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Abstract: Photocatalytic hydrogen (H2) production is a promising route for alternative energetics.
Understanding structure–activity relationships is a crucial step towards the rational design of photo-
catalysts, which requires the application of operando spectroscopy under relevant working conditions.
We performed an operando investigation on a catalytic system during the photodeposition of Pt
on TiO2 and photostimulated H2 production, using simultaneous laboratory X-ray absorption spec-
troscopy (XAS), UV–Vis spectroscopy, and mass spectrometry. XAS showed a progressive increase
in Pt fluorescence for Pt deposited on TiO2 for over an hour, which is correlated with the signal
of the produced H2. The final Pt/TiO2 catalyst contained Pt(0) particles. The electronic features
corresponding to the Pt4+ species in the UV–Vis spectrum of the solution disappear as soon as UV
radiation is applied in the presence of formic acid, which acts as a hole scavenger, resulting in the
presence of Pt(0) particles in solution.

Keywords: operando spectroscopy; XANES; photocatalysis; platinum catalyst; UV–Vis; HER;
photodeposition

1. Introduction

Hydrogen is an attractive alternative energy source due to the possibility of obtain-
ing it through green and renewable processes [1]. Much research has been performed
on the splitting of water for hydrogen production [2] and hydrogen evolution reaction
(HER). This is a remarkable and promising technology due to its lack of CO2 emission
and air pollution [3]. Pt deposited on TiO2 has been one of the most commonly reported
photocatalysts since the pioneering works in the field of water photodecomposition were
published [4,5]. This material continues to motivate intensive research aimed toward un-
derstanding the interaction between semiconductors and metals and the mechanisms of
metal-nanoparticle formation and incorporation on TiO2, also considering the effects of
different TiO2 morphologies [6–8].

Operando spectroscopic techniques provide efficient tools for studying catalysts in
real time under working conditions [9]. In particular, X-ray absorption spectroscopy (XAS)
selectively probes the local structure around a specific element, which can be used for active
site monitoring and to reveal the structural properties of metal species of photocatalysts
during synthesis and reaction conditions. The main challenges for XAS measurements in
photocatalytic reactions are that they are typically carried out in the liquid phase (which
absorbs X-ray photons) and under UV or visible light irradiation (which requires the
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development of suitable cells, allowing for simultaneous irradiation with X-ray and UV–
Vis beams). A number of photocatalytic cells overcoming these issues have been proposed
recently, and measurements of photocatalytic systems in operando conditions are now
feasible [10,11]. There are many operando XAS studies on Pt-based systems [12–20];
nevertheless, the examples of operando XAS experiments on Pt that is supported by TiO2
are still rare. Khare et al. [21] reported on the technical possibilities of in situ XAS during
photodeposition/photocatalysis. Piccolo et al. [22] studied Pt deposited on TiO2 by XAS
under UV–visible light irradiation and showed that the system is simple and optimal in
terms of electronic and catalytic stability while maximizing the photocatalytic hydrogen
evolution reaction (PHER) efficiency. Ying Zhou et al. [23] performed an operando XAS
experiment to track the interplay of Pt and crystal facets of TiO2 during the oxidation of CO.
In their work [21], operando XAS was used to follow the oxidation state of Pt in Pt/TiO2
during the H2 evolution reaction.

In addition, UV–Vis spectroscopy is sensitive to the electronic transitions of valence
electrons and can be sensitive to changes in the oxidation state and/or ligand surrounding
metals. A number of works have been devoted to studying the process of hydrogen
production with TiO2 photocatalysts containing Pt using UV–Vis spectroscopy [24–26].

