

We define the n×N matrix Ψ of evaluations of the N finite elements basis at the n space
locations {pi; i = 1, . . . , n} , and the m×M matrix Φ of the evaluations of the M temporal
basis functions at the m time instants {tj ; j = 1, . . . ,m} , i.e.,

Ψ =


ψ1 (p1) ψ2 (p1) . . . ψN (p1)
ψ1 (p2) ψ2 (p2) . . . ψN (p2)

...
... . . .

...
ψ1 (pn) ψ2 (pn) . . . ψN (pn)

 , Φ =


ϕ1 (t1) ϕ2 (t1) . . . ϕM (t1)
ϕ1 (t2) ϕ2 (t2) . . . ϕM (t2)

...
... . . .

...
ϕ1 (tm) ϕ2 (tm) . . . ϕM (tm)

 .

Then we define the matrix B obtained from the Kronecker product Φ ⊗ Ψ by removing
the rows corresponding to the missing observations. More precisely, if the datum at the
spatial location pi and time location tj is not available, we remove the (i+nj)-th row from
Φ⊗Ψ. In case of completely observed data B = Φ⊗Ψ. With these definitions we can write
fO = Bf and discretize the first part of the functional as (z−Bf)>(z−Bf).

To write the discretization of the regularizing term, we introduce the matrices PT and
PS . PT represents the discretization of the temporal penalty term in (2.2) and is given
by PT =

∫
T ϕttϕ

>
tt , while PS represents the discretization of the spatial penalty term in

(2.2) and is given by PS = R>1 R
−1
0 R1, where R1 =

∫
Ωτ

(
∇ψK∇ψ> +∇ψ bψ> + cψψ>

)
and R0 =

∫
ΩT
ψψ>. The discretization of the spatial penalty is based on a variational

characterization of the estimation problem and implicitly assumes homogeneous Neumann
boundary conditions; see Sangalli et al. (2013) for details. Finally, let Rt =

∫
T ϕϕ

> be the
mass matrix in time.

3.3 Discrete estimation problem

We can thus write the discretized sum of square error functional (2.2) as

J =(z−Bf)>(z−Bf) + λSf
> (Rt ⊗ PS) f + λT f

> (PT ⊗R0) f

=(z−Bf)>(z−Bf) + f>P f
(3.2)
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where we indicate with P the overall penalty: P = λS (PS ⊗Rt)+λT (R0 ⊗ PT ) . The vector
of coefficients f̂ that minimizes the functional (3.2) is obtained deriving J with respect to f
and setting the derivative equal to zero, leading to

f̂ =
(
B>B + P

)−1
B>z.

Set ẑ = B
(
B>B + P

)−1
B>z, the vector of predicted values at the observed data locations

(pi, tj) with (i, j) ∈ O. Moreover, set S = B
(
B>B + P

)−1
B>, the smoothing matrix. The

error variance σ2 can then be estimated by

σ̂2 =
1

ν − tr(S)
(z− ẑ)>(z− ẑ). (3.3)

The smoothing parameters λS and λT balance the trade-off between the fidelity to the data
and the regularity of the solution. Various possibility can be employed to automatically
select these parameters. Here we use Generalized Cross Validation (GCV), selecting λS and
λT to minimize

GCV (λS , λT ) =
1

ν(1− tr(S)/ν)2
(ẑ− z)T (ẑ− z).

3.4 Estimating the field in a new location

In the context of missing data, it is often of interest to reconstruct the signal at the missing
data locations and, in general, at any unobserved spatio-temporal location (p, t) ∈ Ω× T .

Define the vector B(p, t) = ψ(p)> ⊗ ϕ(t)> of evaluations of the separable basis system at
the generic spatio-temporal location (p, t) ∈ Ω× T. We thus have

f̂(p, t) = B(p, t)
(
B>B + P

)−1
B>z (3.4)

for each (p, t) ∈ Ω× T. The mean of the estimator is thus given by

E[f̂(p, t)] = B(p, t)
(
B>B + P

)−1
B>fO

while the covariance operator in any two locations (p1, t1) , (p2, t2) ∈ Ω× T is given by

Cov
[
f̂ (p1, t1) , f̂ (p2, t2)

]
=

σ2B (p1, t1)
(
B>B + P

)−1
B>B

(
B>B + P

)−1
B (p2, t2)> .

3.5 Model with covariates

Space-time varying covariates can be introduced in the model using a semi-parametric
approach. Let wij be a vector of q covariates associated with the observation zij , at location
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pi and time instant tj . Let β ∈ Rq be an unknown vector of regression coefficients that
indicates the effect of the covariates on the mean of the variable of interest. We consider
the semi-parametric model

zij = wT
ijβ + f (pi, tj) + εij , (i, j) ∈ O. (3.5)

We then estimate β and f minimising a functional as (2.2), where the sum of squared error

term is replaced by
∑

(i,j)∈O

(
zij −wT

ijβ − f (pi, tj)
)2

. This term can be written in matrix

form as (z−Wβ −Bf)T (z−Wβ −Bf), where W is the ν × q matrix whose rows are the

vectors wij . Let H = W
(
W TW

)−1
W T and Q = Iν −H, where Iν is the identity matrix

of dimension ν. Deriving the functional with respect to β and f , and setting the derivatives
to zero, we then obtain the estimates

f̂ =
(
BTQB + P

)−1
BTQz,

β̂ =
(
W TW

)−1
W T (z−Bf̂).

