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LARGE ALGEBRAIC INTEGERS

DENIS SIMON AND LEA TERRACINI

Abstract. An algebraic integer is said large if all its real or complex embeddings
have absolute value larger than 1. An integral ideal is said large if it admits a large
generator. We investigate the notion of largeness, relating it to some arithmetic
invariants of the field involved, such as the regulator and the covering radius of
the lattice of units. We also study its connection with the Weil height and the
Bogomolov property. We provide an algorithm for testing largeness and give some
applications to the construction of floor functions arising in the theory of continued
fractions.

1. Introduction

Let K be a number field, OK be its ring of integers and A ⊆ OK be a principal
ideal. Our aim is to investigate the following property of A:

(1.1)
A admits a generator x such that |σ(x)| ≥ 1 for every embedding σ : K → C.

We shall call such a generator a large element of OK (strictly large when the strict
inequality holds), and we shall call large every ideal satisfying property (1.1).

We shall see that all but finitely many principal ideals A are strictly large; in

particular this happens when the logarithmic norm n(A) = N(A)
[K:Q]

exceeds the covering

radius of the lattice of units with respect to the L∞ norm. Moreover, every non-
trivial ideal becomes large in a suitable finite extension of K.

It is possible to relate the notion of largeness of a principal ideal to the Weil height
of its generators. Therefore, lower bounds of the Weil height on K, as given by the
Bogomolov property, may help to prove that some ideals are not large. To this aim,
we shall state some inequalities concerning the covering radius, the regulator and
the Weil height of systems of multiplicatively independent units of K. We shall
apply the technique described above in some concrete example.

As soon as the group of units of K is known, it is relatively easy to decide if a
principal ideal is large, and we give the corresponding algorithm. Then, we shall
present the results of applying it to some particular ideal in cyclotomic fields.

As a last application, we shall define the notion of floor function for K relatively
to A and show that condition (1.1) allows to explicitly construct a bounded floor
function. This turns out to be a good property for the the resulting continued
fractions ([12]).

2. The largeness property and general results

Let K be a number field of degree d. We denote by OK the ring of integers
of K and O×

K the group of units. The number field K has r1 real embeddings
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σ1, . . . , σr1 and 2r2 complex embeddings σr1+1, . . . , σr1+2r2 , where r1 + 2r2 = d and
σr1+i and σr1+r2+i are conjugates for 1 ≤ i ≤ r2. We denote by Σ the whole set of
Archimedean embeddings. We shall denote by | · | the standard complex absolute
value. An element x ∈ K therefore has r1+r2 Archimedean absolute values, namely
|σ1(x)|, . . . , |σr1+r2(x)|, and we have |σr1+i(x)| = |σr1+r2+i(x)| for all 1 ≤ i ≤ r2. We
put s = r1 + r2, r = s− 1.

Let

ι : K −→ Rr1 × Cr2

λ 7−→ (σ1(λ), . . . , σr1(λ), σr1+1(λ), . . . , σr1+r2(λ))

be the canonical embedding of K, and

ℓ : K× → Rr1+r2

be the logarithmic embedding, i.e., the composition L ◦ ι where

L : (R×)r1 × (C×)r2 −→ Rr1 × Rr2

(x1, . . . , xr1, y1, . . . , yr2) 7−→ (log |x1|, . . . , log |xr1 |, 2 log |y1|, . . . , 2 log |yr2|).

For x = (x1, . . . , xr1 , y1, . . . , yr2) ∈ Rr1 × Cr2 , let us define

N(x) =

r1∏

i=1

|xi| ·
r2∏

j=1

|yj|2;

then, N(ι(a)) = |NK/Q(a)| for every a ∈ K. The absolute norm of x ∈ K is equal to
the absolute value of the norm of x.
We shall denote ΛK = ℓ(O×

K); it is a lattice of rank r in Rs by Dirichlet’s Unit
Theorem. We recall also that the regulator RK of K is the determinant of any
submatrix of order r of the r × (r + 1) matrix whose rows are ℓ(u1), . . . , ℓ(ur) for a
system u1, . . . , ur of fundamental units for K. If VK is the volume of a fundamental
domain for ΛK then the relation VK =

√
sRK holds.

Definition 2.1.

a) We say that x ∈ OK is large (resp. strictly large) if |σ(x)| ≥ 1 (resp.
|σ(x)| > 1) for every σ ∈ Σ .

b) An ideal A ⊆ OK is large (resp. strictly large) if it principal and has a large
(resp. strictly large) generator.