Combining multiple spectroscopic techniques in one experimental setup offers the
possibility of observing catalytic systems from different perspectives that provide comple-
mentary information. Tinnemans et al. [27] revealed the possibilities of combining several
operando techniques in one spectroscopic-reaction cell. Their work [28] was devoted to
operando DRIFTS combined with HERFD–XANES and XES to study the mechanisms
behind photothermal catalytic oxidation of CO over Pt/TiO2. The methods turned out to
be sensitive enough to uncover a change in the electronic structure of the Pt sites upon light
illumination. In another work [29], the “design gap” was eliminated by using a reaction
vessel, where the addition of reactants and their stirring and mixing were carried out, while
XAS and UV–Vis spectra were recorded in a spatially separated measurement cell. Yoshida
et al. [30] attempted an ex situ XAS and UV–Vis of Pt/TiO2 at different times of photode-
position. Although the potential of combined operando UV–Vis and XAS under working
conditions is huge [31–33], there are still only a few studies devoted to the mechanisms of
the photodeposition process and the structure of photodeposited metal particles.

In the current work, we used a multi-technique approach to study catalyst formation
and photocatalytic H2 production over Pt/TiO2 by combining laboratory X-ray absorption
spectroscopy (XAS), UV–Vis spectroscopy, and mass spectrometry (MS). A self-designed,
3D-printed cell was used to perform operando laboratory characterization. From the XAS
data, the oxidation state of the Pt in the formed catalyst was determined, while the absolute
intensity of the X-ray fluorescence signal was used to monitor the amount of Pt incorporated
in TiO2. UV–Vis spectra were used to track the Pt species in the solution, while MS data
showed the evolution of the produced H2 signal.

2. Results and Discussion
2.1. Designing the Experimental Set-Up

The combination of multiple spectroscopic techniques is a commonly used approach
for gaining complementary information about a material’s structure. The element selectivity
of XAS spectra allows one to follow the evolution of an active metal species (here, platinum)
by extracting its local atomic and electronic structure. UV–Vis spectroscopy can be used
as both a qualitative and quantitative tool that is sensitive to the electronic structure of
the compounds present in the sample. Mass spectrometry is often used in operando
experiments to track the catalytic performance of the reaction under study.

To perform the combined laboratory XAS/UV–Vis/MS characterization, an operando
photocatalytic cell was designed and produced, as shown in Figure 1a,b. The cell was
equipped with two identical windows (4) made of scotch tape, which were transparent in
both X-ray and UV ranges. The distance between the two windows, i.e., the thickness of
the solution, was 4.6 mm. One of the windows (referred as the front window) was used
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for carrying the TiO2 support and the Pt/TiO2 catalyst, while the second one (the back
window) was used for UV irradiation. Initially, the ink with TiO2 support was applied
to the front window, and, after its complete drying, the cell was closed and filled with a
solution of K2PtCl6 in a 1:3 mixture of formic acid and water. Two plastic pipes (5) were
used to flush the cell with Ar continuously to avoid the presence of atmospheric oxygen.
The cell was mounted inside a Rigaku R-XAS spectrometer, as shown in Figure 1c, adopting
its fluorescence geometry. The incoming X-ray beam arrived from the left at ca. 45◦ with
respect to the front window, while the fluorescence detector was located above the sample
at ca. 90◦ with respect to the incoming beam. The 370 nm UV source with a remotely
controlled digital power supply was applied from the back window. Pt L3-edge XAS spectra
were measured in fluorescence mode.
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Figure 1. Schematic of the photocatalytic cell (a) and (b) with its main parts: 1—main body, 2—front
window cap, 3—back window cap with fixture for Rigaku sample holder, 4—front and back windows,
5—pipes for gas inlet and outlet, 6—needle for liquid inlet/outlet. (c) Photo of the cell installed in the
Rigaku R-XAS spectrometer during the photocatalytic experiment.

2.2. Insights on the Pt Species Photodeposited on TiO2

The first challenge was to track the evolution of the oxidation state of Pt throughout
the course of photodeposition. At the start of the experiment, Pt was in its cationic form
in a solution. However, the concentration of Pt in the solution adopted during the pho-
todeposition experiment was too low to collect high-quality XAS data, which is further
complicated by the attenuation length of Pt L3-edge energy photons in water of only about
3 mm. For this reason, a reference K2PtCl6 salt was measured ex situ (deposited on the
window in the same setup but without the solution and TiO2) resulting in a characteristic
Pt4+ XANES spectrum as shown via the black line in Figure 2a.

