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Abstract: Perihilar cholangiocarcinomas (pCCA) are rare yet aggressive tumors originating from the
bile ducts. While surgery remains the mainstay of treatment, only a minority of patients are amenable
to curative resection, and the prognosis of unresectable patients is dismal. The introduction of liver
transplantation (LT) after neoadjuvant chemoradiation for unresectable pCCA in 1993 represented
a major breakthrough, and it has been associated with 5-year survival rates consistently >50%.
Despite these encouraging results, pCCA has remained a niche indication for LT, which is most likely
due to the need for stringent candidate selection and the challenges in preoperative and surgical
management. Machine perfusion (MP) has recently been reintroduced as an alternative to static cold
storage to improve liver preservation from extended criteria donors. Aside from being associated
with superior graft preservation, MP technology allows for the safe extension of preservation time
and the testing of liver viability prior to implantation, which are characteristics that may be especially
useful in the setting of LT for pCCA. This review summarizes current surgical strategies for pCCA
treatment, with a focus on unmet needs that have contributed to the limited spread of LT for pCCA
and how MP could be used in this setting, with a particular emphasis on the possibility of expanding
the donor pool and improving transplant logistics.

Keywords: hilar cholangiocarcinoma; donor pool expansion; hypothermic oxygenated machine
perfusion; normothermic machine perfusion; viability assessment; transplant oncology

1. Introduction

Perihilar cholangiocarcinomas (pCCA) are epithelial tumors originating from the
biliary tree below second-order bile ducts and proximally to the confluence of the cystic
duct, and they represent 50–70% of the tumors arising from the biliary tree [1]. They are
relatively rare [2] but aggressive tumors, and surgical resection is generally considered the
only potentially curative treatment [3,4]. However, most patients with pCCA are diagnosed
at an advanced stage, and only 15–35% are amenable to curative resection [3,5,6], which is
associated with a 15–40% 5-year survival [7–9]. The 5-year survival of patients suffering
from unresectable pCCA is 2% [10].

The dismal prognosis of unresectable pCCA led to exploring liver transplantation
(LT) following neoadjuvant treatment with external beam irradiation, brachytherapy, and
5-fluorouracil (5-FU) and/or oral capecitabine as a potential treatment. The first series
from the Mayo Clinic reported an impressive intention-to-treat 54% 5-year survival and a
82% 5-year survival after transplantation [11]. However, although the survival benefit of
this approach has been confirmed in subsequent series [12], LT for pCCA has not gained
widespread acceptance due to the difficulties in applying the neoadjuvant protocol, patient
selection and the lack of clear allocation rules in this setting.
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The term “transplant oncology” refers to the application of oncology along with
transplant medicine and surgery to improve the survival and quality of life of cancer pa-
tients [13]. This includes considering LT for patients affected by malignancies that classically
represented contraindications for LT, such as liver metastases from colorectal cancer [14],
hepatocellular carcinoma beyond the most widely adopted selection criteria, pCCA and
intrahepatic cholangiocarcinoma [15]. The prerequisite to successfully implement LT as
a treatment for these diseases is the availability of suitable liver grafts. Although the
introduction of direct acting antivirals against hepatitis C virus has profoundly changed the
landscape of indications for LT [16], increasing the number of available grafts for alternative
indications, the supply–demand gap for liver grafts remains an unresolved issue. The two
main strategies to expand the donor pool are currently represented by the utilization of
extended criteria donors (ECD) and by living donation. In most cases, ECD are represented
by donors whose death has been determined by circulatory criteria (DCD), elderly donors,
or liver grafts with significant macrovesicular steatosis [17,18]. While utilizations of these
grafts may allow expanding the donor pool, their use has been associated with inferior
outcomes as compared to those of LT using standard donors.