For x ∈ OK as in the above definition, we observe that x is large in OK if and
only if x is large in OL for any finite extension L of K. For the ideal A it is true
that if it is large in K, then the ideal AOL is large in OL, but the converse is not
true.

Then the following definition makes sense and extends the notion of largeness to
possibly infinite extensions:

Definition 2.2. Let L be an infinite extension of K. For an element x ∈ OK and
an ideal A ⊆ OK, we say that:

a) x is large (resp. strictly large) in L if there is a number field K ′ with K ⊆
K ′ ⊆ L such that x is large (resp. strictly large) in K ′.

b) A is large (resp. strictly large) in L if there is a number field K ′ with
K ⊆ K ′ ⊆ L such that AOK ′ is large (resp. strictly large) in K ′.
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Since every unit in OK has norm ±1, a unit x is large if and only if |σ(x)| = 1 for
every σ ∈ Σ; by a theorem of Kronecker [16], this happens if and only if x is a root
of unity. Therefore no unit can be strictly large. So every strictly large element x
in OK must satisfy |NK/Q(x)| ≥ 2.
We shall see in Proposition 2.3 that almost all principal ideals in OK are (strictly)
large. In order to prove this fact we need to recall some terminology from lattice
theory.

Let Λ be a lattice in Rn of rank r and for a real number p ∈ [1,∞) ∪ {∞} let
|| · ||p be the norm Lp in Rn. The distance function relatively to p is by definition

ρp(v,Λ) = min
w∈Λ

||v−w||p.

The covering radius of Λ with respect to || · ||p is

ρp(Λ) = sup
v∈span(Λ)

ρp(v,Λ).

Balls of radius ρp(Λ) centered around all lattice points cover the whole space span(Λ).
By the well known inequality

(2.1) ||v||p ≤ ||v||r ≤ n
1

r
− 1

p ||v||p for ∞ ≥ p ≥ r,

we get

(2.2) ρp(Λ) ≤ ρr(Λ) ≤ n
1

r
− 1

pρp(Λ) for ∞ ≥ p ≥ r.

If K is a number field we shall write ρp(K) instead of ρp(ΛK).

For every algebraic number x ∈ Q
×

we define the logarithmic norm

n(x) =
log |NQ(x)/Q(x)|

[Q(x) : Q]
.

Analogously, if A ⊆ OK is any non-zero ideal, we write

n(A) =
log |NK/Q(A)|

[K : Q]
.

Notice that

n(x) =
log |NK/Q(x)|

[K : Q]
,

for every finite extension K of Q(x); moreover

n(x) = n(ux),

for every algebraic unit u ∈ Q. Then n(a) = n(aOK) depends only on the principal
ideal generated by a in the ring of integers of every number field containing a.

We also observe that n : Q
× → R is a morphism; in particular n(xk) = kn(x) for

every k ∈ N. We also have n(x) ≥ 0 when x is an algebraic integer.

Proposition 2.3. Every principal ideal A of OK such that n(A) > ρ∞(K) is strictly
large.
Therefore all but finitely many integral principal ideals of OK are strictly large.

Proof. Let x ∈ OK be a generator of A and put N = |NK/Q(x)|. The image of units
ℓ(O×

K) is a lattice in Rs of rank r = s − 1; it spans the hyperplane H of Rs with
equation

∑r1
i=1 xi +

∑r2
i=1 yi = 0. The vector

y = ℓ(x)− 1

d
log(N)(1, . . . , 1, 2, . . . , 2)
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lies on H . Let ρ = ρ∞(K) and assume n(x) > ρ; by definition of covering radius,
there exists u ∈ O×

K such that ||y + ℓ(u)||∞ ≤ ρ. This means that | log |σ(ux)| −
n(x)| ≤ ρ for every Archimedean embedding σ of K, so that

| log |σ(ux)|| ≥ n(x)− ρ > 0.

The second assertion follows from the fact that the ideals of norm ≤ ρ are finitely
many. �

Proposition 2.4. Every non-trivial integral ideal A ( OK is strictly large in Q.

Proof. The statement is a consequence of [7, Théorème 5.1], here we present a more
direct proof. First of all, by class field theory, it is well known that A becomes
principal in a suitable finite extension K ′ of K. We have AOK ′ = xOK ′ for some
x ∈ OK ′. By Proposition 2.3 there exists a positive integer j such that xj is strictly
large in K ′. Let u ∈ O×

K ′ be such that |σ(uxj)| > 1 for every embedding σ : K ′ → C.
Let L = K ′(ω) where ωj = u. Let τ : L → C be any embedding and σ be the
restriction of τ to K ′. Then

|τ(ωx)|j = |σ(uxj)| > 1

so that |τ(ωx)| > 1. �

By looking at the proof of Proposition 2.4, we see that a uniform and stronger
version holds true. For every number field K and every positive j ∈ N, we denote
by Kj the field obtained from K by adding the j-th roots of every unit of K; it is a
finite extension of K by Dirichlet’s Unit Theorem.