A second challenge derives from the use of a laboratory source for collecting XAS
spectra. A significant amount of time is required to collect a single spectrum compared
with that of synchrotron sources, which is not compatible with the time resolution needed
to follow the Pt photodeposition process. Therefore, on the basis of the K2PtCl6 reference
spectrum, three energy points were chosen (A, B, and C in Figure 2a): before the edge
(11540 eV), at the white line (11560 eV), and after the white line (11580 eV). During the
in situ Pt photodeposition from the solution onto the TiO2 support under UV irradiation,
the fluorescence signal was continuously collected in only these three points. After 2 h of
irradiation, the UV source was switched off, and a complete XANES spectrum was collected
in situ (Figure 2b, violet curve). This spectrum is characterized by a significantly reduced
intensity of the white line at 11560 eV, with respect to that of K2PtCl6, and is characteristic
of the Pt(0) state.



Catalysts 2023, 13, 414 4 of 10

Catalysts 2023, 13, x  4 of 11 
 

 

 
Figure 2. (a) Pt L3-edge XANES of solid K2PtCl6 (black) and Pt/TiO2 at the end of in situ 
photodeposition experiment (purple). The dashed vertical lines highlight the energy points in which 
the time-resolved fluorescence was collected. (b) Evolution of the absolute intensity of the 
fluorescence Pt signal in points B and C over time during the in situ photodeposition experiment, 
fitted by an exponential function (purple dashed line). (c) Estimation of Pt4+ fraction based on 
Equation (1), fitted by a linear function (purple dashed line). (d) MS signal of m/Z = 2 (blue) and m/Z 
= 44 (red) divided by the signal of m/Z = 40 and normalized by area. 

A second challenge derives from the use of a laboratory source for collecting XAS 
spectra. A significant amount of time is required to collect a single spectrum compared 
with that of synchrotron sources, which is not compatible with the time resolution needed 
to follow the Pt photodeposition process. Therefore, on the basis of the K2PtCl6 reference 
spectrum, three energy points were chosen (A, B, and C in Figure 2a): before the edge 
(11540 eV), at the white line (11560 eV), and after the white line (11580 eV). During the in 
situ Pt photodeposition from the solution onto the TiO2 support under UV irradiation, the 
fluorescence signal was continuously collected in only these three points. After 2 h of 
irradiation, the UV source was switched off, and a complete XANES spectrum was 
collected in situ (Figure 2b, violet curve). This spectrum is characterized by a significantly 
reduced intensity of the white line at 11560 eV, with respect to that of K2PtCl6, and is 
characteristic of the Pt(0) state. 

Figure 2. (a) Pt L3-edge XANES of solid K2PtCl6 (black) and Pt/TiO2 at the end of in situ photode-
position experiment (purple). The dashed vertical lines highlight the energy points in which the
time-resolved fluorescence was collected. (b) Evolution of the absolute intensity of the fluorescence
Pt signal in points B and C over time during the in situ photodeposition experiment, fitted by an
exponential function (purple dashed line). (c) Estimation of Pt4+ fraction based on Equation (1), fitted
by a linear function (purple dashed line). (d) MS signal of m/Z = 2 (blue) and m/Z = 44 (red) divided
by the signal of m/Z = 40 and normalized by area.

