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Abstract
Cell-to-cell variability in protein concentrations is strongly affected by extrinsic noise, especially
for highly expressed genes. Extrinsic noise can be due to fluctuations of several possible cellular
factors connected to cell physiology and to the level of key enzymes in the expression process.
However, how to identify the predominant sources of extrinsic noise in a biological system is still
an open question. This work considers a general stochastic model of gene expression with extrinsic
noise represented as fluctuations of the different model rates, and focuses on the
out-of-equilibrium expression dynamics. Combining analytical calculations with stochastic
simulations, we characterize how extrinsic noise shapes the protein variability during gene
activation or inactivation, depending on the prevailing source of extrinsic variability, on its
intensity and timescale. In particular, we show that qualitatively different noise profiles can be
identified depending on which are the fluctuating parameters. This indicates an experimentally
accessible way to pinpoint the dominant sources of extrinsic noise using time-coarse experiments.

1. Introduction

Cellular processes are subjected to stochastic fluctu-
ations. These fluctuations (or noise) can lead to phen-
otypic differences even in genetically identical cells
sharing the same history and environment.

Noise can often be detrimental for the cell since
it affects the precision and reliability of several pro-
cesses, for example related to signalling. Indeed, a
high noise level has been associated to partial or
complete loss of cellular functions [1–3], and there
is evidence of evolutionary selection against cellular
noise [4, 5]. On the other hand, molecular noise can
be beneficial in various circumstances [6]. It can be
exploited to drive genetically identical cells to differ-
ent cell fates in multi-cellular organisms [7–13], or
it can induce the phenotypic diversification at the
basis of bet-hedging strategies that protect microbial
cell populations from sudden environmental changes
[14–20].

Focusing specifically on the gene expression pro-
cess, two possible sources of fluctuations can be
defined, i.e. intrinsic and extrinsic noise. Intrinsic
noise arises from the inherently stochastic nature

of the molecular reactions involved in the tran-
scription, translation, and degradation of messen-
ger RNAs (mRNAs) and proteins. Extrinsic noise is
instead the result of fluctuations in global cellular
factors such as the concentration of key macromolec-
ules (e.g. ribosomes and polymerases) involved in
the process performing catalytic/enzymatic activity
[21, 22]. These extrinsic fluctuations can also arise
from cell-to-cell differences in metabolic states [23],
cellular signalling [24, 25], cell-cycle stage [26–28],
and other relevant phenotypic traits associated with
cell physiology (i.e. cell growth rate, doubling time,
volume, etc) [29–35].

Noise propagation through gene regulation is
another key source of gene expression noise. In fact,
the number of regulatory inputs of a gene is correl-
ated with its expression variability in E. coli [36] and
eukaryotes [37, 38], and the topology of the regulat-
ory network can play a crucial role in the extent of
noise propagation [39, 40].

A large amount of theoretical and experimental
work has focused on disentangling the contributions
to protein fluctuations from intrinsic and extrinsic
sources (see for example [41–43]). On the other hand,
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what are precisely the dominant sources of extrinsic
noise, and thus how they have to be correctly inserted
in effective models of gene expression are still open
questions, even if extrinsic noise actually seems the
main noise source for sufficiently highly expressed
genes [38, 44, 45].

The specific definition of what is considered
extrinsic noise depends on the system one wants to
explicitly model (a single gene, a small genetic cir-
cuits, the whole cell). We focus on a single gene
and, from a modelling standpoint, extrinsic noise
can be defined as fluctuations of the parameters of
the expression process such as degradation and pro-
duction rates. All the possible biological sources of
extrinsic noise listed above can affect in complex ways
one or more parameters. For example, growth rate
fluctuations directly impact the dilution rate of pro-
teins through volume fluctuations, but at the same
time can change the protein production rates by
affecting the concentration of key enzymes, such as
ribosomes, that are closely coupled with cell growth
[46]. The problem is to pinpoint which are the para-
meters that are most affected in the biological sys-
tem of interest, in order to design the correct minimal
model of the stochastic process of gene expression.

This work focuses on this problem by look-
ing at the consequences of extrinsic noise on the
out-of-equilibrium dynamics of gene expression.
This regime represents the dynamical approach to a
steady state, during which the reactions of molecule
production and degradation are not yet balanced.
Specifically, we will provide analytical expressions
supported by simulations that characterize how the
protein level and its fluctuations evolve during gene
activation and inactivation in the presence of extrinsic
fluctuations on different parameters. On top of the
theoretical interest of this analysis, the results have
immediate practical applications. In fact, the differ-
ent dynamic profiles of protein noise that we charac-
terized naturally provide an experimentally accessible
method to distinguish between different extrinsic-
noise scenarios.

2. Materials andmethods

2.1. An effective model of stochastic gene
expression with extrinsic noise
The ‘standard model’ of stochastic gene expres-
sion takes into account messenger RNA and pro-
tein production and degradation as first-order chem-
ical reactions [47–50]. After activation, the gene is
transcribed by RNA polymerases in mRNAs with a
fixed rate km; each mRNA (m) is in turn translated
into proteins (p) with rate kp. Proteins and mRNAs
are also removed at specific constant rates (γm and
γp). Figure 1 schematically represents this set of
reactions.

The degradation rate of mRNA molecules sets
their average lifetime (1/γm), which is typically short

compared to the average residence time of proteins
(1/γp). Especially in microorganisms, the average
lifetime of mRNAs is just few minutes [44]. On the
other hand, the rate γp is mainly set by dilution due
to cell growth and division [44, 50–52], and thus the
protein lifetime is essentially set by the cell doubling
time τp = ln(2)/γp [53].

The master equation describing this simple two-
stepmodel of gene expression (figure 1) can be solved
assuming that the promoter is activated at time t= 0
and the initial number of mRNAs and proteins is zero
[50]. In particular, the dynamics of the average pro-
tein numbers is described by

⟨p(t)⟩= pss

(
γp(1− e−γmt)− γm(1− e−γpt)

γp − γm

)
(1)

where pss = kmkp/γmγp is the average protein level
at steady state. The noise can be quantified by the
coefficient of variation squared CV2

p = σ2
p/⟨p⟩2 ≡ η2,

where σ2
p is the variance of the protein number. The

coefficient of variation CVp represents the relative
fluctuations, and it is an intuitive and dimensionless
measure that can be directly compared with experi-
mental values.

For stable proteins, the timescale separation
between the dynamics ofmRNAs and proteins (γm ≫
γp) can be used to derive a compact expression for the
time evolution of the intrinsic noise [50, 54] and for
its equilibrium value:

η2Int(t) =
1

⟨p(t)⟩
(1+Bp +Bpe

−γpt)

t→∞−−−→ 1

pss
(1+Bp)≡ η2Int,ss. (2)

Bp = kp/γm is the protein burst size, i.e. the aver-
age number of proteins produced by a single mRNA
during its lifetime. As the expression at steady state
shows, burstiness introduces an amplification factor
with respect to Poisson noise. We simulate realistic
and relatively high levels of expression (pss = 2000
proteins in most examples we will describe) with
sufficiently low protein burst sizes (few units). The
goal is to focus on genes for which the intrinsic con-
tribution to expression noise is not dominant with
respect to the extrinsic part, at least at steady state.
Large-scale experimental studies in both E. coli and
yeast have suggested that this is the typical case for
highly expressed genes by looking at the scaling of
protein noise with the average protein level [38, 44].
Interestingly, a similar scaling seems to hold also for
mRNA fluctuations [55].

We will also consider the dynamics of a gene at
steady state that is inactivated at the transcriptional
level. In this case, the average protein evolution in
time is given by

⟨p̃(t)⟩= pss

(
γp(e−γmt)− γm(e−γpt)

γp − γm

)
. (3)

2
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Figure 1.Model of the gene expression process with extrinsic noise. Extrinsic noise is included in a basic two-step model of
stochastic gene expression by introducing the cellular factor z(t). z(t) can affect any parameter of the model: transcription and
translation rates (km and kp), as well as degradation rates for mRNAs and proteins (γm and γp). The table on the left lists the
possible reactions for mRNAsm, proteins p and for the cellular factor z with the respective propensity functions that set the event
frequencies.

So far we have only included intrinsic fluctu-
ations since all the rates were constant. To include
extrinsic fluctuations, we introduce a generic cellular
factor z that can affect production or degradation
rates (figure 1). For example, fluctuations in RNA
polymerases or ribosomes will be captured by a direct
action of the factor z on the production rates km or kp.
More generally, the cellular factor z can capture the
consequences that fluctuations in cell physiology can
have on gene expression by modulating the affected
rates.

Extrinsic fluctuations often have a lifetime that
is not negligible and can be comparable to the cell
cycle and to protein half-life [21, 44, 56]. Therefore,
extrinsic noise is typically referred to (and modelled
as) ‘colored’ noise [43], which is a noise with a char-
acteristic timescale. In our context, this timescale
depends on the effective (and often unknown) source
of extrinsic fluctuations.

