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Abstract 23 

Since the number of studies of the microbial communities related to food and food-associated 24 

matrices almost completely reliant on Next Generation Sequencing techniques is rising, evaluations 25 

of these high-throughput methods are critical. Currently, the two most used sequencing methods to 26 

profile the microbiota of complex samples, including food and food-related matrices, are the 16S 27 

rRNA metabarcoding and the whole metagenome sequencing, both of which are powerful tools for 28 

the monitoring of food-borne pathogens and the investigation of the microbiome. Herein, the 29 

microbial profiles of 20 bulk tank milk filters from different dairy farms were investigated using both 30 

the full-length 16S rRNA metabarcoding, a third-generation sequencing method whose application in 31 

food and food-related matrices is yet in its infancy, and the whole metagenome sequencing, in order 32 

to evaluate the correlation and the reliability of these two methods to explore the microbiome of 33 

food-related matrices. Metabarcoding and metagenomic data were generated on a MinION platform 34 

(Oxford Nanopore Technologies, UK) and on a Illumina NovaSeq 6000 platform, respectively. Our 35 

findings support the greater resolution of whole metagenome sequencing in terms of both increased 36 

detection of bacterial taxa and enhanced detection of diversity ; on the other hand, full-length 16S 37 

rRNA metabarcoding has proven to be a promising, less expensive and more practical tool to profile 38 

most abundant taxa. The significant correlation of the two technologies both in terms of taxa diversity 39 

and richness, together with the similar profiles defined for both highly abundant taxa and core 40 

microbiomes, including Acinetobacter, Bacillus and Escherichia genera, highlights the possible 41 

application of both methods for different purposes. 42 

The present study allowed the first comparison of full-length 16S rRNA sequencing and whole 43 

metagenome sequencing to investigate the microbial composition of a food-related matrix, pointing 44 

out the advantageous use of full-length 16S rRNA to identify dominant microorganisms and the 45 



superior power of whole metagenome sequencing for the taxonomic detection of low abundant 46 

microorganisms and to perform functional analysis of the microbial communities.   47 

 48 

1. Introduction 49 

Recent developments in next-generation sequencing (NGS) technologies, together with the 50 

reduction in costs and the rise in efficiency, have led to an increase in the number of metabarcoding 51 

and metagenomic investigations in different matrices and niches. Two main strategies can be used 52 

for the analysis of microbial communities with NGS techniques: whole metagenome sequencing 53 

(WMS), also referred to as shotgun metagenomic sequencing, and high-throughput 16S rRNA 54 

metabarcoding. Several studies reported on the bovine milk microbiota arising from its association 55 

with the quality and safety of dairy products (F. Addis et al., 2016; Rubiola et al., 2020) and more 56 

often than not 16S rRNA metabarcoding was applied. The 16S rRNA gene is around 1,600 bp and 57 

includes nine hypervariable loci (denoted V1-V9) (Bukin et al., 2019). The 16S rRNA metabarcoding 58 

relies on a combination of amplification followed by sequencing of the 16S rRNA gene variable 59 

regions, thereby allowing the taxonomic classification and determination of the relative abundance 60 

of the bacterial component within a sample. This targeted approach is considered a robust and well-61 

characterized method and has some advantages over shotgun metagenomic sequencing; indeed, it 62 

is less expensive than WMS and it does not require the same level of sequencing depth to obtain a 63 

proper characterization of the microbiota. Besides, as it is based on a targeted amplification, this 64 

technique is not affected by the presence of host (bovine) DNA which characterises milk and dairy 65 

products, and data analysis does not require intensive computational power; a wide range of 66 

commonly used bioinformatics tools and pipelines for taxonomy and functional analysis are available 67 

to facilitate reproducible and modular analysis of 16S rRNA sequencing data in free software 68 

platforms, such as QIIME2 (Bolyen et al., 2019) and Mothur (Schloss et al., 2009). Nonetheless, some 69 



limitations of this approach are recognised including, 16S rRNA metabarcoding does not provide 70 

functional information about the genes encoded by those microbial communities being investigated 71 