In the last decade, machine perfusion (MP) has been re-introduced in clinical practice,
which is prompted by the need to cope with the increased risks associated with the use
of ECD grafts [19–54]. Several MP techniques exist, which are characterized by different
principles and mechanisms of graft protection [55]. Apart from improving graft preser-
vation and allowing for longer preservation times, MP has a very interesting feature: it
allows testing the viability of a liver graft prior to implantation (so-called “viability as-
sessment”) [18,56]. Although normothermic MP (NMP) has been most frequently used
as a tool for viability assessment, information about liver viability can be obtained also
during hypothermic perfusion [33,57]. Assessing the viability of a graft should ideally
allow for an increase in the number of transplanted grafts while minimizing recipient risk
and avoiding discarding potentially usable grafts solely based on donor characteristics. In
addition, other aspects of machine perfusion technology make its application in the setting
of LT for pCCA appealing.

This review will summarize some important aspects of pCCA surgical management,
emphasizing the need to improve the oncologic outcome of both resectable and unre-
sectable patients. Literature on the results of LT for pCCA will be reviewed, discussing the
limitations of current approaches. Finally, potential applications of MP in pCCA treatment
of will be reviewed.

2. The Challenge of Perihilar Cholangiocarcinoma

As the international classification of cholangiocarcinoma does not distinguish between
perihepatic and distal cholangiocarcinoma [4], estimating the true incidence of pCCA
is difficult. In the West, age standardized incidence rates range between 0.5 and 2 per
100,000 individuals, whereas in eastern Asia, incidence is higher due to endemic liver
flukes (Opisthorchis viverrini and Clonorchis sinensis) infection as well as a higher incidence
of hepatolithiasis. Worldwide, the incidence of pCCA has increased in recent years, which
has been linked to the increased incidence of metabolic syndrome, especially in countries
with historically low incidence rates [2].

Perihilar CCA is an aggressive disease. A large study from the Netherlands on
2031 patients showed an overall median survival of 5.2 months [58]. Patients undergoing
palliative systemic treatment, loco-regional treatment or best supportive care had a median
survival of 12.2, 14.5 and 2.9 months, respectively. Notably, only 15% of patients underwent
curative resection, which was associated with a median survival of 29.6 months [58].

2.1. Surgery for Perihilar Cholangiocarcinoma

The outcome of patients suffering from pCCA is primarily determined by the possi-
bility to undergo curative resection. However, only a minority of patients are eligible for
surgical resection due to several factors. Early diagnosis is infrequent in pCCA because
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most patients with early disease are asymptomatic or symptoms are poorly specific (dyspep-
sia, abdominal discomfort, fatigue, weight loss) [3]. Furthermore, pCCA are desmoplastic
and paucicellular tumors, which complicates obtaining histological confirmation once the
clinical diagnosis becomes more evident [59]. At this stage, most patients will present
with jaundice and/or cholangitis and will frequently require preoperative biliary drainage
(PBD). In patients undergoing surgery for pCCA, preoperative cholangitis is associated
with increased mortality, overall morbidity, incidence of liver failure, and sepsis, and it is
an absolute indication for PBD [60]. In patients with jaundice but not cholangitis, PBD is
still frequently indicated due to the concerns for impaired liver regeneration capability, as
pCCA patients are frequently candidate for major liver resections. However, PBD has been
associated with higher overall morbidity, perioperative transfusion, cholangitis, infection
and bile leakage [61,62], suggesting that it could be reasonably avoided in patients with
sufficient future liver remnant (≥50%). It is significant that regardless of the technique
used for PBD (endoscopic versus percutaneous transhepatic biliary drainage), about 15%
of patients will fail to proceed to surgery because of PBD complications and progressive
deterioration [63]. Another factor complicating the surgical approach is the necessity to
perform an oncologically adequate (R0) surgery, which frequently involves an extended
hepatectomy associated with the resection of the biliary confluence and the reconstruction
by an hepaticojejunostomy while preserving a sufficient portion of liver parenchyma. Portal
vein embolization has traditionally been used to induce future liver remnant hypertro-
phy. Associating liver partition and portal vein ligation for stage hepatectomy (ALPPS)
represents an alternative approach [64]. However, ALPPS is still debated in the setting of
pCCA [65,66]. In patients who do not develop sufficient liver hypertrophy after portal vein
embolization alone, associating hepatic vein embolization (so-called liver venous depri-
vation) could contribute to enhancing the growth of future liver remnants and improve
access to curative resection [67].