To explore the role of both extrinsic fluctuations
strength and timescale, we model the dynamics of
the cellular factor as a bursty birth-and-death pro-
cess with constant production and degradation rates
(kz and γz). With this modelling choice, produc-
tion events happen at a constant rate kz (as in a
Poisson process) and the burst size is bz, a random
variable sampled by a geometric probability distri-
bution with average burst size Bz [42]. Tuning kz,
γz and Bz, the extent (CVz) and the timescale (τz =
ln(2)/γz) of extrinsic fluctuations can be independ-
ently modulated.

We can thus introduce extrinsic noise on any bio-
chemical rate by multiplying its value to the cellular
factor. In other words, we can substitute any para-

meter θ of the system with θ → θ(t) = θ z(t)
⟨z⟩ . In this

way, the average parameter value is still θ, i.e. the value
set in the absence of extrinsic fluctuations, but it fluc-
tuates according to z.

The intrinsic noise ηInt will be defined as the
variability associated with the model of stochastic
gene expression with constant parameters. Instead,
the extrinsic noise ηExt can be quantified as the dif-
ference between the totalmeasured protein variability
and the intrinsic part.

2.2. Assessment of the time evolution of protein
cell-to-cell variability
The definition of intrinsic and extrinsic noise natur-
ally implies the decomposition η2 = η2Int + η2Ext [57].
This decomposition is also valid out-of-equilibrium
and for each parameter θ affected by extrinsic fluctu-
ations of strength defined byCVz and timescale by τ z.
Therefore, we can write

η2θ(t;CVz, τz) = η2Int(t)+ η2θ,Ext(t;CVz, τz). (4)

We are interested in the dynamics of gene-expression
noise approaching a steady state. In the case of fluctu-
ations of the production rates km or kp, it is possible
to derive the exact transient protein noise expression
by solving the corresponding system of ordinary dif-
ferential equations. The details of the calculation can
be found in the appendix, but the main result is that
for extrinsic noise acting on production rates we can
provide an analytical estimate of the time evolution
of protein noise.

Unfortunately, the same approach cannot be
applied when extrinsic fluctuations affect the dilu-
tion rate γp. Nevertheless, an approximate expression
for the steady-state protein noise η2γp,ss(CVz, τz) can
still be calculated as a function of the timescale and
strength of extrinsic noise. In order to provide also an
expression for the out-of-equilibrium noise, we can
assume that the time dependence in the noise expres-
sion can be factorized as

η2θ,Ext(t;CVz, τz)≃ Fθ(t)Gθ(CVz, τz). (5)

3
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Fθ(t) explicitly captures the time-dependent part of
the impact of θ fluctuations on gene expression noise,
while Gθ(CVz, τz) is time independent and takes into
account the features of extrinsic noise. Assuming
this factorization, an intuitive although approximate
expression can be provided using the framework of
sensitivity analysis [58]. Basically, we can first evalu-
ate the fluctuations due to the extrinsic factor acting
on the parameter θ at steady state, and this is possible
for every choice of θ. We can then further assume that
the effect of the fluctuating parameter θ on the protein
level is predominantly set by the first-order depend-
ency of the average protein dynamics on θ. In other
words, we can estimate the protein variance in time
using the propagation of uncertainty as

σ2
p(t)≃

(
∂⟨p(t)⟩
∂θ

)2

σ2
θ(CVz, τz). (6)

σ2
θ(CVz, τz) is the variance of the parameter θ, which

is given by the variance of the extrinsic factor z. The
relation can be rephrased for the coefficient of vari-
ation as

η2θ,Ext(t)≃
(

θ

⟨p(t)⟩
∂⟨p(t)⟩
∂θ

)2

CV2
θ(CVz, τz)

≃
(

θ

⟨p(t)⟩
∂⟨p(t)⟩
∂θ

)2

CV2
z , (7)

where, by definition, CV2
θ = CV2

z at any given time.
This estimate provides the functional dependency

of Fθ(t), while the time-independent noise CV2
z can

be included in the factor Gθ(CVz, τz) of the decom-
position in equation (5). The approximation con-
siders p(t) and θ as continuous variables and neglects
the impact of the strength and timescale of extrinsic
fluctuations on the time dependent factor.

From the expression of p(t), it is easy to show that
limt→∞ Fθ(t) = 1 for any parameter θ. This crucial
observation implies that, in order to have consistency
at steady state, the factor Gθ(CVz, τz) has to be equal
to the extrinsic noise at steady state η2θ,Ext,ss.

Therefore, we finally have explicitly defined the
two factors of equation (5) as

Fθ(t) =

(
θ

⟨p(t)⟩
∂⟨p(t)⟩
∂θ

)2

;

Gθ(CVz, τz) = η2θ,Ext,ss(CVz, τz).

(8)

As discussed above, analytical expressions can be cal-
culated for the total protein noise at steady state
η2θ,ss as a function of the strength and the times-
cale of extrinsic fluctuations (see equations (A15),
(A18) and (A22)). Analogously, the intrinsic noise
η2Int,ss can be calculated [50]. Therefore, the extrinsic
part can be extracted with a simple subtraction
η2θ,Ext,ss(CVz, τz) = η2θ,ss − η2Int,ss

All the analytical expressions have been tested
with extensive numerical simulations using the exact
Gillespie algorithm [59] as detailed in the appendix

(section ‘Stochastic simulation specification’). In the
following sections the analytical curves will always
be supported by and compared to numerical results.
More specifically, for each model configuration, we
generated 5× 103 trajectories simulating the reac-
tions reported in figure 1. In order to estimate the
confidence interval of our measurements of noise, we
first calculated the protein coefficient of variation val-
ues for 5 independent sets of 103 trajectories. The
variability of the different values obtained is com-
parable or smaller than the symbol size used in the
figures. We also calculated the interval correspond-
ing to the 95% confidence level for the coefficient of
variation values obtained with the bootstrap method
[60]. Again, the error interval is consistently smal-
ler than the marker symbols and thus not explicitly
shown in the figures.

3. Results

3.1. Extrinsic fluctuations of the protein dilution
rate alter the average protein dynamics
The first result of this work is to provide analytical
expressions for the protein dynamics and its variabil-
ity in the presence of extrinsic fluctuations acting on
different gene expression parameters. These analyt-
ical results are detailed in the Methods section and in
the appendix and will be discussed in the following
sections.

Here, we focus on the expected value of the
protein level at steady state for different extrinsic
noise sources. The different expressions we obtained
show that extrinsic fluctuations acting on produc-
tion rates (i.e. translation rate kp and transcription
rate km) do not alter the average protein level pss
described by equation (1) at equilibrium, but fluc-
tuations of the dilution rate γp can significantly
change it (equation (A21)). When the extrinsic noise
acts on the dilution rate, the system of differential
equations describing the proteinmoment dynamics is
not closed, but an approximatemoment-closure tech-
nique (see appendix, section ‘Protein dilution rate
fluctuations’, equation (A20)) can be used to estim-
ate the expected protein level at steady state as

pγp,ss(CVz, τz)

≃ pss
2

√(1+ τz
τp

)2

+ 4
τz
τp
CV2

z +

(
1− τz

τp

) .
(9)

The expression above indicates how the protein level
depends on the cellular factor z and how it is different
by the value pss = kmkp/γmγp without extrinsic noise.
In particular, it increases with the fluctuation strength
CVz and has a sigmoidal dependence on the fluctu-
ation timescale τ z. These analytical predictions are
well supported by stochastic simulations (appendix
figure A2).

4
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Figure 2. Cell-to-cell variability for different sources of extrinsic noise. We compare the time evolution of expression variability
during the activation dynamics when extrinsic fluctuations affect a single rate of production (km, kp) or of degradation (γm or
γp). Even if the extrinsic noise properties are fixed (CVz = 0.3, τz/τp = 1, ⟨z⟩= 1000 copies), different protein noise profiles η(t)
can be observed depending on the fluctuating parameter. (A) Thanks to the controlled comparison, the average protein level
approaches a fixed steady state following equation (1), independently of the source of extrinsic noise. (B) The protein probability
densities are qualitatively different in the presence of fluctuations of km or γp. The mean protein levels at different times are
reported as vertical lines and correspond to the horizontal lines in (A). (C) The total gene expression noise, quantified by the
coefficient of variation, is reported as a function of time during the transient regime (time ∈ [0;6]τp). The continuous grey line
represents the variability without extrinsic noise CVz = 0, i.e. only the intrinsic noise described by equation (2). The horizontal
blue line marks the approximate prediction for the steady-state expression variability under fluctuations of γp, to which the values
of the simulations asymptotically tend. The dashed lines correspond to the theoretical predictions (equations (10) and (14)),
which are well compatible with the simulation results (symbols).

Therefore, the noise-induced alteration of the
average behaviour, also known as deviant effect
[40, 61], generates a discrepancy with respect to the
classic deterministic prediction pss, and this discrep-
ancy grows with the level of extrinsic fluctuations.
Thus, deviations from the expected average protein
value could in principle be used in experimental
settings as hallmarks of large extrinsic fluctuations
acting on degradation rates. However, this obser-
vation would practically require the knowledge of
the process parameter values, which are often not
known.