Proposition 2.5. Let K be a number field, and let j > ρ∞(K)[K:Q]
log 2

. Every non-trivial
principal ideal A ( OK is strictly large in Kj.

Proof. Let x ∈ OK be a generator of A. We have n(x) ≥ log 2
[K:Q]

, so that n(xj) =

jn(x) > ρ∞(K). Then one can choose L = Kj in the proof of Proposition 2.4. �

3. Largeness and Weil height

Let h denote the logarithmic Weil height of an algebraic number (see for example
[8, §1.5.7]). For x ∈ K

h(x) =
1

d

∑

σ∈Σ
max{0, log |σ(x)|}+ log |a|

where a is the leading coefficient of a primitive equation for x over Z; in particular
for an algebraic integer x in OK

h(x) =
1

d

∑

σ∈Σ
max{0, log |σ(x)|}.

It follows that

(3.1) h(x) ≥ 1

d
log |NK/Q(x)| = n(x) for every non-zero algebraic integer x,

and equality holds exactly when xOK is large.
Then we can draw necessary conditions for largeness of ideals when some explicit
minoration for the height of elements in OK is known. Namely, if there is a constant
c > 0 such that

(3.2) h(x) > c for every x ∈ OK \ O×
K
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and A is a principal ideal such that n(A) ≤ c, then A cannot be large.
We are thus lead to make use of the well known Bogomolov property (B) and an
additional property (S) defined below.
Let A be a set of algebraic numbers. We put

b(A) = inf{h(x) | x ∈ A, x 6= 0, x not a root of unity };
s(A) = inf{n(x) | x ∈ A, x 6= 0, NQ(x)/Q(x) 6= ±1}.

Definition 3.1. We say that a set A of algebraic numbers satisfies

a) property (B) if b(A) > 0;
b) property (S) if s(A) > 0.

In particular, if x ∈ OL \ O×
L for an (infinite) extension L with the property (B),

then h(x) ≥ cL for some cL > 0 depending only on L and thus, by (3.1),

xOQ(x) large =⇒ n(x) ≥ cL.

Property (B) is known for some special algebraic extensions, as the compositum Qtr

of all totally real fields; it is also known for extensions having bounded local degrees
at some finite place, and for Abelian extensions of number fields (see [2, Remark
5.2, p.1902]).
Note however that property (B) for the whole field L, and even for the ring of
integers of L, is much stronger that condition (3.2), which assumes a lower bound
only for the height of algebraic integers which are not units.

Examples 3.2.

a) Of course (S) ⇒ (B) if A is a set of algebraic integers containing only a
finite number of units.

b) On the other hand, there exist sets of algebraic integers satisfying (B) but
not (S): for example the ring Oab of integers of Qab satisfies property (B)
with b(Oab) ≥ log 5

12
, (see the main theorem in [3]), but

n(1− ζp) =
log(p)

p− 1

for a prime p and ζp a primitive p-th root of unity; therefore s(Oab) = 0.
c) It is proven in [3, Corollary 1] that property (S) holds for the set A of algebraic

integers x lying in an Abelian extension of Q and such that x/x is not a root
of unity. More precisely

n(x) ≥ log 5

12
, for every x ∈ A .

d) Recall that Qtr(i) is the compositum of all CM fields, see [2, page 1902];
therefore x ∈ Qtr(i) if and only if Q(x) is either a totally real or a CM field.
Since the complex conjugation commutes with all the embeddings of Qtr(i) in
C, we have |σ(x)| = 1 for some σ ∈ Σ if and only if |σ(x)| = 1 for all σ ∈ Σ.
In this case, we just write |x| = 1.
By a result of Schinzel (apply [22, Corollary 1’, p. 386], to the linear polyno-
mial P (z) = z − x), if A = {x ∈ Qtr(i) | |x| 6= 1} then

(3.3) b(A) ≥ 1

2
log

1 +
√
5

2
.