Patients who can access resection with curative intent are exposed to an overall major
morbidity rate of 43–65%, whereas postoperative mortality rates as high as 17% have been
reported [68,69]. In a study evaluating outcomes of pCCA resection in 708 low-risk patients
at 24 high-volume centers, the benchmark values (i.e., the 75% or 25% percentiles of the
medians of each center) for Clavien–Dindo ≥ 3 complications rate and in-hospital mortality
were ≤70% and ≤8%, respectively [70].

About 80% of patients will experience recurrence after resection, in most cases within
2 years from surgery [71,72]. Overall 5-year survival is 11–44% and appears to be strongly
influenced by the radicality of surgical resection, being ~60% in patients undergoing
R0 resection versus <10% after R1 resection [69]. Interestingly, benchmark value for R1
resection has been set at ≤43% [70].

Overall, surgery with curative intent appears to be an option only in a minority of pa-
tients suffering from pCCA, and it is burdened by a complicated preoperative management,
high postoperative morbidity and mortality, and high recurrence rates, which highlights
the urgent need for alternative strategies to improve the outcome in these patients.

2.2. Liver Transplantation as a Treatment for Perihilar Cholangiocarcinoma

In theory, LT is an interesting option for patients with pCCA because it allows for the
radical excision of the tumor while avoiding the issue of residual hepatic functional reserve.
Unfortunately, early results of LT performed in patients with pCCA were burdened by high
recurrence rates, leading to pCCA being considered a contraindication for LT. [73,74]. How-
ever, observations that long-term survival could be achieved in patients with limited tumor
burden, negative resection margins and no lymph node involvement opened to reconsider
pCCA as a possible indication for LT in selected patients [75]. As aforementioned, the early
experiences from the Mayo Clinic (Rochester, MN, USA) team showed that by stringent
patient selection and by applying a neoadjuvant protocol of external beam radiotherapy,
brachytherapy and 5-FU, excellent results could be achieved [11,76,77]. Table 1 summarizes
the results of LT for pCCA [11,12,76,78–90].
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Table 1. Results of LT for pCCA.

Author Country Study Design n Dropout (%) Neoadjuvant Treatment Survival Outcomes

Figueras
et al. [83] Spain Single center,

retrospective
LT, n = 8

LR, n = 20 n.a. None
5-year survival:
- LT = 36%
- Resection = 21%

Sudan et al.
[91] NE, USA Single center,

retrospective LT, n = 11 35% Brachytherapy 6000 cGy +
5-FU

Median survival after LT = 25 months;
45% disease-free with median 7.5 years
follow-up

Heimbach
et al. [11] MN, USA Single center,

prospective LT, n = 28 39%
EBRT 4500 cGy +

Brachytherapy 2000-3000
cGy + 5-FU

5-year survival:
- Whole cohort = 54%
- LT = 82%

Robles et al.
[88] Spain Multicenter,

retrospective LT, n = 36 n.a. None

Overall survival at 1, 3, 5, and 10 years
was 82%, 53%, 30%, and 18%.
Disease-free survival at 1, 3, 5, and 10
years was 77%, 53%, 30%, and 18%.

Axelrod et al.
[79] IL, USA Single center,

retrospective LT, n = 5 n.a. EBRT 45 Gy + 5-FU

100% recurrence-free survival in 4
patients treated with neoadjuvant
protocol (median follow-up = 18
months)

Jonas et al.
[85] Germany Single center,

retrospective LT, n = 5 n.a. None Overall survival was 80% at a median
follow-up of 20 months

Hidalgo et al.
[84] UK Single center,

retrospective
LT, n = 12
LR, n = 44 n.a. None

5-year survival:
- LT = 20%
- Resection = 28%

Kaiser et al.
[86] Germany Multicenter,

retrospective LT, n = 47 n.a. None
Median survival = 35.5 months.
Overall survival at 1, 3 and 5 years was
61%, 31% and 22%

Rosen et al.
[92] MN, USA Single center,

retrospective LT, n = 136 36%
EBRT 4500 cGy +

Brachytherapy 2000-3000
cGy + 5-FU + capecitabile

Overall survival at 1, 3 and 5 years was
92%, 81%, and 74%.