This work aims to characterize the complex
interplay between extrinsic fluctuations and protein
dynamics in single cells. We will show that this char-
acterization is instrumental to define easily measur-
able signatures of the possible dominant sources of
extrinsic noise in a system, even when the specific
parameter values are not known. However, in order
to do so, we need to compare the expected single-cell
protein dynamics with extrinsic fluctuations acting
on different parameters with a fixed common aver-
age steady-state value. As explained in detail in the
appendix (section ‘Amathematically controlled com-
parison’) and shown in figure A3, we implemented
this classic ‘mathematically controlled comparison’
[52, 62] by taking into account the deviant effects
and constraining the average steady-state protein
value for any magnitude and timescale of extrinsic
fluctuations, independently of which the noisy
parameter is.

3.2. The dynamics of cell-to-cell variability is
strongly dependent on the dominant source of
extrinsic noise
This section describes the single-cell expression
dynamics when a gene is activated in the presence
of extrinsic fluctuations. The main observation is
that the protein noise dynamics is qualitatively dif-
ferent depending on which parameter is predomin-
antly affected by extrinsic fluctuations. In fact, even
if the average protein dynamics is constrained to
be the same (figure 2(A)), as explained in the pre-
vious section, the protein probability densities are
significantly different at short times depending on
the extrinsic noise source (figure 2(B)). The out-of-
equilibrium protein fluctuations are higher for noise
affecting production rates rather than degradation
rates. This distinction cannot be done at equilibrium
since the probability densities progressively collapse
as the protein level approaches the steady state.

Figure 2(C) explicitly reports the dynamics of
protein expression noise, which shows different beha-
viors depending on the dominant source of extrinsic
noise. While we used the CV2 as the noise meas-
ure in our mathematical expressions, the coefficient
of variation (η(t) = CV) is reported in figure 2(C)
and in the following figures as a more intuitive meas-
ure. The trends in the presence of fluctuations of
the production rates (i.e. km or kp) are qualitat-
ively and quantitatively similar. The simulations are
well explained by the exact formula (fully derived in
the appendix sections ‘Transcription burst frequency

5
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fluctuations’ and ‘Translation rate fluctuations’) for
the time-evolution of protein noise in the presence
of transcription rate fluctuations (red dashed line in
figure 2):

η2km(t;CVz, τz = τp) =
1

(eγpt − 1)2

×
[(
e2γpt − 1

)
η2Int(t)+

1

2

(
e2γpt − 2γpt− 1

)
CV2

z

]
.

(10)

The corresponding steady state limit is given by

lim
t→∞

η2km(t;CVz, τz = τp) = η2km,ss(CVz, τz = τp)

= η2Int,ss +
CV2

z

2
. (11)

The time dependence of equation (10) is analogous to
the one of intrinsic fluctuations, given by equation (2)
and corresponding to the grey line in figure 2(C). The
presence of extrinsic noise essentially increases the
relaxation point to the higher noise value predicted
by equation (11) without changing the monotonous
decreasing trend.

This result can be intuitively understood by con-
sidering the factorization proposed in equation (5).
Since ∂⟨p(t)⟩/∂km = ⟨p(t)⟩/km and ∂⟨p(t)⟩/∂kp =
⟨p(t)⟩/kp, the factors Fkm(t) and Fkp(t) do not depend
on time, thus explaining why ηkm(t) and ηkp(t) qualit-
atively follow the intrinsic noise profile. Indeed, the
extrinsic fluctuations uniformly affect gene expres-
sion during the activation dynamics by shifting the
total noise in protein level to higher values.

Note that the predicted steady-state levels of fluc-
tuations are all similar in this setting. In principle,
fluctuations on different production rates can pro-
duce slightly different levels of steady-state protein
noise. In fact, fluctuations of the translation rate (and
thus of the protein burst size) lead to higher pro-
tein noise, as the comparison between their analyt-
ical expressions in equations (11) and (A18) shows.
However, the additional noise term has a factor 1/pss
that makes it negligible for highly expressed genes.
Analogously, as explained in details in the appendix
(section ‘Protein dilution rate fluctuations’), the
estimated value of η2γp,ss for fluctuations of the degrad-
ation rate has a particularly compact form when
the timescale of extrinsic fluctuations approxim-
ately matches the intrinsic one (as in the example
considered):

η2γp,ss(CVz, τz = τp)≃ η2Int,ss +
[√

1+CV2
z − 1

]
.

(12)

The Taylor expansion of the extrinsic contribu-
tion for small CV2

z is CV
2
z/2, precisely as in the case

of fluctuations on production rates (equation (11)).
On the other hand, the protein noise dynam-

ics η(t) displays a qualitatively different and non-
monotonic trend for fluctuations of degradation rates

(γm or γp). In particular, extrinsic fluctuations on γp

do not affect the noise dynamics at short times. The
total noise is dominated by the intrinsic part as the
simulations (blue circles) precisely lay on the intrinsic
noise theoretical prediction (grey line) for t< τp in
figure 2(C). As long as the number of proteins is small,
the degradation term is negligible and proteins accu-
mulate approximately linearly with a slope that does
not depend on γp. This can be proven by consid-
ering the Taylor expansion for t→ 0 of ⟨p(t)⟩ when
γm ≫ γp:

⟨p(t)⟩ ≈ pss
(
1− e−γpt

)
≈
t→0

pss
(
1− (1− γpt+O(t2))

)
=

kmkp
γm

t+O(t2), (13)

where we explicitly report the linear term of the
expansion, and collect the remaining smaller terms
using the standard O notation.

The contribution of γp on the protein dynamics,
and thus also on the fluctuations, becomes significant
only at sufficiently long times. In a similar way, the
impact of the cellular factor on γm is negligible at the
beginning of the simulation and grows in time with
⟨m(t)⟩.

The generalization of this simple argument allows
us to roughly quantify the impact of extrinsic fluctu-
ations at any time through the factorization explained
in the Methods section. When extrinsic fluctuations
affect the protein dilution rate γp, our approximate
prediction for the time-evolution of protein noise is

ηγp(t)≃
√
η2Int(t)+ η2γp,Ext(t) (14a)

η2γp,Ext(t)≃
(

γp
⟨p(t)⟩

∂⟨p(t)⟩
∂γp

)2

η2γp,Ext,ss. (14b)

This approximation is displayed as a dashed blue
line in figure 2(C) and well captures the results of
exact simulations.

In the case of fluctuations of γm we tested the
validity of the approach summarized in equation (8)
without explicitly calculating the noise at steady state.
Thus, the experimental value at steady state was used
to obtained the dynamics represented in figure 2(C)
as a dashedmagenta line. Also in this case the approx-
imation captures the empirical trend.

The minimum values of ηγm(t) and ηγp(t) mark
the times at which extrinsic fluctuations start to sig-
nificantly affect the expression noise. As intuitively
expected, this happens approximately at the corres-
ponding molecule lifetimes since they set the times-
cales of the approach of the steady state. In partic-
ular, the transition is at a time ≃ 1 (in units of τ p)
in figure 2(C) for noise on γp, and earlier for noise
on γm since the mRNAs approaches the steady state
quickly. Figure 2 refers to a particular choice of CVz

and τ z = τ p (matched timescales), but the trends are
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Figure 3. Functional dependence of protein variability on the extrinsic noise strength and timescale. The protein noise is reported
as a function of the strength (A) and timescale (B) of extrinsic fluctuations. Different symbols correspond to fluctuations of
different expression parameter (km, kp or γp) as explained in the legend. The analysis is reported at three different times in the
activation dynamics, representing the early stage, an intermediate stage and essentially the steady state. Dashed lines represent the
theoretical predictions of equation (10) (red) and equation (14) (blue) that well capture the results of Gillespie simulations. To
investigate the role of CVz (A), the timescale of z(t) is fixed. In this example it matches the timescale of p(t), i.e. τz = τp. On the
other hand, to explore the role of the timescale τ z (B), the coefficient of variation of the cellular factor has been held constant to
CVz = 0.5.

robust with respect to the values of CVz and τ z, as
reported for example in figure A1.

A relevant implication of this analysis is that
the simple observation of the dynamics of pro-
tein noise, which is experimentally accessible, can
clearly distinguish between alternative sources of
gene-expression variability, even if the parameter val-
ues are not known.

3.3. Linear increase of protein noise with the
strength of extrinsic fluctuations
This section explores in detail the role of the strength
of extrinsic fluctuations in shaping the single-cell
expression dynamics. Tomodel the biologically relev-
ant range of extrinsic fluctuations (CVz ∈ [0.1;0.8]),
we considered the data reported in [44] about the
noise level of highly expressed protein in E. coli.
Figure 3(A) reports the protein noise η(t) as a func-
tion of the extrinsic noiseCVz. During the early stages
of the protein activation dynamics (time t= 0.1τp)
the intrinsic component of expression noise (grey
line) is significant, and in particular it is the only
contribution to the total noise when extrinsic fluc-
tuations act on γp. For sufficiently long times, the
intrinsic noise becomes less relevant, and the expres-
sion variability starts to increase linearly with the
strength of extrinsic fluctuations. The proportional-
ity coefficient depends on the fluctuating parameter
and on the time of themeasurement. The figure refers
to the biologically relevant situation of approximately
matched timescale τ z = τ p. In this case, the cellular
factor z can represent a protein whose fluctuations

affect the production or the degradation of a protein
of interest p with a similar average lifetimes (for
example set by the cell doubling time). In these con-
ditions, η reaches a single steady-state level for long
times (t = 20τp) for any choice of the fluctuating
parameter, as displayed by the overlap of the differ-
ent curves in the right panel of figure 3(A).