The estimate of the field f at any spatio-temporal location, and its distributional proper-
ties, follow as for the model without covariates, replacing the matrix

(
BTB + P

)−1
BT by(

BTQB + P
)−1

BTQ. Regarding β̂ we have

E[β̂] = β +
(
W TW

)−1
W T (Inm − SQ) fν ,

Var[β̂] = σ2
(
W TW

)−1
+ σ2

(
W TW

)−1
W TSQS

T
QW

(
W TW

)−1
,

where SQ = B
(
BTQB + P

)−1
BTQ. The value of a new observation at location point

p ∈ Ω and time instant t ∈ T and with associated covariates w can be predicted by
wT β̂ + f̂ (p, t).

In this work we do not discuss inference on β̂ and f̂ , which can for instance be performed
following classical undersmoothing approaches (see, e.g., the literature review in Hall and
Horowitz, 2013) and the approaches in Gray (1994), Yu and Ruppert (2002) and Holland
(2017). The next section establishes the asymptotic properties of the estimators.

4 Asymptotic properties

We now study the infill asymptotic properties of the discrete ST-PDE estimators. In this
section, for simplicity of exposition, we reparametrize the estimation functional (2.2) as

J(f,β) =
1

ν

∑
(i,j)∈O

(
zij −wT

ijβ − f (pi, tj)
)2

+ λS,ν

∫
T

∫
Ω

(Lf − u)2dpdt+ λT,ν

∫
Ω

∫
T

(
∂2f

∂t2

)2

dtdp.

(4.1)
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This parametrization is more convenient for the study of the asymptotic properties. Clearly,
this problem is equivalent to the one so far considered, setting λS = νλS,ν and λT = νλT,ν .
The discretization of (4.1) leads to the following expression for the estimators

f̂ν =
(
BTQB/ν + P

)−1
BTQz/ν

β̂ν =
(
W TW

)−1
W T (z−Bf̂ν),

where we highlight the dependence of the estimators on the sample size ν.

We consider a fixed NM−dimensional spatio-temporal basis, rich enough to accurately
describe the spatio-temporal structure of the problem. We make the following assumption.

Assumption 1. For sufficiently large ν, the NM ×NM matrix B>QB is nonsingular.

Before enunciating the main theorems, we discuss under which conditions Assumption 1 is
satisfied. We recall that B is the ν×NM collocation matrix that contains the evaluations of
the tensor product basis functions ψlφk in the locations (pi, tj). The Schoenberg-Whitney
Theorem (Schoenberg and Whitney, 1953) establishes the conditions ensuring that the
B-splines collocation matrix has full rank. A similar result can be derived for the finite
element basis. In particular, a sufficient and necessary condition for B to be full rank is to
have at least ν ≥ NM observations, with at least one observation in each support of the
tensor product basis function ψlφk, for l = 1, . . . , N, k = 1, . . . ,M . When no covariates are
available (i.e., Q is the identity matrix), if B is full rank, then also B>QB is full rank, and
thus Assumption 1 is satisfied. When covariates are available, then Q has rank ν − q. This
means that, in the product B>QB, the matrix Q has the effect of annihilating q rows of B.
In general having q additional observations is enough to make Assumption 1 satisfied. In
any case, a sufficient condition to have B>QB full rank, is to have at least ν ≥ (q+ 1)NM
observations, with at least q + 1 observations in each support of ψlφk, for l = 1, . . . , N,
k = 1, . . . ,M . Thus, in practical applications, it is sufficient to choose a discretization that
ensures this property. Moreover, the non-singularity of the matrix can also be verified in
the code.

Under Assumption 1, we can define the matrices Σν = W>W/ν and Aν =
(
B>QB/ν

)−1
.

The following theorems establish the asymptotic properties of f̂ν and β̂ν .

Theorem 1. Let {f̂ν} be a sequence of ST-PDE estimators. Assume that a nonsingular
limit A = limν Aν exists. If λS,ν → 0 and λT,ν → 0, then f̂ν is a consistent estimator for f .
Moreover, if λS,ν = o

(
ν−1/2

)
and λT,ν = o

(
ν−1/2

)
√
ν(f̂ − f)|W d→ NNM

(
0, σ2A

)
,

where
d→ denote the convergence in distribution.

Theorem 2. Let {β̂ν} be a sequence of ST-PDE estimators. Assume Σ = limν Σν exists
and is nonsingular. Then, under the hypothesis of Theorem 1, the estimator β̂ν is consistent
for β. Moreover, if λS,ν = o

(
ν−1/2

)
and λT,ν = o

(
ν−1/2

)
√
ν(β̂ − β)|W d→ Nq

(
0, σ2

(
Σ−1 + (1/ν2)Σ−1W>BAB>WΣ−1

))
.
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The proofs of Theorems 1 and 2 are deferred to the supplementary material. These theorems
provide the consistency and asymptotic normality also for the estimators in Bernardi et al.
(2017).

5 Simulation studies

In this section we show the good performances of the proposed ST-PDE method in different
missing data scenarios, described in Section 5.2, comparing it with various alternative meth-
ods, detailed in Section 5.3. The methods are tested considering two test fields, outlined in
Section 5.1.

5.1 Test fields

We consider two different test fields:

• a simple spatio-temporal field on a non-convex C-shaped domain (some temporal
snapshots in Figure 4; Analytical expression in the supplementary material);

• a complicated spatio-temporal field on a simple squared domain (some temporal snap-
shots in the first row of Figure 10; analytical expression in the supplementary mate-
rial).

In both cases the time domain is the interval [0, 1].
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Figure 4: Test field on the C-shaped domain. For some time instants the field assumes very
different values on the two arms of the C. The last panel shows the observational spatial
grid corresponding to the full (uncensored) design, and the triangulation used for ST-PDE
estimate.