Darwish
Murad et al.

[12]
USA Multicenter,

retrospective LT, n = 214 25%
EBRT 4500 cGy +

Brachytherapy 2000-3000
cGy + 5-FU + capecitabile

Recurrence-free survival at 2, 5 and 10
years was 78%, 65% and 59%.

Schule et al.
[89] Germany Single center,

retrospective LT, n = 16 n.a. None

Overall survival (postoperative deaths
excluded) at 3 and 5 years was 63%
and 50% in N0 patients and 15% and
0% in N+ patients

Welling et al.
[93] USA Single center,

retrospective LT, n = 6 42% SBRT 50-60 Gy +
capecitabine

Overall survival in transplanted
patients at 1 year was 81%

Duignan
et al. [81] Ireland Single center,

retrospective LT, n = 20 26%
EBRT 45-55 Gy +

Brachytherapy 7.5 Gy +
5-FU + capecitabile

Overall survival at 1, 3 and 4 years was
75%, 60% and 51%

Marchan
et al. [87] GA, USA Single center,

retrospective LT, n = 8 20%
EBRT 4500 cGy +

Brachytherapy 2000-3000
cGy + 5-FU + capecitabile

Median survival = 30.2 months.
Overall survival at 6, 12 and 24 months
was 100%, 87.5%, and 87.5%

Dondorf
et al. [80] Germany Single center,

retrospective LT, n = 22 31% None
Median survival = 29 months.
Overall survival at 1, 3 and 5 years was
89,2%, 36% and 28.8%.

Ethun et al.
[82] USA Multicenter,

retrospective
LT, n = 41

LR, n = 191 34%
EBRT 4500 cGy +

Brachytherapy 2000-3000
cGy + 5-FU

Median survival:
- LT = 77.4 months
- Resection = 27 months

Zaborowski
et al. [90] Ireland Multicenter,

retrospective LT, n = 26 30%
EBRT 45-55 Gy +

Brachytherapy 7.5 Gy +
5-FU + capecitabile

Median survival = 53 months.
Overall survival at 1, 3 and 5 years was
81%, 69% and 55%.

Ahmed et al.
[78] MO, USA Single center,

retrospective LT, n = 38 34%
EBRT 4500 cGy +

Brachytherapy 2000-3000
cGy + 5-FU

Overall survival at 1, 3 and 5 years was
91%, 58% and 52%

Abbreviations: LT, liver transplantation; LR, liver resection; EBRT, external beam radiotherapy; SBRT, stereotactic
beam radiotherapy; 5-FU, 5-fluoruracil.

In the absence of a neoadjuvant protocol, LT has been associated with 5-year overall
survival rates ranging from 20% to 36%, whereas using a pre-transplant chemoradiation
protocol has resulted in 5-year survival rates ranging from 52% to 82%. These positive
outcomes have come at the expense of strict patient selection and the morbidity of the
neoadjuvant treatment itself. Indeed, 25–42% of patients initially candidate to LT after
chemoradiation will not be transplanted due to inability to tolerate the treatment, com-
plications, or tumor progression. Furthermore, LT can be technically complicated due to
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the effects of radiotherapy on the hepatic hilum. Since the early reports [11], an increased
incidence of hepatic artery and portal vein thrombosis has been reported, leading to the
frequent choice of utilizing an interposition graft anastomosed to infrarenal aorta for ar-
terial vascularization. Early postoperative outcomes have been marked by a higher rate
of complications, sometimes directly related to preoperative radiation therapy. Another
element of difficulty may be represented by the presence of adhesions. Indeed, a stag-
ing laparotomy is indicated to rule out peritoneal disease or extrahepatic lymphnodes
involvement before the patient can be considered eligible for LT. In the setting of deceased
donor LT, considerable time can separate the staging laparotomy from LT operation, further
complicating an already difficult dissection. An alternative option, which has been adopted
by some centers, is performing the staging laparotomy simultaneously with LT, to avoid a
repeat operation and peritoneal adhesions. While this is a viable option in living donor
liver transplantation, in deceased donor LT, it necessitates the availability of a back-up
recipient and has the disadvantage of significantly prolonging preservation time, which
may have a negative impact on postoperative graft function.