The dashed lines in figure 3(A) correspond
to our theoretical predictions for ηkm and ηγp ,
i.e. respectively equations (10) and (14), and the plots
show the agreement with simulation results. Again,
we are comparing systems that converge to similar
steady state levels of noise. The difference grows in
principle with CVz, but it is negligible within our
range of parameter exploration. This can be shown
by comparing the Taylor expansion of equation (12)
for small CV2

z to equation (11).

3.4. Sigmoidal dependence of protein noise on the
timescale of extrinsic fluctuations
The specific timescale of extrinsic fluctuations cru-
cially depends on their biological origin and can be
slow or fast with respect to the relevant timescale of
protein halflife. For instance, slow fluctuations of a
transcription factor level would imply extrinsic fluc-
tuations acting on the transcription rate with a rel-
atively long timescale (τz/τp ≫ 1), thus making the
promoter slowly switch between different states of
activity.

Figure 3(B) displays the role of the timescale of
extrinsic fluctuations in determining the time evol-
ution of protein variability. The consequences of
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adding stochasticity through the coupling with an
extrinsic factor z(t) areminimal when its autocorrela-
tion time is much smaller than the duration of a typ-
ical intrinsic fluctuation of p(t), which is set by the
protein lifetime. In fact, when these two timescales are
well separated, i.e. τz ≪ τp or equivalently γz ≫ γp,
extrinsic fluctuations are averaged out in the protein
dynamics and the extrinsic component is negligible.
Indeed, all noise curves start from the intrinsic noise
baseline (grey line) for relatively fast z fluctuations in
figure 3(B).

In the opposite setting (i.e. τz ≫ τp or γz ≪ γp),
the extrinsic factor evolves slowly in time. Therefore,
every cell in the population has a specific random
value for the fluctuating parameter that is essen-
tially frozen during the protein dynamics. The sys-
tem is essentially subjected to what is typically called
quenched disorder in statistical physics. Around
τz/τp > 10 the system enters into this ‘quenched
regime’ and the noise η saturates at a value that only
depends on the level CVz of the quenched noise. The
presence of these two regimes makes the dependence
on the extrinsic-noise timescale sigmoidal and the
crossover between the two regimes is at τz ≃ τp as
intuitively expected.

As mentioned before, at the beginning of the
dynamics (t= 0.1τp), intrinsic noise is dominant
when the fluctuating parameter is γp (blue circles),
and thus the extrinsic contribution to η is negligible
independently of its timescale. This is not the case
for fluctuations in production parameters. The dis-
crepancy is well capture by our analytical predictions
(dashed lines). For longer times, such as t = 2τp,
the cell-to-cell variability continuously moves from
a dominant intrinsic noise for short living extrinsic
fluctuations (τz ≪ τp) to the opposite situation in
the quenched regime (τz ≫ τp), since in this example
CVz ≫ ηInt,ss.

At the steady state (t = 20τp in the figure) and in
the quenched regime, the gene expression variability
is essentially set by the distribution of the extrinsic
factor z. Our analytical predictions converge for any
fluctuating parameter to a single steady-state value
given by the expression

ηss =
√
η2Int,ss +CV2

z . (15)

However, while the analytical expression seem gen-
erally accurate, the noise exceeds the prediction in
simulations with γp as a fluctuating parameter. This
gap shows the limitations of the analytical approxim-
ationsmade in this case and explained in details in the
appendix (section Protein dilution rate fluctuations).

The sigmoidal dependence of protein fluctuations
on the extrinsic noise timescale suggests the pres-
ence of an effective noise filter. To survive the filter-
ing, the effective frequency of extrinsic fluctuations
must be of the same order or lower than the fre-
quency of intrinsic fluctuations. In fact, the possible

behavior of simple genetic circuits as low-pass filters
was previously investigated using frequency domain
analysis [63, 64]. Specifically, these studies focused on
how extrinsic noise on the production rates can cause
alterations in the autocorrelation function of the tar-
get protein in a frequency-dependent manner. Our
results are compatible and generalize these previous
findings. A comprehensive comparison is reported in
the appendix (section ‘Protein autocorrelation func-
tion in the presence of extrinsic noise’).

3.5. Fluctuations of protein dilution rate after a
transcriptional block enhance expression noise
The analysis has focused so far on the gene activation
dynamics. This section studies the time-evolution
of protein noise in the case of a sudden transcrip-
tional repression. We consider a gene expressed at
steady-state level whose transcription rate goes to zero
at time zero, and we analyze the following protein
dynamics when extrinsic noise affects different para-
meters. Again a mathematically controlled compar-
ison (defined in the Methods section) will be used:
the system always start from the same average steady
state level as in figure 4(A). Fluctuations acting on
different parameters do not alter the average protein
decay dynamics (figure 4(A)), which is well described
by equation (3). Analogously, the initial level of fluc-
tuations is given by equations (12) and (11) and is
approximately independent on which is the fluctu-
ating parameter in this setting, as it is also shown
by the overlap of the protein distributions at the ini-
tial time in figure 4(B). Nevertheless, clear differ-
ences in the protein probability densities appear as the
switch-off dynamics unfolds (figure 4(B)). In particu-
lar, extrinsic fluctuations predominantly on the pro-
tein degradation rate leads to high-variance protein
distributions.

As the expression level progressively approaches
zero, the intrinsic contribution grows exponentially,
following the grey continuous line in the inset of
figure 4(C). After the transcriptional block, the num-
ber of mRNAs decays with a timescale set by τm,
which is typically short with respect to the protein
lifetime. Therefore, ⟨m(t)⟩ quickly goes to zero and
protein degradation is the only possible reaction left.
This explains why the expression noise profiles are
equivalent to the intrinsic noise prediction with the
exception of ηγp(t), i.e. when extrinsic fluctuations
predominantly affects the protein lifetime.

Our theoretical predictions for η(t) (dashed lines
of figure 4(C) derive from the simple argument of
equation (8), which when applied in this context
gives:

η̃θ(t)≃
√
η̃2Int(t)+ η̃2θ,Ext(t); (16)

η̃2θ,Ext(t;CVz, τz)≃ F̃θ(t)G̃θ(CVz, τz); (17)
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Figure 4. Time-dependent cell-to-cell variability after a sudden transcriptional block. In analogy with figure 2, throughout the
four alternative settings, we maintain the inactivation dynamics and we fix the properties of the extrinsic noise. (A) Inactivation
dynamics is almost not influenced by extrinsic noise independently of its source, making the controlled comparison method
redundant for this particular choice of CVz = 0.3, τz/τp = 1, ⟨z⟩= 1000 cellular factors. (B) The main differences between
proteins probability densities in case of fluctuations of km or γp are appreciable during the intermediate and the final stage of the
transient. (C) The time-evolution of expression variability in case of fluctuations of production rates or mRNA’s degradation rate
is similar to the one that we observe in the absence of the source of extrinsic noise (grey continuous line). When fluctuations act
on γp their effect is to enhance expression variability, although the general monotonicity is maintained; the subpanel extends the
time range to 10τp, showing the exponential growth of the intrinsic noise as the average protein number approaches zero.

F̃θ(t) =

(
θ

⟨p̃(t)⟩
∂⟨p̃(t)⟩
∂θ

)2

; (18)

G̃θ(CVz, τz) = η̃2θ,Ext(t= 0) = η2θ,Ext,ss. (19)

To determine the role of G̃θ(CVz, τz), the limit
limt→0 F̃θ(t) has to be considered, which correspond
to the initial steady state. In the case of fluctuations of
km, kp or γm, the term F̃(t) does not depend on time.
Therefore, the noise dynamics is uniformly affected
by extrinsic noise. η(t) remains approximately con-
stant until the intrinsic contribution becomes dom-
inant (around t≃ 7τp) and makes the noise grow
exponentially.

The trend of η̃γp(t), i.e. for a fluctuating protein
degradation rate, is qualitatively different and well
predicted by our analytical estimations. As long as
the intrinsic contribution is negligible, protein noise
grows linearly with time as η̃γp(t)≈

(
1+ γpt

)
η̃(t=

0). For sufficient long times, ⟨p(t)⟩ approaches zero
and again the noise diverges because of the intrinsic
contribution.