By Example 3.2.d) we obtain the following

Proposition 3.3. Let L = Qtr(i), and let x ∈ OL be a non-zero element. If

n(x) < 1
2
log 1+

√
5

2
then xOQ(x) is not large in L except if x is a unit.
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Proof. If x is a unit, then xOQ(x) = OQ(x) is trivially large. If not, we have |x| 6= 1,

so that Schinzel result (3.3) implies that h(x) ≥ 1
2
log 1+

√
5

2
> n(x). Then the result

follows from (3.1). �

3.1. Example. Let p be one of the primes for which Q(ζp−1) has class number
one. Note that p splits completely in Q(ζp−1). Recall ([18]) that the cyclotomic
field Q(ζm) has class number one if and only if m is one of the following forty-four
numbers:

3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28,

30, 32, 33, 34, 35, 36, 38, 40, 42, 44, 45, 48, 50, 54, 60, 66, 70, 84, 90.

(which corresponds to twenty-nine distinct cyclotomic fields). Thus the relevant
primes are

(3.4) 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 61, 67, 71.

Question 1. Let p be one of the fifteen primes (3.4) and let P be a prime ideal over
p in the ring of integers of Q(ζp−1). Is P large?

Since Qab ⊆ Qtr(i) and

p ≤
(1 +

√
5

2

)ϕ(p−1)/2

for p = 41, 67 and 71

the answer to Question 1 is negative for these primes, by Proposition 3.3.
Note that we could have tried the same strategy as in Proposition 3.3 but using

the inequality of Example 3.2b. This would work only for the primes p satisfying

(3.5) p < 5ϕ(p−1)/12.

However, this inequality is satisfied by none of the primes in the list (3.4).
In the subsequent Theorem 5.1, Question (1) will receive a complete answer.

3.2. Number theoretic minorations of the covering radius. In the light of
the propositions 2.3 and 2.5, it is useful to have some quantitative information on
the covering radius ρ∞(K) of a number field K of degree d.
Let λ1, . . . , λr be the successive minima (w.r.t. the Euclidean norm || · ||2) of the
lattice ΛK . It is well known (see for example [19, Theorem 7.9] that

(3.6) λ1 ≤ . . . ≤ λr ≤ 2ρ2 ≤
√
sλr.

Moreover by (2.2) we have

(3.7) ρ∞(K) ≤ ρ2(K) ≤
√
sρ∞(K).

Therefore

ρ∞(K) ≥ 1√
s
ρ2(K) from (3.7)

≥ 1

2
√
s
λr from (3.6)(3.8)

Theorem 3.4.

a) Let K be a number field such that r ≥ 1. Then ρ∞(K) ≥ 1
2
R

1

r

K .
b) There exists a constant c > 0 such that ρ∞(K) ≥ c for every number field K

such that r ≥ 1.
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Proof. Recall that VK is the volume of a fundamental domain for ΛK . By Minkowski’s
Second Theorem [19, Theorem 1.5]

(λ1 · . . . · λr)
1

r ≥
√
r · V

1

r

K =
√
r · (

√
sRK)

1

r .

Then from (3.8)

ρ∞(K) ≥
√
r

2
√
s
(
√
sRK)

1

r ≥ c′R
1

r

K ,(3.9)

for a suitable constant c′. Studying the function
√
r

2
√
s
(
√
s)

1

r with s = r + 1 we see

that c′ = 1
2
. This proves a). Then b) follows from the well known fact that there

exist constants c0 > 0 and c1 > 1 such that RK > c0 · cd1 ([26, §3], see also [15]. �

The next results provide some lower bounds for the covering radius involving the
Weil height on K.
For n = 1, ..., r we put, as in [1, Page 9]

µK(n) = inf
v1,...,vn∈O×

K
multipl.indep.

(h(v1) · . . . · h(vn)),

Theorem 3.5. For n = 1, . . . , r, we have

ρ∞(K) ≥ d

s
µK(n)

1

n .

In particular

ρ∞(K) ≥ d

s
b(O×

K).

Proof. For every u ∈ O×
K , by (2.1),

(3.10) 2dh(u) = ||ℓ(u)||1 ≤
√
s||ℓ(u)||2.

There exist multiplicatively independent u1, . . . , ur ∈ O×
K such that λi = ||ℓ(ui)||2

([19, Theorem 1.2]). We notice that for n = 1, . . . , r

λn = inf
v1,...,vn∈O×

K
multipl.indep.

max{||ℓ(v1)||2, . . . , ||ℓ(vn)||2}

≥ 2d√
s

inf
v1,...,vn∈O×

K

multipl.indep.

max{h(v1), . . . , h(vn)} by (3.10).

It follows from (3.8) that

ρ∞(K) ≥ 1

2
√
s
λn ≥ d

s
inf

v1,...,vn∈O×

K
multipl.indep.

max{h(v1), . . . , h(vn)} ≥ d

s
µK(n)

1

n .