The field on the C domain is the same considered in Bernardi et al. (2017), and based in
turns on the one considered in Ramsay (2002) and Wood et al. (2008), and is constructed in
such a way that it can assume quite distant values on the two arms of the C. The time and
space components are present in a non separable way. This simple field puts in difficulty
classical methods that are blind to the shape of the spatial domain, since this smooth field
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assumes quite different values at locations that are close in the Euclidean distance, but
separated by a boundary of the spatial domain.

The square is a simpler domain and there are many classical techniques working on it.
On this domain, we consider a field that exhibits more complicated features and localized
behaviours.

5.2 Data generation

We generate data from the test fields in Section 5.1, according to model (2.1), or model
(3.5) when also considering covariates. The test fields are evaluated on a set of spatio-
temporal locations. Specifically, in space, for the field on the C-shaped domain we consider
the sampling grid of 120 points shown in the last panel of Figure 4, and for the field on the
squared domain we consider a sampling grid of 225 points on a regular lattice. In time, we
consider an equispaced grid of 41 sampling points over the interval [0, 1]. To the values of
the test field evaluated at the sampling grid we add incorrelated gaussian errors with zero
mean and standard deviation equal to 0.4 for to the field the C-shaped domain, and equal
to 0.1 for the field on the C-shaped domain, corresponding in both cases to about 5% of
test field range.

Finally, we censor the data according to one of the four following censoring schemas, that
reproduce different missing data scenarios:

(a) independent censoring in time and space;
(b) dependent censoring in time and independent censoring in space;
(c) independent censoring in time and dependent censoring in space;
(d) dependent censoring in time and space.

We now illustrate these schemas in more detail.

5.2.1 Censoring (a): independent in time and space

The first censoring schema corresponds to a sparse spatio-temporal data setting. We ran-
domly sample a proportion p of indexes (i, j) ∈ {1, . . . , n}×{1, . . . ,m} and we set to NA the
corresponding observations. In this way the spatio-temporal position of each missing value
is independent of the others.

The left panels of Figure 5 (censoring independent in time) and the left panels of Figure 6
(censoring independent in space) show the plot of the noisy data obtained under censoring
(a), with p = 0.5, for the test function on the C-shaped domain. The top left panel in Figure
5 (censoring independent in time) displays the temporal profiles corresponding to each
spatial location, where values observed at two consecutive time instants are linked by a line;
three temporal profiles, corresponding to three random locations, are highlighted in colors.
The left panels in Figure 6 (censoring independent in space) displays the spatial observations
sampled at three different time instants. These plots show that the observational process
is highly fragmented in both space and time, with observations sparsely covering the whole
temporal and spatial domains.
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Figure 5: Censoring independent in time (left) vs censoring dependent in time (right). Plots
obtained for test on C-shaped domain, p = 50%. Top panels display the temporal profiles
corresponding to each spatial location, where values observed at two consecutive time in-
stants are linked by a line; three temporal profiles, corresponding to three random locations,
are highlighted in colors. Bottom panels display the overall proportion of censoring at each
sampling time instant, for this simulation replicate. Under schemas (a) and (c), where data
undergo a censoring independent in time (left), the temporal profiles are highly fragmented,
with sparse observations covering the whole temporal domain. Under schemas (b) and (d),
where data undergo a censoring dependent in time (right), each temporal profile is typically
observed for a longer fragment, while it is totally unexplored over large portions of the
temporal domain.

5.2.2 Censoring (b): dependent in time and independent in space

The second censoring schema corresponds to the setting considered in partially observed
functional data with spatial dependence (see, e.g., Gromenko et al., 2017). In this setting, we
can look at data as evaluations of spatially dependent curves, where each curve is observed
only on certain intervals of the time domain, and the observed region may be independent
of that of neighbouring spatial locations.

To model this situation, independently for each spatial location pi, we generate a random
decomposition of the temporal domain in K sub-intervals of T ; for a proportion p of cen-
soring, we then set all the observations corresponding to pK randomly selected intervals to
NA.

The right panels of Figure 5 (censoring dependent in time) shows the typical temporal
profiles observed under this censoring schema: the temporal profiles are typically observed
for longer fragments, with respect to what is observed when the censoring is independent in
time, while they are instead totally unobserved over large portions of the temporal domain.
In space, instead, data are sparsely observed over the whole spatial domain, as in the left
panels of Figure 6 (censoring independent in space), similarly to the censoring schema (a).
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Figure 6: Censoring independent in space (left) vs censoring dependent in space (right).
Plots obtained for test on C-shaped domain, p = 50%. The plots shows the observed values
at three different time instants. Bottom panels display the overall proportion of censoring
at each spatial location, for this simulation replicate. Under schemas (a) and (b), where
data undergo a censoring independent in space (left), the observations are sparsely observed
over the whole spatial domain. Under schemas (b) and (d), where data undergo a censoring
dependent in space (right), the field is observed over all the grid points in some regions of
the spatial domain, while it is totally unexplored over large portions of the spatial domain.

5.2.3 Censoring (c): dependent in space and independent in time

In the third censoring schema we swap the roles of space and time with respect to censoring
(b). In this case, it is natural to look at data as evaluations of time dependent surfaces,
where these surfaces may be unobserved over large regions of the spatial domain, and the
regions where they are observed may be independent of that of neighbouring time instants.

To simulate this scenario, independently for each time instant, we consider a random de-
composition of the spatial domain Ω into K subdomains; we then set all the observations
corresponding to pK randomly selected subdomains to NA.