(Biegert et al., 2021) and it has a low taxonomic resolution, usually limited to family or genus level. 72 

Additionally, different reference databases (e.g. GreenGenes (DeSantis et al., 2006), SILVA (Quast et 73 

al., 2013), the Ribosomal Database Project (Cole et al., 2014)) can influence the sample taxonomy 74 

outcomes of the 16S rRNA metabarcoding (Abellan-Schneyder et al., 2021), which is furthermore 75 

affected by a loss of diversity due to PCR bias (F. Addis et al., 2016). Indeed, different 16S rRNA 76 

hypervariable regions exhibit differences in their ability to resolve taxa, and the choice of primer 77 

designs used is crucial, as the amplification of some regions has been shown to exhibit a bias resulting 78 

in over- or under-representation of specific taxa (Laudadio et al., 2018). Among commonly targeted 79 

16S rRNA loci, the V3 – V4 and V4 – V5 are the most widely used and their different outcomes in 80 

terms of bacterial taxa distribution and alpha diversity have been recognised in different matrices, 81 

including biological and environmental samples (Cuccato et al., 2021; Rintala et al., 2017; Soriano-82 

Lerma et al., 2020), as well food matrices, dairy products and fermented foods (Choi et al., 2020; 83 

Ferrocino et al., 2017; Liu et al., 2019; Macori and Cotter, 2018). As the short length of the targeted 84 

16S rRNA loci represents one of the limitations for taxa identification below the family level, in recent 85 

years third-generation sequencing technologies facilitating long-read sequencing has been 86 

developed, enabling full-length 16S (FL-16S) gene sequencing  (Catozzi et al., 2020); although 87 

platforms supporting these techniques, including Pacific Biosciences  (PacBio) sequencers and Oxford 88 

Nanopore Technologies (ONT) devices, generate read data with lower nucleotide accuracy when 89 

compared to the Illumina platforms, reading the FL-16S gene sequence can have better classification 90 

resolution (Jeong et al., 2021), as confirmed in recent studies applying this sequencing technique on 91 

mock communities and complex matrices such as wastewater samples (Numberger et al., 2019), 92 

human faeces (Leggett et al., 2017; Matsuo et al., 2021) and water buffalo milk (Catozzi et al., 2020). 93 



In contrast, shotgun metagenomic sequencing confers several advantages over 16S rRNA 94 

metabarcoding. First and foremost this strategy can provide functional information about the 95 

investigated microorganisms; further, it provides an improved profile of the diversity of the sample 96 

and can reach taxa resolution at the species level (Biegert et al., 2021). In this case, whole 97 

metagenomic DNA is first extracted, fragmented and then sequenced, independent of the 98 

amplification of targeted genes (F. Addis et al., 2016). Thus, a large amount of data is generated to 99 

be interrogated for features, including the taxonomic profile of the microbial community, its 100 

metabolic pathways and functions. Despite these advantages, some limitations are also recognised, 101 

including the computational power required, tools and expertise necessary to properly analyse the 102 

data generated; partial sequencing of those less represented microorganisms, whilst background 103 

host DNA can be present in significant amounts, especially in host-derived samples including milk and 104 

dairy products, requiring the use of different molecular and bioinformatic tools to mask these 105 

features, such as pre-extraction methods applying commercially available kits or chemicals to lyse 106 

mammals cells, and post-extraction methods enriching microbial DNA by selectively binding and 107 

removing CpG-methylated host DNA (Rubiola et al., 2020; Yap et al., 2020). Finally, the shotgun 108 

metagenomic sequencing technique is usually more expensive when compared to 16S rRNA 109 

metabarcoding and requires a higher coverage (Catozzi et al., 2020).Comparison between WMS and 110 

short-read 16S rRNA metabarcoding has been recently explored in different matrices, especially soil 111 

and stool samples targeted to investigate the gut microbiome (Brumfield et al., 2020; Durazzi et al., 112 