In summary, although excellent outcomes have been reported, LT for pCCA has not
gained widespread adoption. This is likely explained by the limited number of eligible
patients, the difficulties in preoperative management and the technical and logistical
difficulties linked to the neoadjuvant chemoradiation protocol.

3. Machine Perfusion in Liver Transplantation for Perihilar Cholangiocarcinoma: A
Game Changer?

Based on the available evidence, there are two aspects of MP technology that could be
of particular interest in the setting of LT for pCCA: (1) the possibility of expanding donor
pool by improving the preservation of grafts from ECD and by testing their viability; (2) the
possibility of improving transplant logistic by prolonging preservation time (Figure 1).
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Figure 1. A visual representation of the possible advantages of MP technology in the setting of liver
transplantation for perihilar cholangiocarcinoma.

3.1. Expanding Donor Pool and Viability Assessment

In the Italian liver allocation system, patients with pCCA can benefit from a priority
allocation based on a multidisciplinary discussion involving transplant surgeons, hepatol-
ogists and intensive care anesthetists [94]. It has been proposed that 5% of organ donor
pool could be allocated to novel indications for which strong scientific evidence is lacking.
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However, in a system already stressed by a chronic organ donor shortage, this may be
difficult to achieve. Campaigns promoting organ donation, the use of extended criteria
donors, and living donations are all effective ways to increase the donor pool.

Despite the widespread gap between organ demand and supply, there is a significant
disparity in many countries between the number of offered organs and the number of
those that are eventually transplanted. In 2021, 23% of signaled livers in Italy were not
transplanted because of general contraindications to organ donation or because they were
judged unsuitable for LT. The situation is similar in other countries, such as the UK [29]
or USA [95]. Traditionally, the choice of accepting an organ offer has been based on donor
and recipient characteristics. Appropriately weighing the risk profile associated with each
donor–recipient match is a fine art, and many scores have been proposed to help transplant
surgeons make the difficult decision of accepting an organ for a specific recipient [96–98].

Machine perfusion is associated with a significant reduction in ischemia–reperfusion
injury associated with LT, as demonstrated by randomized controlled trials [20,24,31,38,45,99]
and retrospective studies [19,21,22,25,26,32,34–37,40,42–44,47,48,95,100–107]. Although
clinical indication for its use is still heterogeneous [108], many groups have now imple-
mented this technology into routine clinical practice and others are enthusiastically starting
to adopt it [109]. Implementing MP technology can effectively lead to a donor pool ex-
pansion by changing the perceived risk profile associated with a specific organ offer and
allowing for the successful use of a greater number of ECD grafts. As a result, transplant
professionals may be more willing to consider higher-risk offers and to use ECD grafts that
would otherwise be discarded.