As a result, in the spatial dimension the field is observed over all the grid points in some
regions of the spatial domain, while in other regions of the spatial domain it is totally
unexplored, as shown in the right panels of Figure 6 (censoring dependent in space). In the
temporal dimension, instead, the data are sparely observed, as shown in the left panels of
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Figure 5 (censoring independent in time), likewise for censoring (a).

5.2.4 Censoring (d): dependent in space and time

The forth censoring schema corresponds to the most difficult scenario, where the obser-
vations are missing over large portions of the spatial as well as temporal domains. This
corresponds to the scenario observed in the application to lake surface water temperature
data detailed in Section 6.

To simulate this scenario we consider a random decomposition of the spatio-temporal do-
main into K subdomains and we set all the observations corresponding to pK randomly
selected subdomains to NA.

The resulting observational patterns in space and time are those observed in the right panels
of Figure 5 (censoring dependent in time) and Figure 6 (censoring dependent in space).

5.3 Competing methods

We compare the following approaches to spatio-temporal field estimation.

KRIG: Kriging. We consider a separable variogram marginally gaussian in space and expo-
nential in time, with parameters estimated at each simulation replicate from the empirical
variogram. This is implemented using the functions krigeST and fit.StVariogram of the
R package gstat (Pebesma and Graeler, 2020).

TPS and SOAP: These methods solve analogous estimation problems as ST-PDE, consid-
ering two separate penalization terms to account for the regularity in time and in space.
In time, both methods considers as regularizing term the L2 norm of the second temporal
derivative, as in (2.2), and both methods adopt a cubic B-spline basis. In space, instead,
the two methods differ. TPS considers as spatial penalty the thin plate spline energy, and
uses a thin plate spline basis (see Wahba, 1990). SOAP considers as spatial penalty the L2

norm of the Laplacian, and implements the discretization of soap film smoothing (Wood
et al., 2008; Marra et al., 2012; Augustin et al., 2013). Both methods are implemented using
the function gam of the R package mgcv (Wood, 2019), choosing the smoothness parameters
at each simulation replicate via GCV.

DINEOF: The Data INterpolating Empirical Orthogonal Functions method (see, e.g., Beck-
ers and Rixen, 2003; Alvera-Azcárate et al., 2005). This method is considered only for the
test on the squared domain, since it has been proposed to deal with data observed on
uniform fine grids, as in remote sensing problems. It is implemented using the function
dineof() in the R package sinkr (Taylor, 2017).

INLA: The sPDE approach in Cameletti et al. (2013), implemented using the R package
INLA. For the simulation on the C-shaped domain, where the geometry of the domain is
relevant for the accurate estimation of the field, we consider the model with the barrier
approach proposed in Bakka et al. (2019).
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ST-PDE: the proposed method, using as spatial penalty the L2 norm of the Laplacian (i.e.,
L = ∆), likewise for SOAP, and homogeneous Neumann boundary conditions. The method
is implemented using the function smooth.FEM.time in the R package fdaPDE (Lila et al.,
2020), choosing the smoothness parameters at each simulation replicate via GCV.

5.4 Tests on C-shaped domain
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Figure 7: Test on C-shaped domain, censoring (d), proportion of censoring p = 50%. The
three columns of the figure correspond to different time instants. The first row shows the
test function, the second row the simulated data and subsequent rows the estimates of
the spatio-temporal field obtained by kriging (KRIG), thin-plate spline (TPS), soap film
smoothing (SOAP), stochastic PDE (INLA), and the proposed spatio-temporal regression
with PDE regularization (ST-PDE).
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Figure 7 illustrates the results obtained on the C-shaped domain under the most difficult
missing data scenario, censoring (d), for p = 0.5 and k = 40. The figure shows the test
function, the sampled data and the estimates provided by kriging (KRIG), thin-plate spline
(TPS), soap film smoothing (SOAP), sPDE (INLA) and the proposed spatio-temporal re-
gression with PDE regularization (ST-PDE) at three different time instants. A visual
inspection highlights that the methods that do not account for the shape of the domain,
namely KRIG and TPS, perform poorly when the test function takes different values on
the two branches of the C-shaped domain, whilst the methods that explicitly consider for
the domain geometry, namely SOAP, INLA and ST-PDE, do not suffer of this problem and
return accurate estimates. Focusing on these methods, we can observed that the isolines
of the estimates obtained by SOAP, INLA and ST-PDE have different shapes. This is due
to the different conditions imposed on the boundary. ST-PDE tends to enforce isolines
perpendicular to the boundary due to Neumann b.c. here considered, while INLA tends to
enforce isolines directed to the right in the concavity of the C, due to the barrier model;
SOAP, instead, estimates the boundary conditions form the data, and this results in a poor
estimation of the field at the boundary where data are missing, as for instance in the bottom
part of the C-shaped domain for t = 0.

To quantitatively assess the goodness of the competing methods in terms of prediction ac-
curacy, we compute the Root Mean Square Errors (RMSE) of the space-time field estimates
f̂ . The RMSE

RMSE(f̂) =

√√√√√ n∗∑
k=1

m∗∑
l=1

(
f(p∗k, t

∗
l )− f̂(p∗k, t

∗
l )
)2

n∗m∗
.

is computed over a fine grid of spatio-temporal locations {(p∗k, t∗l ) ∈ Ω × T : k = 1 . . . n∗,
l = 1, . . . ,m∗}, of dimension 306×41. We also consider a rich set of indices concerning both
predictive accuracy and uncertainty quantification. In particular, beside RMSE, we also
compute the Mean Absolute Error (MAE), the Continuous Rank Probability Score (CRPS;
see Gneiting and Raftery, 2007), the Interval score (INT; see Gneiting and Raftery, 2007),
and the confidence interval coverage (CVG). All the indeces are computed on the same grid
as the RMSE.