2021; Jovel et al., 2016; Laudadio et al., 2018; Shah et al., 2010; Tessler et al., 2017); indeed, the 113 

extent to which these two sequencing technologies correlate with each other is a crucial assumption, 114 

which should be investigated in depth. However, food and food-related matrices have been poorly 115 

investigated using both these sequencing techniques; further, the comparison between WMS and 116 

FL-16S sequencing is still unexplored. In this context, several studies have suggested the use of milk 117 



filters as useful tools to investigate the microbiome of bulk tank milk and to identify the presence of 118 

foodborne pathogens (Murphy et al., 2005; Sonnier et al., 2018) 119 

To fill the aforementioned knowledge gap, in the present study milk filters sampled in the context of 120 

a previous work aiming to evaluate the milk production environment resistome were reanalysed 121 

using both the FL-16S rRNA metabarcoding and WMS in order to compare the microbial community 122 

profiles and evaluate the reliability of these two methods to explore the microbial communities of 123 

food-related matrices. 124 

 125 

 126 

2. Materials and methods 127 

2.1 Farms selection, samples collection and DNA extraction 128 

The samples were collected in May 2020 from the bulk tank of 10 dairy farms located in Piedmont, 129 

North-West Italy, with the support of ARAP (Associazione Regionale Allevatori del Piemonte). The 130 

sampling procedure included the use of disposable in-line milk filters that were taken from the bulk 131 

tank of each farm under aseptic conditions, then inserted in sterile plastic sampling bags (Whirl-Pack, 132 

NASCO) and transported in controlled temperature to the Laboratory of Food Inspection - 133 

Department of Veterinary Science, University of Turin - where DNA extraction was performed 134 

immediately. The sampling was repeated in May 2021, for a total of 20 milk filters. 135 

Upon arrival at the laboratory, 10 g of each milk filter were added to 90 ml of sterile buffered 136 

saline solution (Ringer's solution, Oxoid, Basingstoke, UK) in a sterile stomacher bag and 137 

homogenized for 2 min at 230 rpm in a stomacher (Seward Stomacher Blender 400, London, UK). 138 

Total DNA was then extracted from filter homogenates using the DNeasy Blood and Tissue Kit 139 



(QIAGEN, Hilden, Germany), with minor adjustments. Samples were centrifuged for 10 min at 100 × g 140 

to pellet and discard eukaryotic cells; milk serum was then centrifuged at 13,000 × g for 15 min at 141 

4°C to pellet prokaryotic cells and pellets recovered resuspended in phosphate-buffered saline [PBS] 142 

(Oxoid Basingstoke, UK). Isolation of genomic DNA was then performed following the manufacturer’s 143 

protocol, including the recommended modification for Gram-positive bacteria (Schwenker et al., 144 

2022); DNA was eluted in 50 μl 10 mM Tris-HCl buffer (pH 8.5) and frozen at −20°C until analyzed. 145 

Template DNA of each sample was quantified using a Qubit 2.0 Fluorometer (Life Technologies, 146 

Carlsbad, CA, USA) with the Qubit double-stranded DNA (dsDNA) high-sensitivity assay kit. DNA 147 

integrity and purity were verified by conventional 2% agarose gel electrophoresis and also using a 148 

NanoDrop spectrophotometer (ThermoFisher Scientific, Belgium). Samples meeting quality criteria 149 

were submitted for FL-16S rRNA metabarcoding and WMS. 150 

2.2 DNA sequencing 151 

Purified DNA was submitted to both FL-16S gene sequencing and WMS. Library preparation for FL-152 

16S was carried out starting from 10 ng of purified DNA from each sample using the 16S Barcoding 153 

Kit 1–12 (SQK-RAB204, ONT, UK), following the manufacturer’s instruction which includes the 154 

generation of FL-16S rRNA genes amplicons using primers 27F (5′-AGAGTTTGATCMTGGCTCAG-3′) 155 

and 1492R (5′-TACGGYTACCTTGTTACGACTT-3′) starting with 10 μl input DNA (10 ng), 1 μl 16S 156 