However, this decision would still be based on a presumed risk, similarly to what
happens when the graft is preserved by static cold storage. The possibility of testing liver
viability during preservation challenges this concept. Indeed, one fundamental aspect of
MP is the possibility to assess the function and metabolism of the liver to be transplanted ex
situ, after the damage sustained during procurement and initial cold preservation. MP rep-
resents an unbiased environment, in which objective parameters guiding graft acceptance
can be gathered [110,111]. While this property has classically been referred to normothermic
machine perfusion [29,54,112,113], recent studies suggest that precious information about
liver viability and post-LT can be obtained also during cold preservation [33,57,114]. The
most widely adopted criteria for viability assessment during normothermic MP are based
on lactate and glucose metabolism, pH homeostasis, vascular flows, perfusate transam-
inases and bile production and composition. However, at least in theory, any metabolic
function can be tested during MP and serve as a further element to assess liver viability.
When used on livers that were previously deemed unsuitable for LT, NMP has allowed
for the successful transplantation of 46% to 100% of them, confirming its enormous poten-
tial in expanding the donor pool. However, the primary non-function of normothermic
MP-treated livers has been reported [48,115]. Furthermore, normothermic MP, especially
when applied after a period of cold preservation (so-called “back-to-base” approach) has
been shown to be suboptimal in preventing the development of non-anastomotic biliary
strictures [29]. As a result, some centers have included parameters to assess cholangiocyte
viability in their protocols, which has improved the ability to predict the development of
ischemic cholangiopathy. These criteria have been criticized as they might be too restrictive,
and the debate about how high-risk livers should be evaluated during NMP is still ongoing.
Evaluation protocols are heterogeneous and constantly evolving. While an element of
subjectivity in the complex decision of accepting a liver graft appears to be unavoidable,
MP appears to have enormous potential for increasing ECD utilization and expanding
donor pool, thereby improving access to LT for patients suffering from pCCA.

Table 2 summarized studies on liver viability assessment during MP.
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Table 2. Studies on liver viability assessment during MP.

Author n DCD Time Viability Criteria Utilization Rate

Viability assessment during normothermic MP

Mergental et al.
2016 [30] 6 4/5 (80%) 3 h

Perfusate lactate level < 2.5 mmol/L or
evidence of bile production + at least 2 of the
following: (1) pH > 7.3; (2) stable vascular
flows (hepatic artery flow > 150 mL/min and
portal vein flow > 500 mL/min; (3)
homogeneous perfusion and soft consistency

5/6 (83.3%)

Watson et al.
2017 [51] 12 9/12 (75%) n.a.

Changes in perfusate lactate, glucose and
transaminases concentration + ability to
maintain pH without supplemental
bicarbonate

n.a.

Watson et al.
2018 [48] 47 35/47 (74.5%) ≤6 h

Variables associated with successful
transplantation: (1) Maximum bile pH > 7.5; (2)
bile glucose concentration ≤ 3 mmol/L or ≥10
mmol less than perfusate glucose; (3) ability to
maintain perfusate pH > 7.2 with ≤30 mmol
bicarbonate supplementation; (4) falling
glucose beyond 2 h or perfusate glucose under
10 mmol/L which, on challenge with 2.5 g
glucose, does subsequently fall; (5) peak lactate
fall ≥ 4.4 mmol/L/kg/h; (6) Perfusate ALT <
6000 IU/L at 2 h

22/47 (46.8%)

de Vries et al.
2019 [49] 7 7/7 (100%) 2.5 h

All of the following: (1) lactate < 1.7 mmol/L;
(2) perfusate pH 7.35 to 7.45; (3) bile
production > 10 mL; (4) biliary pH > 7.45

5/7 (71.4%)

Matton et al.
2019 [50] 6 6/6 (100%) 2.5 h

(1) Biliary bicarbonate > 18 mmol/L; (2) biliary
pH > 7.48; (3) biliary glucose < 16 mmol/L; (4)
bile/perfusate glucose concentration ratio <
0.67; (5) biliary LDH < 3689 IU/L

4/6 (66.7%)

van Leeuwen
et al. 2020 [43] 16 16/16 (100%) 2.5 h

All of the following: (1) lactate < 1.7 mmol/L;
(2) perfusate pH 7.35 to 7.45; (3) bile
production > 10 mL; (4) biliary pH > 7.45

11/16 (68.7%)

Mergental et al.
2020 [29] 31 14/31 (45.2%) 4 h

Perfusate lactate level < 2.5 mmol/L or
evidence of bile production + at least 2 of the
following: (1) pH > 7.3; (2) stable vascular
flows (hepatic artery flow > 150 mL/min and
portal vein flow > 500 mL/min; (3)
homogeneous perfusion and soft consistency