�

By inequality (3.9), it is possible to use known lower bounds for the regulator
RK in order to deduce lower bounds for the covering radius ρ∞(K). See [20, §3.5,
15] for an overview on evaluations of the regulator and [20, §8] for the special case
of Abelian extensions. Moreover [1, Proposition 3.3] provides a tool allowing to
improve the bound from below of extensions K for which O×

K has property (B). In
particular [1, Corollaire 3.5] deals with the case of totally real and CM field.

Some remarkable results are collected below:
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a) Let L be an infinite extension. Assume that O×
L satisfies property (B) and

let cL = b(O×
L ) = infu∈O×

L
\O×,tors

L
h(u) > 0. Then by Theorem 3.5

ρ∞(K) ≥ cL,

for every number field K ⊆ L such that r(K) ≥ 1.
b) In particular, if a number field K is contained in Qtr(i), then by Example

3.2 d),

ρ∞(K) ≥ 1

2
log

1 +
√
5

2
.

c) Silverman’s theorem [23] allows to construct fields with fixed degree and
covering radius arbitrarily large. It suffices to choose a non-CM field of
discriminant large enough.

4. An algorithm for largeness

We describe an algorithm that solves the following problem:

Problem 1. Given a non-zero algebraic number x ∈ K and a bound B > 0, find all
units u ∈ O×

K such that |σ(xu)| ≥ B for all σ ∈ Σ.

When B = 1 this algorithm detects when a principal ideal is large.

4.1. Basic results.

Lemma 4.1. If u ∈ O×
K is a solution of Problem 1, then for all S ⊂ Σ, we have

B#S ≤
∏

σ∈S
|σ(xu)| ≤ B#S−dN(x)

where #S denotes the cardinality of S.

Proof. Let u ∈ O×
K be a solution of Problem 1. For σ ∈ S, we have the trivial

inequality B ≤ |σ(xu)|. Multiplying these inequalities gives the announced left
inequality.

For σ ∈ S, we have the inequality |σ(xu)| ≤ |σ(xu)|, and for σ 6∈ S, we have
B ≤ |σ(xu)|. Multiplying these inequalities gives Bd−#S

∏
σ∈S |σ(xu)| ≤ N(xu).

But u is a unit, hence N(xu) = N(x), whence the result. �

Proposition 4.2. If N(x) < Bd, then Problem 1 has no solution.

Proof. Apply Lemma 4.1 with S = Σ. �

Proposition 4.3. Given x ∈ K and B > 0, Problem 1 has only finitely many
solutions.

Proof. By Proposition 4.2, Problem 1 has no solution for x = 0. We assume now
that x 6= 0.

Dividing the right inequality of Lemma 4.1 by
∏

σ∈S |σ(x)| 6= 0 gives

∏

σ∈S
|σ(u)| 6 B#S−d

∏

σ 6∈S
|σ(x)| 6 B#S−d

( ||x||1
d−#S

)d−#S

.

Let us consider the characteristic polynomial of u for the extension K/Q and denote
it by Pu. Since u is a unit, Pu ∈ Z[X ] and Pu is monic. The roots of Pu in C are
the real or complex numbers σ(u). Using the above inequality and expressing the
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coefficient ak of Xk in Pu in terms of the roots of Pu, we deduce that |ak| is bounded
independently of u. For example we have |ad| = |a0| = 1 since u is a unit and

|ak| ≤
(
d

k

)( ||x||1
kB

)k

for the other values of k. Since this bound does not depend on u, there are only
finitely many possibilities for Pu, hence for u. �

Remark. We could turn the proof of Proposition 4.3 into an algorithm that tests all
polynomials with coefficients within some bounds depending on B and x. Explicitly,
using the bounds given during the proof, we see that, for a given number field of
fixed degree d, the number of polynomials that need to be tested, is proportional

to

( ||x||1
B

)α

with α =
d−1∑

k=1

k =
d(d− 1)

2
. The number of polynomials that need to

be tested in the algorithm is therefore exponential in the input x, hence very large,
and the resulting algorithm is very slow.

We will give another algorithm in the next section.

4.2. An algorithm to solve Problem 1. If A = (ai,j) is a matrix (or a vector)
with real entries, we write A ≥ 0 to indicate that ai,j ≥ 0 for all i and j. We also
write A ≥ B if A − B ≥ 0. We will use the fact that, if A ≥ 0 and B ≥ 0, then
AB ≥ 0.