The relative fraction, γ, of the Pt4+ species that contributes to the fluorescence counts
can be estimated based on the relative intensity of the white line (point B), following
Equation (1):

γ =

(
IB − IA
IC − IA

−
I0
B − I0

A
I0
C − I0

A

)
/

(
I4+
B − I4+

A

I4+
C − I4+

A
−

I0
B − I0

A
I0
C − I0

A

)
(1)

where IA, IB, and IC are the intensities of the fluorescence signal at 11540, 11560, and 11580
eV, respectively, measured for the in situ sample (I), metallic Pt reference (I0), and K2PtCl6
reference (I4+). As can be seen from Figure 2c, the Pt4+ fraction on TiO2 was negligible at
every stage of the experiment. Within the standard deviation, it was close to zero and did
not show any trend. It should be also noted that the attenuation length of the Pt L3-edge
energy for TiO2 was ca. 50 µm, while the estimated thickness of the TiO2 layer was below
5 µm. Thus, the collected XAS signal is representative of the whole thickness of the TiO2
layer, while is not informative about the Pt precursor present in the bulk of the solution.
Based on the above, it can be concluded that only Pt0 species were found on the TiO2 layer
during the whole photodeposition experiment.

Simultaneously with XAS data acquisition, H2 evolution was monitored by online
MS and is reported in Figure 2d. The signal of hydrogen was observed at the beginning
and reached a value close to its maximum after only the first 10 min of experiment, even
though the Pt photodeposition was still in progress and required a much longer time to
be completed. This is evident in Figure 2b, which reports the evolution of the integral
fluorescence signal over time proportional to the amount of platinum photodeposited onto
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the TiO2. A less significant increase in H2 production activity after the first 10 min may be
explained by the fact that the parallel increase of the fluorescence signal, proportional to the
amount of Pt in the TiO2, is associated with the growth of existing particles and not their
quantity. Additional ex situ experiments were performed to better assess the photocatalytic
performance of the system (Figure S1 from Supplementary Materials). The H2 evolution
rate was about 3.5 mmol gcat

−1 h−1, with a similar rate for CO2 production, as would be
expected considering the stochiometric ratio in the formic acid photoreforming reaction.
The observed rate is comparable to other Pt-TiO2 systems reported in literature [34,35].

2.3. Insights on the Pt Species in Solution

Every 6 min during the photodeposition experiment, small (ca. 1 mL) aliquots of
the solution were extracted for UV–Vis measurements and were immediately returned
to the cell after a spectrum was collected. The spectrum of the initial solution (black)
(Figure 3), measured against distilled water as a reference, had two bands at 260 nm and
in the 200–250 nm range, corresponding to the charge transfer transition involving the
Pt4+ species and absorption by formic acid, respectively. Notably, the latter band had
already disappeared from the collected spectrum after 6 min of UV irradiation, and no
significant changes were observed over the following 90 min. Formic acid absorption also
decreased over time. At the same time, the fluorescence signal of the Pt0 on TiO2 grew over
a significantly larger time scale (Figure 2b), indicating that only a minor part of the reduced
Pt4+ species are deposited on the TiO2 support in the first 6 minutes of the reaction.Catalysts 2023, 13, x  6 of 11 
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An additional experiment was performed to investigate the fate of the Pt species in
the solution without the addition of TiO2 for Supplementary Materials (Figure S2). The
experiment was carried out with a Pt concentration that was lower than the previous
experiment by a factor of 5. The results (Figure S2a) confirmed a rapid decrease in the Pt4+

signal after only 30 s of exposure. Additionally, it was shown that the presence of titanium
dioxide was not necessary in this step, meaning that the reduction of the K2PtCl6 precursor
is exclusively a result of UV irradiation (Figure S2b).

This finding also explains why the reduction of the Pt4+ precursor in the solution, as
monitored by UV–Vis spectroscopy, occurred before its deposition on TiO2, as observed
by XAS. However, we did not observe the formation of Pt nanoparticles in the solution,
which would have provided a broad spectral feature in the UV–Vis spectra, arising from
light scattered by nanoparticles.