Method RMSE MAE CRPS INT CVG

KRIG 0.616 (0.193) 0.652 (0.086) 0.313 (0.098) 3.079 (4.053) 0.902 (0.220)
TPS 0.371 (0.155) 0.471 (0.048) 0.171 (0.039) 2.577 (0.642) 0.749 (0.039)
SOAP 0.189 (0.072) 0.354 (0.037) 0.091 (0.021) 1.215 (0.387) 0.786 (0.051)
INLA 0.254 (0.096) 0.381 (0.073) 0.203 (0.023) 3.133 (0.107) 1.000 (0.001)
ST-PDE 0.168 (0.065) 0.324 (0.035) 0.080 (0.023) 1.327 (0.929) 0.757 (0.068)

Table 1: Test on C-shaped domain, censoring (d). For each competing method we report
the median (and inter quartile range), over 30 simulation repetitions, of Root Mean Square
Error (RMSE), Mean Absolute Error (MAE), Continuous Rank Probability Score (CRPS),
Interval score (INT), interval coverage (CVG).

Table 1 contains the median (and inter quartile range) of these indices over 30 simulation
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repetitions. The proposed ST-PDE gives the best results in terms of RMSE, MAE and
CRPS. SOAP attains the best performances in terms of INT. Regarding the CVG, all the
methods but INLA lead to undercoverage with respect to the nominal value 95%, while
INLA lead to overcoverage. However, the low coverage of the standard parametric Wald-
type confidence intervals here considered is a well known issue of nonparametric regression,
and several approaches can be followed to construct better confidence intervals, such as bias
correction and undersmoothing approaches (see, e.g., the reviews in Eubank and Speckman,
1993; Hall and Horowitz, 2013).

Figure 8 shows the boxplots of the RMSE over 30 repetitions of the same simulation,
considering all the censoring schemas presented in Section 5.2, with p = 50% and K =
8, 12, 40 for censoring (b), (c) and (d) respectively. In general, the estimates provided by
methods that appropriately account for the shape of the domain, namely SOAP, INLA and
ST-PDE, have significantly lower RMSEs with respect to methods that instead are blind to
the domain shape, namely KRIG and TPS. In particular, ST-PDE appears the best method
under all scenarios, followed by INLA and SOAP, hinting that ST-PDE is particularly suited
to cases when the shape of the domain influences the signal. From the ranges of the RMSE
in the four plots, we can also see that censoring (d) is the most challenging for all the
methods; under this censoring the differences in the performances of the various methods
partly reduce, while still being significant.
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Figure 8: Tests on C-shaped domain, proportion of censoring p = 50%. Boxplots of the
RMSE over 30 simulation replicates of the estimates of the spatio-temporal field obtained
by kriging (KRIG), thin-plate spline (TPS), soap film smoothing (SOAP), sPDE (INLA)
and the proposed spatio-temporal regression with PDE regularization (ST-PDE), under the
different censoring schemas.
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To investigate the behaviour of the estimators with respect to the percentage of missing
data, we perform an analogous simulations when p = 0.25 and p = 0.75. Figure 9, left
panel, reports the mean RMSE with respect to p, for the four considered methods under
censoring (a). The same behaviour is observed under all the other censoring schemas. The
RMSE increases when the proportion of censoring p increases; ST-PDE attains the lowest
RMSEs under all censoring proportions.

Finally, we investigate the behaviour of TPS, SOAP, INLA and the proposed method ST-
PDE in presence of covariates, studying a problem on the C-shaped domain, with the same
field f used in the previous simulations, and also including the space-time varying covariate
wij = cos(5xi)

√
(tj + 1)/5 with true β equal to 1. Figure 9, right panel, shows the RMSE

of β̂, namely |β̂ − β|, over 30 repetitions of this simulation, confirming the same ordering
of the methods also for the estimation of β. The boxplots of the RMSE of f̂ , not reported
here for sake of space, show the same behavior highlighted in Figure 8.
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Figure 9: Tests on C-shaped domain, censoring (a). Left: different proportions of censoring,
p = 25%, 50%, 75%; median RMSE of f̂ over 30 simulation replicates. Right: test with
inclusion of covariates, p = 50%; RMSE of β̂ over 30 simulation replicates.

5.5 Tests on squared domain

In previous section we commented on the results obtained in tests where the non-convex
shape of the spatial domain raises difficulties for the classical methods such as kriging and
space-time smoothing based on thin-plate splines. Here we consider instead a simple spatial
domain, a square, but with a field displaying strong spatio-temporal variations. Also in this
case, the proposed ST-PDE method is able to capture the features of the signal better than
the other techniques.