Barcode, at 10 μM, 25 μl LongAmp Taq 2X master mix (NEB, UK). The amplification was conducted 157 

using the following cycling conditions: initial denaturation 1 min at 95 °C (1 cycle); denaturation 20 158 

secs at 95 °C (25 cycles); annealing 30 secs at 55 °C (25 cycles); extension 2 mins at 65 °C (25 cycles); 159 

final extension 5 mins at 65 °C (1 cycle). The samples were processed following the manufacturer’s 160 

instruction with no modifications. Pooled libraries were then sequenced on a MinION platform (ONT, 161 

UK) using Flongle (FLO-FLG001) flow cells (ONT, UK) for 24 h. 162 



WMS DNA library preparation was carried out according to the NEBNext Ultra II DNA Library Prep Kit 163 

for Illumina (New England Biolabs, Ipswich, MA); four PCR cycles were used to amplify the library. 164 

Libraries quality and fragment lengths were determined using the Agilent Bioanalyzer 2100 and the 165 

High-Sensitivity DNA kit (Agilent Technologies, Santa Clara, CA, USA). 166 

The samples were sequenced on the Illumina NovaSeq 6000 platform using an S2 flow cell (Illumina, 167 

San Diego, USA) with a 150-cycles paired-end (PE) chemistry, generating 50 million PE reads for each 168 

sample. 169 

 170 

2.3 Bioinformatic and statistical analyses 171 

FL-16S base-calling was performed using Guppy (version 5.0.15) and Flye (version 2.9) was used as 172 

de novo assembler. 173 

The Fastp tool (Chen et al., 2018) was used to remove reads shorter than 1,000 bp and those reads 174 

retained thereafter filtered on a minimum average read quality score of 9, according to the 175 

recommendations from Nygaard et al (Nygaard et al., 2020). Processed sequencing data quality was 176 

assessed with MultiQC v1.11 (Ewels et al., 2016). Taxonomic classification was performed using 177 

Kraken2 v2.1.2 (Wood et al., 2019) and Bracken v2.5.0 (Lu et al., 2017) (threshold=10) with the NCBI 178 

NT database. 179 

Raw reads generated by WMS were quality assessed using FastQC v.0.11.9 180 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc) and MultiQC v1.11 with default 181 

parameters. Raw reads were quality-trimmed using Trimmomatic version 0.39 (leading, 3; trailing, 3; 182 

slidingwindow, 4:20; minlen, 36), removing low-quality regions, adaptor sequences and sequencing 183 

primers. After the quality filtering step, clean reads were aligned using Bowtie2 v.2.4.4 against the 184 

Bos taurus ARS-UCD1.2 bovine reference genome (NCBI Genome ID: 82), to remove host DNA 185 



sequences. Taxonomic classification of host-filtered reads was carried out using Kraken2 (Wood et 186 

al., 2019); the package Bracken (Lu et al., 2017) was then used on Kraken reports to re-estimate 187 

species abundance (threshold=10). Microbial taxonomic assignments of both amplicon and shotgun 188 

metagenomic sequence data were performed using the NCBI NT database. 189 

Relative abundance tables for all samples were merged and imported into MicrobiomeAnalyst (Chong 190 

et al., 2020) for statistical and diversity analysis. Data from both WMS and FL-16S were analysed using 191 

alpha diversity metrics to assess the divergence of the microbial communities within each filter 192 

sample. Shannon Diversity (Mouillot and Leprêtre, 1999) and Simpson Diversity indexes were 193 

calculated from the observed operational taxonomic unit (OTU) counts for FL-16S and WMS data 194 

after centered log-ratio (clr) normalization. Rarefaction curves were generated to assess the 195 

saturation of samples analyzed using the WMS and FL-16S sequencing. 196 

In order to perform a comparative statistical analysis of FL-16S and WMS data, each sample value 197 

from each dataset was paired with its corresponding value for the same sample in the other dataset. 198 