22/31 (71%)

Reiling et al.
2020 [52] 10 5/10 (50%) 2–4 h

(1) Lactate clearance to <2 mmol/L within 2 h;
(2) glucose metabolism as evidenced by a
decreasing trend in serum glucose
concentration by 4 h; (3) maintenance of
physiological pH; (4) stable hepatic arterial and
portal venous flows; (5) homogeneous graft
perfusion with soft consistency of parenchyma;
(6) bile production (no lower limit)

10/10 (100%)

Hann et al.
2021 [53] 5 0/5 (0%) 6 h

Perfusate lactate level < 2.5 mmol/L or
evidence of bile production + at least 2 of the
following: (1) pH > 7.3; (2) stable vascular
flows (hepatic artery flow > 150 mL/min and
portal vein flow > 500 mL/min; (3)
homogeneous perfusion and soft consistency

n.a.



J. Clin. Med. 2023, 12, 2026 8 of 15

Table 2. Cont.

Author n DCD Time Viability Criteria Utilization Rate

Quintini et al.
2022 [37] 21 13/21 (61.9%) 6 h

At least two of the following: (1) lowest
perfusate lactate level <4.5 mmol/L or a
decrease of 60% from peak in the first 4 h; (2)
bile production rate higher than 2 mL/h; (3)
stable HA flow of >0.05 mL/min/g of liver
weight and PV flow >0.4 mL/min/g of liver
weight; (4) macroscopic homogenous
perfusion and soft consistency.

15/21 (71.5%)

van Leeuwen
et al. 2022 [42] 54 53/54 (98.2%) 2.5 h

“Green zone” criteria: (1) lactate < 1.7 mmol/L;
(2) perfusate pH 7.35 to 7.45; (3) bile
production > 10 mL; (4) biliary pH > 7.45; (5) ∆
pH > 0.10; (6) ∆ HCO3- > 5 mmol/L; (7) ∆
glucose < −5 mmol/L

34/54 (63%)

Watson et al.
2022 [47] 203 123/203

(61%) 2 h
ALT, lactate, supplementary bicarbonate (first
4 h), and peak bile pH associated with early
allograft function

154/203 (76%)

Clavien et al.
2022 [54] 1 0/1

(0%) 3 d

Physiologic response to hormones and
vasoactive drugs, quality and quantity of bile
production, histology, significant decline in
injury (AST/ALT, uric acid) and inflammation
(IL-6) markers in the perfusate

1/1 (100%)

Viability assessment during hypothermic oxygenated MP

Muller et al.
2019 [57] 54 35/54

(65%) 30 min
Perfusate flavin mononucleotide (threshold
100 ng/mL) correlated with postoperative
graft function, complications and graft survival

n.a.

Patrono et al.
2020 [33] 50 0/50

(0%) 2 h

Perfusate parameters (pH, glucose, lactate,
AST, ALT and LDH) correlated with early
allograft dysfunction, with ALT performing
best. Macrovesicular steatosis was the only
factor independently associated with
postoperative graft function

n.a.

Abbreviations: DCD, donation after circulatory death; PNF, primary non-function; IC, ischemic cholangiopathy;
AST, aspartate aminotransferase; ALT, alanine aminotransferase; LDH, lactate dehydrogenase; d, days; h, hours;
min, minutes.

3.2. Improving Transplant Logistics

Time is a critical issue in LT for pCCA. The transplanting surgeon must deal with
several issues at once, including adhesions from the previous staging laparotomy, fibrosis
and tissue thickening from radiation therapy at the hepatic hilum, and the frequent need to
perform a complex hepatic artery reconstruction using an interposition graft anastomosed
to the abdominal aorta. In patients suffering from primary sclerosing cholangitis, concomi-
tant portal hypertension may further complicate LT operation. One option for avoiding
adhesions is to perform lymphnode sampling concurrently with LT; however, even in this
case, the time required to confirm the absence of lymphnode involvement may prolong
preservation time. Additionally, in the unfortunate case of lymph node involvement, preser-
vation time would become prohibitively long, exposing the back-up recipient to a high risk
of post-LT graft dysfunction. While liver grafts from optimal donors may tolerate longer
preservation time, those from ECD are more susceptible to severe ischemia–reperfusion
injury when cold ischemia time is prolonged.