For this reason, we performed an experiment where the same amount of K2PtCl6 pre-
cursor was dissolved in a mixture of deionized water and formic acid (3:1) and irradiated
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by UV light. As can be seen in Figure 4a, the Pt4+ signal also disappeared after 1 h of irradi-
ation (from black to purple). The UV–Vis data were measured against the solution of formic
acid and water as a reference to exclude formic acid absorption from the resulting spectrum.
After UV irradiation, the solution became dark and provided an increased background to
the UV–Vis spectra, which can be attributed to the scattering by Pt nanoparticles in the
solution [36]. To support this fact, the solution was dried, and the remaining fraction was
probed by X-ray diffraction (XRD). Broad peaks of fcc platinum with a cell parameter of
3.9194 (4) Å co-exist with the reflections from KCl salt with a cell parameter of 6.3011 (5) Å
(Figure 4b). The average crystallite size of the platinum particles, determined according
to the LX parameter of the Lorentzian-broadening dependence on the scattering angle,
was 3.2 nm. As a side note, although the reduction of Pt4+ was observed in the absence
of TiO2, no signal of hydrogen production was observed for such a sample. However, a
signal of CO2 was registered at the beginning of irradiation as soon as the UV light was on,
evidencing its role in the reduction of platinum.
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3. Materials and Methods
3.1. Photocatalytic Cell

3D, solid models of the cell components (Figure 1a) were designed using Fusion 360
(Autodesk, San Rafael, CA, USA). The solid models were then converted into STL files
for 3D printing. The cell for operando spectroscopic investigation was 3D printed using
the digital-light-processing 3D printer Asiga MAX UV (Asiga, Sydney, Australia) with a
wavelength of 385 nm and a light intensity of 7.25 mW/cm2. The first layer was set at
25 µm and was exposed for 20 s to avoid the delamination of the print from the platform.
The thickness of the layers was set to 25 µm and each layer was exposed for 1.1 s. To avoid
the delamination of the layers during the process, the z-compensation was set to 300 µm.
For a better processability of the resin during the print, the printing temperature was set to
47 ◦C. Immediately after printing, the cell was sonicated in IPA for one minute at 80 kHz
and then mounted in the holder for manual flushing with IPA. After the flushing, the cell
components were sonicated once more and blow dried using nitrogen gas. Lastly, the
cell was post-cured for 2 min using a UV-radiation lamp (Flash DR-301C, Asiga, Sydney,
Australia).

3.2. Experimental Procedure

In a typical procedure, a solution of formic acid and deionized water (1:3) was prepared
and stirred for 10 minutes at room temperature. A total of 2 mg of K2PtCl6 (Sigma–Aldrich,
St. Louis, MO, USA) was then added to 13.3 mL of the prepared solution and stirred for
30 minutes. The TiO2 ink was prepared by mixing ca. 7 mg of TiO2 (634662 Sigma–Aldrich,
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St. Louis, MO, USA, Titanium (IV) oxide, with a mixture of rutile and anatase, nanopowder,
a <100 nm particle size (BET), and a 99.5% trace metals basis) with 100 µl of deionized
water. The ink was deposited on the window of the photocatalytic cell and left drying
for 15 min. The solution of K2PtCl6 (ca. 10 mL) was then added, and the closed cell was
bubbled with Ar (20 mL/min for 15 min). Then, the gas inlet was adjusted to flush only the
headspace of the cell in order not to create bubbles in the liquid during the measurements.
An LED–UV light source (370 nm, 3.9 W) was applied from the window opposite from the
TiO2 layer.

3.3. XAS Data Collection

The Pt L3-edge X-ray absorption near-edge structure (XANES) spectra were measured
in the operando regime using an R-XAS Looper (Rigaku, Japan) laboratory X-ray absorption
spectrometer at the Smart Materials Research Institute of the Southern Federal University.
The measurements were performed in fluorescence yield geometry. The energy was selected
by a Si (620) Johansson bent monochromator, providing an energy resolution of ∆E = 1.5 eV
for Pt L3-edge energy (11564 eV). The incident beam intensity was measured by an Ar-filled
(300 mbar) ionization chamber, and the fluorescence signal was measured by a silicon drift
detector. For the time-resolved experiment, the data were collected at 3 points: before the
edge, at the maximum of the white line of the K2PtCl6 reference, and after the white line
(see Figure 4). The data were processed using the Athena software [37].