The fluctuation trends in the gene deactivation
dynamics do not have qualitatively different behavi-
ors as in the case of gene activation, there is a general
increase in protein noise [65]. However, an extrinsic
noise thatmainly affects the degradation rate signific-
antly increases the protein fluctuations immediately
after the transcriptional block.On the other hand, it is
necessary to wait way longer then the protein lifetime
to see a considerable fold in protein noise if the pro-
duction rates are fluctuating. An estimate of the pro-
tein lifetime can be extracted from the average protein
dynamics after the transcriptional block. In fact, the
average protein value follows equation (3), which is

basically an exponential decay with exponent given
by the protein lifetime if the protein is stable with
respect to the mRNA. These observations can be used
in time-coarse experiments to identify the main form
of extrinsic noise in the system in analysis.

As the inset of figure 4(C) shows, for long
times the number of proteins becomes small and
the intrinsic fluctuations become dominant. To bet-
ter isolate the effect of extrinsic fluctuations on the
noise dynamics, we also considered a sudden shift
in protein production. In particular, we analyze the
the protein dynamics from a high steady-state level
to a lower one, but still far from zero. In this way,
the intrinsic fluctuations remain a small contribu-
tion across the whole transition. This setting can also
be realized experimentally by controlling an indu-
cible promoter to a lower transcription rate. The
results of this analysis are reported in the appendix
(section ‘The effect of extrinsic fluctuations after a
reduction of the transcription rate’), and in partic-
ular in figure A5. Also in this case the protein noise
dynamics is qualitatively different if the extrinsic
noise acts on production rates or on degradation
rates.

3.6. The interplay betweenmultiple fluctuating
parameters
One single parameter could be predominantly
affected by extrinsic fluctuations as we have assumed
so far. For example, if fluctuations in ribosome con-
centration are the main source of extrinsic noise, as it
has been hypothesized in fast-growing bacteria [44],
the translation rate would be the main fluctuating
parameter in a corresponding model of stochastic
gene expression. However, more general variability in
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Figure 5. Simultaneous fluctuations of km and γp can combine constructively or destructively during transient dynamics. We
consider the combined action of extrinsic alterations on the transcription rate and the dilution rate. The lines represent our
theoretical prediction, while simulation results are reported as hexagonal dots. The grey line corresponds to the analytical
intrinsic noise. The fluctuations are either uncorrelated and generated by individual sources of stochasticity, z1(t) and z2(t), (in
green), or generated by the same source, z(t), affecting the parameters in a correlated (purple) or anti-correlated way (yellow).
The simulation specifications are: ⟨z1⟩= ⟨z2⟩= ⟨z⟩= 1000 cellular factors, CVz1 = CVz2 = CVz = 0.3 and τz1 = τz2 = τ z = τ p.

cell physiology can affect multiple expression para-
meters in different ways. For example, growth rate
is coupled to ribosome concentration as well as to
cell volume, and thus its fluctuations can influence
translation rate as well as protein dilution. Therefore,
this section explores the consequences of extrinsic
fluctuations affecting two different expression para-
meters with comparable intensity. In particular, we
focus on the illustrative example of fluctuations in the
transcription rate and in the protein dilution/degrad-
ation rate, and we describe their possible interactions
in defining the final level of protein noise.

Previous studies have shown that extrinsic fluc-
tuations can combine constructively or destructively
at the steady state depending on their action on
parameters [42, 43]. Here, we extend the analysis to
the out-of-equilibrium dynamics.

More specifically, a single extrinsic factor z can
simultaneously set the fluctuations of the two differ-
ent parameters in a positively or negatively correl-
ated fashion. Alternatively, two independent sources
of noise (z1 and z2) can individually affect the two dif-
ferent parameters making their fluctuations uncor-
related. While these represent the more clear-cut
scenarios, a specific biological system could present
multiple sources of extrinsic noise and thus interme-
diate and more nuanced situations.

When two sources of noise independently affect
the transcription and degradation rates, a simple
additive combination can be observed. In other
words, the total extrinsic noise is well described by
the sum of the extrinsic contributions we previ-
ously calculated with a single fluctuating parameter.
Therefore, the total protein noise can be simple
written as

ηSum(t) =

√
η2Int(t)+

∣∣∣η2km,Ext(t)+ η2γp,Ext(t)
∣∣∣, (20)

where η2km,Ext(t) and η2γp,Ext(t) are the expressions
calculated for km or γp as the only fluctuating

parameter. Figure 5 shows that this analytical pre-
diction fits rather well the simulation results (green
dots).

When a single extrinsic factor z sets the two para-
meters in a correlated way, a positive fluctuation in z
increases the protein production rate but, at the same
time, also boosts the degradation rate. Therefore, the
two fluctuations combine destructively, and the res-
ulting extrinsic contribution is approximately the dif-
ference between the two noise contributions. The
total protein noise can thus be described by

ηDiff(t) =

√
η2Int(t)+

∣∣∣η2km,Ext(t)− η2γp,Ext(t)
∣∣∣. (21)

This expression is plotted as a continuous purple line
in figure 5 and captures the behavior of the corres-
ponding simulations (purple dots). However, there
is a clear quantitative mismatch between simulation
and analytical results, indicating that using the dif-
ference between the two extrinsic noise sources is an
oversimplification and their interplay can be more
complex.

On the contrary, when a single source of
stochasticity affects km and γp in an anti-correlated
way, their corresponding noise contributions com-
bine constructively, so that the total noise exceeds
ηSum(t).

The non-monotonous trend of protein noise,
which is the hallmark of dominant extrinsic fluctu-
ations in γp as shown in figure 2, is thus conserved
also if another parameter fluctuates with an equival-
ent variance, as long as the two contributions do not
combine destructively.

4. Discussion

The analysis of noise has always played a crucial role
in our quantitative understanding of basic biological
processes [66–69]. More specifically, from the first
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single-cell experiments with clonal bacterial popula-
tions, the substantial cell-to-cell variability in gene
expression was evident, and could be traced back
to two distinct origins, i.e. intrinsic and extrinsic
noise [39, 41]. Experimentally, the dual-color exper-
iment allows to disentangle the two noise factors
[41], although their interplay can actually be complex
and not trivial to interpret [22]. Large-scale studies
showed the major relevance of the extrinsic contri-
bution, especially for sufficiently expressed genes [38,
44, 45]. In parallel, theoretical analysis have been pro-
posed on the consequences of extrinsic noise on pro-
tein distributions at steady state [42, 43]. However,
understanding the dominant biological sources of
extrinsic noise in a specific organism, and thus the
expression rates mostly affected by these general cel-
lular factors, has proven to be a difficult task. A major
problem is that factors related to cell physiology such
as metabolism or cell cycle, which are known to have
substantial cell-to-cell variability [23, 70, 71], can
affect multiple steps in gene expression from the gene
copy number to the translation rate. This makes hard
to hypothesize what rates are actually predominantly
fluctuating and thus to build appropriate mathemat-
ical models.

The observation that equilibrium distributions
could not be sufficient to characterize the noise
sources was previously recognized in an analysis
on the role of RNA degradation fluctuations [72].
Analogously, the idea that the molecule dynamics
can provide additional information on the domin-
ant source of noise has been exploited to distin-
guish between alternative intrinsic noise models [65,
73]. This paper extends these intuitions and provides
a detailed theoretical analysis of the possible scen-
arios in which different parameters are predomin-
antly coupled with an extrinsic noise source. More
specifically, we characterized the dynamics of the
average protein level and of its fluctuations out-
of-equilibrium, showing that the dynamics specific-
ally presents signatures of the extrinsic noise source.
Current experimental techniques based on fluores-
cence time-lapse microscopy [74, 75], potentially
coupled with microfluidic devices to keep cells in a
controlled environment for many generations [75,
76], give access to the expression dynamics at the
single-cell level when a reporter gene is induced
or suppressed. Therefore, our results can be dir-
ectly compared with experimental trends, provid-
ing a simple tool to better understand the dominant
sources of extrinsic noise by pinpointing the fluctuat-
ing expression parameters. We also explored in detail
the parameter space, providing analytical estimates
of how the picture can quantitatively change as a
function of the timescale and strength of extrinsic
fluctuations.

We used a simple and general modelling frame-
work to keep it amenable of analytical calculations

and applicable to different biological systems. The
actual cellular mechanisms giving rise to extrinsic
noise are only phenomenologically captured by a gen-
eric ‘cellular factor’ z described by a three-parameter
distribution of which we varied the parameter val-
ues. An alternative (and complementary) approach
would be to start from specific mechanistic descrip-
tions of global cellular factors, for biological systems
in which are available, and explore their impact on
noise in gene expression. For example, in fast growing
bacteria quantitative descriptions of the cell cycle [77,
78] and of the ‘laws’ governing the global resource
partitioning in the cell [46, 79, 80] have been pro-
posed. These basic aspects of cell physiology greatly
contribute to gene expression rates and their fluctu-
ations by setting the cell volume, protein dilution, as
well as the concentration of key enzymes [81]. Along
this line, recent work focused on the effect of cell cycle
and growth rate variability on gene expression noise
[33–35]. It would be interesting to analyze the relation
between specific mechanistic models of the extrinsic
noise source and the statistics of the general factor z in
our approach, in order to apply our analytical results
and predictions for the out-of-equilibrium dynamics
to more detailed biological descriptions.