Figure 10 reports the image plots of the test field on the square domain, the sample data
and the estimates obtained with the competing methods, under censoring (a), when p = 0.5.
With respect to the simulation on the C-shaped domain, we here also add a comparison to
DINEOF, which can only be used for gridded data. From a visual inspection is difficult to
compare the estimates; however, we can for instance notice that both TPS and SOAP tend
to oversmooth the isolines where the test function has sharp variations.
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Figure 10: Censoring (a). Spatio-temporal test function, simulated data and estimates
obtained by kriging (KRIG), thin-plate spline (TPS), soap film smoothing (SOAP), data
interpolating empirical orthogonal functions DINEOF, stochastic PDE (INLA), and the
proposed spatio-temporal regression with PDE regularization ST-PDE.
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As for the previous simulation study, we assess the methods considering RMSE, MAE,
CRPS, INT and CVG. All indices are evaluated on a regular lattice of 225 × 41 spatio-
temporal locations, corresponding to the full data design. DINEOF does not estimate the
standard deviation of the field; therefore, for this technique, it is not possible to compute
CRPS, INT and CVG. Table 2 contains the median (and inter quartile range) of these
indices over 30 simulation repetitions. With respect to the previous simulation study, we
observe that in this setting, where the shape of the domain does not influences the signal,
the methods that do not consider the shape of the domain have more similar performances
to the others. As in the previous simulation, the proposed ST-PDE gives the best results
in terms of RMSE, MAE, CRPS and INT, highlighting the ability of the method to well
estimate signals with strong spatio-temporal variations. Concerning CVG, all methods
but INLA lead to undercoverage with respect to the nominal value 95%; bias correction
and undersmoothing approaches can be used to improve these results, as commented for
the previous simulation. Finally, the Supplementary Material reports the same indices in
simulation studies as the one here described, but with different signal-to-noise ratios. In all
cases, the same considerations here made remain valid.

Method RMSE MAE CRPS INT CVG

KRIG 0.123 (0.002) 0.303 (0.003) 0.083 (0.001) 2.262 (0.053) 0.496 (0.001)
TPS 0.166 (0.001) 0.348 (0.002) 0.093 (0.001) 1.416 (0.028) 0.752 (0.006)
SOAP 0.176 (0.001) 0.356 (0.001) 0.099 (0.001) 1.675 (0.037) 0.713 (0.007)
DINEOF 0.137 (0.018) 0.308 (0.015) - - -
INLA 0.158 (0.002) 0.331 (0.002) 0.084 (0.001) 0.909 (0.024) 0.9611 (0.002)
ST-PDE 0.087 (0.002) 0.253 (0.002) 0.046 (0.001) 0.471 (0.023) 0.876 (0.007)

Table 2: Test on square domain, censoring (a). For each competing method we report the
median (and inter quartile range), over 30 simulation repetitions, of Root Mean Square
Error (RMSE), Mean Absolute Error (MAE), Continuous Rank Probability Score (CRPS),
Interval score (INT), interval coverage (CVG).

6 Application to lake surface water temperature

In this section we study the surface water temperature of Lake Victoria using ST-PDE. As
discussed in Hulley and Ghent (2019) many studies have been conducted on lakes tempera-
ture. Lakes have a high heat capacity that dampens short-term temperature variability and
enhances long-term variations. In particular, lake surface water temperature (LSWT) is
internationally recognised as an Essential Climate Variable and a proxy for climate change.
Moreover, also ecologists are interested in studying LSWT data, to investigate environmen-
tal system dynamics.

In this context, to provide the basis for long term records of the physical state of lakes,
many satellite temperature data are considered. Among them, the ARC-Lake database
(see MacCallum and Merchant, 2011) offers a range of satellite-derived LSWT data sets,
for thousands of lakes around the world. ARC-Lake is a project funded by the European
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Space Agency, and developed by the Earth Observation and the Space Research Division
at the University of Reading. The available remote sensors include the series of Advanced
Along Track Scanning Radiometers, which are in principle capable to be a highly accurate
source of information on LSWTs on a systematic global basis. However, due to technical
problems and particular meteorological conditions, such as the presence of clouds in the
atmosphere, the recorded data present a substantial amount of missing observations.

6.1 Data

The specific data set we consider here is the monthly LSWT of Lake Victoria; see Figures 1
and 2. More precisely, each datum is an average of LWST over a pixel of 0.05° longitude by
0.05° latitude, and over a month time (not considering nights). When a cell falls in part on
the main land or an island, the LSWT is the average temperature over the water portion
only. This average is assigned to the spatial coordinates of the centre of the pixel, resulting
in 2313 locations over the lake. The observation period consists of 203 months, from June
1995 to April 2012.

The data set is characterized by a large proportion of missing values, about 45%. The
bottom right panel of Figure 1 shows that the proportion of missing data is not uniform
across the lake, while the bottom panel of Figure 2 highlights the high proportion of missing
data in several months, including an interval of some consecutive months where no datum
is available, across the whole lake.

6.2 Estimation of the temperature field via ST-PDE

We fit a ST-PDE model to the incomplete Lake Victoria data in order to reconstruct the
spatio-temporal pattern over the unobserved regions. Differently from Gong et al. (2018),
who restrict the analysis on a smaller rectangular portion of the lake, we here consider its
entire domain, appropriately complying with its complicated shape, highlighted in Figure 3.
In particular, as seen in the left panel of Figure 3, the shoreline of the lake is very jagged and
there are many islands, most of them very small. Keeping this level of detail in the domain
boundary is unnecessary, since the signal does not display a comparable level of detail. The
right panel of the same figure shows a simplification of the domain, that maintains the
most relevant features of the boundary and the main islands (for which the corresponding
observations are NA). This simplification is obtained using the function ms simplify from
the R package rmapshaper with the Visvalingam & Whyatt Line Simplification Algorithm
(Teucher and Russell, 2020). Starting from this simplified boundary, we then obtain a
triangulation of the lake using the function create.mesh.2D of the package fdaPDE; this
triangulation is hence refined using the function refine.mesh.2D imposing a minimum
angle of 30° and a maximum area of 0.03 for each element of the triangulation. The resulting
mesh is reported in the right panel of Figure 3.

We then fit the ST-PDE model with homogeneous Neumann boundary conditions, penal-
izing the Laplacian and selecting the smoothing parameters via GCV. Figure 11 shows the
estimate in the first three months, which display rather different amounts of missing values.
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Figure 11: LWST data and corresponding ST-PDE estimate, for three months.