The pairwise Spearman’s correlation test was applied to investigate the amount of agreement 199 

between the two datasets, including alpha diversity measures, richness (observed OTUs) and indexes 200 

of Shannon’s and Simpson’s diversity. The composition of the core microbiome was assessed at genus 201 

and family levels for FL-16S and WMS datasets using 50% and 1% cut-off values for occurrence and 202 

relative abundance of the OTUs, respectively (Neu et al., 2021); the abundance of shared OTUs was 203 

visualized using heatmaps and Venn diagrams. 204 

 205 

 206 

3. Results 207 



Shotgun metagenomic sequencing yielded 1.06 billion reads, with an average of 53.1 million reads 208 

per sample (range 44.8-76.8 million); out of 1.06 billion reads, a total of 6.2 million were identified at 209 

the bacterial and archaeal phyla level. FL-16S sequencing resulted in 166.928 reads, with an average 210 

of 8.346 reads per sample (range 2.759-30.168). 211 

The number of observed OTUs gained from WMS was found to be higher in comparison with FL-16S 212 

sequencing datasets at each taxonomic level. In particular, at the family level, the number of families 213 

detected by WMS was significantly greater compared to the number of families detected by FL-16S 214 

sequencing (p-value <0.001, T-test), ranging from 7 to 37 OTUs per sample for FL-16S (mean 24.9) 215 

and from 227 to 301 OTUs per sample for WMS (mean 278,9); similarly, at the genus level, the 216 

number of annotated genera observed by WMS was significantly greater compared to the number 217 

of genera detected by FL-16S sequencing (p-value <0.001, T-test), ranging from 12 to 64 OTUs per 218 

sample for 16S sequencing (mean 41,2) and from 614 to 850 OTUs per sample for WMS (mean 779.7). 219 

The number of genera and families identified in each sample by the two sequencing techniques are 220 

reported as boxplots in Figure 1 . Alpha diversity patterns were calculated at the family and genus 221 

level using Shannon’s and Simpson’s indexes (Figure 1). At the family level, across samples analysed 222 

by WMS, both Shannon index alpha diversity and Simpson index alpha diversity were significantly  223 

greater than alpha diversity values of samples analysed by FL-16S sequencing (difference between 224 

means = 1,138 ± 0,1926, 95% CI 0,7483-1,528, p-value <0.0001; difference between means = 0,1324 225 

± 0,04367, 95% CI 0,04396 to 0,2208, p-value <0.005, T-test). Similarly, at the genus level, across 226 

samples analysed by WMS, both Shannon index alpha diversity and Simpson index alpha diversity 227 

were significantly greater than alpha diversity values of samples analysed by FL-16S sequencing 228 

(difference between means = 1,238 ± 0,2132, 95% CI 0,8069-1,670, p-value <0.0001; difference 229 

between means = 0,07861 ± 0,03808, 95% CI 0,001535-0,1557, p-value <0.05, T-test). Thus, both the 230 

observed Shannon index alpha diversity values and the Simpson index alpha diversity values were 231 



greater for samples analysed by WMS compared to samples analysed by FL-16S sequencing at each 232 

taxonomic level. Rarefaction curves showed that almost all samples reached the asymptote or started 233 

to plateau despite the different technique applied (Supplementary File S1).  234 

The top 10 most abundant genera profiled across the 20 samples by FL-16S sequencing and WMS 235 

corresponded to Acinetobacter, Lactococcus, Escherichia, Streptococcus, Staphylococcus, Bacillus, 236 

Corynebacterium, Pseudomonas, Lactobacillus and Clostridium (Figure 2). Most of the highly 237 

abundant genera detected per farm were detected by both FL-16S and WMS; however, different 238 

relative abundances were observed, mainly due to the overall lower number of OTUs annotated by 239 

full-length sequencing, consistently with the results of richness and diversity indexes. 240 

All the diversity and richness measures, including observed OTUs, Shannon and Simpson diversity 241 

indexes, were tightly correlated between FL-16S sequencing and WMS, at both the family (Observed 242 

OTUs Spearman R = 0.6, p-value = 0.005; Shannon Spearman R = 0.75, p-value = 0.0002; Simpson 243 

Spearman R = 0.6, p-value = 0.006) and genus level (Observed OTUs Spearman R = 0.68, p-value = 244 