We recall that, for a number field K of degree d, with r1 real embeddings and
r2 complex embeddings, we have set s = r1 + r2 and r = s − 1. If u1, . . . , ur are
generators of O×

K modulo torsion, we define the matrix L of size r × s by

Li,j = log |σj(ui)|
if σj is real and

Li,j = 2 log |σj(ui)|
if σj is complex. The i-th row of L is equal to ℓ(ui). At last, we define the column
vector V = (1, . . . , 1)t ∈ Zs.

Using logarithms, we can reformulate our Problem 1 as:

Problem 2. Given a non-zero algebraic number x ∈ K× and a bound B > 0, find
all rows U ∈ Zr such that

UL+X ≥ 0

where X = ℓ(x)− L(B).

Formulated in this way, we see that Problem 2 can be solved by integer linear
programming. However, the situation is not generic here, and a simpler algorithm
is given below.

Algorithm 1.

Input : x ∈ K, x 6= 0, and B > 0.
Output : all solutions U ∈ Zr of Problem 2.

(1) Compute the matrix L of size r×s and the column vector V of size

s as in the above definition.

(2) Remove from L its last column and call M the inverse of this matrix.

Concatenate M with the row vector of size r whose all entries are

0 and obtain a new matrix M of size s× r.
For the next steps, we use the notation N,j for the j-th column

of a matrix N.
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(3) Define the matrix N+ of size s × r, such that, for 1 ≤ j ≤ r,
N+

,j = M,j −mini{Mi,j}V .

(4) Define the matrix N− of size s × r, such that, for 1 ≤ j ≤ r,
N−

,j = M,j −maxi{Mi,j}V .

(5) Compute the row vector X = ℓ(x)− L(B).
(6) For all row vector U ∈ Zr in the range −XN+ ≤ U ≤ −XN−, test

if UL+X ≥ 0. If this is the case, output U.

Proposition 4.4. Algorithm 1 is correct.
Furthermore, when the number field K is fixed, the number of U that need to be

tested during step 6 is at most proportional to (logN(x)− d logB + 1)r.

Proof. We follow the algorithm step by step.

(1) By Dirichlet’s Unit Theorem, the matrix L constructed in step 1 has rank r.
Since the absolute norm of a unit is equal to 1, we have LV = 0, hence V is
in the right kernel of L.

(2) By Dirichlet’s Unit Theorem, when we remove any column of L, the deter-
minant of the remaining square matrix is always the same and equals the
regulator of K, which is not 0. This matrix of size r × r is invertible. By
construction, we have LM = Ir.

(3) For all columns of N+, we have N+
,j = M,j − mini{Mi,j}V . Let i(j) be the

index such that mini{Mi,j} = Mi(j),j. We have N+
i,j = Mi,j −Mi(j),j ≥ 0 by

minimality. Hence N+ ≥ 0. Because V is in the right kernel of L, we deduce
that LN+ = LM = Ir.

(4) Using a similar argument, we can prove that N− ≤ 0 and LN− = Ir.
(5) There is nothing to say here.
(6) If U is a solution of Problem 2, then UL + X ≥ 0. But N+ ≥ 0, hence

ULN+ +XN+ ≥ 0. By the relation LN+ = Ir, we deduce U ≥ −XN+. By
N− ≤ 0, we deduce ULN− +XN− ≤ 0, and U ≤ −XN−.

In order to bound the number of U tested in step 6, we observe that −XN+ ≤
U ≤ −XN−. For the j-th entry, this is explicitly −XN+

,j ≤ Uj ≤ −XN−
,j hence the

number of Uj that need to be tested is at most equal to −XN−
,j +XN+

,j + 1. But
we have

−XN−
,j +XN+

,j = X(M,j −min
i
{Mi,j}V −M,j +max

i
{Mi,j}V )

= (max{M,j} −min{M,j})XV

We also have XV = logN(x) − d logB. If logN(x) − d logB < 0, we have seen in
Proposition 4.2 that the problem has no solution. When logN(x)− d logB ≥ 0, we
have

−XN−
,j +XN+

,j + 1 ≤ (max{M,j} −min{M,j}+ 1)(logN(x)− d logB + 1)

whence a bound for the number of U by

(logN(x)− d logB + 1)r ×
∏

j

(max{M,j} −min{M,j}+ 1)

�

5. A complete example

In this section, we shall give a detailed execution of Algorithm 1, which answers
Question 1 for p = 17. All computations were done using PARI/gp [24].
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Let us consider the 16-th cyclotomic field K equal to Q(ζ) = Q[X ]/Φ16(X), where
Φ16(X) = X8 + 1.

In this field, we consider x = −ζ7 − ζ3 + ζ2. We have N(x) = 17, hence x is a
generator of a principal prime ideal above 17. We are looking for another generator
x′ of this principal ideal such that |σ(x′)| ≥ 1 for all σ ∈ Σ. We need to solve
Problem 2 with B = 1.