While this work focuses on the dynamics of an
isolated gene, a natural extension will be to consider
more complex regulatory interactions, such as the
ubiquitous circuits of auto-regulation, feed-forward
loops and regulatory cascades. Noise propagation
through transcriptional regulation is a known sub-
stantial source of extrinsic noise [36, 37], and thus
the dynamical fluctuation properties here described
could in principle change in the presence of regulat-
ory circuits.

In the framework of synthetic biology, genetic cir-
cuits can be designed using different types of reg-
ulators, thus introducing controlled modulations of
specific rates, from transcription rates to degrada-
tion rates [82–84]. The choice of which rate is reg-
ulated will naturally induce fluctuations of the cor-
responding parameter because of the coupling with
the regulator fluctuations. Thus, different dominant
sources of extrinsic noise can be introduced in syn-
thetic circuits, in principle with a different strength
and timescale. Therefore, genetically engineered sys-
tems can represent the ideal testing ground for our
predictions.

Finally, the presence of extrinsic noise can have
relevant consequences on the timing precision of
genetic circuits. Models of stochastic timing in
gene expression have typically focused on the con-
sequences of intrinsic noise [85–87]. However, char-
acterizing the out-of-equilibrium dynamics with
extrinsic noise, the results presented here can be
used to derive estimates of first-passage-time distri-
butions in the presence of different types of extrinsic
fluctuations.
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Appendix content

Appendix contains: the detailed description of our
method to implement a source of extrinsic noise in
the standard stochastic model of gene expression;
the derivation of the analytical predictions presented
throughout the Results section; the specification of
the parameters used during the simulations; a qualit-
ative analysis of the effect of the extrinsic fluctuations
on the protein normalized autocorrelation function;
the description of the protein noise dynamics after a
shift in protein production from a high steady-state
level.

Appendix

Modelling extrinsic noise
The basic model of gene expression consists of four
possible events that occur randomly at exponentially-
distributed time intervals, with rates that are constant
in the absence of an extrinsic source of noise. The
discrete changes in the mRNA and protein popula-
tions due to the four events are listed in table A1.
The third column shows the event propensity func-
tion that determines how often an event occurs.

In the often-valid limit of short-living mRNAs
with respect to proteins (γm ≫ γp), the model can be
approximated by a bursty expression model: bursts of
protein production arrive at a constant rate km (as in
the Poisson transcription process) and the burst size is
given by the number of proteins produced by a single

Table A1. The standard stochastic model of gene expression.

Event
Population
reset

Propensity
function (f )

mRNA birth m(t)→m(t)+ 1 km
mRNA death m(t)→m(t)− 1 m(t)γm
Protein birth p(t)→ p(t)+ 1 m(t)kp
Protein death p(t)→ p(t)− 1 p(t)γp

mRNA bp. bp is a random variable following a geo-
metric probability distribution with mean burst size
Bp = kp/γm [88].

For the above model, the time derivative of the
expected value of any differentiable function φ(m,p)
is given by

d⟨φ(m,p)⟩
dt

=

〈∑
Events

∆φ(m,p)× f(m,p)

〉
(A1)

where ∆φ(z,m,p) is the change in φ(z,m,p) when
an event occurs and f(m,p) is the event propensity
function [42]. In particular, the moments of p(t)
can be directly obtained from the corresponding
Chemical Master equation [89, 90]. For each posit-
ive integer n, the time evolution of the expected value
of p(t)n is given by

d⟨p(t)n⟩
dt

= ⟨G(p)⟩, n ∈ {0,1,2, . . .}, (A2)

G(p) : =
∞∑
j=0

kmP(bp = j)[(p+ j)n − pn]

+ γpp[(p− 1)n − pn]. (A3)

P(bp = j) is the probability of having a burst of j pro-
teinmolecules. From this expression, we canwrite the
equations for the dynamics of the first two moments
as

d⟨p⟩
dt

= kmBp − γp⟨p⟩ (A4a)

d⟨p2⟩
dt

= γp(⟨p⟩− 2⟨p2⟩)+ km⟨b2p⟩+ 2km⟨p⟩Bp,

(A4b)

where we substitute the moments of the burst size
geometrical distribution, i.e. ⟨b2p⟩= 2⟨bp⟩2 + ⟨bp⟩=
2B2

p +Bp.
By considering the steady state of equations (A4),

the protein mean and noise levels can be calculated as

pss =
km
γp

Bp,
⟨p2⟩− ⟨p⟩2

⟨p⟩2
=

1

pss
(1+Bp) := η2Int,ss.

(A5)

The time evolution of the intrinsic noise is:

η2Int(t) =
1

⟨p(t)⟩
(1+Bp +Bpe

−γpt).
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This expression, given by equation (2) in the main
text, is derived in detail in [50]. Its validity relies on
twomain assumptions. Firstly, it assumes that the life-
time of mRNA is significantly shorter than that of
proteins (γm/γp ≫ 1). Secondly, it requires that the
time t is greater than 1/γm, indicating that enough
time must have passed for mRNA levels to reach a
steady state.

We now introduce extrinsic noise in the model
using an extrinsic factorwith copy number z(t) whose
stochastic dynamics is modeled as a bursty process
with constant production rate kz and degradation rate
γz. A production event generates a geometrically dis-
tributed burst of bz molecules with average burst size
Bz following

P{bz = i}=
(
1− 1

Bz

)i−1 1

Bz
, i = 1,2,3, . . .

(A6)

The advantage of this phenomenological description
is that the extent and the timescale of fluctuations in
z(t) can be independently modulated by tuning kz, γz

and Bz.
We always consider the cellular factor stochastic

process z(t) to be at the steady state characterized
by a mean value zss and CV2

z . For such a process,
the steady-state mean zss, the coefficient of variation
squared CV2

z and the autocorrelation function Rz(δt)
are given by the following relationships:

zss =
kz
γz
Bz (A7)

CV2
z =

1

zss
(1+Bz) (A8)

Rz(δt) = e−γzδt. (A9)

The timescale associated with degradation γz sets
the steady-state autocorrelation time of the bursty
birth-death process z(t). 1/γz describes the average
lifetime of a typical fluctuation, as well as the average
time separating such fluctuations. Therefore,CVz and
τ z respectively represent the extent and the timescale
of fluctuations induced in certain parameters of the
model.

For any parameter θ of the system, extrinsic
fluctuations were implemented by modifying the
propensity of the respective reaction such that at any

moment the time-dependent rate was θ(t) = θ z(t)
⟨z⟩ ,

with ⟨θ(t)⟩= θ and CV2
θ = CV2

z .

Transcription burst frequency fluctuations
Fluctuations in the extrinsic factor level may impact
protein synthesis via its transcription rate, as form-
alized in table A2. This leads to a system of coupled
bursty birth-death processes.

Table A2. An effective model of gene expression in the presence of
a source of extrinsic noise.

Event
Population
reset

Propensity
function (f )

Cellular factor birth z(t)→ z(t)+ i kzP{bz = i}
Cellular factor death z(t)→ z(t)− 1 z(t)γz
mRNA birth m(t)→m(t)+ 1 z(t)

zss
km

mRNA death m(t)→m(t)− 1 m(t)γm
Protein birth p(t)→ p(t)+ 1 m(t)kp
Protein death p(t)→ p(t)− 1 p(t)γp

The time-derivative of the expected value of any
differentiable function φ(z,m,p) is given by:

d⟨φ(z,m,p)⟩
dt

=

〈∑
Events

∆φ(z,m,p)× f(z,m,p)

〉
.

(A10)

The statistical moments of this joint process
evolve as:

d⟨p(t)n1z(t)n2⟩
dt

= ⟨G(p,z)⟩, n1,n2 ∈ {0,1,2, . . .}
(A11)

G(p,z) : =
∞∑
j=0

z(t)km
zss

P(bp = j)[(p+ j)n1zn2 − pn1zn2 ]

+
∞∑
i=1

kzP(bz = i)[pn1(z+ i)n2 − pn1zn2 ]

+ γpp[(p− 1)n1zn2 − pn1zn2 ]

+ γzz[p
n1(z− 1)n2 − pn1zn2 ].

(A12)

[89, 90]. Substituting the appropriate values of n1 and
n2 yields the time evolution of the first and second-
order moments of p(t) and z(t)

d⟨z⟩
dt

= kzBz − γz⟨z⟩ (A13a)

d⟨p⟩
dt

=
⟨z⟩kmBp

zss
− γp⟨p⟩ (A13b)

d⟨z2⟩
dt

= kz⟨b2z⟩+ 2kz⟨z⟩Bz + γz(⟨z⟩− 2⟨z2⟩)
(A13c)

d⟨p2⟩
dt

=
⟨z⟩km⟨b2p⟩

zss
+

2km⟨pz⟩Bp

zss
+ γp(⟨p⟩− 2⟨p2⟩)

(A13d)

d⟨pz⟩
dt

= kzBz⟨p⟩+
kmBp⟨z2⟩

zss
− γp⟨pz⟩− γz⟨pz⟩.