The figure highlights that the method is able to capture very well the features of the signal
where data are available. A video of the obtained estimate is available at t.ly/5hpH and
in the Supplementary Material.

7 Discussion and future research directions

The proposed methodology is capable to accurately estimate spatio-temporal fields from
data affected by complicated missingness patterns. Simulation studies show that ST-PDE
has competitive advantages over available techniques. The method is able to capture com-
plicated signals, with strongly localized features, as well as signals observed over irregular
domains.

ST-PDE can be extended in various directions. A first interesting development is to consider
curved spatial domains with non-standard geometries. This extension to manifold domains
can be obtained by combining the proposed method with the technique for spatial-only
data in Ettinger et al. (2016); Lila et al. (2016); Wilhelm et al. (2016). This would open
the possibility to consider environmental applications concerning data on the globe, but
also fascinating life-sciences applications, as for instance the study of neuroimaging data
associated with neural activity on the highly folded brain surface.

t.ly/5hpH
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Moreover, the generalization to other differential models would further broaden the model-
ing of complex spatio-temporal phenomena. Particularly interesting in this direction would
be the extensions toward PDEs parameters that are not-only space-varying but also time-
varying, and more generally to non-linear PDEs (considered in the framework of state-space
models by, e.g., Stroud et al., 2010).

Although we do not tackle this aspect in the current work, the PDE terms K, b and c could
as well depend upon some unknown parameters, to be estimated from data. A possible
approach in this direction relies on parameter cascading, a generalized profiling estimation
procedure originally introduced by Ramsay et al. (2007) to estimate the parameters of
an ordinary differential equation, starting from noisy measurements of the solution to the
differential equation, and later extended by Xun et al. (2013) to the context of partial
differential equations. This approach has already been successfully employed by Bernardi
et al. (2018), that considers the simpler case of spatial regression models over space only,
with a regularizing term involving the anisotropic diffusion operator ∇ · (K∇f), where
the symmetric and positive definite diffusion tensor K, that determines the direction and
intensity of anisotropy, is estimated from data. The estimation of the PDE parameters,
combined with an appropriate choice of the smoothing parameters λS and λT , along the
lines described by Bernardi et al. (2018), increases significantly the computational cost
of the methodology. The study of appropriate computational techniques, to reduce this
increased cost, will be the subject of future research.

ST-PDE could also handle multiple datasets. In particular, the principal component analy-
sis method in Lila et al. (2016) could be naturally extended to space-time data. Moreover,
the proposed method could be generalized to a mixed effect regression settings (similar to
those in, e.g., Guo, 2002; Wood, 2006; Chen and Wang, 2011). This would also permit to
consider possible clustering structures in the multiple datasets.

Future research will also concern the study of the asymptotic properties of the estimator
in functional norms, when also the number of basis functions goes to infinity, together
with number of observations, along the lines of the study in Arnone et al. (2021), which
considered the case of spatial-only data.
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1 Proofs of asymptotic results

Proof of Theorem 1. We first prove that the ST-PDE estimator is consistent. Consider the
mean square error for the estimator

E(f̂ − f)2 = bν(λS,ν , λT,ν)bν(λS,ν , λT,ν)> + Varν(λS,ν , λT,ν)

where bν(λS,ν , λT,ν) and Varν(λS,ν , λT,ν) are the bias and the variance of the estimator
obtained with ν observations and λS,ν and λT,ν as smoothing parameters, respectively. To

obtain the consistency, we need E(f̂ − f)2 → 0.

For the bias we have:

bν(λS,ν , λT,ν) = E(f̂ν)− f

=

[(
B>QB/ν + λS,νPS + λT,νPT

)−1
B>QB/ν − I

]
f

=
[(
A−1ν + λS,νPS + λT,νPT

)−1
A−1ν − I

]
f

= −λS,νAνPsf − λT,νAνPT f + o (λS,ν + λT,ν)
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where we have used Taylor expansion and Assumption 1. Analogously, for the variance we
have:

Varν (λS,ν , λT,ν) =
σ2

ν

(
B>QB/ν + P

)−1
B>QB/ν

(
B>QB/ν + P

)−1
=
σ2

ν

(
A−1ν + P

)−1
A−1ν

(
A−1ν + P

)−1
=
σ2

ν
(I −AνP )−1 (I −AνP )−1Aν =

σ2

ν
(I −AνP )−2Aν

=
σ2

ν
(I − λS,νAνPS − λT,νAνPT )−2Aν

=
σ2

ν
Aν + o (λS,ν + λT,ν) .

Under the hypothesis that both λS,ν and λT,ν goes to zero we thus have that E(f̂ − f)2 → 0
as ν →∞.

In order to obtain the asymptotic distribution of
√
ν(f̂−f), first of all note that E(

√
ν(f̂−f))

goes to zero only if λS,ν and λT,ν are o(ν−1/2). Then, recall that

f̂ν =
(
B>QB/ν + P

)−1
B>Qz/ν

=
(
B>QB/ν + P

)−1
B>Q(Wβ +Bf + ε)/ν.

Rearranging the above equation and noting that QW has all entries equal to zero we obtain(
B>QB/ν + P

)
(f̂ν − f) + P f = B>Qε/ν.

The right side of the equation above can be used as a pivot to derive the asymptotic
distribution of the estimator.

Proof of Theorem 2. Given f̂ , the vector β̂ is the solution of the score equation

1

ν
W>(z−W β̂ −Bf̂) = 0.