We follow here the steps of Algorithm 1.

(1) For this field, we have d = 8, r1 = 0 and r2 = 4. In this case, we have
s = r1 + r2 = 4 and r = 3.

The units of K are generated by u0 = ζ , u1 = −ζ6+ ζ2−1, u2 = ζ2+ ζ+1
and u3 = −ζ6 + ζ3 − ζ , where u0 generates the torsion part and u1, u2, u3

generate the free part. The matrix L is equal to

L =




−1.76274 −1.76274 1.76274 1.76274
−0.33031 2.09306 −2.89946 1.13671
1.13671 −2.89946 −0.33031 2.09306




We easily check that L




1
1
1
1


 = 0.

(2) We have

M =




−0.46575 −0.29144 0.07276
−0.17430 −0.07276 −0.29144
−0.07276 −0.36421 −0.21868

0 0 0




We can check that LM = I3, the identity matrix of order 3.
(3) We have min(M,1) = −0.46575, min(M,2) = −0.36421, min(M,3) = −0.29144.

This gives

N+ =




0 0.07276 0.36421
0.29144 0.29144 0
0.39298 0 0.07276
0.46575 0.36421 0.29144




We can check that N+ ≥ 0 and LN+ = I3.
(4) We have max(M,1) = 0, max(M,2) = 0, max(M,3) = 0.07276. This gives

N− =




−0.46575 −0.29144 0
−0.17430 −0.07276 −0.36421
−0.07276 −0.36421 −0.29144

0 0 −0.07276




We can check that N− ≤ 0 and LN− = I3.
(5) Since B = 1, we have L(B) = 0. For x = −ζ7 − ζ3 + ζ2, we have

X = ℓ(x) = (1.40668, 0.65107, 1.72510,−0.94965)

(6) We compute

−XN+ = (−0.42539, 0.05376,−0.36109)

−XN− = (0.89419, 1.08567, 0.67081)
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In this example, the only U ∈ Z3 within the bounds is U = (0, 1, 0). However,
for this U , we have

UL+X = (1.07636, 2.74414,−1.17435, 0.18706)

hence this is not a solution.

This computation shows that, in this example, Problem 2 has no solution.
Analogous computations applied to all prime p in the list (3.4) allow to give a
complete answer to Question 1:

Theorem 5.1. Let p be one of the primes for which Q(ζp−1) has class number 1, as
listed in (3.4), and let P be a prime ideal over p in the ring of integers of Q(ζp−1).
Then P is large if and only if

(5.1) p ∈ {5, 7, 11, 13, 19, 31}.
More precisely, for each primes in the list (5.1) the following table gives (up to

Galois conjugation and multiplication by a root of unity) the elements π of absolute
norm p having all the components ≥ 1 in the canonical embedding (ζ = ζp−1 in each
case):

p π

5 2ζ + 1

7 ζ − 3

11 2ζ3 − 1, 2ζ2 − ζ + 1

13 −2ζ3 − ζ2, ζ3 − ζ2 + 2

19 −ζ4 − ζ3 + ζ2 + ζ + 1

31 −ζ7 − ζ3 − ζ , −ζ6 − ζ5 + ζ3 + ζ2 + ζ − 1

Table 1. Strictly large integers of absolute norm p in Q(ζp−1)

6. Another application: floor functions and types

Let K be a number field of degree d over Q, and let OK be its ring of integers. We
fix an ideal A of OK . The aim of this section is to apply largeness (when possible) in
order to define complete sets of representatives of K/A (which will be called types)
satisfying some integrality properties and having all the Archimedean embeddings
bounded in a controlled way.
Types associated to a prime ideal P of a number field were introduced in [12] with
the aim of constructing a general notion of P-adic continued fractions and studying
their finiteness and periodicity properties.

Let M0
K be a set of representatives for the non-Archimedean places of K. For

every rational prime p and every v ∈ M0
K above p let Kv ⊆ Qp be the completion of

K w.r.t. the v-adic valuation and Ov be its valuation ring; we put dv = [Kv : Qp].

Let | · |v = |NKv/Qp
(·)|

1

dv
p be the unique extension of | · |p to Kv. Let K̃ =

∏
v|A Kv

be the A-adic completion of K, with K diagonally embedded, and Õ =
∏

v|AOv.