0.0008 ; Shannon Spearman R = 0.66, p-value = 0.001; Simpson Spearman R = 0.52, p-value = 0.01) 245 

(Figure 3).  246 

The presence of a core microbiome common to the sampled milk filters was confirmed in both 247 

samples analysed by FL-16S sequencing and WMS. Out of 361 families detected across all samples, 248 

thirteen families were found in the core microbiome associated with milk filters analysed by FL-16S 249 

sequencing and thirteen families were found in the core microbiome associated with milk filters 250 

analysed by WMS; four of them were shared between the two core microbiomes, namely 251 

Moraxellaceae, Enterobacteriaceae, Bacillaceae and Streptococcaceae. Consistently, of the 1,078 252 

genera identified across all samples, thirteen were found in the core microbiome associated with milk 253 

filters analysed by FL-16S sequencing, namely Acinetobacter, Escherichia, Staphylococcus, 254 

Lactococcus, Bacillus, Streptococcus, Aerococcus, Clostridioides, Lactobacillus, Clostridium, 255 



Oscillibacter and Paeniclostridium, eight were found in the core microbiome associated with milk 256 

filters analysed by WMS, namely Acinetobacter, Corynebacterium, Bifidobacterium, Actinoalloteichus, 257 

Pseudomonas, Bradyrhizobium, Escherichia  and Bacillus, and three were shared between the two 258 

core microbiomes, that is Acinetobacter, Escherichia and Bacillus (Figure 4).  259 

4. Discussion 260 

The two most used sequencing methods to profile the microbiota of complex samples, including food 261 

and food-related matrices, are the 16S metabarcoding and shotgun metagenomic sequencing. Both 262 

these NGS techniques offer different advantages over culture-based methods; the 16S 263 

metabarcoding has been used more frequently mainly due to its low cost, low computational power 264 

requirements and standardized analysis methods, WMS is becoming more attractive for in-depth 265 

studies of microbial populations due to the large amount of information provided by this untargeted 266 

sequencing technique, which facilitates study of the functional profile of complex microbiomes. 267 

Recently, comparisons between high-throughput 16S rRNA sequencing and WMS have been 268 

performed in selected matrices, including gut, soil and water samples (Brumfield et al., 2020; Ranjan 269 

et al., 2016; Tessler et al., 2017). However food and food-related matrices are poorly investigated for 270 

several reasons including, the large amount of host DNA that characterizes these samples might 271 

greatly interfere with different sequencing techniques; those comparative studies performed have 272 

been based on selected hypervariable loci within the 16S rRNA gene, while the FL-16S sequencing 273 

has proved to allow a less biased study of different microbial ecosystems (Catozzi et al., 2020). This 274 

study reports on the comparison of FL-16S and WMS to investigate the microbial population of bulk 275 

tank milk filters, both of which are powerful tools for the monitoring of food-borne pathogens and 276 

the investigation of the microbiome of bulk tank milk.  277 

Although 16S metabarcoding is a promising, less expensive and more practical tool to investigate the 278 

microbiome when compared to WMS, in the present study it allowed the identification of only most 279 



abundant microorganisms in the biological samples investigated. Consistently, some previous studies 280 

highlighted a significant amount of agreement between 16S metabarcoding and WMS methods at a 281 

higher order of taxa, with a high degree of correlation found between 16S and WMS (Biegert et al., 282 

2021; Vogtmann et al., 2016). Our findings support the greater resolution of WMS in terms of both 283 

increased detection of bacterial taxa and enhanced detection of diversity; the superior richness in 284 

the profiles of microbes obtained and their diversity must also be weighted with the already known 285 

advantages related to the possibility of investigating the function of predicted genes. Our results are 286 

in accordance with studies analysing human faecal (Ranjan et al., 2016) and soil (Brumfield et al., 287 