MP technology can be used to safely prolong preservation time [46,54,101,112,116],
possibly facilitating transplant organization and transforming it into a semi-elective proce-
dure. In the randomized controlled trial by Nasralla et al. [31], improved postoperative
outcomes were observed despite significantly longer preservation time in the MP group.
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With regard to normothermic MP, undoubtedly, the experience from the Innsbruck group
represents a model of organization [101]. At this center, the liver is handed over to the
intensive care unit team after it has been connected to the MP device by the on-call surgeon.
In the ICU, the liver is monitored like a patient. At the end of the preservation, device
and perfusate parameters are reviewed and, if the liver is confirmed as transplantable,
LT is scheduled. The positive impact of NMP on transplant logistics has also been high-
lighted by the Birmingham group in the recently published NAPLES study [117]. In this
study, outcomes of repeat LT performed using NMP-preserved suboptimal liver grafts
were compared to those performed with optimal livers preserved by static cold storage.
As the outcomes in both cohorts were comparable, the authors concluded that NMP en-
abled them to achieve comparable outcomes despite using grafts from extended-criteria
donors, thereby improving access to LT. Another important aspect of MP in repeat LT is the
possibility of relieving time pressure from the transplanting surgeon having to perform
a difficult recipient hepatectomy. This approach, which can be applied also based on
logistical aspects and recipient characteristics, could be of value in the setting of pCCA.
The ability to extend preservation time without compromising post-LT graft function could
allow the transplanting surgeon to perform an accurate lymphadenectomy, wait for the
pathologist’s response, and then proceed with a difficult hepatectomy and complex arterial
reconstruction. Obviously, given the time constraints of LT for pCCA, it would be unwise
to abuse MP technology and begin LT with an already extended preservation time with the
risk of discarding the graft should the recipient be ultimately not transplantable.

It should be noted that the possibility of prolonging preservation time is not exclusive
of NMP. A recent multicenter European study has highlighted that a period of hypothermic
oxygenated machine perfusion ≥ 4 h has no detrimental consequences for graft function
and patient outcome [118]. Based on these results, the Groningen group designed a
randomized controlled trial to test the safety of pronged hypothermic oxygenated MP,
in which livers procured after 4 p.m. and 4 a.m. will be treated with prolonged dual
hypothermic oxygenated machine perfusion and transplanted the following day [119]. The
trial has completed recruitment, and results are expected soon [109].

It is worth noting that some of the benefits of MP, particularly the ability to extend
preservation time, could potentially apply to other indications of transplant oncology, such
as LT for colorectal cancer hepatic metastases, where patients frequently undergo LT after
repeated hepatic resections and recipient hepatectomy can be challenging.

4. Conclusions

LT represents a potentially curative treatment for patients suffering from pCCA. The
reported outcomes of LT in this setting, which compare favorably to surgical resection, have
raised the question of whether LT should be offered to selected patients with resectable
disease [120]. MP technology could help overcome some of the obstacles complicating
this approach.

Thanks to a better understanding of genetics and molecular biology [4,121], it is likely
that in the upcoming years, the armamentarium of treatments for intrahepatic and perihilar
cholangiocarcinoma will expand significantly [4,122,123]. Hopefully, this will result in a
greater number of previously unresectable patients becoming eligible for surgical resection
or LT. To be sustainable, any expansion of the indications for LT must be accompanied by an
increase in the number of available grafts. Even if more effective target- and immunotherapy
will possibly avoid the need for neoadjuvant radiation and the complications related to this
approach, the problem of organ supply will remain. In this view, MP will be instrumental
in optimizing preservation of ECD livers and allowing a safe donor pool expansion.
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