(A13e)

Solving the above system of differential equations
assuming that p(0) = 0 and that the extrinsic factor is
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at steady-state at time t= 0 provides both the average
p(t) and protein noise level over time:

pkm(t) =
⟨z⟩
zss

⟨p(t)⟩ ⇒ pkm(tss) =
⟨z⟩
zss

kmBp

γp
= pss

(A14a)

η
2
km
(t;CVz, τz) =

2eγp t

(eγp t − 1)2

{
η
2
Int,ss sinh(γpt)

+
γ2
p [cosh(γpt)− cosh(γzt)+ sinh(γzt)]− γpγz sinh(γpt)

γ2
p − γ2

z

CV2
z

}
.

(A14b)

Since ⟨z⟩= zss, the average protein dynamics is
not affected by fluctuations of the gene transcription
rate.

The steady-state noise levels are now given by:

η2km,ss =
1

pss
(1+Bp)+

γp
γp + γz

CV2
z

= η2Int,ss +
γp

γp + γz
CV2

z . (A15)

The first component is the intrinsic one while the
second component is due to the extrinsic factor
contribution [57]. We stress that individual km or kp
fluctuations do not impact the steady-statemean pro-
tein levels, given by equation (A5).

Translation rate fluctuations
To model noise in the protein translation rate, we
modify kp to kpz(t)/zss. This will cause fluctuations of
the protein burst size:

⟨bp⟩=
∞∑
j=0

P(bp = j)j =
z(t)

zss
Bp (A16a)

⟨b2p⟩=
∞∑
j=0

P(bp = j)j2 = 2

(
z(t)

zss
Bp

)2

+
z(t)

zss
Bp.

(A16b)

The time evolution of moments is then given by:

d⟨z⟩
dt

= kzBz − γz⟨z⟩ (A17a)

d⟨p⟩
dt

=
km⟨z⟩Bp

zss
− γp⟨p⟩ (A17b)

d⟨z2⟩
dt

= kz⟨b2z⟩+ 2kz⟨z⟩Bz + γz(⟨z⟩− 2⟨z2⟩)
(A17c)

d⟨p2⟩
dt

= 2km
Bp⟨pz⟩
zss

+ 2km
B2
p⟨z2⟩
z2ss

+ kmBp − 2γp⟨p2⟩+ γp⟨p⟩ (A17d)

d⟨pz⟩
dt

= kzBz⟨p⟩+ km
Bp⟨z2⟩
zss

− γz⟨pz⟩− γp⟨pz⟩.

(A17e)

Once again the average protein dynamics is not
affected by the extrinsic fluctuations. The steady-state
noise levels are now given by:

η2kp,ss =
1

pss
(1+Bp)+

γp
γp + γz

CV2
z +

Bp

pss
CV2

z

= η2Int,ss +
γp

γp + γz
CV2

z +
Bp

pss
CV2

z

= η2km +
Bp

pss
CV2

z .

(A18)

The predicted steady-state protein noise in case
of protein burst size fluctuations η2kp,ss exceeds
that caused by transcriptions rate fluctuations of
BpCV2

z/pss. Since in our range of exploration (Bp =
5,pss = 2000 and CVz ∈ [0.1,0.8]) the contribution
due to BpCV2

z/pss is minimal, we assume ηkp ≃ ηkm
and we did not explicitly reported the trend ηkp(t) in
the figures of the main text.

Protein dilution rate fluctuations
To model noise in the decay rate, we modify γp to
γpz(t)/zss. The time evolution of moments is then
given by [89, 90]:

d⟨z⟩
dt

= kzBz − γz⟨z⟩, (A19a)

d⟨p⟩
dt

= kmBp − γp
⟨pz⟩
zss

, (A19b)

d⟨z2⟩
dt

= kz⟨b2z⟩+ 2kz⟨z⟩Bz + γz(⟨z⟩− 2⟨z2⟩)
(A19c)

d⟨p2⟩
dt

= km⟨b2p⟩+ 2km⟨p⟩Bp +
γp(⟨pz⟩− 2⟨p2z⟩)

zss
(A19d)

d⟨pz⟩
dt

= kzBz⟨p⟩+ kmBp⟨z⟩−
γp⟨pz2⟩

zss
− γz⟨pz⟩.

(A19e)

Note that in this case the moment dynam-
ics is not closed, and the time evolution of lower
order moments depends on higher order moments
⟨p2z⟩ and ⟨pz2⟩. To close moment dynamics we use
the derivative-matching closure scheme that is con-
sistent with copy numbers following a lognormal
distribution [90]. As per this closure, the higher order
moments are approximated as

⟨pz2⟩ ≈ ⟨z2⟩
⟨p⟩

(
⟨pz⟩
⟨z⟩

)2

(A20a)

⟨p2z⟩ ≈ ⟨p2⟩
⟨z⟩

(
⟨pz⟩
⟨p⟩

)2

. (A20b)

Substituting the higher order moments in
equations (A19) with their corresponding approx-
imation equations (A20) results in a closed system of

14



Phys. Biol. 20 (2023) 056007 M Biondo et al

Figure A1. Time evolution of cell-to-cell variability depends on the source of extrinsic noise. The total gene expression noise is
reported as a function of time during the activation dynamics; each color represents a specific value of CVz (A) or τz/τp (B), while
different line-styles correspond to different fluctuating parameters. The continuous grey line represents the total variability that
we observe in the system if CVz = 0, i.e. the intrinsic noise. The dashed lines correspond to the theoretical predictions for
fluctuations of the transcription rate (equation (A14)), they are in good agreement with the results of the simulations. The
approximate predictions for expression variability under fluctuations of the protein dilution rate is marked by the continuous
lines and correspond to equation (A24).

Figure A2. The strength and the timescale of extrinsic fluctuations of the protein dilution rate affect the steady-state level of
expression. Functional dependence of protein steady-state level on the extrinsic noise strength (A) and timescale (B), the dashed
lines represent the approximate analytical predictions for pγp (tss) in case of extrinsic fluctuations acting on the protein dilution
rate (equation (A21)). The light blue symbols report the outcomes of our simulations, with circles representing average values
and bars standard errors (i.e. the ratio between the standard deviation and the square root of the number of simulations).

moment dynamics. Solving these equations results in
the steady-state protein number and noise levels:

pγp(tss;CVz, τz)

≃ pss
2

√(1+ τz
τp

)2

+ 4
τz
τp
CV2

z +

(
1− τz

τp

)
(A21)

η2γp,ss(CVz, τz)

≃ 1

pss
(1+Bp)+

1

2

√(1+ τz
τp

)2

+ 4
τz
τp
CV2

z

−
(
1+

τz
τp

)]
= η2Int,ss + {η2γp,Ext,ss} (A22)

when the timescale of the fluctuationsmatches that of
the intrinsic fluctuations of the process p(t), the total
variability of proteins number at the steady state is the
following:

η2γp,ss(CVz, τz = τp)≃ η2Int,ss +
[√

1+CV2
z − 1

]
.

(A23)

We use this expression of η2γp,Ext,ss =
√
1+CV2

z − 1 to
estimate the time-evolution of total noise:

ηγp(t)≃

√
η2Int(t)+

(
γp
p(t)

∂⟨p(t)⟩
∂γp

)2

η2γp,Ext,ss.

(A24)

The results of our simulations mostly agree with
our analytical prediction equations (A14) and
equations (A24), as we can appreciate in figure A1.
However, equations (A24) fails to predict the amp-
lification of the variability added to the system by
means of the cellular factor when its typical times-
cale is longer than that of protein dynamics (in
figure A1(B), for long times, the red circles are far
above the red continuous line). Additionally, in
figure A2(A) we observe a discrepancy between sim-
ulations and predictions for the steady state pro-
tein level when CVz > 0.6, which further highlights
a limitation of our approximated formulas. These
quantitative discrepancies show the limitations of
the assumption of independence of higher-order
moments. Specifically, for high levels of extrinsic
noise (high CVz) or slow fluctuations (low γz) the
correlations in the dynamics of z and p are more
evident and our analytical formulas are less precise.
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Figure A3. Protein expression tends asymptotically to the same equilibrium level. At time t= 0 transcription begins and the gene
is turned on. The average protein level of the simulations approaches the steady-state p(tss), which depends on the characteristics
of the extrinsic source of noise. Due to the appropriate tuning of the parameters, when the cellular factor affects km or kp the
protein expression tends to the same equilibrium level observed for fluctuations of γp. (A) The average protein activation
dynamics for τp/τz = 1 is reported as a function of time (in units of the response-time), each color represents a specific value of
CVz and different line-styles correspond to different sources of extrinsic noise. (B) The average protein activation dynamics for
CVz = 0.5 is reported as a function of time, each color represents a specific value of τ z (in units of τ p).