Recalling that z = Wβ + f + ε, we get

1

ν
W>W (β̂ − β) +

1

ν
W>B(f̂ − f) =

1

ν
W>ε

where ε represents the vector of i.i.d. errors. We thus obtain

Σ̂ν(β̂ − β) =
1

ν
W>ε− 1

ν
W>B(f̂ − f). (1.1)

Recalling that, thanks to Theorem 1, f̂ is a consistent estimator for f , we can use the right
side of the equation above as a pivoting quantity to derive the asymptotic normality of β̂.
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In order to prove the consistency of β̂ it remains to show that E(β̂ − β)2 → 0. By squar-
ing and taking the expectation of equation (1.1), and recalling that the term (f̂ − f) is
independent from ε by construction, we have that E(β̂ − β)2 converges to zero if both
1
ν2
E(ε>WW>ε) and E(f̂ − f)2 goes to zero. The first term goes to zero by the central limit

theorem, while the second term goes to zero thanks to Theorem 1.

2 Test field on C-shaped domain

The test field f(p, t) on the C-shaped domain is defined as

f(x, y, t) =


cos(t)(q + x) + (y − r)2 if x ≥ 0 ∧ y > 0

cos(2t)(−q − x) + (−y − r)2 if x ≥ 0 ∧ y ≤ 0

cos(t)
(
− arctan

( y
x

)
r
)

+ (
√
x2 + y2 − r)2K(x, y) if x < 0 ∧ y > 0

cos(2t)
(
− arctan

( y
x

)
r
)

+ (
√
x2 + y2 − r)2K(x, y) if x < 0 ∧ y ≤ 0

where

K(x, y) =

(
y

r0
1|y|≤r0∧x>−r + 1|y|>r0∨x≤−r

)2

and r0 = 0.1, r = 0.5 and q = πr/2.

3 Test field on squared domain

The test field f(p, t) on the squared domain is shown in Figure 12 and is defined as

f(x, y, t) = sin

(
2π

(
h(y)x cos

(
9

5
t− 2

)
− y sin

(
9

5
t− 2

)))
· cos

(
2π

(
h(y)x cos

(
9

5
t− 2 +

π

2

)
+ h(x)y sin

((
9

5
t− 2

)
π

2

)))
where h(x) = 1

2 sin(5πx)e−x
2

+ 1.

3.1 Tests for different signal-to-noise ratio

Table 3 and 4 contain the results for simulation studies on the square domain, as in Section
5.5 of the main paper, but with different signal-to-noise ratio, setting the standard deviation
σ of the error respectively to 0.20 · range(exact data) and to 0.01 · range(exact data).
As for the simulation case considered in Section 5.5 of the main paper, ST-PDE achieves
the best results in terms of RMSE, MAE, CRPS and INT in all cases, with a stronger
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Figure 12: Test field on the c-shaped domain. The field exhibits a complicated behaviors
and localized features. The last panel shows the observational spatial grid corresponding
to the full (uncensored) design, and the triangulation used for ST-PDE estimate.

advantage over the competing methods for high signal-to-noise ratio. TPS, SOAP and
INLA have comparable performances in terms of RMSE and MAE. INLA always achieves
the best CVG, with coverage slightly higher then the nominal value 0.95. ST-PDE is the
second best method in terms of CVG. However, as already noted in the main paper the
standard parametric Wald-type confidence intervals here considered have low coverage for
the nonparametric regressors (TPS, SOAP and ST-PDE); this is a well known issue, and
several approaches can be followed to construct better confidence intervals, such as bias
correction and undersmoothing strategies.
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Method RMSE MAE CRPS INT CVG

KRIG 0.367 (0.004) 0.539 (0.003) 0.252 (0.003) 7.155 (0.106) 0.483 (0.006)
TPS 0.221 (0.004) 0.416 (0.004) 0.125 (0.002) 1.255 (0.027) 0.861 (0.005)
SOAP 0.228 (0.003) 0.420 (0.004) 0.129 (0.003) 1.429 (0.096) 0.831 (0.013)
DINEOF 0.370 (0.014) 0.539 (0.014) - - -
INLA 0.222 (0.003) 0.416 (0.003) 0.126 (0.001) 1.171 (0.017) 0.983 (0.002)
ST-PDE 0.193 (0.005) 0.389 (0.005) 0.109 (0.003) 1.080 (0.054) 0.849 (0.014)

Table 3: Test on square domain, censoring (a), noise standard deviation σ = 0.20 ·
range(exact data). For each competing method we report the median (and inter quartile
range), over 20 simulation repetitions, of Root Mean Square Error (RMSE), mean abso-
lute error (MAE), continuous rank probability score (CRPS), interval score (INT), interval
coverage (CVG).

Method RMSE MAE CRPS INT CVG

KRIG 0.081 (0.004) 0.211 (0.004) 0.041 (0.001) 0.717 (0.014) 0.495 (0.002)
TPS 0.160 (0.001) 0.336 (0.002) 0.089 (0.001) 1.504 (0.019) 0.727 (0.004)
SOAP 0.170 (0.001) 0.346 (0.001) 0.096 (0.001) 1.789 (0.029) 0.683 (0.007)
DINEOF 0.066 (0.021) 0.166 (0.015) - - -
INLA 0.148 (0.001) 0.308 (0.004) 0.077 (0.001) 0.894 (0.014) 0.955 (0.004)
ST-PDE 0.038 (0.003) 0.142 (0.002) 0.015 (0.001) 0.196 (0.021) 0.922 (0.009)

Table 4: Test on square domain, censoring (a), noise standard deviation σ = 0.01 ·
range(exact data). Results reported as in Table 3.
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