3.4. UV–Vis Data Collection

UV–Vis spectra were measured using a Shimadzu UV-2600 spectrophotometer (Shi-
madzu Co., Kyoto, Japan). A photocatalytic cell was equipped with a needle outlet, through
which aliquots of the solution (ca. 1 mL) were taken to collect the UV–Vis spectrum (ca.
3 min) and then returned to the cell. The sample and the reference (distilled water) were
contained in two quartz cuvettes of 5 mm thickness. First, the UV–Vis spectrum was
collected from a solution purged for 15 minutes with Ar. Then, starting from the moment of
UV light irradiation, a probe was taken every 6 minutes and, upon completion of spectrum
collection, was returned back to the cell. For all data, the spectral acquisition was performed
with a 0.5 nm step in the 600–185 nm range.

3.5. Mass Spectrometry Data Collection

MS data was collected using the online quadrupole mass spectrometer TekhMas 7–100
(AtomTyazhMash, St. Petersburg, Russia). The device was attached via T-connection to
the gas outlet of the photocatalytic cell to monitor the signal of the produced H2 (m/Z = 2).
The signals of Ar, water, oxygen, nitrogen, and formic acid were also tracked. For better
statistics, the H2 signal was averaged over 90 s prior to the time when the aliquots were
extracted for UV–Vis collection.

3.6. X-ray Diffraction Measurements

XRD patterns were collected using the Bruker D2 PHASER instrument (Bruker, Bil-
lerica, MA, USA) with a Cu Kα source. A sample for XRD measurement was prepared by
dissolving 20 mg of K2PtCl6 into a 133 mL solution of formic acid and deionized water (1:3).
The solution was irradiated by UV light for 1 h and then dried overnight. The remaining
solid fraction was put on a low-background sample holder. The XRD data were collected
using Bragg–Brentano geometry in the 2θ range, from 20–90◦, with a step of 0.01◦. The
Pawley fitting was performed in January 2006 [38].

4. Conclusions

Although being extremely informative regarding the structure of active sites, the
operando XAS technique is much less used in photocatalytic studies compared with the
conventional heterogenous catalysis. This is generally due to the technical complexity of
the sample environment necessary to perform photocatalytic experiments compatible with
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XAS data collection. In this regard, our study represents an example of how photocatalysts
can be studied in situ, even at the laboratory scale, without the utilization of synchrotron
light. In combination with optical spectroscopy and mass spectrometry data, several new
conclusions were made concerning the photodeposition of Pt on TiO2 support and the
successive HER reaction over the formed Pt/TiO2 catalyst.

The amount of photodeposited Pt on TiO2 identified as Pt(0) grew progressively over
ca. 1 h, while the signal of the produced H2 was detected and saturated mainly in the first
10–20 min. At the same time, the characteristic Pt4+ peak of the precursor in the solution
for the UV–Vis data disappeared immediately as soon as the UV light was switched on in
the presence of formic acid acting as a hole scavenger. The reduction of Pt4+ in the solution
to Pt(0) nanoparticles by UV irradiation was also confirmed in absence of TiO2.

These results provide useful insight into the formation and evolution of Pt/TiO2 pho-
tocatalysts and suggest an effective multi-technique operando approach for both laboratory
and synchrotron-based studies of water splitting and HER photocatalysts.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal13020414/s1; Figure S1—formation of H2 and CO2 during
PHER, analyzed by GC.; Figure S2—evolution of UV–Vis spectra; Figure S3—normalized MS signal
of m/Z = 44; Table S1—Pt content from XRF elemental analysis.
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