Let S0 = {v ∈ M0
K | v | A}.
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Definition 6.1. An A-adic floor function for K is a function s : K̃ → K such that

a) α− s(α) ∈ AÕ for every α ∈ K̃;
b) |s(α)|v ≤ 1 for every v ∈ M0

K \ S0;
c) s(0) = 0;

d) s(α) = s(β) if α− β ∈ AÕ.

By the Strong Approximation Theorem in number fields (see for example [14,
Theorem 4.1]), A-adic floor functions always exist, and there are infinitely many.
We define the ring of S0-integers

OK,S0
= {α ∈ K | |α|v ≤ 1 for every v ∈ M0

K \ S0}.

Then, we can regard an A-adic floor function as a map s : K̃/AÕ → OK,S0
such that

s(AÕ) = 0 and which is a section of the projection map K̃ → K̃/AÕ. Therefore
the choice of an A-adic floor function amounts to choose a set Y of representatives

of the cosets of AÕ in K̃ containing 0 and contained in OK,S0
.

We shall call the data τ = (K,A, s) (or (K,A,Y)) a type.

Remark 6.2. The absolute Galois group Gal(Q/Q) acts on the set of types; indeed,

if τ = (K,A, s) is a type, then σ ∈ Gal(Q/Q) induces a continuous map K̃ →
K̃σ, where K̃σ is the completion of Kσ with respect to the ideal Aσ. Then τσ =
(Kσ,Aσ, sσ) is also a type, where sσ = σ ◦ s ◦ σ−1. In particular, if K/Q is a Galois
extension and σ belongs to the decomposition group

DA = {σ ∈ Gal(Q/Q) | Aσ = A},
then τσ = (K,A, sσ) is again an A-adic type.

6.1. Types arising from generators of A. In the case A is principal, there is a
natural way of defining an A-adic floor function. Indeed, let π ∈ A be generator
and let R be a complete set of representatives of OK/A containing 0. Then, every

α ∈ K̃ can be expressed uniquely as a Laurent series α =
∑∞

j=−n cjπ
j, where cj ∈ R

for every j. It is possible to define an A-adic floor function by

s(α) =

0∑

j=−n

cjπ
j ∈ K.

We shall denote the types τ = (K,A, s) obtained in this way by τ = (K, π,R), and
we will usually call them special types.

Example 6.3 (Browkin and Ruban types over Q). When K = Q and π = p odd
prime, two main special types have been studied in the literature:

• the Browkin type τB = (Q, p,RB) where RB = {−p−1
2
, . . . , p−1

2
} (see [9, 4,

5, 6, 10, 11]);
• the Ruban type τR = (Q, p,RR) where RR = {0, . . . , p− 1} (see [21, 17, 25,

13]).

6.2. Bounded types. We say that a type τ = (K,A, s) is bounded if there exists a
real number C > 0 such that |σ(s(α))| < C for every α ∈ K and every Archimedean
embedding σ of K.

Proposition 6.4. For every number field K and prime ideal A there exist a bounded
type (K,A, s).
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Proof. Let ι : K → Rr1 × Cr2 ≃ Rd be the canonical embedding. Then ι(A) is a
lattice in Rd. Let DA be a bounded fundamental domain containing 0. We define
a floor function s in the following way: firstly choose any A-adic floor function s′

for K. Let α ∈ K̃ and put α′ = s′(α); then β = α′ + γ ∈ DA for a suitable γ ∈ A;
define s(α) = β. Since DA is a bounded subset of Rd, the claim is proven. �

Remark 6.5. Let ρ be the covering radius of the lattice ι(A) with respect to the
sup norm. Then the closed ball centered in 0 of radius ρ with respect to this norm
contains a fundamental domain DA as in the proof of Proposition 6.4. In particular

we see that there exists a type (K,A, s) such that ||ι(s(x))||∞ ≤ ρ, for every x ∈ K̃.

Proposition 6.6. Assume that A is a non-zero principal ideal of OK having a
strictly large generator π. Let R be any complete set of representatives of OK/A
containing 0. Then the special type (K, π,R) is bounded.

Proof. For every Archimedean embedding σ : K → C let λσ = |σ(π)| and Lσ =
max{|σ(c)| | c ∈ R}. Then for every σ

∣∣∣∣∣

0∑

j=−n

σ(cj)σ(π
j)

∣∣∣∣∣ ≤
Lσλσ

λσ − 1
.

�

Remark 6.7. For each p in the list (3.4), and every prime ideal P over p in Z(ζp−1),
the set Rp = {ζ i | i = 0, . . . , p − 2} ∪ {0} is a complete set of representatives of
Z[ζ ]/P. Then by Proposition 6.6 the special types (Q(ζp−1), π,Rp) are bounded for
every p and π as in Table 1.
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