2020) microbiomes, which, despite investigating targeted hypervariable regions of the 16S rRNA 288 

gene, revealed a greater diversity of microorganisms through the use of WMS. In this context, it must 289 

be stated that the actual composition of the microbiome of analysed milk filter samples was 290 

unknown; thereby, our approach, while enabling us to draw some conclusions on sensitivity, does 291 

not enable the evaluation of the specificity of each sequencing technique. This issue goes beyond the 292 

aims of the present study and can be addressed using simulated NGS data.  293 

The present investigation of the milk filters’ core microbiome through the application of both 294 

techniques has allowed the definition of a group of bacterial genera common to all the selected 295 

samples; in particular, while different sequencing methods defined different core microbiomes, 296 

Acinetobacter, Bacillus and Escherichia genera were shared between the FL-16S and the WMS cores. 297 

Although the microbiota profiles of distinct bulk tank milk filters were different, the presence of a 298 

well-defined core microbiome, characterized by both the sequencing technique applied, highlights 299 

the possibility to integrate multiple techniques to confirm the consistency of the achieved outcomes. 300 

The overall high occurrence and relative abundance of members of the Moraxellaceae, 301 

Enterococcaceae, Bacillaceae and Streptococcaceae families in milk filters are consistent with the 302 

profiled core microbiome of recent studies focusing on raw bovine milk collected in tankers (Kable et 303 



al., 2016; McHugh et al., 2020), thereby highlighting the deep correlation of microbial communities 304 

of bulk tank milk and microbial communities of in-line milk filters; most of the taxa belonging to the 305 

core microbiomes profiled by FL-16S and WMS are known to be associated with dairy processing 306 

environments. 307 

This study set out the use of different high-throughput molecular methods to provide an in-depth 308 

description of the microbiota of a food processing environment using milk filters as promising tools ; 309 

however certain limitations must be considered. This research was performed using a small number 310 

of samples, although this was sufficient to identify significant differences between the compared 311 

methods. Furthermore, a comparison including the most commonly used hypervariable regions of 312 

the 16S rRNA gene (e.g. the variable V3 and V4 regions), together with the FL-16S and the WMS 313 

approach could provide further data to choose the more suitable method for different scientific 314 

purposes. To our knowledge, this is the first study aiming to compare the use of FL-16S and WMS to 315 

investigate the microbial composition of a food-related matrix. Although, as anticipated, the 316 

resolution power of WMS has proved to be greater than that provided by 16S sequencing, the 317 

significant correlation of the two technologies both in terms of taxa diversity and richness, together 318 

with the similar profiles defined for both highly abundant taxa and core microbiomes, highlights the 319 

possible application of both methods for different purposes. Thus, our findings suggest that the use 320 

of FL-16S to perform large-scale microbiome studies can provide rapid and valuable data at a fraction 321 

of the cost of WMS, which, on the other hand, is an incomparable tool to perform in-depth studies 322 

of the microbiome, including low abundance taxa and functional profiles.  323 

 324 
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Figure legends 484 

Figure 1. Boxplots showing the number of OTUs, the Shannon and Simpson alpha-diversity indexes 485 

observed at the family and genus level. All indexes showed a statistically significant difference 486 

between the mean measures observed in samples analysed by FL-16S and WMS. 487 

Figure 2. The top-10 most abundant genera identified across the 20 samples analysed after centered-488 

log-ratio normalization; genera with a lower relative abundance are binned into “others” category. 489 

Samples are organized by farm and year of sampling. 490 

Figure 3. Correlation between WMS and FL-16S in terms of diversity at family and genus level. Each 491 

data point represents a single sample. Consensus between both sequencing methods in terms of 492 

alpha diversity was calculated by Spearman’s correlation. The slope of the correlation is represented 493 

by the grey, continuous line, while the 95% confidence interval is represented by the area delimited 494 

by the grey dotted lines. The data derived from FL-16S sequencing correlates well with the diversity 495 

assessment values derived from WMS for diversity. 496 

Figure 4. Core heatmaps and Venn diagrams showing bacterial families and genera detected in more 497 

than 50% of samples with more than 1% of relative abundance. Four OTUs at both family and genus 498 

levels were detected in all samples by FL-16S sequencing and WMS, thereby representing the shared 499 

core microbiome. 500 
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