A mathematically controlled comparison
As reported in the main text, extrinsic fluctuations
of the protein dilution rate alter the average protein
dynamics. The dependence of the final steady-state
level of expression on the properties of the source
of the extrinsic noise are given by the approximate
expression equation (A21). In figure A2we can appre-
ciate how our estimate predicts the qualitative trends
measured during the simulations. In the light of that
premise, it is essential to specify the constraints to put
different configurations of themodel on equal footing
for a fair comparison. Basically, to achieve the same
steady-state protein level for any choice of the mag-
nitude and the timescale of extrinsic fluctuations, we
slightly change themean values of km, kp, γm to repro-
duce the appropriate pγp,ss(CVz, τz), under the con-
straint that γp, Bp andmss are fixed throughout all the
different simulation settings.

For any set of values for CVz and τ z, the protein
expression tends asymptotically to the same equilib-
rium level independently of the parameter affected by
cellular factor fluctuations (figure A3).

Stochastic simulation specification
Simulations have been implemented using Gillespie’s
first reaction algorithm [59]. We simulate the
stochastic reactions presented in figure 1 of the main
text and in table A1, with the appropriate changes
in the propensities due to the cellular factor. Each
data point in the figures is the result of 5× 103 trials.
As a measure of accuracy, we utilized the bootstrap
method to generate a 95% confidence interval for
the expression noise. Specifically, we performed 103

sampling with repetition from the pools of 5× 103

simulations. This process resulted in a distribution
of 103 expression noise values. We then calculated
the average coefficient of variation and determined
the lower and upper error margins as the 2.5th and
97.5th percentiles of these distributions, respectively.
Although the error intervals were not depicted in

the figures, they were consistently smaller than the
marker representing the coefficient of variation.

The standard stochastic model of gene expres-
sion allows a discrete number of possible configur-
ations, distinguished by the properties of extrinsic
noise (CVz, τ z) and the parameter subjected to it.

We analyse the role of extrinsic fluctuations
in shaping expression variability; in particular, we
explore the functional dependence of η(t) on CVz,
and τ z.

To investigate the role of the extrinsic noise mag-
nitude, we changed the parameter Bz and kz to span
CVz over a certain range, keeping the value of ⟨z⟩ and
γz constant so that the timescale of the process z(t)
resulted fixed over all the simulations. Conversely, to
investigate the role of the timescale of the colored
noise, we properly modulated both γz and kz to allow
τ z to span over a certain range while ⟨z⟩ andCVz were
constant. Moreover, the timescale of the extrinsic
noise is always expressed in units of τ p.

We must choose the duration of each simulation.
The response times for gene activation and inactiv-
ation are both governed by the dilution rate τp =
ln(2)/γp. For proteins that are not actively degraded
in the growing cells the response time is equal to one
cell generation time [52]. Given this considerations,
we set tss = 20τp as the interruption time for all the
simulations since in the absence of extrinsic fluctu-
ations it would largely exceed the time required for
the system to reach the steady state.

In the illustrative examples showed in the main
text the parameters have the following values:

km = 8 mRNA min−1;

γm = 0.2 min−1;

kp = 1 proteins (mRNA min)−1;

γp = 0.02 min−1.

(A25)

In this setting, the intrinsic noise is almost negligible
because of the low value of the protein burst size
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Figure A4. Extrinsic fluctuations affect the autocorrelation time of proteins. Each color represents a particular choice of CVz

(A) or τ z (B). The plots show the shift of the autocorrelation function of the stochastic variable p(t) from its behavior without
extrinsic noise (grey line). This shift is mostly determined by τ z and it is significant only if τz > τp. On the other hand, the shift
does not depend on which is the affected parameter (different line-styles) and only weakly depends on the strength of extrinsic
fluctuations.

Bp = 5 proteins mRNA−1. Moreover, at the steady-
state mss = 40 mRNA and pss = 2000 proteins. This
values represent a relatively highly-expressed gene
whose expression variability ismainly due to extrinsic
fluctuations [44].

Protein autocorrelation function in the presence of
extrinsic noise
For the standard two-step model of stochastic gene
expression, the autocorrelation function for the
stochastic variable p(t) is given by

ΦINT
p (t1, t2) = ⟨p(t1)p(t2)⟩− ⟨p(t1)⟩⟨p(t2)⟩. (A26)

When the protein level is at the steady state, ΦINT
p is

a function of solely the time difference between the
two time points considered: ΦINT

p (t1, t2) = ΦINT
p (t1 −

t2) := ΦINT
p (δt).

For the bursty standard stochastic model of gene
expression the steady state autocorrelation function
is approximated by the exponential decay e−(δt)(γp),
which is represented by the grey continuous line of
figure A4.

In [64] they investigate a more detailed model
of gene expression, explicitly including the dynamics
of RNA polymerase and ribosomes as extrinsic noise
factors. In our formulation, the same extrinsic noise is
captured using the cellular factor z coupled with tran-
scription or translation rates. The protein autocorrel-
ation functionΦp(δt)was reported as the sumof three
noise-source specific components, implying a shift of
ΦINT

p (δt) to higher values [64]:

Φp(δt) = Φ
EXT,transcription
p (δt)

+ΦEXT,translation
p (δt)+ΦINT

p (δt). (A27)

The relative contribution of these three terms to the
total autocorrelation function depends on the typical
timescales of the dynamics of RNA polymerase and
ribosomes with respect to the timescales of intrinsic
fluctuations.

Here, we compare our results on the role of
extrinsic noise timescale with this previous analysis in
terms of protein autocorrelation time. Indeed, using
our modelling framework we also find a shift in the
autocorrelation function because of extrinsic para-
meter fluctuations, which agrees with previous results
[64]. This shift depends both on the extent of fluctu-
ations CVz (figure A4(A)), as well as on their times-
cale τ z (figure A4(B)).

In the limit case of slow extrinsic fluctuations
(τz ≫ τp, γz ≪ γp) the extrinsic contribution in
equation (A27) dominates the summation. This is
consistent with the general idea that in systems with
multiple competing timescales, the trend of the auto-
correlation function of any chemical species is dom-
inated by the longest autocorrelation time. We can
appreciate that in figure A4(B), where the red trends
(for τz/τp = 1000,) are close to e−(δt)(1000γp) (lime
line).

On the other hand, high-frequency extrinsic fluc-
tuations with τz ≪ τp are filtered out and do not
have any impact on the normalized autocorrelation
function. In fact, the orange lines are close to the
grey line, representing the normalized autocorrela-
tion function for the stochastic variable p(t) in the
absence of extrinsic noise.

In conclusion, the sigmoidal extrinsic noise with
respect to the timescale of fluctuations shown in
figure 3(B) of themain text can also be observed look-
ing at shifts in the protein autocorrelation However,
this frequency domain analysis requires the indi-
vidual trajectories of proteins (p(t)) at single cell level,
thus an advanced experimental setup. On the other
hand, the results presented in the main text can in
principle be drawn solely from time coarse measure-
ments of the average protein number and its variance
across a population.

The effect of extrinsic fluctuations after a
reduction of the transcription rate
This section describes the noise dynamics during a
shift in expression rate. Specifically, the system is
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Figure A5. The effect of extrinsic fluctuations during a
transition between two steady states. (A) The common
dynamics of the average protein number is depicted for
different choices of the fluctuating parameter (different
symbols). The trend is compatible with equation (A28).
(B) The protein variability in time is qualitatively different
if extrinsic fluctuations act on the protein degradation rate.
This distinctive pattern is accurately predicted by our
approximated equations, depicted as dashed lines.
Fluctuations in mRNA degradation rate also lead to a
similar trend, albeit to a lesser extent (pink dashed line).

initialized at a steady state with a high protein level
characterized by a transcription rate 2km. The tran-
scription rate is then halved to km at a specific time t∗,
and we study the dynamical transition to the lower
steady-state protein concentration.

Figure A5(A) shows the dynamics of the average
protein number for different choices of the fluctu-
ating parameter. The trend is compatible with the
deterministic analytical prediction reported as a grey
line in figure A5(A), and given by the expression:

⟨p̂(t)⟩=
kmkp
γmγp

(
1+

γpe−(t−t∗)γm − γme−(t−t∗)γp

γp − γm

)
.

(A28)

After the sudden reduction of the transcription
rate, the most frequent cellular reaction is protein
degradation, driving the system towards the new
steady state. Consequently, extrinsic fluctuations in
the protein degradation rate γp have the most signi-
ficant impact on the overall protein noise, as we can
appreciate in figure A5(B).

Once again, to estimate the time evolution of
impact of extrinsic fluctuations of any parameter
θ of the model, we can evaluate the coefficient

θ

⟨p̂(t)⟩
∂⟨p̂(t)⟩
∂θ

and fix the initial extrinsic contribu-

tion using the measured experimental value η2Ext(t
∗):

η̂2θ,Ext(t;CVz, τz)≃ F̂θ(t)Ĝθ(CVz, τz); (A29)

F̂θ(t) =

(
θ

⟨p̂(t)⟩
∂⟨p̂(t)⟩
∂θ

)2

; (A30)

Ĝθ(CVz, τz) = η̂2θ,Ext(t
∗). (A31)

These predictions (dashed lines in figure A5(B))
well capture the main trends of the simulation. In
conclusion, also in this setting, the noise dynam-
ics clearly distinguish between different dominant
sources of extrinsic noise.
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